WO2021217844A1 - 一种地铁电容储能型制动能量吸收装置的满载实验系统 - Google Patents

一种地铁电容储能型制动能量吸收装置的满载实验系统 Download PDF

Info

Publication number
WO2021217844A1
WO2021217844A1 PCT/CN2020/098319 CN2020098319W WO2021217844A1 WO 2021217844 A1 WO2021217844 A1 WO 2021217844A1 CN 2020098319 W CN2020098319 W CN 2020098319W WO 2021217844 A1 WO2021217844 A1 WO 2021217844A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage device
capacitive energy
capacitive
power supply
Prior art date
Application number
PCT/CN2020/098319
Other languages
English (en)
French (fr)
Inventor
丁宁
方汉学
邵景红
高栋
徐春红
亢丽平
姬脉胜
朱英华
Original Assignee
新风光电子科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新风光电子科技股份有限公司 filed Critical 新风光电子科技股份有限公司
Publication of WO2021217844A1 publication Critical patent/WO2021217844A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/008Testing of electric installations on transport means on air- or spacecraft, railway rolling stock or sea-going vessels

Definitions

  • the invention relates to the field of urban rail transit, and more specifically, to a full-load experimental system of a subway capacitive energy storage type braking energy absorption device.
  • the absorption methods of regenerative braking energy in subway mainly include resistance energy consumption type, energy feedback type, and capacitor energy storage type.
  • the resistance energy consumption type is an early application method. This method consumes the energy when the train is braking on the resistance. This method wastes energy and increases the burden of environmental control heat dissipation, and gradually withdraws from the application field of braking energy absorption.
  • the energy feedback type is to invert the braking energy back to the AC grid, which can realize the reuse of energy, is energy-saving and environmentally friendly, and is currently the most widely used subway braking energy absorption method.
  • the energy-feeding device in this way needs to be connected to the AC power grid, and certain harmonics will inevitably be injected into the AC power grid during operation.
  • Capacitor energy storage type is a braking energy absorption method developed in recent years. This method stores the braking energy in the capacitor when the train is braking, and releases the braking energy for the traction of the train when the train is traction. .
  • the energy storage device in this way only needs to be connected to the DC traction grid, which has the characteristics of energy saving and environmental protection while not affecting the AC grid. It has been increasingly applied to the field of subway braking energy absorption.
  • the current general test method is to use a two-way converter (AD/DC) as a DC power supply, and the DC side of the two-way converter is connected to a capacitor energy storage device.
  • AD/DC two-way converter
  • the bidirectional converter When the capacitor is charged, the bidirectional converter works in a controlled rectification mode, and the energy is transferred from the grid to the capacitor; when the capacitor is discharged, the bidirectional converter works in the inverter mode, and the energy is returned from the capacitor to the grid.
  • the first test method is to require the two-way converter used as a DC power source, the power grid and the capacitor energy storage device to be tested to have the same power level, generally several MW levels, which requires a large capacity of the companion test machine and the power grid.
  • the DC power supply must meet the two-way flow of energy, and the requirements for the DC power supply are relatively high.
  • the power company does not measure the returned electric energy, but only measures the electric energy consumed in one direction.
  • Such a MW class If the capacitive energy storage device of the capacitor energy storage device carries out the running test under the full power, the electric energy consumed is huge. To sum up the above two aspects, the investment cost of manufacturing enterprises for the factory test of capacitor energy storage devices will be very huge.
  • the present invention provides a full-load experimental system of a subway capacitor energy storage type braking energy absorption device.
  • a full-load experiment system of a subway capacitor energy storage type braking energy absorption device includes a companion test system and a tested system.
  • the test system includes an AC power grid, a DC power supply, and a DC bus.
  • the input port of the DC power supply is connected to the AC power grid, and the output port of the DC power supply is connected to the DC bus.
  • the tested system includes a first capacitor energy storage device and a second capacitor energy storage device. ,
  • the first capacitive energy storage device and the second capacitive energy storage device are connected through a DC bus, and the first capacitive energy storage device and the second capacitive energy storage device are connected to the AC power grid via the DC bus and the DC power supply in turn.
  • the experimental method of the full-load experimental system based on the subway capacitive energy storage braking energy absorption device is realized through the following steps:
  • the DC power supply is in the disconnected state, the first capacitive energy storage device is in the discharging state, the second capacitive energy storage device is in the charging state, and the duration is T1, and the energy is transferred from the first capacitive energy storage device through the DC bus Flow to the second capacitive energy storage device;
  • the DC power supply is in the disconnected state
  • the first capacitive energy storage device is in the charging state
  • the second capacitive energy storage device is in the discharging state
  • the duration is T1
  • the energy is transferred from the second capacitive energy storage device through the DC bus Flow to the first capacitive energy storage device
  • the beneficial effect of the present invention is that the energy exchange under the rated power of the present invention is between the two capacitor energy storage devices under test, rather than between the capacitor energy storage device under test and the power grid.
  • the requirements for the capacity of the power grid and the DC power supply are very high. small.
  • the present invention when supplementing energy with knowledge, it is necessary to take power from the AC power grid, and there is no need to feed energy back to the experimental power grid. The power requirements are greatly reduced.
  • the power consumed in the present invention is only the loss during the operation of the entire system. Compared with the previous experimental method of directly using the power grid and the bidirectional converter (DC power supply), the power consumed is greatly reduced, and the experimental cost is greatly reduced.
  • the invention can simultaneously realize the full-load aging test of at least two capacitor energy storage devices, and improves the test efficiency.
  • Fig. 1 is a schematic structural diagram of a full-load test system of a subway capacitor energy storage type braking energy absorption device of the present invention
  • Figure 2 is a schematic diagram of the experimental method of the full-load experimental system of the subway capacitor energy storage type braking energy absorption device of the present invention.
  • the full load test system of the subway capacitor energy storage type braking energy absorption device shown includes a test system 2 and the tested system 5.
  • the test system 2 includes an AC power grid 1, a DC power supply 3 and a DC bus 4.
  • the input port of the DC power supply 3 is connected to the AC power grid 1, and the output port of the DC power supply 3 is connected to the DC bus 4.
  • the system under test 5 includes a first capacitive energy storage device 6 and a second capacitive energy storage device 7.
  • the first capacitive energy storage device 6 and the second capacitive energy storage device 7 are connected through a DC bus 4, and the first capacitive energy storage device 6 And the second capacitive energy storage device 7 are connected to the AC power grid 1 via the DC bus 4 and the DC power supply 3 in turn.
  • the capacitive energy storage device on the subway site belongs to the intermittent working system, which generally requires 20s/2 minutes or 30s/2 minutes, that is, 20s or 30s at rated power within 2 minutes.
  • FIG. 2 a schematic diagram of the experimental method of the full-load experimental system of the subway capacitor energy storage type braking energy absorption device of the present invention is shown.
  • the experimental method can be achieved through the following steps:
  • the DC power supply 3 is in the disconnected state, the first capacitive energy storage device 6 is in the discharging state, and the second capacitive energy storage device 7 is in the charging state.
  • the duration is T1, about 20s or 30s, and the simulation is The time it takes for the subway to brake and stop at the station, the energy flows from the first capacitive energy storage device 6 to the second capacitive energy storage device 7 via the DC bus 4; under this working condition, the first capacitive energy storage device 6 works in a voltage stabilization mode.
  • the DC voltage is stabilized at the target value, and the second capacitive energy storage device 7 works again in the constant current charging mode.
  • the DC power supply 3 is in the disconnected state
  • the first capacitive energy storage device 6 is in the charging state
  • the second capacitive energy storage device 7 is in the discharging state.
  • the duration is T1, about 20s or 30s
  • the simulation is When the subway leaves the station for traction and start, the energy flows from the second capacitor energy storage device 7 to the first capacitor energy storage device 6 via the DC bus 4; under this working condition, the first capacitor energy storage device 6 works in the constant current charging mode.
  • the two-capacitor energy storage device 7 works in a stabilization mode to stabilize the DC voltage at the target value.
  • Supplementary energy the experiment steps a), b), and c) are carried out in turn.
  • the tested system (5) has its own loss. After several cycles of charging, the total power stored by the two tested capacitive energy storage devices Reduce, the total power is less than the set value and replenish the energy; make the DC power supply (3) in the closed state, and the AC power grid (1) through the DC power supply (3) to supplement the capacitor energy storage device with a higher remaining power with a smaller charging power To the full power state, the energy is charged from the AC power grid (1) via the DC power supply (3) to one of the capacitor energy storage devices under this working condition.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种地铁电容储能型制动能量吸收装置的满载实验系统,地铁电容储能型制动能量吸收装置的满载实验系统包括陪试系统和被试系统。陪试系统包括交流电网、直流电源和直流母线,直流电源的输入口与交流电网连接,直流电源的输出口与直流母线连接;被试系统包括第一电容储能装置和第二电容储能装置,第一电容储能装置和第二电容储能装置通过直流母线相连接,第一电容储能装置和第二电容储能装置依次经直流母线、直流电源接于交流电网上。本发明中消耗的电量只是整个系统工作时的损耗,所消耗的电量大幅减少,大大降低实验成本,本发明可以同时实现至少两台电容储能装置的满载老化实验,提升了试验效率。

Description

一种地铁电容储能型制动能量吸收装置的满载实验系统 技术领域
本发明涉及城市轨道交通领域,更具体的说,尤其涉及一种地铁电容储能型制动能量吸收装置的满载实验系统。
背景技术
目前地铁再生制动能量的吸收方式主要有电阻耗能型、能量回馈型、电容储能型等。电阻耗能型是早期应用的一种方式,该方式将列车制动时的能量消耗在电阻上,该方式浪费能量且增加环控散热负担,逐渐退出制动能量吸收的应用领域。能量回馈型是把制动能量逆变回馈至交流电网,可以实现能量的再利用,节能环保,是目前应用较多的地铁制动能量吸收方式。但该方式能馈装置需要与交流电网相连,工作时不可避免的会向交流电网注入一定的谐波。电容储能型是近些年发展起来的一种制动能量吸收方式,该方式是在列车制动时把制动能量储存在电容中,在列车牵引时把制动能量释放出去供列车牵引使用。该方式储能装置只需要与直流牵引电网连接,具有节能环保同时不影响交流电网的特点,已经越来越多的应用到地铁制动能量吸收领域。
随着电容储能型制动能量吸收装置在地铁领域应用的越来越多,如何提高储能装置的制造能力是国内各个制造厂家需要思考的问题。在电容储能装置出厂试验项目中,额定电压、额定功率的试验项目能够有效的检验设备的性能,充分地验证设备的可靠性与稳定性。目前一般的试验方法是用一台双向变流器(AD/DC)作为直流电源,双向变流器的直流侧连接电容储能装置。电容充电时,双向变流器工作在可控整流模式,能量由电网至电容;电容放电时,双向变流器工作在逆变模式,能量由电容返回至电网。该试验方法一是要求作为直流电源的双向变流器、电网与被试的电容储能装置具有同种功率等级,一般为几个MW级别,这就要求陪试机和电网的容量较大,直流电源必须满足能量双向流动,对直流电源的要求较高。二是电容放电时,能量返回到交流电网,如果公司内部无法正常消耗掉则会返回到上级电网,对于返回的电能电力公司并不计量,只会计量单方向消耗的电能,这样一台MW级的电容储能装置若进行满功率下的跑载测试所消耗的电能是巨大的。综上两方面,生产企业对于电容储能装置出厂试验的投入成本将是非常庞大的。
技术问题
本发明为了克服上述技术问题的缺点,提供了一种地铁电容储能型制动能量吸收装置的满载实验系统。
技术解决方案
一种地铁电容储能型制动能量吸收装置的满载实验系统,地铁电容储能型制动能量吸收装置的满载实验系统包括陪试系统和被试系统。陪试系统包括交流电网、直流电源和直流母线,直流电源的输入口与交流电网连接,直流电源的输出口与直流母线连接;被试系统包括第一电容储能装置和第二电容储能装置,第一电容储能装置和第二电容储能装置通过直流母线相连接,第一电容储能装置和第二电容储能装置依次经直流母线、直流电源接于交流电网上。
基于地铁电容储能型制动能量吸收装置的满载实验系统的实验方法,通过以下步骤来实现:
a).能量转移:使直流电源处于断开状态,第一电容储能装置处于放电状态,第二电容储能装置处于充电状态,持续时间为T1,能量由第一电容储能装置经直流母线流向第二电容储能装置;
b).间歇性停机:使直流电源处于断开状态,第一电容储能装置与第二电容储能装置均处于停机状态,持续时间为T2;
c).能量转移:使直流电源处于断开状态,第一电容储能装置处于充电状态,第二电容储能装置处于放电状态,持续时间为T1,能量由第二电容储能装置经直流母线流向第一电容储能装置;
d).补充能量:实验步骤a)、b)、c)依次循环往复进行,被试系统本身具有损耗,经若干循环对充后,两台被试电容储能装置储存的总电量减少,总电量小于设定值后补充能量;使直流电源处于闭合状态,交流电网经直流电源对剩余电量较高的电容储能装置以较小的充电功率补充至满电状态,能量由交流电网经直流电源充至其中一台被试电容储能装置;
e).进入下次往复循环:能量补充完毕后,再次进入实验步骤a)、b)、c)的循环,总电量小于设定值后再通过实验步骤d)补充能量,依次往复循环,用于实现电容储能装置的完全模拟现场实际工况的间歇式满载老化实验。。
有益效果
本发明的有益效果是:本发明额定功率下的能量交换是在两台被试电容储能装置之间,而非被试电容储能装置与电网之间,对电网和直流电源的容量要求很小。本发明中知识补充能量时需要从交流电网取电,,不需要将能量回馈至实验电网,前级的直流电源不再需要是双向变流器,只需要简单的不控整流即可,对直流电源的要求大大降低。本发明中消耗的电量只是整个系统工作时的损耗,相比之前直接用电网加双向变流器(直流电源)的实验方法所消耗的电量大幅减少,大大降低实验成本。本发明可以同时实现至少两台电容储能装置的满载老化实验,提升了试验效率。
附图说明
图1为本发明的地铁电容储能型制动能量吸收装置的满载试验系统的结构示意图;
图2为本发明的地铁电容储能型制动能量吸收装置的满载实验系统的实验方法的示意图。
图中:1交流电网,2陪试系统,3直流电源,4直流母线,5被试系统,6第一电容储能装置,7第二电容储能装置。。
本发明的最佳实施方式
下面结合附图与实施例对本发明作进一步说明。
如图1所示,给出了本发明地铁电容储能型制动能量吸收装置的满载试验系统的结构示意图,所示的地铁电容储能型制动能量吸收装置的满载实验系统包括陪试系统2和被试系统5。陪试系统2包括交流电网1、直流电源3和直流母线4,直流电源3的输入口与交流电网1连接,直流电源3的输出口与直流母线4连接。被试系统5包括第一电容储能装置6和第二电容储能装置7,第一电容储能装置6和第二电容储能装置7通过直流母线4相连接,第一电容储能装置6和第二电容储能装置7依次经直流母线4、直流电源3接于交流电网1上。
地铁现场的电容储能装置属于间歇工作制,一般要求20s/2分钟或30s/2分钟,即2分钟之内额定功率工作20s或30s。
如图2所示,给出了本发明的地铁电容储能型制动能量吸收装置的满载实验系统的实验方法的示意图,所示的地铁电容储能型制动能量吸收装置的满载实验系统的实验方法,可通过以下步骤来实现:
a).能量转移:使直流电源3处于断开状态,第一电容储能装置6处于放电状态,第二电容储能装置7处于充电状态,持续时间为T1,约为20s或30s,模拟为地铁到站制动停车时所用时间时长,能量由第一电容储能装置6经直流母线4流向第二电容储能装置7;该工况下第一电容储能装置6工作在稳压模式,将直流电压稳定在目标值上,第二电容储能装置7工作再恒流充电模式。
b).间歇性停机:使直流电源3处于断开状态,第一电容储能装置6与第二电容储能装置7均处于停机状态,持续时间为T2,模拟为地铁到站后停运时间段时长。
c).能量转移:使直流电源3处于断开状态,第一电容储能装置6处于充电状态,第二电容储能装置7处于放电状态,持续时间为T1,约为20s或30s,模拟为地铁离站牵引起动时所用时长,能量由第二电容储能装置7经直流母线4流向第一电容储能装置6;该工况下第一电容储能装置6工作在恒流充电模式,第二电容储能装置7工作再稳压模式,将直流电压稳定在目标值上。
d).补充能量:实验步骤a)、b)、c)依次循环往复进行,被试系统(5)本身具有损耗,经若干循环对充后,两台被试电容储能装置储存的总电量减少,总电量小于设定值后补充能量;使直流电源(3)处于闭合状态,交流电网(1)经直流电源(3)对剩余电量较高的电容储能装置以较小的充电功率补充至满电状态,该工况下能量由交流电网(1)经直流电源(3)充至其中一台被试电容储能装置。
e).进入下次往复循环:能量补充完毕后,再次进入实验步骤a)、b)、c)的循环,总电量小于设定值后再通过实验步骤d)补充能量,依次往复循环,用于实现电容储能装置的完全模拟现场实际工况的间歇式满载老化实验。

Claims (2)

  1. 一种地铁电容储能型制动能量吸收装置的满载实验系统,其特征在于:地铁电容储能型制动能量吸收装置的满载实验系统包括陪试系统(2)和被试系统(5)。所述的陪试系统(2)包括交流电网(1)、直流电源(3)和直流母线(4),直流电源(3)的输入口与交流电网(1)连接,直流电源(3)的输出口与直流母线(4)连接;被试系统(5)包括第一电容储能装置(6)和第二电容储能装置(7),第一电容储能装置(6)和第二电容储能装置(7)通过直流母线(4)相连接,第一电容储能装置(6)和第二电容储能装置(7)依次经直流母线(4)、直流电源(3)接于交流电网(1)上。
  2. 一种基于权利要求1所述的地铁电容储能型制动能量吸收装置的满载实验系统的实验方法,其特征在于,通过以下步骤来实现:
    a).能量转移:使直流电源(3)处于断开状态,第一电容储能装置(6)处于放电状态,第二电容储能装置(7)处于充电状态,持续时间为T1,能量由第一电容储能装置(6)经直流母线(4)流向第二电容储能装置(7);
    b).间歇性停机:使直流电源(3)处于断开状态,第一电容储能装置(6)与第二电容储能装置(7)均处于停机状态,持续时间为T2;
    c).能量转移:使直流电源(3)处于断开状态,第一电容储能装置(6)处于充电状态,第二电容储能装置(7)处于放电状态,持续时间为T1,能量由第二电容储能装置(7)经直流母线(4)流向第一电容储能装置(6);
    d).补充能量:实验步骤a)、b)、c)依次循环往复进行,被试系统(5)本身具有损耗,经若干循环对充后,两台被试电容储能装置储存的总电量减少,总电量小于设定值后补充能量;使直流电源(3)处于闭合状态,交流电网(1)经直流电源(3)对剩余电量较高的电容储能装置以较小的充电功率补充至满电状态,能量由交流电网(1)经直流电源(3)充至其中一台被试电容储能装置;
    e).进入下次往复循环:能量补充完毕后,再次进入实验步骤a)、b)、c)的循环,总电量小于设定值后再通过实验步骤d)补充能量,依次往复循环,用于实现电容储能装置的完全模拟现场实际工况的间歇式满载老化实验。。
PCT/CN2020/098319 2020-04-29 2020-06-26 一种地铁电容储能型制动能量吸收装置的满载实验系统 WO2021217844A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010355878.2 2020-04-29
CN202010355878.2A CN111596150A (zh) 2020-04-29 2020-04-29 一种地铁电容储能型制动能量吸收装置的满载实验系统

Publications (1)

Publication Number Publication Date
WO2021217844A1 true WO2021217844A1 (zh) 2021-11-04

Family

ID=72187773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098319 WO2021217844A1 (zh) 2020-04-29 2020-06-26 一种地铁电容储能型制动能量吸收装置的满载实验系统

Country Status (2)

Country Link
CN (1) CN111596150A (zh)
WO (1) WO2021217844A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114336871A (zh) * 2021-12-31 2022-04-12 徐州中矿大传动与自动化有限公司 一种提升机应急供电减速制动控制方法及装置
CN115508659A (zh) * 2022-11-16 2022-12-23 武汉新能源接入装备与技术研究院有限公司 一种飞轮储能系统对拖测试平台及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227096A (zh) * 2007-01-17 2008-07-23 三星Sdi株式会社 混合电池及其充电/放电方法
CN101769995A (zh) * 2010-01-26 2010-07-07 南京工业大学 智能化电池循环充放电测试装置
US20130241466A1 (en) * 2011-02-14 2013-09-19 Mitsubishi Electric Corporation Regenerative power supply system
CN103956761A (zh) * 2014-04-22 2014-07-30 电子科技大学 一种大规模能量回收动力电池组测试设备的混合微网系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103852272A (zh) * 2012-12-07 2014-06-11 新昌县冠阳技术开发有限公司 一种多工况模拟制动能量回收装置
CN104802646B (zh) * 2015-04-20 2017-04-19 株洲中车时代装备技术有限公司 基于超级电容的储能型再生制动能量回收方法及系统
CN105425071B (zh) * 2015-11-27 2018-07-06 株洲中车时代电气股份有限公司 一种超级电容储能装置试验平台及试验方法
CN105867359B (zh) * 2016-06-12 2018-08-28 厦门市福工动力技术有限公司 一种制动能量回收试验方法及试验设备
CN107910937A (zh) * 2017-10-12 2018-04-13 廊坊英博电气有限公司 一种基于铁路试验线牵引变电所再生制动地面吸收装置的控制装置及方法
CN108429275A (zh) * 2018-02-28 2018-08-21 中国科学院广州能源研究所 一种基于混合储能的再生电能回收利用实验系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227096A (zh) * 2007-01-17 2008-07-23 三星Sdi株式会社 混合电池及其充电/放电方法
CN101769995A (zh) * 2010-01-26 2010-07-07 南京工业大学 智能化电池循环充放电测试装置
US20130241466A1 (en) * 2011-02-14 2013-09-19 Mitsubishi Electric Corporation Regenerative power supply system
CN103956761A (zh) * 2014-04-22 2014-07-30 电子科技大学 一种大规模能量回收动力电池组测试设备的混合微网系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114336871A (zh) * 2021-12-31 2022-04-12 徐州中矿大传动与自动化有限公司 一种提升机应急供电减速制动控制方法及装置
CN114336871B (zh) * 2021-12-31 2024-04-12 江苏国传电气有限公司 一种提升机应急供电减速制动控制方法及装置
CN115508659A (zh) * 2022-11-16 2022-12-23 武汉新能源接入装备与技术研究院有限公司 一种飞轮储能系统对拖测试平台及方法

Also Published As

Publication number Publication date
CN111596150A (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
Li et al. Power management strategy for vehicular-applied hybrid fuel cell/battery power system
CN102931687B (zh) 一种混合储能光伏电站的功率调节方法
CN110040038A (zh) 一种氢-电混合燃料电池客车能量管理控制方法及系统
CN107516905B (zh) 一种多元耦合储能系统
CN104716644A (zh) 一种可再生能源冷热电微网系统及控制方法
CN206861677U (zh) 基于含储热的综合能源小型热泵供热系统
WO2021217844A1 (zh) 一种地铁电容储能型制动能量吸收装置的满载实验系统
CN102624025A (zh) 一种复合单元级联多电平逆变电路能量回馈装置及其控制方法
CN102355140A (zh) 一种能实现能量回馈的级联多电平逆变电路及其控制方法
CN114665511B (zh) 抽油机井群光电综合能源直流供电系统电量节能控制方法
CN203797842U (zh) 光伏空调系统
CN104973472A (zh) 一种集群电梯再生电能直流微电网调度节能装置及方法
CN209562428U (zh) 一种模块并联型储能变流器
CN201966664U (zh) 一种太阳能发电供电系统
CN102427267A (zh) 用于电动汽车的模块化充电系统
CN114156862A (zh) 一种抽油机光储直流微电网技术
CN204144996U (zh) 一种带超级电容的群控电梯能量馈网装置
Lianfu et al. Research on the integrated braking energy recovery strategy based on super-capacitor energy storage
CN207150225U (zh) 一种基于高电压平台的电梯能量回收系统
Wang et al. Energy recovery and utilization efficiency improvement for motor-driven system using dynamic energy distribution method
WO2020182220A1 (zh) 一种基于超级电容器的直流高压磕头机自动节能系统
CN114665510A (zh) 一种光电能源直流供电抽油机井群节能控制系统
CN107453449A (zh) 一种基于高电压平台的电梯能量回收系统
CN202930964U (zh) 一种充电器老化的能量再生循环系统
CN114030364A (zh) 工程机械能量管理系统、方法、装置和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933028

Country of ref document: EP

Kind code of ref document: A1