WO2020182220A1 - 一种基于超级电容器的直流高压磕头机自动节能系统 - Google Patents

一种基于超级电容器的直流高压磕头机自动节能系统 Download PDF

Info

Publication number
WO2020182220A1
WO2020182220A1 PCT/CN2020/079543 CN2020079543W WO2020182220A1 WO 2020182220 A1 WO2020182220 A1 WO 2020182220A1 CN 2020079543 W CN2020079543 W CN 2020079543W WO 2020182220 A1 WO2020182220 A1 WO 2020182220A1
Authority
WO
WIPO (PCT)
Prior art keywords
buck
boost
circuit
energy storage
voltage
Prior art date
Application number
PCT/CN2020/079543
Other languages
English (en)
French (fr)
Inventor
赵波
Original Assignee
安施新能源(成都)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安施新能源(成都)有限公司 filed Critical 安施新能源(成都)有限公司
Publication of WO2020182220A1 publication Critical patent/WO2020182220A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the invention relates to the technical field of petroleum extraction equipment, in particular to an energy recovery device for oilfield pumping units, and more particularly to an automatic energy-saving system for direct current high-voltage knockout machines based on super capacitors.
  • Oilfield pumping units are necessary equipment in oil extraction, and the current industry is mainly based on kowtow units.
  • the number is as high as 100,000 or more.
  • the total motor capacity is more than 35 million KW, and the annual power consumption is more than tens of billions of degrees.
  • the power consumption of the kowtow machine accounts for about 40% of the total power consumption of the oilfield.
  • the inverter is gradually used to control the motor.
  • the current treatment scheme is to use a frequency converter while using a brake resistor to release the variable amount of electricity generated by the motor into heat energy, which is a waste of energy from the perspective of energy.
  • How to efficiently use the power generated by the motor has become a new topic in the application of the kowtow machine.
  • the power generated by the motor can be inverted into the same as the power grid through a special grid-connected inverter. Three-phase alternating current with the same frequency and the same phase and fed back to the grid.
  • the period of motor power generation is short, which belongs to the intermittent energy, and the electricity generated each time is relatively small.
  • the purpose of the present invention is to provide an automatic energy-saving system for a DC high-voltage kowtow machine based on a super capacitor, which is used to solve the problem that the electric power generated by the motor cannot be recycled and reused in the prior art, and the user's electricity cost is reduced.
  • An automatic energy-saving system for a DC high-voltage kowtow machine based on a super capacitor includes a frequency converter connected to a three-phase power grid and a three-phase AC contactor.
  • the DC bus of the frequency converter is connected to the DC contactor, BUCK/BOOST power conversion circuit, and storage.
  • the energy units are combined to form a series circuit; it also includes a single-chip microcomputer system mainboard connected with the DC contactor and the BUCK/BOOST power conversion circuit, the single-chip microcomputer system mainboard is communicatively connected with the energy storage unit, the single-chip system mainboard and the BUCK/BOOST power conversion circuit There is a BUCK/BOOST pre-PWM processing circuit connected therebetween.
  • the BUCK/BOOST pre-PWM processing circuit includes a BUCK module PWM processing circuit and a BOOST module PWM processing circuit connected to the single-chip system main board.
  • the BUCK module PWM processing circuit and The dead zone processing logic circuit is connected between the BOOST module PWM processing circuit, the BUCK module PWM processing circuit and the BOOST module PWM processing circuit are respectively connected to the optocoupler isolation, IGBT power drive and protection circuit, and the boost of the BUCK/BOOST power conversion circuit /Buck control terminal connection.
  • the three-phase AC contactor is the power input terminal. Connect 380V AC voltage to the control coil of the three-phase AC contactor. When the grid is normally powered, the three-phase AC contactor is closed and the normally open contact is closed to supply the system normally. When the motor is generating electricity, the BUCK/BOOST power conversion circuit works in the BUCK step-down mode. The output of the BUCK circuit is connected to the positive pole of the energy storage unit. The potential energy of the kowtow machine is converted into AC power by the motor.
  • the function of the DC contactor is to connect the DC bus between the system and the frequency converter through the DC contactor when the system initialization work is completed, so as to realize the electric energy transmission on the DC bus. Disconnect it when the system is initialized and not working to ensure the safety of the inverter and energy-saving system.
  • the BUCK/BOOST pre-stage PWM signal processing circuit performs hardware logic processing and dead zone logic processing on the PWM signal output by the single-chip microcomputer, then performs level conversion and power amplification, and then sends it to the IGBT power drive and protection circuit through a connector.
  • the function of the IGBT power drive and protection circuit is to improve the driving ability of PWM to ensure that the IGBT module of the BUCK/BOOST power conversion circuit can be effectively driven, and at the same time, the instantaneous voltage and current limit of the drive gate is realized to ensure the safety of the IGBT module.
  • the dead zone logic processing circuit increases the safety of the circuit itself.
  • the BUCK/BOOST power conversion circuit includes two IGBT modules connected in series and a BUCK/BOOST conversion inductor.
  • the BUCK/BOOST conversion inductor is wound by a high-power magnetic ring and a multi-strand yarn covered wire to achieve lifting
  • the series nodes of two IGBT modules are connected to the BUCK/BOOST conversion inductance, and the other ends of the two IGBT modules are respectively connected to the DC bus and ground.
  • the IGBT module connected to the DC bus and the BUCK/BOOST conversion inductance form BUCK
  • the circuit, another IGBT module and the BUCK/BOOST conversion inductor form a BOOST circuit
  • the BUCK/BOOST conversion inductor is connected to the energy storage unit
  • the node between the BUCK/BOOST conversion inductor and the energy storage unit is connected to the anode of the diode D1
  • the cathode of the diode D1 is connected to the DC bus.
  • the IGBT module is a power IGBT module, which realizes the switch control in the BUCK circuit and the BOOST circuit.
  • the IGBT module is the main power device of the system, and its conversion current directly determines the heat loss of the IGBT module. Therefore, the energy storage unit of the present invention also reduces the performance requirements of the system for the IGBT module; the IGBT power is driven by an isolated drive power supply, It is composed of isolated optocoupler and driving transistor.
  • the inductor is mainly used to realize the electromagnetic conversion between the BUCK circuit and the BOOST circuit.
  • This inductor is made of high-power toroidal core and multi-strand yarn wrapped wire, which has good high-frequency characteristics and high conversion efficiency.
  • the setting of diode D1 makes the potential energy of the kowtow machine converted into AC power through the motor when the motor is in the power generation state.
  • This AC voltage is converted into DC voltage by the reverse diode D1 connected in parallel with the IGBT module and then superimposed on the DC bus.
  • the voltage of the DC bus will increase, and the BUCK conversion circuit will store this part of the increased voltage in the energy storage unit in an (electric-magnetic-electric) conversion method.
  • the three-phase AC contactor is also connected with a zero-volt charging and reference processing circuit of the energy storage unit, and the other end of the zero-volt charging and reference processing circuit of the energy storage unit is connected to the charging and discharging end of the energy storage unit ,
  • the zero-volt charging and reference processing circuit of the energy storage unit adopts an isolated constant current charging circuit.
  • the function of the zero-volt charging and reference processing circuit of the energy storage unit is to charge the zero-volt charging of the supercapacitor module for the first time on the one hand, and to achieve low-current charging for the 300V reference voltage of the supercapacitor module, which improves the charging of the energy storage unit. Security.
  • the main board of the single-chip microcomputer system is connected with an isolated voltage detection unit for voltage detection of the DC bus, energy storage unit, and three-phase AC contactor.
  • the isolated voltage detection unit adopts a linear optocoupler method for motor detection and electrical Isolation;
  • the single-chip microcomputer system main board is also connected with an isolated current detection unit, which uses a Hall current sensor and a mutual inductance current sensor to detect motor current detection and current detection during BUCK/BOOST voltage conversion, and sends it to the single-chip microcomputer Perform signal processing.
  • the isolated voltage detection unit includes power grid voltage detection connected to a three-phase AC contactor, DC bus voltage detection connected to the positive pole of the DC bus, and energy storage voltage detection connected to an energy storage unit.
  • the grid voltage detection , DC bus voltage detection and energy storage voltage detection are respectively connected to the single-chip system mainboard after electrical and photoelectric isolation processing.
  • the isolated voltage detection unit adopts optocoupler isolation technology to perform voltage detection on the system bus, energy storage unit, and three-phase voltage respectively, and the detection data is used as the basis for judgment of the BUCK/BOOST working logic.
  • the isolated current detection system is used to realize current detection during BUCK/BOOST voltage conversion, and to judge the charging and discharging state, and send it to the single-chip microcomputer for signal processing.
  • the three-phase AC contactor is also connected to a system power supply for supplying power to the single-chip system main board through a system switch.
  • the system power supply adopts a two-stage voltage, and the first stage adopts a 380V to 220V isolation transformer to connect the three-phase The voltage becomes 220V low-voltage power supply, and the second stage adopts high-frequency counterattack switching power supply, which is small in size and high in efficiency.
  • the energy storage unit is formed by connecting multiple groups of low internal resistance supercapacitors in series.
  • the energy storage unit is formed by using 4 groups of 60 series of super capacitor modules in series, and the use range of the energy storage voltage platform composed of the super capacitor energy storage modules is 300V to 624V.
  • the motherboard of the single-chip microcomputer system is also connected with a display circuit, and the display circuit adopts an OLED display.
  • the function of the OLED display is to realize the human-machine exchange of the system, and display the main parameters of the system on the LCD screen in the form of graphics and text, so that the equipment users or operators can understand the real-time working status of the system. Its low temperature characteristics are good and can guarantee Reliable work below minus 40°C.
  • the single-chip main board system includes a single-chip digital processing minimum system, a logic signal input and output processing circuit connected with the single-chip digital processing minimum system, and a display drive circuit for driving the OLED display.
  • the single-chip digital processing minimum system The one-chip computer model is TMS320F28335 floating-point DSP.
  • the main board of the single-chip microcomputer system is also connected with a CAN communication module for communicating with the outside, and the CAN communication module adopts an isolated CAN2.0 communication mode.
  • the present invention has the following advantages and beneficial effects:
  • This invention uses a high-voltage and low-resistance supercapacitor platform as an energy storage unit. Compared with batteries, it has the advantages of good high-frequency characteristics, large current, low heat generation, good low-temperature characteristics, long life, etc., energy recovery and secondary The utilization efficiency is high. After the electric power generated by the motor is recovered, when the electric motor is in a power-consuming state again, the system gives priority to using the recovered electric energy for the internal kowtow machine, so it does not cause any impact on the external power grid.
  • the kowtow machine effectively uses the power generated by the motor, so it will use less power from the grid with the same power. Therefore, users can spend less electricity bills for the same power, which brings substantial economic benefits to users.
  • Figure 1 is a block diagram of the system composition of the present invention
  • FIG. 2 is a block diagram of the principle of the MCU system motherboard
  • Figure 3 is a schematic diagram of the BUCK/BOOST power conversion circuit.
  • an automatic energy-saving system for DC high-voltage kowtow machine based on super capacitors includes an inverter connected to a three-phase power grid and a three-phase AC contactor.
  • the DC bus of the inverter is in contact with the DC
  • the energy storage unit, the BUCK/BOOST power conversion circuit, and the energy storage unit form a series loop.
  • the energy storage unit is composed of four groups of super capacitor modules connected in series; it also includes the DC contactor and the BUCK/BOOST power conversion circuit.
  • a single-chip microcomputer system motherboard which is in communication connection with the energy storage unit, a BUCK/BOOST pre-PWM processing circuit is connected between the single-chip system motherboard and the BUCK/BOOST power conversion circuit, and the BUCK/BOOST pre-PWM processing circuit includes The BUCK module PWM processing circuit and the BOOST module PWM processing circuit connected to the MCU system main board, the dead zone processing logic circuit is connected between the BUCK module PWM processing circuit and the BOOST module PWM processing circuit, the BUCK module PWM processing circuit and the BOOST module PWM processing circuit The circuits are respectively connected to the optocoupler isolation, IGBT power driving and protection circuits, and then connected to the boost/buck control end of the BUCK/BOOST power conversion circuit.
  • the three-phase AC contactor is the power input terminal. Connect 380V AC voltage to the control coil of the three-phase AC contactor. When the grid is normally powered, the three-phase AC contactor is closed and the normally open contact is closed to supply the system normally.
  • the BUCK/BOOST power conversion circuit works in the BUCK step-down mode. The output of the BUCK circuit is connected to the positive pole of the energy storage unit. The potential energy of the kowtow machine is converted into AC power by the motor. This AC voltage is added to On the DC bus, the voltage of the DC bus will rise at this time, and the BUCK conversion circuit will use the electric-magnetic-electric conversion method to store this part of the increased voltage in the energy storage unit.
  • the energy storage unit realizes the storage function of energy recovery.
  • the total capacity of the energy storage unit is calculated and matched according to the power of the kowtow machine.
  • the energy storage unit is formed by four groups of 60 series of super capacitor modules in series, and the use range of the energy storage voltage platform composed of the super capacitor energy storage modules is 300V to 624V.
  • the system When the motor is in a power-consuming state again, the system will give priority to boosting the 300V ⁇ 624V voltage in the energy storage unit to 600V ⁇ 624V through the BOOST boost circuit and provide it to the DC bus for the inverter to drive the kowtow motor, super capacitor module
  • the BOOST booster circuit When the total series voltage is as low as the reference voltage of 300V, the BOOST booster circuit will be turned off, and the system will restore the power supply from the external grid to achieve the purpose of energy saving and secondary use of energy.
  • the BUCK/BOOST pre-stage PWM signal processing circuit performs hardware logic processing and dead zone logic processing on the PWM signal output by the single-chip microcomputer, then performs level conversion and power amplification, and then sends it to the IGBT power drive and protection circuit through a connector.
  • the function of the IGBT power drive and protection circuit is to improve the driving ability of PWM to ensure that the IGBT module of the BUCK/BOOST power conversion circuit can be effectively driven, and at the same time, the instantaneous voltage and current limit of the drive gate is realized to ensure the safety of the IGBT module.
  • the dead zone logic processing circuit increases the safety of the circuit itself. Since the present invention adopts a 624V energy storage platform, the power conversion current of the present invention is smaller, the conversion efficiency is higher, the current requirement for the power device is smaller, and the cost is lower.
  • the BUCK/BOOST power conversion circuit includes two IGBT modules (transistor Q1 and transistor Q2) connected in series and a BUCK/BOOST conversion inductor (inductor L1).
  • the BUCK/BOOST conversion inductor is wound with high-power magnetic rings and multi-strand yarn to achieve buck-boost energy conversion.
  • the series nodes of the two IGBT modules are connected to the BUCK/BOOST conversion inductor, and the other ends of the two IGBT modules are respectively connected The DC bus and the ground, where the IGBT module connected to the DC bus and the BUCK/BOOST conversion inductance form a BUCK circuit, and the other IGBT module and the BUCK/BOOST conversion inductance form a BOOST circuit.
  • the BUCK/BOOST conversion inductance and the energy storage unit ( The capacitor C1) is connected, the node between the BUCK/BOOST conversion inductor and the energy storage unit is connected to the anode of the diode D1, and the cathode of the diode D1 is connected to the DC bus.
  • the IGBT module is a power IGBT module, which realizes switch control in the BUCK circuit and the BOOST circuit.
  • the IGBT module is the main power device of the system, and its conversion current directly determines the heat loss of the IGBT module. Therefore, the energy storage unit of the present invention also reduces the performance requirements of the system for the IGBT module; the IGBT power is driven by an isolated drive power supply, It is composed of isolated optocoupler and driving transistor.
  • the inductor is mainly used to realize the electromagnetic conversion between the BUCK circuit and the BOOST circuit.
  • This inductor is made of high-power toroidal core and multi-strand yarn wrapped wire, which has good high-frequency characteristics and high conversion efficiency.
  • the setting of diode D1 makes the potential energy of the kowtow machine converted into AC power through the motor when the motor is in the power generation state.
  • This AC voltage is converted into DC voltage by the reverse diode D1 connected in parallel with the IGBT module and then superimposed on the DC bus.
  • the voltage of the DC bus will increase, and the BUCK conversion circuit will store this part of the increased voltage in the energy storage unit in an (electric-magnetic-electric) conversion method.
  • the three-phase AC contactor is also connected to the zero-volt charging and reference processing circuit of the energy storage unit, and the other of the zero-volt charging and reference processing circuit of the energy storage unit One end is connected with the charging and discharging end of the energy storage unit, and the zero-volt charging and reference processing circuit of the energy storage unit adopts an isolated constant current charging circuit.
  • the function of the zero-volt charging and reference processing circuit of the energy storage unit is to charge the zero-volt charging of the supercapacitor module for the first time on the one hand, and to achieve low-current charging for the 300V reference voltage of the supercapacitor module, which improves the charging of the energy storage unit. Security.
  • the single-chip system main board is connected with an isolated voltage detection unit for voltage detection of the DC bus, energy storage unit, and three-phase electrical AC contactor.
  • the detection unit uses a linear optocoupler method for motor detection and electrical isolation;
  • the single-chip system main board is also connected to an isolated current detection unit, which uses a Hall current sensor and a mutual inductance current sensor to detect motor current detection and BUCK/
  • the current detection during BOOST voltage conversion is sent to the microcontroller for signal processing.
  • the isolated voltage detection unit includes power grid voltage detection connected to a three-phase AC contactor, DC bus voltage detection connected to the positive pole of the DC bus, and energy storage voltage detection connected to an energy storage unit.
  • the grid voltage detection , DC bus voltage detection and energy storage voltage detection are respectively connected to the single-chip system mainboard after electrical and photoelectric isolation processing.
  • the isolated voltage detection unit adopts optocoupler isolation technology to perform voltage detection on the system bus, energy storage unit, and three-phase voltage respectively, and the detection data is used as the basis for judgment of the BUCK/BOOST working logic.
  • the isolated current detection system is used to realize current detection during BUCK/BOOST voltage conversion, and to judge the charging and discharging state, and send it to the single-chip microcomputer for signal processing.
  • the three-phase AC contactor is also connected to a system power supply for supplying power to the single-chip system main board through a system switch.
  • the system power supply adopts a two-stage voltage, and the first stage adopts a 380V to 220V isolation transformer to connect the three-phase The voltage becomes 220V low-voltage power supply, and the second stage adopts high-frequency counterattack switching power supply, which is small in size and high in efficiency.
  • the motherboard of the single-chip microcomputer system is also connected with a display circuit, and the display circuit adopts an OLED display.
  • the function of the OLED display is to realize the human-machine exchange of the system, and display the main parameters of the system on the LCD screen in the form of graphics and text, so that the equipment users or operators can understand the real-time working status of the system. Its low temperature characteristics are good and can guarantee Reliable work below minus 40°C.
  • the single-chip mainboard system includes a single-chip digital processing minimum system, a logic signal input and output processing circuit connected to the single-chip digital processing minimum system, and an OLED display driving circuit for driving the OLED display.
  • the one-chip computer model that deals with the smallest system is TMS320F28335 floating-point DSP.
  • the function of the logic signal input/output processing circuit is to input the logic signal detected by the external device into the single-chip system motherboard and perform level conversion before sending it to the single-chip for digital signal processing, and on the other hand, the logic control signal output by the single-chip After level conversion and drive processing, external actuators are controlled through connector output.
  • the secondary auxiliary power supply connected to the system power supply of the microcontroller mainboard system is used to generate various high stable voltages and isolation voltages necessary for system operation.
  • the main board of the single-chip microcomputer system is also connected with a CAN communication module for communicating with the outside, and the CAN communication module adopts an isolated CAN2.0 communication mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种基于超级电容器的直流高压磕头机自动节能系统,包括变频器,变频器的直流母线与直流接触器、BUCK/BOOST功率转换电路、储能单元并组成串联回路;还包括与储能单元通信连接的单片机系统主板,单片机系统主板连接有BUCK/BOOST前级PWM处理电路,BUCK/BOOST前级PWM处理电路包含死区逻辑处理电路、光耦隔离、IGBT功率驱动与保护电路。采用超级电容模组作为储能单元回收电机发电电量后,当电机再次处于耗电状态时,系统优先使用所回收的电能用于本磕头机内部,更加节能且不对外电网造成任何影响。

Description

一种基于超级电容器的直流高压磕头机自动节能系统 技术领域
本发明涉及石油开采设备技术领域,具体的说,是一种油田抽油机的能量回收装置,更涉及一种基于超级电容器的直流高压磕头机自动节能系统。
背景技术
油田抽油机是石油开采中的必要设备,在目前行业中主要以磕头机为主。就单磕头机来说,其数量高达10万台以上。其电机总容量在3500万KW以上,年耗电量达百亿度以上,磕头机用电量约占油田总用电量的40%。为了提高效率,逐步采用了变频器控制电机,但因磕头机的自身特性,在一个工作周期中会有2个电机发电状态,电机所发电量会提高变频器直流母线的电压给变频电路带来风险。目前的处理方案都是在采用变频器的同时使用刹车电阻将电机所发电量变量成热能释放,这从能源角度来说是一种浪费。如何才能高效率的利用电机发电量成为磕头机应用的一个新的课题,目前在实验研发中有相关技术专家提到出将电机发电量通过专门的电网并网逆变器逆变成与电网同频同相的三相交流电并回馈到电网。但是从磕头机的运行工况分析,电机发电的周期短,属于间断性能量,并且每次发电电量比较小。因并网逆变器的技术难度高、自耗大、效率低,并且需要频繁重复启动,一方面影响自身的可靠性,另一方面这种间断性能量回馈到电网也会对电网造成二次污染,并且其所回馈的电量并不能抵消用电电量,不能给用户带来实际的经济利益,反而增加了用户的使用成本,所以这种方式只能作为实验室研究,不能得到用户的认可。如何才能在实际工程中将电机所发电量高效率的二次利用,实现节能的同时不对外界电网造成影响,并且让用户直接体验到节能系统所带来的经济效益,是当下需要解决的问题。
发明内容
本发明的目的在于提供一种基于超级电容器的直流高压磕头机自动节能系 统,用于解决现有技术中无法将电机发电量进行回收重利用、降低用户用电成本的问题。
本发明通过下述技术方案解决上述问题:
一种基于超级电容器的直流高压磕头机自动节能系统,包括与三相电网连接的变频器和三相交流接触器,所述变频器的直流母线与直流接触器、BUCK/BOOST功率转换电路、储能单元并组成串联回路;还包括与所述直流接触器、BUCK/BOOST功率转换电路连接的单片机系统主板,所述单片机系统主板与储能单元通信连接,单片机系统主板与BUCK/BOOST功率转换电路之间连接有BUCK/BOOST前级PWM处理电路,所述BUCK/BOOST前级PWM处理电路包括与单片机系统主板连接的BUCK模块PWM处理电路和BOOST模块PWM处理电路,所述BUCK模块PWM处理电路和BOOST模块PWM处理电路之间连接死区处理逻辑电路,BUCK模块PWM处理电路和BOOST模块PWM处理电路分别连接光耦隔离、IGBT功率驱动与保护电路后与所述BUCK/BOOST功率转换电路的升压/降压控制端连接。
工作原理:
三相交流接触器为电源输入端,将380V交流电压接入三相交流接触器的控制线圈,当电网正常供电时,三相交流接触器吸合,常开触点闭合,为系统正常供电。当电机处于发电状态时,BUCK/BOOST功率转换电路工作在BUCK降压方式,BUCK电路的输出与储能单元的正极相连接,磕头机的势能通过电机转换成交流电能,这一交流电压加到直流母线上,此时直流母线的电压会升高(在常规变频器应用中是用电阻将这部分升高出的电压消耗掉将其变为热能释放,但这样即浪费了电量又给自然空间造成了热污染),BUCK转换电路将这部分升高的电压采用电-磁-电的转换方式存储在储能单元中,储能单元 实现能量回收的存储功能。当电机再次处于耗电状态时,系统优先将储能单元中的电压通过BOOST升压电路升压并提供到直流母线供变频器使用驱动磕头机电机,储能单元的总电压低至基准电压时关闭BOOST升压电路,系统恢复外部电网供电,达到磕头机节能和能源二次利用的目的。所述直流接触器的作用是当系统初始化工作完成时通过直流接触器接通系统与变频器的直流母线,实现直流母线上的电能传送。系统初始化和不工作时将其断开,保证变频器和节能系统的安全性。
所述BUCK/BOOST前级PWM信号处理电路是将单片机输出的PWM信号进行硬件逻辑处理和死区逻辑处理后进行电平转换和功率放大后通过接插件送到IGBT功率驱动与保护电路,所述IGBT功率驱动与保护电路的作用是提高PWM的驱动能力保证能有效驱动BUCK/BOOST功率转换电路的IGBT模块,同时对其驱动栅极实现瞬间电压电流限制,保证IGBT模块工作的安全性,增加了死区逻辑处理电路,增加了电路自身的安全性。
进一步地,所述BUCK/BOOST功率转换电路包括两个相互串联的IGBT模块和BUCK/BOOST转换电感,所述BUCK/BOOST转换电感采用大功率磁环和多股纱包线绕制,实现升降压能量转换,两个IGBT模块的串联节点与BUCK/BOOST转换电感连接,两个IGBT模块的另一端分别连接直流母线和接地,其中,与直流母线连接的IGBT模块与BUCK/BOOST转换电感组成BUCK电路,另一个IGBT模块与BUCK/BOOST转换电感组成BOOST电路,BUCK/BOOST转换电感与所述储能单元连接,BUCK/BOOST转换电感与所述储能单元之间的节点连接二极管D1的阳极,二极管D1的阴极连接直流母线。
工作原理:
所述IGBT模块为功率型IGBT模块,实现BUCK电路和BOOST电路中的开关 控制。IGBT模块为系统主要功率器件,其转换电流的大小直接决定IGBT模块的热损耗,所以本发明的储能单元也降低了系统对IGBT模块的性能要求;所述IGBT功率驱动由隔离型驱动电源、隔离光耦、驱动三极管组成,其作用是接收单片机系统主板发出的PWM信号控制,实现对BUCK电路和BOOST电路中的IGBT模块的有效驱动,同时保证高低压电路的电平隔离;所述功率转换电感主要是实现BUCK电路和BOOST电路的电磁转换,此电感采用大功率环形磁芯和多股纱包线绕制而成,其高频特性好、转换效率高。二极管D1的设置,使电机处理于发电状态时,磕头机的势能通过电机转换成交流电能,这一交流电压通过IGBT模块并联的反向二极管D1转换成直流电压后叠加到直流母线上,此时直流母线的电压会升高,BUCK转换电路将这部分升高的电压采用(电-磁-电)的转换方式存储在储能单元中。
进一步地,所述三相交流接触器还连接有储能单元零伏充电及基准处理电路,所述储能单元零伏充电及基准处理电路的另一端与所述储能单元的充放电端连接,所述储能单元零伏充电及基准处理电路采用隔离恒流型充电电路。
储能单元零伏充电及基准处理电路的作用是一方面为超级电容模组初次上电的零伏充电,另一方面为超级电容模组300V基准电压实现小电流充电,提高了储能单元充电的安全性。
进一步地,所述单片机系统主板连接有用于直流母线、储能单元以及三相电交流接触器电压检测的隔离型电压检测单元,所述隔离型电压检测单元采用线性光耦方式作为电机检测和电气隔离;单片机系统主板还连接有隔离型电流检测单元,所述隔离型电流检测单元采用霍尔电流传感器和互感式电流传感器检测电机电流检测和BUCK/BOOST电压转换时的电流检测,并送到单片机进行信号处理。
进一步地,所述隔离型电压检测单元包括与三相交流接触器连接的电网电压检测、与直流母线正极连接的直流母线电压检测、与储能单元连接的储能电压检测,所述电网电压检测、直流母线电压检测、储能电压检测分别通过电光电隔离处理后与单片机系统主板连接。
所述隔离型电压检测单元,采用光耦隔离技术分别对系统母线及储能单元、三相电压这三处做电压检测,其检测数据作为BUCK/BOOST工作逻辑的判断依据。所述隔离型电流检测系统,用来实现BUCK/BOOST电压转换时的电流检测,并判断充放电状态,将其送到单片机进行信号处理。
进一步地,所述三相交流接触器还通过系统开关连接用于给所述单片机系统主板供电的系统电源,所述系统电源采用二级式电压,第一级采用380V转220V隔离变压器将三相电压变成220V低压电源,第二级采用高频反击式开关电源,其体积小工作效率高。
进一步地,所述储能单元采用多组低内阻超级电容单体串联而成。
所述储能单元采用4组60串的超级电容模组串联而成,所述超级电容储能模组组成的储能电压平台使用范围为300V~624V。
进一步地,所述单片机系统主板还连接有显示电路,所述显示电路采用OLED显示器。OLED显示器的作用是实现系统的人机交换互,将系统各个主要参数以图文的方式在液晶显示屏上显示出来,供设备用户或操作人员了解系统实时工作状态,其低温特性好,能保证零下40℃以下的可靠工作。
进一步地,所述单片机主板系统包括单片机数字处理最小系统以及与单片机数字处理最小系统连接的逻辑信号输入输出处理电路和用于驱动所述OLED显示器的显示驱动电路,所述单片机数字处理最小系统的单片机型号为TMS320F28335浮点型DSP。
进一步地,所述单片机系统主板还连接有用于与外部通讯的CAN通讯模块,所述CAN通讯模块采用隔离式CAN2.0通讯方式。
本发明与现有技术相比,具有以下优点及有益效果:
(1)本发明本专利采用高电压低内阻超级电容平台作为储能单元,与电池相比具有高频特性好、电流大、发热小、低温特性好、寿命高等优点,能量回收和二次利用的效率高。回收电机发电电量后,当电机再次处于耗电状态时,系统优先使用所回收的电能用于本磕头机内部,所以不对外电网造成任何影响。
(2)磕头机有效利用了电机发电电量,所以就会少使用同电量的电网电量,因此可使用用户少花销同等电量的电费,给用户带来了实质上的经济效益。
附图说明
图1为本发明的系统组成框图;
图2为单片机系统主板的原理框图;
图3为BUCK/BOOST功率转换电路的原理图。
具体实施方式
下面结合实施例对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1:
结合附图1和图2所示,一种基于超级电容器的直流高压磕头机自动节能系统,包括与三相电网连接的变频器和三相交流接触器,所述变频器的直流母线与直流接触器、BUCK/BOOST功率转换电路、储能单元并组成串联回路,所述储能单元由四组超级电容模组串联而成;还包括与所述直流接触器、BUCK/BOOST功率转换电路连接的单片机系统主板,所述单片机系统主板与储能单元通信连接,单片机系统主板与BUCK/BOOST功率转换电路之间连接有BUCK/BOOST前级PWM处理电路,所述BUCK/BOOST前级PWM处理 电路包括与单片机系统主板连接的BUCK模块PWM处理电路和BOOST模块PWM处理电路,所述BUCK模块PWM处理电路和BOOST模块PWM处理电路之间连接死区处理逻辑电路,BUCK模块PWM处理电路和BOOST模块PWM处理电路分别连接光耦隔离、IGBT功率驱动与保护电路后与所述BUCK/BOOST功率转换电路的升压/降压控制端连接。
工作原理:
三相交流接触器为电源输入端,将380V交流电压接入三相交流接触器的控制线圈,当电网正常供电时,三相交流接触器吸合,常开触点闭合,为系统正常供电。当电机处于发电状态时,BUCK/BOOST功率转换电路工作在BUCK降压方式,BUCK电路的输出与储能单元的正极相连接,磕头机的势能通过电机转换成交流电能,这一交流电压加到直流母线上,此时直流母线的电压会升高,BUCK转换电路将这部分升高的电压采用电-磁-电的转换方式存储在储能单元中,储能单元实现能量回收的存储功能。储能单元的总容量根据磕头机的功率计算匹配。在本实施例中,储能单元由四组60串的超级电容模组串联而成,所述超级电容储能模组组成的储能电压平台使用范围为300V~624V。当电机再次处于耗电状态时,系统优先将储能单元中的300V~624V电压通过BOOST升压电路升压到600V~624V并提供到直流母线供变频器使用驱动磕头机电机,超级电容模组的串联总电压低至基准电压300V时关闭BOOST升压电路,系统恢复外部电网供电,达到磕头机节能和能源二次利用的目的。所述BUCK/BOOST前级PWM信号处理电路是将单片机输出的PWM信号进行硬件逻辑处理和死区逻辑处理后进行电平转换和功率放大后通过接插件送到IGBT功率驱动与保护电路,所述IGBT功率驱动与保护电路的作用是提高PWM的驱动能力保证能有效驱动BUCK/BOOST功率转换电路的IGBT模块,同时对其驱动栅极实现 瞬间电压电流限制,保证IGBT模块工作的安全性,增加了死区逻辑处理电路,增加了电路自身的安全性。因本发明采用的是624V储能平台,本发明的功率转换电流更小、转换效率更高、对功率器件的电流要求更小、成本更低。
实施例2
在实施例1的基础上,结合图3所示,所述BUCK/BOOST功率转换电路包括两个相互串联的IGBT模块(三极管Q1和三极管Q2)和BUCK/BOOST转换电感(电感L1),所述BUCK/BOOST转换电感采用大功率磁环和多股纱包线绕制,实现升降压能量转换,两个IGBT模块的串联节点与BUCK/BOOST转换电感连接,两个IGBT模块的另一端分别连接直流母线和接地,其中,与直流母线连接的IGBT模块与BUCK/BOOST转换电感组成BUCK电路,另一个IGBT模块与BUCK/BOOST转换电感组成BOOST电路,BUCK/BOOST转换电感与所述储能单元(电容C1)连接,BUCK/BOOST转换电感与所述储能单元之间的节点连接二极管D1的阳极,二极管D1的阴极连接直流母线。
工作原理:
所述IGBT模块为功率型IGBT模块,实现BUCK电路和BOOST电路中的开关控制。IGBT模块为系统主要功率器件,其转换电流的大小直接决定IGBT模块的热损耗,所以本发明的储能单元也降低了系统对IGBT模块的性能要求;所述IGBT功率驱动由隔离型驱动电源、隔离光耦、驱动三极管组成,其作用是接收单片机系统主板发出的PWM信号控制,实现对BUCK电路和BOOST电路中的IGBT模块的有效驱动,同时保证高低压电路的电平隔离;所述功率转换电感主要是实现BUCK电路和BOOST电路的电磁转换,此电感采用大功率环形磁芯和多股纱包线绕制而成,其高频特性好、转换效率高。二极管D1的设置,使电机处理于发电状态时,磕头机的势能通过电机转换成交流电能,这一交流电压通过IGBT模 块并联的反向二极管D1转换成直流电压后叠加到直流母线上,此时直流母线的电压会升高,BUCK转换电路将这部分升高的电压采用(电-磁-电)的转换方式存储在储能单元中。
实施例3:
在实施例1的基础上,结合附图1所示,所述三相交流接触器还连接有储能单元零伏充电及基准处理电路,所述储能单元零伏充电及基准处理电路的另一端与所述储能单元的充放电端连接,所述储能单元零伏充电及基准处理电路采用隔离恒流型充电电路。储能单元零伏充电及基准处理电路的作用是一方面为超级电容模组初次上电的零伏充电,另一方面为超级电容模组300V基准电压实现小电流充电,提高了储能单元充电的安全性。
实施例4:
在实施例1的基础上,结合附图1所示,所述单片机系统主板连接有用于直流母线、储能单元以及三相电交流接触器电压检测的隔离型电压检测单元,所述隔离型电压检测单元采用线性光耦方式作为电机检测和电气隔离;单片机系统主板还连接有隔离型电流检测单元,所述隔离型电流检测单元采用霍尔电流传感器和互感式电流传感器检测电机电流检测和BUCK/BOOST电压转换时的电流检测,并送到单片机进行信号处理。
进一步地,所述隔离型电压检测单元包括与三相交流接触器连接的电网电压检测、与直流母线正极连接的直流母线电压检测、与储能单元连接的储能电压检测,所述电网电压检测、直流母线电压检测、储能电压检测分别通过电光电隔离处理后与单片机系统主板连接。所述隔离型电压检测单元,采用光耦隔离技术分别对系统母线及储能单元、三相电压这三处做电压检测,其检测数据作为BUCK/BOOST工作逻辑的判断依据。所述隔离型电流 检测系统,用来实现BUCK/BOOST电压转换时的电流检测,并判断充放电状态,将其送到单片机进行信号处理。
进一步地,所述三相交流接触器还通过系统开关连接用于给所述单片机系统主板供电的系统电源,所述系统电源采用二级式电压,第一级采用380V转220V隔离变压器将三相电压变成220V低压电源,第二级采用高频反击式开关电源,其体积小工作效率高。
进一步地,所述单片机系统主板还连接有显示电路,所述显示电路采用OLED显示器。OLED显示器的作用是实现系统的人机交换互,将系统各个主要参数以图文的方式在液晶显示屏上显示出来,供设备用户或操作人员了解系统实时工作状态,其低温特性好,能保证零下40℃以下的可靠工作。
结合图2所示,所述单片机主板系统包括单片机数字处理最小系统以及与单片机数字处理最小系统连接的逻辑信号输入输出处理电路和用于驱动所述OLED显示器的OLED显示驱动电路,所述单片机数字处理最小系统的单片机型号为TMS320F28335浮点型DSP。所述逻辑信号输入/输出处理电路的功能是一方面对外部器件检测到的逻辑信号输入单片机系统主板并进行电平转换后送到单片机进行数字信号处理,另一方面将单片机输出的逻辑控制信号进行电平转换和驱动处理后通过接插件输出控制外部执行器件。单片机主板系统的系统电源连接的二次辅助电源是用于产生系统工作必须的各种高稳定电压及隔离电压。
进一步地,所述单片机系统主板还连接有用于与外部通讯的CAN通讯模块,所述CAN通讯模块采用隔离式CAN2.0通讯方式。
尽管这里参照本发明的解释性实施例对本发明进行了描述,上述实施例仅为本发明较佳的实施方式,本发明的实施方式并不受上述实施例的限制,应该 理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。

Claims (10)

  1. 一种基于超级电容器的直流高压磕头机自动节能系统,其特征在于,包括与三相电网连接的变频器和三相交流接触器,所述变频器的直流母线与直流接触器、BUCK/BOOST功率转换电路、储能单元并组成串联回路;还包括与所述直流接触器、BUCK/BOOST功率转换电路连接的单片机系统主板,所述单片机系统主板与储能单元通信连接,单片机系统主板与BUCK/BOOST功率转换电路之间连接有BUCK/BOOST前级PWM处理电路,所述BUCK/BOOST前级PWM处理电路包括与单片机系统主板连接的BUCK模块PWM处理电路和BOOST模块PWM处理电路,所述BUCK模块PWM处理电路和BOOST模块PWM处理电路之间连接死区处理逻辑电路,BUCK模块PWM处理电路和BOOST模块PWM处理电路分别连接光耦隔离、IGBT功率驱动与保护电路后与所述BUCK/BOOST功率转换电路的升压/降压控制端连接。
  2. 根据权利要求1所述的一种基于超级电容器的直流高压磕头机自动节能系统,其特征在于,所述BUCK/BOOST功率转换电路包括两个相互串联的IGBT模块和BUCK/BOOST转换电感,所述BUCK/BOOST转换电感采用大功率磁环和多股纱包线绕制,实现升降压能量转换,两个IGBT模块的串联节点与BUCK/BOOST转换电感连接,两个IGBT模块的另一端分别连接直流母线和接地,其中,与直流母线连接的IGBT模块与BUCK/BOOST转换电感组成BUCK电路,另一个IGBT模块与BUCK/BOOST转换电感组成BOOST电路,BUCK/BOOST转换电感与所述储能单元连接,BUCK/BOOST转换电感与所述储能单元之间的节点连接二极管D1的阳极,二极管D1的阴极连接直流母线。
  3. 根据权利要求1或2所述的一种基于超级电容器的直流高压磕头机自动节能系统,其特征在于,所述三相交流接触器还连接有储能单元零伏充电及 基准处理电路,所述储能单元零伏充电及基准处理电路的另一端与所述储能单元的充放电端连接,所述储能单元零伏充电及基准处理电路采用隔离恒流型充电电路。
  4. 根据权利要求1或2所述的一种基于超级电容器的直流高压磕头机自动节能系统,其特征在于,所述单片机系统主板连接有用于直流母线、储能单元以及三相电交流接触器电压检测的隔离型电压检测单元,所述隔离型电压检测单元采用线性光耦方式作为电机检测和电气隔离;单片机系统主板还连接有隔离型电流检测单元,所述隔离型电流检测单元采用霍尔电流传感器和互感式电流传感器检测电机电流检测和BUCK/BOOST电压转换时的电流检测,并送到单片机进行信号处理。
  5. 根据权利要求4所述的一种基于超级电容器的直流高压磕头机自动节能系统,其特征在于,所述隔离型电压检测单元包括与三相交流接触器连接的电网电压检测、与直流母线正极连接的直流母线电压检测、与储能单元连接的储能电压检测,所述电网电压检测、直流母线电压检测、储能电压检测分别通过电光电隔离处理后与单片机系统主板连接。
  6. 根据权利要求1所述的一种基于超级电容器的直流高压磕头机自动节能系统,其特征在于,所述三相交流接触器还通过系统开关连接用于给所述单片机系统主板供电的系统电源,所述系统电源采用二级式电压,第一级采用380V转220V隔离变压器,第二级采用高频反击式开关电源。
  7. 根据权利要求1所述的一种基于超级电容器的直流高压磕头机自动节能系统,其特征在于,所述储能单元采用多组低内阻超级电容单体串联而成。
  8. 根据权利要求1所述的一种基于超级电容器的直流高压磕头机自动节能系统,其特征在于,所述单片机系统主板还连接有显示电路,所述显示电 路采用OLED显示器。
  9. 根据权利要求8所述的一种基于超级电容器的直流高压磕头机自动节能系统,其特征在于,所述单片机主板系统包括单片机数字处理最小系统以及与单片机数字处理最小系统连接的逻辑信号输入输出处理电路和用于驱动所述OLED显示器的显示驱动电路,所述单片机数字处理最小系统的单片机型号为TMS320F28335浮点型DSP。
  10. 根据权利要求1所述的一种基于超级电容器的直流高压磕头机自动节能系统,其特征在于,所述单片机系统主板还连接有用于与外部通讯的CAN通讯模块,所述CAN通讯模块采用隔离式CAN2.0通讯方式。
PCT/CN2020/079543 2019-03-14 2020-03-16 一种基于超级电容器的直流高压磕头机自动节能系统 WO2020182220A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910194430.4 2019-03-14
CN201910194430.4A CN109950963A (zh) 2019-03-14 2019-03-14 一种基于超级电容器的直流高压磕头机自动节能系统

Publications (1)

Publication Number Publication Date
WO2020182220A1 true WO2020182220A1 (zh) 2020-09-17

Family

ID=67009848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079543 WO2020182220A1 (zh) 2019-03-14 2020-03-16 一种基于超级电容器的直流高压磕头机自动节能系统

Country Status (2)

Country Link
CN (1) CN109950963A (zh)
WO (1) WO2020182220A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950963A (zh) * 2019-03-14 2019-06-28 成都凹克新能源科技有限公司 一种基于超级电容器的直流高压磕头机自动节能系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086661A (ja) * 1999-09-10 2001-03-30 Aiphone Co Ltd 省エネルギーインターホン装置
CN105119311A (zh) * 2015-07-30 2015-12-02 中国石油大学(北京) 抽油机的控制系统及其控制方法
CN107453449A (zh) * 2017-09-20 2017-12-08 四川科莱电梯股份有限公司 一种基于高电压平台的电梯能量回收系统
CN107591864A (zh) * 2017-10-10 2018-01-16 成都凹克新能源科技有限公司 一种基于智能超级电容模组的电梯能量回收系统
CN109950963A (zh) * 2019-03-14 2019-06-28 成都凹克新能源科技有限公司 一种基于超级电容器的直流高压磕头机自动节能系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8860359B2 (en) * 2009-10-09 2014-10-14 Illinois Institute Of Technology Hybrid energy storage system
CN102427262B (zh) * 2011-12-13 2014-01-01 南京理工大学 基于超级电容的电梯制动能量回馈与控制系统
CN103647500A (zh) * 2013-12-31 2014-03-19 哈尔滨工业大学 基于超级电容储能的电机调速系统节能控制器及控制方法
US20160082844A1 (en) * 2014-09-23 2016-03-24 General Electric Company Methods and systems for multiple source energy storage, management, and control
CN204349549U (zh) * 2015-02-05 2015-05-20 克拉玛依市建业有限责任公司 一种用于修井机电机驱动的快速充放电管理系统
CN108110781B (zh) * 2018-02-09 2024-03-29 四川科莱电梯股份有限公司 基于钛酸锂电池的电梯能量回收系统
CN209675992U (zh) * 2019-03-14 2019-11-22 成都凹克新能源科技有限公司 一种基于超级电容器的直流高压磕头机自动节能系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086661A (ja) * 1999-09-10 2001-03-30 Aiphone Co Ltd 省エネルギーインターホン装置
CN105119311A (zh) * 2015-07-30 2015-12-02 中国石油大学(北京) 抽油机的控制系统及其控制方法
CN107453449A (zh) * 2017-09-20 2017-12-08 四川科莱电梯股份有限公司 一种基于高电压平台的电梯能量回收系统
CN107591864A (zh) * 2017-10-10 2018-01-16 成都凹克新能源科技有限公司 一种基于智能超级电容模组的电梯能量回收系统
CN109950963A (zh) * 2019-03-14 2019-06-28 成都凹克新能源科技有限公司 一种基于超级电容器的直流高压磕头机自动节能系统

Also Published As

Publication number Publication date
CN109950963A (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
CN203674793U (zh) 在线式工频不间断电源
CN103684214B (zh) 一种多模式风光发电系统
CN201873431U (zh) 基于igbt功率器件和超级电容技术的停电保磁设备
CN201550026U (zh) 太阳能专用光伏控制逆变器
CN104917270A (zh) 基于能量回馈的大功率数字化变频正负脉冲快速充电系统
CN101202461A (zh) 蓄电池化成充放电主电路结构
CN104734264A (zh) 在线互动式不间断电源及其控制方法
CN202818111U (zh) 一种升压型llc谐振变换器
TW201803241A (zh) 分散模組式併網轉換裝置及其控制方法
CN108683247A (zh) 一种混合燃料电池和超级电容器的不间断供电系统及方法
CN107591864B (zh) 一种基于智能超级电容模组的电梯能量回收系统
CN105375800A (zh) 一种微型逆变器的拓扑电路
CN206789649U (zh) 一种锂电池化成系统
CN103532162B (zh) 基于控制切换的混合直流输电系统的拓扑结构及启动方法
WO2020182220A1 (zh) 一种基于超级电容器的直流高压磕头机自动节能系统
CN114156862A (zh) 一种抽油机光储直流微电网技术
CN205407620U (zh) 一种光伏储能逆变器拓扑结构
CN102364742B (zh) 蓄电池化成充放电主电路结构
CN206542324U (zh) 电源管理系统
CN201118256Y (zh) 可反充的蓄电池化成充放电主电路结构
CN103023135A (zh) 多级直流变换电源装置
CN202856422U (zh) 一种双向电能转移电路
CN102223136A (zh) 非储能型风力发电与电网互补供电的电机驱动系统
CN207098728U (zh) 电源取电装置
CN102223062A (zh) 蓄电池储能系统用双向dc/dc变换器软开关主电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20771019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20771019

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20771019

Country of ref document: EP

Kind code of ref document: A1