WO2021217783A1 - 一种高温高应力真三轴试验装置及方法 - Google Patents

一种高温高应力真三轴试验装置及方法 Download PDF

Info

Publication number
WO2021217783A1
WO2021217783A1 PCT/CN2020/094470 CN2020094470W WO2021217783A1 WO 2021217783 A1 WO2021217783 A1 WO 2021217783A1 CN 2020094470 W CN2020094470 W CN 2020094470W WO 2021217783 A1 WO2021217783 A1 WO 2021217783A1
Authority
WO
WIPO (PCT)
Prior art keywords
stress
loading
opening
hole
actuator
Prior art date
Application number
PCT/CN2020/094470
Other languages
English (en)
French (fr)
Inventor
刘造保
王川
冯夏庭
邵建富
沈挽青
冯涛
冯君
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2021217783A1 publication Critical patent/WO2021217783A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/18Performing tests at high or low temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/04Chucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0226High temperature; Heating means

Definitions

  • the invention relates to the field of rock mechanics and engineering technology, in particular to a high-temperature and high-stress true triaxial test device and method.
  • HDR hot dry rock
  • the present invention provides a high-temperature and high-stress true triaxial test device and method, which can simulate the real conditions of rock specimens at high temperatures (above 200°C) and improve the authenticity of the test data And accuracy.
  • the main technical solutions adopted by the present invention include:
  • the invention provides a high-temperature and high-stress true triaxial test device, which includes a heating box, a loading bin, a holder, a cooling assembly, a pressure head assembly, a hydraulic lifting rod, a first major stress actuator, and a second major stress actuator.
  • the loading bin is provided with a cylindrical through hole that penetrates vertically, and the axial direction of the cylindrical through hole is perpendicular to the axial direction of the loading bin ,
  • the holder is sleeved in the cylindrical through hole and is in a sealing fit with the cylindrical through hole.
  • the hydraulic lifting rod can drive the holder to move up and down relative to the loading bin;
  • the center of the holder is provided with a test piece receiving through hole ,
  • the holder is provided along its axial direction with a first opening and a second opening communicating with the test piece receiving through hole, and along its radial direction is provided with a third opening and a fourth opening communicating with the test piece receiving through hole, loading
  • the bin is provided with a fifth opening and a sixth opening respectively communicating with the third opening and the fourth opening, wherein the first opening, the second opening, the fifth opening and the sixth opening are stress loading channels;
  • the heating box is arranged on the test piece bearing In the discharge hole, the heating box has a rectangular parallelepiped structure for accommodating the rock specimen to be tested.
  • the first opening, the second opening, the third opening and the fourth opening are all provided with an indenter assembly, and one end of the indenter assembly extends into
  • the heating box is connected with the rock test piece;
  • the first major stress actuator and the second major stress actuator are respectively arranged at both ends of the holder in the axial direction and respectively extend into the first opening and the second opening,
  • the first middle principal stress actuator and the second middle principal stress actuator are respectively arranged at the two ends of the loading chamber in the axial direction and respectively extend into the fifth opening and the sixth opening;
  • the cooling components are respectively arranged in the first opening and the second opening.
  • In the second opening, the fifth opening and the sixth opening it is used to reduce the first large principal stress actuator, the second large principal stress actuator, the first middle principal stress actuator and the second middle principal stress actuator Working temperature.
  • a symmetrical heating plate is included in the heating box; the heating box is provided with a first through hole, a second through hole, and a third through hole respectively communicating with the first opening, the second opening, the third opening, and the fourth opening. And a fourth through hole; one end of the pressure head assembly respectively extends into the heating box through the first through hole, the second through hole, the third through hole and the fourth through hole to be connected with the rock test piece.
  • the indenter assembly includes a rigid indenter, a heat insulation pad and a rigid indenter connected in sequence, and the rigid indenter extends into the heating box to be connected to the rock test piece.
  • the first large principal stress actuator, the second large principal stress actuator, the first intermediate principal stress actuator and the second intermediate principal stress actuator have the same structure, and all include a cover, an annular end cover, Reaction cylinder, piston, piston rod, sealing flange, load cell and injection pump for stress loading; the reaction cylinder of the first major stress actuator and the second major stress actuator are connected in the clamp The two end faces of the holder, the reaction cylinders of the first middle principal stress actuator and the second middle principal stress actuator are connected to the two ends of the loading bin; the ring-shaped end cover is connected with the outer end face of the reaction cylinder to seal The cover is connected to the middle of the ring end cover, and the reaction force cylinder barrel is sealed to the stress loading channel through the sealing flange; one end of the piston rod is located in the reaction force cylinder barrel, and the other end of the piston rod passes through the sealing flange and extends to the stress loading channel The inside is connected with the load cell, the piston is located in the reaction force cylinder and sleeved on
  • the reaction cylinder barrel is provided with a stress-unloading oil supply hole. Between the piston and the sealing flange is a stress-unloading oil chamber.
  • the oil hole communicates with the stress unloading oil cavity, and both the stress loading oil supply hole and the stress unloading oil supply hole are connected with the injection pump for stress loading;
  • the loading bin is provided with a confining pressure loading oil supply hole, and the confining pressure loading oil supply hole is connected to the confining pressure
  • the syringe pump for loading is connected.
  • the cooling assembly includes a water inlet pipe, a water outlet pipe and a plurality of annular cooling pipes; the water inlet of the annular cooling pipe is connected with the water inlet pipe, the water outlet of the annular cooling pipe is connected with the water outlet pipe, and the annular cooling pipe is surrounded by the force sensor Outside; the sealing flange is provided with a water inlet channel and a water outlet channel, and the water inlet pipe and the water outlet pipe are respectively connected with the water inlet channel and the water outlet channel.
  • a self-balancing cavity is formed between the annular end cover and the end of the piston rod; a high-pressure communication pipeline is provided inside the piston rod, and the stress loading channel is communicated with the self-balancing cavity through the high-pressure communication pipeline.
  • the high-temperature and high-stress true triaxial test device further includes four interlocking pads; the interlocking pads are respectively placed on the four ends of the rock test piece, one end of the interlocking pad is aligned with the rock test piece, and the interlocking pads Connected end to end are interlocking.
  • the hydraulic lifting rod is located in the loading bin, a limit block is provided on the outer side of the holder, and the hydraulic lifting rod is connected with the limit block.
  • the box body of the heating box is formed of a steel plate filled with an insulating material in the middle layer.
  • the present invention also provides a high-temperature true triaxial test method, which adopts the above-mentioned high-temperature and high-stress true triaxial test device, and includes the following steps;
  • Step 1 Preparation of rock specimens
  • Step 2 Connect the rock test piece and the interlocking pad tightly
  • Step 3 Install three-direction miniature LVDT displacement sensors on the surface of the sealed rock specimen and the interlocking pad;
  • Step 4 Start the hydraulic lifting rod to drive the holder to move upward, so that the through hole of the test piece in the middle of the holder is lifted to the top of the loading bin;
  • Step 5 Install the sealed rock specimen with the miniature LVDT displacement sensor for volumetric deformation measurement into the heating box in the holder;
  • Step 6 Control the hydraulic lifting rod to descend until the holder completely returns to the cylindrical through hole of the loading bin;
  • Step 7 Implement displacement control for the first major principal stress actuator, the second major principal stress actuator, the first intermediate principal stress actuator and the second intermediate principal stress actuator to complete the accuracy of the sealed rock specimen Center clamping;
  • Step 8 Adjust the position of the micro LVDT displacement sensor for volume change measurement and the elongation of the stylus so that the micro LVDT displacement sensor for volume change measurement is within the experimental range;
  • Step 9 Fill the loading bin with hydraulic oil
  • Step 10 Start the heating plate in the heating box to heat the hydraulic oil temperature to the target value
  • Step 11 Start the cooling component and reduce the temperature of the load cell
  • Step 12 Start the stress-loading injection pump of the first major principal stress actuator, the second major principal stress actuator, the first middle principal stress actuator and the second middle principal stress actuator, and start the confining pressure at the same time Load the injection pump to perform stepped true triaxial loading of the rock specimen;
  • Step 13 Record and observe the deformation of the rock specimen under the load of each step level.
  • the high-temperature and high-stress true triaxial test device of the present invention realizes the rock mechanics test of the true triaxial test equipment under high temperature conditions.
  • a heating box in the holder it can simulate the high temperature (above 200°C) of the rock specimen.
  • the rock specimen can be heated uniformly, and the thermal stress concentration of the specimen can be effectively avoided, and the holder can move up and down relative to the loading bin, so that the through hole of the specimen is displayed in a horizontal direction, which is convenient for placing the rock specimen.
  • the heating box by arranging cooling components in the first opening, the second opening, the fifth opening and the sixth opening, it is possible to reduce the first main stress actuator, the second main stress actuator, and the first middle
  • the working temperature of the main stress actuator and the second main stress actuator improves the loading accuracy, thereby improving the authenticity and accuracy of the test data.
  • the high-temperature true triaxial test method of the present invention can carry out long-term stable loading under high-temperature and high-pressure conditions, and improves the authenticity and accuracy of test data.
  • Figure 1 is a front cross-sectional view of the high-temperature and high-stress true triaxial test device of the present invention
  • Figure 2 is a front view of the high temperature and high stress true triaxial test device of the present invention.
  • Fig. 3 is a state diagram of the sample receiving through hole in Fig. 2 when it is moved out;
  • Figure 4 is a top view of the high-temperature and high-stress true triaxial test device of the present invention.
  • Figure 5 is a front cross-sectional view of the holder and loading bin in Figure 1;
  • Figure 6 is a schematic diagram of a rock specimen equipped with a miniature LVDT displacement sensor for volumetric deformation measurement
  • Figure 7 is a front cross-sectional view of the heating box of the present invention.
  • Figure 8 is a cross-sectional elevation view of the holder and loading bin of the present invention
  • Figure 9 is an enlarged view of part A in Figure 1;
  • Figure 10 is a schematic diagram of the structure of the cooling assembly and the sealing flange.
  • the present invention provides a high-temperature and high-stress true triaxial test device.
  • the high-temperature and high-stress true triaxial test device includes a heating box 3, a loading bin 2, a holder 1, a cooling component, and a pressure head component. , Hydraulic lifting rod 8, the first large principal stress actuator 4, the second large principal stress actuator 5, the first middle principal stress actuator 6 and the second middle principal stress actuator 7.
  • the loading bin 2 is a rectangular parallelepiped structure.
  • the loading bin 2 is horizontally and laterally installed on the rigid support frame 16.
  • the holder 1 is a cylindrical structure that matches the cylindrical through hole.
  • the holder 1 is sleeved in the cylindrical through hole and is in a sealing fit with the cylindrical through hole.
  • a sealing ring is sleeved on the holder 1.
  • the hydraulic lifting rod 8 is symmetrically arranged on both sides of the holder 1 and located in the loading compartment 2.
  • the upper outer side of the holder 1 is provided with a limit block 105, and the hydraulic lifting rod 8 passes through and clamps.
  • the limit block 105 on the holder 1 is connected to drive the holder 1 to move up and down relative to the loading bin 2.
  • the central position of the holder 1 is provided with a test piece receiving through hole for holding the heating box 3.
  • the holder 1 can be raised so that the test piece is released.
  • the hole is exposed to the top of the loading compartment 2, and the holder 1 is provided with a first opening 101 and a second opening 102 along its axial direction that communicate with the test piece receiving through hole (the first opening 101 and the second opening 102 are separated from each other on the test piece).
  • the two sides of the receiving through hole), and the third opening 103 and the fourth opening 104 are located separately in the test piece receiving through hole) along its radial direction. On both sides of the hole).
  • the loading compartment 2 is provided with a fifth opening 201 communicating with the third opening 103 and a sixth opening 202 communicating with the fourth opening 104, wherein the first opening 101, the second opening 102, the fifth opening 201 and the sixth opening 202 is a stress loading channel.
  • the heating box 3 has a rectangular parallelepiped structure (the rectangular parallelepiped includes a cube) for containing the rock specimen 9 to be tested.
  • the heating box 3 includes a symmetrical heating plate 301, and the heating box 3 is provided with a first The through hole 302, the second through hole 303, the third through hole 304 and the fourth through hole 305, the first through hole 302 communicates with the first opening 101, the second through hole 303 communicates with the second opening 102, and the third through hole 304 communicates with the third opening 103, and the fourth through hole 305 communicates with the fourth opening 104.
  • the heating box 3 provides an arrangement position of the heating plate 301 on the basis of ensuring that the rock sample has enough space. At the same time, the heating box 3 itself also has a certain structural strength.
  • the box body of the heating box 3 is a composite material using BT300 type high temperature and high pressure insulation board material and thin iron plates are arranged on both sides of the insulation board.
  • This composite material can ensure the heat insulation effect while making the heating box 3 It has a certain strength, and the temperature heating control speed of the heating plate 301 is 3°C/h, and the temperature fluctuation range is ⁇ 1°C.
  • the heating box 3 is not completely sealed and there are gaps.
  • the hydraulic oil penetrates into the heating box 3 from the loading compartment 2 through the gaps, so that the heating box 3 is filled with hydraulic oil.
  • the hydraulic oil provides flexible loading stress on the one hand, and can transfer the heat of the heating plate 301 to the rock sample on the other hand.
  • an indenter assembly is provided in the first opening 101, the second opening 102, the third opening 103, and the fourth opening 104, and each indenter assembly includes a rigid indenter 1001 connected in sequence.
  • the thermal insulation pad 1002 and the rigid pressure block 1003 are closely connected to transmit the loading stress.
  • the rigid pressure head 1001 of each pressure head assembly passes through the first through hole 302, the second through hole 303, the third through hole 304, and the fourth through hole respectively.
  • the through hole 305 extends into the heating box 3 and is connected to the rock test piece 9.
  • the heat insulation pad 1002 is a BT300 type high temperature and high pressure heat insulation material, which further ensures the heat insulation effect of the heating box 3.
  • the first large principal stress actuator 4 and the second large principal stress actuator 5 are respectively symmetrically arranged at both ends of the axial (ie vertical direction) of the holder 1 and respectively extend into the first of the holder 1 Inside the opening 101 and the second opening 102, the loading stress is transmitted and acted on the rock specimen 9 through the indenter assembly.
  • the first middle principal stress actuator 6 and the second middle principal stress actuator 7 are respectively symmetrically arranged at both ends of the loading compartment 2 in the axial direction (ie, the horizontal direction) and respectively extend into the fifth opening 201 and the loading compartment 2 In the sixth opening 202, the loading stress is transmitted and acted on the rock specimen 9 through the indenter assembly.
  • cooling components are provided in the first opening 101, the second opening 102, the fifth opening 201, and the sixth opening 202.
  • the cooling components are used to reduce the first major principal stress actuator 4 and the second major principal stress action.
  • the operating temperature of the actuator 5, the first middle principal stress actuator 6 and the second middle principal stress actuator 7 improves the control accuracy of the actuator.
  • the high-temperature and high-stress true triaxial test device of this embodiment realizes the rock mechanics test of the true triaxial test equipment under high temperature conditions.
  • the rock specimen 9 can be simulated at high temperature (200 °C above), the rock specimen 9 can be heated uniformly, which can effectively avoid the thermal stress concentration of the specimen, and the holder 1 can move up and down relative to the loading bin 2, so that the specimen bearing through hole appears in the horizontal direction , It is convenient to open the heating box 3 in the horizontal direction and put the rock specimen 9 into it.
  • the cooling components By arranging the cooling components in the first opening 101, the second opening 102, the fifth opening 201 and the sixth opening 202, the first major stress can be reduced.
  • the working temperature of the force actuator 4, the second largest principal stress actuator 5, the first middle principal stress actuator 6 and the second middle principal stress actuator 7 improves the loading accuracy of the high-temperature true three-axis, thereby improving The authenticity and accuracy of the test data are verified.
  • the first large principal stress actuator 4, the second large principal stress actuator 5, the first intermediate principal stress actuator 6 and the second intermediate principal stress actuator 7 have the same structure, and all include Cover 701, annular end cover 702, reaction cylinder 703, piston 704, piston rod 705, sealing flange 706, load cell 707 and injection pump for stress loading.
  • the reaction cylinder 703 of the first large principal stress actuator 4 and the second large principal stress actuator 5 are connected to both ends of the holder 1, and the first middle principal stress actuator 6 and the second middle principal stress actuator 6
  • the reaction cylinder 703 of the force actuator 7 is connected to both ends of the loading chamber 2.
  • the annular end cover 702 is connected to the outer end surface of the reaction cylinder 703, the cover 701 is connected to the middle of the ring end cover 702, and the cover 701 is provided with a piston monitoring LVDT displacement sensor 17 for monitoring the piston 704 and The displacement of the piston rod 705.
  • the reaction cylinder tube 703 is sealed to the stress loading channel through the sealing flange 706.
  • One end of the piston rod 705 is located in the reaction cylinder tube 703, and the other end of the piston rod 705 passes through the sealing flange and extends into the stress loading channel for force measurement.
  • the sensor 707 is connected, the piston 704 is located in the reaction cylinder 703 and sleeved on the piston rod 705, and the piston 704 and the reaction cylinder 703 are in a sealed sliding fit.
  • a stress loading oil chamber 11 is formed between the annular end cover 702 and the piston 704.
  • a stress loading oil supply hole 7021 is opened on the annular end cover 702.
  • the stress loading oil supply hole 7021 communicates with the stress loading oil chamber 11, and is in the reaction cylinder
  • a stress unloading oil supply hole 7031 is opened on the 703.
  • Between the piston 704 and the sealing flange 706 is a stress unloading oil chamber 12.
  • the stress unloading oil supply hole 7031 communicates with the stress unloading oil chamber 12, and the stress loading oil supply hole 7021 and stress The unloading oil supply holes 7031 are all connected with the injection pump for stress loading.
  • the injection pump for stress loading provides rigid loading stress for the rock specimen 9.
  • the loading chamber 2 is provided with a confining pressure loading oil supply hole (not shown in the figure).
  • the pressure loading oil supply hole is communicated with the confining pressure loading injection pump, and the confining pressure loading injection pump provides flexible loading stress for the rock specimen 9.
  • the high-temperature and high-stress true triaxial test device in this embodiment is composite stress loading.
  • the rock specimens are tested in the direction of the first major principal stress actuator 4, the second major principal stress actuator 5, the first middle principal stress actuator 6 and the second middle principal stress actuator 7 9 Apply a rigid loading stress, and apply a flexible loading stress to the rock specimen 9 in the horizontal plane of the through hole of the specimen and perpendicular to the first middle principal stress actuator 6 and the second middle principal stress actuator 7.
  • the cooling assembly includes a water inlet pipe 1301, a water outlet pipe 1302 and a plurality of equally spaced coaxially arranged annular cooling pipes 1303.
  • the annular cooling pipe 1303 is provided with an opening, and both sides of the opening are water inlets and water outlets.
  • the annular cooling pipe 1303 surrounds the outside of the force sensor, the water inlet of the annular cooling pipe 1303 is connected with the water inlet pipe 1301, the water outlet of the annular cooling pipe 1303 is connected with the water outlet pipe 1302, and the water inlet is provided on the sealing flange 706
  • the channel 7061 and the water outlet channel 7062, and the water inlet pipe 1301 and the water outlet pipe 1302 of the cooling assembly are respectively communicated with the water inlet channel 7061 and the water outlet channel 7062.
  • the coolant inlet hole on the water inlet channel 7061 and the coolant outlet hole on the water outlet channel 7062 are arranged in the circumferential direction of the sealing flange 706, the coolant outlet hole on the water inlet channel 7061 and the coolant on the water outlet channel 7062
  • the water inlet hole is arranged in the axial direction of the sealing flange 706.
  • the water inlet channel 7061 and the water outlet channel 7062 on the sealing flange 706 are connected to the low-temperature tank circulation machine outside the loading bin 2 by pipelines to reduce the temperature of the coolant.
  • the sealing flange 706 since the sealing flange 706 is in direct contact with the cylinder barrel and the loading compartment 2, the heat of the loading compartment 2 is transferred to the piston rod 705 and the sealing flange 706, and the water in the sealing flange 706
  • the channel 7061 and the water outlet channel 7062 take away the high temperature conducted by the loading bin 2 to ensure the normal working temperature of the principal stress actuator, improve the loading accuracy of the true triaxial, and further improve the authenticity and accuracy of the test data.
  • a self-balancing cavity 14 is formed between the annular end cap 702 and the end of the piston rod 705.
  • the piston rod 705 is provided with a high-pressure communication pipeline 7051.
  • the stress loading channel is connected to the self-balancing cavity through the high-pressure communication pipeline 7051. 14 Connected.
  • the confining pressure provides flexible loading stress, which exists in the loading chamber 2 and acts on the piston rod 705, which will offset part of the rigid loading stress and affect the control accuracy of the rigid loading stress.
  • the confining pressure from the communication pipeline can provide equal reverse force in the self-balancing cavity 14, and balance the influence of the confining pressure on the end of the piston rod 705, thereby further improving the rigidity. Control accuracy of loading stress.
  • the four ends of the rock specimen 9 (that is, the rigid loading stress direction) are respectively provided with interlocking pads 18, one end of the interlocking pad 18 is aligned with the rock specimen 9, and the interlocking pad 18
  • the end-to-end connection is interlocking, so that the corners of the rigid stress loading direction of the rock sample 9 are also close to the corresponding surface of the interlocking pad 18, and at the same time, the stress loading direction and the stress loading surface can be flat during the rigid stress application process.
  • three-direction volume change measurement micro LVDT displacement sensors 15 are respectively installed on the surface of the sealed rock specimen 9 and the interlocking pad 18 to monitor the strain information on the rock specimen 9 to obtain relevant data.
  • the present invention also provides a high-temperature true triaxial test method, which adopts the above-mentioned high-temperature and high-stress true triaxial test device, and includes the following steps;
  • Step 1 Prepare rock specimen 9
  • Step 2 Connect the sealing rock test piece 9 and the interlocking pad 18 tightly;
  • Step 3 Install the micro LVDT displacement sensor 15 for volume change measurement in three directions on the surface of the rock specimen 9 and the interlocking pad 18 after the sealing connection;
  • Step 4 Start the hydraulic lifting rod 8 to drive the holder 1 to move upward, so that the through hole of the test piece in the middle of the holder 1 is lifted to the top of the loading bin 2;
  • Step 5 Install the sealed rock specimen 9 with the miniature LVDT displacement sensor 15 for volumetric deformation measurement into the heating box 3 in the holder 1;
  • Step 6 Control the hydraulic lifting rod 8 to descend until the holder 1 completely returns to the cylindrical through hole of the loading compartment 2;
  • Step 7 Implement displacement control on the first large principal stress actuator 4, the second large principal stress actuator 5, the first intermediate principal stress actuator 6 and the second intermediate principal stress actuator 7 to complete the sealing of the rock Accurate centering and clamping of test piece 9;
  • Step 8 Adjust the position of the micro LVDT displacement sensor 15 for volume change measurement and the elongation of the stylus, so that the micro LVDT displacement sensor 15 for volume change measurement is within the experimental range;
  • Step 9 Fill the loading compartment 2 with hydraulic oil
  • Step 10 Start the heating plate 301 in the heating box 3 to heat the hydraulic oil temperature to the target value
  • Step 11 Start the cooling component and reduce the temperature of the load cell 707;
  • Step 12 Start the stress-loaded injection pumps of the first large principal stress actuator 4, the second large principal stress actuator 5, the first middle principal stress actuator 6 and the second middle principal stress actuator 7, At the same time, start the confining pressure loading injection pump, and perform stepped true triaxial loading on the rock specimen 9;
  • Step 13 Record and observe the deformation of the rock specimen 9 under the load of each step level.
  • the high-temperature true triaxial test method of this embodiment can carry out long-term stable loading under high-temperature and high-pressure conditions, which improves the authenticity and accuracy of the test data.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more than two, unless otherwise specifically defined.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明涉及岩石力学与工程技术领域,尤其涉及一种高温高应力真三轴试验装置及方法。该高温高应力真三轴试验装置包括加热箱、加载仓、夹持器、冷却组件、压头组件、液压提升杆、第一大主应力作动器、第二大主应力作动器、第一中主应力作动器和第二中主应力作动器。该高温高应力真三轴试验装置实现了高温条件下真三轴试验设备的岩石力学试验,通过在夹持器内设置加热箱,可以模拟岩石试件在高温的真实条件,能够使岩石试件受热均匀,并且夹持器能够相对加载仓上下移动,使试件承放通孔呈现在水平方向便于岩石试件放入加热箱内,通过设置冷却组件,能够减低作动器的工作温度,提高了加载精度,进而提高了试验数据的真实性及准确性。

Description

一种高温高应力真三轴试验装置及方法 技术领域
本发明涉及岩石力学与工程技术领域,尤其涉及一种高温高应力真三轴试验装置及方法。
背景技术
由于全球的地热能储量巨大,具有极高的利用价值及发展空间,其中干热岩(HDR)能量储备最多,约占总量的90%左右。位于地表深部的岩体,其温度一般随着埋深的增加而增大,在通常的情况下,埋深每增加100m温度会升高3~6℃,在距地表2000m以下的岩层温度通常高于60℃,在距地表4000m以下的岩层温度一般则会到达200℃以上,而温度超过150℃的高温的岩层具有较高的开发利用价值。
针对地热能开发区的岩体由于埋深大而需要承受极高的地应力及温度的问题,一般的试验设备无法使岩石试件处于相对真实的高温高压的试验状态,进而无法对地热能开发区的岩体进行科学准确的研究,因此相关试验设备的开发具有一定的重要性。
发明内容
(一)要解决的技术问题
鉴于现有技术的上述缺点、不足,本发明提供了一种高温高应力真三轴试验装置及方法,可以模拟岩石试件在高温(200℃以上)的真实条件,提高了试验数据的真实性及准确性。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案包括:
本发明提供了一种高温高应力真三轴试验装置,包括加热箱、加载仓、夹持器、冷却组件、压头组件、液压提升杆、第一大主应力作动器、第 二大主应力作动器、第一中主应力作动器和第二中主应力作动器;加载仓设置有竖直贯通的圆柱形通孔,圆柱形通孔的轴向与加载仓的轴向垂直,夹持器套设在圆柱形通孔内且与圆柱形通孔密封配合,液压提升杆能够带动夹持器相对于加载仓上下移动;夹持器的中心位置开设有试件承放通孔,夹持器沿其轴向设有连通试件承放通孔的第一开口和第二开口,以及沿其径向设有连通试件承放通孔的第三开口和第四开口,加载仓设有与第三开口和第四开口分别连通的第五开口和第六开口,其中第一开口、第二开口、第五开口和第六开口为应力加载通道;加热箱设置在试件承放通孔内,加热箱为长方体结构用于收容待测试岩石试件,在第一开口、第二开口、第三开口和第四开口内均设有压头组件,压头组件的一端伸入加热箱内与岩石试件连接;第一大主应力作动器和第二大主应力作动器分别设置在夹持器轴向的两端且分别伸入第一开口和第二开口内,第一中主应力作动器和第二中主应力作动器分别设置在加载仓轴向的两端且分别伸入第五开口和第六开口内;冷却组件分别设置在第一开口、第二开口、第五开口和第六开口内,用于降低第一大主应力作动器、第二大主应力作动器、第一中主应力作动器和第二中主应力作动器的工作温度。
优选地,在加热箱内包括对称设置的加热板;加热箱设有分别连通第一开口、第二开口、第三开口、第四开口的第一通孔、第二通孔、第三通孔和第四通孔;压头组件的一端分别通过第一通孔、第二通孔、第三通孔和第四通孔伸入加热箱内与岩石试件连接。优选地,压头组件包括依次连接的刚性压头、隔热垫和刚性压块,刚性压头伸入加热箱内与岩石试件连接。
优选地,第一大主应力作动器、第二大主应力作动器、第一中主应力作动器和第二中主应力作动器结构相同,均包括封盖、环形端盖、反力缸筒、活塞、活塞杆、密封法兰盘、测力传感器及应力加载用注射泵;第一大主应力作动器和第二大主应力作动器的反力缸筒连接在夹持器的两端面,第一中主应力作动器和第二中主应力作动器的反力缸筒连接在 加载仓的两端面;环形端盖与反力缸筒的外端面连接,封盖与环形端盖的中部连接,反力缸筒通过密封法兰盘与应力加载通道进行密封配合;活塞杆一端位于反力缸筒内,活塞杆另一端穿过密封兰并延伸至应力加载通道内与测力传感器连接,活塞位于反力缸筒内并套设在活塞杆上,活塞与反力缸筒密封滑动配合;环形端盖与活塞间为应力加载油腔,在环形端盖上开设有应力加载供油孔,应力加载供油孔与应力加载油腔相通,在反力缸筒上开设有应力卸载供油孔,活塞与密封法兰盘之间为应力卸载油腔,应力卸载供油孔与应力卸载油腔相通,应力加载供油孔和应力卸载供油孔均与应力加载用注射泵相连通;加载仓开设有围压加载供油孔,围压加载供油孔与围压加载用注射泵相连通。
优选地,冷却组件包括进水管、出水管和多个环形冷却管;环形冷却管的进水口与进水管连接,环形冷却管的出水口与出水管连接,环形冷却管环绕在测力传感的外侧;密封法兰盘设有进水通道和出水通道,进水管和出水管分别与进水通道和出水通道连接。
优选地,环形端盖与活塞杆的端部间形成自平衡腔;活塞杆的内部设有高压连通管路,应力加载通道通过高压连通管路与自平衡腔连通。
优选地,高温高应力真三轴试验装置还包括四个互扣压垫;互扣压垫分别放置在岩石试件的四个端部上,互扣压垫的一端与岩石试件对齐,互扣压垫的首尾相连呈互扣式。
优选地,液压提升杆位于加载仓内,夹持器的外侧设有限位块限位块,液压提升杆与限位块连接。
优选地,加热箱的箱体由中间层填充隔热材料的钢板形成。
本发明还提供了一种高温真三轴试验方法,采用如上述的高温高应力真三轴试验装置,包括如下步骤;
步骤一:制备岩石试件;
步骤二:将岩石试件与互扣压垫紧密连接在一起;
步骤三:在密封连接后的岩石试件的表面和互扣压垫上分别安装三个方向的体变测量用微型LVDT位移传感器;
步骤四:启动液压提升杆带动夹持器向上移动,使夹持器中部的试件承放通孔提升至加载仓上方;
步骤五:将密封后且安装了体变测量用微型LVDT位移传感器的岩石试件安装到夹持器内的加热箱内;
步骤六:控制液压提升杆下降,直到夹持器完全回到加载仓的圆柱形通孔内;
步骤七:对第一大主应力作动器、第二大主应力作动器、第一中主应力作动器及第二中主应力作动器实施位移控制,完成密封岩石试件的精确对中夹紧;
步骤八:调整体变测量用微型LVDT位移传感器的位置及触针伸长量,使体变测量用微型LVDT位移传感器处于实验量程范围内;
步骤九:向加载仓内充液压油;
步骤十:启动加热箱内的加热板,将液压油温度加热到目标值;
步骤十一:启动冷却组件,降低测力传感器的温度;
步骤十二:启动第一大主应力作动器、第二大主应力作动器、第一中主应力作动器及第二中主应力作动器的应力加载注射泵,同时启动围压加载注射泵,对岩石试件进行阶梯式真三轴加载;
步骤十三:在各个阶梯等级载荷下,记录并观测岩石试件的变形情况。
(三)有益效果
本发明的有益效果是:
本发明的高温高应力真三轴试验装置,实现了高温条件下真三轴试验设备的岩石力学试验,通过在夹持器内设置加热箱,可以模拟岩石试件在高温(200℃以上)的真实条件,能够使岩石试件受热均匀,能有效避免试样的热应力集中现象,并且夹持器能够相对加载仓上下移动,使试件承放通孔呈现在水平方向,便于岩石试件放入加热箱内,通过在第一开口、第二开口、第五开口和第六开口内设置冷却组件,能够降低第一大主应力作动器、第二大主应力作动器、第一中主应力作动器和第二中主应力作动器的工作温度,提高了加载精度,进而提高了试验数据的真实 性及准确性。
本发明的高温真三轴试验方法,能够在高温高压条件下进行长时间稳定的加载,提高了试验数据的真实性及准确性。
附图说明
图1为本发明的高温高应力真三轴试验装置正向剖视图;
图2为本发明的高温高应力真三轴试验装置的主视图;
图3为图2中的试样承放通孔处于移出时的状态图;
图4为本发明高温高应力真三轴试验装置的俯视图;
图5为图1中的夹持器和加载仓的正向剖视图;
图6为安装了体变测量用微型LVDT位移传感器的岩石试件示意图;
图7为本发明的加热箱的正向剖视图;
图8为本发明夹持器和加载仓的俯向剖视图
图9为图1中A部分的放大图;
图10为冷却组件和密封法兰盘的结构示意图。
【附图标记说明】
1:夹持器;101:第一开口;102:第二开口;103:第三开口;104:第四开口;105:限位块;2:加载仓;201:第五开口;202:第六开口;3:加热箱;301:加热板;302:第一通孔;303:第二通孔;304:第三通孔;305:第四通孔;4:第一大主应力作动器;5:第二大主应力作动器;6:第一中主应力作动器;7:第二中主应力作动器;701:封盖;702:环形端盖;7021:应力加载供油孔;703:反力缸筒703;7031:应力卸载供油孔;704:活塞;705:活塞杆;7051:高压连通管路;706:密封法兰盘;7061:进水通道;7062:出水通道;707:测力传感器;8:液压提升杆;9:岩石试件;1001:刚性压头;1002:隔热垫;1003:刚性压块;11:应力加载油腔;12:应力卸载油腔;1301:进水管;1302:出水管;1303:环形冷却管;14:自平衡腔;15:体变测量用微型LVDT位移传感器;16:刚性支撑架;17:活塞监测用LVDT位移传感器;18: 互扣压垫。
具体实施方式
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。其中,“上”、“下”、“水平”等方位术语均以图1的定向为参考。
如图1所示,本发明提供了一种高温高应力真三轴试验装置,该高温高应力真三轴试验装置包括加热箱3、加载仓2、夹持器1、冷却组件、压头组件、液压提升杆8、第一大主应力作动器4、第二大主应力作动器5、第一中主应力作动器6和第二中主应力作动器7。
其中,加载仓2为长方体结构,加载仓2水平横向安装在刚性支撑架16上,沿加载仓2径向(即图1中的上下方向)上设置有竖直贯通的圆柱形通孔,夹持器1为与圆柱形通孔匹配的圆柱体结构,夹持器1套设在圆柱形通孔内且与圆柱形通孔密封配合,为了提高夹持器1和加载仓2上圆柱形通孔间的密封性,在夹持器1上套设有密封圈。如图2-图4所示,液压提升杆8对称设置在夹持器1的两侧且位于加载仓2内,夹持器1的外侧上部设有限位块105,液压提升杆8通过与夹持器1上的限位块105连接,能够带动夹持器1相对于加载仓2上下移动。
如图5所示,夹持器1的中心位置开设有用于承放加热箱3的试件承放通孔,当液压提升杆8启动时,能够使夹持器1上升使试件呈放通孔露出至加载仓2的顶部,夹持器1沿其轴向设有连通试件承放通孔的第一开口101和第二开口102(第一开口101和第二开口102分居于试件承放通孔的两侧),以及沿其径向设有连通试件承放通孔的第三开口103和第四开口104(第三开口103和第四开口104分居于试件承放通孔的两侧)。在加载仓2内设有与第三开口103连通的第五开口201和与第四开口104连通的第六开口202,其中第一开口101、第二开口102、第五开口201和第六开口202为应力加载通道。
如图6-图8所示,加热箱3为长方体结构(长方体包括正方体)用于收容待测试岩石试件9,在加热箱3内包括对称设置的加热板301,加 热箱3设有第一通孔302、第二通孔303、第三通孔304和第四通孔305,第一通孔302与第一开口101连通,第二通孔303与第二开口102连通,第三通孔304与第三开口103连通,第四通孔305与第四开口104连通。
在实际应用过程中,为了降低加热过程以及实验过程中的能源消耗,需要对加热箱3采用一定的保温隔热技术。在本实施例中,加热箱3在保证岩石试样具有足够空间的基础上,提供了加热板301的布置位置,同时加热箱3本身还具有一定的结构强度。
其中,加热箱3的箱体为采用BT300型高温高压隔热板材料且在隔热板的两侧设置薄铁板的复合材料,此复合材料能够在保证隔热效果的同时,使加热箱3具有一定的强度,并且加热板301的温度加热控制速度为3℃/h,温度波动范围为≤±1℃。
应当说明的是,加热箱3非完全密封,存在缝隙,液压油由加载仓2内通过缝隙渗透至加热箱3内,从而使加热箱3内填充液压油。其中,液压油一方面提供了柔性加载应力,另一方面能够传递加热板301的热量至岩石试样上。
在本实施例中,在第一开口101、第二开口102、第三开口103和第四开口104内均设有一个压头组件,每个压头组件均包括依次连接的刚性压头1001、隔热垫1002和刚性压块1003,三者紧密相连传递加载应力,每个压头组件的刚性压头1001分别通过第一通孔302、第二通孔303、第三通孔304和第四通孔305伸入加热箱3内与岩石试件9连接。其中,隔热垫1002为BT300型高温高压隔热材料,进一步保证了加热箱3的隔热效果。
第一大主应力作动器4和第二大主应力作动器5分别对称设置在夹持器1的轴向(即竖直方向)的两端且分别伸入夹持器1的第一开口101和第二开口102内,并通过压头组件将加载应力传递并作用到岩石试件9上。第一中主应力作动器6和第二中主应力作动器7分别对称设置在加载仓2的轴向(即水平方向)的两端且分别伸入加载仓2的第五开口201和第六开口202内,并通过压头组件将加载应力传递并作用到岩石试件9 上。
当然,在第一开口101、第二开口102、第五开口201和第六开口202内均设有冷却组件,冷却组件用于降低第一大主应力作动器4、第二大主应力作动器5、第一中主应力作动器6和第二中主应力作动器7的工作温度,提高了作动器的控制精度。
本实施例的高温高应力真三轴试验装置,实现了高温条件下真三轴试验设备的岩石力学试验,通过在夹持器1内设置加热箱3,可以模拟岩石试件9在高温(200℃以上)的真实条件,能够使岩石试件9受热均匀,能有效避免试样的热应力集中现象,并且夹持器1能够相对加载仓2上下移动,使试件承放通孔水平方向呈现,便于在水平方向上打开加热箱3放入岩石试件9,通过在第一开口101、第二开口102、第五开口201和第六开口202内设置冷却组件,能够减低第一大主应力作动器4、第二大主应力作动器5、第一中主应力作动器6和第二中主应力作动器7的工作温度,提高了高温真三轴的加载精度,进而提高了试验数据的真实性及准确性。
如图9所示,第一大主应力作动器4、第二大主应力作动器5、第一中主应力作动器6和第二中主应力作动器7结构相同,均包括封盖701、环形端盖702、反力缸筒反力缸筒703、活塞704、活塞杆705、密封法兰盘706、测力传感器707及应力加载用注射泵。第一大主应力作动器4和第二大主应力作动器5的反力缸筒703连接在夹持器1的两端面,第一中主应力作动器6和第二中主应力作动器7的反力缸筒703连接在加载仓2的两端面。
其中,环形端盖702与反力缸筒703的外端面连接,封盖701与环形端盖702的中部连接,且在封盖701上设有活塞监测用LVDT位移传感器17用于监测活塞704和活塞杆705的位移。反力缸筒703通过密封法兰盘706与应力加载通道进行密封配合,活塞杆705一端位于反力缸筒703内,活塞杆705另一端穿过密封兰并延伸至应力加载通道内与测力传感器707连接,活塞704位于反力缸筒703内并套设在活塞杆705 上,活塞704与反力缸筒703密封滑动配合。环形端盖702与活塞704之间形成应力加载油腔11,在环形端盖702上开设有应力加载供油孔7021,应力加载供油孔7021与应力加载油腔11相通,在反力缸筒703上开设有应力卸载供油孔7031,活塞704与密封法兰盘706之间为应力卸载油腔12,应力卸载供油孔7031与应力卸载油腔12相通,应力加载供油孔7021和应力卸载供油孔7031均与应力加载用注射泵相连通,应力加载用注射泵为岩石试件9提供刚性加载应力,加载仓2开设有围压加载供油孔(图中未示出),围压加载供油孔与围压加载用注射泵相连通,围压加载用注射泵为岩石试件9提供柔性加载应力。
应当说明的是,本实施例中高温高应力真三轴试验装置为复合应力加载。高温试验时,在第一大主应力作动器4、第二大主应力作动器5、第一中主应力作动器6和第二中主应力作动器7所在方向对岩石试件9施加刚性加载应力,在试件承放通孔的水平面且垂直于第一中主应力作动器6及第二中主应力作动器7方向上对岩石试件9施加柔性加载应力。
如图10所示,冷却组件包括进水管1301、出水管1302和多个等间距同轴设置的环形冷却管1303,环形冷却管1303上设有一开口,开口两侧为进水口和出水口。环形冷却管1303环绕在测力传感的外侧,环形冷却管1303的进水口与进水管1301连接,环形冷却管1303的出水口与出水管1302连接,在密封法兰盘706上设有进水通道7061和出水通道7062,冷却组件的进水管1301和出水管1302分别与进水通道7061和出水通道7062相连通。进水通道7061上的冷却液进水孔及出水通道7062上的冷却液出水孔设置在密封法兰盘706的圆周方向,进水通道7061上的冷却液出水孔及出水通道7062上的冷却液进水孔设置在密封法兰盘706的轴向上。其中,密封法兰盘706上的进水通道7061和出水通道7062由管路连接至加载仓2外的低温槽循环机来降低冷却液的温度。
在本实施例中,由于密封法兰盘706直接与缸筒和加载仓2接触,加载仓2的热量传导至活塞杆705和密封法兰盘706后,由密封法兰盘706内的进水通道7061和出水通道7062带走由加载仓2传导过来的高温, 保证了主应力作动器的工作温度正常,提高了真三轴的加载精度,进而提高了试验数据的真实性及准确性。
如图9所示,环形端盖702与活塞杆705的端部间形成自平衡腔14,活塞杆705的内部设有高压连通管路7051,应力加载通道通过高压连通管路7051与自平衡腔14连通。在实际应用过程中,围压提供柔性加载应力,存在于加载仓2内且作用于活塞杆705上,会抵消部分刚性加载应力,影响了刚性加载应力的控制精度。而通过设置高压连通管路7051,使由连通管路过来的围压在自平衡腔14内可提供等大反向作用力,平衡围压在活塞杆705端部的影响,从而进一步提高了刚性加载应力的控制精度。
在实际应用过程中,在岩石试件9的四个端部上(即刚性加载应力方向)分别设有互扣压垫18,互扣压垫18的一端与岩石试件9对齐,互扣压垫18的首尾相连呈互扣式,使岩石试样9刚性应力加载方向的边角部位也均与互扣压垫18的对应面紧贴,同时在刚性应力施加过程中可以应力加载方向及应力加载面平的法向产生移动,使整个应力加载过程中岩石试样整个表面与互扣压垫的表面紧贴;同时岩石试样9表面涂有减摩剂,降低与互扣压垫8的摩擦效应,同时互扣压垫8外部也涂有减摩剂,降低与刚性压头1001的摩擦效应。
其中,在密封后的岩石试件9表面和互扣压垫18上还分别安装三个方向的体变测量用微型LVDT位移传感器15用于监测岩石试件9上的应变信息以获取相关数据。
本发明还提供一种高温真三轴试验方法,采用如上述的高温高应力真三轴试验装置,包括如下步骤;
步骤一:制备岩石试件9;
步骤二:将密封岩石试件9与互扣压垫18紧密连接在一起;
步骤三:在密封连接后的岩石试件9的表面和互扣压垫18上分别安装三个方向的体变测量用微型LVDT位移传感器15;
步骤四:启动液压提升杆8带动夹持器1向上移动,使夹持器1中 部的试件承放通孔提升至加载仓2上方;
步骤五:将密封后且安装了体变测量用微型LVDT位移传感器15的岩石试件9安装到夹持器1内的加热箱3内;
步骤六:控制液压提升杆8下降,直到夹持器1完全回到加载仓2的圆柱形通孔内;
步骤七:对第一大主应力作动器4、第二大主应力作动器5、第一中主应力作动器6及第二中主应力作动器7实施位移控制,完成密封岩石试件9的精确对中夹紧;
步骤八:调整体变测量用微型LVDT位移传感器15的位置及触针伸长量,使体变测量用微型LVDT位移传感器15处于实验量程范围内;
步骤九:向加载仓2内充液压油;
步骤十:启动加热箱3内的加热板301,将液压油温度加热到目标值;
步骤十一:启动冷却组件,降低测力传感器707的温度;
步骤十二:启动第一大主应力作动器4、第二大主应力作动器5、第一中主应力作动器6及第二中主应力作动器7的应力加载注射泵,同时启动围压加载注射泵,对岩石试件9进行阶梯式真三轴加载;
步骤十三:在各个阶梯等级载荷下,记录并观测岩石试件9的变形情况。
本实施例的高温真三轴试验方法,能够在高温高压条件下进行长时间稳定的加载,提高了试验数据的真实性及准确性。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行改动、修改、替换和变型。

Claims (10)

  1. 一种高温高应力真三轴试验装置,其特征在于,包括加热箱(3)、加载仓(2)、夹持器(1)、冷却组件、压头组件、液压提升杆、第一大主应力作动器(4)、第二大主应力作动器(5)、第一中主应力作动器(6)和第二中主应力作动器(7);
    所述加载仓(2)设置有竖直贯通的圆柱形通孔,所述圆柱形通孔的轴向与所述加载仓的轴向垂直,所述夹持器(1)套设在所述圆柱形通孔内且与所述圆柱形通孔密封配合,所述液压提升杆(8)能够带动所述夹持器(1)相对于所述加载仓(3)上下移动;
    所述夹持器(1)的中心位置开设有试件承放通孔,所述夹持器(1)(1)沿其轴向设有连通所述试件承放通孔的第一开口(101)和第二开口(102),以及沿其径向设有连通所述试件承放通孔的第三开口(103)和第四开口(104),所述加载仓(2)设有与第三开口(103)和第四开口(104)分别连通的第五开口(201)和第六开口(202),其中所述第一开口(101)、第二开口(102)、第五开口(201)和第六开口(202)为应力加载通道;
    所述加热箱(3)设置在所述试件承放通孔内,所述加热箱(3)为长方体结构用于收容待测试岩石试件(9),在所述第一开口(101)、第二开口(102)、第四开口(103)和第四开口(104)内均设有压头组件,所述压头组件的一端伸入所述加热箱(3)内与所述岩石试件(9)连接;
    所述第一大主应力作动器(4)和第二大主应力作动器(5)分别设置在所述夹持器(1)轴向的两端且分别伸入所述第一开口(101)和第二开口(102)内,所述第一中主应力作动器(6)和第二中主应力作动器(7)分别设置在所述加载仓(2)轴向的两端且分别伸入所述第五开口(201)和第六开口(202)内;
    所述冷却组件分别设置在所述第一开口(101)、所述第二开口(102)、所述第五开口(201)和所述第六开口(202)内。
  2. 如权利要求1所述的高温高应力真三轴试验装置,其特征在于,
    在所述加热箱(3)内包括对称设置的加热板(301);
    所述加热箱(3)设有分别连通所述第一开口(101)、所述第二开口(102)、所述第三开口(103)、所述第四开口(104)的第一通孔(302)、第二通孔(303)、第三通孔(304)和第四通孔(305);
    所述压头组件的一端分别通过所述第一通孔(302)、所述第二通孔(303)、所述第三通孔(304)和所述第四通孔(305)伸入所述加热箱(3)内与所述岩石试件(9)连接。
  3. 如权利要求2所述的高温高应力真三轴试验装置,其特征在于,
    所述压头组件包括依次连接的刚性压头(1001)、隔热垫(1002)和刚性压块(1003),所述刚性压头(1001)伸入所述加热箱(3)内与所述岩石试件(9)连接。
  4. 如权利要求1所述的高温高应力真三轴试验装置,其特征在于,
    所述第一大主应力作动器(4)、所述第二大主应力作动器(5)、所述第一中主应力作动器(6)和所述第二中主应力作动器(7)结构相同,均包括封盖(701)、环形端盖(702)、反力缸筒(703)、活塞(704)、活塞杆(705)、密封法兰盘(706)、测力传感器(7062)及应力加载用注射泵;
    所述第一大主应力作动器(4)和所述第二大主应力作动器(5)的所述反力缸筒(703)连接在所述夹持器(1)的两端面,所述第一中主应力作动器(6)和所述第二中主应力作动器(7)的所述反力缸筒(703)连接在所述加载仓(2)的两端面;
    所述环形端盖(702)与所述反力缸筒(703)的外端面连接,所述封盖(701)与所述环形端盖(702)的中部连接,所述反力缸筒(703)通过所述密封法兰盘(706)与所述应力加载通道进行密封配合;
    所述活塞杆(705)一端位于所述反力缸筒(703)内,所述活塞杆(705)另一端穿过所述密封兰盘(706)并延伸至所述应力加载通道内与所述测力传感器(7062)连接,所述活塞(704)位于反力缸筒(703) 内并套设在所述活塞杆(705)上,所述活塞(704)与所述反力缸筒(703)密封滑动配合;
    所述环形端盖(702)与所述活塞(704)之间为应力加载油腔(11),在所述环形端盖(702)上开设有应力加载供油孔(7021),所述应力加载供油孔(7021)与所述应力加载油腔(11)相通,在所述反力缸筒(703)上开设有应力加载卸供油孔(7031),所述活塞(704)与所述密封法兰盘(706)之间为应力卸载油腔(12),应力加载卸供油孔(7031)与应力卸载油腔(12)相通,所述应力加载供油孔(7021)和应力加载卸供油孔(7031)均与所述应力加载用注射泵相连通;
    所述加载仓(2)开设有围压加载供油孔,所述围压加载供油孔与围压加载用注射泵相连通。
  5. 如权利要求4所述的高温高应力真三轴试验装置,其特征在于,
    所述冷却组件包括进水管(1301)、出水管(1302)和多个环形冷却管(1303);
    所述环形冷却管(1303)的进水口与所述进水管(1301)连接,所述环形冷却管(1303)的出水口与所述出水管(1302)连接,所述环形冷却管(1303)环绕在所述测力传感器(7062)的外侧;
    所述密封法兰盘(706)设有进水通道(7061)和出水通道(7062),所述进水管(1301)和所述出水管(1302)分别与所述进水通道(7061)和出水通道(7062)连接。
  6. 如权利要求4所述的高温高应力真三轴试验装置,其特征在于,
    所述环形端盖(702)与所述活塞杆(705)的端部之间形成自平衡腔(14);
    所述活塞杆(705)的内部设有高压连通管路(7051),所述应力加载通道通过所述高压连通管路(7051)与所述自平衡腔(14)连通。
  7. 如权利要求1所述的高温高应力真三轴试验装置,其特征在于,
    所述高温高应力真三轴试验装置还包括四个互扣压垫(18);
    所述互扣压垫(18)分别放置在所述岩石试件(9)的四个端部上, 所述互扣压垫(18)的一端与所述岩石试件(9)对齐,所述互扣压垫(18)的首尾相连呈互扣式。
  8. 如权利要求1所述的高温高应力真三轴试验装置,其特征在于,
    所述液压提升杆(8)位于所述加载仓(2)内,所述夹持器(1)的外侧设有限位块(105),所述液压提升杆(8)与所述限位块(105)连接。
  9. 如权利要求1所述的高温高应力真三轴试验装置,其特征在于,
    所述加热箱(3)的箱体由中间层填充隔热材料的钢板形成。
  10. 一种高温真三轴试验方法,采用如权利要求1-9中任一项所述的高温高应力真三轴试验装置,其特征在于,包括如下步骤;
    步骤一:制备岩石试件(9);
    步骤二:将岩石试件(9)与互扣压垫(18)紧密连接在一起;
    步骤三:在密封连接后的岩石试件(9)的表面和互扣压垫(18)上分别安装三个方向的体变测量用微型LVDT位移传感器(15);
    步骤四:启动液压提升杆(8)带动夹持器(1)向上移动,使夹持器(1)中部的试件承放通孔提升至加载仓(2)上方;
    步骤五:将密封后且安装了体变测量用微型LVDT位移传感器(15)的岩石试件(9)安装到夹持器(1)内的加热箱(3)内;
    步骤六:控制液压提升杆(8)下降,直到夹持器(1)完全回到加载仓(2)的圆柱形通孔内;
    步骤七:对第一大主应力作动器(4)、第二大主应力作动器(5)、第一中主应力作动器(6)及第二中主应力作动器(7)实施位移控制,完成密封岩石试件(9)的精确对中夹紧;
    步骤八:调整体变测量用微型LVDT位移传感器(15)的位置及触针伸长量,使体变测量用微型LVDT位移传感器(15)处于实验量程范围内;
    步骤九:向加载仓(2)内充液压油;
    步骤十:启动加热箱(3)内的加热板(301),将液压油温度加热 到目标值;
    步骤十一:启动冷却组件,降低测力传感器(7062)的温度;
    步骤十二:启动第一大主应力作动器(4)、第二大主应力作动器(5)、第一中主应力作动器(6)及第二中主应力作动器(7)的应力加载注射泵,同时启动围压加载注射泵,对岩石试件(9)进行阶梯式真三轴加载;
    步骤十三:在各个阶梯等级载荷下,记录并观测岩石试件(9)的变形情况。
PCT/CN2020/094470 2020-04-30 2020-06-04 一种高温高应力真三轴试验装置及方法 WO2021217783A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010369433.X 2020-04-30
CN202010369433.XA CN111426575A (zh) 2020-04-30 2020-04-30 一种高温高应力真三轴试验装置及方法

Publications (1)

Publication Number Publication Date
WO2021217783A1 true WO2021217783A1 (zh) 2021-11-04

Family

ID=71557203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094470 WO2021217783A1 (zh) 2020-04-30 2020-06-04 一种高温高应力真三轴试验装置及方法

Country Status (2)

Country Link
CN (1) CN111426575A (zh)
WO (1) WO2021217783A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115655905A (zh) * 2022-12-13 2023-01-31 北京科技大学 真三轴加载装置、岩石力学性能及损伤方向性测试方法
CN116429569A (zh) * 2023-03-09 2023-07-14 内蒙金属材料研究所 一种合金材料耐热特性测验装置
CN117969277A (zh) * 2022-12-23 2024-05-03 重庆大学 高温应力环境下软岩变形全进程可视化的真三轴试验方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112014227B (zh) * 2020-08-28 2021-07-06 东北大学 一种活塞杆自平衡主动卸载作动器及使用方法
CN111948065B (zh) * 2020-09-04 2024-04-30 北京理工大学 基于实验室x射线源的高温在位加载ct测试系统及其方法
CN112067458B (zh) * 2020-09-16 2021-10-22 东北大学 一种融合微观ct在线扫描的岩石真三轴试验系统及方法
CN112683650A (zh) * 2020-12-09 2021-04-20 国核电站运行服务技术有限公司 一种高温高压水环境法向微动磨损试验装置
CN112730079B (zh) * 2020-12-23 2022-04-12 山东黄金矿业科技有限公司深井开采实验室分公司 深部复杂构造条件下岩石真三轴动态压剪试验装置及方法
CN112903470B (zh) * 2021-01-18 2022-03-25 东北大学 一种基于硬岩真三轴系统的高温渗流耦合实验装置及方法
CN113295552B (zh) * 2021-04-19 2022-05-20 东北大学 高温高压真三轴直剪破裂渗流耦合测试装置及使用方法
CN113686693B (zh) * 2021-08-25 2022-05-31 东北大学 一种岩石深地联合致裂、地热注采与渗流模拟试验系统
CN114813385B (zh) * 2022-03-21 2024-05-17 东北大学 一种真三向应力下岩石导热各向异性稳态试验装置与方法
CN115389322A (zh) * 2022-08-25 2022-11-25 东北大学 一种真三轴试验仪双向同步加载方法
CN116124606B (zh) * 2023-03-02 2024-04-19 深圳大学 深地深空深海岩石物理力学测试腔与三维多场信息感知舱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884604A (zh) * 2014-04-08 2014-06-25 中国矿业大学 一种多功能高温高压三轴煤岩试验装置及方法
CN104655495A (zh) * 2015-02-13 2015-05-27 太原理工大学 一种煤岩高温高压真三轴压裂渗流试验装置与试验方法
JP6103658B2 (ja) * 2015-09-16 2017-03-29 国土防災技術株式会社 非排水一面せん断機構の圧力室を付加した三軸試験装置
CN106596281A (zh) * 2016-12-20 2017-04-26 东北大学 一种高压真三轴硬岩恒温时效破裂试验装置及方法
CN108562498A (zh) * 2018-04-24 2018-09-21 中国科学院地球化学研究所 一种用于高温高压下轴向压缩试验的装置及其使用方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100536959B1 (ko) * 2003-08-20 2005-12-19 한국지질자원연구원 진삼축압축시험장치
CN101710048B (zh) * 2009-10-21 2011-07-20 中国矿业大学 一种三轴压力下岩样加热装置及方法
CN102735549B (zh) * 2012-07-05 2014-07-02 重庆大学 多功能真三轴流固耦合压力室
CN205103104U (zh) * 2015-11-13 2016-03-23 西安建筑科技大学 一种高温高压岩石三轴仪
CN106680105B (zh) * 2016-12-20 2019-11-01 安徽理工大学 一种耐高温的真三轴岩石试验机
CN108020470B (zh) * 2017-11-15 2019-10-25 东北大学 一种用于模拟超高压和高温地质条件的岩石三轴压力机
CN108827794A (zh) * 2018-06-25 2018-11-16 中南大学 一种真三轴高温试验炉、试验系统及方法
CN109855973A (zh) * 2019-01-22 2019-06-07 东北大学 一种岩石三轴直接拉伸室内实验装置和方法
CN110031329B (zh) * 2019-04-29 2022-02-25 沈阳马普科技有限公司 一种能够模拟深部地质环境的超深钻岩芯真三轴试验装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884604A (zh) * 2014-04-08 2014-06-25 中国矿业大学 一种多功能高温高压三轴煤岩试验装置及方法
CN104655495A (zh) * 2015-02-13 2015-05-27 太原理工大学 一种煤岩高温高压真三轴压裂渗流试验装置与试验方法
JP6103658B2 (ja) * 2015-09-16 2017-03-29 国土防災技術株式会社 非排水一面せん断機構の圧力室を付加した三軸試験装置
CN106596281A (zh) * 2016-12-20 2017-04-26 东北大学 一种高压真三轴硬岩恒温时效破裂试验装置及方法
CN108562498A (zh) * 2018-04-24 2018-09-21 中国科学院地球化学研究所 一种用于高温高压下轴向压缩试验的装置及其使用方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115655905A (zh) * 2022-12-13 2023-01-31 北京科技大学 真三轴加载装置、岩石力学性能及损伤方向性测试方法
CN117969277A (zh) * 2022-12-23 2024-05-03 重庆大学 高温应力环境下软岩变形全进程可视化的真三轴试验方法
CN116429569A (zh) * 2023-03-09 2023-07-14 内蒙金属材料研究所 一种合金材料耐热特性测验装置
CN116429569B (zh) * 2023-03-09 2024-04-02 内蒙金属材料研究所 一种合金材料耐热特性测验装置

Also Published As

Publication number Publication date
CN111426575A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
WO2021217783A1 (zh) 一种高温高应力真三轴试验装置及方法
CN107748110B (zh) 微机控制电液伺服岩石三轴动态剪切渗流耦合试验方法
CN104677815B (zh) 真三轴岩石参数测试系统
WO2018113063A1 (zh) 一种高压真三轴硬岩恒温时效破裂试验装置及方法
CN107991216B (zh) 一种高温应力下流体裂隙渗流模拟装置
CN106896043B (zh) 真三轴应力下模拟起裂及评价裂缝渗流的装置
CN110987638A (zh) 一种可视化真三轴水力劈裂试验装置及方法
CN110595909B (zh) 模拟深部岩体不同温度影响下的真三轴试验系统及方法
CN109001040B (zh) 岩石压裂模拟装置
CN111521493B (zh) 一种同时多级加载的高温三轴岩石蠕变试验机及使用方法
CN110005400B (zh) 干热岩地层高温高压环境井筒套管-水泥环胶结面测试装置
CN109030318A (zh) 一种压力室结构和渗透率测试系统
CN113092282B (zh) 一种低温冻土原状试样的土工测试装置
CN205981931U (zh) 复杂条件下岩石力学性能试验装置
CN112903470B (zh) 一种基于硬岩真三轴系统的高温渗流耦合实验装置及方法
CN111879814A (zh) 裂隙岩体水热传输机理实验装置及系统
CN113959853A (zh) 一种高温条件下岩层压裂和径向渗流的实验模拟装置
CN104849149B (zh) 一种高分子保温材料高温静水压性能模拟试验方法
CN207516210U (zh) 一种模拟地层条件下孔隙度和渗透率测试装置
CN110320104A (zh) 一种可水冷却的岩石多场耦合试验综合加载装置及方法
CN113418851A (zh) 一种渗流检测试验仪
CN112098231A (zh) 一种模拟冻融循环粗粒土大型三轴力学试验装置及试验方法
CN208672488U (zh) 一种压力室结构和渗透率测试系统
CN114705548A (zh) 复杂应力状态下岩土材料热物性参数的测试装置及方法
CN116124672A (zh) 深部岩石三维渗透率实时测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933525

Country of ref document: EP

Kind code of ref document: A1