WO2021217609A1 - 扫描模组、测距装置及移动平台 - Google Patents

扫描模组、测距装置及移动平台 Download PDF

Info

Publication number
WO2021217609A1
WO2021217609A1 PCT/CN2020/088386 CN2020088386W WO2021217609A1 WO 2021217609 A1 WO2021217609 A1 WO 2021217609A1 CN 2020088386 W CN2020088386 W CN 2020088386W WO 2021217609 A1 WO2021217609 A1 WO 2021217609A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffractive optical
microstructures
scanning module
optical element
substrate
Prior art date
Application number
PCT/CN2020/088386
Other languages
English (en)
French (fr)
Inventor
黄潇
王栗
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/088386 priority Critical patent/WO2021217609A1/zh
Priority to CN202080005439.7A priority patent/CN113874747A/zh
Publication of WO2021217609A1 publication Critical patent/WO2021217609A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • This application relates to the field of laser ranging, in particular to a scanning module, a ranging device and a mobile platform.
  • Scanning devices usually use rotating heavy refracting prisms to form scanning tracks.
  • the refractive prism is relatively heavy, the volume and weight of the scanning device are relatively large; on the other hand, because the refractive prism in the scanning device is not a symmetrical structure, the scanning device is prone to be unbalanced when the refractive prism is rotated. , It is not conducive to the high-speed scanning of the scanning device, thereby limiting the scanning frequency of the scanning device.
  • the embodiments of the present application provide a scanning module, a distance measuring device, and a mobile platform.
  • the embodiment of the present application provides a scanning module.
  • the scanning module includes a diffractive optical element and an optical path changing element.
  • the diffractive optical element includes a substrate and a plurality of microstructures arranged on the substrate.
  • the optical path changing element and the diffractive optical element are arranged coaxially and rotate relatively.
  • the diffractive optical element is used to receive light pulses, and cooperate with the optical path changing element to deflect the light pulses in different directions when incident from the diffractive optical element.
  • the embodiment of the present application provides a distance measuring device.
  • the distance measuring device includes a distance measuring module and a scanning module.
  • the distance measuring module includes a light source, the light source is used to emit a light pulse sequence to the scanning module, the scanning module is used to change the transmission direction of the light pulse and then emit, the light pulse reflected by the probe passes through
  • the scanning module is incident on the distance measuring module, and the distance measuring module is used to determine the distance between the probe and the distance measuring device according to the reflected light pulses.
  • the scanning module includes a diffractive optical element and an optical path changing element.
  • the diffractive optical element includes a substrate and a plurality of microstructures arranged on the substrate.
  • the optical path changing element and the diffractive optical element are arranged coaxially and rotate relatively. Wherein, the diffractive optical element is used to receive light pulses, and cooperate with the optical path changing element to deflect the light pulses in different directions when incident from the diffractive optical element.
  • the embodiment of the present application provides a mobile platform.
  • the mobile platform includes a body and a distance measuring device.
  • the distance measuring device is arranged on the body.
  • the distance measuring device includes a distance measuring module and a scanning module.
  • the distance measuring module includes a light source, the light source is used to emit a light pulse sequence to the scanning module, the scanning module is used to change the transmission direction of the light pulse and then emit, the light pulse reflected by the probe passes through
  • the scanning module is incident on the distance measuring module, and the distance measuring module is used to determine the distance between the probe and the distance measuring device according to the reflected light pulses.
  • the scanning module includes a diffractive optical element and an optical path changing element.
  • the diffractive optical element includes a substrate and a plurality of microstructures arranged on the substrate.
  • the optical path changing element and the diffractive optical element are arranged coaxially and rotate relatively.
  • the diffractive optical element is used to receive light pulses, and cooperate with the optical path changing element to deflect the light pulses in different directions when incident from the diffractive optical element.
  • the scanning module, distance measuring device, and mobile platform in the embodiments of the present application use a diffractive optical element composed of multiple microstructures and substrates instead of a heavy refractive prism to receive light pulses, and the diffractive optical element cooperates with the optical path changing element
  • the light pulses are deflected in different directions when they are incident from the diffractive optical element and emitted to form a scanning track.
  • the diffractive optical element composed of multiple microstructures and substrates has the advantages of small size and light weight, thereby reducing the volume and weight of the scanning module; on the other hand, the diffractive optical element has a stronger dynamic balance Ability to enable the diffractive optical element to rotate at a high speed, thereby increasing the scanning frequency of the scanning device.
  • FIG. 1 is a schematic structural diagram of a scanning module according to some embodiments of the present application.
  • FIGS. 2 and 3 are schematic diagrams of the structure of the diffractive optical element in the scanning module according to some embodiments of the present application.
  • 4 to 7 are schematic diagrams of the structure of the diffractive optical element in the scanning module of some embodiments of the present application and schematic diagrams of the projection in the plane perpendicular to the optical axis of the light pulse;
  • FIGS 8 to 11 are schematic diagrams of the structure of the diffractive optical element in the scanning module of some embodiments of the present application.
  • 12 to 15 are schematic diagrams of the structure of a scanning module according to some embodiments of the present application.
  • FIG. 16 is a schematic structural diagram of a distance measuring device according to some embodiments of the present application.
  • Fig. 17 is a schematic structural diagram of a mobile platform according to some embodiments of the present application.
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. touch.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the first feature is "below”, “below” and “below” the second feature. It may be that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the scanning module 100 includes a diffractive optical element 10 and an optical path changing element 20.
  • the diffractive optical element 10 includes a substrate 11 and a plurality of microstructures 12 arranged on the substrate 11. In an example, the size of the plurality of microstructures is on the order of micrometers.
  • the optical path changing element 20 and the diffractive optical element 10 are arranged side by side and rotate relative to each other, wherein the two optical path changing elements can rotate around the same axis or can rotate around different axes.
  • the diffractive optical element 10 is used to receive light pulses, and cooperate with the optical path changing element 20 to deflect the light pulses from different directions when incident from the diffractive optical element 10 and emit them in different directions.
  • an embodiment of the present application also provides a distance measuring device 1000.
  • the distance measuring device 1000 includes a scanning module 100 and a distance measuring module 200.
  • the ranging module 200 includes a light source 201.
  • the light source 201 is used to emit a light pulse sequence to the scanning module 100.
  • the scanning module 100 is used to change the transmission direction of the light pulse and emit it.
  • the light pulse reflected by the probe 400 passes through the scanning module.
  • the group 100 enters the distance measuring module 200, and the distance measuring module 200 is used to determine the distance between the probe 400 and the distance measuring device 1000 according to the reflected light pulses.
  • the scanning module 100 includes a diffractive optical element 10 and an optical path changing element 20.
  • the diffractive optical element 10 includes a substrate 11 and a plurality of microstructures 12 arranged on the substrate 11.
  • the optical path changing element 20 and the diffractive optical element 10 are arranged coaxially and rotate relatively.
  • the diffractive optical element 10 is used to receive light pulses, and cooperate with the optical path changing element 20 to deflect the light pulses from different directions when incident from the diffractive optical element 10 and emit them in different directions.
  • the embodiment of the present application also provides a mobile platform 3000.
  • the mobile platform 3000 includes a distance measuring device 1000 and a main body 2000.
  • the distance measuring device 1000 is installed on the main body 2000.
  • the distance measuring device 1000 includes a scanning module 100 and a distance measuring module 200.
  • the ranging module 200 includes a light source 201.
  • the light source 201 is used to emit a light pulse sequence to the scanning module 100.
  • the scanning module 100 is used to change the transmission direction of the light pulse and emit it.
  • the light pulse reflected by the probe 400 passes through the scanning module.
  • the group 100 enters the distance measuring module 200, and the distance measuring module 200 is used to determine the distance between the probe 400 and the distance measuring device 1000 according to the reflected light pulses.
  • the scanning module 100 includes a diffractive optical element 10 and an optical path changing element 20.
  • the diffractive optical element 10 includes a substrate 11 and a plurality of microstructures 12 arranged on the substrate 11.
  • the optical path changing element 20 and the diffractive optical element 10 are arranged coaxially and rotate relatively. Among them, the diffractive optical element 10 is used to receive light pulses, and cooperate with the optical path changing element 20 to deflect the light pulses from different directions when incident from the diffractive optical element 10 and emit them in different directions.
  • the scanning module 100, the distance measuring device 1000, and the mobile platform 3000 use a diffractive optical element 10 composed of a plurality of microstructures 12 and a substrate 11 instead of a heavy refracting prism to receive light pulses, and diffractive optical
  • the element 10 cooperates with the optical path changing element 20 to deflect the light pulses from different directions when incident from the diffractive optical element 10 to form a scanning track.
  • the diffractive optical element 10 composed of a plurality of microstructures 12 and the substrate 11 has the advantages of small size and light weight, thereby reducing the volume and weight of the scanning module 100; on the other hand, the diffractive optical element 10 has the advantages of small size and light weight.
  • the stronger dynamic balance capability enables the diffractive optical element 10 to rotate at a high speed, thereby increasing the scanning frequency of the scanning device 100.
  • the diffractive optical element 10 includes a substrate 11 and a plurality of microstructures 12, the plurality of microstructures 12 are disposed on the substrate 11, and the plurality of microstructures 12 make the diffraction efficiency of the diffractive optical element 10 greater than 80%.
  • the substrate 11 has a flat plate structure, and the substrate 11 includes an incident surface 111 and an exit surface 112 disposed opposite to each other.
  • the light pulse from the light source 201 enters from the incident surface 111 and exits from the exit surface 112.
  • the light pulse emitted from the exit surface 112 of the diffractive optical element 10 then enters the optical path changing element 20.
  • the substrate 11 may be made of glass, and the substrate 11 may also be made of plastic, which is not limited here.
  • a plurality of microstructures 12 are disposed on the substrate 11, and the plurality of microstructures 12 may be arranged in an array on the substrate 11 or distributed in rotational symmetry with respect to the center of the substrate 11, which is not limited herein.
  • the microstructure 12 may be made of glass, and the microstructure 12 may also be made of plastic, which is not limited here.
  • the multiple microstructures 12 are disposed on the incident surface 111 and/or the exit surface 112 of the substrate 11, that is, the multiple microstructures 12 are disposed on at least one of the incident surface 111 and the exit surface 112 of the substrate 11.
  • a plurality of microstructures 12 are all provided on one surface of the substrate 11.
  • the multiple microstructures 12 are all disposed on the incident surface 111 of the substrate 11, and the microstructure 12 is not disposed on the exit surface 112 of the substrate 11.
  • the light pulse passes through the plurality of microstructures 12 and is deflected, and then is emitted from the exit surface 112.
  • a plurality of microstructures 12 can also be all disposed on the exit surface 112 of the substrate 11, which is not limited here.
  • the multiple microstructures 12 are only provided on one surface of the substrate 11, when processing the diffractive optical element 10, only one surface of the substrate 11 needs to be processed, and there is no need to process multiple surfaces of the substrate 12 .
  • the processing difficulty of the diffractive optical element 10 is reduced, thereby reducing the processing difficulty of the scanning module 100.
  • a plurality of microstructures 12 are provided on the incident surface 111 and the exit surface 112 of the substrate 11, that is, both the incident surface 111 and the exit surface 112 of the substrate 11 are provided with the microstructure 12 (as shown in FIG. 3).
  • the projection of the microstructures 12 distributed on the incident surface 111 in a plane perpendicular to the optical axis of the light pulse completely coincides with the projection of the microstructures 12 distributed on the exit surface 112 in the plane.
  • the incident surface 111 and the exit surface 112 of the substrate 11 are provided with a plurality of microstructures 12, and the microstructures 12 distributed on the incident surface 111 are in a plane perpendicular to the optical axis of the light pulse.
  • the projection is area 1
  • the projection of the microstructures 12 distributed on the exit surface 112 in a plane perpendicular to the optical axis of the light pulse is area 2. Area 1 and Area 2 completely overlap.
  • the light pulse passes through the plurality of microstructures 12 arranged on the incident surface 111 to be deflected, and then enters the substrate 11, and then is emitted from the exit surface 112 of the substrate 11 and then passes through the plurality of microstructures 12 arranged on the exit surface 112.
  • the microstructure 12 is deflected again, so that the scanning angle of the scanning module 100 is more diversified.
  • the projection of the microstructures 12 distributed on the incident surface 111 in the plane perpendicular to the optical axis of the light pulse completely coincides with the projection of the microstructures 12 distributed on the exit surface 112 in the plane, the projection of the microstructures 12 distributed on the exit surface 112 is completely coincident with the projection of the microstructure 12 distributed on the incident surface 111.
  • the light pulse passes through the microstructure 12 twice, that is, the light pulse entering the diffractive optical element 10 is deflected twice and then exits the diffractive optical element 10.
  • the projection of the microstructures 12 distributed on the incident surface 111 in a plane perpendicular to the optical axis of the light pulse meets the boundary of the projection of the microstructures 12 distributed on the exit surface 112 in the plane.
  • a plurality of microstructures 12 are provided on both the incident surface 111 and the exit surface 112 of the substrate 11, and the plurality of microstructures 12 provided on the incident surface 111 of the substrate 11 are all distributed in the diffractive optics.
  • the area A of the element 10 is arranged on the multiple exit surfaces 112 of the output surface 112 of the substrate 12 and the multiple microstructures 12 are all distributed in the area B of the diffractive optical element 10.
  • the projection of the microstructures 12 distributed on the incident surface 111 in the plane perpendicular to the optical axis of the light pulse is area 1
  • the projection of the microstructures 12 distributed on the exit surface 112 in the plane perpendicular to the optical axis of the light pulse is area 2 .
  • Area 1 and area 2 border on each other.
  • the light pulse entering the area A of the diffractive optical element 10 passes through the plurality of microstructures 12 to be deflected and then is emitted from the exit surface 112; the light pulse entering the area B of the diffractive optical element 10 enters from the incident surface 111 of the substrate 11 , And after being projected from the exit surface 112, it passes through a plurality of microstructures 12 to be deflected.
  • the projection of the microstructures 12 distributed on the incident surface 111 in the plane perpendicular to the optical axis of the light pulse is connected to the boundary of the projection of the microstructures 12 distributed on the exit surface 112 in the plane, regardless of the light pulse from diffractive optics Which area of the element 10 is incident, can be deflected once and then eject from the diffractive optical element 10, so that the scanning angle of the scanning module 100 is more diversified.
  • the cooperation of the microstructures 12 in the A area and the B area can have a higher scanning force for a specific area.
  • the projection of the microstructures 12 distributed on the incident surface 111 in a plane perpendicular to the optical axis of the light pulse partially overlaps with the projection of the microstructures 12 distributed on the exit surface 112 in the plane.
  • a plurality of microstructures 12 are provided on both the incident surface 111 and the exit surface 112 of the substrate 11, and the plurality of microstructures 12 provided on the incident surface 111 of the substrate 11 are all distributed in the diffractive optics.
  • the multiple microstructures 12 provided on the exit surface 112 of the substrate 12 are all distributed in the area B and the area C of the diffractive optical element 10.
  • the projection of the microstructures 12 distributed on the incident surface 111 in the plane perpendicular to the optical axis of the light pulse is area 1 and area 3.
  • the microstructures 12 distributed on the exit surface 112 are projected in the plane perpendicular to the optical axis of the light pulse The projection is area 2 and area 3.
  • the projection of the microstructures 12 distributed on the incident surface 111 in the plane perpendicular to the optical axis of the light pulse and the microstructures 12 distributed on the exit surface 112 in the plane perpendicular to the optical axis of the light pulse The overlapping part of the projection is area 3.
  • the light pulses entering the area A of the diffractive optical element 10 pass through the plurality of microstructures 12 to be deflected, and then are emitted from the exit surface 112.
  • the light pulse entering the B area of the diffractive optical element 10 enters from the incident surface 111 of the substrate 11, is emitted from the exit surface 112, and passes through the plurality of microstructures 12 to be deflected.
  • the light pulse entering the C region of the diffractive optical element 10 passes through the multiple microstructures 12 arranged on the incident surface 111 to be deflected, then enters the interior of the substrate 11, and then exits from the exit surface 112 of the substrate 11, and then passes through The multiple microstructures 12 disposed on the exit surface 112 are deflected again.
  • the incident diffractive optical element 10 Since the projection of the microstructure 12 distributed on the incident surface 111 in the plane perpendicular to the optical axis of the light pulse overlaps with the projection of the microstructure 12 distributed on the exit surface 112 in the plane, the incident diffractive optical element 10 is different The number of deflections of the light pulses in a region is different, so that the scanning angles that the scanning module 100 can scan are more diversified. In addition, the cooperation of the microstructures 12 in the A region, the B region, and the C region can have a higher scanning power for a specific region.
  • the projection of the microstructures 12 distributed on the incident surface 111 in a plane perpendicular to the optical axis of the light pulse and the projection of the microstructures 12 distributed on the exit surface 112 in the plane are completely staggered.
  • a plurality of microstructures 12 are provided on both the incident surface 111 and the exit surface 112 of the substrate 11, and the plurality of microstructures 12 provided on the incident surface 111 of the substrate 11 are all distributed in the diffractive optics.
  • the area A of the element 10 is arranged on the multiple output surfaces 112 of the output surface 112 of the substrate 12.
  • the multiple microstructures 12 are all distributed in the area B of the diffractive optical element 10, and the area C of the diffractive optical element 10 is not provided with microstructures. 12.
  • the projection of the microstructures 12 distributed on the incident surface 111 in the plane perpendicular to the optical axis of the light pulse is area 1; the projection of the microstructures 12 distributed on the exit surface 112 in the plane perpendicular to the optical axis of the light pulse is area 2 .
  • Area 1 and area 2 are completely staggered, that is, area 1 and area 2 neither overlap nor touch.
  • the light pulses entering the area A of the diffractive optical element 10 pass through the plurality of microstructures 12 to be deflected, and then are emitted from the exit surface 112.
  • the light pulse entering the B area of the diffractive optical element 10 enters the interior of the substrate 11 from the incident surface 111 of the substrate 11, and passes through the plurality of microstructures 12 from the exit surface 112 to be deflected.
  • the light pulse entering the C region of the diffractive optical element 10 enters the interior of the substrate 11 from the incident surface 111 of the substrate 11 and is emitted from the exit surface 112 without being deflected.
  • the projections of the microstructures 12 distributed on the incident surface 111 in the plane perpendicular to the optical axis of the light pulse and the projections of the microstructures 12 distributed on the exit surface 112 in the plane are completely staggered, they enter different areas of the diffractive optical element 10
  • the light pulses may not be deflected, so that the scanning angles that the scanning module 100 can scan are more diversified.
  • the cooperation of the microstructures 12 in the A region, the B region, and the C region can have a higher scanning power for a specific region.
  • the different distribution and arrangement forms of the multiple microstructures 12 on the incident surface 111 and the exit surface 112 can enable the scanning module 100 to have a specific scanning track.
  • the area that needs attention has a high scan density
  • the area that does not need attention has a low scan density or is not scanned.
  • the plurality of microstructures 12 are in a triangular structure, and the triangular microstructures 12 have a vector height d.
  • the vector heights d of the plurality of microstructures 12 may be the same or different, but each The maximum vector height d of the microstructure 12 (the maximum value of the vector height d) is of the order of light wavelength. Since the maximum sagittal height d of each microstructure 12 is in the order of light wavelength, the use of heavy refracting prisms is avoided, and the large sagittal heights introduced by large-aperture and large wedge-angle refracting prisms are avoided, thereby realizing the scanning module 100 Lightweight.
  • the substrate 11 has a flat-plate structure, which avoids the use of wedge-shaped refractive prisms with large differences in thickness at both ends. On the one hand, it can avoid non-uniform deformation under the action of thermal deformation or external stress, and ensure the final scanning effect. It is possible to avoid the imbalance of dynamic balance caused by the difference in thickness between the two ends, that is, to ensure that the scanning module 100 has an excellent dynamic balance ability during the scanning process, which is beneficial to increase the limit scanning frequency of the scanning module 100.
  • the shape features of the multiple microstructures 12 arranged on the same surface of the diffractive optical element 10 are completely the same, and the size features of the multiple microstructures 12 are also completely the same.
  • the plurality of microstructures 12 arranged on the same surface of the diffractive optical element 10 are triangular, and the vector heights d of the plurality of microstructures 12 are the same.
  • the multiple microstructures 12 provided on the same surface of the diffractive optical element 10 refer to all the microstructures 12 provided on the incident surface 111 of the substrate 11; All the microstructures 12 on the face 112.
  • the following explanation of the multiple microstructures 12 on the same surface is the same as here, and will not be repeated here.
  • the plurality of microstructures 12 arranged on the incident surface 111 of the substrate 11 are all triangular, and the vector heights d of the plurality of microstructures 12 are all d1, which are arranged on the exit surface 112 of the substrate 11.
  • the plurality of microstructures 12 above are all triangular, and the vector heights d of the plurality of microstructures 12 are all d2.
  • d2 is not the same.
  • the vector height d1 of the microstructure 12 disposed on the incident surface 111 may also be equal to the vector height d2 of the microstructure 12 disposed on the exit surface 112, which is not limited here.
  • the multiple microstructures 12 arranged on the same surface of the diffractive optical element 10 may also have completely the same shape and characteristics, but not completely the same size characteristics.
  • the plurality of microstructures 12 arranged on the same surface of the diffractive optical element 10 are triangular, and the vector heights d of the plurality of microstructures 12 are not completely the same.
  • the plurality of microstructures 12 disposed on the incident surface 111 of the substrate 11 includes a first microstructure 121, a second microstructure 122 and a third microstructure 123.
  • the first microstructure 121, the second microstructure 122, and the third microstructure 123 all have a triangular structure, and the first microstructure 121 has a vector height d1, the second microstructure 122 has a vector height d2, and the third microstructure 123 has a vector height d3.
  • the deflection angle that occurs when the light pulse passes through the second microstructure 122 is the same, and the deflection angle that occurs when the light pulse passes through the first microstructure 121 is different from the deflection angle that occurs when the light pulse passes through the third microstructure 123.
  • the deflection of the light pulses entering different regions of the diffractive optical element 10 is not completely the same.
  • the microstructures 12 on different areas of the same surface are designed with different size features of the microstructures 12, so that the scanning module 100 realizes a specific scanning trajectory.
  • the plurality of microstructures 12 may all have a stepped structure, and the plurality of microstructures 12 have a sagittal height d, and the maximum sagittal height d (the maximum value of the sagittal height d) of each microstructure 12 is the order of the wavelength of light. .
  • each microstructure 12 has a stepped structure, and the stepped microstructure 12 includes 2 N steps 126, where N ⁇ 2.
  • N can be equal to 2, 3, 5, 10, 12, 20, 100, etc.
  • each microstructure 12 has a flat-plate structure, which avoids the use of wedge-shaped refractive prisms with large differences in thickness at both ends. On the one hand, it can avoid non-uniform deformation under the action of thermal deformation or external stress, and ensure the final scanning effect.
  • the scanning module 100 has an excellent dynamic balance ability during the scanning process, thereby helping to increase the limit scanning frequency of the scanning module 100.
  • the processing technology of processing the microstructure 12 into a stepped shape is easier to implement, which reduces the processing difficulty of the microstructure 12.
  • the greater the number of steps 126 of the microstructure 12 the smaller the truncation error due to the presence of quantization approximation, which is beneficial to improve the diffraction efficiency, reduce the energy loss of the outgoing beam, and reduce the stray light component.
  • the size of the multiple steps 126 in each microstructure 12 may be completely the same.
  • each microstructure 12 in FIG. 9 includes four steps 126, and the sizes of the four steps 126 are completely the same.
  • the size of the multiple steps 126 in each microstructure 12 can be completely different.
  • the sizes of the four steps 126 of the second microstructure 122 are completely different; of course, each microstructure 12
  • the multiple steps 126 in the structure 12 may be partially the same, that is, the same microstructure 12 includes multiple steps 126, some of the steps 126 have the same size, and some of the steps 126 have different sizes, which is not limited here.
  • the dimensional characteristics of the microstructure 12 in the stepped structure include the vector height d of the microstructure 12, the width of each step 126 of the microstructure 12, and the height of each step 126.
  • the number of steps 126 in the microstructure 12 may be the same or partly the same.
  • the number of the steps 126 of the microstructure 12 is gradually decreasing. , Or gradually increasing, or first increasing and then decreasing, or first decreasing and then increasing.
  • the shape features of the multiple microstructures 12 arranged on the same surface of the diffractive optical element 10 are completely the same, and the size features of the multiple microstructures 12 are completely the same.
  • the multiple microstructures 12 arranged on the same surface of the diffractive optical element 10 are stepped, and the sizes of the multiple microstructures 12 are exactly the same (as shown in FIG. 9).
  • the multiple microstructures 12 arranged on the same surface of the diffractive optical element 10 may also have completely the same shape and characteristics, but not completely the same size characteristics.
  • the multiple microstructures 12 arranged on the same surface of the diffractive optical element 10 are step-shaped, and at least one of the vector height d of the multiple microstructures 12 and the size of the steps 126 of the microstructures 12 are not completely the same.
  • the exit surface 112 of the substrate 11 includes a first microstructure 121, a second microstructure 122, a third microstructure 123, a fourth microstructure 124, and a fifth microstructure 125.
  • the first microstructure 121, the second microstructure 122, the third microstructure 123, the fourth microstructure 124, and the fifth microstructure 125 are all in the form of steps, wherein the number of steps 126 of the first microstructure 121 is the same as that of the fifth microstructure 125 The number of steps 126 is the same, and the vector height d of the first microstructure 121 is the same as the vector height d of the fifth microstructure 125.
  • Both the first microstructure 121 and the second microstructure 122 include four steps 126, and the vector height d1 of the first microstructure 121 is equal to the vector height d2 of the second microstructure 122, but the size of the step 126 of the first microstructure 121 is the same as that of the first microstructure 121.
  • the sizes of the steps 126 of the two microstructures 122 are different.
  • the vector height d1 of the first microstructure 121 is the same as the vector height d3 of the third microstructure 123, but the first microstructure 121 includes 4 steps 126, and the third microstructure 123 includes 8 steps 126, and the first microstructure 121
  • the size of the step 126 is different from the size of the step 126 of the third microstructure 123.
  • Both the first microstructure 121 and the fourth microstructure 124 include four steps 126, but the vector height d1 of the first microstructure 121 is different from the vector height d4 of the fourth microstructure 124, and the size of the step 126 of the first microstructure 121 The size of the step 126 of the fourth microstructure 124 is different.
  • the shape features of the multiple microstructures 12 disposed on the same surface of the diffractive optical element 10 are at least partially different.
  • the multiple microstructures 12 disposed on the substrate 11 may be partly triangular structures and partly It is a stepped structure.
  • the microstructure 12 disposed on the incident surface 111 of the substrate 11 includes a first microstructure 121, a second microstructure 122, a third microstructure 123, and a fourth microstructure 124.
  • the first microstructure 121 and the third microstructure 123 are both triangular
  • the second microstructure 122 and the fourth microstructure 124 are both stepped
  • the size characteristics of the first microstructure 121 and the third microstructure 123 are exactly the same.
  • the size characteristics of the microstructure 122 and the fourth microstructure 124 are completely the same.
  • the shape features of the multiple microstructures 12 arranged on the same surface are at least partially different, and the size features of the multiple microstructures 12 are at least partially different, which is not limited herein.
  • microstructures 12 have multiple shape features and multiple size features, and multiple microstructures 12 can be arranged on the substrate 11 in multiple ways, various shape features, size features, and arrangements of the multiple microstructures 12 can be selected.
  • the arrangement method is arranged and combined to meet the different scanning requirements of the scanning module 100, increasing the flexibility of the diffractive optical element 10 and improving the beam scanning capability of the scanning module 100.
  • the maximum sagittal height d of the plurality of microstructures 12 disposed on the substrate 11 is only on the order of the wavelength of light, that is, the maximum sagittal height d of the plurality of microstructures 12 is only a few hundred nanometers, and the volume of the microstructure 12 is only a few hundred nanometers. The volume relative to the base material 11 is negligible.
  • the diffractive optical element 10 with a plurality of microstructures 12 on the substrate 11 is small in size and light in weight, so that the scanning module 100 has a smaller volume and a lighter weight;
  • the maximum sagittal height d of each microstructure 12 is only on the order of the wavelength of light, which avoids the use of heavy refracting prisms, thereby realizing the light weight of the scanning module 100;
  • since the volume of the microstructure 12 is relative to that of the substrate 11
  • the volume of the diffractive optical element 10 is negligible and the substrate 11 has a flat-plate structure, so that the diffractive optical element 10 deforms more uniformly under stress.
  • the driver 30 (shown in Figure 1) drives the diffractive optical element 10 to drive its rotation. Even if the driver 30 can drive the diffractive optical element 10 to rotate at a high speed, the diffractive optical element 10 may not be unbalanced, so that the scanning module 100 can perform high-speed scanning, that is, the scanning frequency of the scanning module 100 is increased.
  • the shape features of the microstructures 12 distributed on the incident surface 111 and the microstructures 12 distributed on the exit surface 112 At least one of the size feature, or the arrangement feature is different, or the shape feature, size feature, or arrangement feature of the microstructure 12 distributed on the incident surface 111 and the microstructure 12 distributed on the exit surface 112 are completely the same , There is no restriction here.
  • the light pulse emitted from the diffractive optical element 10 enters the optical path changing element 20, and the optical path changing element 20 and the diffractive optical element 10 are arranged coaxially.
  • the optical path changing element 20 includes any one of a diffractive optical unit 21, a refractive element 22, a reflective element 23, and a galvanometer.
  • the scanning module 100 may further include a plurality of drivers 30 and a controller 40 connected to the plurality of drivers 30.
  • the diffractive optical element 10 and the optical path changing element 20 are respectively connected to a driver 30. Under the control of the controller 40, the driver 30 is used to drive the corresponding diffractive optical element 10 or the corresponding optical path changing element 20 to rotate.
  • the controller 40 may control the driver 30 to drive the diffractive optical element 10 and the optical path changing element 20 to rotate in opposite directions at equal speed; or, the controller 40 may control the driver 30 to drive the diffractive optical element 10 and the optical path changing element 20 to reverse at different speeds. Alternatively, the controller 40 may also control the driver 30 to drive the diffractive optical element 10 and the optical path changing element 20 to rotate in the same direction at different speeds.
  • the optical path changing element 20 may include at least one diffractive optical unit 21, and the diffractive optical element 10 cooperates with the at least one diffractive optical unit 21, so that the total diffraction efficiency of the scanning device 100 is greater than 80. %.
  • the specific structure of the diffractive optical unit 21 may be exactly the same as the specific structure of the diffractive optical element 10 in any one of the embodiments shown in FIGS. 2 to 11.
  • the diffractive optical unit 21 also includes a substrate. 211 and a plurality of microstructures 212 arranged on the substrate 211, the substrate 211 of the diffractive optical unit 21 is exactly the same as the substrate 11 of the diffractive optical element 10, and the plurality of microstructures 212 of the diffractive optical unit 21 is identical to the diffractive optical element 10.
  • the multiple microstructures 12 are also completely the same, and will not be repeated here.
  • the multiple microstructures 12 of the diffractive optical element 10 cooperate with the multiple microstructures 212 of at least one diffractive optical unit 21, so that the total diffraction efficiency of the scanning device 100 is greater than 80%, while the diffractive optical unit 21 has multiple microstructures.
  • the single microstructure 212 makes the diffraction efficiency of the diffractive optical unit 21 also greater than 80%.
  • the optical path changing element 20 includes only one diffractive optical unit 21.
  • the scanning module 100 includes a diffractive optical element 10 and a diffractive optical unit 21.
  • the driver 30 includes a first driver 31 and a second driver 32.
  • the first driver 31 drives the diffractive optical element 10 to rotate
  • the second driver 32 drives the diffractive optical unit 21 to rotate
  • the diffractive optical element 10 and the diffractive optical unit 21 have the same speed. Reverse rotation.
  • part of the diffractive optical unit 21 may be different from the diffractive optical element 10.
  • the multiple microstructures 12 of the diffractive optical element 10 are arranged on the incident surface 111 of the substrate 11, and the multiple microstructures 212 of at least one diffractive optical unit 21 are arranged on the exit surface of the substrate 211. 2111.
  • the multiple microstructures 12 of the diffractive optical element 10 are arranged on the incident surface 111 of the substrate 11, and the multiple microstructures 212 of at least one diffractive optical unit 21 are arranged on the exit surface 2112 and the incident surface of the substrate 211. 2111.
  • the multiple microstructures 12 of the diffractive optical element 10 are arranged on the exit surface 112 of the substrate 11, and the multiple microstructures 212 of at least one diffractive optical unit 21 are arranged on the entrance surface 2111 of the substrate 211.
  • the multiple microstructures 12 of the diffractive optical element 10 are provided on the exit surface 112 of the substrate 11, and the multiple microstructures 212 of at least one diffractive optical unit 21 are provided on the exit surface 2112 and the entrance surface of the substrate 211. 2111.
  • the multiple microstructures 12 of the diffractive optical element 10 are arranged on the entrance surface 111 and the exit surface 112 of the substrate 11, and the multiple microstructures 212 of at least one diffractive optical unit 21 are arranged on the exit surface of the substrate 211. 2112 or the incident surface 2111.
  • the microstructure 212 in the diffractive optical unit 21 is different from the microstructure 12 in the diffractive optical element 10 in at least one of the shape feature, size feature, or arrangement feature, and the diffractive optical element 10 and the diffractive optical unit 21 are also different.
  • the diffractive optical element 10 and the diffractive optical unit 21 may also rotate in the same direction at unequal speeds, which is not limited here.
  • the optical path changing element 20 may also include a plurality of diffractive optical units 21.
  • the scanning module 100 includes a diffractive optical element 10 and an optical path changing element 20.
  • the optical path changing element 20 includes a first diffractive optical unit 213 and a second diffractive optical unit 214.
  • the first diffractive optical unit 213 can be the same as the diffractive optical element 10, and the second diffractive optical unit 214 can be different from the diffractive optical element 10.
  • the driver 30 may include a first driver 31, a second driver 32, and a third driver 33.
  • the first driver 31 drives the diffractive optical element 10 to rotate
  • the second driver 32 drives the first diffractive optical unit 213 to rotate
  • the third driver 33 The second diffractive optical unit 214 is driven to rotate.
  • the first diffractive optical unit 213 and the second diffractive optical unit 214 can rotate in the same direction at a constant speed
  • the diffractive optical element 10 and the first diffractive optical unit 213 and the second diffractive optical unit 214 rotate in opposite directions at a constant speed.
  • first diffractive optical unit 213 may also be different from the diffractive optical element 10, but the first diffractive optical unit 213 and the second diffractive optical unit 214 may be the same; or, the first diffractive optical unit 213 and the second diffractive optical unit 214 Both the optical unit 214 and the diffractive optical element 10 are different.
  • first diffractive optical unit 213 and the second diffractive optical unit 214 may also rotate in the same direction at unequal speeds, rotate in opposite directions at a constant speed, or rotate in opposite directions at unequal speeds, which are not limited here.
  • the diffractive optical unit 21 and the diffractive optical element 10 can respectively choose any of the structures of the diffractive optical element 10 of the embodiment shown in FIGS. 2 to 11 for any combination, and the diffractive optical unit 21 and the diffractive optical element 10 can choose a constant velocity Any one of reverse rotation, unequal speed reverse rotation, and unequal speed same direction rotation makes the diffractive optical element 10 and the diffractive optical unit 21 cooperate to scan a scan pattern with a specific density in a specific area.
  • the light path changing element 20 may include a refraction element 22, and the controller 40 controls the driver 30 to drive the refraction element 22 and the diffractive optical element 10 to rotate relative to each other.
  • the refractive index of the refractive element 22 is different from the refractive index of the diffractive optical element 10; and/or the dispersion coefficient of the diffractive optical element 10 is different from the dispersion coefficient of the refractive element 22.
  • at least one of the refractive index and the dispersion coefficient of the diffractive optical element 10 and the refractive optical element 22 is different.
  • the diffractive optical element 10 and the refractive optical element 22 have different refractive indexes.
  • the diffractive optical element 10 and the refractive optical element 22 By designing the diffractive optical element 10 and the refractive optical element 22 with different refractive indexes to cooperate, the chromatic aberration can be eliminated and the scanning module 100 can be improved. Scanning ability.
  • the diffractive optical element 10 and the refractive optical element 22 have different dispersion coefficients. By designing the diffractive optical element 10 and the refractive optical element 22 with different dispersion coefficients to cooperate, the thermal difference can be eliminated so that the scanning module 100 is different. Dispersion reaction will not occur at any temperature.
  • the refractive index and dispersion coefficient of the diffractive optical element 10 and the refractive optical element 22 are different, and the diffractive optical element 10 and the refractive optical element 22 of different refractive index and different dispersion coefficient are matched to achieve both.
  • the chromatic aberration is eliminated and the thermal aberration is eliminated, thereby greatly improving the scanning capability of the scanning module 100.
  • the optical path changing element 20 may further include a reflective element 23, and the driver 30 drives the reflective element 23 and the diffractive optical element 10 to rotate relative to each other.
  • the diffractive optical element 10 and the reflective element 23 are respectively connected to a driver 30.
  • the driver 30 is used to drive the corresponding diffractive optical element 10 or the corresponding reflective element 23 to rotate.
  • the controller 40 can control the driver 30 to drive the diffractive optical element 10 and the reflective element 23 to rotate in opposite directions at equal speed; or, the controller 40 can control the driver 30 to drive the diffractive optical element 10 and the reflective element 23 to rotate in reverse at different speeds; or The controller 40 can also control the driver 30 to drive the diffractive optical element 10 and the reflective element 23 to rotate at different speeds and in the same direction.
  • an embodiment of the present application also provides a distance measuring device 1000.
  • the distance measuring device 1000 includes the scanning module 100 and the distance measuring module 200 described in any one of the above embodiments.
  • the distance measurement module 200 includes a light source 201, a light path changing unit 202, a collimating element 203, and a detector 204.
  • the light source 201 may be one or more laser diodes, and the light pulse emitted by the light source 201 is a narrow bandwidth light pulse with a wavelength outside the visible light range.
  • the number of light sources 201 is multiple, and multiple light sources 201 can alternately emit light pulses, that is, when one light source 201 is emitting light pulses, the other light sources 201 may not work.
  • the light-emitting chips of multiple light sources 201 can be packaged in the same packaging module, so that the overall size of the light source 201 is small, which is beneficial to realize the miniaturization of the distance measurement module 200.
  • the light path changing unit 202 is arranged on the light exiting light path of the light source 201, and the light pulse emitted by the light source 201 enters the collimating element 203 after being reflected by the light path changing unit 202.
  • the collimating element 203 is arranged on the light path of the light source 201, the light pulse reflected by the light path changing unit 202 reaches the collimating element 203, and the collimating element 203 collimates the light pulse and projects it to the scanning module 100.
  • the collimating element 203 is also used to converge the return light reflected by the detection object 400 and passing through the scanning module 100.
  • the collimating element 203 may be a collimating lens or other elements capable of collimating light.
  • the detector 204 can be used to convert the returned light after passing through the collimating element 203 into an electrical signal.
  • the electrical signal can specifically be an electrical pulse.
  • the detector 204 can also determine the distance between the probe 400 and the distance measuring device 1000 based on the electrical pulse. . Specifically, the distance between the distance measuring device 1000 and the probe 400 can be further calculated based on the time difference between the time when the light pulse is emitted and the time when the light pulse is reflected and received, that is, the time of flight (Time of Flight, TOF)
  • the principle of distance measurement calculates the distance between the distance measurement device 1000 and the probe 400.
  • the distance measuring device 1000 can be used to measure the distance between the probe 400 and the distance measuring device 1000 and the position of the probe 400 relative to the distance measuring device 1000.
  • the ranging device 1000 may include radar, such as lidar.
  • the distance measuring device 1000 can be used to sense external environmental information, for example, distance information, orientation information, reflection intensity information, speed information, etc. of environmental targets.
  • the distance measuring device 1000 can detect the distance between the distance measuring device 1000 and the probe 400 by measuring the time of light propagation between the distance measuring device 1000 and the probe 400, that is, the time-of-flight (TOF). The distance of the device 1000.
  • TOF time-of-flight
  • the distance measuring device 1000 may also detect the distance from the probe 400 to the distance measuring device 1000 through other technologies, such as a distance measurement method based on phase shift measurement, or a measurement based on frequency shift measurement.
  • the distance method is not limited here.
  • the distance and azimuth detected by the distance measuring device 1000 can be used for remote sensing, obstacle avoidance, surveying and mapping, modeling, navigation, and the like.
  • the embodiment of the present application also provides a mobile platform 3000.
  • the mobile platform 3000 includes a main body 2000 and the distance measuring device 1000 described in any one of the above embodiments.
  • the mobile platform 3000 may be a mobile platform 3000 such as unmanned aerial vehicles, unmanned vehicles, and unmanned ships.
  • One mobile platform 3000 may be equipped with one or more distance measuring devices 1000.
  • the distance measuring device 1000 is used to detect the environment around the mobile platform 3000, so that the mobile platform 3000 can further perform obstacle avoidance and trajectory selection operations based on the surrounding environment.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, "a plurality of” means at least two, for example two, three, unless otherwise specifically defined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种扫描模组(100)、测距装置(1000)及移动平台(3000)。扫描模组(100)包括衍射光学元件(10)及光路改变元件(20)。衍射光学元件(10)包括基材(11及设置在基材(11)上的多个微结构(12)。光路改变元件(20)与衍射光学元件(10)同轴排布并相对转动。衍射光学元件(10)用于接收光脉冲,并与光路改变元件(20)配合将光脉冲相对从衍射光学元件(10)入射时偏转不同方向出射。

Description

扫描模组、测距装置及移动平台 技术领域
本申请涉及激光测距领域,特别涉及一种扫描模组、测距装置及移动平台。
背景技术
扫描装置通常利用旋转厚重的折射棱镜来形成扫描轨迹。一方面,由于折射棱镜较为厚重,使的扫描装置的体积和重量都较大;另一方面,由于扫描装置中的折射棱镜不是对称结构,扫描装置在转动折射棱镜的时候容易出现不平衡的现象,不利于扫描装置进行高速扫描,进而限制了扫描装置的扫描频率。
发明内容
本申请的实施方式提供了一种扫描模组、测距装置及移动平台。
本申请实施方式提供一种扫描模组。所述扫描模组包括衍射光学元件及光路改变元件。所述衍射光学元件包括基材及设置在所述基材上的多个微结构。所述光路改变元件与所述衍射光学元件同轴排布并相对转动。其中,所述衍射光学元件用于接收光脉冲,并与所述光路改变元件配合将光脉冲相对从所述衍射光学元件入射时偏转不同方向出射。
本申请实施方式提供一种测距装置。所述测距装置包括测距模组和扫描模组。所述测距模组包括光源,所述光源用于向所述扫描模组发射光脉冲序列,所述扫描模组用于改变光脉冲的传输方向后出射,经探测物反射回的光脉冲经过所述扫描模组后入射至所述测距模组,所述测距模组用于根据反射回的光脉冲确定所述探测物与所述测距装置之间的距离。所述扫描模组包括衍射光学元件及光路改变元件。所述衍射光学元件包括基材及设置在所述基材上的多个微结构。所述光路改变元件与所述衍射光学元件同轴排布并相对转动。其中,所述衍射光学元件用于接收光脉冲,并与所述光路改变元件配合将光脉冲相对从所述衍射光学元件入射时偏转不同方向出射。
本申请实施方式提供一种移动平台。所述移动平台包括本体和测距装置。所述测距装置设置在所述本体上。所述测距装置包括测距模组和扫描模组。所述测距模组包括光源,所述光源用于向所述扫描模组发射光脉冲序列,所述扫描模组用于改变光脉冲的传输方向后出射,经探测物反射回的光脉冲经过所述扫描模组后入射至所述测距模组,所述测距模组用于根据反射回的光脉冲确定所述探测物与所述测距装置之间的距离。所述扫描模组包括衍射光学元件及光路改变元件。所述衍射光学元件包括基材及设置在所述基材上的多个微结构。所述光路改变元件与所述衍射光学元件同轴排布并相对转动。其 中,所述衍射光学元件用于接收光脉冲,并与所述光路改变元件配合将光脉冲相对从所述衍射光学元件入射时偏转不同方向出射。
本申请实施方式中的扫描模组、测距装置及移动平台,利用由多个微结构及基材构成的衍射光学元件代替厚重的折射棱镜来接收光脉冲,并且衍射光学元件与光路改变元件配合将光脉冲相对从衍射光学元件入射时偏转不同方向出射以形成扫描轨迹。一方面,由于多个微结构及基材构成的衍射光学元件具有体积小、重量轻的优点,从而减小了扫描模组的体积及重量;另一方面,衍射光学元件具有更强的动平衡能力,使衍射光学元件能够高速转动,从而提高了扫描装置的扫描频率。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的扫描模组的结构示意图;
图2及图3是本申请某些实施方式的扫描模组中衍射光学元件的结构示意图;
图4至图7是本申请某些实施方式的扫描模组中衍射光学元件的结构示意图及在垂直光脉冲的光轴的平面内的投影的示意图;
图8至图11是本申请某些实施方式的扫描模组中衍射光学元件的结构示意图;
图12至图15是本申请某些实施方式的扫描模组的结构示意图;
图16是本申请某些实施方式的测距装置的结构示意图;
图17是本申请某些实施方式的移动平台的结构示意图。
具体实施方式
以下结合附图对本申请的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
另外,下面结合附图描述的本申请的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面” 可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参阅图1及图2,本申请实施方式提供一种扫描模组100。扫描模组100包括衍射光学元件10及光路改变元件20。衍射光学元件10包括基材11及设置在基材11上的多个微结构12。一个示例中,该多个微结构的尺寸为微米量级。光路改变元件20与衍射光学元件10并列排布并相对转动,其中,该两个光路改变元件可以绕相同轴转动,也可以是绕不同轴转动。其中,衍射光学元件10用于接收光脉冲,并与光路改变元件20配合将光脉冲相对从衍射光学元件10入射时偏转不同方向出射。
请参阅图16,本申请实施方式还提供一种测距装置1000。测距装置1000包括扫描模组100及测距模组200。测距模组200包括光源201,光源201用于向扫描模组100发射光脉冲序列,扫描模组100用于改变光脉冲的传输方向后出射,经探测物400反射回的光脉冲经过扫描模组100后入射测距模组200,测距模组200用于根据反射回的光脉冲确定探测物400与测距装置1000之间的距离。请结合图1,扫描模组100包括衍射光学元件10及光路改变元件20。衍射光学元件10包括基材11及设置在基材11上的多个微结构12。光路改变元件20与衍射光学元件10同轴排布并相对转动。其中,衍射光学元件10用于接收光脉冲,并与光路改变元件20配合将光脉冲相对从衍射光学元件10入射时偏转不同方向出射。
请参阅图17,本申请实施方式还提供一种移动平台3000。移动平台3000包括测距装置1000及本体2000。测距装置1000安装在本体2000上。请结合图1及图16,测距装置1000包括扫描模组100及测距模组200。测距模组200包括光源201,光源201用于向扫描模组100发射光脉冲序列,扫描模组100用于改变光脉冲的传输方向后出射,经探测物400反射回的光脉冲经过扫描模组100后入射测距模组200,测距模组200用于根据反射回的光脉冲确定探测物400与测距装置1000之间的距离。扫描模组100包括衍射光学元件10及光路改变元件20。衍射光学元件10包括基材11及设置在基材11上的多个微结构12。光路改变元件20与衍射光学元件10同轴排布并相对转动。其中,衍射光学元件10用于接收光脉冲,并与光路改变元件20配合将光脉冲相对从衍射光学元件10入射时偏转不同方向出射。
本申请实施方式中的扫描模组100、测距装置1000及移动平台3000,利用由多个微结构12及基材11构成的衍射光学元件10代替厚重的折射棱镜来接收光脉冲,并且衍射光学元件10与光路改变元件20配合将光脉冲相对从衍射光学元件10入射时偏转不同方向出射以形成扫描轨迹。一方面,由于多个微结构12及基材11构成的衍射光学元件10具有体积小、重量轻的优点,从而减小了扫描模组100的体积及重量;另一方面,衍射光学元件10具有更强的动平衡能力,使衍射光学元件10能够高速转动,从而提高了扫描装置100的扫 描频率。
下面结合附图对本申请实施例作进一步说明。
请参阅图1及图2,衍射光学元件10包括基材11及多个微结构12,多个微结构12设置在基材11上,且多个微结构12使衍射光学元件10的衍射效率大于80%。
具体地,基材11为平板结构,并且基材11包括相背设置的入射面111及出射面112,来自光源201(图16所示)的光脉冲从入射面111进入并从出射面112射出,从衍射光学元件10的出射面112射出的光脉冲随后进入光路改变元件20。需要说明的是,基材11可以是由玻璃制作而成,基材11也可以是由塑料制作而成,在此不作限制。
多个微结构12设置在基材11上,并且多个微结构12在基材11上可以呈阵列排布也可以呈关于基材11的中心旋转对称分布,在此不作限制。以下以多个微结构12在基材11上呈阵列排布为例进行说明。需要说明的是,微结构12可以是由玻璃制作而成,微结构12也可以是由塑料制作而成,在此不作限制。
多个微结构12设置在基材11的入射面111和/或出射面112上,即多个微结构12设置在基材11的入射面111及出射面112中的至少一个面上。
例如,多个微结构12均设置在基材11的一个表面上。具体地,请参阅图2,多个微结构12均设置在基材11的入射面111上,基材11的出射面112上不设置微结构12。光脉冲穿过多个微结构12发生偏转后再从出射面112射出。当然,多个微结构12也可均设置在基材11的出射面112上,在此不作限制。
由于多个微结构12仅设置在基材11的一个表面上,在加工衍射光学元件10时,仅需对基材11的一个表面进行加工即可,无需对基材12的多个表面进行加工。降低了衍射光学元件10的加工难度,从而降低了扫描模组100的加工难度。
例如,多个微结构12设置在基材11的入射面111及出射面112上,即基材11的入射面111及出射面112均设置有微结构12(如图3所示)。
在一个例子中,分布在入射面111上的微结构12在垂直光脉冲的光轴的平面内的投影与分布在出射面112上的微结构12在平面内的投影的完全重合。具体地,请参阅图4,基材11的入射面111及出射面112上均设置有多个微结构12,分布在入射面111上的微结构12在垂直光脉冲的光轴的平面内的投影为区域1,分布在出射面112的微结构12在垂直光脉冲的光轴的平面内的投影为区域2。区域1与区域2完全重合。光脉冲穿过设置在入射面111上的多个微结构12发生偏转,之后再射入基材11内,接着从基材11的出射面112射出后穿过设置在出射面112上的多个微结构12再次发生偏转,使得扫描模组100能够扫描的角度更多样化。
由于分布在入射面111上的微结构12在垂直光脉冲的光轴的平面内的投影与分布在 出射面112上的微结构12在平面内的投影的完全重合,射入衍射光学元件10的光脉冲会两次穿过微结构12,即,射入衍射光学元件10的光脉冲会发生两次偏转后射出衍射光学元件10。
在又一个例子中,分布在入射面111上的微结构12在垂直光脉冲的光轴的平面内的投影与分布在出射面112上的微结构12在平面内的投影的边界相接。具体地,请参阅图5,基材11的入射面111及出射面112上均设置有多个微结构12,设置在基材11的入射面111上的多个微结构12均分布在衍射光学元件10的A区域,设置在基材12的出射面112的多个出射面112上多个微结构12均分布在衍射光学元件10的B区域。分布在入射面111上的微结构12在垂直光脉冲的光轴的平面内的投影为区域1,分布在出射面112的微结构12在垂直光脉冲的光轴的平面内的投影为区域2。区域1与区域2的边界相接。射入衍射光学元件10的A区域的光脉冲穿过多个微结构12发生偏转后再由出射面112射出;射入衍射光学元件10的B区域的光脉冲从基材11的入射面111进入,并从出射面112射出后穿过多个微结构12发生偏转。
由于分布在入射面111上的微结构12在垂直光脉冲的光轴的平面内的投影与分布在出射面112上的微结构12在平面内的投影的边界相接,不管光脉冲从衍射光学元件10的哪个区域射入,均能发生一次偏转后从衍射光学元件10内射出,使得扫描模组100能够扫描的角度更多样化。而且,A区域与B区域的微结构12的配合能够对特定区域具有较高的扫描力度。
在又一个例子中,分布在入射面111上的微结构12在垂直光脉冲的光轴的平面内的投影与分布在出射面112上的微结构12在平面内的投影部分重叠。具体地,请参阅图6,基材11的入射面111及出射面112上均设置有多个微结构12,设置在基材11的入射面111上的多个微结构12均分布在衍射光学元件10的A区域及C区域,设置在基材12的出射面112上的多个微结构12均分布在衍射光学元件10的B区域及C区域。分布在入射面111上的微结构12在垂直光脉冲的光轴的平面内的投影为区域1及区域3,分布在出射面112上的微结构12在垂直光脉冲的光轴的平面内的投影为区域2及区域3,分布在入射面111上的微结构12在垂直光脉冲的光轴的平面内的投影与分布在出射面112的微结构12在垂直光脉冲的光轴的平面内的投影的重叠部分为区域3。射入衍射光学元件10的A区域的光脉冲穿过多个微结构12发生偏转后再由出射面112射出。射入衍射光学元件10的B区域的光脉冲从基材11的入射面111进入,并从出射面112射出后穿过多个微结构12发生偏转。射入衍射光学元件10的C区域的光脉冲穿过设置在入射面111上的多个微结构12发生偏转,之后进入基材11的内部,接着从基材11的出射面112射出后,穿过设置在出射面112上的多个微结构12再次发生偏转。
由于分布在入射面111上的微结构12在垂直光脉冲的光轴的平面内的投影与分布在出射面112上的微结构12在平面内的投影的部分重叠,射入衍射光学元件10不同区域的光脉冲发生偏转的次数不同,使得扫描模组100能够扫描的角度更多样化。另外,A区域、B区域及C区域的微结构12的配合能够对特定区域具有较高的扫描力度。
在又一个例子中,分布在入射面111上的微结构12在垂直光脉冲的光轴的平面内的投影与分布在出射面112上的微结构12在平面内的投影完全错开。具体地,请参阅图7,基材11的入射面111及出射面112上均设置有多个微结构12,设置在基材11的入射面111上的多个微结构12均分布在衍射光学元件10的A区域,设置在基材12的出射面112的多个出射面112上多个微结构12均分布在衍射光学元件10的B区域,并且衍射光学元件10的C区域没有设置微结构12。分布在入射面111上的微结构12在垂直光脉冲的光轴的平面内的投影为区域1;分布在出射面112的微结构12在垂直光脉冲的光轴的平面内的投影为区域2。区域1与区域2完全错开,即区域1与区域2既没有重叠部分,也不相接。射入衍射光学元件10的A区域的光脉冲穿过多个微结构12发生偏转后再由出射面112射出。射入衍射光学元件10的B区域的光脉冲从基材11的入射面111进入基材11内部,并自出射面112穿过多个微结构12发生偏转。射入衍射光学元件10的C区域的光脉冲从基材11的入射面111进入基材11内部并从出射面112射出,不发生偏转。
由于分布在入射面111上的微结构12在垂直光脉冲的光轴的平面内的投影与分布在出射面112上的微结构12在平面内的投影完全错开,射入衍射光学元件10不同区域的光脉冲可能不发生偏转,使得扫描模组100能够扫描的角度更多样化。另外,A区域、B区域及C区域的微结构12的配合能够对特定区域具有较高的扫描力度。
需要说明的是,多个微结构12在入射面111及出射面112上的不同的分布排列形式,可使扫描模组100拥有特定的扫描轨迹。例如,需要关注的区域扫描密度高,不需要关注的区域扫描密度低或不扫描。
请再参阅图2,在一些实施例中,多个微结构12均呈三角形结构,并且呈三角形的微结构12具有矢高d,多个微结构12的矢高d可以相同也可以不同,但每个微结构12的最大矢高d(矢高d的最大值)均为光波长量级。由于每个微结构12的最大矢高d均为光波长量级,避免了采用厚重的折射棱镜,避免了大口径和大楔角折射棱镜引入的较大的矢高,从而实现了扫描模组100的轻量化。再加上基材11呈平板结构,避免了采用两端厚薄差异较大的楔形折射棱镜,一方面能够避免热形变或外界应力作用下产生非均匀的形变,保证最终的扫描效果,另一方面能够避免两端厚薄差异导致的动平衡失衡,即保证了扫描模组100在扫描过程中具有出色的动平衡能力,进而有利于提升扫描模组100的极限扫描频率。
在某些实施方式中,设置在衍射光学元件10同一表面上的多个微结构12的形状特征完全相同,并且多个微结构12的尺寸特征也完全相同。例如,设置在衍射光学元件10的同一表面上的多个微结构12呈三角形,并且多个微结构12的矢高d相同。
需要说明的是,设置在衍射光学元件10的同一表面上的多个微结构12,是指设置在基材11的入射面111上的所有微结构12;或者,是设置在基材11的出射面112上的所有的微结构12。下面对同一表面上的多个微结构12的解释与此处相同,不再赘述。
示例地,请参阅图3,设置在基材11的入射面111上的多个微结构12均呈三角形,并且多个微结构12的矢高d均为d1,设置在基材11的出射面112上的多个微结构12均呈三角形,并且多个微结构12的矢高d均为d2,设置在入射面111上的微结构12的矢高d1与设置在出射面112上的微结构12的矢高d2不相同。当然,设置在入射面111上的微结构12的矢高d1也可以等于与设置在出射面112上的微结构12的矢高d2,在此不作限制。
由于设置在衍射光学元件10的同一表面上的多个微结构12的形状特征及尺寸特征完全相同,降低了扫描模组100的制作成本及加工难度。
当然,在某些实施方式中,设置在衍射光学元件10同一表面上的多个微结构12也可以是形状特征完全相同,但尺寸特征不完全相同。例如,设置在衍射光学元件10的同一表面上的多个微结构12呈三角形,并且多个微结构12的矢高d不完全相同。
具体地,请参阅图8,设置在基材11的入射面111上的多个微结构12包括第一微结构121、第二微结构122及第三微结构123。第一微结构121、第二微结构122及第三微结构123均呈三角形结构,并且第一微结构121具有矢高d1、第二微结构122具有矢高d2、第三微结构123具有矢高d3。第一微结构121的矢高d1等于第二微结构122的矢高d2而小于第三微结构123的矢高d3,即d1=d2<d3,可使得光脉冲穿过第一微结构121发生的偏转角度与穿过第二微结构122发生地偏转角度相同,而光脉冲穿过第一微结构121发生的偏转角度与穿过第三微结构123发生地偏转角度不同。
由于设置在衍射光学元件10的同一表面上的多个微结构12的尺寸特征不完全相同,使光脉冲射入衍射光学元件10的不同区域发生的偏转不完全相同,可根据衍射光学元件10的同一表面不同区域上的微结构12设计不同的微结构12的尺寸特征,使扫描模组100实现特定的扫描轨迹。
在一些实施例中,多个微结构12可均呈阶梯形结构,并且多个微结构12具有矢高d,每个微结构12的最大矢高d(矢高d的最大值)为光的波长量级。具体地,请参阅图9,每个微结构12均呈阶梯形结构,且阶梯形的微结构12包括2 N个台阶126,其中N≥2。例如,N可以等于2、3、5、10、12、20、100等。同样地,由于每个微结构12的最大矢高d均为光波长量级,避免了采用厚重的折射棱镜,避免了大口径和大楔角折射棱镜引 入的较大的矢高,从而实现了扫描模组100的轻量化。再加上基材11呈平板结构,避免了采用两端厚薄差异较大的楔形折射棱镜,一方面能够避免热形变或外界应力作用下产生非均匀的形变,保证最终的扫描效果,另一方面能够避免两端厚薄差异导致的动平衡失衡,即保证了扫描模组100在扫描过程中具有出色的动平衡能力,进而有利于提升扫描模组100的极限扫描频率。更进一步地,相较于将微结构12加工成三角形,将微结构12加工成阶梯形的加工工艺比较容易实现,降低了微结构12的加工难度。而且,微结构12的台阶126的数量越多,由于存在量化近似带来的截断误差就越小,进而有利于提高衍射效率,降低出射光束的能量损失,降低杂散光成分。
在一个实施方式中,每一个微结构12中的多个台阶126的尺寸可以完全相同,例如图9中的每个微结构12均包括四个台阶126,并且四个台阶126的尺寸完全相同。在另一个实施方式中,每一个微结构12中的多个台阶126的尺寸可以完全不同,如图10所示,第二微结构122的四个台阶126的尺寸完全不同;当然,每一个微结构12中的多个台阶126可以部分相同,即同一个微结构12包括多个台阶126,部分台阶126的尺寸相同,部分台阶126的尺寸不同,在此不作限制。
需要说明的是,呈阶梯形结构的微结构12的尺寸特征包括微结构12的矢高d、微结构12的每个台阶126的宽度、每个台阶126的高度。当然,在其他实施方式中,微结构12中的台阶126的数量可以相同,也可以部分相同,例如,自基材11的中心向周边延伸的方向,微结构12的台阶126的数量是逐次递减的、或逐次递增的、或先递增后递减、或先递减后递增。
在某些实施方式中,设置在衍射光学元件10同一表面上的多个微结构12的形状特征完全相同,多个微结构12的尺寸特征完全相同。也即是说,设置在衍射光学元件10的同一表面上的多个微结构12呈阶梯形,并且多个微结构12的尺寸大小完全一样(如图9所示)。当然,在某些实施方式中,设置在衍射光学元件10同一表面上的多个微结构12也可以是形状特征完全相同,但尺寸特征不完全相同。也即是说,设置在衍射光学元件10的同一表面上的多个微结构12呈阶梯形,并且多个微结构12的矢高d及微结构12的台阶126的尺寸至少有一项不完全相同。
示例地,请参阅图10,基材11的出射面112包括第一微结构121、第二微结构122、第三微结构123、第四微结构124及第五微结构125。第一微结构121、第二微结构122、第三微结构123、第四微结构124及第五微结构125均呈阶梯型,其中第一微结构121的台阶126数量与第五微结构125的台阶126数量相同、第一微结构121的矢高d与第五微结构125的矢高d相同。第一微结构121与第二微结构122均包括4个台阶126,并且第一微结构121的矢高d1等于第二微结构122的矢高d2,但第一微结构121的台 阶126的尺寸与第二微结构122的台阶126的尺寸不相同。第一微结构121的矢高d1与第三微结构123的矢高d3相同,但第一微结构121包括4个台阶126,而第三微结构123包括8个台阶126,并且第一微结构121的台阶126的尺寸与第三微结构123的台阶126的尺寸不相同。第一微结构121与第四微结构124均包括4个台阶126,但第一微结构121的矢高d1与第四微结构124的矢高d4不相同,并且第一微结构121的台阶126的尺寸与第四微结构124的台阶126的尺寸不相同。
在一些实施例中,设置在衍射光学元件10同一表面上的多个微结构12的形状特征至少部分不同,例如,设置在基材11上的多个微结构12可以是部分为三角形结构,部分为阶梯型结构。具体地,请参阅图11,设置在基材11的入射面111上的微结构12包括第一微结构121、第二微结构122、第三微结构123及第四微结构124,其中,第一微结构121及第三微结构123均呈三角形,第二微结构122及第四微结构124均呈阶梯型,并且第一微结构121与第三微结构123的尺寸特征完全相同,第二微结构122及第四微结构124的尺寸特征完全相同。在另一些实施例中,设置在同一表面的多个微结构12的形状特征至少部分不同且多个微结构12的尺寸特征至少部分不同,在此不作限制。
由于微结构12有多种形状特征及多种尺寸特征,并且多个微结构12在基材11上也有多种排布方法,可选择多个微结构12的多种形状特征、尺寸特征及排布方法进行排列组合,以满足扫描模组100不同的扫描需求,增加衍射光学元件10灵活性的同时提高扫描模组100的光束扫描能力。
需要说明的是,设置在基材11上的多个微结构12的最大矢高d仅为光的波长量级,即多个微结构12的最大矢高d仅有几百纳米,微结构12的体积相对于基材11的体积可忽略不计。一方面,这种在基材11上设置多个微结构12的衍射光学元件10体积小、重量轻,从而使扫描模组100具有较小的体积及较轻的重量;另一方面,由于多个微结构12的最大矢高d仅为光的波长量级,避免了采用厚重的折射棱镜,从而实现了扫描模组100的轻量化;再一方面,由于微结构12的体积相对于基材11的体积可忽略不计并且基材11为平板结构,使得衍射光学元件10在应力作用下形变较为均匀,同时,在驱动器30(图1所示)驱动衍射光学元件10驱动其旋转时也具有较好的动平衡能力,即使驱动器30可以驱动衍射光学元件10高速转动,衍射光学元件10可不会发生不平衡现象,从而扫描模组100可进行高速扫描,即提高了扫描模组100的扫描频率。
当微结构12同时分布在入射面111及出射面112上时,如图3至图8所示,分布在入射面111上的微结构12与分布在出射面112上的微结构12的形状特征、尺寸特 征、或排布特征中的至少一种不同,或分布在入射面111上的微结构12与分布在出射面112上的微结构12的形状特征、尺寸特征、或排布特征完全相同,在此不作限制。
从衍射光学元件10射出的光脉冲射入光路改变元件20,光路改变元件20与衍射光学元件10同轴排布。光路改变元件20包括衍射光学单元21、折射元件22、反射元件23、及振镜中的任意一种。进一步地,扫描模组100还可包括多个驱动器30及与多个驱动器30均连接的控制器40。衍射光学元件10与光路改变元件20分别对应连接一个驱动器30,在控制器40的控制下,驱动器30用于驱动对应的衍射光学元件10或对应的光路改变元件20转动。更进一步地,控制器40可以控制驱动器30驱动衍射光学元件10与光路改变元件20等速反向转动;或者,控制器40可以控制驱动器30驱动衍射光学元件10与光路改变元件20不等速反向转动;或者,控制器40还可以控制驱动器30驱动衍射光学元件10与光路改变元件20不等速同向转动。
请参阅图12,在某些实施方式中,光路改变元件20可包括至少一个衍射光学单元21,并且衍射光学元件10与至少一个衍射光学单元21相配合,使得扫描装置100的总衍射效率大于80%。
在某些实施方式中,衍射光学单元21的具体结构可以与图2至图11所示的任意一个实施例中的衍射光学元件10的具体结构完全相同,例如,衍射光学单元21也包括基材211及设置在基材211上的多个微结构212,衍射光学单元21的基材211与衍射光学元件10的基材11完全相同,衍射光学单元21的多个微结构212与衍射光学元件10的多个微结构12也完全相同,在此不再赘述。需要说明的是,衍射光学元件10的多个微结构12与至少一个衍射光学单元21的多个微结构212配合,使得扫描装置100的总衍射效率大于80%的同时,衍射光学单元21的多个微结构212使得衍射光学单元21的衍射效率也要大于80%。
例如,更具体地,光路改变元件20仅包括一个衍射光学单元21,请参阅图12,扫描模组100包括衍射光学元件10及衍射光学单元21,衍射光学单元21与衍射光学元件10完全相同。此时,驱动器30包括第一驱动器31及第二驱动器32,第一驱动器31驱动衍射光学元件10转动,第二驱动器32驱动衍射光学单元21转动,并且衍射光学元件10与衍射光学单元21等速反向转动。
在某些实施方式中,部分衍射光学单元21可与衍射光学元件10不相同。请参阅图13,在一个例子中,衍射光学元件10的多个微结构12设置在基材11的入射面111,至少一个衍射光学单元21的多个微结构212设置在基材211的出射面2111。在另一个例子中,衍射光学元件10的多个微结构12设置在基材11的入射面111,至少一个衍射光学单元21的多个微结构212设置在基材211的出射面2112及入射面2111。在再 一个例子中,衍射光学元件10的多个微结构12设置在基材11的出射面112,至少一个衍射光学单元21的多个微结构212设置在基材211的入射面2111。在又一个例子中,衍射光学元件10的多个微结构12设置在基材11的出射面112,至少一个衍射光学单元21的多个微结构212设置在基材211的出射面2112及入射面2111。在还一个例子中,衍射光学元件10的多个微结构12设置在基材11的入射面111及出射面112,至少一个衍射光学单元21的多个微结构212设置在基材211的出射面2112或入射面2111。
另外,衍射光学单元21中的微结构212与衍射光学元件10中的微结构12的形状特征、尺寸特征、或排布特征中的至少一种不同,并且衍射光学元件10与衍射光学单元21也可以不等速反向转动,或衍射光学元件10与衍射光学单元21也可以不等速同向转动,在此不作限制。
例如,光路改变元件20还可包括多个衍射光学单元21,请参阅14,扫描模组100包括衍射光学元件10及光路改变元件20。光路改变元件20包括第一衍射光学单元213及第二衍射光学单元214,其中,第一衍射光学单元213可与衍射光学元件10相同,第二衍射光学单元214可与衍射光学元件10不相同。此时,驱动器30可包括第一驱动器31、第二驱动器32及第三驱动器33,第一驱动器31驱动衍射光学元件10转动,第二驱动器32驱动第一衍射光学单元213转动,第三驱动器33驱动第二衍射光学单元214转动。其中,第一衍射光学单元213与第二衍射光学单元214可同向等速转动,衍射光学元件10与第一衍射光学单元213及第二衍射光学单元214等速反向转动。
需要说明的是,第一衍射光学单元213也可以与衍射光学元件10不相同,但第一衍射光学单元213与第二衍射光学单元214可相同;或者,第一衍射光学单元213、第二衍射光学单元214及衍射光学元件10均不相同。而且,第一衍射光学单元213与第二衍射光学单元214也可以不等速同向转动、等速反向转动或不等速反向转动,在此不作限制。
由于衍射光学单元21及衍射光学元件10分别可选择图2至图11所示实施例的任意一种衍射光学元件10的结构进行任意组合,以及衍射光学单元21及衍射光学元件10可选择等速反向转动、不等速反向转动及不等速同向转动任意一种转动方式,使得衍射光学元件10与衍射光学单元21配合扫描出特定区域具有特定密度的扫描图。
请再参阅图1,在某些实施例中,光路改变元件20可包括折射元件22,控制器40控制驱动器30驱动折射元件22与衍射光学元件10相对转动。折射元件22的折射率与衍射光学元件10的折射率不同;和/或衍射光学元件10的色散系数与折射元件22的色散系数不同。也即是说,衍射光学元件10与折射光学元件22的折射率及色散系数二者中至少有一项不同。例如,在一个例子中,衍射光学元件10与折射光学元件22具有不 同的折射率,经过设计将不同折射率的衍射光学元件10与折射光学元件22相配合,可以消除色差提高扫描模组100的扫描能力。在另一个例子中,衍射光学元件10与折射光学元件22具有不同的色散系数,经过设计将不同色散系数的衍射光学元件10与折射光学元件22相配合,可以消除热差使扫描模组100在不同温度下均不会发生色散反应。在又一个例子中,衍射光学元件10与折射光学元件22的折射率及色散系数均不相同,经过设计将不同折射率及不同色散系数的衍射光学元件10与折射光学元件22相配合,实现既消除色差又消除热差,从而较大提高扫描模组100的扫描能力。
请参阅图15,在某些实施例中,光路改变元件20还可以包括反射元件23,驱动器30驱动反射元件23及衍射光学元件10相对转动。衍射光学元件10与反射元件23分别对应连接一个驱动器30,在控制器40的控制下,驱动器30用于驱动对应的衍射光学元件10或对应的反射元件23转动。其中,控制器40可以控制驱动器30驱动衍射光学元件10与反射元件23等速反向转动;或者,控制器40可以控制驱动器30驱动衍射光学元件10与反射元件23不等速反向转动;或者,控制器40还可以控制驱动器30驱动衍射光学元件10与反射元件23不等速同向转动。
请参阅图16,本申请实施方式还提供一种测距装置1000。测距装置1000包括上述任意一实施例所述的扫描模组100及测距模组200。
测距模组200包括光源201、光路改变单元202、准直元件203及探测器204。其中,光源201可以是一个或多个激光二极管,光源201发射出的光脉冲为波长在可见光范围之外的窄带宽光脉冲。在本申请实施例中,光源201的数量为多个,多个光源201可以交替发射光脉冲,即,一个光源201正在发出光脉冲时,其余光源201可以不工作。多个光源201的发光芯片可以封装在同一个封装模块中,以使得光源201的整体尺寸较小,利于实现测距模组200的小型化。
光路改变单元202设置在光源201的出光光路上,光源201发射的光脉冲经光路改变单元202反射后进入准直元件203。
准直元件203设置在光源201的出光光路上,经光路改变单元202反射后的光脉冲到达准直元件203,准直元件203将光脉冲准直后投射至扫描模组100。另外,准直元件203还用于会聚经探测物400反射、并经过扫描模组100的回光。在一个例子中,准直元件203可以是准直透镜或者是其他能够准直光线的元件。
探测器204可用于将穿过准直元件203后的回光转换为电信号,电信号具体可以为电脉冲,探测器204还可基于电脉冲确定探测物400与测距装置1000之间的距离。具体可以是依据光脉冲被发射出去的时刻、及光脉冲被反射并接收到的时刻的时间差来进一步计算测距装置1000与探测物400之间的距离,即,利用飞行时间(Time of Flight,TOF)测距的 原理计算测距装置1000与探测物400之间的距离。
测距装置1000可以用来测量探测物400到测距装置1000之间的距离以及探测物400相对测距装置1000的方位。在一个实施例中,测距装置1000可以包括雷达,例如激光雷达。在一种实施方式中,测距装置1000可用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。一种实现方式中,测距装置1000可以通过测量测距装置1000和探测物400之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物400到测距装置1000的距离。或者,测距装置1000也可以通过其他技术来探测探测物400到距离测距装置1000的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。测距装置1000探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。
请参阅图17,本申请实施方式还提供一种移动平台3000。移动平台3000包括本体2000及上述任意一个实施例所述的测距装置1000。移动平台3000可以是无人飞行器、无人车、无人船等移动平台3000。一个移动平台3000可以配置有一个或多个测距装置1000。测距装置1000以用于探测移动平台3000周围的环境,以便于移动平台3000进一步依据周围的环境进行避障、轨迹选择等操作。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (29)

  1. 一种扫描模组,其特征在于,包括:
    衍射光学元件,所述衍射光学元件包括基材及设置在所述基材上的多个微结构;及
    光路改变元件,所述光路改变元件与所述衍射光学元件并列排布并相对转动;
    其中,所述衍射光学元件用于接收光脉冲,并与所述光路改变元件配合将光脉冲相对从所述衍射光学元件入射时偏转不同方向出射。
  2. 根据权利要求1所述的扫描模组,其特征在于,多个所述微结构使得所述衍射光学元件的衍射效率大于80%。
  3. 根据权利要求1所述的扫描模组,其特征在于,所述基材包括入射面及出射面,来自光源的光脉冲从所述入射面进入并从所述出射面射出后进入所述光路改变元件,多个所述微结构形成在所述入射面和/或所述出射面上。
  4. 根据权利要求3所述的扫描模组,其特征在于,位于所述衍射光学元件同一表面上的多个所述微结构的形状特征至少部分不同或完全相同;和/或。
    位于所述衍射光学元件同一表面上的多个所述微结构的尺寸特征至少部分不同或完全相同。
  5. 根据权利要求1所述的扫描模组,其特征在于,所述衍射光学元件包括入射面及出射面,来自光源的光脉冲从所述入射面进入并从所述出射面射出后进入所述光路改变元件,所述衍射光学元件的多个不同区域上的所述微结构分布在所述入射面和所述出射面上。
  6. 根据权利要求5所述的扫描模组,其特征在于,分布在所述入射面上的所述微结构在垂直光脉冲的光轴的平面内的投影与分布在所述出射面上的所述微结构在所述平面内的投影的边界相接;或
    分布在所述入射面上的所述微结构在垂直光脉冲的光轴的平面内的投影与分布在所述出射面上的所述微结构在所述平面内的投影部分重叠;或
    分布在所述入射面上的所述微结构在垂直光脉冲的光轴的平面内的投影与分布在所述出射面上的所述微结构在所述平面内的投影完全错开。
  7. 根据权利要求5所述的扫描模组,其特征在于,分布在所述入射面上的所述微结构与分布在所述出射面上的所述微结构的形状特征、尺寸特征、或排布特征中的至少一种不同或完全相同。
  8. 根据权利要求1所述的扫描模组,其特征在于,所述光路改变元件包括折射元件,所述衍射光学元件的折射率与所述折射元件的折射率不同;和/或
    所述衍射光学元件的色散系数与所述折射元件的色散系数不同。
  9. 根据权利要求1所述的扫描模组,其特征在于,所述光路改变元件包括至少一个衍射光学单元,每个所述衍射光学单元包括基材及设置在所述基材上的多个微结构。
  10. 根据权利要求9所述的扫描模组,其特征在于,每个所述衍射光学单元的多个所述微结构使得所述衍射光学单元的衍射效率大于80%。
  11. 根据权利要求9所述的扫描模组,其特征在于,所述衍射光学元件的多个所述微结构与至少一个所述衍射光学单元的多个所述微结构配合,使得所述扫描装置的总衍射效率大于80%。
  12. 根据权利要求9所述的扫描模组,其特征在于,每个所述衍射光学单元与所述衍射光学元件完全相同。
  13. 根据权利要求9所述的扫描模组,其特征在于,部分所述衍射光学单元与所述衍射光学元件不同。
  14. 根据权利要求13所述的扫描模组,其特征在于,所述衍射光学元件的多个微结构设置在所述基材的入射面,至少一个所述衍射光学单元的多个微结构设置在所述基材的出射面;或
    所述衍射光学元件的多个微结构设置在所述基材的入射面,至少一个所述衍射光学单元的多个微结构设置在所述基材的出射面及入射面;或
    所述衍射光学元件的多个微结构设置在所述基材的出射面,至少一个所述衍射光学单元的多个微结构设置在所述基材的入射面;或
    所述衍射光学元件的多个微结构设置在所述基材的出射面,至少一个所述衍射光学单元的多个微结构设置在所述基材的出射面及入射面;或
    所述衍射光学元件的多个微结构设置在所述基材的入射面及出射面,至少一个所述衍射光学单元的多个微结构设置在所述基材的出射面或入射面。
  15. 根据权利要求13所述的扫描模组,其特征在于,所述衍射光学元件的部分区域设置有微结构,至少一个所述衍射光学单元的部分区域设置有微结构,以使得所述衍射光学元件与所述衍射光学单元配合扫描出特定区域具有特定密度的扫描图。
  16. 根据权利要求13所述的扫描模组,其特征在于,所述衍射光学元件的多个所述微结构与至少一个所述衍射光学单元的多个所述微结构的形状特征、尺寸特征、或排布特征中的至少一种不同。
  17. 根据权利要求1所述的扫描模组,其特征在于,所述光路改变元件包括反射元件、折射元件、衍射光学单元、及振镜中的任意一种。
  18. 根据权利要求1-17任意一项所述的扫描模组,其特征在于,多个所述微结构 呈阵列排布或关于所述基材的中心旋转对称分布。
  19. 根据权利要求1-17任意一项所述的扫描模组,其特征在于,每个所述微结构呈三角形或阶梯形。
  20. 根据权利要求1-17任意一项所述的扫描模组,其特征在于,每个所述微结构呈三角形,所述三角形的最大矢高为光波长量级。
  21. 根据权利要求1-17任意一项所述的扫描模组,其特征在于,每个所述微结构呈阶梯形,每个阶梯形的所述微结构包括2 N个台阶,其中N≥2。
  22. 根据权利要求21所述的扫描模组,其特征在于,每个所述微结构中多个所述台阶的尺寸完全相同或至少部分不同。
  23. 根据权利要求1-17任意一项所述的扫描模组,其特征在于,所述基材由玻璃或塑料制成;和/或
    所述微结构由玻璃或塑料制成。
  24. 根据权利要求1-17任意一项所述的扫描模组,其特征在于,所述基材为平板结构。
  25. 根据权利要求1-17任意一项所述的扫描模组,其特征在于,所述衍射光学元件与所述光路改变元件等速反向转动、不等速反向转动、或不等速同向转动。
  26. 根据权利要求1-17任意一项所述的扫描模组,其特征在于,所述扫描模组还包括:
    多个驱动器,所述衍射光学元件与所述光路改变元件分别对应一个所述驱动器,所述驱动器用于驱动对应的所述衍射光学元件或对应的所述光路改变元件转动。
  27. 根据权利要求1-17任意一项所述的扫描模组,其特征在于,所述衍射光学元件和所述光路改变元件同轴转动或异轴转动。
  28. 一种测距装置,其特征在于,包括测距模组及权利要求1至27任意一项所述的扫描模组,所述测距模组包括光源,所述光源用于向所述扫描模组发射光脉冲序列,所述扫描模组用于改变光脉冲的传输方向后出射,经探测物反射回的光脉冲经过所述扫描模组后入射至所述测距模组,所述测距模组用于根据反射回的光脉冲确定所述探测物与所述测距装置之间的距离。
  29. 一种移动平台,其特征在于,包括:
    本体;及
    权利要求28所述的测距装置,所述测距装置安装在所述本体上。
PCT/CN2020/088386 2020-04-30 2020-04-30 扫描模组、测距装置及移动平台 WO2021217609A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/088386 WO2021217609A1 (zh) 2020-04-30 2020-04-30 扫描模组、测距装置及移动平台
CN202080005439.7A CN113874747A (zh) 2020-04-30 2020-04-30 扫描模组、测距装置及移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088386 WO2021217609A1 (zh) 2020-04-30 2020-04-30 扫描模组、测距装置及移动平台

Publications (1)

Publication Number Publication Date
WO2021217609A1 true WO2021217609A1 (zh) 2021-11-04

Family

ID=78373163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088386 WO2021217609A1 (zh) 2020-04-30 2020-04-30 扫描模组、测距装置及移动平台

Country Status (2)

Country Link
CN (1) CN113874747A (zh)
WO (1) WO2021217609A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353766A (zh) * 2016-09-08 2017-01-25 上海理鑫光学科技有限公司 基于衍射光学元件的激光雷达多点测距系统
US20170363722A1 (en) * 2016-06-16 2017-12-21 Kabushiki Kaisha Toshiba Photo detector, photo detection device, and lidar device
CN107991681A (zh) * 2017-11-22 2018-05-04 杭州爱莱达科技有限公司 基于衍射光学的激光雷达及其扫描方法
CN109917352A (zh) * 2019-04-19 2019-06-21 上海禾赛光电科技有限公司 激光雷达及其发射系统、激光雷达的发射系统的设计方法
CN110658509A (zh) * 2018-06-28 2020-01-07 探维科技(北京)有限公司 基于一维衍射光学元件doe的激光雷达系统
CN210038146U (zh) * 2019-03-01 2020-02-07 深圳市大疆创新科技有限公司 测距模组、测距装置及可移动平台

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170363722A1 (en) * 2016-06-16 2017-12-21 Kabushiki Kaisha Toshiba Photo detector, photo detection device, and lidar device
CN106353766A (zh) * 2016-09-08 2017-01-25 上海理鑫光学科技有限公司 基于衍射光学元件的激光雷达多点测距系统
CN107991681A (zh) * 2017-11-22 2018-05-04 杭州爱莱达科技有限公司 基于衍射光学的激光雷达及其扫描方法
CN110658509A (zh) * 2018-06-28 2020-01-07 探维科技(北京)有限公司 基于一维衍射光学元件doe的激光雷达系统
CN210038146U (zh) * 2019-03-01 2020-02-07 深圳市大疆创新科技有限公司 测距模组、测距装置及可移动平台
CN109917352A (zh) * 2019-04-19 2019-06-21 上海禾赛光电科技有限公司 激光雷达及其发射系统、激光雷达的发射系统的设计方法

Also Published As

Publication number Publication date
CN113874747A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
US20210215825A1 (en) Distance detection device
CN210142187U (zh) 一种距离探测装置
CN210015229U (zh) 一种距离探测装置
CN112219130B (zh) 一种测距装置
JP2020056997A (ja) 光走査装置および、光学拡張または光学圧縮の装置
WO2022110062A1 (zh) 光学测距装置及其光学窗口、可移动设备
US20030123044A1 (en) Optical distance sensor
US20220065999A1 (en) Hybrid two-dimensional steering lidar
KR20230034273A (ko) 노이즈를 저감시키기 위한 옵틱 모듈 및 이를 이용하는 라이다 장치
US20220244360A1 (en) Hybrid two-dimensional steering lidar
US12025744B2 (en) Multilayer optical devices and systems
WO2021217609A1 (zh) 扫描模组、测距装置及移动平台
CN113050102A (zh) 一种激光雷达系统
CN111263898A (zh) 一种光束扫描系统、距离探测装置及电子设备
US20230333319A1 (en) Optical Signal Routing Devices and Systems
CN112946666A (zh) 一种激光雷达系统
WO2021035427A1 (zh) 激光雷达及自动驾驶设备
CN208588825U (zh) 激光雷达、自主移动机器人及智能车辆
EP4160260A1 (en) Radar and vehicle
CN210243829U (zh) 一种激光雷达系统及激光测距装置
WO2020237500A1 (zh) 一种测距装置及其扫描视场的控制方法
CN113391317A (zh) 一种激光雷达系统
CN112946665A (zh) 一种激光雷达系统
CN113820690A (zh) 一种激光扫描系统、激光雷达及扫描方法
WO2022021360A1 (zh) 测距装置与移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933363

Country of ref document: EP

Kind code of ref document: A1