WO2021217411A1 - 增益控制方法、装置及接收机 - Google Patents

增益控制方法、装置及接收机 Download PDF

Info

Publication number
WO2021217411A1
WO2021217411A1 PCT/CN2020/087461 CN2020087461W WO2021217411A1 WO 2021217411 A1 WO2021217411 A1 WO 2021217411A1 CN 2020087461 W CN2020087461 W CN 2020087461W WO 2021217411 A1 WO2021217411 A1 WO 2021217411A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifier
gain
power
interference signal
receiver
Prior art date
Application number
PCT/CN2020/087461
Other languages
English (en)
French (fr)
Inventor
赵丹
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/087461 priority Critical patent/WO2021217411A1/zh
Publication of WO2021217411A1 publication Critical patent/WO2021217411A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/52Automatic gain control

Definitions

  • This application relates to the field of communication technology, and in particular, to a gain control method, device, and receiver.
  • the signal received from the antenna usually contains useful signals and interference signals, so it needs a series of processing by the receiver to filter out useful signals.
  • the receiver usually includes a low-noise amplifier, a mixer, and a filter.
  • the signal received from the antenna generally needs to be amplified by a low-noise amplifier, and then transmitted to the mixer for down-conversion processing, so that the useful signal can be filtered out by the filter. Since the low-noise amplifier and mixer are both broadband characteristics, the signal passing through the low-noise amplifier and mixer contains both useful signals and interference signals.
  • the present application provides a gain control method, device and receiver.
  • a gain control method the method is used in a receiver, the received signal of the receiver passes through a first amplifier, a mixer, and a second amplifier in sequence, and the method includes:
  • the gain of the first amplifier and the gain of the second amplifier are determined according to the total power of the interference signal and the power of the useful signal received by the receiver, so as to perform the operation on the first amplifier and the second amplifier. Automatic gain control.
  • a gain control device the device is arranged in a receiver, the received signal of the receiver sequentially passes through a first amplifier, a mixer, and a second amplifier, and the device includes a processor , A memory and a computer program stored on the memory, when the processor executes the computer program, the following steps are implemented:
  • the gain of the first amplifier and the gain of the second amplifier are determined according to the total power of the interference signal and the power of the useful signal received by the receiver, so as to perform the operation on the first amplifier and the second amplifier. Automatic gain control.
  • a receiver including a first amplifier, a mixer, a second amplifier, and the gain control device according to the second aspect.
  • the total power of the interfering signals in multiple target channels in the working frequency band of the receiver can be obtained first, and then the gain and the power of the first amplifier can be determined according to the total power of the interfering signals in the target channel and the power of the useful signal.
  • the gain of the second amplifier in this way, can prevent the signal power input to the mixer from being too high, causing the mixer to have nonlinear distortion problems, improving the receiving performance in a strong interference signal environment, while maintaining the RF receiving link
  • the total gain meets the input signal power requirement of the analog-to-digital converter ADC.
  • Fig. 1 is a schematic diagram of a prior art receiver processing a received signal.
  • Fig. 2 is a schematic diagram of a signal flow of a received signal in a receiver according to an embodiment of the present application.
  • Fig. 3 is a flowchart of a gain control method according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a frequency sweep time slot according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a control time slot according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of gain adjustment of an amplifier according to an embodiment of the present application.
  • Fig. 7 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 8 is a schematic diagram of performing frequency sweep processing on a target channel according to an embodiment of the present application.
  • Fig. 9 is a block diagram of the logical structure of a gain control device according to an embodiment of the present application.
  • the signal received by the receiver from the antenna usually contains useful signals and interference signals, so it needs a series of processing by the receiver to filter out useful signals.
  • the received signal received by the receiver is usually amplified by a low-noise amplifier, and then transmitted to the mixer for down-conversion processing, so that the useful signal can be filtered out by the filter.
  • FIG. 1 it is a schematic diagram of the prior art receiver 10 processing the signal received from the antenna 11.
  • the signal received from the antenna 11 can be amplified by the low-noise amplifier 12 first, and then output to the mixer 13.
  • the mixer 13 down-converts the signal, and then outputs it to the filter 14 so that the filter 14 can filter it.
  • the analog-to-digital converter 15 converts the useful signal filtered out by the filter 14 into a digital signal, and then outputs it to the baseband chip 16 for further processing by the baseband chip 16.
  • the signal passing through the low power amplifier 12 and the mixer 13 contains both useful signals and interference signals.
  • the power of the interference signal is large, after being amplified by the low-noise amplifier 12, the power of the signal input to the mixer 13 will be too high, which will cause the mixer 13 to saturate and produce nonlinear distortion, which causes the filter 14 to be inaccurate.
  • the useful signal is filtered out, thereby affecting the quality of the useful signal. Therefore, it is necessary to provide a gain control method that can automatically control the gain of the amplifier and avoid the non-linear distortion of the mixer.
  • this application provides a gain control method, which can be used to control the gain of the amplifier in the receiver.
  • the received signal received by the receiver 20 through the antenna 21 will sequentially pass through the first amplifier 22, the mixer 23 and the second amplifier 24 of the receiver 20 to process the received signal.
  • the first amplifier 22, the mixer 23, and the second amplifier 24 can be connected directly or indirectly, between the first amplifier 22 and the mixer 23, and between the mixer 23 and the second amplifier 24.
  • Other devices can also be included. Due to the limited linear range of the amplifier, in order to amplify the power of the received signal to a specified multiple, multiple amplifiers can be cascaded. Therefore, the number of the first amplifier 22 or the second amplifier 24 can be one or more. indivual.
  • the gain control method is shown in Fig. 3 and includes the following steps:
  • S304 Determine the gain of the first amplifier and the gain of the second amplifier according to the total power of the interference signal and the power of the useful signal received by the receiver, so as to compare the gain of the first amplifier and the second amplifier.
  • the amplifier performs automatic gain control.
  • the total power of the interference signal in the target channel of the receiver can be obtained first, and then the total power of the interference signal and the useful signal received by the receiver can be obtained according to the total power of the interference signal.
  • the power determines the gains of the first amplifier and the second amplifier, and performs gain control on the first amplifier and the second amplifier according to the determined gain.
  • the target channel can be one or more channels in the communication frequency band of the receiver.
  • the receiver works in the 2.4G frequency band
  • the target channel can be part of the channel in the 2.4G frequency band.
  • the target channel can be the current useful signal.
  • the target channel can also be all channels in the frequency band, which is not limited in this application.
  • the frequency converter produces nonlinear distortion, the interference signal spreads into the channel bandwidth of the useful signal, and the filter cannot accurately filter out the useful signal. It improves the receiving performance in a strong interference signal environment while maintaining the overall RF receiving link. Gain to meet the input signal power requirements of the analog-to-digital converter ADC.
  • frequency sweep processing may be performed on the received target channel, and the total power of the interference signal in the target channel may be determined according to the result of the frequency sweep.
  • Frequency sweeping can obtain the strength of all signals in a certain frequency band within a period of time. By sweeping the frequency of the target channel, the time domain data of the interference signal in the target channel can be obtained, so that the power of the interference signal can be calculated based on the time domain data.
  • Fourier transform can be performed on the time domain data obtained by the frequency sweep to obtain the power spectral density of the interference signal, and then according to The power spectral density of the interference signal determines the total power of the interference signal in the target channel.
  • time-domain windowing can be performed on the time-domain data obtained by frequency sweeping, and then Fourier transform is performed on the time-domain data in the window to obtain the power of the interference signal in the target frequency band.
  • Spectral density where the length of the time domain data in the window can be determined according to the sweep bandwidth and resolution of each sweep.
  • the calculated power spectral density can also be smoothed based on the multiple frequency sweep results to obtain more accurate interference.
  • the power spectral density of the signal After the power spectral density of the interference signal is obtained, the power spectral density in the bandwidth can be integrated to obtain the total power of the interference signal in the frequency band.
  • the present application is not limited to the way of frequency sweeping, and any method that can determine the power of the interference signal of the target channel is applicable.
  • the transmission of useful signals can be suspended during the frequency sweeping operation to avoid scanning to The useful signal interferes with the power calculation of the interference signal. Therefore, the frequency sweep processing operation on the target channel and the useful signal transmission operation can be performed alternately, for example, the useful signal transmission operation is performed in a period of time, and the frequency sweep processing operation is performed in the next period of time, and the two are performed at intervals.
  • the target channel may be multiple channels, for example, it may be all channels in the working frequency band of the receiver, and the frequency sweep processing operation on the target channel may be performed in one or more preset frequency sweep time slots.
  • Completed within, each frequency sweep time slot is a time period, and this time period is used to perform the frequency sweep operation.
  • Each frequency sweep time slot can be used to perform frequency sweep processing on one or more target channels.
  • the frequency sweep processing of all target channels can be completed at one time, for example, the frequency sweep operation of all target channels can be completed in one frequency sweep time slot.
  • the scanning bandwidth of the frequency sweep operation is larger and it takes a long time, and it is useful when performing the frequency sweep operation.
  • the signal transmission is paused. If the sweep time is too long each time, it will cause a significant delay in the useful signal. For example, if the useful signal is a video signal, it will affect the video transmission, cause video freezes, and affect users. Experience.
  • the frequency sweeping operation for all target channels can be completed multiple times, for example, It is completed in multiple frequency sweep time slots, each frequency sweep time slot only scans one or a few target channels, and the frequency sweep operation of all target channels is completed in multiple frequency sweep time slots.
  • the number of scanned target channels in each sweep time slot that is, the sweep bandwidth can be determined according to actual application scenarios, such as the bandwidth of each target channel, the sweep duration of each target channel, and the acceptable delay of useful signals to make sure.
  • the transmission of useful signals can be completed in one or more preset communication time slots, and each communication time slot is a time period within which useful signals can be transmitted.
  • one or more communication time slots can be separated in every two frequency sweep time slots.
  • Figure 4 it is a schematic diagram of alternating communication time slots and frequency sweep time slots in an embodiment, where the period of the frequency sweep time slots can be set according to actual needs, for example, it can be fixed every 3 communications.
  • the time slot is a frequency sweep time slot.
  • the communication time slot and the frequency sweep time slot can also appear alternately at random.
  • the period of the frequency sweep slot can be generated by the pseudo-random sequence generated by the same seed value seed by the sender and the receiver of the useful signal.
  • the appearance period of the frequency sweep time slot and the length of time occupied by each frequency sweep time slot need to take into account the impact on the useful signal transmission and the characteristics of the real-time change of the interference signal, so as not to affect the useful signal transmission. It is possible to accurately obtain the information of the interference signal.
  • a control time slot can be included.
  • the control time slot is a time period, and the time period can be used according to the frequency sweeping. As a result, some preset control operations are performed.
  • the scanning frequency points corresponding to each scanning time slot are different. Therefore, the control operation may be based on the current scanning time slot. The frequency point switches the scanning frequency point to the scanning frequency point corresponding to the target channel to be scanned in the next scanning time slot.
  • some sweep time slots are the last sweep time slots in the period. After the sweep time slot ends, the sweep operations for all target channels in the period have been completed, so it can be based on The frequency sweep result calculates the total power of the interference signal in the target channel. At this time, the gain of the first amplifier and the gain of the second amplifier can be calculated based on the total power of the interference signal and the power of the useful signal. Therefore, the sweep The control time slot after the frequency time slot can also be used to adjust the gain of the first amplifier and the second amplifier according to the frequency sweep result.
  • the total gain can be determined first according to the power of the useful signal.
  • the power of the useful signal amplified by the machine must meet certain requirements for subsequent processing. Therefore, the total gain of the useful signal can be determined according to the power of the received useful signal and the requirements that the useful signal must meet, and then based on the interference The total power of the signal and the power of the useful signal determine the gain of the first amplifier.
  • the total gain can be The gain of the first amplifier determines the gain of the second amplifier, so that the first amplifier and the second amplifier are controlled according to the determined gain.
  • the target power when determining the gain of the first amplifier according to the total power of the interference signal and the power of the useful signal, the target power may be determined first, where the target power is the sum of the total power of the interference signal and the power of the useful signal, Then the gain of the first amplifier is determined according to the target power and the performance index of the mixer. Since the mixer will have nonlinear distortion after the input signal power is greater than a certain value, the threshold value of the signal power that causes the nonlinear distortion of the mixer can be determined according to the performance index of the mixer. For example, the threshold can be determined through certain experiments in advance.
  • the mixer does not suffer from nonlinear distortion, as long as the signal power input to the mixer (that is, the total power of the interference signal and the useful signal It is sufficient if the sum of power is not greater than the threshold value, so that the gain of the first amplifier can be determined.
  • the corresponding relationship between the gain of the first amplifier and the power interval may be determined according to the performance index of the mixer. And the corresponding relationship determines the gain of the first amplifier. For example, according to the performance index of the mixer, it can be determined that when the signal power input to the mixer is 100-200w, in order to prevent the mixer from non-linear distortion, the gain of the first amplifier is 12dB. When it is 200-300w, in order to prevent the mixer from non-linear distortion, the gain of the first amplifier is 8dB. After the target power is calculated, the first amplifier can be determined according to the corresponding relationship between the power interval and the gain of the first amplifier The gain.
  • the performance index of the mixer includes one or more of the linear interval of the mixer and the third-order intermodulation curve of the mixer.
  • amplifiers include multiple gain gears, and the amplifier can be controlled to switch between the multiple gain gears to control the power or voltage amplification of the signal. Since the power of the interference signal will change in real time, the gain of the first amplifier will also change in real time. To a certain extent, the gain of the first amplifier will fluctuate on the boundary value of the two gain gears, resulting in the amplifier. The gain gear is switched back and forth.
  • a hysteresis comparison method can be used, as shown in Figure 6, that is, two thresholds can be set between the two gain levels of the amplifier, the first threshold P1 and the second threshold P2, When the sum of the total power of the interference signal and the power of the useful signal received by the receiver is less than the first threshold value P1, the first amplifier is adjusted to the second gain position. When the total power of the interference signal and the power of the receiver receive If the sum of the power of the useful signal is greater than the second threshold value P2, the first amplifier is adjusted to the first gain position, where the second threshold value P2 is greater than the first threshold value P1, and the second gain position is higher than The first gain gear.
  • the first amplifier may be a low-noise amplifier
  • the second amplifier may be a variable gain amplifier. After the gain of the first amplifier is determined according to the total power of the interference signal and the useful signal power, the variable gain amplifier may be used To further adjust the gain of the received signal to maintain the total gain of the RF receiving link.
  • the gain control method of the present application may be executed by a baseband chip, and the baseband chip is used to receive the filtered useful signal and perform the next processing.
  • the baseband chip detects the total power of the interference signal in the target channel, and allocates the optimal gain to the amplifier according to the total power of the interference signal, which can significantly improve the quality of the received signal.
  • the received signal received by the receiver 70 through the antenna 71 can be input to the RF front end 73, and then pass through the low noise amplifier 731, mixer 732, filter 733, and variable gain amplifier 734 of the RF front end 73 in turn, and then output to the baseband chip 74.
  • the analog-to-digital converter 742 of the baseband chip 74 converts the analog signal into a digital signal, and then transmits it to the baseband chip processor module 742 for subsequent processing.
  • the received signal received by the radio frequency front end 73 from the antenna contains both useful signals and interference signals.
  • the useful signal is filtered out and transmitted to the baseband chip 74 for further processing.
  • the signal received by the antenna may be amplified by the low-noise amplifier 72 of the receiving channel first, and then input to the RF front-end 73.
  • the total gain of the low noise amplifier 72 of the receiving channel, the low noise amplifier 731 in the radio frequency front end 73 and the variable gain amplifier 734 to amplify the received signal can be determined based on the requirement of the baseband chip 74 for useful signal power. Therefore, the gain of the three amplifiers can be adjusted according to the strength of the useful signal received by the baseband chip 74.
  • the gain of the low noise amplifier is adjusted as large as possible.
  • the signal power input to the mixer 732 will be relatively high after being amplified by the low noise amplifier. If it is too large, the mixer 732 may produce nonlinear distortion, causing the interference signal processed by the mixer 732 to produce harmonics, which will spread into the working channel, causing the filter 733 to fail to filter it out, thereby affecting the quality of the useful signal.
  • this embodiment provides a gain control method. It is implemented by the baseband chip 74 after the radio frequency front end 73 in the receiver 70, which can reduce the performance requirements of the radio frequency front end.
  • the gain control method of this embodiment uses the baseband chip 74 to scan multiple target channels in the working frequency band of the receiver to determine the total power of the interference signal in the target channel, and then according to the total power of the interference signal and the received signal
  • the total power of the useful signal determines the gains of the above three amplifiers, and the gain control module 75 adjusts the gains of the three amplifiers according to the determined gains, so as to realize the gain control of the amplifiers of the receiver.
  • the transmission of the useful signal can be suspended during the frequency sweep, that is, the useful signal transmission and the frequency sweep operation can be performed alternately.
  • the second frequency sweep operation can be completed in the preset frequency sweep time slot, and the transmission of useful signals can be completed in the preset communication time slot, and the frequency sweep time slot and the communication time slot appear alternately.
  • One or more communication time slots can be randomly spaced between two frequency sweeping time slots.
  • the baseband chip 74 and the signal transmitting end can be determined according to the pseudo-random sequence generated by the same seed value seed. The period in which the sweep time slot occurs.
  • the frequency sweeping operation on all channels in the working frequency band can be divided into multiple times, scanning a part of the target channel each time.
  • the frequency sweep of 6 channels in the working frequency band can be completed in 3 frequency sweep time slots, and each frequency sweep time slot scans 2 channels.
  • a control time slot can also be included to realize the switching of the frequency sweep point.
  • the third frequency sweep time slot in Figure 8 after the end of the frequency sweep time slot, the scanning of all target channels in the current cycle has been completed. At this time, you can follow the frequency sweep result The total power of the interference signal in the target channel is calculated, and the gain of each amplifier is calculated. Therefore, the control time slot after the frequency sweep time slot can also be used to adjust the gain of the amplifier.
  • the baseband chip 74 can determine the total power of the interference signal in the target channel according to the time domain data obtained by the frequency sweep. First, time-domain windowing can be performed on the time-domain data, and then Fourier transform, FFT, smoothing, etc. can be performed on the time-domain data in the window to obtain the power spectrum density of the interference signal, and then determine the target channel based on the power spectrum density The total power of the interfering signal. Among them, the data length for FFT transformation can be determined according to the requirements of sweep bandwidth and resolution.
  • the threshold value of the signal power input to the mixer 732 can be determined in advance according to performance indicators such as the linear interval and the third-order intermodulation curve of the mixer 732 to ensure that the mixer 732 does not appear nonlinear distortion.
  • the baseband chip 74 can determine the total gain of the radio frequency receiving link according to the power of the received useful signal and the power of the useful signal required in the actual application scenario. Then the sum of the gains of the low noise amplifier 72 and the low noise amplifier 731 before the mixer 732 is determined according to the sum of the total power of the interference signal and the total power of the useful signal. The gain of the gain amplifier 734 is then separately controlled according to the determined gain to control the low noise amplifier 72, the low noise amplifier 731, and the variable gain amplifier 734.
  • the gain of the low noise amplifier 731 will also change in real time. To a certain extent, the gain of the low noise amplifier 731 will fluctuate on the boundary value of the two gain gears. Causes the amplifier's gain gear to switch back and forth.
  • a hysteresis comparison method can be used, that is, two thresholds P1 and P2 can be set between the two gain levels of the low noise amplifier 731.
  • the low noise amplifier 731 When the total power of the interference signal and the useful signal received by the receiver are When the sum of power is less than P1, the low noise amplifier 731 is adjusted to the second gain position; when the sum of the total power of the interference signal and the power of the useful signal received by the receiver is greater than P2, the low noise amplifier 731 is adjusted to the second gain position. A gain gear, where the value of P2 is greater than that of P1.
  • the present application also provides a gain control device.
  • the device is set in a receiver, and the received signal of the receiver passes through the first amplifier, the mixer, and the second amplifier in sequence.
  • the device includes a processor 91, a memory 92, and a computer program stored on the memory, and the processor 91 implements the following steps when executing the computer program:
  • the gain of the first amplifier and the gain of the second amplifier are determined according to the total power of the interference signal and the power of the useful signal received by the receiver, so as to perform the operation on the first amplifier and the second amplifier. Automatic gain control.
  • the processor when the processor is used to obtain the total power of the interference signal in the target channel of the receiver, it is specifically used to:
  • the operation of performing frequency sweep processing on the target channel and the operation of transmitting the useful signal are performed alternately.
  • the operation of performing frequency sweep processing on the target channel is completed in one or more preset frequency sweep time slots, and each frequency sweep time slot is used for One or more target channels are swept.
  • the operation of transmitting the useful signal is completed in one or more preset communication time slots, and one or more communication time slots are spaced between every two frequency sweep time slots.
  • the frequency sweep time slot further includes a control time slot after the frequency sweep time slot, and the control time slot is used to perform a preset control operation based on the frequency sweep result.
  • control operation includes: switching the frequency sweep frequency point to the frequency point corresponding to the next target channel to be scanned.
  • control operation further includes: adjusting the gain of the first amplifier and the second amplifier based on the frequency sweep result.
  • the processor when the processor is configured to determine the total power of the interference signal in the target frequency band according to the frequency sweep result, it is specifically configured to:
  • Time-domain windowing is performed on the time-domain data obtained by frequency sweeping
  • Performing Fourier transform on the time domain data in the window to obtain the power spectral density of the interference signal in the target frequency band, and the length of the time domain data in the window is determined based on the sweep bandwidth and resolution of each sweep;
  • the total power of the interference signal in the target channel is determined according to the power spectral density.
  • the processor when the processor is configured to determine the gain of the first amplifier and the gain of the second amplifier according to the total power of the interference signal and the power of the useful signal received by the receiver, specifically include:
  • the gain of the second amplifier is determined according to the total gain and the gain of the first amplifier.
  • the processor when the processor is configured to determine the gain of the first amplifier according to the total power of the interference signal and the power of the useful signal, it is specifically configured to:
  • target power is the sum of the total power of the interference signal and the power of the useful signal
  • the gain of the first amplifier is determined according to the target power and the performance index of the mixer.
  • the processor configured to determine the gain of the first amplifier according to the target power and the performance index of the mixer includes:
  • the gain of the first amplifier is determined according to the target power and the corresponding relationship.
  • the performance index includes the linear interval of the mixer and/or the third-order intermodulation curve of the mixer.
  • the processor when the processor is configured to determine the gain of the first amplifier according to the total power of the interference signal and the power of the useful signal received by the receiver, it is specifically configured to:
  • the first amplifier When the sum of the total power of the interference signal and the power of the useful signal received by the receiver is greater than the second threshold, the first amplifier is adjusted to the second gain position, wherein the second threshold The limit value is greater than the first threshold value, and the first gain gear is higher than the second gain gear.
  • the first amplifier is a low noise amplifier
  • the second amplifier is a variable gain amplifier
  • the device includes a baseband chip.
  • the present application also provides a receiver, which includes a first amplifier, a mixer, a second amplifier, and the gain control device in each of the foregoing embodiments.
  • the specific details of the gain control device implementing the gain control of the first amplifier and the second amplifier can refer to the descriptions in each embodiment of the above-mentioned gain control method, which will not be repeated here.
  • an embodiment of the present specification also provides a computer storage medium in which a program is stored, and the program is executed by a processor to implement the gain control method in any of the foregoing embodiments.
  • the embodiments of this specification may adopt the form of a computer program product implemented on one or more storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing program codes.
  • Computer usable storage media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer-readable instructions, data structures, program modules, or other data.
  • Examples of computer storage media include, but are not limited to: phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage, Magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other memory technology
  • CD-ROM compact disc
  • DVD digital versatile disc
  • Magnetic cassettes magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices.
  • the relevant part can refer to the part of the description of the method embodiment.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units.
  • Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement without creative work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

一种增益控制方法、装置及系统。所述方法用于接收机,所述接收机的接收信号依次经过第一放大器、混频器和第二放大器,所述方法包括:获取所述接收机的目标信道内干扰信号的总功率;根据所述干扰信号的总功率以及所述接收机接收的有用信号的功率确定所述第一放大器的增益和所述第二放大器的增益,以对所述第一放大器和所述第二放大器进行自动增益控制。通过结合目标信道内干扰信号的功率来调整第一放大器和第二放大器的增益,可以避免输入混频器的信号功率过大,导致混频器出现非线性失真的问题,从而可以提高有用信号的传输质量。

Description

增益控制方法、装置及接收机 技术领域
本申请涉及通信技术领域,具体而言,涉及一种增益控制方法、装置及接收机。
背景技术
从天线接收到的信号,通常包含有用信号和干扰信号,因而需经过接收机进行一系列处理,过滤出有用信号。接收机中通常包括低噪声放大器、混频器以及滤波器。从天线接收到的信号一般需要先通过低噪声放大器进行放大,然后传输至混频器进行下变频处理,以便可以通过滤波器过滤出有用信号。由于低噪声放大器和混频器都是宽带特性,因而经过低噪声放大器和混频器的信号既包含有用信号,也包含干扰信号。当干扰信号的功率较大时,经过低噪声放大器放大后,会导致输入至混频器的信号功率过大,从而导致混频器饱和,产生非线性失真,致使滤波器无法准确滤出有用信号。因此,有必要提供一种增益控制方法,可以自动对放大器的增益进行控制,避免混频器产生非线性失真。
发明内容
有鉴于此,本申请提供一种增益控制方法、装置及接收机。
根据本申请的第一方面,提供一种增益控制方法,所述方法用于接收机,所述接收机的接收信号依次经过第一放大器、混频器和第二放大器,所述方法包括:
获取所述接收机的目标信道内干扰信号的总功率;
根据所述干扰信号的总功率以及所述接收机接收的有用信号的功率确定所述第一放大器的增益和所述第二放大器的增益,以对所述第一放大器和所述第二放大器进行自动增益控制。
根据本申请的第二方面,提供一种增益控制装置,所述装置设置于接收机,所述接收机的接收信号依次经过第一放大器、混频器和第二放大器,所述装置包括处理器、存储器和存储在所述存储器上的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取所述接收机的目标信道内干扰信号的总功率;
根据所述干扰信号的总功率以及所述接收机接收的有用信号的功率确定所述第一放大器的增益和所述第二放大器的增益,以对所述第一放大器和所述第二放大器进行自动增益控制。
根据本申请的第三方面,提供一种接收机,所述接收机包括第一放大器、混频器、第二放大器以及如上述第二方面所述的增益控制装置。
应用本申请提供的方案,可以先获取接收机的工作频段内的多个目标信道内干扰信号的总功率,然后根据目标信道内干扰信号的总功率以及有用信号的功率确定第一放大器的增益和第二放大器的增益,如此,可以避免输入混频器的信号功率过大,导致混频器出现非线性失真的问题,提高在较强干扰信号环境下的接收性能,同时保持射频接收链路的总增益,满足模数转换器ADC的输入信号功率要求。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术的接收机对接收信号进行处理的示意图。
图2是本申请一个实施例的接收信号在接收机的信号流向示意图。
图3是本申请一个实施例的增益控制方法流程图。
图4是本申请一个实施例的扫频时隙的示意图。
图5是本申请一个实施例的控制时隙的示意图。
图6是本申请一个实施例的对放大器进行增益调节的示意图。
图7是本申请一个实施例的应用场景示意图。
图8是本申请一个实施例的对目标信道进行扫频处理的示意图。
图9是本申请一个实施例的增益控制装置的逻辑结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
接收机从天线接收到的信号,通常包含有用信号和干扰信号,因而需经过接收机进行一系列处理,过滤出有用信号。接收机接收到的接收信号通常会经过低噪声放大器进行放大处理,然后传输至混频器进行下变频处理,以便后续可以通过滤波器过滤出有用信号。如图1所示,为现有技术的接收机10对从天线11接收到的信号进行处理的示意图。从天线11接收到的信号可以先经过低噪声放大器12进行放大处理,然后输出至混频器13,混频器13对该信号进行下变频处理,然后输出至滤波器14,以便滤波器14过滤出有用信号,模数转化器15会将滤波器14滤出的有用信号转变为数字信号,然后输出至基带芯片16,以便基带芯片16进一步处理。
由于低噪声放大器12和混频器13都是宽带特性,因而经过低功率放大器12和混频器13的信号既包含有用信号,也包含干扰信号。当干扰信号的功率较大时,经过低噪声放大器12放大后,会导致输入至混频器13的信号功率过大,从而导致混频器13饱和,产生非线性失真,导致滤波器14无法准确地将有用信号滤出,从而影响有用信号的质量。因此,有必要提供一种增益控制方法,可以自动对放大器的增益进行控制,避免混频器 产生非线性失真。
基于此,本申请提供了一种增益控制方法,该方法可以用于对接收机中的放大器进行增益控制,如图2所示,为接收机通过天线接收的接收信号在接收机中的信号流向示意图,接收机20通过天线21接收到的接收信号会依次经过接收机20的第一放大器22、混频器23和第二放大器24,以对该接收信号进行处理。其中,第一放大器22、混频器23和第二放大器24可以直接连接,也可以间接连接,在第一放大器22和混频器23之间,以及混频器23与第二放大器24之间还可以包括其他的器件。由于放大器的线性区间有限,为了将接收信号的功率放大到指定的倍数,可以采用多个放大器级联的方式,因而,第一放大器22或第二放大器24的数量可以是一个,也可以是多个。
所述增益控制方法如图3所示,包括以下步骤:
S302、获取所述接收机的目标信道内干扰信号的总功率;
S304、根据所述干扰信号的总功率以及所述接收机接收的有用信号的功率确定所述第一放大器的增益和所述第二放大器的增益,以对所述第一放大器和所述第二放大器进行自动增益控制。
在对接收机的第一放大器和第二放大器进行增益控制之前,可以先获取该接收机的目标信道内的干扰信号的总功率,然后根据干扰信号的总功率以及接收机接收到的有用信号的功率来确定第一放大器和第二放大器的增益,并根据确定的增益对第一放大器和第二放大器进行增益控制。其中,目标信道可以是接收机的通信频段内的一个或多个信道,比如接收机工作在2.4G频段,则目标信道可以是2.4G频段内的部分信道,比如,目标信道可以是当前有用信号的传输信道邻近的一个或多个信道,当然,目标信道也可以是该频段内的所有信道,本申请不做限制。
通过结合干扰信号的总功率来确定第一放大器和第二放大器的增益,可以避免当干扰信号较大时,第一放大器的增益过大,导致进入至混频器的信号功率过大,致使混频器产生非线性失真,干扰信号扩散到有用信号 的信道带宽内,滤波器无法将有用信号准确滤出的问题,提高在较强干扰信号环境下的接收性能,同时保持射频接收链路的总增益,满足模数转换器ADC的输入信号功率要求。
在某些实施中,为了确定目标信道内的干扰信号的总功率,可以对接收到的目标信道进行扫频处理,根据扫频结果确定目标信道内干扰信号的总功率。扫频可以获取一段时间内某个频段内所有信号的强度,通过对目标信道进行扫频,可以得到目标信道内的干扰信号的时域数据,从而可以根据该时域数据计算干扰信号的功率。
在某些实施例中,在根据扫频结果确定目标信道内的干扰信号的总功率时,可以对扫频得到的时域数据进行傅里叶变换,以得到干扰信号的功率谱密度,然后根据干扰信号的功率谱密度确定目标信道内干扰信号的总功率。当然,在某些实施例中,可以先对扫频得到的时域数据进行时域加窗处理,然后对窗口内的时域数据进行傅里叶变换,得到所述目标频段内干扰信号的功率谱密度,其中,窗口内的时域数据长度可以根据每次扫频的扫频带宽和分辨率确定。在某些实施例中,如果一个周期内对每个目标信道进行了多次扫频操作,还可以基于多次的扫频结果对计算得到的功率谱密度进行平滑处理,以得到更加准确的干扰信号的功率谱密度。在得到干扰信号的功率谱密度后,可以对带宽内的功率谱密度进行积分,从而得到该频段内干扰信号的总功率。
当然,在确定目标信道内干扰信号的功率时,本申请不局限于通过扫频的方式,任何一种可以确定目标信道干扰信号功率的方式都适用。
在某些实施例中,为了确保在扫频阶段扫描得到只是干扰信号的时域数据,而不包括有用信号,在进行扫频操作时,可以暂停对有用信号的传输,避免扫频时扫到有用信号,对干扰信号的功率计算产生干扰。因而,对目标信道的扫频处理操作和传输有用信号的操作可以交替执行,比如,在一段时间内执行传输有用信号的操作,下一段时间内则执行扫频处理操作,两者间隔执行。
在某些实施例中,目标信道可以是多个信道,比如,可以是接收机工作频段内的所有信道,对目标信道进行扫频处理的操作可以在预先设置的一个或者多个扫频时隙内完成,每个扫频时隙为一个时间段,该时间段用于执行扫频操作。每个扫频时隙可以用于对一个或者多个目标信道进行扫频处理。在某些实施例中,对所有目标信道的扫频处理可以一次性完成,比如,可以在一个扫频时隙内完成对所有目标信道的扫频操作。当然,当目标信道的数量较多时,如果在一个扫描时隙内完成所有目标信道的扫频操作,由于扫频操作扫描的带宽较大,耗时较长,而在执行扫频操作时,有用信号的传输是暂停的,如果每次扫频时间过长,就会导致有用信号出现较明显的延迟,比如,如果有用信号是视频信号,则会影响视频的传输,造成视频卡顿,影响用户的体验。因此,为了避免由于扫频操作占用的时隙过长,导致有用信号传输出现明显的延迟,在某些实施例中,对所有的目标信道的扫频操作可以分多次完成,比如,可以在多个扫频时隙内完成,每个扫频时隙只扫描一个或几个目标信道,所有目标信道的扫频操作在多个扫频时隙内完成。当然,每个扫频时隙扫描目标信道的数量,即扫频带宽可以根据实际应用场景确定,比如根据每个目标信道的带宽、每个目标信道的扫频时长以及有用信号可接受的延时来确定。
在某些实施例中,对有用信号的传输可以在预设设置的一个或者多个通信时隙内完成,每个通信时隙即为一个时间段,该时间段内可以传输有用信号。其中,每两个扫频时隙内可以间隔一个或者多个通信时隙。如图4所示,为一个实施例中通信时隙和扫频时隙交替出现的示意图,其中,扫频时隙出现的周期可以根据实际需求设定,比如,可以是固定的每3个通信时隙后即为一个扫频时隙。当然,通信时隙和扫频时隙也可以随机交替出现。在某些实施例中,可以由有用信号的发送方和接收方根据相同的种子值seed生成的伪随机序列来生成扫频时隙出现的周期。总体来说,扫频时隙的出现周期和每个扫频时隙占用的时长需兼顾对有用信号传输的影响以及干扰信号实时变化的特性,以便在不影响有用信号的传输的前提下, 尽可能准确的获取干扰信号的信息。
由于在每个扫频时隙执行完扫频操作后,还需预留一些时间执行其他的操作,比如,如果已完成了对所有目标信道的扫频操作,获得了目标信道内干扰信号的总功率,则需要执行对第一放大器和第二放大器的增益进行调节的操作,或者是,如果每个扫频时隙只是扫描了一部分目标信道,则需切换下一个扫描时隙的扫频频点,当然,也可以是其他的控制操作。所以,在某些实施例中,如图5所示,在每个扫频时隙之后还可以包括一个控制时隙,该控制时隙为一个时间段,该时间段可以用于根据扫频的结果来执行预设的一些控制操作。
在某些实施例中,由于所有目标信道的扫描是在多个扫描时隙内完成的,因而,每个扫描时隙对应的扫频频点不同,因此,该控制操作可以是将基于当前的扫频频点将扫描频点切换至下一个扫描时隙待扫描的目标信道对应的扫频频点。
在某些实施例中,有些扫频时隙为该周期内的最后一个扫频时隙,该扫频时隙结束后,已经完成了该周期内对所有目标信道的扫频操作,因而可以根据扫频结果计算出目标信道内的干扰信号的总功率,这时,则可以根据干扰信号的总功率和有用信号的功率计算出的第一放大器的增益和第二放大器的增益,因此,该扫频时隙之后的控制时隙还可以用于根据扫频结果调整第一放大器和第二放大器的增益。当然,并非是所有扫频时隙之后的控制时隙都需要执行调整第一放大器和第二放大器的增益的控制操作,只有当前扫频时隙已完成对该周期内所有目标信道的扫频操作,才需执行该控制操作。
在某些实施例中,在根据干扰信号的总功率以及接收机接收的有用信号的功率确定第一放大器的增益和第二放大器的增益时,可以先根据有用信号的功率确定总增益,由于接收机放大后的有用信号的功率需符合一定的要求,以便进行后续的处理,因而,可以根据接收到有用信号的功率以及有用信号需符合的要求确定出对该有用信号的总增益,然后根据干扰信 号的总功率以及有用信号的功率确定第一放大器的增益,由于第一放大器和第二放大器的增益之和,即为总增益,因而,在确定第一放大器的增益之后,可以根据总增益和第一放大器的增益确定第二放大器的增益,从而根据确定的增益对第一放大器和第二放大器进行控制。
在某些实施例中,根据干扰信号的总功率以及有用信号的功率确定第一放大器的增益时,可以先确定目标功率,其中,目标功率为干扰信号的总功率与有用信号的功率之和,然后根据目标功率以及混频器的性能指标确定第一放大器的增益。由于混频器在输入的信号功率大于一定值后,便会出现非线性失真的现象,因此,可以根据混频器的性能指标确定出导致混频器出现非线性失真的信号功率的门限值,比如,可以预先通过一定的实验确定出该门限值,为了确保混频器不出现非线性失真的问题,只要保证输入至混频器的信号功率(即干扰信号的总功率和有用信号的功率之和)不大于门限值即可,从而可以确定出第一放大器的增益。
在某些实施例中,根据目标功率以及混频器的性能指标确定第一放大器的增益时,可以先根据混频器的性能指标确定第一放大器的增益与功率区间的对应关系,根据目标功率以及对应关系确定第一放大器的增益。比如,可以先根据混频器的性能指标确定出当输入至混频器的信号功率为100-200w时,为了让混频器不出现非线性失真,第一放大器的增益为12dB,当信号功率为200-300w时,为了让混频器不出现非线性失真,第一放大器的增益为8dB,当计算得到目标功率之后,即可以根据功率区间和第一放大器的增益的对应关系确定第一放大器的增益。其中,在某些实施例中,混频器的性能指标包括混频器的线性区间、混频器的三阶交调曲线中的一种或多种。
通常而言,放大器都包括多个增益档位,可以控制放大器在这多个增益档位之间切换,以控制对信号的功率或者电压的放大倍数。由于干扰信号的功率会实时发生变化,因而,第一放大器的增益也是实时发生变化,在一定程度上会造成第一放大器的增益在两个增益档位的分界值上下来回 的波动,导致放大器的增益档位来回的切换。为了避免这个问题,可以采用迟滞比较的方式,如图6所示,即放大器的两个增益档位之间可以设置两个门限值,第一门限值P1和第二门限值P2,当干扰信号的总功率以及接收机接收的有用信号的功率之和小于第一门限值P1时,则将第一放大器调至第二增益档位,当干扰信号的总功率以及接收机接收的有用信号的功率之和大于第二门限值P2,则将第一放大器调至第一增益档位,其中,第二门限值P2大于第一门限值P1,第二增益档位高于第一增益档位。通过这种迟滞比较的方式,可以避免因干扰信号功率变化造成第一放大器的在增益档位来回切换的问题。
在某些实施例中,第一放大器可以是低噪声放大器,第二放大器可以是可变增益放大器,在根据干扰信号总功率和有用信号功率确定第一放大器的增益后,可以通过可变增益放大器来对接收信号的增益进一步调整,以保持射频接收链路的总增益。
在某些实施例中,本申请的增益控制方法可以由基带芯片执行,该基带芯片用于接收过滤出的有用信号,并进行下一步的处理。通过基带芯片来检测目标信道内干扰信号的总功率,并根据干扰信号的总功率为放大器分配最优的增益,可以明显提高接收信号的质量。
为了进一步解释本申请的增益控制方法,以下结合一个具体的实施例加以解释。
参考图7,为本申请实施例的一个应用场景示意图。接收机70通过天线71接收到的接收信号可以输入至射频前端73,依次经过射频前端73的低噪声放大器731、混频器732、滤波器733以及可变增益放大器734,然后再输出至基带芯片74,基带芯片74的模数转化器742将模拟信号转变为数字信号,然后传输至基带芯片处理器模块742进行后续处理。其中,射频前端73从天线接收到的接收信号中既包含有用信号,也包含干扰信号。射频前端73对接收信号进行功率放大、混频处理后,过滤出有用信号,并传输给基带芯片74做进一步的处理。可选的,天线接收的信号可以先经 过接收通道的低噪声放大器72进行放大,然后再输入至射频前端73。接收通道的低噪声放大器72、射频前端73中的低噪声放大器731以及可变增益放大器734对接收信号进行放大的总增益可以基于基带芯片74对有用信号功率的要求来确定。因而,可以根据基带芯片74接收到的有用信号的强度来调整三个放大器的增益。通常,为了降低接收信号的噪声系数,低噪声放大器的增益都尽可能调大一些,但是,如果干扰信号功率较大时,经低噪声放大器放大后,输入至混频器732的信号功率会比较大,可能导致混频器732产生非线性失真,致使混频器732处理后的干扰信号产生谐波,扩散到工作信道内,导致滤波器733无法将其滤出,从而影响有用信号的质量。
为了尽可能降低接收信号的噪声系数,又可以避免因输入至混频器732的信号功率过大,造成混频器732产生非线性失真,本实施例提供了一种增益控制方法,该方法可以由接收机70中的射频前端73后级的基带芯片74实现,可以降低对射频前端的性能要求。本实施例的增益控制方法通过基带芯片74对接收机的工作频段内的多个目标信道进行扫频处理,确定目标信道内的干扰信号的总功率,然后根据干扰信号的总功率和接收到的有用信号的总功率确定出上述三个放大器的增益,并根据确定的增益通过增益控制模块75对三个放大器的增益进行调节,以实现对接收机的放大器的增益控制。
以下结合图8来解释扫频处理的具体实现过程,假设接收机70的工作频段内共有6个信道,编号分别是1-6,其中信道3为传输有用信号的工作信道,在确定干扰信号的功率时,可以对该工作频段内的所有信道或者部分信道(比如信道3邻近的几个信道)进行扫描,确定干扰信号的总功率。本实施例中以扫描整个工作频段的所有信道为例。
为了实现在扫频过程中,扫描到的仅是干扰信号的信息,不包括有用信号,因此,在扫频时可以暂停对有用信号的传输,即传输有用信号和扫频操作可以交替执行,每次扫频操作可以在预设的扫频时隙内完成,而传 输有用信号可以在预设的通信时隙内完成,扫频时隙和通信时隙交替出现。两个扫频时隙之间可以随机的间隔一个或多个通信时隙,为了确定扫频时隙出现的周期,基带芯片74和信号发送端可以根据同一个种子值seed生成的伪随机序列确定扫频时隙出现的周期。为了避免每个扫频时隙的时间过长,造成有用信号的传输出现明显的延迟,可以将对工作频段内的所有信道的扫频操作分多次进行,每次扫描一部分目标信道。比如,对工作频段内的6个信道的扫频可以在3个扫频时隙内完成,每个扫频时隙扫描2个信道。
当然,由于每次扫频之后,还需要执行信道的切换,比如,当前扫频时隙扫描完信道1和信道2后,要将扫频频点切换至信道3和信道4对应频点。因此,每个扫频时隙后,还可以包括一个控制时隙,用来实现扫频频点的切换。当然,对于有些扫频时隙,比如,图8中的第3个扫频时隙,该扫频时隙结束后已经完成了当前周期内所有目标信道的扫描,这时,可以根据扫频结果计算目标信道内干扰信号的总功率,并计算出各放大器的增益,因此,这个扫频时隙之后的控制时隙还可以用来执行放大器增益的调整。
每完成一轮对工作频段内的所有信道的扫频操作后,基带芯片74可以根据扫频得到的时域数据确定目标信道内干扰信号的总功率。首先,可以对时域数据进行时域加窗处理,然后对窗口内的时域数据进行傅里叶变换FFT、平滑处理等,得到干扰信号的功率谱密度,进而根据功率谱密度确定目标信道内干扰信号的总功率。其中,进行FFT变换的数据长度可以根据扫频带宽和分辨率的要求确定。
可以预先根据混频器732的线性区间、三阶交调曲线等性能指标,确定在保证混频器732不出现非线性失真时,输入至混频器732的信号功率的门限值。
基带芯片74可以根据接收到的有用信号的功率以及实际应用场景中要求的有用信号的功率确定射频接收链路的总增益。然后根据干扰信号的 总功率和有用信号总功率的和确定混频器732之前的低噪声放大器72和低噪声放大器731的增益之和,进一步地,可以根据总增益确定射频前端73中的可变增益放大器734的增益,然后根据确定的增益分别对低噪声放大器72、低噪声放大器731、可变增益放大器734进行控制。
由于干扰信号的功率会实时发生变化,因而,低噪声放大器731的增益也是实时发生变化,在一定程度上会造成低噪声放大器731的增益在两个增益档位的分界值上下来回的波动,导致放大器的增益档位来回的切换。为了避免这个问题,可以采用迟滞比较的方式,即低噪声放大器731的两个增益档位之间可以设置两个门限值P1和P2,当干扰信号的总功率以及接收机接收的有用信号的功率之和小于P1时,则将低噪声放大器731调至第二增益档位;当干扰信号的总功率以及接收机接收的有用信号的功率之和大于P2,则将低噪声放大器731调至第一增益档位,其中,P2值大于P1。通过这种迟滞比较的方式,可以避免因干扰信号功率变化造成低噪声放大器731的在增益档位之间来回切换的问题。
相应的,本申请还提供了一种增益控制装置,如图9所示,所述装置设于接收机,所述接收机的接收信号依次经过第一放大器、混频器和第二放大器,所述装置包括处理器91、存储器92和存储在所述存储器上的计算机程序,所述处理器91执行所述计算机程序时实现以下步骤:
获取所述接收机的目标信道内干扰信号的总功率;
根据所述干扰信号的总功率以及所述接收机接收的有用信号的功率确定所述第一放大器的增益和所述第二放大器的增益,以对所述第一放大器和所述第二放大器进行自动增益控制。
在某些实施例中,所述处理器用于获取所述接收机的目标信道内干扰信号的总功率时,具体用于:
对所述接收机的目标信道进行扫频处理,基于扫频结果确定所述目标信道内的干扰信号的总功率。
在某些实施例中,对所述目标信道进行扫频处理的操作和对所述有用 信号进行传输的操作交替执行。
在某些实施例中,所述目标信道为多个,对所述目标信道进行扫频处理的操作在预设的一个或多个扫频时隙内完成,每个扫频时隙用于对一个或多个目标信道进行扫频。
在某些实施例中,对所述有用信号进行传输的操作在预设的一个或多个通信时隙内完成,每两个扫频时隙之间间隔一个或多个通信时隙。
在某些实施例中,所述扫频时隙之后还包括控制时隙,所述控制时隙用于基于扫频结果执行预设的控制操作。
在某些实施例中,所述控制操作包括:将扫频频点切换至下一个待扫描的目标信道对应的频点。
在某些实施例中,所述控制操作还包括:基于扫频结果调整所述第一放大器和所述第二放大器的增益。
在某些实施例中,所述处理器用于根据扫频结果确定所述目标频段内干扰信号的总功率时,具体用于:
对扫频得到的时域数据进行时域加窗处理;
对窗口内的时域数据进行傅里叶变换,得到所述目标频段内干扰信号的功率谱密度,所述窗口内的时域数据长度基于每次扫频的扫频带宽和分辨率确定;
根据所述功率谱密度确定所述目标信道内干扰信号的总功率。
在某些实施例中,所述处理器用于根据所述干扰信号的总功率以及所述接收机接收的有用信号的功率确定所述第一放大器的增益和所述第二放大器的增益时,具体包括:
根据所述有用信号的功率确定总增益;
根据所述干扰信号的总功率以及所述有用信号的功率确定所述第一放大器的增益;
根据所述总增益和所述第一放大器的增益确定所述第二放大器的增益。
在某些实施例中,所述处理器用于根据所述干扰信号的总功率以及所述有用信号的功率确定所述第一放大器的增益时,具体用于:
确定目标功率,所述目标功率为所述干扰信号的总功率与所述有用信号的功率之和;
根据所述目标功率以及所述混频器的性能指标确定所述第一放大器的增益。
在某些实施例中,所述处理器用于根据所述目标功率以及所述混频器的性能指标确定所述第一放大器的增益,包括:
根据所混频器的性能指标确定所述第一放大器的增益与功率区间的对应关系;
根据所述目标功率以及所述对应关系确定所述第一放大器的增益。
在某些实施例中,所述性能指标包括所述混频器的线性区间和/或所述混频器的三阶交调曲线。
在某些实施例中,所述处理器用于根据所述干扰信号的总功率以及所述接收机接收的有用信号的功率确定所述第一放大器的增益时,具体用于:
当所述干扰信号的总功率以及所述接收机接收的有用信号的功率之和小于第一门限值,则将所述第一放大器调至第一增益档位;
当所述干扰信号的总功率以及所述接收机接收的有用信号的功率之和大于第二门限值,则将所述第一放大器调至第二增益档位,其中,所述第二门限值大于所述第一门限值,所述第一增益档位高于所述第二增益档位。
在某些实施例中,所述第一放大器为低噪声放大器,所述第二放大器为可变增益放大器。
在某些实施例中,所述装置包括基带芯片。
其中,所述装置用于实现第一放大器和第二放大器增益控制的具体细节可参考上述增益控制方法各实施例中的描述,在此不再赘述。
此外,本申请还提供了一种接收机,该接收机包括第一放大器、混频器、第二放大器以及上述各实施例中的增益控制装置。
其中,所述增益控制装置实现第一放大器和第二放大器增益控制的具体细节可参考上述增益控制方法各实施例中的描述,在此不再赘述。
相应地,本说明书实施例还提供一种计算机存储介质,所述存储介质中存储有程序,所述程序被处理器执行时实现上述任一实施例中的增益控制方法。
本说明书实施例可采用在一个或多个其中包含有程序代码的存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机可用存储介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括但不限于:相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一 系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (33)

  1. 一种增益控制方法,其特征在于,所述方法用于接收机,所述接收机的接收信号依次经过第一放大器、混频器和第二放大器,所述方法包括:
    获取所述接收机的目标信道内干扰信号的总功率;
    根据所述干扰信号的总功率以及所述接收机接收的有用信号的功率确定所述第一放大器的增益和所述第二放大器的增益,以对所述第一放大器和所述第二放大器进行自动增益控制。
  2. 根据权利要求1所述的方法,其特征在于,获取所述接收机的目标信道内干扰信号的总功率,包括:
    对所述接收机的目标信道进行扫频处理,基于扫频结果确定所述目标信道内的干扰信号的总功率。
  3. 根据权利要求2所述的方法,其特征在于,对所述目标信道进行扫频处理的操作和对所述有用信号进行传输的操作交替执行。
  4. 根据权利要求3所述的方法,其特征在于,所述目标信道为多个,对所述目标信道进行扫频处理的操作在预设的一个或多个扫频时隙内完成,每个扫频时隙用于对一个或多个目标信道进行扫频。
  5. 根据权利要求4所述的方法,其特征在于,对所述有用信号进行传输的操作在预设的一个或多个通信时隙内完成,每两个扫频时隙之间间隔一个或多个通信时隙。
  6. 根据权利要求5所述的方法,其特征在于,所述扫频时隙之后还包括控制时隙,所述控制时隙用于基于扫频结果执行预设的控制操作。
  7. 根据权利要求6所述的方法,其特征在于,所述控制操作包括:将扫频频点切换至下一个待扫描的目标信道对应的频点。
  8. 根据权利要求7所述的方法,其特征在于,所述控制操作还包括:基于扫频结果调整所述第一放大器和所述第二放大器的增益。
  9. 根据权利要求2所述的方法,其特征在于,根据扫频结果确定所述目标频段内干扰信号的总功率,包括:
    对扫频得到的时域数据进行时域加窗处理;
    对窗口内的时域数据进行傅里叶变换,得到所述目标频段内干扰信号的功率谱密度,所述窗口内的时域数据长度基于每次扫频的扫频带宽和分辨率确定;
    根据所述功率谱密度确定所述目标频段内干扰信号的总功率。
  10. 根据权利要求1所述的方法,其特征在于,根据所述干扰信号的总功率以及所述接收机接收的有用信号的功率确定所述第一放大器的增益和所述第二放大器的增益,包括:
    根据所述有用信号的功率确定总增益;
    根据所述干扰信号的总功率以及所述有用信号的功率确定所述第一放大器的增益;
    根据所述总增益和所述第一放大器的增益确定所述第二放大器的增益。
  11. 根据权利要求8所述的方法,其特征在于,根据所述干扰信号的总功率以及所述有用信号的功率确定所述第一放大器的增益,包括:
    确定目标功率,所述目标功率为所述干扰信号的总功率与所述有用信号的功率之和;
    根据所述目标功率以及所混频器的性能指标确定所述第一放大器的增益。
  12. 根据权利要求11所述的方法,其特征在于,根据所述目标功率以及所混频器的性能指标确定所述第一放大器的增益,包括:
    根据所混频器的性能指标确定所述第一放大器的增益与功率区间的对应关系;
    根据所述目标功率以及所述对应关系确定所述第一放大器的增益。
  13. 根据权利要求11或12所述的方法,其特征在于,所述性能指标包括所述混频器的线性区间和/或所述混频器的三阶交调曲线。
  14. 根据权利要求1所述的方法,其特征在于,所述根据所述干扰信号的总功率以及所述接收机接收的有用信号的功率确定所述第一放大器的 增益,包括:
    当所述干扰信号的总功率以及所述接收机接收的有用信号的功率之和小于第一门限值,则将所述第一放大器调至第二增益档位;
    当所述干扰信号的总功率以及所述接收机接收的有用信号的功率之和大于第二门限值,则将所述第一放大器调至第一增益档位,其中,所述第二门限值大于所述第一门限值,所述第二增益档位高于所述第一增益档位。
  15. 根据权利要求1所述的方法,其特征在于,所述第一放大器为低噪声放大器,所述第二放大器为可变增益放大器。
  16. 根据权利要求1-15任一项所述的方法,其特征在于,所述方法由基带芯片执行。
  17. 一种增益控制装置,其特征在于,所述装置设于接收机,所述接收机的接收信号依次经过第一放大器、混频器和第二放大器,所述装置包括处理器、存储器和存储在所述存储器上的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
    获取所述接收机的目标信道内干扰信号的总功率;
    根据所述干扰信号的总功率以及所述接收机接收的有用信号的功率确定所述第一放大器的增益和所述第二放大器的增益,以对所述第一放大器和所述第二放大器进行自动增益控制。
  18. 根据权利要求17所述的装置,其特征在于,所述处理器用于获取所述接收机的目标信道内干扰信号的总功率时,具体用于:
    对所述接收机的目标信道进行扫频处理,基于扫频结果确定所述目标信道内的干扰信号的总功率。
  19. 根据权利要求18所述的装置,其特征在于,对所述目标信道进行扫频处理的操作和对所述有用信号进行传输的操作交替执行。
  20. 根据权利要求19所述的装置,其特征在于,所述目标信道为多个,对所述目标信道进行扫频处理的操作在预设的一个或多个扫频时隙内完成,每个扫频时隙用于对一个或多个目标信道进行扫频。
  21. 根据权利要求20所述的装置,其特征在于,对所述有用信号进行传输的操作在预设的一个或多个通信时隙内完成,每两个扫频时隙之间间隔一个或多个通信时隙。
  22. 根据权利要求21所述的装置,其特征在于,所述扫频时隙之后还包括控制时隙,所述控制时隙用于基于扫频结果执行预设的控制操作。
  23. 根据权利要求22所述的装置,其特征在于,所述控制操作包括:将扫频频点切换至下一个待扫描的目标信道对应的频点。
  24. 根据权利要求23所述的装置,其特征在于,所述控制操作还包括:基于扫频结果调整所述第一放大器和所述第二放大器的增益。
  25. 根据权利要求18所述的装置,其特征在于,所述处理器用于根据扫频结果确定所述目标频段内干扰信号的总功率时,具体用于:
    对扫频得到的时域数据进行时域加窗处理;
    对窗口内的时域数据进行傅里叶变换,得到所述目标频段内干扰信号的功率谱密度,所述窗口内的时域数据长度基于每次扫频的扫频带宽和分辨率确定;
    根据所述功率谱密度确定所述目标信道内干扰信号的总功率。
  26. 根据权利要求17所述的装置,其特征在于,所述处理器用于根据所述干扰信号的总功率以及所述接收机接收的有用信号的功率确定所述第一放大器的增益和所述第二放大器的增益时,具体包括:
    根据所述有用信号的功率确定总增益;
    根据所述干扰信号的总功率以及所述有用信号的功率确定所述第一放大器的增益;
    根据所述总增益和所述第一放大器的增益确定所述第二放大器的增益。
  27. 根据权利要求26所述的装置,其特征在于,所述处理器用于根据所述干扰信号的总功率以及所述有用信号的功率确定所述第一放大器的增益时,具体用于:
    确定目标功率,所述目标功率为所述干扰信号的总功率与所述有用信 号的功率之和;
    根据所述目标功率以及所述混频器的性能指标确定所述第一放大器的增益。
  28. 根据权利要求27所述的装置,其特征在于,所述处理器用于根据所述目标功率以及所述混频器的性能指标确定所述第一放大器的增益,包括:
    根据所混频器的性能指标确定所述第一放大器的增益与功率区间的对应关系;
    根据所述目标功率以及所述对应关系确定所述第一放大器的增益。
  29. 根据权利要求27或28所述的装置,其特征在于,所述性能指标包括所述混频器的线性区间和/或所述混频器的三阶交调曲线。
  30. 根据权利要求17所述的装置,其特征在于,所述处理器用于根据所述干扰信号的总功率以及所述接收机接收的有用信号的功率确定所述第一放大器的增益时,具体用于:
    当所述干扰信号的总功率以及所述接收机接收的有用信号的功率之和小于第一门限值,则将所述第一放大器调至第二增益档位;
    当所述干扰信号的总功率以及所述接收机接收的有用信号的功率之和大于第二门限值,则将所述第一放大器调至第一增益档位,其中,所述第二门限值大于所述第一门限值,所述第二增益档位高于所述第一增益档位。
  31. 根据权利要求17所述的装置,其特征在于,所述第一放大器为低噪声放大器,所述第二放大器为可变增益放大器。
  32. 根据权利要求17-31任一项所述的装置,其特征在于,所述装置包括基带芯片。
  33. 一种接收机,其特征在于,包括第一放大器、混频器、第二放大器以及如权利要求17-32所述的增益控制装置。
PCT/CN2020/087461 2020-04-28 2020-04-28 增益控制方法、装置及接收机 WO2021217411A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/087461 WO2021217411A1 (zh) 2020-04-28 2020-04-28 增益控制方法、装置及接收机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/087461 WO2021217411A1 (zh) 2020-04-28 2020-04-28 增益控制方法、装置及接收机

Publications (1)

Publication Number Publication Date
WO2021217411A1 true WO2021217411A1 (zh) 2021-11-04

Family

ID=78331581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087461 WO2021217411A1 (zh) 2020-04-28 2020-04-28 增益控制方法、装置及接收机

Country Status (1)

Country Link
WO (1) WO2021217411A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426545A (en) * 1991-05-09 1995-06-20 Sidman; Michael D. Active disturbance compensation system for disk drives
CN101141134A (zh) * 2007-10-19 2008-03-12 深圳国人通信有限公司 一种射频模块性能的软件补偿方法及改进的射频模块
CN101257319A (zh) * 2008-04-09 2008-09-03 浙江大学 一种全数字对数自动增益控制装置及方法
CN101394519A (zh) * 2007-09-19 2009-03-25 联发科技股份有限公司 增益控制方法以及接收器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426545A (en) * 1991-05-09 1995-06-20 Sidman; Michael D. Active disturbance compensation system for disk drives
CN101394519A (zh) * 2007-09-19 2009-03-25 联发科技股份有限公司 增益控制方法以及接收器
CN101141134A (zh) * 2007-10-19 2008-03-12 深圳国人通信有限公司 一种射频模块性能的软件补偿方法及改进的射频模块
CN101257319A (zh) * 2008-04-09 2008-09-03 浙江大学 一种全数字对数自动增益控制装置及方法

Similar Documents

Publication Publication Date Title
CN109639303B (zh) 一种基于加窗处理的干扰检测和抑制方法
JP2008295089A (ja) 歪補償増幅装置
DE102013203272B4 (de) Verzerrungsschätzungsvorrichtung und -verfahren
JP6611441B2 (ja) 周波数変換ユニット、計測システム及び計測方法
CN106877892B (zh) 一种抗干扰接收电路结构,方法及设备
DE102004002239A1 (de) Unkorrelierter adaptiver Vorverzerrer
DE102011001510A1 (de) Leistungsverstärkerlinearisierung mit auslöschungsbasierten Vorwärtskopplungsverfahren und -systemen
GB2587066A (en) Method for compensating gain flatness of transceiver
CN106443122B (zh) 一种宽频带大动态信号高精度测量装置及方法
JP2010515292A (ja) 自動利得制御の方法及び装置
DE60215535T2 (de) Senden mit variabler diversität in einem funkkommunikationssystem basierend auf eigenschaften eines empfangenen signals
CN104348498A (zh) 自适应谐波抑制接收装置及方法
CN110034831B (zh) 一种低复杂度的频谱监测装置及方法
CN101399558B (zh) 数字解调装置、数字接收器、以及该装置的控制方法
CN103199881B (zh) 自动增益控制方法、系统和接收机
WO2021217411A1 (zh) 增益控制方法、装置及接收机
WO2006082681A1 (ja) スペクトル解析方法、歪検出装置、歪補償増幅装置
EP2031780A2 (de) Vorrichtung und Verfahren zum Bestimmen einer genutzten Übertragungskapazität eines Basisstationssendeempfängers
US20180034620A1 (en) Receiver and signal processing method
DE112020001365T5 (de) Systeme und Verfahren zum Anpassen einer Empfangsempfindlichkeit unter Verwendung von gemeinsam angeordneten Kommunikationsschaltungen
CN101895894B (zh) 动态频谱共享无线通信系统工作信道的选择方法及其装置
CN106788813A (zh) 一种干扰信号检测、消除装置、方法以及移动终端
CN113541706B (zh) 一种基于变换域处理的窄带干扰抑制方法
CN109560883A (zh) 一种多通道同步接收系统与校正方法
US10715191B2 (en) Method for characterizing nonlinear distortion of transmitter, associated transmitter and characterization circuit thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932978

Country of ref document: EP

Kind code of ref document: A1