WO2021217363A1 - 无线通信方法、终端设备和网络设备 - Google Patents

无线通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2021217363A1
WO2021217363A1 PCT/CN2020/087310 CN2020087310W WO2021217363A1 WO 2021217363 A1 WO2021217363 A1 WO 2021217363A1 CN 2020087310 W CN2020087310 W CN 2020087310W WO 2021217363 A1 WO2021217363 A1 WO 2021217363A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
uplink
information
base station
failure
Prior art date
Application number
PCT/CN2020/087310
Other languages
English (en)
French (fr)
Inventor
石聪
尤心
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/087310 priority Critical patent/WO2021217363A1/zh
Priority to CN202080099597.3A priority patent/CN115380562A/zh
Publication of WO2021217363A1 publication Critical patent/WO2021217363A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a wireless communication method, terminal device, and network device.
  • the spectrum used is a shared spectrum.
  • a Listen Before Talk (LBT) mechanism is adopted.
  • LBT dual active protocol stack
  • the terminal device will maintain the downlink data reception with the source cell before releasing the source cell, and the terminal device will maintain the uplink with the source cell. Data is sent until the terminal device successfully completes the random access procedure with the target cell.
  • DAPS dual active protocol stack
  • the embodiments of the application provide a wireless communication method, terminal equipment, and network equipment.
  • the terminal equipment can report a continuous uplink LBT failure message to the source base station to avoid interruption between the terminal equipment and the source base station due to the triggering of the reconstruction process.
  • Data transmission which can guarantee the data transmission in DAPS switching.
  • a wireless communication method including:
  • the terminal device receives a handover command sent by the source base station, where the handover command is used to instruct the terminal device to switch from the source cell to the target cell in a DAPS handover mode;
  • the terminal device initiates a random access procedure to the target base station according to the handover command
  • the terminal device In the case of triggering an uplink continuous LBT failure, the terminal device sends first information to the source base station, where the first information is used to indicate that the uplink continuous LBT failure is triggered in initiating a random access procedure to the target base station.
  • a wireless communication method in a second aspect, includes:
  • the source base station sends a handover command to the terminal device, where the handover command is used to instruct the terminal device to switch from the source cell to the target cell in a DAPS handover mode;
  • the source base station receives the first information sent by the terminal device, where the first information is used to indicate that the terminal device triggers an uplink continuous LBT failure when initiating a random access procedure to the target base station.
  • a terminal device which is used to execute the method in the foregoing first aspect or each of its implementation manners.
  • the terminal device includes a functional module for executing the method in the above-mentioned first aspect.
  • a network device for executing the method executed by the source base station in the second aspect.
  • the network device includes a functional module for executing the method executed by the source base station in the second aspect described above.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method executed by the source base station in the second aspect described above.
  • a device for implementing any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • the device includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first aspect to the second aspect or any of the implementations thereof method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • a computer program product including computer program instructions that cause a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the terminal device can report the continuous uplink LBT failure message to the source base station, avoiding the interruption of data transmission between the terminal device and the source base station due to the triggering of the reconstruction process, thereby ensuring the data transmission in the DAPS handover .
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic flowchart of a DAPS handover provided by an embodiment of the present application.
  • Fig. 3 is a schematic flowchart of a wireless communication method provided according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of SCG failure information reporting provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a failure information report provided by an embodiment of the present application.
  • Fig. 6 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 7 is a schematic block diagram of a network device according to an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of an apparatus provided according to an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • New Air Interface The (New Radio, NR) system the evolution system of the NR system, the LTE (LTE-based access to unlicensed spectrum, LTE-U) system on the unlicensed spectrum, the NR (NR-based access to unlicensed spectrum, on the unlicensed spectrum, NR-U) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (WiFi), next-generation communication systems or other communication systems, etc.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Air Interface
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (DC) scenario, and can also be applied to a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC dual connectivity
  • SA standalone
  • the embodiment of the application does not limit the applied frequency spectrum.
  • the embodiments of this application can be applied to licensed spectrum or unlicensed spectrum.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 having a communication function and a terminal device 120.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiment of the present application.
  • terminal equipment may also be referred to as User Equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, and remote Station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • the terminal device can be a station (STAION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, and personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and next-generation communication systems, such as terminal devices in the NR network or Terminal equipment in the public land mobile network (PLMN) network that will evolve in the future.
  • STAION, ST station
  • WLAN Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • a network device can be a device used to communicate with mobile devices.
  • the network device can be an access point (AP) in WLAN, a base station (BTS) in GSM or CDMA, or a device in WCDMA.
  • a base station (NodeB, NB) can also be an Evolutional Node B (eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and a network device or base station in the NR network (gNB) or network equipment in the future evolved PLMN network.
  • the network equipment provides services for the cell
  • the terminal equipment communicates with the network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell
  • the cell may be a network equipment (for example, The cell corresponding to the base station.
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: Metro cell, Micro cell, Pico Cells, Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • NR works in an unlicensed frequency band, for example, it can include the following work scenarios:
  • Scenario A Carrier aggregation scenario, the primary cell (Primary Cell, PCell) is the licensed spectrum, and the secondary cells (SCell) working on the unlicensed spectrum are aggregated through carrier aggregation;
  • PCell Primary Cell
  • SCell secondary cells
  • Scenario B dual-connection working scenario
  • PCell is LTE licensed spectrum
  • PScell is NR unlicensed spectrum
  • Scenario C Independent work scenario, NR works as an independent cell in an unlicensed spectrum
  • Scenario D NR single-cell scenario, the uplink (Uplink, UL) works in the licensed spectrum, and the downlink (Downlink, DL) works in the unlicensed spectrum;
  • Scenario E A dual-connection working scenario, where the PCell is an NR authorized spectrum, and the primary and secondary cell (Primary Secondary Cell, PSCell) is an NR unlicensed spectrum.
  • the working frequency band (Band) of NR-U is 5GHz unlicensed spectrum and 6GHz unlicensed spectrum.
  • the design of NR-U should ensure fairness with other systems that are already working on these unlicensed spectrums, such as WiFi.
  • the principle of fairness is that the impact of NR-U on systems that have been deployed on unlicensed spectrum (such as WiFi) cannot exceed the impact between these systems.
  • the general energy detection mechanism is the LBT mechanism, and the basic principle of the mechanism is: before the base station or terminal (transmitting end) transmits data on the unlicensed spectrum, it needs to listen for a period of time in accordance with the regulations. If the listening result indicates that the channel is idle, the transmitting end can transmit data to the receiving end. If the listening result indicates that the channel is in an occupied state, the transmitting end needs to back off for a period of time according to the regulations before continuing to listen to the channel, knowing that the channel listening result is in an idle state, before transmitting data to the receiving end.
  • Scheduling Request used to request uplink resources
  • PRACH Physical Random Access Channel
  • Physical Uplink Shared Channel (PUSCH) transmission including uplink data transmission based on pre-configured grant (configured grant) and uplink data transmission based on dynamic grant (dynamic grant);
  • PUSCH Physical Uplink Shared Channel
  • Physical layer signaling transmission including Acknowledgement (ACK)/Negative Acknowledgement (NACK) feedback, Channel State Information (CSI) reporting, etc.
  • ACK Acknowledgement
  • NACK Negative Acknowledgement
  • CSI Channel State Information
  • MAC Media Access Control
  • SR_COUNTER a counter to count the number of SR failures
  • the MAC layer For PRACH transmission, the MAC layer also maintains a counter to count the number of PRACH failures (PREAMBLE_TRANSMISSION_COUNTER). When the counter reaches the configured threshold, the terminal device will trigger Radio Link Failure (RLF) and initiate radio resource control. (Radio Resource Control, RRC) reconstruction process;
  • RLF Radio Link Failure
  • the terminal device For uplink transmission based on configured grant, the terminal device does not maintain counters. If the data transmission fails, the network will schedule a retransmission. For the Radio Link Control (RLC) RLC Acknowledged Mode (AM) mode, there will be a counter at the RLC layer. When the retransmission counter reaches the maximum number of times, the RLF will also be triggered. As for the RLC Unacknowledged Mode (UM) mode, it relies on the retransmission mechanism of the MAC and the physical layer.
  • RLC Radio Link Control
  • AM Radio Link Control
  • UM Unacknowledged Mode
  • the terminal device On the unlicensed frequency band, the terminal device needs to use LBT to monitor whether the channel is available before transmitting SR, PRACH or PUSCH. If it is not available, that is, LBT fails, the terminal device needs to wait until the next transmission opportunity to perform LBT again.
  • LBT failure caused by continuous uplink transmission will cause RLF.
  • the MAC layer will design a mechanism to deal with the failure of UL LBT.
  • the continuous upstream LBT failure detection will consider all types of upstream transmissions caused LBT failures; at the same time, the recovery mechanism triggered by LBT failures caused by any upstream transmission type is the same; the network configures a threshold, the MAC layer of the terminal device records The number of LBT failures. When this threshold is reached, the terminal device triggers a continuous LBT failure event; a timer is introduced. When the timer expires, the terminal device resets the counter, and starts or restarts when the LBT fails. Timer.
  • the terminal device when a terminal device triggers a continuous uplink LBT failure, the terminal device has different behaviors according to whether the cell that triggers the failure belongs to a primary cell group (Master Cell Group, MCG) or a secondary cell group (Secondary Cell Group, SCG). If the cell that triggers the continuous uplink LBT failure is located in the MCG, the terminal device directly triggers the RLF and performs RRC reconstruction; if the cell that triggers the continuous uplink LBT failure is located in the SCG, the UE reports the SCG failure to the network through the MCG.
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • the terminal device determines the required reconfiguration information (handover command) based on the RRC reconfiguration information (handover command) received in step 3.
  • the terminal device will keep receiving downlink data with the source cell before releasing the source cell, and the terminal device will keep sending uplink data with the source cell until the terminal device successfully completes the random access procedure with the target cell.
  • the terminal device when the terminal device receives the DAPS switching command, the terminal device will perform the following operations:
  • DRB Data Radio Bearer
  • DTCH dedicated transmission channel
  • the configuration of the source cell is retained until the source cell is released.
  • the terminal device After completing the above process, the terminal device initiates a random access process to the target base station. During this period, the terminal device maintains data transmission with the source cell, including uplink data transmission and downlink data reception.
  • the terminal The device will switch the transmission of uplink data from the source cell to the target cell, that is, before successfully accessing the target cell, the uplink data of the terminal device is sent through the source cell side. After successfully accessing the target cell, the terminal device’s uplink data The data is sent through the target cell side.
  • the terminal device when the terminal device successfully accesses the target base station, the terminal device will release the connection to the source cell based on the display signaling on the network side and stop sending and receiving data with the source cell, including the signaling radio bearers of the source cell. SRB) resources, security configuration, etc.
  • the terminal device performs random access to the target cell. If the continuous uplink LBT failure is triggered, the terminal device will trigger the reconstruction process (due to RLF), but in the DAPS scenario, the terminal device In fact, the connection with the source cell is still maintained. At this time, due to continuous LBT failure, the reconstruction will interrupt the data transmission between the terminal device and the source base station.
  • this application proposes a solution for continuous uplink LBT failure in DAPS handover.
  • the terminal device can report the continuous uplink LBT failure message to the source base station to avoid interrupting the data transmission between the terminal device and the source base station due to the triggering of the reconstruction process. , Which can guarantee the data transmission in DAPS handover.
  • FIG. 3 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 3, the method 200 may include but is not limited to the following content:
  • the source base station sends a handover command to the terminal device, where the handover command is used to instruct the terminal device to switch from the source cell to the target cell in a DAPS handover mode;
  • S220 The terminal device receives the handover command sent by the source base station
  • S230 The terminal device initiates a random access procedure to the target base station according to the handover command
  • the terminal device sends first information to the source base station, where the first information is used to indicate that an uplink continuous LBT failure is triggered in initiating a random access procedure to the target base station;
  • the source base station receives the first information sent by the terminal device.
  • the terminal device may report the continuous uplink LBT failure message to the source base station.
  • the solution in this application avoids interrupting the data transmission between the terminal device and the source base station due to the triggering of the reconstruction process, thereby ensuring the data transmission during the DAPS handover.
  • the source base station serves the source cell
  • the target base station serves the target cell
  • the handover command (handover command, HO command) may also be referred to as RRC reconfiguration information (RRC reconfiguration).
  • the terminal device initiates a random access procedure to the target base station on the unlicensed frequency band according to the handover command.
  • the random access process initiated by the terminal device may be a four-step random access process or a two-step random access process.
  • the handover command includes uplink LBT failure configuration information.
  • the terminal device detects an uplink LBT failure and/or performs an uplink LBT failure recovery operation during the handover process according to the uplink LBT failure configuration information.
  • the uplink LBT failure configuration information is used for the terminal device to detect the uplink LBT failure and/or perform the uplink LBT failure recovery operation during the handover process.
  • the uplink LBT failure configuration information may also be pre-configured in the terminal device.
  • the uplink LBT failure configuration information includes a timer and/or a preset value, where the timer is used for uplink LBT failure detection, and the timer is started or restarted when an uplink LBT failure occurs; the preset value is The maximum number of continuous upstream LBT failures that triggers recovery from upstream LBT failure.
  • the terminal device starts or restarts the timer, and the timer can be used to record the number of timer starts or restarts.
  • the terminal device triggers the uplink continuous LBT failure. And perform an upstream LBT failure recovery operation.
  • the timer is an LBT failure detection timer (lbt-FailureDetectionTimer).
  • the preset value is the maximum number of LBT failures (lbt-FailureInstanceMaxCount).
  • the duration of the timer may include but is not limited to one of the following:
  • the value of the preset value may include but is not limited to one of the following:
  • the uplink LBT failure configuration information may be, for example:
  • the switching command may also include DAPS switching configuration information.
  • the terminal device in the case that the number of detected uplink continuous LBT failures is greater than the maximum number of uplink continuous LBT failures, the terminal device triggers the uplink continuous LBT failure.
  • the terminal device sends the first information to the source base station during the DAPS handover.
  • the source base station receives the first information sent by the terminal device during the DAPS handover.
  • the terminal device triggers the RLF of the SCG in the case of triggering an uplink continuous LBT failure.
  • the terminal device may also trigger the RLF of the MCG, that is, trigger the re-establishment process in the case of triggering the failure of the uplink continuous LBT.
  • the first information is SCG failure information (SCGFailureInformation).
  • the terminal device may report SCG failure information (SCGFailureInformation) according to the SCG failure process, for example, as shown in FIG. 4.
  • SCGFailureInformation SCG failure information
  • the terminal device triggers the failure information (FailureInformation) reporting process, and sets the failure type in the failure information to the LBT during the DAPS handover. fail. For example, as shown in Figure 5.
  • the first information may be carried in SRB1.
  • the terminal device receives RRC configuration information
  • the RRC configuration information includes an LBT failure recovery configuration (lbt-FailureRecoveryConfig)
  • the LBT failure recovery configuration includes a maximum number of LBT failures (lbt-FailureInstanceMaxCount) and an LBT failure detection timer (lbt-FailureDetectionTimer) ).
  • an LBT counter (LBT_COUNTER) is introduced in the continuous LBT failure detection. The LBT counter is used to record the number of LBT failures, and the initial value of the LBT counter is 0.
  • the MAC entity performs the following operations for each serving cell configured with LBT failure recovery configuration:
  • the serving cell is a special cell (such as the primary cell in the MCG or the primary cell in the SCG)
  • PRACH is configured on the same carrier of the serving cell
  • the MAC entity will indicate the continuous LBT failure to the higher layer; otherwise, stop any ongoing random access process in this serving cell; or, otherwise, switch the activated UL BWP to the target UL BWP ,
  • the target UL BWP is on the same carrier of the serving cell, the target UL BWP is configured with PRACH resources, and the continuous LBT failure is not triggered; or, otherwise, the random access procedure is triggered.
  • FIG. 6 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 includes:
  • the communication unit 310 is configured to receive a handover command sent by the source base station, where the handover command is used to instruct the terminal device to switch from the source cell to the target cell in a DAPS handover mode;
  • the processing unit 320 is configured to initiate a random access procedure to the target base station according to the handover command;
  • the communication unit 310 is further configured to send first information to the source base station, and the first information is used to indicate that the uplink continuous LBT is triggered during the initiation of the random access procedure to the target base station. fail.
  • the handover command includes uplink LBT failure configuration information.
  • the uplink LBT failure configuration information includes a timer and/or a preset value, where the timer is used for uplink LBT failure detection, and the timer is started or restarted when an uplink LBT failure occurs; the preset value is The maximum number of continuous upstream LBT failures that triggers recovery from upstream LBT failure.
  • the processing unit 320 is further configured to detect an uplink LBT failure and/or perform an uplink LBT failure recovery operation during the handover process according to the uplink LBT failure configuration information.
  • the processing unit 320 is further configured to trigger the uplink continuous LBT failure.
  • the communication unit 310 is specifically configured to:
  • the first information is sent to the source base station during the DAPS handover.
  • the processing unit 320 is also used to trigger the RLF of the SCG.
  • the first information is SCG failure information.
  • the processing unit 320 is further configured to trigger a failure information reporting process, and set the failure type in the failure information to LBT failure during the DAPS handover.
  • the first information is carried in SRB1.
  • the aforementioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 300 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 300 are to implement the method shown in FIG. 3, respectively.
  • the corresponding process executed by the terminal device in 200 will not be repeated here.
  • Fig. 7 shows a schematic block diagram of a network device 400 according to an embodiment of the present application.
  • the network device 400 is a source base station, and the network device 400 includes:
  • the communication unit 410 is configured to send a handover command to a terminal device, where the handover command is used to instruct the terminal device to switch from a source cell to a target cell in a DAPS handover mode;
  • the communication unit 410 is further configured to receive first information sent by the terminal device, and the first information is used to indicate that the terminal device triggers an uplink continuous LBT failure when initiating a random access procedure to the target base station.
  • the handover command includes uplink LBT failure configuration information.
  • the uplink LBT failure configuration information includes a timer and/or a preset value, where the timer is used for uplink LBT failure detection, and the timer is started or restarted when an uplink LBT failure occurs; the preset value is The maximum number of continuous upstream LBT failures that triggers recovery from upstream LBT failure.
  • the uplink LBT failure configuration information is used for the terminal device to detect an uplink LBT failure and/or perform an uplink LBT failure recovery operation during the handover process.
  • the communication unit 410 is specifically configured to:
  • the first information is SCG failure information.
  • the first information is carried in SRB1.
  • the aforementioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the network device 400 may correspond to the source base station in the method embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the network device 400 are to implement the method shown in FIG. 3, respectively.
  • the corresponding process executed by the source base station in 200 will not be repeated here.
  • FIG. 8 is a schematic structural diagram of a communication device 500 provided by an embodiment of the present application.
  • the communication device 500 shown in FIG. 8 includes a processor 510, and the processor 510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated in the processor 510.
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 500 may specifically be a network device in an embodiment of the application, and the communication device 500 may implement the corresponding process implemented by the source base station in each method of the embodiment of the application. For the sake of brevity, it will not be repeated here. .
  • the communication device 500 may specifically be a mobile terminal/terminal device of an embodiment of the application, and the communication device 500 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the application.
  • I won’t repeat it here.
  • Fig. 9 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 600 shown in FIG. 9 includes a processor 610, and the processor 610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the apparatus 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the device 600 may further include an input interface 630.
  • the processor 610 can control the input interface 630 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the device 600 may further include an output interface 640.
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the device can be applied to the source base station in the embodiments of the present application, and the device can implement the corresponding procedures implemented by the source base station in the various methods of the embodiments of the present application.
  • the device can implement the corresponding procedures implemented by the source base station in the various methods of the embodiments of the present application.
  • details are not described herein again.
  • the device can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it can be a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • FIG. 10 is a schematic block diagram of a communication system 700 according to an embodiment of the present application. As shown in FIG. 10, the communication system 700 includes a terminal device 710 and a network device 720.
  • the terminal device 710 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 720 can be used to implement the corresponding function implemented by the source base station in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the source base station in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the source base station in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the source base station in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application , For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the source base station in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the source base station in each method of the embodiment of the present application. Go into details again.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the source base station in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the source base station in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法、终端设备和网络设备,在DAPS切换中,终端设备可以向源基站上报持续上行LBT失败消息,避免因触发重建流程而中断终端设备与源基站之间的数据传输,从而可以保障DAPS切换中的数据传输。该无线通信方法包括:终端设备接收源基站发送的切换命令,该切换命令用于指示该终端设备采用DAPS切换方式从源小区切换至目标小区;该终端设备根据该切换命令向目标基站发起随机接入流程;在触发了上行持续LBT失败的情况下,该终端设备向该源基站发送第一信息,该第一信息用于指示在向该目标基站发起随机接入流程中触发了上行持续LBT失败。

Description

无线通信方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信方法、终端设备和网络设备。
背景技术
在非授权频谱上的新空口(New Radio-based access to unlicensed spectrum,NR-U)系统中,使用的频谱是共享频谱。在共享频谱上布网的通信系统例如NR-U系统中,为了保证在非授权频谱上各系统之间的公平性共存,采用先侦听后传输(Listen Before Talk,LBT)机制。另外,在移动性切换中,如双激活协议栈(dual active protocol stack,DAPS)切换,终端设备在释放源小区之前会保持与源小区的下行数据接收,同时终端设备会保持与源小区的上行数据发送直到终端设备成功完成了与目标小区的随机接入流程。然而,现阶段并没有如何设计DAPS切换过程中触发了持续上行LBT失败的方案,从而影响了共享频谱上的NR-U系统的通信。
发明内容
本申请实施例提供了一种无线通信方法、终端设备和网络设备,在DAPS切换中,终端设备可以向源基站上报持续上行LBT失败消息,避免因触发重建流程而中断终端设备与源基站之间的数据传输,从而可以保障DAPS切换中的数据传输。
第一方面,提供了一种无线通信方法,该方法包括:
终端设备接收源基站发送的切换命令,该切换命令用于指示该终端设备采用DAPS切换方式从源小区切换至目标小区;
该终端设备根据该切换命令向目标基站发起随机接入流程;
在触发了上行持续LBT失败的情况下,该终端设备向该源基站发送第一信息,该第一信息用于指示在向该目标基站发起随机接入流程中触发了上行持续LBT失败。
第二方面,提供了一种无线通信方法,该方法包括:
源基站向终端设备发送切换命令,该切换命令用于指示该终端设备采用DAPS切换方式从源小区切换至目标小区;
该源基站接收该终端设备发送的第一信息,该第一信息用于指示该终端设备在向目标基站发起随机接入流程中触发了上行持续LBT失败。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面中源基站执行的方法。
具体地,该网络设备包括用于执行上述第二方面中源基站执行的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面中源基站执行的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,在DAPS切换中,终端设备可以向源基站上报持续上行LBT失败消息,避免因触发重建流程而中断终端设备与源基站之间的数据传输,从而可以保障DAPS切换中的数据传输。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是本申请实施例提供的一种DAPS切换的示意性流程图。
图3是根据本申请实施例提供的一种无线通信方法的示意性流程图。
图4是本申请实施例提供的一种SCG失败信息上报的示意性流程图。
图5是本申请实施例提供的一种失败信息上报的示意性流程图。
图6是根据本申请实施例提供的一种终端设备的示意性框图。
图7是根据本申请实施例提供的一种网络设备的示意性框图。
图8是根据本申请实施例提供的一种通信设备的示意性框图。
图9是根据本申请实施例提供的一种装置的示意性框图。
图10是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请实施例结合终端设备和网络设备描述了各个实施例,其中:终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、 可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
需要说明的是,NR工作在非授权频段,例如可以包括如下几种工作场景:
场景A:载波聚合场景,主小区(Primary Cell,PCell)为授权频谱,通过载波聚合方式聚合工作在非授权频谱上的辅小区(Secondary Cell,SCell);
场景B:双连接工作场景,PCell为LTE授权频谱,PScell为NR非授权频谱;
场景C:独立工作场景,NR作为一个独立小区工作在非授权频谱;
场景D:NR单小区场景,上行链路(Uplink,UL)工作在授权频谱,下行链路(Downlink,DL)工作在非授权频谱;
场景E:双连接工作场景,PCell为NR授权频谱,主辅小区(Primary Secondary Cell,PSCell)为NR非授权频谱。
一般来说,NR-U的工作频带(Band)为5GHz非授权频谱和6GHz非授权频谱。在非授权频谱上,NR-U的设计应该保证与其他已经工作在这些非授权频谱上的系统之间的公平性,比如WiFi等。公平性的原则是,NR-U对于已经部署在非授权频谱上的系统(比如WiFi)的影响不能超过这些系统之间的影响。
为了保证在非授权频谱上各系统之间的公平性共存,能量检测已经被同意作为一个基本的共存机制。一般的能量检测机制为LBT机制,该机制的基本原理为:基站或者终端(传输端)在非授权频谱上传输数据之前,需要先按照规定侦听一段时间。如果侦听的结果表示该信道为空闲状态,则传输端可以给接收端传输数据。如果侦听的结果表示该信道为占用状态,则传输端需要根据规定回退一段时间再继续侦听信道,知道信道侦听结果为空闲状态,才能向接收端传输数据。
对于终端设备发起的上行传输,主要有包括如下几类:
调度请求(Scheduling Request,SR):用于请求上行资源;
物理随机接入信道(Physical Random Access Channel,PRACH)传输:由于随机接入(Random Access Channel,RACH)触发,终端设备需要发送第一条信息(massage 1,Msg1);
物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输:包括基于预配置授权(configured grant)的上行数据传输以及基于动态授权(dynamic grant)的上行数据传输;
物理层信令传输:包括肯定应答(Acknowledgement,ACK)/否定应答(Negative Acknowledgement,NACK)反馈,信道状态信息(Channel State Information,CSI)上报等。
在授权频段上,对于SR传输,媒体接入控制(Media Access Control,MAC)会维护一个计数器来统计SR失败次数(SR_COUNTER),当SR_COUNTER达到与配置的门限时,终端设备会触发RACH流程;
对于PRACH传输,MAC层也会维护一个计数器来统计PRACH失败次数(PREAMBLE_TRANSMISSION_COUNTER),当该计数器达到与配置的门限是,终端设备会触发无线链路失败(Radio Link Failure,RLF),发起无线资源控制(Radio Resource Control,RRC)重建流程;
对于基于configured grant的上行传输,终端设备不会维护计数器。如果数据传输失败,网络会调度重传。对于无线链路控制(Radio Link Control,RLC)RLC确认模式(Acknowledged Mode,AM)模式,在RLC层会有一个计数器,当重传计数器达到最大次数,也会触发RLF。而对于RLC非确认模式(Unacknowledged Mode,UM)模式,则依赖于MAC和物理层的重传机制。
在非授权频带上,终端设备传输SR,PRACH或者PUSCH之前都需要先用LBT来侦听信道是否可用,如果不可以用,即LBT失败,则终端设备需要等到下一个传输机会再次执行LBT。
需要说明的是,持续上行传输导致的LBT失败会引起RLF。另外,MAC层会设计一个机制来处理UL LBT失败的问题。
还需要说明的是,持续上行LBT失败检测会考虑所有类型的上行传输导致的LBT失败;同时,任何上行传输类型引起的LBT失败触发的恢复机制一样;网络配置一个门限,终端设备的MAC层记录LBT失败的次数,当达到这个门限时,终端设备触发持续LBT失败事件;并引入一个定时器(timer),当timer超时的时候终端设备重置计数器,并且在收到LBT失败的时候启动或重启定时器。
另外,当终端设备触发了持续上行LBT失败时,根据触发该失败的小区属于主小区组(Master Cell Group,MCG)还是辅小区组(Secondary Cell Group,SCG),终端设备有不同的行为。如果触发该持续上行LBT失败的小区位于MCG,则终端设备直接触发RLF,会执行RRC重建;如果触发该持续上行LBT失败的小区位于SCG,则UE通过MCG向网络上报SCG失败。
在本申请实施例中,DAPS切换的基本流程如图2所示,具体地,如图2中的步骤1至步骤4,终端设备基于步骤3中接收的RRC重配置信息(切换命令)判断所要执行的切换类型。若为DAPS切换,终端设备在释放源小区之前会保持与源小区的下行数据接收,同时终端设备会保持与源小区的上行数据发送直到终端设备成功完成了与目标小区的随机接入流程。
进一步地,当终端设备收到了DAPS切换命令后,终端设备会执行如下操作:
为目标小区建立一个MAC实体;
对于配置了DAPS的数据无线承载(Data Radio Bearer,DRB),建立一个RLC实体,并将其关联到该DRB对应的专用传输信道(Dedicated Transmission Channel,DTCH)上;
对于配置了DAPS的DRB,重配该DRB对应的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)实体,该PDCP实体包括了源小区和目标小区分别的安全以及健壮性包头压缩(Robust Header Compression,ROHC)功能;
保留源小区的配置直到释放源小区。
当完成了上述流程后,终端设备向目标基站发起随机接入过程,在此期间,终端设备保持与源小区的数据传输,包括上行数据发送和下行数据接收,当随机接入成功完成后,终端设备会把上行数据的发送从源小区切换到目标小区,也就是说在成功接入目标小区之前,终端设备的上行数据是通过源小区侧发送,当成功接入目标小区后,终端设备的上行数据是通过目标小区侧发送的。
最后,当终端设备成功接入目标基站后,终端设备会基于网络侧的显示信令去释放源小区的连接并停止与源小区的数据收发,包括源小区的信令无线承载(signaling radio bearers,SRB)资源、安全配置等。
在切换中,如果采用DAPS的切换方式,终端设备对于目标小区执行随机接入,如果触发了持续上行LBT失败,则终端设备会触发重建流程(由于RLF导致),但是在DAPS场景下,终端设备其实还保持与源小区的连接,这个时候由于持续LBT失败导致重建会中断终端设备与源基站之间的数据传输。
基于上述问题,本申请提出一种针对DAPS切换中持续上行LBT失败的方案,终端设备可以向源基站上报持续上行LBT失败消息,避免因触发重建流程而中断终端设备与源基站之间的数据传输,从而可以保障DAPS切换中的数据传输。
以下通过具体实施例详述本申请的技术方案。
图3是根据本申请实施例的无线通信方法200的示意性流程图,如图3所示,该方法200可以包括但不限于如下内容:
S210,源基站向终端设备发送切换命令,该切换命令用于指示该终端设备采用DAPS切换方式从源小区切换至目标小区;
S220,该终端设备接收该源基站发送的该切换命令;
S230,该终端设备根据该切换命令向目标基站发起随机接入流程;
S240,在触发了上行持续LBT失败的情况下,该终端设备向该源基站发送第一信息,该第一信息用于指示在向该目标基站发起随机接入流程中触发了上行持续LBT失败;
S250,该源基站接收该终端设备发送的该第一信息。
在本申请实施例中,在DAPS切换中,终端设备可以向源基站上报持续上行LBT失败消息。相对于在DAPS切换中触发了持续上行LBT失败之后触发重建流程,本申请中方案避免因触发重建流程而中断终端设备与源基站之间的数据传输,从而可以保障DAPS切换中的数据传输。
应理解,源基站服务于源小区,目标基站服务于目标小区。
需要说明的是,在本申请实施例中,切换命令(handover command,HO command)也可以称之为RRC重配置信息(RRC reconfiguration)。
在本申请实施例中,该终端设备根据该切换命令在非授权频带上向目标基站发起随机接入流程。
可选地,该终端设备发起的随机接入流程可以是四步随机接入流程,也可以是两步随机接入流程。
可选地,在一些实施例中,该切换命令包括上行LBT失败配置信息。
进一步地,该终端设备根据该上行LBT失败配置信息,在切换过程中检测上行LBT失败和/或执行上行LBT失败恢复操作。
相应的,对于源基站来说,该上行LBT失败配置信息用于该终端设备在切换过程中检测上行LBT失败和/或执行上行LBT失败恢复操作。
可选地,在另一些场景下,该上行LBT失败配置信息也可以预配置在终端设备中。
可选地,该上行LBT失败配置信息包括定时器和/或预设值,其中,该定时器用于上行LBT失败检测,且该定时器在发生上行LBT失败时启动或者重启;该预设值为触发上行LBT失败恢复的最大上行持续LBT失败的次数。
具体地,在发生上行LBT失败时终端设备启动或者重启定时器,可以通过计数器记录定时器启动或者重启次数,当定时器启动或者重启次数大于预设值时,该终端设备触发上行持续LBT失败,以及执行上行LBT失败恢复操作。
例如,该定时器为LBT失败检测定时器(lbt-FailureDetectionTimer)。
例如,该预设值为最大LBT失败次数(lbt-FailureInstanceMaxCount)。
可选地,该定时器的时长可以包括但不限于以下中的一种:
10ms,20ms,40ms,80ms,160ms,320ms。
可选地,该预设值的取值可以包括但不限于以下中的一种:
4,8,16,32。
可选地,该上行LBT失败配置信息例如可以是:
--ASN1START
--TAG-LBT-FAILURERECOVERYCONFIG-START
Figure PCTCN2020087310-appb-000001
--TAG-LBT-FAILURERECOVERYCONFIG-STOP
--ASN1STOP
需要说明的是,在本申请实施例中,该切换命令还可以包括DAPS切换配置信息。
可选地,在本申请实施例中,在检测到的上行持续LBT失败次数大于最大上行持续LBT失败的次数的情况下,该终端设备触发上行持续LBT失败。
可选地,在本申请实施例中,该终端设备在DAPS切换期间向该源基站发送该第一信息。
相应的,该源基站接收该终端设备在DAPS切换期间发送的该第一信息。
可选地,在一些实施例中,在触发了上行持续LBT失败的情况下,该终端设备触发SCG的RLF。
可选地,在另外一些实施例中,在触发了上行持续LBT失败的情况下,该终端设备也可以触发MCG的RLF,即触发重建流程。
可选地,该第一信息为SCG失败信息(SCGFailureInformation)。
可选地,该终端设备可以根据SCG失败流程,上报SCG失败信息(SCGFailureInformation),例如,如图4所示。
可选地,在另一些实施例中,在触发了上行持续LBT失败的情况下,该终端设备触发失败信息(FailureInformation)上报流程,并将该失败信息中的失败类型设置为DAPS切换期间的LBT失败。例如,如图5所示。
可选地,在一些实施例中,该第一信息可以承载于SRB1中。
以下以一个示例详述触发上行持续LBT失败的流程。具体地,终端设备接收RRC配置信息,该RRC配置信息包括LBT失败恢复配置(lbt-FailureRecoveryConfig),该LBT失败恢复配置包括最大LBT失败次数(lbt-FailureInstanceMaxCount)和LBT失败检测定时器(lbt-FailureDetectionTimer)。另外,在持续LBT失败检测中引入了LBT计数器(LBT_COUNTER),该LBT计数器用于记录LBT失败次数,且该LBT计数器的初始值为0。
在该示例中,MAC实体对于每个配置有LBT失败恢复配置的服务小区执行如下操作:
如果接收到底层发送的LBT失败指示,启动或者重启LBT失败检测定时器,并将LBT计数器的计数值加1,如果LBT计数器的计数值≥最大LBT失败次数,触发这个服务小区中的激活上行BWP上的持续LBT失败。
另外,如果LBT计数器的计数值≥最大LBT失败次数,且这个服务小区是特殊小区(如MCG中的主小区或者SCG中的主小区),如果在该服务小区的同一个载波上配置了PRACH的所有UL BWP中触发了持续LBT失败,则MAC实体向高层指示持续LBT失败;否则,停止此服务小区中任何正在进行的随机接入过程;或者,否则,将激活的UL BWP切换到目标UL BWP,该目标UL BWP在这个服务小区的同一个载波上,该目标UL BWP配置有PRACH资源,且没有触发持续LBT失败;或者,否则,触发随机接入流程。
上文结合图3至图5,详细描述了本申请的方法实施例,下文结合图6至图10,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图6示出了根据本申请实施例的终端设备300的示意性框图。如图6所示,该终端设备300包括:
通信单元310,用于接收源基站发送的切换命令,该切换命令用于指示该终端设备采用DAPS切换方式从源小区切换至目标小区;
处理单元320,用于根据该切换命令向目标基站发起随机接入流程;
在触发了上行持续LBT失败的情况下,该通信单元310还用于向该源基站发送第一信息,该第一信息用于指示在向该目标基站发起随机接入流程中触发了上行持续LBT失败。
可选地,该切换命令包括上行LBT失败配置信息。
可选地,该上行LBT失败配置信息包括定时器和/或预设值,其中,该定时器用于上行LBT失败检测,且该定时器在发生上行LBT失败时启动或者重启;该预设值为触发上行LBT失败恢复的最大上行持续LBT失败的次数。
可选地,该处理单元320还用于根据该上行LBT失败配置信息,在切换过程中检测上行LBT失败和/或执行上行LBT失败恢复操作。
可选地,在检测到的上行持续LBT失败次数大于最大上行持续LBT失败的次数的情况下,该处理单元320还用于触发上行持续LBT失败。
可选地,该通信单元310具体用于:
在DAPS切换期间向该源基站发送该第一信息。
可选地,该处理单元320还用于触发SCG的RLF。
可选地,该第一信息为SCG失败信息。
可选地,该处理单元320还用于触发失败信息上报流程,并将该失败信息中的失败类型设置为DAPS切换期间的LBT失败。
可选地,该第一信息承载于SRB1中。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备300可对应于本申请方法实施例中的终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法200中终端设备执行的相应流程,为了简洁,在此不再赘述。
图7示出了根据本申请实施例的网络设备400的示意性框图。如图7所示,该网络设备400为源基站,该网络设备400包括:
通信单元410,用于向终端设备发送切换命令,该切换命令用于指示该终端设备采用DAPS切换方式从源小区切换至目标小区;
该通信单元410还用于接收该终端设备发送的第一信息,该第一信息用于指示该终端设备在向目标基站发起随机接入流程中触发了上行持续LBT失败。
可选地,该切换命令包括上行LBT失败配置信息。
可选地,该上行LBT失败配置信息包括定时器和/或预设值,其中,该定时器用于上行LBT失败 检测,且该定时器在发生上行LBT失败时启动或者重启;该预设值为触发上行LBT失败恢复的最大上行持续LBT失败的次数。
可选地,该上行LBT失败配置信息用于该终端设备在切换过程中检测上行LBT失败和/或执行上行LBT失败恢复操作。
可选地,该通信单元410具体用于:
接收该终端设备在DAPS切换期间发送的该第一信息。
可选地,该第一信息为SCG失败信息。
可选地,该第一信息承载于SRB1中。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的网络设备400可对应于本申请方法实施例中的源基站,并且网络设备400中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法200中源基站执行的相应流程,为了简洁,在此不再赘述。
图8是本申请实施例提供的一种通信设备500示意性结构图。图8所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,如图8所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备500具体可为本申请实施例的网络设备,并且该通信设备500可以实现本申请实施例的各个方法中由源基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备500具体可为本申请实施例的移动终端/终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图9是本申请实施例的装置的示意性结构图。图9所示的装置600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,装置600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,该装置600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的源基站,并且该装置可以实现本申请实施例的各个方法中由源基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的移动终端/终端设备,并且该装置可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图10是本申请实施例提供的一种通信系统700的示意性框图。如图10所示,该通信系统700包括终端设备710和网络设备720。
其中,该终端设备710可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备720可以用于实现上述方法中由源基站实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者 用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的源基站,并且该计算机程序使得计算机执行本申请实施例的各个方法中由源基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的源基站,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由源基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的源基站,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由源基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际 的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (44)

  1. 一种无线通信方法,其特征在于,包括:
    终端设备接收源基站发送的切换命令,所述切换命令用于指示所述终端设备采用双激活协议栈DAPS切换方式从源小区切换至目标小区;
    所述终端设备根据所述切换命令向目标基站发起随机接入流程;
    在触发了上行持续先侦听后传输LBT失败的情况下,所述终端设备向所述源基站发送第一信息,所述第一信息用于指示在向所述目标基站发起随机接入流程中触发了上行持续LBT失败。
  2. 根据权利要求1所述的方法,其特征在于,所述切换命令包括上行LBT失败配置信息。
  3. 根据权利要求2所述的方法,其特征在于,所述上行LBT失败配置信息包括定时器和/或预设值,其中,所述定时器用于上行LBT失败检测,且所述定时器在发生上行LBT失败时启动或者重启;所述预设值为触发上行LBT失败恢复的最大上行持续LBT失败的次数。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述上行LBT失败配置信息,在切换过程中检测上行LBT失败和/或执行上行LBT失败恢复操作。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    在检测到的上行持续LBT失败次数大于最大上行持续LBT失败的次数的情况下,所述终端设备触发上行持续LBT失败。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述终端设备向所述源基站发送第一信息,包括:
    所述终端设备在DAPS切换期间向所述源基站发送所述第一信息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备触发辅小区组SCG的无线链路失败RLF。
  8. 根据权利要求7所述的方法,其特征在于,所述第一信息为SCG失败信息。
  9. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备触发失败信息上报流程,并将所述失败信息中的失败类型设置为DAPS切换期间的LBT失败。
  10. 根据权利要求6所述的方法,其特征在于,所述第一信息承载于信令无线承载SRB1中。
  11. 一种无线通信方法,其特征在于,包括:
    源基站向终端设备发送切换命令,所述切换命令用于指示所述终端设备采用双激活协议栈DAPS切换方式从源小区切换至目标小区;
    所述源基站接收所述终端设备发送的第一信息,所述第一信息用于指示所述终端设备在向目标基站发起随机接入流程中触发了上行持续先侦听后传输LBT失败。
  12. 根据权利要求11所述的方法,其特征在于,所述切换命令包括上行LBT失败配置信息。
  13. 根据权利要求12所述的方法,其特征在于,所述上行LBT失败配置信息包括定时器和/或预设值,其中,所述定时器用于上行LBT失败检测,且所述定时器在发生上行LBT失败时启动或者重启;所述预设值为触发上行LBT失败恢复的最大上行持续LBT失败的次数。
  14. 根据权利要求12或13所述的方法,其特征在于,所述上行LBT失败配置信息用于所述终端设备在切换过程中检测上行LBT失败和/或执行上行LBT失败恢复操作。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述源基站接收所述终端设备发送的第一信息,包括:
    所述源基站接收所述终端设备在DAPS切换期间发送的所述第一信息。
  16. 根据权利要求15所述的方法,其特征在于,所述第一信息为辅小区组SCG失败信息。
  17. 根据权利要求15所述的方法,其特征在于,所述第一信息承载于信令无线承载SRB1中。
  18. 一种终端设备,其特征在于,包括:
    通信单元,用于接收源基站发送的切换命令,所述切换命令用于指示所述终端设备采用双激活协议栈DAPS切换方式从源小区切换至目标小区;
    处理单元,用于根据所述切换命令向目标基站发起随机接入流程;
    在触发了上行持续先侦听后传输LBT失败的情况下,所述通信单元还用于向所述源基站发送第一信息,所述第一信息用于指示在向所述目标基站发起随机接入流程中触发了上行持续LBT失败。
  19. 根据权利要求18所述的终端设备,其特征在于,所述切换命令包括上行LBT失败配置信息。
  20. 根据权利要求19所述的终端设备,其特征在于,所述上行LBT失败配置信息包括定时器和/或预设值,其中,所述定时器用于上行LBT失败检测,且所述定时器在发生上行LBT失败时启动或 者重启;所述预设值为触发上行LBT失败恢复的最大上行持续LBT失败的次数。
  21. 根据权利要求19或20所述的终端设备,其特征在于,所述处理单元还用于根据所述上行LBT失败配置信息,在切换过程中检测上行LBT失败和/或执行上行LBT失败恢复操作。
  22. 根据权利要求18至21中任一项所述的终端设备,其特征在于,在检测到的上行持续LBT失败次数大于最大上行持续LBT失败的次数的情况下,所述处理单元还用于触发上行持续LBT失败。
  23. 根据权利要求18至22中任一项所述的终端设备,其特征在于,所述通信单元具体用于:
    在DAPS切换期间向所述源基站发送所述第一信息。
  24. 根据权利要求18至23中任一项所述的终端设备,其特征在于,所述处理单元还用于触发辅小区组SCG的无线链路失败RLF。
  25. 根据权利要求24所述的终端设备,其特征在于,所述第一信息为SCG失败信息。
  26. 根据权利要求18至23中任一项所述的终端设备,其特征在于,所述处理单元还用于触发失败信息上报流程,并将所述失败信息中的失败类型设置为DAPS切换期间的LBT失败。
  27. 根据权利要求23所述的终端设备,其特征在于,所述第一信息承载于信令无线承载SRB1中。
  28. 一种网络设备,其特征在于,所述网络设备为源基站,所述网络设备包括:
    通信单元,用于向终端设备发送切换命令,所述切换命令用于指示所述终端设备采用双激活协议栈DAPS切换方式从源小区切换至目标小区;
    所述通信单元还用于接收所述终端设备发送的第一信息,所述第一信息用于指示所述终端设备在向目标基站发起随机接入流程中触发了上行持续先侦听后传输LBT失败。
  29. 根据权利要求28所述的网络设备,其特征在于,所述切换命令包括上行LBT失败配置信息。
  30. 根据权利要求29所述的网络设备,其特征在于,所述上行LBT失败配置信息包括定时器和/或预设值,其中,所述定时器用于上行LBT失败检测,且所述定时器在发生上行LBT失败时启动或者重启;所述预设值为触发上行LBT失败恢复的最大上行持续LBT失败的次数。
  31. 根据权利要求29或30所述的网络设备,其特征在于,所述上行LBT失败配置信息用于所述终端设备在切换过程中检测上行LBT失败和/或执行上行LBT失败恢复操作。
  32. 根据权利要求28至31中任一项所述的网络设备,其特征在于,所述通信单元具体用于:
    接收所述终端设备在DAPS切换期间发送的所述第一信息。
  33. 根据权利要求32所述的网络设备,其特征在于,所述第一信息为辅小区组SCG失败信息。
  34. 根据权利要求32所述的网络设备,其特征在于,所述第一信息承载于信令无线承载SRB1中。
  35. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至10中任一项所述的方法。
  36. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求11至17中任一项所述的方法。
  37. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至10中任一项所述的方法。
  38. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求11至17中任一项所述的方法。
  39. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法。
  40. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求11至17中任一项所述的方法。
  41. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至10中任一项所述的方法。
  42. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求11至17中任一项所述的方法。
  43. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法。
  44. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求11至17中任一项所述的方法。
PCT/CN2020/087310 2020-04-27 2020-04-27 无线通信方法、终端设备和网络设备 WO2021217363A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/087310 WO2021217363A1 (zh) 2020-04-27 2020-04-27 无线通信方法、终端设备和网络设备
CN202080099597.3A CN115380562A (zh) 2020-04-27 2020-04-27 无线通信方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/087310 WO2021217363A1 (zh) 2020-04-27 2020-04-27 无线通信方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2021217363A1 true WO2021217363A1 (zh) 2021-11-04

Family

ID=78332283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087310 WO2021217363A1 (zh) 2020-04-27 2020-04-27 无线通信方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN115380562A (zh)
WO (1) WO2021217363A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113709797A (zh) * 2020-05-21 2021-11-26 展讯通信(上海)有限公司 通信方法、装置及设备
CN116980083B (zh) * 2023-09-22 2024-03-08 深圳传音控股股份有限公司 重传方法、通信设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138978A1 (en) * 2016-02-12 2017-08-17 Intel IP Corporation Systems and methods for reducing interruptions in data transmissions due to handover operations
US20180124612A1 (en) * 2016-11-02 2018-05-03 Ofinno Technologies, Llc Dual connectivity with licensed assisted access

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138978A1 (en) * 2016-02-12 2017-08-17 Intel IP Corporation Systems and methods for reducing interruptions in data transmissions due to handover operations
US20180124612A1 (en) * 2016-11-02 2018-05-03 Ofinno Technologies, Llc Dual connectivity with licensed assisted access

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ITRI: "Handling of consistent UL LBT failures during HO", 3GPP DRAFT; R2-1913064_HANDLING OF CONSISTENT UL LBT FAILURES DURING HO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chongqing, China; 20191014 - 20191018, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051791082 *
ITRI: "Handling of consistent UL LBT failures during HO", 3GPP DRAFT; R2-2000737, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. 20200224 - 20200306, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051849310 *
VIVO: "Failure handling of the non-DAPS DRB", 3GPP DRAFT; R2-1914704, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051816708 *
VIVO: "Summary of Email Discussion on CP for DAPS", 3GPP DRAFT; R2-1912349 SUMMARY OF EMAIL DISCUSSION ON CP FOR DAPS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chongqing, China; 20191014 - 20191018, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051790395 *

Also Published As

Publication number Publication date
CN115380562A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
US9445417B2 (en) Apparatus and method of sharing a transmit chain in wireless communications
EP3941150B1 (en) Random access method, terminal device and network device
US11877182B2 (en) Wireless communication method, terminal device and network device
WO2022104545A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020077643A1 (zh) 无线通信方法和终端设备
JP7353365B2 (ja) カウント方法、端末デバイス及び装置
US20220279591A1 (en) Random access method and apparatus
US20230284334A1 (en) Communication configuration method and communication apparatus
WO2021217363A1 (zh) 无线通信方法、终端设备和网络设备
US20230198678A1 (en) Wireless communication method, terminal device and network device
WO2020147049A1 (zh) 处理上行覆盖弱化的方法及装置、终端、网络设备
WO2023065156A1 (zh) 无线通信的方法、终端设备和网络设备
US20210136834A1 (en) Random Access Method, Terminal Device, and Network Device
WO2022067611A1 (zh) 先侦听后传输失败上报的方法、终端设备和网络设备
WO2022006719A1 (zh) 无线通信方法、终端设备和网络设备
WO2021056521A1 (zh) 链路状态的处理方法和装置
WO2022027460A1 (zh) 无线通信方法、终端设备和网络设备
WO2021159599A1 (zh) 传输优先级的确定方法和终端设备
WO2023010441A1 (zh) 通信方法、终端设备、网络设备及通信系统
WO2022205346A1 (zh) 终端设备切换搜索空间集分组sssg的方法、终端设备和网络设备
WO2023070565A1 (zh) 无线通信的方法及终端设备
WO2024000583A1 (zh) 资源处理的方法、终端设备和网络设备
WO2023035240A1 (zh) 一种控制随机接入的方法及装置、终端设备
WO2022155926A1 (zh) 无线通信的方法和终端设备
WO2022036696A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933921

Country of ref document: EP

Kind code of ref document: A1