WO2021215425A1 - Straddled vehicle battery pack and straddled vehicle - Google Patents

Straddled vehicle battery pack and straddled vehicle Download PDF

Info

Publication number
WO2021215425A1
WO2021215425A1 PCT/JP2021/015984 JP2021015984W WO2021215425A1 WO 2021215425 A1 WO2021215425 A1 WO 2021215425A1 JP 2021015984 W JP2021015984 W JP 2021015984W WO 2021215425 A1 WO2021215425 A1 WO 2021215425A1
Authority
WO
WIPO (PCT)
Prior art keywords
saddle
battery pack
vehicle battery
type vehicle
lithium
Prior art date
Application number
PCT/JP2021/015984
Other languages
French (fr)
Japanese (ja)
Inventor
日野 陽至
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to DE112021002473.6T priority Critical patent/DE112021002473T5/en
Priority to GB2215469.4A priority patent/GB2608956A/en
Priority to FR2104219A priority patent/FR3109675A1/en
Priority to TW110114504A priority patent/TWI820416B/en
Publication of WO2021215425A1 publication Critical patent/WO2021215425A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a saddle-mounted vehicle battery pack and a saddle-mounted vehicle.
  • Patent Document 1 discloses a battery pack used in a saddle-mounted vehicle.
  • the saddle-mounted vehicle of Patent Document 1 is a vehicle that does not have an engine.
  • Patent Document 1 describes an electric motorcycle as an example of a saddle-mounted vehicle.
  • the battery pack of Patent Document 1 is provided in a saddle-mounted vehicle.
  • the battery pack of Patent Document 1 includes a plurality of cases for accommodating a battery unit. A heat dissipation space is formed between some of the plurality of cases. As a result, in the technique of Patent Document 1, heat dissipation is increased while increasing the energy capacity of the battery pack.
  • the saddle-type vehicle battery pack used for the saddle-type vehicle be miniaturized with a simple configuration in order to improve the mountability on the vehicle. Further, it is desired that the saddle-type vehicle battery pack used for the saddle-type vehicle can be charged with electric power capable of increasing the driving force of the saddle-type vehicle in a short time.
  • An object of the present invention is to provide a saddle-type vehicle battery pack that can be miniaturized with a simple configuration and can be charged with electric power that can increase the driving force of a saddle-type vehicle in a short time.
  • the present inventors have investigated the characteristics of a saddle-type vehicle battery pack used in a saddle-type vehicle suitable for a saddle-type vehicle. It is desired that the saddle-type vehicle battery pack can be charged in a short time in a situation different from the battery pack used for other devices.
  • Japanese Patent Application Laid-Open No. 2007-052968 discloses a battery pack for a mobile phone or the like.
  • a saddle-mounted vehicle can usually carry a driver and travel at the same speed as an automobile.
  • the saddle-mounted vehicle is driven by a driving force output from a power source.
  • the saddle-mounted vehicle is equipped with, for example, a motor.
  • the motor converts the electric power charged in the saddle-type vehicle battery pack into power.
  • the electric power for increasing the driving force of a saddle-type vehicle is completely different in scale from the electric power consumed by a mobile phone or the like.
  • the charge capacity of a saddle-type vehicle battery pack is also completely different in scale from the charge capacity of a battery pack such as a mobile phone. It is desired that the saddle-mounted vehicle battery pack has a large charging capacity and can be charged in a short time.
  • the saddle-mounted vehicle is configured so that the posture of the vehicle is controlled by the weight shift of the driver during traveling.
  • Japanese Patent Application Laid-Open No. 2014-180185 discloses a battery module for an EV forklift.
  • a forklift is a vehicle whose main purpose is to lift and transport heavy objects.
  • the forklift is not configured so that the attitude of the vehicle is controlled by the weight shift of the driver.
  • the weight of the forklift is distributed so that the weight balance is maintained while carrying heavy objects.
  • the saddle-mounted vehicle tends to be required to be small from the viewpoint of the above-mentioned operability and running performance.
  • the weight ratio of the saddle-type vehicle battery pack to the entire saddle-type vehicle is larger than that of other mounted parts.
  • the saddle-type vehicle battery pack used in the saddle-type vehicle is required to be small while receiving and outputting electric power for increasing the driving force.
  • the battery pack of Patent Document 1 has a plurality of batteries.
  • the battery pack of Patent Document 1 has a control unit.
  • the control unit is a battery management controller (BMC) having a CPU and a memory.
  • the control unit is connected to each battery of the battery pack by an electric wire.
  • the control unit monitors the status of each battery.
  • the control unit centrally controls each battery.
  • control unit controls each battery based on the collected information. More specifically, the control unit connected to each battery and having a CPU and a memory centrally monitors the state of each battery by detecting the temperature, current, voltage, frequency of use, etc. in each battery, and also monitors each battery. Control the battery.
  • each of the batteries connected in parallel has variations in characteristics such as internal resistance due to the state of the electrodes and the state of the electrolyte.
  • characteristics such as internal resistance due to the state of the electrodes and the state of the electrolyte.
  • the control unit controls the charge amount of batteries that tend to have different charge amounts due to the parallel connection by detecting the state of each battery.
  • the present inventor has studied various configurations of a saddle-type vehicle battery pack suitable for a saddle-type vehicle.
  • the present inventor has studied setting the charging voltage of the saddle-mounted vehicle battery pack to 12 V or more and 60 V or less, and intentionally connecting a plurality of lithium ion batteries in series without connecting them in parallel with each other. Further, the present inventor has studied to configure a saddle-type vehicle battery pack having a charging capacity of 2.5 Ah or more with a lithium ion battery having a continuous maximum charging rate of 10 C or more.
  • the present inventor has found that, with this configuration, the saddle-mounted vehicle battery pack can be miniaturized with a simple configuration and can be charged in a short time.
  • the saddle-type vehicle battery pack By setting the charging voltage of the saddle-type vehicle battery pack having a charging capacity of 2.5 Ah or more to 12 V or more, the saddle-type vehicle battery pack charges electric power suitable for increasing the driving force of the saddle-type vehicle. be able to.
  • a saddle-type vehicle battery pack is composed of lithium-ion batteries having a continuous maximum charge rate of 10 C or more, even if a plurality of lithium-ion batteries are connected in series without being parallel to each other, the saddle-type vehicle battery pack The continuous maximum charging rate of is 10C or more.
  • the current flowing through each lithium-ion battery during charging is substantially equal. That is, the currents flowing through each lithium-ion battery are substantially equal regardless of the internal resistance of each lithium-ion battery. Therefore, it is easy to maintain the balance of the charge amount in each lithium ion battery. Therefore, for example, the circuit for controlling the current, voltage, or temperature of each lithium ion battery can be simplified or deleted. For example, it is possible to keep the balance of the charge amount in each lithium ion battery without a control device for monitoring and controlling the state of the lithium ion batteries connected in parallel. Therefore, a small saddle-mounted vehicle battery pack can be realized with a simple configuration.
  • the maximum voltage that the saddle-mounted vehicle battery pack can charge is 20 V or more and 60 V or less.
  • the maximum voltage applied to both ends of the plurality of lithium ion batteries connected in series is 60 V or less. Therefore, the saddle-type vehicle battery pack is within the range belonging to the "extra low voltage" (ELV or safety extra low voltage: SELV) in the standard IEC60950 of the International Electrotechnical Commission (IEC). Operate. Since the voltage of the saddle-type vehicle battery pack is low, the insulation structure can be made simpler than that for high voltage.
  • ELV extra low voltage
  • IEC60950 International Electrotechnical Commission
  • the voltage applied to both ends of a plurality of lithium ion batteries connected in series is a low voltage belonging to the "extra low voltage". Therefore, for example, a smaller number of lithium-ion batteries can be connected in series than in the case of belonging to a voltage range higher than the "extra-low voltage" voltage. Therefore, for example, it is possible to reduce variations in the charging capacity characteristics of each lithium-ion battery included in the saddle-type vehicle battery pack, as compared with the case where many lithium-ion batteries are used to cope with high voltage. be. From this, the circuit to be monitored and controlled can be simplified or deleted. Therefore, a small saddle-mounted vehicle battery pack can be realized with a simple configuration.
  • each of the plurality of lithium-ion batteries connected in series has a continuous maximum charging rate of 10C or more
  • the continuous maximum charging of 10C or more as a saddle-type vehicle battery pack without connecting a plurality of lithium-ion batteries in parallel.
  • the rate can be realized.
  • the saddle-type vehicle battery pack has a continuous maximum charging rate of 10 C or more, for example, 50% or more of the charge capacity of the saddle-type vehicle battery pack can be charged in a short time of 3 minutes or less. This makes it possible, for example, to charge an electric vehicle equipped with a saddle-mounted vehicle battery pack in a time close to the time required for replenishing liquid fuel in a conventional or current gas station. Therefore, it is not necessary to occupy the charging station for a long time.
  • the insulating structure can be simplified. It is possible to realize a small saddle-type vehicle battery pack with a simple configuration. Further, since a maximum charging rate of 10 C or more can be realized as a saddle-type vehicle battery pack without connecting a plurality of lithium-ion batteries in parallel, the saddle-type vehicle battery pack can be charged in a short time. As described above, it is possible to realize a saddle-type vehicle battery pack that has a simple configuration, is small in size, and can charge electric power that can increase the driving force of the saddle-type vehicle in a short time.
  • the saddle-mounted vehicle battery pack according to each viewpoint of the present invention completed based on the above findings has the following configurations.
  • a saddle-type vehicle battery pack used for a saddle-type vehicle is With multiple lithium-ion batteries A case accommodating the plurality of lithium ion batteries and An electrical connection connector that is connected to a mating connector provided on the vehicle body of the saddle-type vehicle and transmits a current input / output to the vehicle body.
  • the saddle-type vehicle battery pack has a charge capacity of 2.5 Ah or more and a maximum of 12 V or more and 60 V or less so as to receive and output electric power that is converted into power to increase the driving force of the saddle-type vehicle. It has a charging voltage and a series connection structure of the plurality of lithium ion batteries, each having a continuous maximum charging rate of 10C or more, without parallel connection, and the maximum charging voltage is a voltage corresponding to the voltage across the series connection. Is.
  • the saddle-mounted vehicle battery pack in the above configuration includes a plurality of lithium-ion batteries.
  • the saddle-mounted vehicle battery pack has a charging capacity of 2.5 Ah or more, a maximum charging voltage of 12 V or more and 60 V or less, and a series connection structure of a plurality of lithium ion batteries without parallel connection.
  • Each of the plurality of lithium-ion batteries has a continuous maximum charging rate of 10 C or more.
  • 12V is the lower limit of the operating voltage widely used as the voltage of the power supply that contributes to the increase in the driving force of the saddle-type vehicle.
  • the charging capacity of 2.5 Ah or more is a capacity of electric power that can increase the driving force of a saddle-type vehicle, unlike the capacity for operating a low-power device such as a mobile phone.
  • the saddle-type vehicle battery pack has a charging capacity of 2.5 Ah or more and is charged with a maximum charging voltage of 12 V or more and 60 V or less to receive and output electric power adapted to the increase in driving force of the saddle-type vehicle. do. Since each of the plurality of lithium-ion batteries connected in series has a continuous maximum charging rate of 10C or more, a continuous maximum charging rate of 10C or more can be realized as a saddle-type vehicle battery pack. Since the saddle-type vehicle battery pack has a continuous maximum charging rate of 10 C or more, for example, 50% or more of the charge capacity of the saddle-type vehicle battery pack can be charged within 3 minutes. Therefore, it is possible to charge the electric power for increasing the driving force of the saddle-mounted vehicle in a short time.
  • each of the lithium-ion batteries has a continuous maximum charging rate of 10C or more
  • a saddle-type vehicle battery pack having a continuous maximum charging rate of 10C or more can be realized without connecting a plurality of lithium-ion batteries in parallel.
  • the current flowing through the lithium-ion batteries connected in parallel during charging differs depending on the internal resistance of each lithium-ion battery. That is, the charge amount of each lithium ion battery is different from each other.
  • the current flowing through each lithium ion battery during charging is substantially equal.
  • the maximum voltage that the saddle-mounted vehicle battery pack can charge is 20 V or more and 60 V or less. In this case, the maximum voltage that can be applied to both ends of the plurality of lithium ion batteries connected in series is 60 V or less. Therefore, the saddle-type vehicle battery pack is within the range belonging to the "extra low voltage" (ELV or safety extra low voltage: SELV) in the standard IEC60950 of the International Electrotechnical Commission (IEC). Operate. Since the voltage of the saddle-type vehicle battery pack is low, the insulation structure can be made simpler than that for high voltage. Therefore, the saddle-mounted vehicle battery pack can be miniaturized.
  • ELV extra low voltage
  • SELV safety extra low voltage
  • the voltage applied to both ends of a plurality of lithium ion batteries connected in series is a low voltage belonging to the "extra low voltage". Therefore, for example, a smaller number of lithium-ion batteries can be connected in series than in the case of belonging to a voltage range higher than the "extra-low voltage" voltage. Therefore, for example, it is possible to reduce variations in the charging capacity characteristics of each lithium-ion battery included in the saddle-type vehicle battery pack, as compared with the case where many lithium-ion batteries are used to cope with high voltage. be. From this as well, the circuits to be monitored and controlled can be further simplified or deleted. Therefore, a small saddle-mounted vehicle battery pack can be realized with a simple configuration.
  • the saddle-type vehicle battery pack has a charging capacity of 2.5 Ah or more and a maximum charging voltage of 12 V or more and 60 V or less, so that it can charge electric power corresponding to the driving force of the saddle-type vehicle. Since the saddle-type vehicle battery pack is constructed by connecting lithium-ion batteries having a continuous maximum charging rate of 10C or more in series, the saddle-type vehicle battery pack can generate electric power that can correspond to the driving force of the saddle-type vehicle in a short time. Can be charged. Since each of the plurality of lithium-ion batteries has a continuous maximum charging rate of 10 C or more, a series connection structure without parallel can be adopted. By eliminating the parallel connection, it is possible to simplify or eliminate the circuit that monitors each lithium-ion battery.
  • the maximum charging voltage of 12 V or more and 60 V or less makes it possible to simplify the insulating structure. Therefore, it is possible to realize a saddle-type vehicle battery pack that has a simple configuration, is small in size, and can charge electric power that can increase the driving force of the saddle-type vehicle in a short time.
  • the saddle-mounted vehicle battery pack can adopt the following configuration.
  • Each of the plurality of lithium ion batteries has an independent negative electrode, and the independent negative electrode contains at least one selected from the group consisting of spinnel-type lithium titanate, niobium titanium-containing composite oxide, and graphite.
  • the series connection structure of the plurality of lithium ion batteries without parallel is realized by connecting to the positive electrode or the negative electrode without being electrically connected to each other with other independent negative electrodes.
  • each of the plurality of lithium ion batteries has an independent negative electrode. Due to the non-parallel structure, each of the negative electrodes is electrically independent of the other negative electrodes. Each of the negative electrodes is not electrically connected to the other independent negative electrode. Each of these negative electrodes contains at least one selected from the group consisting of spinel-type lithium titanate, niobium-titanium-containing composite oxides, and graphite. A negative electrode containing at least one selected from the group consisting of spinel-type lithium titanate, niobium-titanium-containing composite oxide, and graphite is such that lithium precipitation occurs in the negative electrode as described in Japanese Patent Application Laid-Open No. 2015-153719.
  • the saddle-mounted vehicle battery pack can adopt the following configuration.
  • a current circuit breaker that is connected in series with the plurality of lithium ion batteries and cuts off the current flowing through the plurality of lithium ion batteries is provided.
  • the above configuration it is possible to suppress a situation in which the currents of a plurality of lithium ion batteries inadvertently flow from the electrical connection connector to the outside. For this reason, for example, when the saddle-type vehicle battery pack is removed from the vehicle body or during the work of being attached to the vehicle body, the electrical connector inadvertently comes into contact with some conductor outside the saddle-type vehicle battery pack. It is possible to suppress the situation where the conductor is welded to the electrical connector due to a large current due to a short circuit. Therefore, it is possible to simplify or delete the control device and suppress the situation where, for example, an external conductor is welded to the electrical connector with a simple configuration.
  • the saddle-mounted vehicle battery pack can adopt the following configuration.
  • the saddle-type vehicle battery pack acquires at least one parameter of the current, voltage, or temperature detected from each of the plurality of lithium-ion batteries, and is based on the acquired at least one parameter. It does not include a control device configured to change the voltage and / or current of at least one of the plurality of lithium ion batteries.
  • each of the plurality of lithium-ion batteries has a continuous maximum charging rate of 10 C or more and is connected in series without being connected in parallel to each other, and is a saddle-type vehicle battery pack corresponding to the voltage across the series connection.
  • the maximum charging voltage of is 60 V or less. Since each of the plurality of lithium-ion batteries is not connected in parallel, the above configuration can maintain the balance of the charge amount in each lithium-ion battery while omitting the above-mentioned control device. Therefore, it is possible to realize a saddle-type vehicle battery pack that has a simple configuration, is compact, and can be charged in a short time.
  • the saddle-mounted vehicle battery pack can adopt the following configuration. (5) It is a saddle-mounted vehicle.
  • the saddle-mounted vehicle is The saddle-mounted vehicle battery pack of any one of (1) to (4) and A mating connector configured to be connected to the electrical connector of the saddle-mounted vehicle battery pack, With the drive wheels It is configured to control the power supply from the saddle-type vehicle battery pack to the motor via the mating connector and the power supply from the motor to the saddle-mounted vehicle battery pack via the mating connector.
  • Motor controller and The motor is provided with the motor configured to drive the drive wheels with electric power supplied from the motor control device, while generating electric power by driving the drive wheels.
  • At least one parameter of the current, voltage or temperature detected from each of the plurality of lithium ion batteries is acquired, and based on the acquired at least one parameter, among the plurality of lithium ion batteries. It does not include a control device configured to change the voltage and / or current of at least one of the lithium-ion batteries.
  • the saddle-mounted vehicle can adopt the following configuration.
  • the saddle-mounted vehicle of (5) is A steering bar handle provided so as to extend in the left-right direction of the saddle-mounted vehicle, and Equipped with a saddle configured for the driver to sit across As a lean vehicle, the driver who grips the bar handle at the time of turning is configured to turn by shifting the weight so as to lean inward of the curve.
  • the saddle-mounted vehicle is equipped with a saddle-mounted vehicle battery pack. Therefore, it has been desired to realize a high level of responsiveness and agility in a saddle-mounted vehicle as a lean vehicle. According to the above configuration, it is possible to provide a saddle-type vehicle as a lean vehicle, which is excellent in responsiveness and lightness, can be miniaturized with a simple configuration, and can charge a battery pack in a short time.
  • the saddle-type vehicle can increase the driving force of the saddle-type vehicle by the electric power stored in the saddle-type vehicle battery pack.
  • the electric power referred to here includes, for example, at least the chemical energy stored in the secondary battery pack.
  • a saddle-mounted vehicle may be provided with a capacitor and may be configured to run on the electrophysical energy stored in the capacitor in addition to the chemical energy.
  • a saddle-mounted vehicle is, for example, a vehicle that does not have an engine.
  • the saddle-mounted vehicle is, for example, a pure electric saddle-mounted vehicle.
  • the saddle-mounted vehicle is not limited to this, and a vehicle equipped with an engine as an internal combustion engine may be used.
  • a plug-in hybrid vehicle having a function of charging with electric power supplied from the outside of the vehicle and capable of running on an engine mounted on the vehicle is included in a saddle-mounted vehicle.
  • the saddle-type vehicle battery pack is charged by the electric power generated by the motor driven by the drive wheels when the saddle-type vehicle runs. Further, the saddle-mounted vehicle battery pack is connected to a charging device provided outside the saddle-mounted vehicle and charged. Further, when the saddle-type vehicle battery pack is used for a saddle-type vehicle equipped with an engine, the saddle-type vehicle battery pack is charged by the electric power of a generator driven by the engine.
  • a saddle-riding vehicle is a vehicle that rides in a riding style. The driver sits across the saddle of a saddle-mounted vehicle.
  • the saddle-mounted vehicle is, for example, a lean vehicle.
  • Examples of the saddle-type vehicle include a scooter type, a moped type, an off-road type, and an on-road type motorcycle.
  • the saddle-mounted vehicle is not limited to a motorcycle, and may be, for example, an ATV (All-Terrain Vehicle) or the like, or may be a motorcycle.
  • a tricycle may have two front wheels and one rear wheel, or may have one front wheel and two rear wheels.
  • the saddle-type vehicle battery pack is a battery pack used for a saddle-type vehicle.
  • the saddle-mounted vehicle battery pack is a pack in which a plurality of lithium-ion batteries are integrally combined.
  • the saddle-type vehicle battery pack is mounted on the body of the saddle-type vehicle.
  • the saddle-mounted vehicle battery pack is, for example, mounted on the vehicle body in a non-replaceable manner.
  • the saddle-mounted vehicle battery pack is not particularly limited, and may be replaceably mounted on the vehicle body, for example.
  • the saddle-mounted vehicle battery pack may be removable from the vehicle body without a tool other than a key, such as a spanner, or may be replaceable with respect to the vehicle body by using a tool such as a spanner.
  • Lithium-ion batteries are batteries that can be charged and discharged.
  • a lithium ion battery is a secondary battery that charges and discharges by a chemical reaction of electrodes.
  • Lithium-ion batteries are charged and discharged by oxidation and reduction reactions of electrodes.
  • Lithium-ion batteries convert stored chemical energy into electrical energy.
  • the terminal voltage of a lithium-ion battery is not proportional to the amount of power stored in the battery.
  • lithium ion capacitors are not included in lithium ion batteries.
  • Lithium-ion batteries contain a lithium oxide in the positive electrode. Lithium batteries that use lithium metal for the positive electrode are not included in lithium ion batteries.
  • the lithium ion battery is a non-aqueous lithium ion battery that uses a non-aqueous electrolyte such as an organic solvent.
  • a lithium-ion battery is a battery that can store electric power for driving a motor of a saddle-type vehicle.
  • the lithium-ion battery can store electric power supplied from the outside of the saddle-type vehicle. Further, the lithium ion battery can store the electric power supplied from the motor when the motor of the saddle-type vehicle generates electric power. That is, the regenerative current of the motor can be stored.
  • the maximum charge rate is the maximum charge rate allowed by a lithium-ion battery or a saddle-type vehicle battery pack.
  • the maximum charging rate represents the speed of charging.
  • the unit is C.
  • the continuous maximum charge rate is the maximum maximum charge rate allowed when charging continuously rather than instantaneously.
  • the magnitude of the current that fully charges the capacity of the battery in one hour is defined as 1C. For example, when the capacity of the battery is 2.5Ah, 1C is 2.5A.
  • the capacity or charge capacity of a battery is the amount of power that can be charged to the battery.
  • the unit is Ah.
  • the charge capacity is equal to the discharge capacity.
  • the discharge capacity is, for example, the time cumulative amount of the output current from the time when the fully charged battery starts to output the current together with the output of the initial voltage to the time when the output voltage reaches the final voltage.
  • the discharge condition is, for example, the discharge of a current that reaches the final voltage after 10 hours of discharge (10-hour rate).
  • the saddle-mounted vehicle battery pack consists of a series connection of lithium-ion batteries. Therefore, the discharge voltage, which is a condition of the discharge capacity, differs depending on the number of lithium ion batteries contained in the saddle-type vehicle battery pack.
  • the discharge capacity is determined regardless of the number of lithium-ion batteries.
  • the saddle-type vehicle battery pack has a charging capacity of 2.5 Ah or more, it is possible to charge or discharge electric power suitable for increasing the driving force of the saddle-type vehicle.
  • the saddle-type vehicle battery pack 1 has an output voltage of 12 V and a charging capacity of 2.5 Ah, outputting a current of 50 A for 20 seconds corresponds to about 10% power consumption. This consumption enables driving force assist of about 600 W, that is, simply about 0.8 ps, for 20 seconds.
  • the charging capacity of 2.5 Ah or more is such that 50% of the charging capacity can be used to continuously increase the driving force for 20 seconds at least five times without charging.
  • a saddle-type vehicle battery pack having a charging capacity of 2.5 Ah or more is smaller than a device for charging electrophysical energy such as a capacitor.
  • the electrical connector transmits the current input and output to the vehicle body.
  • the electrical connector transmits the current output to the motor of the saddle-type vehicle.
  • the electric connector transmits the current supplied from the motor when the motor of the saddle-type vehicle generates electricity.
  • the electrical connector may be used as a connector for transmitting a current supplied from the outside of the saddle-type vehicle.
  • the electrical connection connector may be provided as a connector different from the connector that transmits the current supplied from the outside of the saddle-type vehicle.
  • the electrical connector is attached to, for example, a case.
  • the electrical connector is supported, for example, in a case.
  • the electrical connector is fixed to the case, for example.
  • the electrical connection connector is not limited to this, and may be swingably supported by the case so that it can be easily connected to the mating connector, for example.
  • the electrical connector may be connected to, for example, a cable extending through the case and extending to the outside of the case. That is, the electrical connector may be physically connected to the case via a cable without being supported by the case. That is, the electrical connector does not have to be attached to the case, for example.
  • the connection includes a state in which an electrical component is inserted in the middle.
  • electrical components include switches, current circuit breakers, resistors, connection terminals, and fuses.
  • the connection is, for example, by wiring a lead wire.
  • the wiring is not limited to one composed of one lead wire, and may be a plurality of connected lead wires.
  • the wiring may be, for example, a metal plate or a rod.
  • the wiring may be, for example, a metal plate or rod having a bent portion or a curved portion.
  • the electric power output by the saddle-type vehicle battery pack at the time of discharge is converted into power. It means that it contributes to the increase of the driving force of the saddle-mounted vehicle.
  • Electric power is converted into power by, for example, a motor.
  • the converted power is finally transmitted to the wheels.
  • a saddle-type vehicle is a pure electric vehicle that mainly runs on electric power charged in a saddle-type vehicle battery pack.
  • the increase in driving force of a saddle-type vehicle depends on the electric power charged in the saddle-type vehicle battery pack.
  • the saddle-mounted vehicle is not particularly limited and may have an engine as an internal combustion engine.
  • the electric power may be converted into power by a motor and used to drive the engine, resulting in an increase in the driving force of the saddle-type vehicle.
  • a generator may be provided in the engine, and the electric power charged in the saddle-type vehicle battery pack and the electric power of the generator may be supplied to the motor.
  • a current circuit breaker is an electrical component that can switch between a state in which a current is transmitted and a state in which a current is cut off.
  • a current circuit breaker is, for example, an electric component that switches from a state in which a current is transmitted to a state in which a current is cut off according to a state of the current. Examples of such a current breaker include fuses and breakers.
  • the current circuit breaker is not particularly limited, and may be, for example, an electric component that switches from a state in which a current is transmitted to a state in which a current is cut off according to an operation.
  • Such current breakers include, for example, relays, switches, and service plugs.
  • the terminology used herein is for the purpose of defining only specific embodiments and is not intended to limit the invention.
  • the term “and / or” includes any or all combinations of one or more related listed components.
  • the use of the terms “including, including,””comprising,” or “having,” and variations thereof, is a feature, process, operation, described. It identifies the presence of elements, components and / or their equivalents, but can include one or more of steps, actions, elements, components, and / or groups thereof.
  • the terms “attached”, “combined” and / or their equivalents are widely used and are both direct and indirect attachments and bindings unless otherwise specified. Including.
  • FIG. 1 is a diagram schematically showing a saddle-mounted vehicle battery pack, a saddle-mounted vehicle battery pack equipped with a saddle-mounted vehicle battery pack, and a comparative example according to the first embodiment.
  • Part (a-1) of FIG. 1 schematically shows a saddle-type vehicle equipped with a saddle-type vehicle battery pack according to the first embodiment.
  • Part (b-1) of FIG. 1 schematically shows a saddle-type vehicle battery pack according to the first embodiment.
  • Part (a-2) of FIG. 1 schematically shows a saddle-type vehicle equipped with a saddle-type vehicle battery pack of a comparative example.
  • Part (b-2) of FIG. 1 schematically shows a saddle-type vehicle battery pack of a comparative example.
  • FIG. 2 is a magnified view of the saddle-mounted vehicle battery pack according to the first embodiment shown in FIG.
  • the saddle-mounted vehicle battery pack 1 shown in part (b-1) of FIG. 1 is a battery pack used for the saddle-mounted vehicle 100.
  • the saddle-type vehicle battery pack 1 receives and outputs electric power that is converted into power to increase the driving force of the saddle-type vehicle 100.
  • the saddle-mounted vehicle battery pack 1 is a battery pack that can be charged and discharged.
  • the saddle-mounted vehicle battery pack 1 is charged at a voltage equal to or lower than the maximum charging voltage.
  • the maximum charging voltage of the saddle-mounted vehicle battery pack 1 is 12 V or more and 60 V or less.
  • the maximum charging voltage of the saddle-mounted vehicle battery pack 1 is, for example, 48V. However, the maximum charging voltage may be set to, for example, 14V, or may be set to, for example, 36V.
  • the saddle-mounted vehicle battery pack 1 has a charging capacity of 2.5 Ah or more. Therefore, the saddle-mounted vehicle battery pack 1 receives and outputs electric power for increasing the driving force of the saddle-mounted vehicle 100.
  • the saddle-mounted vehicle battery pack 1 includes a lithium-ion battery 11, a case 12, and an electrical connector 13.
  • the saddle-mounted vehicle battery pack 1 includes five lithium-ion batteries 11.
  • the lithium ion batteries 11 are connected in series without being connected in parallel with each other.
  • the saddle-mounted vehicle battery pack 1 has a series connection structure in which the lithium ion batteries 11 are not connected in parallel.
  • the number of lithium ion batteries 11 is set so that the maximum voltage across the series is equal to or greater than the maximum voltage of the saddle-mounted vehicle battery pack 1.
  • the lithium ion battery 11 is a battery that can be charged and discharged.
  • the lithium ion battery 11 is a secondary battery that charges and discharges by a chemical reaction of electrodes.
  • the lithium ion battery 11 contains a lithium oxide in the positive electrode.
  • the lithium ion battery 11 is a non-aqueous lithium ion battery that uses a non-aqueous electrolyte.
  • the lithium ion battery 11 contains, for example, at least one selected from the group consisting of spinel-type lithium titanate, niobium titanium-containing composite oxide, and graphite in the negative electrode.
  • the negative electrode of the lithium ion battery 11 is not particularly limited, and a negative electrode containing a substance other than the above can also be adopted.
  • the lithium ion battery 11 has a larger maximum charging current than a battery using another positive electrode material such as a lead battery or a nickel hydrogen battery.
  • the lithium ion battery 11 has a continuous maximum charging rate of 10 C or more.
  • the case 12 houses the lithium-ion battery 11.
  • Case 12 has, for example, a closed structure. More specifically, the case 12 has a structure in which the lithium ion battery 11 cannot be seen from the outside. As a result, the situation in which a foreign substance is inserted from the outside of the saddle-mounted vehicle battery pack 1 and comes into contact with the lithium ion battery 11 is suppressed.
  • the case 12 has, for example, a waterproof structure.
  • the saddle-mounted vehicle battery pack 1 when the saddle-mounted vehicle battery pack 1 is provided in the saddle-mounted vehicle 100, the saddle-mounted vehicle battery pack 1 may be exposed to a liquid such as water or oil.
  • the case 12 suppresses the ingress of liquid. Therefore, the contact between the lithium ion battery 11 and the liquid is suppressed.
  • the electrical connection connector 13 is connected to a mating connector (not shown) provided on the vehicle body 102 (see FIG. 3) of the saddle-mounted vehicle 100, and transmits an input / output current to the vehicle body 102.
  • the electric power stored in the saddle-type vehicle battery pack 1 is supplied to the vehicle body 102 of the saddle-type vehicle 100 through the electric connector 13. Further, at the time of regeneration, the regenerative power is supplied from the vehicle body 102 of the saddle-mounted vehicle 100 to the saddle-mounted vehicle battery pack 1 through the electric connector 13.
  • the electrical connection connector 13 of the present embodiment can also be connected to a charging device provided outside the saddle-type vehicle 100, such as a charging station. While the saddle-mounted vehicle 100 is stopped, a mating connector provided on an external charging device is connected instead of the mating connector provided on the vehicle body 102 (see FIG. 3). As a result, the saddle-mounted vehicle battery pack 1 is charged.
  • the saddle-mounted vehicle battery pack 1 is also equipped with a bus bar 14.
  • the bus bar 14 is a conductor that connects the lithium ion battery 11 and the electrical connector 13.
  • the bus bar 14 connects the lithium ion batteries 11 to each other.
  • the bus bar 14 connects the lithium ion battery 11 and the electrical connector 13 in series.
  • the lithium ion batteries 11 included in the saddle-mounted vehicle battery pack 1 of the present embodiment are connected in series without being connected in parallel with each other.
  • Each lithium-ion battery 11 has a variation in internal resistance.
  • the currents flowing through the lithium-ion batteries 11 connected in series are substantially equal regardless of the difference in internal resistance. Therefore, it is easy to maintain the balance of the charge amount in each lithium ion battery 11. For example, when charging is started from a state where the charge amount of each lithium ion battery 11 is 0, the current integrated amount of each lithium ion battery 11 at an arbitrary time is substantially equal. That is, the charge amount of each lithium ion battery 11 is substantially equal. Further, even when each lithium ion battery 11 is discharged, the current flowing through each lithium ion battery 11 is substantially equal.
  • each lithium ion battery 11 at an arbitrary time is substantially equal. Therefore, the timing at which each lithium ion battery 11 is fully charged during charging is substantially the same. Therefore, it is possible to maintain the balance of the charge amount in each lithium ion battery 11 without a control device for monitoring and controlling the state of the lithium ion batteries connected in parallel. Therefore, the saddle-mounted vehicle battery pack 1 can be miniaturized with a simple configuration.
  • the standard working voltage of each lithium ion battery 11 is, for example, 2.3V. However, each lithium ion battery 11 can be charged with a voltage exceeding the standard working voltage. Each lithium ion battery 11 is charged with a voltage of, for example, 3 V or more.
  • the lithium ion battery 11 is configured to be connected in series without being connected in parallel to each other, and the maximum voltage that the saddle-mounted vehicle battery pack 1 can charge is 12 V or more and 60 V or less. In this case, the maximum voltage applied to both ends of the set of lithium ion batteries 11 connected in series is 12 V or more and 60 V or less.
  • the maximum voltage that can be charged by the saddle-type vehicle battery pack 1 is 12 V or more, it is possible to design a direct electrical connection with general electric parts mounted on the saddle-type vehicle 100. Further, since the maximum voltage that can be charged by the saddle-type vehicle battery pack 1 is 12 V or more, a general motor 105 mounted on the saddle-type vehicle 100 is used as the motor 105 that receives the supplied electric power. Design is possible. Further, since the maximum voltage that can be charged by the saddle-type vehicle battery pack 1 is 12 V or more, the motor 105 that receives the supplied electric power tends to increase the driving force of the saddle-type vehicle 100.
  • the saddle-type vehicle battery pack 1 operates in a range belonging to the "extra low voltage” (ELV or safety extra low voltage: SELV) in the standard IEC60950 of the International Electrotechnical Commission (IEC). ..
  • ELV extra low voltage
  • SELV safety extra low voltage
  • a lithium ion battery 11 having a charging capacity of 5 Ah or more and 40 Ah or less can be adopted as the lithium ion battery 11.
  • the maximum charging voltage of such a lithium ion battery 11 is 3V
  • the maximum charging voltage of a saddle-type vehicle battery pack 1 having five lithium ion batteries 11 connected in series is 15V.
  • the continuous maximum charge flow of the lithium ion battery 11 is 50 A.
  • the continuous maximum charge flow of the lithium ion battery 11 is 200 A.
  • the ability to fully charge the battery is difficult to grasp only from the charging current. This is because the ability of a battery to be fully charged depends not only on the charging current but also on the charging capacity. Therefore, in the present specification, as a capacity for the battery to be fully charged, a display based on a charging rate in consideration of a difference in charging capacity is adopted.
  • the voltage applied to both ends of the plurality of lithium ion batteries 11 connected in series is a low voltage belonging to the “extra low voltage”. Therefore, for example, a smaller number of lithium-ion batteries 11 can be connected in series as compared with the case where a voltage higher than the "extra-low voltage” is applied.
  • the saddle-mounted vehicle battery pack 1 of the present embodiment has five lithium-ion batteries 11 connected in series. Therefore, for example, as compared with the case where more batteries are used to cope with a high voltage higher than the “extra low voltage”, the saddle-type vehicle battery pack 1 of the present embodiment charges each lithium ion battery 11. It is possible to reduce variations in capacity characteristics. For this reason, the saddle-mounted vehicle battery pack 1 of the present embodiment can more easily maintain the balance of the charge amount in each lithium ion battery 11 without providing a control device such as a battery management system (BMS).
  • BMS battery management system
  • Each lithium ion battery 11 included in the saddle-mounted vehicle battery pack 1 of the present embodiment has a continuous maximum charging rate of 10 C or more. Therefore, a continuous maximum charge rate of 10 C or more can be realized as the saddle-type vehicle battery pack 1 without connecting a plurality of lithium ion batteries 11 in parallel.
  • a continuous maximum charging rate of 10 C or more can be realized as the saddle-type vehicle battery pack 1 without connecting a plurality of lithium ion batteries 11 in parallel.
  • the saddle-type vehicle battery pack 1 has a continuous maximum charging rate of 10 C or more, it is possible to charge 50% or more of the charge capacity of the saddle-type vehicle battery pack 1 within 3 minutes.
  • the electric vehicle equipped with the saddle-mounted vehicle battery pack 1 of the present embodiment can be charged in a time close to the time required for replenishing the liquid fuel in the conventional or current gas station. Therefore, the time to occupy the charging station is short.
  • the saddle-type vehicle 100 that does not have an auxiliary power source such as an engine generator is usually 0%. This is because it is often charged with a sufficient margin for the amount of charge.
  • the saddle-type vehicle 100 is charged at a high frequency, for example, when the driver is at home, even when the charge amount of the saddle-type vehicle battery pack 1 is more than 50%. For example, if 50% or more of the saddle-mounted vehicle battery pack 1 can be charged within 3 minutes, the saddle-mounted vehicle battery pack 1 will be charged more frequently.
  • the charging station when there is a charging station on the traveling path, even if the charge amount of the saddle-mounted vehicle battery pack 1 is 70% or more, it is conceivable to stop by the charging station for several minutes to charge the battery. Further, for example, when the charging station is equipped with a plurality of charging devices, it is possible to distinguish between a charging device dedicated to a vehicle (first lane) that completes charging within a few minutes and a charging device for a vehicle that does not. .. In this case, a specific vehicle that can be fully charged within a few minutes has a short waiting time and can be charged after a short stay.
  • the saddle-mounted vehicle battery pack 1 of the present embodiment has a lithium ion battery 11 connected in series without being connected in parallel. Therefore, the continuous maximum charging rate and the maximum charging current of the saddle-mounted vehicle battery pack 1 cannot exceed the continuous maximum charging rate and the maximum charging current of the lithium ion battery 11. In other words, the continuous maximum charging rate and the maximum charging current of the saddle-mounted vehicle battery pack 1 are mainly limited by the continuous maximum charging rate and the maximum charging current of the lithium ion battery 11.
  • the lithium ion battery 11 having a continuous maximum charging rate of 10 C or more for example, A lithium-ion battery with a charging capacity of 40 Ah or less and a maximum charging current of 400 A, A lithium-ion battery with a charging capacity of 20 Ah or less and a maximum charging current of 200 A, A lithium-ion battery having a charging capacity of 10 Ah or less and a maximum charging current of 100 A, or Lithium-ion batteries having a charging capacity of 5 Ah or less and a maximum charging current of 50 A can be mentioned.
  • the maximum distance that the saddle-type vehicle 100 (see FIG. 3) can travel with the charged electric power depends on the total charge amount of the saddle-type vehicle battery pack 1.
  • the total charge amount of the saddle-mounted vehicle battery pack 1 is proportional to the number of built-in lithium-ion batteries 11. Since the lithium ion batteries 11 are connected in series without being connected in parallel, the number of lithium ion batteries 11 can be set independently of the maximum charging current and the maximum continuous charging rate.
  • the number of lithium-ion batteries 11 included in the saddle-mounted vehicle battery pack 1 is equal to the number of series-connected lithium-ion batteries 11.
  • the maximum travelable distance of the saddle-type vehicle 100 can be set by the number of lithium-ion batteries 11 included in the saddle-type vehicle battery pack 1.
  • the charging voltage of the saddle-mounted vehicle battery pack 1 is proportional to the number of lithium-ion batteries 11. That is, the product of the charging voltage of one lithium-ion battery 11 and the number of lithium-ion batteries 11 is substantially the charging voltage of the saddle-mounted vehicle battery pack 1.
  • the maximum charging voltage of the saddle-mounted vehicle battery pack 1 is 20 V or more and 60 V or less. Therefore, the number of lithium ion batteries 11 is set so that the above product is 60 V or less.
  • a continuous maximum charging rate of 20C or more can be realized as the saddle-type vehicle battery pack 1.
  • the saddle-mounted vehicle battery pack 1 can be charged in a shorter period of time.
  • the saddle-type vehicle battery pack 1 has a continuous maximum charging rate of 20 C or more, it is possible to charge 50% or more of the charge capacity of the saddle-type vehicle battery pack 1 within 1.5 minutes. ..
  • the lithium ion battery 11 having a continuous maximum charging rate of 20 C or more for example, A lithium-ion battery with a charging capacity of 20 Ah or less and a maximum charging current of 400 A, A lithium-ion battery with a charging capacity of 10 Ah or less and a maximum charging current of 200 A, A lithium-ion battery having a charging capacity of 5 Ah or less and a maximum charging current of 100 A, or Lithium-ion batteries having a charging capacity of 2.5 Ah and a maximum charging current of 50 A.
  • a continuous maximum charging rate of 40C or more can be realized as the saddle-type vehicle battery pack 1.
  • the saddle-mounted vehicle battery pack 1 can be charged in a shorter period of time.
  • the saddle-type vehicle battery pack 1 has a continuous maximum charging rate of 40 C or more, it is possible to charge 50% or more of the charge capacity of the saddle-type vehicle battery pack 1 in less than one minute.
  • the lithium ion battery 11 having a continuous maximum charging rate of 40 C or more for example, A lithium-ion battery with a charging capacity of 10 Ah or less and a maximum charging current of 400 A, A lithium-ion battery with a charging capacity of 5 Ah or less and a maximum charging current of 200 A, Lithium-ion batteries having a charging capacity of 2.5 Ah and a maximum charging current of 100 A.
  • the saddle-mounted vehicle battery pack 1 of the present embodiment by eliminating the parallel connection of the lithium ion batteries 11, charging of each lithium ion battery 11 is omitted while omitting a control device for centrally controlling each lithium ion battery 11. It is possible to keep the balance of quantity.
  • the insulating structure can be simplified. Therefore, a small saddle-mounted vehicle battery pack 1 can be realized with a simple configuration. Then, since a continuous maximum charging rate of, for example, 10 C or more can be realized as the saddle-type vehicle battery pack 1 without connecting a plurality of lithium-ion batteries 11 in parallel, the saddle-type vehicle battery pack can be charged in a short time. be. As described above, it is possible to realize a saddle-type vehicle battery pack that has a simple configuration, is compact, and can be charged in a short time.
  • FIG. 3 is a diagram showing the saddle-mounted vehicle 100 shown in the part (a-1) of FIG. 1 in more detail.
  • the saddle-mounted vehicle 100 shown in FIG. 3 has a saddle-mounted vehicle battery pack 1.
  • the saddle-mounted vehicle 100 includes a vehicle body 102 and wheels 103a and 103b.
  • the vehicle body 102 is provided with a motor control device 104 and a motor 105.
  • the vehicle body 102 includes a saddle 107 and a bar handle 108 for steering.
  • the saddle 107 is configured so that the driver sits across it.
  • the steering bar handle 108 is provided so as to extend in the left-right direction of the saddle-mounted vehicle 100.
  • the saddle-mounted vehicle 100 is configured to turn as a lean vehicle by shifting the weight so as to lean inward of the curve by a driver who holds the bar handle 108 at the time of turning.
  • the saddle-mounted vehicle 100 does not have an engine as an internal combustion engine.
  • the saddle-mounted vehicle 100 is not provided with a control device.
  • the control device referred to here acquires at least one parameter of the current, voltage, or temperature detected from each of the plurality of lithium ion batteries 11 in the saddle-mounted vehicle battery pack 1. Further, the control device is configured to change the voltage and / or current of at least one lithium ion battery 11 based on the acquired at least one parameter.
  • Such a control device is not provided in the saddle-mounted vehicle battery pack 1.
  • the rear wheel 103b is a driving wheel.
  • the motor 105 drives the wheels 103b by the electric power supplied from the saddle-mounted vehicle battery pack 1.
  • the saddle-mounted vehicle 100 travels by driving the wheels 103b.
  • the electric power of the saddle-mounted vehicle battery pack 1 is supplied to the motor 105 via the motor control device 104.
  • the motor control device 104 controls the power supply.
  • the saddle-mounted vehicle battery pack 1 is connected to the motor control device 104 via the electrical connector 13.
  • the motor control device 104 controls the power supply from the saddle-mounted vehicle battery pack 1 to the motor 105 via the mating connector and the power supply from the motor 105 to the saddle-mounted vehicle battery pack 1 via the mating connector. .. That is, the saddle-type vehicle battery pack 1 is connected to the vehicle body 102 of the saddle-type vehicle 100 via the electric connection connector 13.
  • the current is transmitted from the saddle-mounted vehicle battery pack 1 to the motor control device 104 via the electrical connector 13.
  • the motor control device 104 For example, when the saddle-type vehicle 100 is braked by the regenerative braking of the motor 105, the electric power generated by the motor 105 is supplied to the saddle-type vehicle battery pack 1 via the motor control device 104. At this time, the saddle-mounted vehicle battery pack 1 is charged.
  • the saddle-mounted vehicle 100 shown in FIG. 3 has a function of being charged by electric power supplied from the outside of the saddle-mounted vehicle 100. More specifically, the saddle-mounted vehicle battery pack 1 has a function of being charged by electric power supplied from the outside of the saddle-mounted vehicle 100.
  • the mating connector provided in the motor control device 104 is removed from the electric connection connector 13, and the connector of the charging device provided outside the saddle-mounted vehicle 100 is connected to the electric connection connector 13.
  • the connector of the charging device provided externally is, for example, a connector provided in the charging device of the charging station.
  • As the connector of the charging device for example, a connector of a charging device provided in a general household and using a commercial power source can also be adopted.
  • the saddle-type vehicle battery pack 1 Since the saddle-type vehicle battery pack 1 has a continuous maximum charging rate of 10 C or more, for example, 50% or more of the charge capacity of the saddle-type vehicle battery pack 1 can be charged within 3 minutes. Therefore, the saddle-mounted vehicle 100 does not need to occupy the charging station for a long time for charging.
  • a continuous maximum charging rate of 40C or more can be realized as a saddle-type vehicle battery pack 1.
  • the saddle-mounted vehicle battery pack 1 can be charged in a shorter period of time. Therefore, the time to occupy the charging station is short.
  • the batteries are connected in series. May increase the number of lithium-ion batteries. This is because the amount of energy (charge) is proportional to the product of the pack's current and voltage. Even if the charge amount of each lithium-ion battery is smaller than the charge amount in the fully charged state, energy (charge) can be supplemented by increasing the number of lithium-ion batteries connected in series. However, increasing the number of lithium-ion batteries connected in series to increase energy also accompanies an increase in charging voltage.
  • the maximum charging voltage may exceed the range of 12 V or more and 60 V or less. Also, increasing the number of lithium-ion batteries connected in series to increase energy is accompanied by an increase in the output voltage of the saddle-type vehicle battery pack. It is required to increase the maximum voltage of the motor control device and the motor. In addition, as the number of lithium-ion batteries increases, the saddle-type vehicle battery pack becomes larger.
  • the life of a lithium-ion battery is easily affected by temperature. Therefore, it is necessary to increase the interval between each lithium battery so that the amount of heat dissipated increases as the number of lithium ion batteries increases. The volume of the entire lithium-ion battery including the interval increases. Next, wiring becomes complicated due to the mixture of series connection and parallel connection. Therefore, a space for accommodating complicated wiring is required. Finally, when lithium-ion batteries are connected in parallel, the amount of charge varies depending on the variation in the internal resistance of each lithium-ion battery. In order to suppress the variation in the amount of charge, a control device for monitoring and controlling the state of the lithium ion batteries connected in parallel is required.
  • the lithium-ion battery 911 shown in part (b-2) of FIG. 1 has a continuous maximum charge rate of less than 10C.
  • the lithium ion batteries 911 are connected in parallel.
  • the configuration is 2 parallel and 5 series.
  • the wiring 914 connecting the lithium ion battery 911 has a complicated shape because parallel connection and series connection are mixed.
  • control circuits 916 and 917 are provided in order to suppress variations in the charge amount of each lithium ion battery 911.
  • the control circuits 916 and 917 include an individual control unit 917 and a central control unit 916.
  • the individual control unit 917 has a circuit that detects the current of each lithium ion battery 911 and limits the current. The individual control unit 917 supplies the detection result as current data to the control device.
  • the central control unit 916 calculates the charge amount of each lithium ion battery 911 from the current data of each lithium ion battery 911.
  • the central control unit 916 causes the individual control unit 917 to limit the current of the lithium ion battery 911 according to the calculation result. As a result, the central control unit 916 controls a part of the plurality of lithium ion batteries 911 so as not to be overcharged.
  • the saddle-type vehicle battery pack 91 shown in the part (b-2) of FIG. 1 is larger than, for example, the saddle-type vehicle battery pack 1 of the embodiment shown in the part (b-1) of FIG. Therefore, the saddle-type vehicle 910 of the part (a-2) of FIG. 1 on which the saddle-type vehicle battery pack 91 is mounted is the saddle-type vehicle 100 of the embodiment shown in the part (a-1) of FIG. Greater than.
  • the saddle-mounted vehicle battery pack 1 of the present embodiment shown in the part (b-1) of FIG. 1 is, for example, the saddle-mounted vehicle battery pack 1 of the comparative example shown in the part (b-2) of FIG. Smaller than Therefore, the saddle-type vehicle 100 of the part (a-1) of FIG. 1 on which the saddle-type vehicle battery pack 1 of the present embodiment is mounted is the saddle of the comparative example shown in the part (a-2) of FIG. It is smaller than the riding vehicle 910.
  • FIG. 4 is a diagram schematically showing a saddle-mounted vehicle battery pack according to the second embodiment.
  • the saddle-mounted vehicle battery pack 21 according to the present embodiment is different from the saddle-mounted vehicle battery pack 1 according to the first embodiment in that it further includes a charging-dedicated connector 15 and a current circuit breaker 18.
  • Other configurations are designated by the same reference numerals as those of the saddle-mounted vehicle battery pack 1 shown in Part (1-b) of FIG. 1, and some description thereof will be omitted.
  • the charging connector 15 of the saddle-mounted vehicle battery pack 21 shown in FIG. 4 is connected to the connector of the charging device provided outside the saddle-mounted vehicle 100.
  • the charging-dedicated connector 15 is connected to the set of lithium-ion batteries 11 in parallel with the electrical connection connector 13.
  • the charging-only connector 15 is used only when the saddle-mounted vehicle battery pack 21 is charged by the electric power supplied from the outside of the saddle-mounted vehicle 100.
  • the saddle-mounted vehicle battery pack 21 has an electrical connection connector 13 and a charging-only connector 15. Therefore, the saddle-type vehicle battery pack 21 can be charged while maintaining the connection state of the vehicle body 102 of the saddle-type vehicle 100 with respect to the electric connection connector 13. Therefore, the charging operation can be facilitated, and the degree of freedom in the installation position of the saddle-mounted vehicle battery pack 21 can be increased.
  • Each lithium ion battery 11 has a negative electrode containing at least one selected from the group consisting of spinel-type lithium titanate, niobium titanium-containing composite oxide, and graphite. Therefore, each lithium ion battery 11 has a wide allowable range of charge voltage and discharge voltage. Each lithium-ion battery 11 is connected in series without a parallel connection involving electrical connection between the negative electrodes. Therefore, it is easy to maintain the balance of the charge amount in each lithium ion battery 11 without providing a control device such as a battery management system (BMS) for centrally controlling each lithium ion battery 11.
  • BMS battery management system
  • the current circuit breaker 18 of the saddle-type vehicle battery pack 21 conducts or cuts off the current flowing through the lithium ion battery 11.
  • the current circuit breaker 18 of the saddle-mounted vehicle battery pack 21 is configured to be turned on when, for example, the mating connector is connected to the electrical connection connector 13 or the charging-only connector 15.
  • the current circuit breaker 18 is configured to be turned on by, for example, a current energizing the mating connector.
  • a device for detecting a physical connection or a signal received from the other party at the time of connection may be provided.
  • the configuration of the present embodiment it is possible to suppress a situation in which the current of the lithium ion battery 11 carelessly flows to the outside from the electric connection connector 13 or the charging dedicated connector 15.
  • the electrical connection connector 13 or the charging-only connector 15 inadvertently contacts some conductor, and the conductor becomes a connector with a large current. It is possible to suppress the situation of welding.
  • a control device such as a battery management system (BMS)
  • BMS battery management system
  • the present invention is not limited to the above-mentioned example, and for example, the following configurations (7) to (11) can be adopted.
  • Examples of the following embodiments (7) to (11) include the above-described embodiments.
  • the case has a liquidtight structure.
  • the saddle-mounted vehicle battery pack may be exposed to a liquid such as water or oil, the ingress of the liquid is suppressed depending on the case. Therefore, the contact between the lithium ion battery and the liquid is suppressed.
  • a saddle-mounted vehicle battery pack according to any one of (1) to (4).
  • Each of the plurality of lithium-ion batteries has a continuous maximum charging rate of 40 C or more.
  • a maximum charge rate of 40 C or more can be realized as a saddle-type vehicle battery pack, so that the saddle-type vehicle battery pack can be charged in a shorter time.
  • a saddle-mounted vehicle battery pack according to any one of (1) to (4).
  • Each of the plurality of lithium ion batteries has a capacity of 5 Ah or more.
  • the saddle-type vehicle battery pack can be charged to the extent that the saddle-type vehicle can run for normal purposes even when charging with a voltage of 60 V or less.
  • a saddle-mounted vehicle battery pack according to any one of (1) to (4).
  • Each of the plurality of lithium ion batteries has a capacity of 20 Ah or less.
  • the saddle-type vehicle battery pack can be charged to the extent that the saddle-type vehicle can be driven for long-distance travel even when charging with a voltage of 60 V or less.

Abstract

The purpose of the present invention is to provide a straddled vehicle battery pack capable of being reduced in size by a simple configuration and capable of being charged in a short time. A straddled vehicle battery pack (1) is provided with: a plurality of lithium-ion batteries (11); a case (12) for housing the plurality of lithium-ion batteries; and an electrical connection connector (13) connected to a mating connector provided on the vehicle body of a straddled vehicle (100) and transferring current that is input to and output from the vehicle body. The straddled vehicle battery pack has a charge capacity of 2.5Ah or more, a maximum charge voltage of 12V to 60V, inclusive, and a non-parallel series connection structure of the plurality of lithium-ion batteries each having a continuous maximum charge rate of 10C or more so that electric power converted to motive power and used for increasing the drive force of the straddled vehicle is received and output, wherein said maximum charge voltage is a voltage corresponding to the voltage across both ends of the series connection.

Description

ストラドルドビークル電池パック及びストラドルドビークルStraddle Vehicle Battery Pack and Straddle Vehicle
 本発明は、鞍乗型車両電池パック及び鞍乗型車両に関する。 The present invention relates to a saddle-mounted vehicle battery pack and a saddle-mounted vehicle.
 例えば、特許文献1には、鞍乗型車両に用いられる電池パックが示されている。特許文献1の鞍乗型車両は、エンジンを有さない車両である。特許文献1には、鞍乗型車両の例として電動二輪車が記載されている。特許文献1の電池パックは、鞍乗型車両に備えられる。
 特許文献1の電池パックは、電池ユニットを収容する複数のケースを備える。複数のケースのうち一部のケースの間に放熱用空間が形成される。これによって、特許文献1の技術では、電池パックにおけるエネルギー容量を大きくしつつ放熱性の増加が図られている。
For example, Patent Document 1 discloses a battery pack used in a saddle-mounted vehicle. The saddle-mounted vehicle of Patent Document 1 is a vehicle that does not have an engine. Patent Document 1 describes an electric motorcycle as an example of a saddle-mounted vehicle. The battery pack of Patent Document 1 is provided in a saddle-mounted vehicle.
The battery pack of Patent Document 1 includes a plurality of cases for accommodating a battery unit. A heat dissipation space is formed between some of the plurality of cases. As a result, in the technique of Patent Document 1, heat dissipation is increased while increasing the energy capacity of the battery pack.
特開2013-232280号公報Japanese Unexamined Patent Publication No. 2013-232280
 鞍乗型車両に用いる鞍乗型車両電池パックは、車両への搭載性を高めるために簡単な構成で小型化することが望まれている。また、鞍乗型車両に用いる鞍乗型車両電池パックは、鞍乗型車両の駆動力を増加できるような電力を短時間で充電可能であることが望まれている。 It is desired that the saddle-type vehicle battery pack used for the saddle-type vehicle be miniaturized with a simple configuration in order to improve the mountability on the vehicle. Further, it is desired that the saddle-type vehicle battery pack used for the saddle-type vehicle can be charged with electric power capable of increasing the driving force of the saddle-type vehicle in a short time.
 本発明の目的は、簡単な構成で小型化でき、鞍乗型車両の駆動力を増加できるような電力を短時間で充電可能な鞍乗型車両電池パックを提供することである。 An object of the present invention is to provide a saddle-type vehicle battery pack that can be miniaturized with a simple configuration and can be charged with electric power that can increase the driving force of a saddle-type vehicle in a short time.
 本発明者らは、鞍乗型車両に適した鞍乗型車両に用いる鞍乗型車両電池パックの特性について検討した。
 鞍乗型車両電池パックには、他の機器に用いられる電池パックとは異なる状況で、短時間で充電可能であることが望まれている。
 例えば、日本の特開2007-052968公報には、携帯電話等のバッテリパックが示されている。
 鞍乗型車両は、通常、運転者を乗せて自動車と同様の速度で走行することができる。鞍乗型車両は、動力源から出力される駆動力によって駆動される。鞍乗型車両は、例えばモータを備えている。モータは、鞍乗型車両電池パックに充電された電力を動力に変換する。鞍乗型車両の駆動力を増加するための電力は、携帯電話等が消費する電力とは規模においてまったく異なる。鞍乗型車両電池パックの充電容量も、携帯電話等のバッテリパックの充電容量とは規模においてまったく異なる。鞍乗型車両電池パックは、大きな充電容量を有し、且つ、短時間で充電可能であることが望まれている。
The present inventors have investigated the characteristics of a saddle-type vehicle battery pack used in a saddle-type vehicle suitable for a saddle-type vehicle.
It is desired that the saddle-type vehicle battery pack can be charged in a short time in a situation different from the battery pack used for other devices.
For example, Japanese Patent Application Laid-Open No. 2007-052968 discloses a battery pack for a mobile phone or the like.
A saddle-mounted vehicle can usually carry a driver and travel at the same speed as an automobile. The saddle-mounted vehicle is driven by a driving force output from a power source. The saddle-mounted vehicle is equipped with, for example, a motor. The motor converts the electric power charged in the saddle-type vehicle battery pack into power. The electric power for increasing the driving force of a saddle-type vehicle is completely different in scale from the electric power consumed by a mobile phone or the like. The charge capacity of a saddle-type vehicle battery pack is also completely different in scale from the charge capacity of a battery pack such as a mobile phone. It is desired that the saddle-mounted vehicle battery pack has a large charging capacity and can be charged in a short time.
 また、鞍乗型車両は、走行時に運転者の体重移動によって車両の姿勢が制御されるように構成されている。
 例えば、日本の特開2014-180185には、EVフォークリフトの電池モジュールが示されている。フォークリフトは、重量物を持ち上げて運搬することを主目的とする車両である。フォークリフトは、運転者の体重移動によって車両の姿勢が制御されるように構成されていない。フォークリフトの重量は、重量物を運搬する状態で重量バランスが保たれるように配分される。
 これに対し、鞍乗型車両は、上述した操作性及び走行性能の観点から小型であることを求められる傾向がある。鞍乗型車両全体に占める鞍乗型車両電池パックの重量比は、他の搭載部品と比べて大きい。鞍乗型車両に用いられる鞍乗型車両電池パックは、駆動力を増加するための電力を受入れ及び出力しつつ小型であることを求められる。
Further, the saddle-mounted vehicle is configured so that the posture of the vehicle is controlled by the weight shift of the driver during traveling.
For example, Japanese Patent Application Laid-Open No. 2014-180185 discloses a battery module for an EV forklift. A forklift is a vehicle whose main purpose is to lift and transport heavy objects. The forklift is not configured so that the attitude of the vehicle is controlled by the weight shift of the driver. The weight of the forklift is distributed so that the weight balance is maintained while carrying heavy objects.
On the other hand, the saddle-mounted vehicle tends to be required to be small from the viewpoint of the above-mentioned operability and running performance. The weight ratio of the saddle-type vehicle battery pack to the entire saddle-type vehicle is larger than that of other mounted parts. The saddle-type vehicle battery pack used in the saddle-type vehicle is required to be small while receiving and outputting electric power for increasing the driving force.
 このような特性を有する鞍乗型車両電池パックについて検討の結果、本発明者らは、次のことを見いだした。 As a result of examining a saddle-mounted vehicle battery pack having such characteristics, the present inventors have found the following.
 電池パックでは、通常、大きなエネルギー容量、即ち充電容量を得るため、複数の電池が組合せて用いられている。
 例えば、特許文献1の電池パックは、複数の電池を有する。例えば、特許文献1では、エネルギー容量を大きくするため、例えば168個の電池が、並列及び直列接続されている。より詳細には、並列接続された12個の電池が1つの組を構成し、14の組が直列接続されている。また、特許文献1の電池パックは、制御部を有する。制御部は、CPU及びメモリを有するバッテリマネジメントコントローラ(BMC)である。制御部は、電池パックが有する各電池と電線で接続されている。制御部は、各電池の状態を監視する。制御部は、各電池の制御を集中して行なう。つまり、各電池から各電池の状態を表わす情報が制御部に集められる。制御部は、集められたた情報に基づいて各電池の制御を行なう。
 より詳細には、各電池に接続され、CPU及びメモリを有する制御部は、各電池における温度、電流、電圧及び使用頻度等を検出することによって各電池の状態を集中して監視するとともに、各電池を制御する。
In a battery pack, a plurality of batteries are usually used in combination in order to obtain a large energy capacity, that is, a charging capacity.
For example, the battery pack of Patent Document 1 has a plurality of batteries. For example, in Patent Document 1, for example, 168 batteries are connected in parallel and in series in order to increase the energy capacity. More specifically, 12 batteries connected in parallel form one set, and 14 sets are connected in series. Further, the battery pack of Patent Document 1 has a control unit. The control unit is a battery management controller (BMC) having a CPU and a memory. The control unit is connected to each battery of the battery pack by an electric wire. The control unit monitors the status of each battery. The control unit centrally controls each battery. That is, information indicating the state of each battery is collected from each battery in the control unit. The control unit controls each battery based on the collected information.
More specifically, the control unit connected to each battery and having a CPU and a memory centrally monitors the state of each battery by detecting the temperature, current, voltage, frequency of use, etc. in each battery, and also monitors each battery. Control the battery.
 特許文献1の電池パックでは、1つの組をなす12個の電池が並列接続されている。並列接続された電池のそれぞれは、電極の状態や電解質の状態に起因して内部抵抗といった特性のばらつきを有する。充電時、並列接続された電池には互いに等しい電圧が印加される。しかし、並列接続された電池には特性のばらつきに応じた電流が流れる。つまり、並列接続された電池の充電量は、厳密には、特性のばらつきに応じて異なる。制御部は、並列接続のため異なる充電量を有しやすい電池の充電量を、各電池の状態を検出することによって制御する。 In the battery pack of Patent Document 1, 12 batteries forming one set are connected in parallel. Each of the batteries connected in parallel has variations in characteristics such as internal resistance due to the state of the electrodes and the state of the electrolyte. When charging, batteries equal to each other are applied to the batteries connected in parallel. However, a current flows through the batteries connected in parallel according to the variation in characteristics. That is, strictly speaking, the charge amount of the batteries connected in parallel differs depending on the variation in the characteristics. The control unit controls the charge amount of batteries that tend to have different charge amounts due to the parallel connection by detecting the state of each battery.
 本発明者は、鞍乗型車両電池パックについて鞍乗型車両に適した種々の構成を検討した。本発明者は、鞍乗型車両電池パックの充電電圧を12V以上60V以下に設定するとともに、複数のリチウムイオン電池を敢えて互いに並列接続することなく敢えて直列接続することを検討した。また、本発明者は、2.5Ah以上の充電容量を有する鞍乗型車両電池パックを10C以上の連続最大充電レートを有するリチウムイオン電池で構成すること検討した。
 本発明者は、この構成によって、鞍乗型車両電池パックが簡単な構成で小型化でき短時間で充電可能となることを見いだした。2.5Ah以上の充電容量を有する鞍乗型車両電池パックの充電電圧を12V以上とすることで、鞍乗型車両電池パックは、鞍乗型車両の駆動力の増加に適した電力を充電することができる。
 このような鞍乗型車両電池パックを、10C以上の連続最大充電レートを有するリチウムイオン電池で構成する場合、複数のリチウムイオン電池を互いに並列無しで直列接続しても、鞍乗型車両電池パックの連続最大充電レートを10C以上とすることができる。
The present inventor has studied various configurations of a saddle-type vehicle battery pack suitable for a saddle-type vehicle. The present inventor has studied setting the charging voltage of the saddle-mounted vehicle battery pack to 12 V or more and 60 V or less, and intentionally connecting a plurality of lithium ion batteries in series without connecting them in parallel with each other. Further, the present inventor has studied to configure a saddle-type vehicle battery pack having a charging capacity of 2.5 Ah or more with a lithium ion battery having a continuous maximum charging rate of 10 C or more.
The present inventor has found that, with this configuration, the saddle-mounted vehicle battery pack can be miniaturized with a simple configuration and can be charged in a short time. By setting the charging voltage of the saddle-type vehicle battery pack having a charging capacity of 2.5 Ah or more to 12 V or more, the saddle-type vehicle battery pack charges electric power suitable for increasing the driving force of the saddle-type vehicle. be able to.
When such a saddle-type vehicle battery pack is composed of lithium-ion batteries having a continuous maximum charge rate of 10 C or more, even if a plurality of lithium-ion batteries are connected in series without being parallel to each other, the saddle-type vehicle battery pack The continuous maximum charging rate of is 10C or more.
 複数のリチウムイオン電池が互いに並列接続されることなく直列接続される場合、充電時に各リチウムイオン電池に流れる電流は実質的に等しくなる。即ち、各リチウムイオン電池に流れる電流は、各リチウム電池の内部抵抗に拘わらず実質的に等しくなる。このため、各リチウムイオン電池における充電量のバランスが保ちやすい。従って、例えば、各リチウムイオン電池の電流、電圧、又は温度を管理する回路が簡単化又は削除できる。例えば、並列接続されたリチウムイオン電池の状態を監視及び制御するための制御装置なしで、各リチウムイオン電池における充電量のバランスを保つことが可能である。従って、簡単な構成で小型の鞍乗型車両電池パックを実現することができる。 When a plurality of lithium-ion batteries are connected in series without being connected in parallel to each other, the current flowing through each lithium-ion battery during charging is substantially equal. That is, the currents flowing through each lithium-ion battery are substantially equal regardless of the internal resistance of each lithium-ion battery. Therefore, it is easy to maintain the balance of the charge amount in each lithium ion battery. Therefore, for example, the circuit for controlling the current, voltage, or temperature of each lithium ion battery can be simplified or deleted. For example, it is possible to keep the balance of the charge amount in each lithium ion battery without a control device for monitoring and controlling the state of the lithium ion batteries connected in parallel. Therefore, a small saddle-mounted vehicle battery pack can be realized with a simple configuration.
 また、複数のリチウムイオン電池は、互いに並列接続されることなく直列接続される構成としつつ、鞍乗型車両電池パックが充電できる最大電圧は、20V以上60V以下である。この場合、直列接続された複数のリチウムイオン電池の両端に掛かる最大電圧は、60V以下である。
 このため、鞍乗型車両電池パックは、国際電気標準会議(International Electrotechnical Commission:IEC)の規格IEC60950における「特別低電圧」(extra low voltage:ELV、又はsafety extra low voltage:SELV)に属する範囲で動作する。鞍乗型車両電池パックの電圧は低電圧であるため高電圧用に較べて絶縁構造が簡単にできる。
Further, while the plurality of lithium ion batteries are configured to be connected in series without being connected in parallel to each other, the maximum voltage that the saddle-mounted vehicle battery pack can charge is 20 V or more and 60 V or less. In this case, the maximum voltage applied to both ends of the plurality of lithium ion batteries connected in series is 60 V or less.
Therefore, the saddle-type vehicle battery pack is within the range belonging to the "extra low voltage" (ELV or safety extra low voltage: SELV) in the standard IEC60950 of the International Electrotechnical Commission (IEC). Operate. Since the voltage of the saddle-type vehicle battery pack is low, the insulation structure can be made simpler than that for high voltage.
 また、上述したように、直列接続された複数のリチウムイオン電池の両端に掛かる電圧は、「特別低電圧」に属する低い電圧である。このため、例えば「特別低電圧」の電圧よりも高電圧の範囲に属する場合と比べて少ない数のリチウムイオン電池を直列接続することができる。このため、例えば、高電圧に対応するために多くのリチウムイオン電池を用いる場合と比べて、鞍乗型車両電池パックが備える各リチウムイオン電池の充電能力の特性のばらつきを低減することが可能である。このことから、監視及び制御する回路を簡単化又は削除することができる。従って、簡単な構成で小型の鞍乗型車両電池パックを実現することができる。 Further, as described above, the voltage applied to both ends of a plurality of lithium ion batteries connected in series is a low voltage belonging to the "extra low voltage". Therefore, for example, a smaller number of lithium-ion batteries can be connected in series than in the case of belonging to a voltage range higher than the "extra-low voltage" voltage. Therefore, for example, it is possible to reduce variations in the charging capacity characteristics of each lithium-ion battery included in the saddle-type vehicle battery pack, as compared with the case where many lithium-ion batteries are used to cope with high voltage. be. From this, the circuit to be monitored and controlled can be simplified or deleted. Therefore, a small saddle-mounted vehicle battery pack can be realized with a simple configuration.
 直列接続された複数のリチウムイオン電池のそれぞれが10C以上の連続最大充電レートを有することによって、複数のリチウムイオン電池を並列接続すること無しに、鞍乗型車両電池パックとして10C以上の連続最大充電レートが実現できる。鞍乗型車両電池パックが10C以上の連続最大充電レートを有することによって、例えば、鞍乗型車両電池パックの充電容量の50%以上を3分以内の短時間で充電することが可能である。これによって、例えば、鞍乗型車両電池パックを搭載した電動車両を、従来又は現在のガスステーションにおける液体燃料の補給に掛かる時間に近い時間で充電することが可能となる。従って、充電ステーションを長時間占拠する必要がない。 Since each of the plurality of lithium-ion batteries connected in series has a continuous maximum charging rate of 10C or more, the continuous maximum charging of 10C or more as a saddle-type vehicle battery pack without connecting a plurality of lithium-ion batteries in parallel. The rate can be realized. When the saddle-type vehicle battery pack has a continuous maximum charging rate of 10 C or more, for example, 50% or more of the charge capacity of the saddle-type vehicle battery pack can be charged in a short time of 3 minutes or less. This makes it possible, for example, to charge an electric vehicle equipped with a saddle-mounted vehicle battery pack in a time close to the time required for replenishing liquid fuel in a conventional or current gas station. Therefore, it is not necessary to occupy the charging station for a long time.
 このように、並列接続を無くすことにより、並列接続されたリチウムイオン電池の状態を監視及び制御するための制御装置なしで、各リチウムイオン電池における充電量のバランスを保つことが可能である。また、絶縁構造も簡単にすることが可能となる。簡単な構成で小型の鞍乗型車両電池パックを実現することが可能である。そして、複数のリチウムイオン電池を並列接続すること無しに、鞍乗型車両電池パックとして10C以上の最大充電レートが実現できるので、鞍乗型車両電池パックを短時間で充電可能である。
 このように、簡単な構成で小型であり、鞍乗型車両の駆動力を増加できるような電力を短時間で充電可能な鞍乗型車両電池パックを実現することができる。
By eliminating the parallel connection in this way, it is possible to maintain the balance of the charge amount in each lithium ion battery without a control device for monitoring and controlling the state of the lithium ion batteries connected in parallel. In addition, the insulating structure can be simplified. It is possible to realize a small saddle-type vehicle battery pack with a simple configuration. Further, since a maximum charging rate of 10 C or more can be realized as a saddle-type vehicle battery pack without connecting a plurality of lithium-ion batteries in parallel, the saddle-type vehicle battery pack can be charged in a short time.
As described above, it is possible to realize a saddle-type vehicle battery pack that has a simple configuration, is small in size, and can charge electric power that can increase the driving force of the saddle-type vehicle in a short time.
 以上の知見に基づいて完成した本発明の各観点による鞍乗型車両電池パックは、次の構成を備える。 The saddle-mounted vehicle battery pack according to each viewpoint of the present invention completed based on the above findings has the following configurations.
 (1) 鞍乗型車両に用いる鞍乗型車両電池パックであって、
 前記鞍乗型車両電池パックは、
複数のリチウムイオン電池と、
前記複数のリチウムイオン電池を収容するケースと、
前記鞍乗型車両の車体に設けられる相手コネクタと接続され、前記車体に対し入出力される電流を伝達する電気接続コネクタと、
を備え、
 前記鞍乗型車両電池パックは、動力に変換され前記鞍乗型車両の駆動力を増加するための電力を受入れ及び出力するように、2.5Ah以上の充電容量と、12V以上60V以下の最大充電電圧と、各々が10C以上の連続最大充電レートを有する前記複数のリチウムイオン電池の並列無しの直列接続構造とを有し、前記最大充電電圧は、前記直列接続の両端の電圧に対応する電圧である。
(1) A saddle-type vehicle battery pack used for a saddle-type vehicle.
The saddle-mounted vehicle battery pack is
With multiple lithium-ion batteries
A case accommodating the plurality of lithium ion batteries and
An electrical connection connector that is connected to a mating connector provided on the vehicle body of the saddle-type vehicle and transmits a current input / output to the vehicle body.
With
The saddle-type vehicle battery pack has a charge capacity of 2.5 Ah or more and a maximum of 12 V or more and 60 V or less so as to receive and output electric power that is converted into power to increase the driving force of the saddle-type vehicle. It has a charging voltage and a series connection structure of the plurality of lithium ion batteries, each having a continuous maximum charging rate of 10C or more, without parallel connection, and the maximum charging voltage is a voltage corresponding to the voltage across the series connection. Is.
 上記構成における鞍乗型車両電池パックは、複数のリチウムイオン電池を備える。鞍乗型車両電池パックは、2.5Ah以上の充電容量と、12V以上60V以下の最大充電電圧と、複数のリチウムイオン電池の並列無しの直列接続構造とを有する。複数のリチウムイオン電池の各々は、10C以上の連続最大充電レートを有する。
 12Vは、鞍乗型車両の駆動力の増加に寄与する電源の電圧として広く用いられる動作電圧の下限である。2.5Ah以上の充電容量は、例えば携帯電話といった小電力機器の動作のための容量とは異なり、鞍乗型車両の駆動力を増加することができる電力の容量である。鞍乗型車両電池パックは、2.5Ah以上の充電容量を有し12V以上60V以下の最大充電電圧で充電されることで、鞍乗型車両の駆動力の増加に適応した電力を受入れ及び出力する。
 直列接続された複数のリチウムイオン電池のそれぞれが10C以上の連続最大充電レートを有することによって、鞍乗型車両電池パックとして10C以上の連続最大充電レートが実現できる。鞍乗型車両電池パックが10C以上の連続最大充電レートを有することによって、例えば、鞍乗型車両電池パックの充電容量の50%以上を3分以内で充電することが可能である。このため、鞍乗型車両の駆動力の増加のための電力を短時間で充電することが可能である。
The saddle-mounted vehicle battery pack in the above configuration includes a plurality of lithium-ion batteries. The saddle-mounted vehicle battery pack has a charging capacity of 2.5 Ah or more, a maximum charging voltage of 12 V or more and 60 V or less, and a series connection structure of a plurality of lithium ion batteries without parallel connection. Each of the plurality of lithium-ion batteries has a continuous maximum charging rate of 10 C or more.
12V is the lower limit of the operating voltage widely used as the voltage of the power supply that contributes to the increase in the driving force of the saddle-type vehicle. The charging capacity of 2.5 Ah or more is a capacity of electric power that can increase the driving force of a saddle-type vehicle, unlike the capacity for operating a low-power device such as a mobile phone. The saddle-type vehicle battery pack has a charging capacity of 2.5 Ah or more and is charged with a maximum charging voltage of 12 V or more and 60 V or less to receive and output electric power adapted to the increase in driving force of the saddle-type vehicle. do.
Since each of the plurality of lithium-ion batteries connected in series has a continuous maximum charging rate of 10C or more, a continuous maximum charging rate of 10C or more can be realized as a saddle-type vehicle battery pack. Since the saddle-type vehicle battery pack has a continuous maximum charging rate of 10 C or more, for example, 50% or more of the charge capacity of the saddle-type vehicle battery pack can be charged within 3 minutes. Therefore, it is possible to charge the electric power for increasing the driving force of the saddle-mounted vehicle in a short time.
 また、リチウムイオン電池のそれぞれが10C以上の連続最大充電レートを有することによって、10C以上の連続最大充電レートを有する鞍乗型車両電池パックを、複数のリチウムイオン電池の並列接続無しの構成で実現できる。
 例えば複数のリチウムイオン電池が並列接続される場合、充電時に並列接続されたリチウムイオン電池に流れる電流は、各リチウムイオン電池が有する内部抵抗に応じて異なる。つまり、各リチウムイオン電池の充電量が互いに異なる。
 これに対し、複数のリチウムイオン電池の並列無しの直列接続の構造において、充電時に各リチウムイオン電池に流れる電流は実質的に等しい。このため、各リチウムイオン電池における充電量のバランスが保ちやすい。従って、並列接続されたリチウムイオン電池の状態を監視及び制御するための制御装置無しで各リチウムイオン電池における充電量のバランスを保つことが可能である。従って、簡単な構成で小型の鞍乗型車両電池パックを実現することができる。
In addition, since each of the lithium-ion batteries has a continuous maximum charging rate of 10C or more, a saddle-type vehicle battery pack having a continuous maximum charging rate of 10C or more can be realized without connecting a plurality of lithium-ion batteries in parallel. can.
For example, when a plurality of lithium-ion batteries are connected in parallel, the current flowing through the lithium-ion batteries connected in parallel during charging differs depending on the internal resistance of each lithium-ion battery. That is, the charge amount of each lithium ion battery is different from each other.
On the other hand, in the structure of a plurality of lithium ion batteries connected in series without parallel, the current flowing through each lithium ion battery during charging is substantially equal. Therefore, it is easy to maintain the balance of the charge amount in each lithium ion battery. Therefore, it is possible to maintain the balance of the charge amount in each lithium ion battery without a control device for monitoring and controlling the state of the lithium ion batteries connected in parallel. Therefore, a small saddle-mounted vehicle battery pack can be realized with a simple configuration.
 また、複数のリチウムイオン電池は、互いに並列接続されることなく直列接続される構成としつつ、鞍乗型車両電池パックが充電できる最大電圧は、20V以上60V以下である。この場合、直列接続された複数のリチウムイオン電池の両端に掛かり得る最大電圧は、60V以下である。
 このため、鞍乗型車両電池パックは、国際電気標準会議(International Electrotechnical Commission:IEC)の規格IEC60950における「特別低電圧」(extra low voltage:ELV、又はsafety extra low voltage:SELV)に属する範囲で動作する。鞍乗型車両電池パックの電圧は低電圧であるため高電圧用に較べて絶縁構造が簡単にできる。従って、鞍乗型車両電池パックを小型化することができる。
Further, while the plurality of lithium ion batteries are configured to be connected in series without being connected in parallel to each other, the maximum voltage that the saddle-mounted vehicle battery pack can charge is 20 V or more and 60 V or less. In this case, the maximum voltage that can be applied to both ends of the plurality of lithium ion batteries connected in series is 60 V or less.
Therefore, the saddle-type vehicle battery pack is within the range belonging to the "extra low voltage" (ELV or safety extra low voltage: SELV) in the standard IEC60950 of the International Electrotechnical Commission (IEC). Operate. Since the voltage of the saddle-type vehicle battery pack is low, the insulation structure can be made simpler than that for high voltage. Therefore, the saddle-mounted vehicle battery pack can be miniaturized.
 また、上述したように、直列接続された複数のリチウムイオン電池の両端に掛かる電圧は、「特別低電圧」に属する低い電圧である。このため、例えば「特別低電圧」の電圧よりも高電圧の範囲に属する場合と比べて少ない数のリチウムイオン電池を直列接続することができる。このため、例えば、高電圧に対応するために多くのリチウムイオン電池を用いる場合と比べて、鞍乗型車両電池パックが備える各リチウムイオン電池の充電能力の特性のばらつきを低減することが可能である。このことからも、監視及び制御する回路をさらに簡単化又は削除することができる。従って、簡単な構成で小型の鞍乗型車両電池パックを実現することができる。 Further, as described above, the voltage applied to both ends of a plurality of lithium ion batteries connected in series is a low voltage belonging to the "extra low voltage". Therefore, for example, a smaller number of lithium-ion batteries can be connected in series than in the case of belonging to a voltage range higher than the "extra-low voltage" voltage. Therefore, for example, it is possible to reduce variations in the charging capacity characteristics of each lithium-ion battery included in the saddle-type vehicle battery pack, as compared with the case where many lithium-ion batteries are used to cope with high voltage. be. From this as well, the circuits to be monitored and controlled can be further simplified or deleted. Therefore, a small saddle-mounted vehicle battery pack can be realized with a simple configuration.
 このように、鞍乗型車両電池パックは、2.5Ah以上の充電容量と12V以上60V以下の最大充電電圧を有することで、鞍乗型車両の駆動力に対応できる電力を充電できる。
 10C以上の連続最大充電レートを有するリチウムイオン電池の直列接続によって鞍乗型車両電池パックが構成されるため、鞍乗型車両電池パックは鞍乗型車両の駆動力に対応できる電力を短時間で充電できる。
 複数のリチウムイオン電池のそれぞれが10C以上の連続最大充電レートを有するので、並列無しの直列接続構造を採用することができる。並列接続を無くすことにより、各リチウムイオン電池を監視する回路を簡単化又は削除することが可能である。また、12V以上60V以下の最大充電電圧によって、絶縁構造も簡単にすることが可能となる。
 従って、簡単な構成で小型であり、鞍乗型車両の駆動力を増加できるような電力を短時間で充電可能な鞍乗型車両電池パックが実現できる。
As described above, the saddle-type vehicle battery pack has a charging capacity of 2.5 Ah or more and a maximum charging voltage of 12 V or more and 60 V or less, so that it can charge electric power corresponding to the driving force of the saddle-type vehicle.
Since the saddle-type vehicle battery pack is constructed by connecting lithium-ion batteries having a continuous maximum charging rate of 10C or more in series, the saddle-type vehicle battery pack can generate electric power that can correspond to the driving force of the saddle-type vehicle in a short time. Can be charged.
Since each of the plurality of lithium-ion batteries has a continuous maximum charging rate of 10 C or more, a series connection structure without parallel can be adopted. By eliminating the parallel connection, it is possible to simplify or eliminate the circuit that monitors each lithium-ion battery. Further, the maximum charging voltage of 12 V or more and 60 V or less makes it possible to simplify the insulating structure.
Therefore, it is possible to realize a saddle-type vehicle battery pack that has a simple configuration, is small in size, and can charge electric power that can increase the driving force of the saddle-type vehicle in a short time.
 本発明の一つの観点によれば、鞍乗型車両電池パックは、以下の構成を採用できる。 According to one viewpoint of the present invention, the saddle-mounted vehicle battery pack can adopt the following configuration.
 (2) (1)の鞍乗型車両電池パックであって、
 前記複数のリチウムイオン電池の各々は、独立した負極を有し、前記独立した負極は、スピネル型チタン酸リチウム、ニオブチタン含有複合酸化物、及びグラファイトからなる群から選択される少なくともいずれかを含有し、且つ他の独立した負極と互いに電気的に接続されずに正極又は負極と接続されることにより前記複数のリチウムイオン電池の並列無しの直列接続構造を実現する。
(2) The saddle-mounted vehicle battery pack of (1).
Each of the plurality of lithium ion batteries has an independent negative electrode, and the independent negative electrode contains at least one selected from the group consisting of spinnel-type lithium titanate, niobium titanium-containing composite oxide, and graphite. Moreover, the series connection structure of the plurality of lithium ion batteries without parallel is realized by connecting to the positive electrode or the negative electrode without being electrically connected to each other with other independent negative electrodes.
 上記構成によれば、複数のリチウムイオン電池の各々は、独立した負極を有する。並列無しの構造により、負極の各々は、他の負極から電気的に独立している。負極の各々は、他の独立した負極と電気的に接続されていない。これら負極の各々は、スピネル型チタン酸リチウム、ニオブチタン含有複合酸化物、及びグラファイトからなる群から選択される少なくともいずれかを含有する。
 スピネル型チタン酸リチウム、ニオブチタン含有複合酸化物、及びグラファイトからなる群から選択される少なくともいずれかを含有する負極は、例えば、日本の特開2015-153719で説明されるように負極においてリチウムの析出により内部短絡が生じる可能性を低減することができる。このような負極を有する複数のリチウムイオン電池が負極同士の電気的接続を避けるように接続されることによって、10C以上の連続最大充電レートで充電される構成でも、各リチウムイオン電池を監視する回路をさらに簡単化又は削除することができる。従って、より簡単な構成で小型の鞍乗型車両電池パックを実現することができる。
According to the above configuration, each of the plurality of lithium ion batteries has an independent negative electrode. Due to the non-parallel structure, each of the negative electrodes is electrically independent of the other negative electrodes. Each of the negative electrodes is not electrically connected to the other independent negative electrode. Each of these negative electrodes contains at least one selected from the group consisting of spinel-type lithium titanate, niobium-titanium-containing composite oxides, and graphite.
A negative electrode containing at least one selected from the group consisting of spinel-type lithium titanate, niobium-titanium-containing composite oxide, and graphite is such that lithium precipitation occurs in the negative electrode as described in Japanese Patent Application Laid-Open No. 2015-153719. Therefore, the possibility of an internal short circuit can be reduced. A circuit that monitors each lithium-ion battery even in a configuration in which a plurality of lithium-ion batteries having such a negative electrode are connected so as to avoid electrical connection between the negative electrodes so as to be charged at a continuous maximum charging rate of 10 C or more. Can be further simplified or deleted. Therefore, a small saddle-mounted vehicle battery pack can be realized with a simpler configuration.
 本発明の一つの観点によれば、鞍乗型車両電池パックは、以下の構成を採用できる。
 (3) (1)又は(2)の鞍乗型車両電池パックであって、
 前記複数のリチウムイオン電池と直列に接続され、前記複数のリチウムイオン電池に流れる電流を遮断する電流遮断器を備える。
According to one aspect of the present invention, the saddle-mounted vehicle battery pack can adopt the following configuration.
(3) The saddle-mounted vehicle battery pack according to (1) or (2).
A current circuit breaker that is connected in series with the plurality of lithium ion batteries and cuts off the current flowing through the plurality of lithium ion batteries is provided.
 上記構成によれば、複数のリチウムイオン電池の電流が不用意に電気接続コネクタから外部に流れる事態を抑制することが可能である。このため、例えば鞍乗型車両電池パックが車体から取外される場合又は車体に取付けられる作業の最中に、電気接続コネクタが鞍乗型車両電池パックの外部で不用意に何らかの導体に接触しショートによる大電流によって導体が電気接続コネクタに溶着する事態を抑制することが可能である。このため、制御装置を簡単化又は削除して、簡単な構成で、例えば外部の導体が電気接続コネクタに溶着する事態を抑制することが可能である。 According to the above configuration, it is possible to suppress a situation in which the currents of a plurality of lithium ion batteries inadvertently flow from the electrical connection connector to the outside. For this reason, for example, when the saddle-type vehicle battery pack is removed from the vehicle body or during the work of being attached to the vehicle body, the electrical connector inadvertently comes into contact with some conductor outside the saddle-type vehicle battery pack. It is possible to suppress the situation where the conductor is welded to the electrical connector due to a large current due to a short circuit. Therefore, it is possible to simplify or delete the control device and suppress the situation where, for example, an external conductor is welded to the electrical connector with a simple configuration.
 本発明の一つの観点によれば、鞍乗型車両電池パックは、以下の構成を採用できる。
 (4) (1)から(3)のいずれか1の鞍乗型車両電池パックであって、
 前記鞍乗型車両電池パックは、前記複数のリチウムイオン電池の各々から検出される電流、電圧又は温度のうち、少なくとも1つのパラメータを取得するとともに、取得された前記少なくとも1つのパラメータに基づいて、前記複数のリチウムイオン電池のうち、少なくとも1つの前記リチウムイオン電池の電圧及び/又は電流を変更するように構成された制御装置を備えていない。
According to one aspect of the present invention, the saddle-mounted vehicle battery pack can adopt the following configuration.
(4) A saddle-mounted vehicle battery pack according to any one of (1) to (3).
The saddle-type vehicle battery pack acquires at least one parameter of the current, voltage, or temperature detected from each of the plurality of lithium-ion batteries, and is based on the acquired at least one parameter. It does not include a control device configured to change the voltage and / or current of at least one of the plurality of lithium ion batteries.
 上記構成においては、複数のリチウムイオン電池の各々は、10C以上の連続最大充電レートを有するとともに互いに並列接続されることなく直列接続され、直列接続の両端の電圧に対応する鞍乗型車両電池パックの最大充電電圧は60V以下である。複数のリチウムイオン電池の各々が並列接続されていないので、上記構成は、上述の制御装置を省略しつつ、各リチウムイオン電池における充電量のバランスを保つことが可能である。従って、簡単な構成で小型であり、短時間で充電可能な鞍乗型車両電池パックを実現することができる。 In the above configuration, each of the plurality of lithium-ion batteries has a continuous maximum charging rate of 10 C or more and is connected in series without being connected in parallel to each other, and is a saddle-type vehicle battery pack corresponding to the voltage across the series connection. The maximum charging voltage of is 60 V or less. Since each of the plurality of lithium-ion batteries is not connected in parallel, the above configuration can maintain the balance of the charge amount in each lithium-ion battery while omitting the above-mentioned control device. Therefore, it is possible to realize a saddle-type vehicle battery pack that has a simple configuration, is compact, and can be charged in a short time.
 本発明の一つの観点によれば、鞍乗型車両電池パックは、以下の構成を採用できる。
 (5) 鞍乗型車両であって、
前記鞍乗型車両は、
(1)から(4)のいずれか1の鞍乗型車両電池パックと、
前記鞍乗型車両電池パックの前記電気接続コネクタと接続されるように構成された相手コネクタと、
駆動輪と、
前記鞍乗型車両電池パックから前記相手コネクタを介したモータへの電力供給と、前記モータから前記相手コネクタを介した前記鞍乗型車両電池パックへの電力供給とを制御するように構成されたモータ制御装置と、
前記モータ制御装置から供給される電力によって前記駆動輪を駆動する一方、前記駆動輪が駆動されることにより電力を発生させるように構成された前記モータと
を備え、
前記複数のリチウムイオン電池の各々から検出される電流、電圧又は温度のうち、少なくとも1つのパラメータを取得するとともに、取得された前記少なくとも1つのパラメータに基づいて、前記複数のリチウムイオン電池のうち、少なくとも1つの前記リチウムイオン電池の電圧及び/又は電流を変更するように構成された制御装置を備えていない。
According to one aspect of the present invention, the saddle-mounted vehicle battery pack can adopt the following configuration.
(5) It is a saddle-mounted vehicle.
The saddle-mounted vehicle is
The saddle-mounted vehicle battery pack of any one of (1) to (4) and
A mating connector configured to be connected to the electrical connector of the saddle-mounted vehicle battery pack,
With the drive wheels
It is configured to control the power supply from the saddle-type vehicle battery pack to the motor via the mating connector and the power supply from the motor to the saddle-mounted vehicle battery pack via the mating connector. Motor controller and
The motor is provided with the motor configured to drive the drive wheels with electric power supplied from the motor control device, while generating electric power by driving the drive wheels.
Of the plurality of lithium ion batteries, at least one parameter of the current, voltage or temperature detected from each of the plurality of lithium ion batteries is acquired, and based on the acquired at least one parameter, among the plurality of lithium ion batteries. It does not include a control device configured to change the voltage and / or current of at least one of the lithium-ion batteries.
 上記構成によれば、簡単な構成で小型であり、短時間で電池パックに充電可能な鞍乗型車両を実現することができる。 According to the above configuration, it is possible to realize a saddle-mounted vehicle that has a simple configuration, is compact, and can charge the battery pack in a short time.
 本発明の一つの観点によれば、鞍乗型車両は、以下の構成を採用できる。
 (6) (5)の鞍乗型車両であって、
 前記鞍乗型車両は、
前記鞍乗型車両の左右方向に延びるように設けられた操舵用のバーハンドルと、
運転者が跨って着座するように構成されたサドルと
を備え、
 リーン車両として、旋回時に前記バーハンドルを把持する運転者によってカーブ内側にリーンするように体重移動が行われることにより旋回するように構成されている。
According to one aspect of the present invention, the saddle-mounted vehicle can adopt the following configuration.
(6) The saddle-mounted vehicle of (5).
The saddle-mounted vehicle is
A steering bar handle provided so as to extend in the left-right direction of the saddle-mounted vehicle, and
Equipped with a saddle configured for the driver to sit across
As a lean vehicle, the driver who grips the bar handle at the time of turning is configured to turn by shifting the weight so as to lean inward of the curve.
 リーン車両としての鞍乗型車両にとって、運転者の操作に対する応答性や軽快性は重要であり、小型化に対する要求が高い。その一方で、鞍乗型車両には鞍乗型車両電池パックが搭載される。そのため、リーン車両としての鞍乗型車両では、応答性や軽快性を高いレベルで実現することが望まれていた。上記構成によれば、応答性や軽快性に優れ、簡単な構成で小型化でき短時間で電池パックを充電可能な、リーン車両としての鞍乗型車両を提供できる。 For a saddle-type vehicle as a lean vehicle, responsiveness and agility to the driver's operation are important, and there is a high demand for miniaturization. On the other hand, the saddle-mounted vehicle is equipped with a saddle-mounted vehicle battery pack. Therefore, it has been desired to realize a high level of responsiveness and agility in a saddle-mounted vehicle as a lean vehicle. According to the above configuration, it is possible to provide a saddle-type vehicle as a lean vehicle, which is excellent in responsiveness and lightness, can be miniaturized with a simple configuration, and can charge a battery pack in a short time.
 鞍乗型車両は、鞍乗型車両電池パックに蓄えられた電力で鞍乗型車両の駆動力を増加できる。ここでいう電力は、例えば、少なくとも、二次電池パックに蓄えられた化学エネルギーを含む。例えば、鞍乗型車両は、キャパシタも備え、化学エネルギーに加えて、キャパシタに蓄えられた電気物理エネルギーでも走行するように構成されていてもよい。鞍乗型車両は、例えばエンジンを有さない車両である。鞍乗型車両は、例えば、ピュア電動鞍乗型車両である。ただし、鞍乗型車両はこれに限られず、内燃機関としてのエンジンが搭載された車両でもよい。例えば、車両の外部から供給される電力で充電する機能を有し、搭載されたエンジンでも走行可能なプラグインハイブリッド車は、鞍乗型車両に含まれる。 The saddle-type vehicle can increase the driving force of the saddle-type vehicle by the electric power stored in the saddle-type vehicle battery pack. The electric power referred to here includes, for example, at least the chemical energy stored in the secondary battery pack. For example, a saddle-mounted vehicle may be provided with a capacitor and may be configured to run on the electrophysical energy stored in the capacitor in addition to the chemical energy. A saddle-mounted vehicle is, for example, a vehicle that does not have an engine. The saddle-mounted vehicle is, for example, a pure electric saddle-mounted vehicle. However, the saddle-mounted vehicle is not limited to this, and a vehicle equipped with an engine as an internal combustion engine may be used. For example, a plug-in hybrid vehicle having a function of charging with electric power supplied from the outside of the vehicle and capable of running on an engine mounted on the vehicle is included in a saddle-mounted vehicle.
 鞍乗型車両電池パックは、鞍乗型車両が走行する場合、駆動輪に駆動されるモータが発生する電力により充電される。また、鞍乗型車両電池パックは、鞍乗型車両の外部に設けられた充電装置に接続され、充電される。また、鞍乗型車両電池パックがエンジンを搭載する鞍乗型車両に用いられる場合、鞍乗型車両電池パックは、エンジンで駆動される発電機の電力で充電される。 The saddle-type vehicle battery pack is charged by the electric power generated by the motor driven by the drive wheels when the saddle-type vehicle runs. Further, the saddle-mounted vehicle battery pack is connected to a charging device provided outside the saddle-mounted vehicle and charged. Further, when the saddle-type vehicle battery pack is used for a saddle-type vehicle equipped with an engine, the saddle-type vehicle battery pack is charged by the electric power of a generator driven by the engine.
 鞍乗型車両は、騎乗スタイルで乗車する車両である。運転者は、鞍乗型車両のサドルに跨って着座する。鞍乗型車両は、例えば、リーン車両である。鞍乗型車両としては、例えば、スクータ型、モペット型、オフロード型、オンロード型の自動二輪車が挙げられる。また、鞍乗型車両は、自動二輪車に限定されず、例えば、ATV(All-Terrain Vehicle)等であってもよく、自動三輪車であってもよい。自動三輪車は、2つの前輪と1つの後輪とを備えていてもよく、1つの前輪と2つの後輪とを備えていてもよい。 A saddle-riding vehicle is a vehicle that rides in a riding style. The driver sits across the saddle of a saddle-mounted vehicle. The saddle-mounted vehicle is, for example, a lean vehicle. Examples of the saddle-type vehicle include a scooter type, a moped type, an off-road type, and an on-road type motorcycle. Further, the saddle-mounted vehicle is not limited to a motorcycle, and may be, for example, an ATV (All-Terrain Vehicle) or the like, or may be a motorcycle. A tricycle may have two front wheels and one rear wheel, or may have one front wheel and two rear wheels.
 鞍乗型車両電池パックは、鞍乗型車両に用いる電池パックである。鞍乗型車両電池パックは、複数のリチウムイオン電池を一体に組合せたパックである。鞍乗型車両電池パックは、鞍乗型車両の車体に搭載される。
 鞍乗型車両電池パックは、例えば、車体に対し、交換不可能に搭載される。
The saddle-type vehicle battery pack is a battery pack used for a saddle-type vehicle. The saddle-mounted vehicle battery pack is a pack in which a plurality of lithium-ion batteries are integrally combined. The saddle-type vehicle battery pack is mounted on the body of the saddle-type vehicle.
The saddle-mounted vehicle battery pack is, for example, mounted on the vehicle body in a non-replaceable manner.
 ただし、鞍乗型車両電池パックは、特に限定されず、例えば車体に対し交換可能に搭載されてもよい。鞍乗型車両電池パックは、キー以外の例えばスパナといった工具無しに車体から取り外し可能でもよく、あるいは、スパナといった工具を用いることによって車体に対し交換が可能でもよい。 However, the saddle-mounted vehicle battery pack is not particularly limited, and may be replaceably mounted on the vehicle body, for example. The saddle-mounted vehicle battery pack may be removable from the vehicle body without a tool other than a key, such as a spanner, or may be replaceable with respect to the vehicle body by using a tool such as a spanner.
 リチウムイオン電池は、充電及び放電が可能な電池である。リチウムイオン電池は、電極の化学反応によって充電及び放電を行う二次電池である。リチウムイオン電池は、電極の酸化及び還元反応によって充電及び放電を行う。リチウムイオン電池は、蓄えられた化学エネルギーを電気エネルギーに変換する。リチウムイオン電池の端子電圧は、電池に蓄えられた電力量と比例しない。例えば、リチウムイオンキャパシタは、リチウムイオン電池に含まれない。
 リチウムイオン電池は、正極にリチウム酸化物を含有する。正極にリチウム金属を用いるリチウム電池は、リチウムイオン電池に含まれない。リチウムイオン電池は、例えば、有機溶媒といった非水電解質を用いる非水リチウムイオン電池である。
 リチウムイオン電池は、鞍乗型車両のモータを駆動するための電力を蓄えることができる電池である。リチウムイオン電池は、鞍乗型車両の外部から供給される電力を蓄えることができる。また、リチウムイオン電池は、鞍乗型車両のモータが発電する場合、モータから供給される電力を蓄えることができる。即ち、モータの回生電流を蓄えることができる。
Lithium-ion batteries are batteries that can be charged and discharged. A lithium ion battery is a secondary battery that charges and discharges by a chemical reaction of electrodes. Lithium-ion batteries are charged and discharged by oxidation and reduction reactions of electrodes. Lithium-ion batteries convert stored chemical energy into electrical energy. The terminal voltage of a lithium-ion battery is not proportional to the amount of power stored in the battery. For example, lithium ion capacitors are not included in lithium ion batteries.
Lithium-ion batteries contain a lithium oxide in the positive electrode. Lithium batteries that use lithium metal for the positive electrode are not included in lithium ion batteries. The lithium ion battery is a non-aqueous lithium ion battery that uses a non-aqueous electrolyte such as an organic solvent.
A lithium-ion battery is a battery that can store electric power for driving a motor of a saddle-type vehicle. The lithium-ion battery can store electric power supplied from the outside of the saddle-type vehicle. Further, the lithium ion battery can store the electric power supplied from the motor when the motor of the saddle-type vehicle generates electric power. That is, the regenerative current of the motor can be stored.
 最大充電レートとは、リチウムイオン電池又は鞍乗型車両電池パックが許容する最大の最大充電レートである。最大充電レートとは、充電のスピードを表す。単位はCである。連続最大充電レートは、瞬間的でなく、連続して充電される場合に許容する最大の最大充電レートである。連続充電の場合即ち定電流充電測定の場合、電池の容量を1時間で完全充電させる電流の大きさは、1Cと定義される。例えば、電池の容量が2.5Ahである場合、1Cは、2.5Aである。 The maximum charge rate is the maximum charge rate allowed by a lithium-ion battery or a saddle-type vehicle battery pack. The maximum charging rate represents the speed of charging. The unit is C. The continuous maximum charge rate is the maximum maximum charge rate allowed when charging continuously rather than instantaneously. In the case of continuous charging, that is, in the case of constant current charging measurement, the magnitude of the current that fully charges the capacity of the battery in one hour is defined as 1C. For example, when the capacity of the battery is 2.5Ah, 1C is 2.5A.
 電池の容量又は充電容量は、電池に充電可能な電力の量である。単位はAhである。充電容量は、放電容量と等しい。放電容量は、例えば満充電された電池が初期電圧の出力とともに電流の出力を開始する時から、出力電圧が終止電圧に至る時まで出力された電流の時間累積量である。放電条件は、例えば10時間の放電で終止電圧に至るような電流の放電である(10時間率)。鞍乗型車両電池パックは、リチウムイオン電池の直列接続によって構成される。このため、放電容量の条件である放電電圧は、鞍乗型車両電池パックが有するリチウムイオン電池の数によって異なる。ただし、放電容量は、リチウムイオン電池の数によらず定められる。
 鞍乗型車両電池パックが2.5Ah以上の充電容量を有することにより、鞍乗型車両の駆動力の増加に適した電力を充電又は放電することができる。例えば、鞍乗型車両電池パック1の12Vの出力電圧と、2.5Ahの充電容量を有する場合、50Aの電流を20秒出力することは約10%の電力消費に相当する。この消費によって約600W、即ち単純には約0.8psの駆動力アシストが20秒間可能になる。2.5Ah以上の充電容量は、充電容量の50%を用いて、少なくとも充電無しに20秒の駆動力増加を5回連続して行なうことが可能な程度の容量である。
 例えば2.5Ah以上の充電容量を有する鞍乗型車両電池パックは、例えばキャパシタ等の電気物理エネルギーを充電する装置よりも小型である。
The capacity or charge capacity of a battery is the amount of power that can be charged to the battery. The unit is Ah. The charge capacity is equal to the discharge capacity. The discharge capacity is, for example, the time cumulative amount of the output current from the time when the fully charged battery starts to output the current together with the output of the initial voltage to the time when the output voltage reaches the final voltage. The discharge condition is, for example, the discharge of a current that reaches the final voltage after 10 hours of discharge (10-hour rate). The saddle-mounted vehicle battery pack consists of a series connection of lithium-ion batteries. Therefore, the discharge voltage, which is a condition of the discharge capacity, differs depending on the number of lithium ion batteries contained in the saddle-type vehicle battery pack. However, the discharge capacity is determined regardless of the number of lithium-ion batteries.
When the saddle-type vehicle battery pack has a charging capacity of 2.5 Ah or more, it is possible to charge or discharge electric power suitable for increasing the driving force of the saddle-type vehicle. For example, when the saddle-type vehicle battery pack 1 has an output voltage of 12 V and a charging capacity of 2.5 Ah, outputting a current of 50 A for 20 seconds corresponds to about 10% power consumption. This consumption enables driving force assist of about 600 W, that is, simply about 0.8 ps, for 20 seconds. The charging capacity of 2.5 Ah or more is such that 50% of the charging capacity can be used to continuously increase the driving force for 20 seconds at least five times without charging.
For example, a saddle-type vehicle battery pack having a charging capacity of 2.5 Ah or more is smaller than a device for charging electrophysical energy such as a capacitor.
 電気接続コネクタは、車体に対し入出力される電流を伝達する。例えば、電気接続コネクタは、鞍乗型車両のモータに向けて出力された電流を伝達する。また例えば、電気接続コネクタは、鞍乗型車両のモータが発電する場合、モータから供給される電流を伝達する。
 電気接続コネクタは、鞍乗型車両の外部から供給される電流を伝達するコネクタとして利用されてもよい。但し、電気接続コネクタは、鞍乗型車両の外部から供給される電流を伝達するコネクタと異なるコネクタとして設けられてもよい。
The electrical connector transmits the current input and output to the vehicle body. For example, the electrical connector transmits the current output to the motor of the saddle-type vehicle. Further, for example, the electric connector transmits the current supplied from the motor when the motor of the saddle-type vehicle generates electricity.
The electrical connector may be used as a connector for transmitting a current supplied from the outside of the saddle-type vehicle. However, the electrical connection connector may be provided as a connector different from the connector that transmits the current supplied from the outside of the saddle-type vehicle.
 また、電気接続コネクタは、例えばケースに取付けられている。電気接続コネクタは、例えばケースに支持されている。電気接続コネクタは、例えばケースに固定されている。
 但し、電気接続コネクタは、これに限られず、例えば相手コネクタとの接続がしやすいように揺動自在にケースに支持されてもよい。また、電気接続コネクタは、例えばケースを貫通してケースの外部に延出したケーブルに接続されていてもよい。即ち、電気接続コネクタはケースに支持されることなく、ケーブルを介してケースと物理的に接続されていてもよい。つまり、電気接続コネクタは、例えばケースに取付けられていなくともよい。
Further, the electrical connector is attached to, for example, a case. The electrical connector is supported, for example, in a case. The electrical connector is fixed to the case, for example.
However, the electrical connection connector is not limited to this, and may be swingably supported by the case so that it can be easily connected to the mating connector, for example. Further, the electrical connector may be connected to, for example, a cable extending through the case and extending to the outside of the case. That is, the electrical connector may be physically connected to the case via a cable without being supported by the case. That is, the electrical connector does not have to be attached to the case, for example.
 接続には、途中に電気部品が挿入された状態を含む。このような電気部品としては、例えば、スイッチ、電流遮断器、抵抗器、接続端子、及びヒューズが挙げられる。なお、接続は、例えば、リード線の配線による。ただし、配線は、1つのリード線で構成されるものに限られず、繋ぎ合わされた複数本のリード線でもよい。また、配線は、例えば金属の板又は棒でもよい。配線は、例えば屈曲部又は湾曲部を有する金属の板又は棒でもよい。 The connection includes a state in which an electrical component is inserted in the middle. Examples of such electrical components include switches, current circuit breakers, resistors, connection terminals, and fuses. The connection is, for example, by wiring a lead wire. However, the wiring is not limited to one composed of one lead wire, and may be a plurality of connected lead wires. Further, the wiring may be, for example, a metal plate or a rod. The wiring may be, for example, a metal plate or rod having a bent portion or a curved portion.
 鞍乗型車両電池パックが動力に変換されて鞍乗型車両の駆動力を増加するための電力を受入れ及び出力することは、鞍乗型車両電池パックが放電時に出力する電力が動力に変換されて鞍乗型車両の駆動力の増加に寄与することを意味する。電力は、例えばモータによって動力に変換される。変換された動力は、最終的に車輪に伝達される。
 例えば、鞍乗型車両は、主に鞍乗型車両電池パックに充電された電力によって走行するピュア電動車両である。鞍乗型車両の駆動力の増加は、鞍乗型車両電池パックに充電された電力に依存する。但し、鞍乗型車両は、特に限定されず、内燃機関としてのエンジンを有してもよい。例えば、電力は、モータによって動力に変換され、エンジンの駆動に用いられ、その結果、鞍乗型車両の駆動力を増加してもよい。また、例えば、エンジンに発電機が設けられ、鞍乗型車両電池パックに充電された電力と発電機の電力がモータに供給されても良い。
When the saddle-type vehicle battery pack is converted into power to receive and output the electric power for increasing the driving force of the saddle-type vehicle, the electric power output by the saddle-type vehicle battery pack at the time of discharge is converted into power. It means that it contributes to the increase of the driving force of the saddle-mounted vehicle. Electric power is converted into power by, for example, a motor. The converted power is finally transmitted to the wheels.
For example, a saddle-type vehicle is a pure electric vehicle that mainly runs on electric power charged in a saddle-type vehicle battery pack. The increase in driving force of a saddle-type vehicle depends on the electric power charged in the saddle-type vehicle battery pack. However, the saddle-mounted vehicle is not particularly limited and may have an engine as an internal combustion engine. For example, the electric power may be converted into power by a motor and used to drive the engine, resulting in an increase in the driving force of the saddle-type vehicle. Further, for example, a generator may be provided in the engine, and the electric power charged in the saddle-type vehicle battery pack and the electric power of the generator may be supplied to the motor.
 電流遮断器は、電流を伝達する状態と電流を遮断する状態とを切り替えることができる電気部品である。電流遮断器は、例えば、電流の状態に応じて電流を伝達する状態から電流を遮断する状態に切り替わる電気部品である。このような電流遮断器として、例えば、ヒューズ及びブレーカが挙げられる。電流遮断器は、特に限定されず、例えば、操作に応じて電流を伝達する状態から電流を遮断する状態に切り替わる電気部品でもよい。このような電流遮断器として、例えば、リレー、スイッチ、及びサービスプラグが挙げられる。 A current circuit breaker is an electrical component that can switch between a state in which a current is transmitted and a state in which a current is cut off. A current circuit breaker is, for example, an electric component that switches from a state in which a current is transmitted to a state in which a current is cut off according to a state of the current. Examples of such a current breaker include fuses and breakers. The current circuit breaker is not particularly limited, and may be, for example, an electric component that switches from a state in which a current is transmitted to a state in which a current is cut off according to an operation. Such current breakers include, for example, relays, switches, and service plugs.
 本明細書にて使用される専門用語は特定の実施例のみを定義する目的であって発明を制限する意図を有しない。
 本明細書にて使用される用語「および/または」はひとつの、または複数の関連した列挙された構成物のあらゆるまたはすべての組み合わせを含む。
 本明細書中で使用される場合、用語「含む、備える(including)」「含む、備える(comprising)」または「有する(having)」およびその変形の使用は、記載された特徴、工程、操作、要素、成分および/またはそれらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、および/またはそれらのグループのうちの1つまたは複数を含むことができる。
 本明細書中で使用される場合、用語「取り付けられた」、「結合された」および/またはそれらの等価物は広く使用され、特に指定しない限り直接的および間接的な取り付け、および結合の両方を包含する。
 他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。
 一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的または過度に形式的な意味で解釈されることはない。
 本発明の説明においては、多数の技術および工程が開示されていると理解される。
 これらの各々は個別の利益を有し、それぞれは、他の開示された技術の1つ以上、または、場合によっては全てと共に使用することもできる。
 したがって、明確にするために、この説明は、不要に個々のステップの可能な組み合わせをすべて繰り返すことを控える。
 それにもかかわらず、明細書および特許請求の範囲は、そのような組み合わせがすべて本発明および請求項の範囲内にあることを理解して読まれるべきである。
 本明細書では、新しい鞍乗型車両電池パックについて説明される。
 以下の説明では、説明の目的で、本発明の完全な理解を提供するために多数の具体的な詳細が述べられる。
 しかしながら、当業者には、これらの特定の詳細なしに本発明を実施できることが明らかである。
 本開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面または説明によって示される特定の実施形態に限定することを意図するものではない。
The terminology used herein is for the purpose of defining only specific embodiments and is not intended to limit the invention.
As used herein, the term "and / or" includes any or all combinations of one or more related listed components.
As used herein, the use of the terms "including, including,""comprising," or "having," and variations thereof, is a feature, process, operation, described. It identifies the presence of elements, components and / or their equivalents, but can include one or more of steps, actions, elements, components, and / or groups thereof.
As used herein, the terms "attached", "combined" and / or their equivalents are widely used and are both direct and indirect attachments and bindings unless otherwise specified. Including.
Unless otherwise defined, all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by those skilled in the art to which the present invention belongs.
Terms such as those defined in commonly used dictionaries should be construed to have meaning consistent with the relevant technology and in the context of the present disclosure and are expressly defined herein. Unless it is, it will not be interpreted in an ideal or overly formal sense.
It is understood that a number of techniques and processes are disclosed in the description of the present invention.
Each of these has its own interests, and each may be used in conjunction with one or more, or in some cases all, of the other disclosed techniques.
Therefore, for clarity, this description refrains from unnecessarily repeating all possible combinations of individual steps.
Nevertheless, the specification and claims should be read with the understanding that all such combinations are within the scope of the present invention and claims.
A new saddle-mounted vehicle battery pack is described herein.
In the following description, for purposes of illustration, a number of specific details are given to provide a complete understanding of the invention.
However, it will be apparent to those skilled in the art that the present invention can be practiced without these particular details.
The present disclosure should be considered as an example of the invention and is not intended to limit the invention to the particular embodiments set forth in the drawings or description below.
 本発明によれば、簡単な構成で小型化でき短時間で充電可能な鞍乗型車両電池パックを実現することができる。 According to the present invention, it is possible to realize a saddle-type vehicle battery pack that can be miniaturized with a simple configuration and can be charged in a short time.
第一実施形態に係る鞍乗型車両電池パック、鞍乗型車両電池パックを搭載した鞍乗型車両、及び比較例を模式的に示す図である。It is a figure which shows typically the saddle-type vehicle battery pack which concerns on 1st Embodiment, the saddle-type vehicle which mounted the saddle-type vehicle battery pack, and the comparative example. 図1に示す第一実施形態に係る鞍乗型車両電池パックをより拡大して示す図である。It is a figure which shows the saddle type vehicle battery pack which concerns on 1st Embodiment shown in FIG. 1 in a more enlarged view. 図1に示した鞍乗型車両をより詳細に示す図である。It is a figure which shows the saddle-riding type vehicle shown in FIG. 1 in more detail. 第二実施形態に係る鞍乗型車両電池パックを模式的に示す図である。It is a figure which shows typically the saddle type vehicle battery pack which concerns on 2nd Embodiment.
 以下、実施形態が、図面を参照しつつ説明される。 Hereinafter, embodiments will be described with reference to the drawings.
[第一実施形態]
 図1は、第一実施形態に係る鞍乗型車両電池パック、鞍乗型車両電池パックを搭載した鞍乗型車両、及び、比較例を模式的に示す図である。図1のパート(a-1)は、第一実施形態に係る鞍乗型車両電池パックを搭載した鞍乗型車両を模式的に示す。図1のパート(b-1)は、第一実施形態に係る鞍乗型車両電池パックを模式的に示す。
 図1のパート(a-2)は、比較例の鞍乗型車両電池パックを搭載した鞍乗型車両を模式的に示す。図1のパート(b-2)は、比較例の鞍乗型車両電池パックを模式的に示す。
 図2は、図1に示す第一実施形態に係る鞍乗型車両電池パックをより拡大して示す図である。
[First Embodiment]
FIG. 1 is a diagram schematically showing a saddle-mounted vehicle battery pack, a saddle-mounted vehicle battery pack equipped with a saddle-mounted vehicle battery pack, and a comparative example according to the first embodiment. Part (a-1) of FIG. 1 schematically shows a saddle-type vehicle equipped with a saddle-type vehicle battery pack according to the first embodiment. Part (b-1) of FIG. 1 schematically shows a saddle-type vehicle battery pack according to the first embodiment.
Part (a-2) of FIG. 1 schematically shows a saddle-type vehicle equipped with a saddle-type vehicle battery pack of a comparative example. Part (b-2) of FIG. 1 schematically shows a saddle-type vehicle battery pack of a comparative example.
FIG. 2 is a magnified view of the saddle-mounted vehicle battery pack according to the first embodiment shown in FIG.
 図1のパート(b-1)に示す鞍乗型車両電池パック1は、鞍乗型車両100に用いる電池パックである。鞍乗型車両電池パック1は、動力に変換されて鞍乗型車両100の駆動力を増加するための電力を受入れ及び出力する。鞍乗型車両電池パック1は、充電及び放電が可能な電池パックである。鞍乗型車両電池パック1は、最大充電電圧以下の電圧で充電される。鞍乗型車両電池パック1の最大充電電圧は、12V以上60V以下である。鞍乗型車両電池パック1の最大充電電圧は、例えば48Vである。但し、最大充電電圧は、例えば14Vに設定されてもよく、また、例えば36Vに設定されてもよい。
 鞍乗型車両電池パック1は、2.5Ah以上の充電容量を有する。このため、鞍乗型車両電池パック1は、鞍乗型車両100の駆動力を増加するための電力を受入れ及び出力する。
The saddle-mounted vehicle battery pack 1 shown in part (b-1) of FIG. 1 is a battery pack used for the saddle-mounted vehicle 100. The saddle-type vehicle battery pack 1 receives and outputs electric power that is converted into power to increase the driving force of the saddle-type vehicle 100. The saddle-mounted vehicle battery pack 1 is a battery pack that can be charged and discharged. The saddle-mounted vehicle battery pack 1 is charged at a voltage equal to or lower than the maximum charging voltage. The maximum charging voltage of the saddle-mounted vehicle battery pack 1 is 12 V or more and 60 V or less. The maximum charging voltage of the saddle-mounted vehicle battery pack 1 is, for example, 48V. However, the maximum charging voltage may be set to, for example, 14V, or may be set to, for example, 36V.
The saddle-mounted vehicle battery pack 1 has a charging capacity of 2.5 Ah or more. Therefore, the saddle-mounted vehicle battery pack 1 receives and outputs electric power for increasing the driving force of the saddle-mounted vehicle 100.
 鞍乗型車両電池パック1は、リチウムイオン電池11と、ケース12と、電気接続コネクタ13とを備える。 The saddle-mounted vehicle battery pack 1 includes a lithium-ion battery 11, a case 12, and an electrical connector 13.
 図1のパート(b-1)に示す例では、鞍乗型車両電池パック1は、5つのリチウムイオン電池11を備える。リチウムイオン電池11は、互いに並列接続されることなく直列接続されている。鞍乗型車両電池パック1は、リチウムイオン電池11は並列無しの直列接続構造を有する。
 リチウムイオン電池11の数は、直列接続した両端の最大電圧が、鞍乗型車両電池パック1の最大電圧以上となるように設定される。
 リチウムイオン電池11は、充電及び放電が可能な電池である。リチウムイオン電池11は、電極の化学反応によって充電及び放電を行う二次電池である。リチウムイオン電池11は、正極にリチウム酸化物を含有する。リチウムイオン電池11は、非水電解質を用いる非水リチウムイオン電池である。リチウムイオン電池11は負極に、例えば、スピネル型チタン酸リチウム、ニオブチタン含有複合酸化物、及びグラファイトからなる群から選択される少なくともいずれかを含有する。但し、リチウムイオン電池11の負極は特に限られず、上記以外の物質を含有する負極も採用され得る。
 リチウムイオン電池11は、例えば鉛電池やニッケル水素電池といった他の正極材料を用いた電池と比べて最大充電電流が大きい。リチウムイオン電池11は、10C以上の連続最大充電レートを有する。
In the example shown in part (b-1) of FIG. 1, the saddle-mounted vehicle battery pack 1 includes five lithium-ion batteries 11. The lithium ion batteries 11 are connected in series without being connected in parallel with each other. The saddle-mounted vehicle battery pack 1 has a series connection structure in which the lithium ion batteries 11 are not connected in parallel.
The number of lithium ion batteries 11 is set so that the maximum voltage across the series is equal to or greater than the maximum voltage of the saddle-mounted vehicle battery pack 1.
The lithium ion battery 11 is a battery that can be charged and discharged. The lithium ion battery 11 is a secondary battery that charges and discharges by a chemical reaction of electrodes. The lithium ion battery 11 contains a lithium oxide in the positive electrode. The lithium ion battery 11 is a non-aqueous lithium ion battery that uses a non-aqueous electrolyte. The lithium ion battery 11 contains, for example, at least one selected from the group consisting of spinel-type lithium titanate, niobium titanium-containing composite oxide, and graphite in the negative electrode. However, the negative electrode of the lithium ion battery 11 is not particularly limited, and a negative electrode containing a substance other than the above can also be adopted.
The lithium ion battery 11 has a larger maximum charging current than a battery using another positive electrode material such as a lead battery or a nickel hydrogen battery. The lithium ion battery 11 has a continuous maximum charging rate of 10 C or more.
 ケース12は、リチウムイオン電池11を収容する。ケース12は、例えば閉鎖構造を有する。
 より詳細には、ケース12は、外部からリチウムイオン電池11が見えないような構造を有する。これによって、鞍乗型車両電池パック1の外部から異物が差し込まれてリチウムイオン電池11に接触する事態が抑制される。
 さらに詳細には、ケース12は、例えば防水構造を有する。例えば、鞍乗型車両電池パック1が、鞍乗型車両100に備えられる場合、鞍乗型車両電池パック1が、水又は油といった液体を浴びる可能性がある。ケース12によって、液体の進入が抑制される。従って、リチウムイオン電池11と液体の接触が抑制される。
The case 12 houses the lithium-ion battery 11. Case 12 has, for example, a closed structure.
More specifically, the case 12 has a structure in which the lithium ion battery 11 cannot be seen from the outside. As a result, the situation in which a foreign substance is inserted from the outside of the saddle-mounted vehicle battery pack 1 and comes into contact with the lithium ion battery 11 is suppressed.
More specifically, the case 12 has, for example, a waterproof structure. For example, when the saddle-mounted vehicle battery pack 1 is provided in the saddle-mounted vehicle 100, the saddle-mounted vehicle battery pack 1 may be exposed to a liquid such as water or oil. The case 12 suppresses the ingress of liquid. Therefore, the contact between the lithium ion battery 11 and the liquid is suppressed.
 電気接続コネクタ13は、鞍乗型車両100の車体102(図3参照)に設けられる図示しない相手コネクタと接続され、車体102に対し入出力される電流を伝達する。鞍乗型車両電池パック1に蓄えられた電力は、電気接続コネクタ13を通して、鞍乗型車両100の車体102に供給される。
 また、回生時、鞍乗型車両100の車体102から、回生電力が、電気接続コネクタ13を通して、鞍乗型車両電池パック1に供給される。
 本実施形態の電気接続コネクタ13は、例えば充電ステーションといった鞍乗型車両100の外部に設けられた充電装置にも接続可能である。鞍乗型車両100が停車中に、車体102(図3参照)に設けられた相手コネクタの代わりに、外部の充電装置に設けられた相手コネクタが接続される。これによって、鞍乗型車両電池パック1が充電される。
The electrical connection connector 13 is connected to a mating connector (not shown) provided on the vehicle body 102 (see FIG. 3) of the saddle-mounted vehicle 100, and transmits an input / output current to the vehicle body 102. The electric power stored in the saddle-type vehicle battery pack 1 is supplied to the vehicle body 102 of the saddle-type vehicle 100 through the electric connector 13.
Further, at the time of regeneration, the regenerative power is supplied from the vehicle body 102 of the saddle-mounted vehicle 100 to the saddle-mounted vehicle battery pack 1 through the electric connector 13.
The electrical connection connector 13 of the present embodiment can also be connected to a charging device provided outside the saddle-type vehicle 100, such as a charging station. While the saddle-mounted vehicle 100 is stopped, a mating connector provided on an external charging device is connected instead of the mating connector provided on the vehicle body 102 (see FIG. 3). As a result, the saddle-mounted vehicle battery pack 1 is charged.
 鞍乗型車両電池パック1には、バスバ14も備えられている。バスバ14は、リチウムイオン電池11及び電気接続コネクタ13を接続する導体である。バスバ14は、リチウムイオン電池11どうしを接続する。バスバ14は、リチウムイオン電池11及び電気接続コネクタ13を直列に接続する。 The saddle-mounted vehicle battery pack 1 is also equipped with a bus bar 14. The bus bar 14 is a conductor that connects the lithium ion battery 11 and the electrical connector 13. The bus bar 14 connects the lithium ion batteries 11 to each other. The bus bar 14 connects the lithium ion battery 11 and the electrical connector 13 in series.
 本実施形態の鞍乗型車両電池パック1が備える各リチウムイオン電池11は、互いに並列接続されることなく直列接続される。各リチウムイオン電池11は、内部抵抗のばらつきを有する。しかし、直列接続された各リチウムイオン電池11に流れる電流は、内部抵抗の差に拘わらず実質的に等しい。このため、各リチウムイオン電池11における充電量のバランスが保ちやすい。
 例えば、各リチウムイオン電池11の充電量が0の状態から充電を開始する場合、任意の時刻における各リチウムイオン電池11の電流積算量は実質的に等しい。即ち、各リチウムイオン電池11の充電量は実質的に等しい。また、各リチウムイオン電池11が放電する場合にも、各リチウムイオン電池11に流れる電流は実質的に等しい。このため、任意の時刻における各リチウムイオン電池11の充電量は実質的に等しい。従って、各リチウムイオン電池11は、充電中に満充電となるタイミングも実質的に等しい。
 従って、並列接続されたリチウムイオン電池の状態を監視及び制御するための制御装置無しで、各リチウムイオン電池11における充電量のバランスを保つことが可能である。従って、鞍乗型車両電池パック1が簡単な構成で小型化できる。
 各リチウムイオン電池11の標準使用電圧は、例えば2.3Vである。但し、各リチウムイオン電池11は、標準使用電圧を超えた電圧で充電可能である。各リチウムイオン電池11は、例えば、3V以上の電圧で充電される。
The lithium ion batteries 11 included in the saddle-mounted vehicle battery pack 1 of the present embodiment are connected in series without being connected in parallel with each other. Each lithium-ion battery 11 has a variation in internal resistance. However, the currents flowing through the lithium-ion batteries 11 connected in series are substantially equal regardless of the difference in internal resistance. Therefore, it is easy to maintain the balance of the charge amount in each lithium ion battery 11.
For example, when charging is started from a state where the charge amount of each lithium ion battery 11 is 0, the current integrated amount of each lithium ion battery 11 at an arbitrary time is substantially equal. That is, the charge amount of each lithium ion battery 11 is substantially equal. Further, even when each lithium ion battery 11 is discharged, the current flowing through each lithium ion battery 11 is substantially equal. Therefore, the charge amount of each lithium ion battery 11 at an arbitrary time is substantially equal. Therefore, the timing at which each lithium ion battery 11 is fully charged during charging is substantially the same.
Therefore, it is possible to maintain the balance of the charge amount in each lithium ion battery 11 without a control device for monitoring and controlling the state of the lithium ion batteries connected in parallel. Therefore, the saddle-mounted vehicle battery pack 1 can be miniaturized with a simple configuration.
The standard working voltage of each lithium ion battery 11 is, for example, 2.3V. However, each lithium ion battery 11 can be charged with a voltage exceeding the standard working voltage. Each lithium ion battery 11 is charged with a voltage of, for example, 3 V or more.
 また、リチウムイオン電池11は、互いに並列接続されることなく直列接続される構成としつつ、鞍乗型車両電池パック1が充電できる最大電圧は、12V以上60V以下である。この場合、直列接続されたリチウムイオン電池11の組の両端に掛かる最大電圧は、12V以上60V以下である。 Further, the lithium ion battery 11 is configured to be connected in series without being connected in parallel to each other, and the maximum voltage that the saddle-mounted vehicle battery pack 1 can charge is 12 V or more and 60 V or less. In this case, the maximum voltage applied to both ends of the set of lithium ion batteries 11 connected in series is 12 V or more and 60 V or less.
 鞍乗型車両電池パック1が充電できる最大電圧は12V以上であるので、鞍乗型車両100に搭載される一般的な電気部品と直接電気的に接続する設計が可能である。また、鞍乗型車両電池パック1が充電できる最大電圧は12V以上であるので、充電された電力の供給を受けるモータ105として、鞍乗型車両100に搭載される一般的なモータ105を利用する設計が可能である。また、鞍乗型車両電池パック1が充電できる最大電圧は12V以上であるので、充電された電力の供給を受けるモータ105は、鞍乗型車両100の駆動力を増加しやすい。 Since the maximum voltage that can be charged by the saddle-type vehicle battery pack 1 is 12 V or more, it is possible to design a direct electrical connection with general electric parts mounted on the saddle-type vehicle 100. Further, since the maximum voltage that can be charged by the saddle-type vehicle battery pack 1 is 12 V or more, a general motor 105 mounted on the saddle-type vehicle 100 is used as the motor 105 that receives the supplied electric power. Design is possible. Further, since the maximum voltage that can be charged by the saddle-type vehicle battery pack 1 is 12 V or more, the motor 105 that receives the supplied electric power tends to increase the driving force of the saddle-type vehicle 100.
 鞍乗型車両電池パック1は、国際電気標準会議(International Electrotechnical Commission:IEC)の規格IEC60950における「特別低電圧」(extra low voltage:ELV、又はsafety extra low voltage:SELV)に属する範囲で動作する。鞍乗型車両電池パック1の内部におけるいずれのノードの電位差も60Vを超えない。
 このため、電池パックに用いられる各ノードの絶縁の程度は、「機能絶縁」(Operational Insulation)の範囲で足りる。鞍乗型車両電池パック1の電圧は低電圧であるため高電圧用に較べて絶縁構造が簡単にできる。
The saddle-type vehicle battery pack 1 operates in a range belonging to the "extra low voltage" (ELV or safety extra low voltage: SELV) in the standard IEC60950 of the International Electrotechnical Commission (IEC). .. The potential difference of any node inside the saddle-mounted vehicle battery pack 1 does not exceed 60 V.
Therefore, the degree of insulation of each node used in the battery pack is sufficient within the range of "operational insulation". Since the voltage of the saddle-mounted vehicle battery pack 1 is low, the insulation structure can be simplified as compared with the case of high voltage.
 例えば、リチウムイオン電池11として、5Ah以上40Ah以下の充電容量を有するリチウムイオン電池11が採用され得る。このようなリチウムイオン電池11の最大充電電圧が3Vである場合、直列接続された5個のリチウムイオン電池11を有する鞍乗型車両電池パック1最大充電電圧は、15Vである。
 例えば、リチウムイオン電池11が5Ahの充電容量及び10Cの連続最大充電レートを有する場合、リチウムイオン電池11の連続最大充電流は50Aである。また、例えば、リチウムイオン電池11が20Ahの充電容量及び10Cの連続最大充電レートを有する場合、リチウムイオン電池11の連続最大充電流は200Aである。このように、電池を満充電にする能力は、充電電流のみから把握されにくい。電池が満充電になるための能力は、充電電流だけでなく充電容量に応じて異なるからである。そこで、本明細書では、電池が満充電になるための能力として、充電容量の差を考慮した充電レートによる表示が採用されている。
For example, as the lithium ion battery 11, a lithium ion battery 11 having a charging capacity of 5 Ah or more and 40 Ah or less can be adopted. When the maximum charging voltage of such a lithium ion battery 11 is 3V, the maximum charging voltage of a saddle-type vehicle battery pack 1 having five lithium ion batteries 11 connected in series is 15V.
For example, when the lithium ion battery 11 has a charge capacity of 5 Ah and a continuous maximum charge rate of 10 C, the continuous maximum charge flow of the lithium ion battery 11 is 50 A. Further, for example, when the lithium ion battery 11 has a charge capacity of 20 Ah and a continuous maximum charge rate of 10 C, the continuous maximum charge flow of the lithium ion battery 11 is 200 A. As described above, the ability to fully charge the battery is difficult to grasp only from the charging current. This is because the ability of a battery to be fully charged depends not only on the charging current but also on the charging capacity. Therefore, in the present specification, as a capacity for the battery to be fully charged, a display based on a charging rate in consideration of a difference in charging capacity is adopted.
 また、上述したように、直列接続された複数のリチウムイオン電池11の両端に掛かる電圧は、「特別低電圧」に属する低い電圧である。このため、例えば「特別低電圧」の電圧よりも高電圧が掛かる場合と比べて少ない数のリチウムイオン電池11を直列接続することができる。例えば、本実施形態の鞍乗型車両電池パック1は、直列接続された5個のリチウムイオン電池11を有する。
 このため、例えば、「特別低電圧」よりも高い高電圧に対応するためにより多くの電池を用いる場合と比べて、本実施形態の鞍乗型車両電池パック1は、各リチウムイオン電池11の充電能力の特性のばらつきを低減することが可能である。
 このことから、本実施形態の鞍乗型車両電池パック1は、バッテリマネジメントシステム(BMS)といった制御装置を設けることなしに、各リチウムイオン電池11における充電量のバランスをより保ちやすい。
Further, as described above, the voltage applied to both ends of the plurality of lithium ion batteries 11 connected in series is a low voltage belonging to the “extra low voltage”. Therefore, for example, a smaller number of lithium-ion batteries 11 can be connected in series as compared with the case where a voltage higher than the "extra-low voltage" is applied. For example, the saddle-mounted vehicle battery pack 1 of the present embodiment has five lithium-ion batteries 11 connected in series.
Therefore, for example, as compared with the case where more batteries are used to cope with a high voltage higher than the “extra low voltage”, the saddle-type vehicle battery pack 1 of the present embodiment charges each lithium ion battery 11. It is possible to reduce variations in capacity characteristics.
For this reason, the saddle-mounted vehicle battery pack 1 of the present embodiment can more easily maintain the balance of the charge amount in each lithium ion battery 11 without providing a control device such as a battery management system (BMS).
 本実施形態の鞍乗型車両電池パック1が有する各リチウムイオン電池11は、10C以上の連続最大充電レートを有する。このため、複数のリチウムイオン電池11を並列接続すること無しに、鞍乗型車両電池パック1として10C以上の連続最大充電レートが実現可能になる。
 例えば、鞍乗型車両電池パック1が10C以上の連続最大充電レートを有することによって、鞍乗型車両電池パック1の充電容量の50%以上を3分以内で充電することが可能である。これによって、例えば、本実施形態の鞍乗型車両電池パック1を搭載した電動車両を、従来又は現在のガスステーションにおける液体燃料の補給に掛かる時間に近い時間で充電することが可能となる。従って、充電ステーションを占拠する時間が短い。
 ここで、充電する電力量の想定を、例えば鞍乗型車両電池パックの充電容量の50%とするのは、エンジン発電機といった補助電源を備えない鞍乗型車両100は、通常、0%の充電量に対し十分な余裕を見込んで充電される場合が多いためである。例えば、鞍乗型車両100は、鞍乗型車両電池パック1の充電量が50%よりも多い場合でも、例えば運転者の在宅時といった高い頻度で充電される。
 例えば3分以内で鞍乗型車両電池パック1の50%以上が充電可能であれば、鞍乗型車両電池パック1はより頻繁に充電されるようになる。具体的には、走行経路に充電ステーションがある場合、たとえ鞍乗型車両電池パック1の充電量が70%以上でもその充電ステーションに数分間立ち寄って充電する使い方が考えられる。
 また、例えば、充電ステーションが複数台の充電装置を備える場合、数分以内に充電が完了する車両専用の充電装置(ファーストレーン)と、そうでない車両用の充電装置を区別することが可能になる。この場合、数分以内に充電が完了できる特定の車両は、待ち時間も少なく短時間の滞在で充電が終了する。
Each lithium ion battery 11 included in the saddle-mounted vehicle battery pack 1 of the present embodiment has a continuous maximum charging rate of 10 C or more. Therefore, a continuous maximum charge rate of 10 C or more can be realized as the saddle-type vehicle battery pack 1 without connecting a plurality of lithium ion batteries 11 in parallel.
For example, when the saddle-type vehicle battery pack 1 has a continuous maximum charging rate of 10 C or more, it is possible to charge 50% or more of the charge capacity of the saddle-type vehicle battery pack 1 within 3 minutes. As a result, for example, the electric vehicle equipped with the saddle-mounted vehicle battery pack 1 of the present embodiment can be charged in a time close to the time required for replenishing the liquid fuel in the conventional or current gas station. Therefore, the time to occupy the charging station is short.
Here, assuming that the amount of electric power to be charged is, for example, 50% of the charging capacity of the saddle-type vehicle battery pack, the saddle-type vehicle 100 that does not have an auxiliary power source such as an engine generator is usually 0%. This is because it is often charged with a sufficient margin for the amount of charge. For example, the saddle-type vehicle 100 is charged at a high frequency, for example, when the driver is at home, even when the charge amount of the saddle-type vehicle battery pack 1 is more than 50%.
For example, if 50% or more of the saddle-mounted vehicle battery pack 1 can be charged within 3 minutes, the saddle-mounted vehicle battery pack 1 will be charged more frequently. Specifically, when there is a charging station on the traveling path, even if the charge amount of the saddle-mounted vehicle battery pack 1 is 70% or more, it is conceivable to stop by the charging station for several minutes to charge the battery.
Further, for example, when the charging station is equipped with a plurality of charging devices, it is possible to distinguish between a charging device dedicated to a vehicle (first lane) that completes charging within a few minutes and a charging device for a vehicle that does not. .. In this case, a specific vehicle that can be fully charged within a few minutes has a short waiting time and can be charged after a short stay.
 本実施形態の鞍乗型車両電池パック1は、並列接続されることなく直列接続されたリチウムイオン電池11を有する。従って、鞍乗型車両電池パック1の連続最大充電レート及び最大充電電流は、リチウムイオン電池11の連続最大充電レート及び最大充電電流を超えることができない。言換えると、鞍乗型車両電池パック1の連続最大充電レート及び最大充電電流は、主に、リチウムイオン電池11の連続最大充電レート及び最大充電電流の制約を受ける。
 10C以上の連続最大充電レートを有するリチウムイオン電池11の例としては、例えば、
40Ah以下の充電容量及び400Aの最大充電電流を有するリチウムイオン電池、
20Ah以下の充電容量及び200Aの最大充電電流を有するリチウムイオン電池、
10Ah以下の充電容量及び100Aの最大充電電流を有するリチウムイオン電池、又は、
5Ah以下の充電容量及び50Aの最大充電電流を有するリチウムイオン電池、が挙げられる。
The saddle-mounted vehicle battery pack 1 of the present embodiment has a lithium ion battery 11 connected in series without being connected in parallel. Therefore, the continuous maximum charging rate and the maximum charging current of the saddle-mounted vehicle battery pack 1 cannot exceed the continuous maximum charging rate and the maximum charging current of the lithium ion battery 11. In other words, the continuous maximum charging rate and the maximum charging current of the saddle-mounted vehicle battery pack 1 are mainly limited by the continuous maximum charging rate and the maximum charging current of the lithium ion battery 11.
As an example of the lithium ion battery 11 having a continuous maximum charging rate of 10 C or more, for example,
A lithium-ion battery with a charging capacity of 40 Ah or less and a maximum charging current of 400 A,
A lithium-ion battery with a charging capacity of 20 Ah or less and a maximum charging current of 200 A,
A lithium-ion battery having a charging capacity of 10 Ah or less and a maximum charging current of 100 A, or
Lithium-ion batteries having a charging capacity of 5 Ah or less and a maximum charging current of 50 A can be mentioned.
 充電容量が5Ah以下のリチウムイオン電池を選択することによって、充電装置から供給可能な充電電流が50A程度であっても、10C以上の連続最大充電レートが提供可能である。 By selecting a lithium-ion battery having a charging capacity of 5 Ah or less, it is possible to provide a continuous maximum charging rate of 10 C or more even if the charging current that can be supplied from the charging device is about 50 A.
 一方で、充電された電力で鞍乗型車両100(図3参照)が走行可能な最大距離は、鞍乗型車両電池パック1の総充電量に依存する。鞍乗型車両電池パック1の総充電量は、内蔵するリチウムイオン電池11の数に比例する。リチウムイオン電池11は、並列接続されることなく直列接続されるので、リチウムイオン電池11の数は、最大充電電流及び連続最大充電レートと独立に設定することができる。なお、鞍乗型車両電池パック1が備えるリチウムイオン電池11の数は、リチウムイオン電池11の直列接続の数に等しい。
 鞍乗型車両100の設計において、鞍乗型車両電池パック1が有するリチウムイオン電池11の数によって、鞍乗型車両100の走行可能な最大距離を設定することができる。
 鞍乗型車両電池パック1の充電電圧は、リチウムイオン電池11の数に比例する。つまり、1つのリチウムイオン電池11の充電電圧と、リチウムイオン電池11の数の積が、実質的に鞍乗型車両電池パック1の充電電圧となる。
 鞍乗型車両電池パック1の最大充電電圧は、20V以上60V以下である。このため、リチウムイオン電池11の数は、上記の積が60V以下となるように設定される。
On the other hand, the maximum distance that the saddle-type vehicle 100 (see FIG. 3) can travel with the charged electric power depends on the total charge amount of the saddle-type vehicle battery pack 1. The total charge amount of the saddle-mounted vehicle battery pack 1 is proportional to the number of built-in lithium-ion batteries 11. Since the lithium ion batteries 11 are connected in series without being connected in parallel, the number of lithium ion batteries 11 can be set independently of the maximum charging current and the maximum continuous charging rate. The number of lithium-ion batteries 11 included in the saddle-mounted vehicle battery pack 1 is equal to the number of series-connected lithium-ion batteries 11.
In the design of the saddle-type vehicle 100, the maximum travelable distance of the saddle-type vehicle 100 can be set by the number of lithium-ion batteries 11 included in the saddle-type vehicle battery pack 1.
The charging voltage of the saddle-mounted vehicle battery pack 1 is proportional to the number of lithium-ion batteries 11. That is, the product of the charging voltage of one lithium-ion battery 11 and the number of lithium-ion batteries 11 is substantially the charging voltage of the saddle-mounted vehicle battery pack 1.
The maximum charging voltage of the saddle-mounted vehicle battery pack 1 is 20 V or more and 60 V or less. Therefore, the number of lithium ion batteries 11 is set so that the above product is 60 V or less.
 例えば、各リチウムイオン電池11が20C以上の連続最大充電レートを有する場合には、鞍乗型車両電池パック1として20C以上の連続最大充電レートが実現可能になる。この場合、鞍乗型車両電池パック1をより短い期間で充電することが可能である。
 例えば、鞍乗型車両電池パック1が20C以上の連続最大充電レートを有することによって、鞍乗型車両電池パック1の充電容量の50%以上を1.5分以内で充電することが可能である。
 20C以上の連続最大充電レートを有するリチウムイオン電池11の例としては、例えば、
20Ah以下の充電容量及び400Aの最大充電電流を有するリチウムイオン電池、
10Ah以下の充電容量及び200Aの最大充電電流を有するリチウムイオン電池、
5Ah以下の充電容量及び100Aの最大充電電流を有するリチウムイオン電池、又は、
2.5Ahの充電容量及び50Aの最大充電電流を有するリチウムイオン電池、が挙げられる。
For example, when each lithium ion battery 11 has a continuous maximum charging rate of 20C or more, a continuous maximum charging rate of 20C or more can be realized as the saddle-type vehicle battery pack 1. In this case, the saddle-mounted vehicle battery pack 1 can be charged in a shorter period of time.
For example, when the saddle-type vehicle battery pack 1 has a continuous maximum charging rate of 20 C or more, it is possible to charge 50% or more of the charge capacity of the saddle-type vehicle battery pack 1 within 1.5 minutes. ..
As an example of the lithium ion battery 11 having a continuous maximum charging rate of 20 C or more, for example,
A lithium-ion battery with a charging capacity of 20 Ah or less and a maximum charging current of 400 A,
A lithium-ion battery with a charging capacity of 10 Ah or less and a maximum charging current of 200 A,
A lithium-ion battery having a charging capacity of 5 Ah or less and a maximum charging current of 100 A, or
Lithium-ion batteries having a charging capacity of 2.5 Ah and a maximum charging current of 50 A.
 例えば、各リチウムイオン電池11が40C以上の連続最大充電レートを有する場合には、鞍乗型車両電池パック1として40C以上の連続最大充電レートが実現可能になる。この場合、鞍乗型車両電池パック1をより短い期間で充電することが可能である。
 例えば、鞍乗型車両電池パック1が40C以上の連続最大充電レートを有することによって、鞍乗型車両電池パック1の充電容量の50%以上を1分未満で充電することが可能である。
 40C以上の連続最大充電レートを有するリチウムイオン電池11の例としては、例えば、
10Ah以下の充電容量及び400Aの最大充電電流を有するリチウムイオン電池、
5Ah以下の充電容量及び200Aの最大充電電流を有するリチウムイオン電池、
2.5Ahの充電容量及び100Aの最大充電電流を有するリチウムイオン電池、が挙げられる。
For example, when each lithium-ion battery 11 has a continuous maximum charging rate of 40C or more, a continuous maximum charging rate of 40C or more can be realized as the saddle-type vehicle battery pack 1. In this case, the saddle-mounted vehicle battery pack 1 can be charged in a shorter period of time.
For example, when the saddle-type vehicle battery pack 1 has a continuous maximum charging rate of 40 C or more, it is possible to charge 50% or more of the charge capacity of the saddle-type vehicle battery pack 1 in less than one minute.
As an example of the lithium ion battery 11 having a continuous maximum charging rate of 40 C or more, for example,
A lithium-ion battery with a charging capacity of 10 Ah or less and a maximum charging current of 400 A,
A lithium-ion battery with a charging capacity of 5 Ah or less and a maximum charging current of 200 A,
Lithium-ion batteries having a charging capacity of 2.5 Ah and a maximum charging current of 100 A.
 本実施形態の鞍乗型車両電池パック1によれば、リチウムイオン電池11の並列接続を無くすことにより、各リチウムイオン電池11を集中制御する制御装置を省略しつつ、各リチウムイオン電池11における充電量のバランスを保つことが可能である。また、絶縁構造も簡単にすることが可能となる。従って、簡単な構成で小型の鞍乗型車両電池パック1を実現することができる。そして、複数のリチウムイオン電池11を並列接続すること無しに、鞍乗型車両電池パック1として例えば10C以上の連続最大充電レートが実現できるので、鞍乗型車両電池パックを短時間で充電可能である。
 このように、簡単な構成で小型であり、短時間で充電可能な鞍乗型車両電池パックを実現することができる。
According to the saddle-mounted vehicle battery pack 1 of the present embodiment, by eliminating the parallel connection of the lithium ion batteries 11, charging of each lithium ion battery 11 is omitted while omitting a control device for centrally controlling each lithium ion battery 11. It is possible to keep the balance of quantity. In addition, the insulating structure can be simplified. Therefore, a small saddle-mounted vehicle battery pack 1 can be realized with a simple configuration. Then, since a continuous maximum charging rate of, for example, 10 C or more can be realized as the saddle-type vehicle battery pack 1 without connecting a plurality of lithium-ion batteries 11 in parallel, the saddle-type vehicle battery pack can be charged in a short time. be.
As described above, it is possible to realize a saddle-type vehicle battery pack that has a simple configuration, is compact, and can be charged in a short time.
 図3は、図1のパート(a-1)に示した鞍乗型車両100をより詳細に示す図である。
 図3に示す鞍乗型車両100は、鞍乗型車両電池パック1を有している。鞍乗型車両100は、車体102、及び、車輪103a,103bを備えている。車体102には、モータ制御装置104、及び、モータ105が設けられている。車体102は、サドル107と、操舵用のバーハンドル108とを備えている。サドル107は、運転者が跨って着座するように構成されている。操舵用のバーハンドル108は、鞍乗型車両100の左右方向に延びるように設けられている。鞍乗型車両100は、リーン車両として、旋回時にバーハンドル108を把持する運転者によってカーブ内側にリーンするように体重移動が行われることにより旋回するように構成されている。鞍乗型車両100は、内燃機関としてのエンジンを備えていない。鞍乗型車両100は、制御装置を備えていない。ここでいう制御装置は、鞍乗型車両電池パック1における複数のリチウムイオン電池11の各々から検出される電流、電圧又は温度のうち、少なくとも1つのパラメータを取得する。さらに、制御装置は、取得された前記少なくとも1つのパラメータに基づいて、少なくとも1つのリチウムイオン電池11の電圧及び/又は電流を変更するように構成されている。このような制御装置は、鞍乗型車両電池パック1にも設けられていない。
 後ろの車輪103bは駆動輪である。モータ105は、鞍乗型車両電池パック1から供給される電力によって車輪103bを駆動する。車輪103bが駆動されることによって鞍乗型車両100が走行する。
 鞍乗型車両電池パック1の電力は、モータ制御装置104を介してモータ105に供給される。モータ制御装置104は、電力供給を制御する。鞍乗型車両電池パック1は、電気接続コネクタ13を介して、モータ制御装置104と接続されている。モータ制御装置104は、鞍乗型車両電池パック1から相手コネクタを介したモータ105への電力供給と、モータ105から相手コネクタを介した鞍乗型車両電池パック1への電力供給とを制御する。即ち、鞍乗型車両電池パック1は、電気接続コネクタ13を介して、鞍乗型車両100の車体102と接続されている。電流は、鞍乗型車両電池パック1から、電気接続コネクタ13を介して、モータ制御装置104に伝達される。
 例えば、鞍乗型車両100がモータ105の回生制動によって制動される場合、モータ105で発電された電力が、モータ制御装置104を介して鞍乗型車両電池パック1に供給される。この時、鞍乗型車両電池パック1が充電される。
FIG. 3 is a diagram showing the saddle-mounted vehicle 100 shown in the part (a-1) of FIG. 1 in more detail.
The saddle-mounted vehicle 100 shown in FIG. 3 has a saddle-mounted vehicle battery pack 1. The saddle-mounted vehicle 100 includes a vehicle body 102 and wheels 103a and 103b. The vehicle body 102 is provided with a motor control device 104 and a motor 105. The vehicle body 102 includes a saddle 107 and a bar handle 108 for steering. The saddle 107 is configured so that the driver sits across it. The steering bar handle 108 is provided so as to extend in the left-right direction of the saddle-mounted vehicle 100. The saddle-mounted vehicle 100 is configured to turn as a lean vehicle by shifting the weight so as to lean inward of the curve by a driver who holds the bar handle 108 at the time of turning. The saddle-mounted vehicle 100 does not have an engine as an internal combustion engine. The saddle-mounted vehicle 100 is not provided with a control device. The control device referred to here acquires at least one parameter of the current, voltage, or temperature detected from each of the plurality of lithium ion batteries 11 in the saddle-mounted vehicle battery pack 1. Further, the control device is configured to change the voltage and / or current of at least one lithium ion battery 11 based on the acquired at least one parameter. Such a control device is not provided in the saddle-mounted vehicle battery pack 1.
The rear wheel 103b is a driving wheel. The motor 105 drives the wheels 103b by the electric power supplied from the saddle-mounted vehicle battery pack 1. The saddle-mounted vehicle 100 travels by driving the wheels 103b.
The electric power of the saddle-mounted vehicle battery pack 1 is supplied to the motor 105 via the motor control device 104. The motor control device 104 controls the power supply. The saddle-mounted vehicle battery pack 1 is connected to the motor control device 104 via the electrical connector 13. The motor control device 104 controls the power supply from the saddle-mounted vehicle battery pack 1 to the motor 105 via the mating connector and the power supply from the motor 105 to the saddle-mounted vehicle battery pack 1 via the mating connector. .. That is, the saddle-type vehicle battery pack 1 is connected to the vehicle body 102 of the saddle-type vehicle 100 via the electric connection connector 13. The current is transmitted from the saddle-mounted vehicle battery pack 1 to the motor control device 104 via the electrical connector 13.
For example, when the saddle-type vehicle 100 is braked by the regenerative braking of the motor 105, the electric power generated by the motor 105 is supplied to the saddle-type vehicle battery pack 1 via the motor control device 104. At this time, the saddle-mounted vehicle battery pack 1 is charged.
 図3に示す鞍乗型車両100は、鞍乗型車両100の外部から供給される電力で充電される機能を有する。より詳細には、鞍乗型車両電池パック1は、鞍乗型車両100の外部から供給される電力で充電される機能を有する。
 例えば、電気接続コネクタ13から、モータ制御装置104に設けられた相手コネクタが取り外され、鞍乗型車両100の外部に設けられた充電装置のコネクタが電気接続コネクタ13に接続される。外部に設けられた充電装置のコネクタは、例えば、充電ステーションの充電装置に設けられたコネクタである。充電装置のコネクタとして、例えば、一般家庭に設けられ商用電源を用いる充電装置のコネクタも採用可能である。
The saddle-mounted vehicle 100 shown in FIG. 3 has a function of being charged by electric power supplied from the outside of the saddle-mounted vehicle 100. More specifically, the saddle-mounted vehicle battery pack 1 has a function of being charged by electric power supplied from the outside of the saddle-mounted vehicle 100.
For example, the mating connector provided in the motor control device 104 is removed from the electric connection connector 13, and the connector of the charging device provided outside the saddle-mounted vehicle 100 is connected to the electric connection connector 13. The connector of the charging device provided externally is, for example, a connector provided in the charging device of the charging station. As the connector of the charging device, for example, a connector of a charging device provided in a general household and using a commercial power source can also be adopted.
 鞍乗型車両電池パック1が10C以上の連続最大充電レートを有することによって、例えば、鞍乗型車両電池パック1の充電容量の50%以上を3分以内で充電することが可能である。従って、鞍乗型車両100は、充電のため、充電ステーションを長時間占拠する必要がない。 Since the saddle-type vehicle battery pack 1 has a continuous maximum charging rate of 10 C or more, for example, 50% or more of the charge capacity of the saddle-type vehicle battery pack 1 can be charged within 3 minutes. Therefore, the saddle-mounted vehicle 100 does not need to occupy the charging station for a long time for charging.
 例えば、各リチウムイオン電池が40C以上の連続最大充電レートを有する場合には、鞍乗型車両電池パック1として40C以上の連続最大充電レートが実現できる。この場合、鞍乗型車両電池パック1をより短い期間で充電することが可能である。従って、充電ステーションを占拠する時間が短い。 For example, when each lithium-ion battery has a continuous maximum charging rate of 40C or more, a continuous maximum charging rate of 40C or more can be realized as a saddle-type vehicle battery pack 1. In this case, the saddle-mounted vehicle battery pack 1 can be charged in a shorter period of time. Therefore, the time to occupy the charging station is short.
 本実施形態に対する比較例として、例えば、リチウムイオン電池の連続最大充電レートが10C未満である場合を説明する。 As a comparative example with respect to the present embodiment, for example, a case where the continuous maximum charging rate of the lithium ion battery is less than 10C will be described.
 10C未満の連続最大充電レートを有するリチウムイオン電池で鞍乗型車両電池パックを構成しつつ、実施形態と同じ量のエネルギー(電荷)を同じ充電時間で充電する第1の方法として、直列接続されるリチウムイオン電池の数を増加することがある。エネルギー(電荷)の量は、パックの電流と電圧の積に比例するからである。個々のリチウムイオン電池の充電量が満充電状態の充電量より小さくても、直列接続されるリチウムイオン電池の数を増加することによってエネルギー(電荷)を補える。しかし、エネルギーを増加するように直列接続されるリチウムイオン電池の数を増加することは、充電電圧の増加も伴う。このため、最大充電電圧が、12V以上60V以下の範囲を超える可能性がある。また、エネルギーを増加するように直列接続されるリチウムイオン電池の数を増加することは、鞍乗型車両電池パックの出力電圧の増加を伴う。モータ制御装置、及び、モータの最大電圧を増加することが求められる。また、リチウムイオン電池の数が増加することによって、鞍乗型車両電池パックが大型化する。 As a first method of charging a saddle-type vehicle battery pack with a lithium-ion battery having a continuous maximum charging rate of less than 10C and charging the same amount of energy (charge) as in the embodiment in the same charging time, the batteries are connected in series. May increase the number of lithium-ion batteries. This is because the amount of energy (charge) is proportional to the product of the pack's current and voltage. Even if the charge amount of each lithium-ion battery is smaller than the charge amount in the fully charged state, energy (charge) can be supplemented by increasing the number of lithium-ion batteries connected in series. However, increasing the number of lithium-ion batteries connected in series to increase energy also accompanies an increase in charging voltage. Therefore, the maximum charging voltage may exceed the range of 12 V or more and 60 V or less. Also, increasing the number of lithium-ion batteries connected in series to increase energy is accompanied by an increase in the output voltage of the saddle-type vehicle battery pack. It is required to increase the maximum voltage of the motor control device and the motor. In addition, as the number of lithium-ion batteries increases, the saddle-type vehicle battery pack becomes larger.
 10C未満の連続最大充電レートを有するリチウムイオン電池で鞍乗型車両電池パックを構成しつつ、実施形態と同じ量のエネルギー(電荷)を同じ充電時間で充電する第2の方法として、並列接続されるリチウムイオン電池の数を1よりも大きくする方法がある。並列接続の場合には、直列電圧の場合と比べて、電圧の問題が少ない。従って、並列接続による充電レートの増大は、原理的に単純である。しかし、並列接続の場合、鞍乗型車両電池パックが大型化する。
 まず、並列接続されるリチウムイオン電池の数を増加する場合、リチウムイオン電池の数は、並列接続無しの場合の2倍、3倍、…になる。従って、リチウムイオン電池自体の体積が増加する。また、リチウムイオン電池の寿命は温度の影響を受けやすい。このため、リチウムイオン電池の数を増加するほど放熱量を増加するように各リチウム電池の間隔を拡げる必要がある。間隔を含む複数のリチウムイオン電池全体の体積が増加する。
 次に、直列接続と並列接続が混在することによって配線が複雑となる。このため、複雑な配線を収容するためのスペースが必要になる。
 最後に、リチウムイオン電池を並列接続すると、各リチウムイオン電池の内部抵抗のバラつきに応じて充電量が異なる。充電量のバラつきを抑制するため、並列接続されたリチウムイオン電池の状態を監視及び制御するための制御装置が必要となる。
As a second method of charging the same amount of energy (electric charge) as in the embodiment while forming a saddle-type vehicle battery pack with a lithium-ion battery having a continuous maximum charging rate of less than 10C, they are connected in parallel. There is a method of increasing the number of lithium-ion batteries to more than one. In the case of parallel connection, there are fewer voltage problems than in the case of series voltage. Therefore, increasing the charging rate by parallel connection is simple in principle. However, in the case of parallel connection, the saddle-type vehicle battery pack becomes large.
First, when increasing the number of lithium-ion batteries connected in parallel, the number of lithium-ion batteries becomes twice, three times, ... Therefore, the volume of the lithium ion battery itself increases. In addition, the life of a lithium-ion battery is easily affected by temperature. Therefore, it is necessary to increase the interval between each lithium battery so that the amount of heat dissipated increases as the number of lithium ion batteries increases. The volume of the entire lithium-ion battery including the interval increases.
Next, wiring becomes complicated due to the mixture of series connection and parallel connection. Therefore, a space for accommodating complicated wiring is required.
Finally, when lithium-ion batteries are connected in parallel, the amount of charge varies depending on the variation in the internal resistance of each lithium-ion battery. In order to suppress the variation in the amount of charge, a control device for monitoring and controlling the state of the lithium ion batteries connected in parallel is required.
 図1のパート(b-2)に示すリチウムイオン電池911は、10C未満の連続最大充電レートを有する。
 リチウムイオン電池911は並列に接続されている。構成は2並列及び5直列である。比較例の鞍乗型車両電池パック91の全体として、図1のパート(b-1)に示す実施形態と同等の連続最大充電レートが実現する。
 リチウムイオン電池911を接続する配線914は、並列接続と直列接続が混在するため複雑な形状を有する。また、各リチウムイオン電池911の充電量のバラつきを抑制するため、制御回路916,917が設けられている。制御回路916,917は、個別制御部917と、中央制御部916とを有する。個別制御部917は、各リチウムイオン電池911の電流を検出し、且つ電流を制限する回路を有する。個別制御部917は、検出結果を電流データとして制御装置に供給する。中央制御部916は、各リチウムイオン電池911の電流データから、各リチウムイオン電池911の充電量を計算する。中央制御部916は、計算結果に応じて、個別制御部917にリチウムイオン電池911の電流を制限させる。これによって中央制御部916は、複数のリチウムイオン電池911の一部が過充電とならないように制御する。
The lithium-ion battery 911 shown in part (b-2) of FIG. 1 has a continuous maximum charge rate of less than 10C.
The lithium ion batteries 911 are connected in parallel. The configuration is 2 parallel and 5 series. As a whole of the saddle-mounted vehicle battery pack 91 of the comparative example, a continuous maximum charging rate equivalent to that of the embodiment shown in the part (b-1) of FIG. 1 is realized.
The wiring 914 connecting the lithium ion battery 911 has a complicated shape because parallel connection and series connection are mixed. Further, control circuits 916 and 917 are provided in order to suppress variations in the charge amount of each lithium ion battery 911. The control circuits 916 and 917 include an individual control unit 917 and a central control unit 916. The individual control unit 917 has a circuit that detects the current of each lithium ion battery 911 and limits the current. The individual control unit 917 supplies the detection result as current data to the control device. The central control unit 916 calculates the charge amount of each lithium ion battery 911 from the current data of each lithium ion battery 911. The central control unit 916 causes the individual control unit 917 to limit the current of the lithium ion battery 911 according to the calculation result. As a result, the central control unit 916 controls a part of the plurality of lithium ion batteries 911 so as not to be overcharged.
 図1のパート(b-2)に示す鞍乗型車両電池パック91は、例えば図1のパート(b-1)に示す実施形態の鞍乗型車両電池パック1よりも大型化する。このため、鞍乗型車両電池パック91が搭載される図1のパート(a-2)の鞍乗型車両910は、図1のパート(a-1)に示す実施形態の鞍乗型車両100よりも大きい。 The saddle-type vehicle battery pack 91 shown in the part (b-2) of FIG. 1 is larger than, for example, the saddle-type vehicle battery pack 1 of the embodiment shown in the part (b-1) of FIG. Therefore, the saddle-type vehicle 910 of the part (a-2) of FIG. 1 on which the saddle-type vehicle battery pack 91 is mounted is the saddle-type vehicle 100 of the embodiment shown in the part (a-1) of FIG. Greater than.
 これに対し、図1のパート(b-1)に示す本実施形態の鞍乗型車両電池パック1は、例えば図1のパート(b-2)に示す比較例の鞍乗型車両電池パック1よりも小さい。このため、本実施形態の鞍乗型車両電池パック1が搭載される図1のパート(a-1)の鞍乗型車両100は、図1のパート(a-2)に示す比較例の鞍乗型車両910よりも小さい。 On the other hand, the saddle-mounted vehicle battery pack 1 of the present embodiment shown in the part (b-1) of FIG. 1 is, for example, the saddle-mounted vehicle battery pack 1 of the comparative example shown in the part (b-2) of FIG. Smaller than Therefore, the saddle-type vehicle 100 of the part (a-1) of FIG. 1 on which the saddle-type vehicle battery pack 1 of the present embodiment is mounted is the saddle of the comparative example shown in the part (a-2) of FIG. It is smaller than the riding vehicle 910.
[第二実施形態]
 図4は、第二実施形態に係る鞍乗型車両電池パックを模式的に示す図である。
[Second Embodiment]
FIG. 4 is a diagram schematically showing a saddle-mounted vehicle battery pack according to the second embodiment.
 本実施形態に係る鞍乗型車両電池パック21は、第一実施形態に係る鞍乗型車両電池パック1に対し、充電専用コネクタ15、及び電流遮断器18を更に備える点が異なる。この他の構成は、図1のパート(1-b)に示す鞍乗型車両電池パック1と同じ符号を付し、一部の説明を省略する。 The saddle-mounted vehicle battery pack 21 according to the present embodiment is different from the saddle-mounted vehicle battery pack 1 according to the first embodiment in that it further includes a charging-dedicated connector 15 and a current circuit breaker 18. Other configurations are designated by the same reference numerals as those of the saddle-mounted vehicle battery pack 1 shown in Part (1-b) of FIG. 1, and some description thereof will be omitted.
 図4に示す鞍乗型車両電池パック21の充電専用コネクタ15は、鞍乗型車両100の外部に設けられた充電装置のコネクタが接続される。充電専用コネクタ15は、リチウムイオン電池11の組に対し、電気接続コネクタ13と並列に接続されている。充電専用コネクタ15は、鞍乗型車両100の外部から供給される電力で鞍乗型車両電池パック21が充電される場合のみ使用される。
 鞍乗型車両電池パック21は、電気接続コネクタ13と充電専用コネクタ15とを有する。このため、鞍乗型車両100の車体102の、電気接続コネクタ13に対する接続状態を維持したまま、鞍乗型車両電池パック21を充電することができる。従って、充電作業を容易にできるとともに、鞍乗型車両電池パック21の設置位置の自由度を高めることができる。
The charging connector 15 of the saddle-mounted vehicle battery pack 21 shown in FIG. 4 is connected to the connector of the charging device provided outside the saddle-mounted vehicle 100. The charging-dedicated connector 15 is connected to the set of lithium-ion batteries 11 in parallel with the electrical connection connector 13. The charging-only connector 15 is used only when the saddle-mounted vehicle battery pack 21 is charged by the electric power supplied from the outside of the saddle-mounted vehicle 100.
The saddle-mounted vehicle battery pack 21 has an electrical connection connector 13 and a charging-only connector 15. Therefore, the saddle-type vehicle battery pack 21 can be charged while maintaining the connection state of the vehicle body 102 of the saddle-type vehicle 100 with respect to the electric connection connector 13. Therefore, the charging operation can be facilitated, and the degree of freedom in the installation position of the saddle-mounted vehicle battery pack 21 can be increased.
 各リチウムイオン電池11は、スピネル型チタン酸リチウム、ニオブチタン含有複合酸化物、及びグラファイトからなる群から選択される少なくともいずれかを含有する負極を有する。このため、各リチウムイオン電池11は、充電電圧及び放電電圧の許容範囲が広い。各リチウムイオン電池11は、負極同士の電気的接続を伴う並列接続無しで、直列接続される。従って、バッテリマネジメントシステム(BMS)といった各リチウムイオン電池11の集中制御を行なう制御装置を設けることなしに、各リチウムイオン電池11における充電量のバランスを保つことが容易である。 Each lithium ion battery 11 has a negative electrode containing at least one selected from the group consisting of spinel-type lithium titanate, niobium titanium-containing composite oxide, and graphite. Therefore, each lithium ion battery 11 has a wide allowable range of charge voltage and discharge voltage. Each lithium-ion battery 11 is connected in series without a parallel connection involving electrical connection between the negative electrodes. Therefore, it is easy to maintain the balance of the charge amount in each lithium ion battery 11 without providing a control device such as a battery management system (BMS) for centrally controlling each lithium ion battery 11.
 鞍乗型車両電池パック21の電流遮断器18は、リチウムイオン電池11に流れる電流を導通又は遮断する。
 鞍乗型車両電池パック21の電流遮断器18は、例えば、電気接続コネクタ13又は充電専用コネクタ15に相手コネクタが接続された場合にオン状態となるように構成されている。電流遮断器18は、例えば、相手コネクタに通電する電流によってオン状態となるように構成されている。オン状態とする手段として、例えば、物理的な接続、又は接続時に相手から受信する信号を検出する装置が設けられてもよい。
The current circuit breaker 18 of the saddle-type vehicle battery pack 21 conducts or cuts off the current flowing through the lithium ion battery 11.
The current circuit breaker 18 of the saddle-mounted vehicle battery pack 21 is configured to be turned on when, for example, the mating connector is connected to the electrical connection connector 13 or the charging-only connector 15. The current circuit breaker 18 is configured to be turned on by, for example, a current energizing the mating connector. As a means for turning on the state, for example, a device for detecting a physical connection or a signal received from the other party at the time of connection may be provided.
 本実施形態の構成によれば、リチウムイオン電池11の電流が不用意に電気接続コネクタ13又は充電専用コネクタ15から外部に流れる事態を抑制することが可能である。例えば鞍乗型車両電池パック21が車体102(図3参照)から取外される場合に、電気接続コネクタ13又は充電専用コネクタ15が不用意に何らかの導体に接触し、大電流で導体がコネクタに溶着する事態を抑制することが可能である。
 バッテリマネジメントシステム(BMS)といった制御装置を設けること無しに、簡単な構成で、例えば外部の導体が電気接続コネクタ13又は充電専用コネクタ15に溶着する事態を抑制することが可能である。
According to the configuration of the present embodiment, it is possible to suppress a situation in which the current of the lithium ion battery 11 carelessly flows to the outside from the electric connection connector 13 or the charging dedicated connector 15. For example, when the saddle-mounted vehicle battery pack 21 is removed from the vehicle body 102 (see FIG. 3), the electrical connection connector 13 or the charging-only connector 15 inadvertently contacts some conductor, and the conductor becomes a connector with a large current. It is possible to suppress the situation of welding.
Without providing a control device such as a battery management system (BMS), it is possible to suppress a situation in which, for example, an external conductor is welded to the electrical connection connector 13 or the charging-only connector 15 with a simple configuration.
 本発明は、上述した例に限定されず、例えば、下記(7)~(11)の構成を採用し得る。下記(7)~(11)の実施形態としては、上述した実施形態が挙げられる。 The present invention is not limited to the above-mentioned example, and for example, the following configurations (7) to (11) can be adopted. Examples of the following embodiments (7) to (11) include the above-described embodiments.
 (7) (1)から(4)のいずれか1の鞍乗型車両電池パックであって、
 前記ケースは、液密構造を有する。
(7) A saddle-mounted vehicle battery pack according to any one of (1) to (4).
The case has a liquidtight structure.
  上記構成によれば、鞍乗型車両電池パックが、水又は油といった液体を浴びる可能性がある場合でも、ケースによって、液体の進入が抑制される。従って、リチウムイオン電池と液体の接触が抑制される。 According to the above configuration, even if the saddle-mounted vehicle battery pack may be exposed to a liquid such as water or oil, the ingress of the liquid is suppressed depending on the case. Therefore, the contact between the lithium ion battery and the liquid is suppressed.
 (8) (1)から(4)のいずれか1の鞍乗型車両電池パックであって、
 前記複数のリチウムイオン電池の各々は40C以上の連続最大充電レートを有する。
(8) A saddle-mounted vehicle battery pack according to any one of (1) to (4).
Each of the plurality of lithium-ion batteries has a continuous maximum charging rate of 40 C or more.
 上記構成によれば、鞍乗型車両電池パックとして40C以上の最大充電レートが実現できるので、鞍乗型車両電池パックをより短時間で充電可能である。 According to the above configuration, a maximum charge rate of 40 C or more can be realized as a saddle-type vehicle battery pack, so that the saddle-type vehicle battery pack can be charged in a shorter time.
 (9) (1)から(4)のいずれか1の鞍乗型車両電池パックであって、
 前記複数のリチウムイオン電池の各々は、5Ah以上の容量を有する。
(9) A saddle-mounted vehicle battery pack according to any one of (1) to (4).
Each of the plurality of lithium ion batteries has a capacity of 5 Ah or more.
 上記構成によれば、60V以下の電圧で充電する場合でも、鞍乗型車両を通常の用途で走行できる程度に鞍乗型車両電池パックが充電できる。 According to the above configuration, the saddle-type vehicle battery pack can be charged to the extent that the saddle-type vehicle can run for normal purposes even when charging with a voltage of 60 V or less.
 (10) (1)から(4)のいずれか1の鞍乗型車両電池パックであって、
 前記複数のリチウムイオン電池の各々は、20Ah以下の容量を有する。
(10) A saddle-mounted vehicle battery pack according to any one of (1) to (4).
Each of the plurality of lithium ion batteries has a capacity of 20 Ah or less.
 上記構成によれば、60V以下の電圧で充電する場合でも、鞍乗型車両を長距離移動の用途で走行できる程度に鞍乗型車両電池パックが充電できる。 According to the above configuration, the saddle-type vehicle battery pack can be charged to the extent that the saddle-type vehicle can be driven for long-distance travel even when charging with a voltage of 60 V or less.
1,21 鞍乗型車両電池パック
11   リチウムイオン電池
12   ケース
13   電気接続コネクタ
18   電流遮断器
100  鞍乗型車両
102  車体
104  モータ制御装置
105  モータ
107  サドル
108  バーハンドル
1,21 Saddle-type vehicle battery pack 11 Lithium-ion battery 12 Case 13 Electric connection connector 18 Current breaker 100 Saddle-type vehicle 102 Body 104 Motor control device 105 Motor 107 Saddle 108 Bar handle

Claims (6)

  1. 鞍乗型車両に用いる鞍乗型車両電池パックであって、
     前記鞍乗型車両電池パックは、
    複数のリチウムイオン電池と、
    前記複数のリチウムイオン電池を収容するケースと、
    前記鞍乗型車両の車体に設けられる相手コネクタと接続され、前記車体に対し入出力される電流を伝達する電気接続コネクタと、
    を備え、
     前記鞍乗型車両電池パックは、動力に変換され前記鞍乗型車両の駆動力を増加するための電力を受入れ及び出力するように、2.5Ah以上の充電容量と、12V以上60V以下の最大充電電圧と、各々が10C以上の連続最大充電レートを有する前記複数のリチウムイオン電池の並列無しの直列接続構造とを有し、前記最大充電電圧は、前記直列接続の両端の電圧に対応する電圧である、
    鞍乗型車両電池パック。
    A saddle-type vehicle battery pack used for saddle-type vehicles.
    The saddle-mounted vehicle battery pack is
    With multiple lithium-ion batteries
    A case accommodating the plurality of lithium ion batteries and
    An electrical connection connector that is connected to a mating connector provided on the vehicle body of the saddle-type vehicle and transmits a current input / output to the vehicle body.
    With
    The saddle-type vehicle battery pack has a charge capacity of 2.5 Ah or more and a maximum of 12 V or more and 60 V or less so as to receive and output electric power that is converted into power to increase the driving force of the saddle-type vehicle. It has a charging voltage and a series connection structure of the plurality of lithium ion batteries, each having a continuous maximum charging rate of 10C or more, without parallel connection, and the maximum charging voltage is a voltage corresponding to the voltage across the series connection. Is,
    Saddle-type vehicle battery pack.
  2.  請求項1に記載の鞍乗型車両電池パックであって、
     前記複数のリチウムイオン電池の各々は、独立した負極を有し、前記独立した負極は、スピネル型チタン酸リチウム、ニオブチタン含有複合酸化物、及びグラファイトからなる群から選択される少なくともいずれかを含有し、且つ他の独立した負極と互いに電気的に接続されずに正極又は負極と接続されることにより前記複数のリチウムイオン電池の並列無しの直列接続構造を実現する、
    鞍乗型車両電池パック。
    The saddle-mounted vehicle battery pack according to claim 1.
    Each of the plurality of lithium ion batteries has an independent negative electrode, and the independent negative electrode contains at least one selected from the group consisting of spinnel-type lithium titanate, niobium titanium-containing composite oxide, and graphite. In addition, by connecting to the positive electrode or the negative electrode without being electrically connected to each other with other independent negative electrodes, a series connection structure without parallel connection of the plurality of lithium ion batteries is realized.
    Saddle-type vehicle battery pack.
  3.  請求項1又は2に記載の鞍乗型車両電池パックであって、
     前記複数のリチウムイオン電池と直列に接続され、前記複数のリチウムイオン電池に流れる電流を遮断する電流遮断器を備える、
    鞍乗型車両電池パック。
    The saddle-mounted vehicle battery pack according to claim 1 or 2.
    A current circuit breaker that is connected in series with the plurality of lithium ion batteries and cuts off the current flowing through the plurality of lithium ion batteries is provided.
    Saddle-type vehicle battery pack.
  4.  請求項1から3のいずれか1項に記載の鞍乗型車両電池パックであって、
     前記鞍乗型車両電池パックは、前記複数のリチウムイオン電池の各々から検出される電流、電圧又は温度のうち、少なくとも1つのパラメータを取得するとともに、取得された前記少なくとも1つのパラメータに基づいて、前記複数のリチウムイオン電池のうち、少なくとも1つの前記リチウムイオン電池の電圧及び/又は電流を変更するように構成された制御装置を備えていない、
    鞍乗型車両電池パック。
    The saddle-type vehicle battery pack according to any one of claims 1 to 3.
    The saddle-type vehicle battery pack acquires at least one parameter of the current, voltage, or temperature detected from each of the plurality of lithium-ion batteries, and is based on the acquired at least one parameter. It does not include a control device configured to change the voltage and / or current of at least one of the plurality of lithium ion batteries.
    Saddle-type vehicle battery pack.
  5.  鞍乗型車両であって、
    前記鞍乗型車両は、
    請求項1から4のいずれか1に記載の鞍乗型車両電池パックと、
    前記鞍乗型車両電池パックの前記電気接続コネクタと接続されるように構成された相手コネクタと、
    駆動輪と、
    前記鞍乗型車両電池パックから前記相手コネクタを介したモータへの電力供給と、前記モータから前記相手コネクタを介した前記鞍乗型車両電池パックへの電力供給とを制御するように構成されたモータ制御装置と、
    前記モータ制御装置から供給される電力によって前記駆動輪を駆動する一方、前記駆動輪が駆動されることにより電力を発生させるように構成された前記モータと
    を備え、
    前記複数のリチウムイオン電池の各々から検出される電流、電圧又は温度のうち、少なくとも1つのパラメータを取得するとともに、取得された前記少なくとも1つのパラメータに基づいて、前記複数のリチウムイオン電池のうち、少なくとも1つの前記リチウムイオン電池の電圧及び/又は電流を変更するように構成された制御装置を備えていない
    鞍乗型車両。
    It ’s a saddle-type vehicle,
    The saddle-mounted vehicle is
    The saddle-mounted vehicle battery pack according to any one of claims 1 to 4.
    A mating connector configured to be connected to the electrical connector of the saddle-mounted vehicle battery pack,
    With the drive wheels
    It is configured to control the power supply from the saddle-type vehicle battery pack to the motor via the mating connector and the power supply from the motor to the saddle-mounted vehicle battery pack via the mating connector. Motor controller and
    The motor is provided with the motor configured to drive the drive wheels with electric power supplied from the motor control device, while generating electric power by driving the drive wheels.
    Of the plurality of lithium ion batteries, at least one parameter of the current, voltage or temperature detected from each of the plurality of lithium ion batteries is acquired, and based on the acquired at least one parameter, among the plurality of lithium ion batteries. A saddle-type vehicle without a control device configured to change the voltage and / or current of at least one of the lithium-ion batteries.
  6.  請求項5に記載の鞍乗型車両であって、
     前記鞍乗型車両は、
    前記鞍乗型車両の左右方向に延びるように設けられた操舵用のバーハンドルと、
    運転者が跨って着座するように構成されたサドルと
    を備え、
     リーン車両として、旋回時に前記バーハンドルを把持する運転者によってカーブ内側にリーンするように体重移動が行われることにより旋回するように構成されている
    鞍乗型車両。
    The saddle-mounted vehicle according to claim 5.
    The saddle-mounted vehicle is
    A steering bar handle provided so as to extend in the left-right direction of the saddle-mounted vehicle, and
    Equipped with a saddle configured for the driver to sit across
    As a lean vehicle, a saddle-type vehicle configured to turn by weight transfer so as to lean inward of a curve by a driver who grips the bar handle when turning.
PCT/JP2021/015984 2020-02-04 2021-04-20 Straddled vehicle battery pack and straddled vehicle WO2021215425A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021002473.6T DE112021002473T5 (en) 2020-04-22 2021-04-20 Straddle vehicle battery pack and straddle vehicle
GB2215469.4A GB2608956A (en) 2020-02-04 2021-04-20 Straddled vehicle battery pack and straddled vehicle
FR2104219A FR3109675A1 (en) 2020-04-22 2021-04-22 Saddle Vehicle and Saddle Vehicle Battery Pack
TW110114504A TWI820416B (en) 2020-04-22 2021-04-22 Straddle-type vehicle battery pack and straddle-type vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/017298 WO2021214903A1 (en) 2020-04-22 2020-04-22 Electric vehicle battery pack and pure electric vehicle
JPPCT/JP2020/017298 2020-04-22

Publications (1)

Publication Number Publication Date
WO2021215425A1 true WO2021215425A1 (en) 2021-10-28

Family

ID=78269110

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/017298 WO2021214903A1 (en) 2020-04-22 2020-04-22 Electric vehicle battery pack and pure electric vehicle
PCT/JP2021/015984 WO2021215425A1 (en) 2020-02-04 2021-04-20 Straddled vehicle battery pack and straddled vehicle

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017298 WO2021214903A1 (en) 2020-04-22 2020-04-22 Electric vehicle battery pack and pure electric vehicle

Country Status (1)

Country Link
WO (2) WO2021214903A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333553A (en) * 2005-05-23 2006-12-07 Fujitsu Ten Ltd Battery charge state calculating system and method, and battery monitor
JP2008041402A (en) * 2006-08-04 2008-02-21 Toshiba Corp Nonaqueous electrolyte battery, battery pack and vehicle
JP2013051857A (en) * 2011-08-31 2013-03-14 Sony Corp Power storage device, electronic apparatus, electric vehicle, and electric power system
JP2013112303A (en) * 2011-11-30 2013-06-10 Daihatsu Motor Co Ltd Power supply device for hybrid vehicle
JP2018113254A (en) * 2016-12-15 2018-07-19 ストアドット リミテッド Electric vehicle including adaptable high speed charging using super capacitor emulating battery
JP2019160446A (en) * 2018-03-08 2019-09-19 ヤマハ発動機株式会社 Lean vehicle battery and lean vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4928099B2 (en) * 2005-08-17 2012-05-09 日立マクセルエナジー株式会社 Battery pack, mobile device and battery pack charging method
JP2013232280A (en) * 2010-11-22 2013-11-14 Yamaha Motor Co Ltd Battery pack for saddle-riding type vehicle and saddle-riding type vehicle
JP6087675B2 (en) * 2013-03-15 2017-03-01 株式会社東芝 Battery module
JP2015153719A (en) * 2014-02-19 2015-08-24 株式会社東芝 Power supply system, and vehicle
JP2018006307A (en) * 2016-07-05 2018-01-11 永浦 千恵子 Power storage system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333553A (en) * 2005-05-23 2006-12-07 Fujitsu Ten Ltd Battery charge state calculating system and method, and battery monitor
JP2008041402A (en) * 2006-08-04 2008-02-21 Toshiba Corp Nonaqueous electrolyte battery, battery pack and vehicle
JP2013051857A (en) * 2011-08-31 2013-03-14 Sony Corp Power storage device, electronic apparatus, electric vehicle, and electric power system
JP2013112303A (en) * 2011-11-30 2013-06-10 Daihatsu Motor Co Ltd Power supply device for hybrid vehicle
JP2018113254A (en) * 2016-12-15 2018-07-19 ストアドット リミテッド Electric vehicle including adaptable high speed charging using super capacitor emulating battery
JP2019160446A (en) * 2018-03-08 2019-09-19 ヤマハ発動機株式会社 Lean vehicle battery and lean vehicle

Also Published As

Publication number Publication date
WO2021214903A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
US10286805B2 (en) Hybrid energy storage module system
KR101587358B1 (en) A hybrid vehicle
JP5682708B2 (en) Power storage system
JP6076944B2 (en) High efficiency operation hybrid battery pack
US20050253460A1 (en) Electric vehicle
US11830999B2 (en) Hybrid energy storage module system having auxiliary battery
EP3550695B1 (en) Electric circuit and diagnosis method
CN101301858A (en) Vehicle-mounted intelligent power management system for CAN bus technology automobile
JP5262027B2 (en) Battery pack and battery system
JP5489525B2 (en) Equalization equipment
WO2021215425A1 (en) Straddled vehicle battery pack and straddled vehicle
CN110234531B (en) Control system, mobile body, and control method
TWI820416B (en) Straddle-type vehicle battery pack and straddle-type vehicle
WO2021215426A1 (en) Straddled vehicle battery pack and straddled vehicle
JP2008041620A (en) Battery pack system
TWI832046B (en) Straddle-type vehicle battery pack and straddle-type vehicle
GB2608956A (en) Straddled vehicle battery pack and straddled vehicle
TW202144227A (en) Straddled vehicle battery pack and straddled vehicle
WO2023074434A1 (en) Electricity storage-type charging device, electricity storage-type charging system, and high-current chargeable driving lithium-ion battery
KR101543265B1 (en) Power supply for a vehicle and power supply method of the vehicle
WO2021106345A1 (en) Vehicle-mounted battery system
JP7408594B2 (en) Vehicle and control device
TW202327219A (en) Electricity storage-type charging device, electricity storage-type charging system, and high-current chargeable driving lithium-ion battery
JP7459926B2 (en) Battery packs and electric vehicles
CN115133604A (en) Control device and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202215469

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210420

122 Ep: pct application non-entry in european phase

Ref document number: 21792606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP