WO2021214903A1 - Electric vehicle battery pack and pure electric vehicle - Google Patents

Electric vehicle battery pack and pure electric vehicle Download PDF

Info

Publication number
WO2021214903A1
WO2021214903A1 PCT/JP2020/017298 JP2020017298W WO2021214903A1 WO 2021214903 A1 WO2021214903 A1 WO 2021214903A1 JP 2020017298 W JP2020017298 W JP 2020017298W WO 2021214903 A1 WO2021214903 A1 WO 2021214903A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric vehicle
battery pack
lithium
ion batteries
lithium ion
Prior art date
Application number
PCT/JP2020/017298
Other languages
French (fr)
Japanese (ja)
Inventor
日野 陽至
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2020/017298 priority Critical patent/WO2021214903A1/en
Priority to DE112021002473.6T priority patent/DE112021002473T5/en
Priority to PCT/JP2021/015984 priority patent/WO2021215425A1/en
Priority to FR2104219A priority patent/FR3109675A1/en
Priority to TW110114504A priority patent/TWI820416B/en
Publication of WO2021214903A1 publication Critical patent/WO2021214903A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery pack for an electric vehicle and a pure electric vehicle.
  • Patent Document 1 discloses a battery pack for a saddle-mounted vehicle.
  • the saddle-mounted vehicle of Patent Document 1 is a vehicle without an engine, that is, a pure electric vehicle.
  • Patent Document 1 describes an electric motorcycle as an example of a saddle-mounted vehicle.
  • the battery pack of Patent Document 1 is provided in a saddle-mounted vehicle which is a pure electric vehicle.
  • the battery pack of Patent Document 1 includes a plurality of cases for accommodating a battery unit. A heat dissipation space is formed between some of the plurality of cases. As a result, in the technique of Patent Document 1, heat dissipation is increased while increasing the energy capacity of the battery pack.
  • the battery pack for an electric vehicle used for a pure electric vehicle be miniaturized with a simple configuration in order to improve the mountability on the vehicle. Further, it is desired that the battery pack for an electric vehicle used for a pure electric vehicle can be charged in a short time, for example.
  • An object of the present invention is to provide a battery pack for an electric vehicle that can be miniaturized with a simple configuration and can be charged in a short time.
  • the present inventors examined the characteristics of a battery pack for an electric vehicle suitable for a pure electric vehicle. As a result, the present inventors have found the following.
  • the battery pack of Patent Document 1 has a plurality of batteries.
  • the battery pack of Patent Document 1 has a control unit.
  • the control unit is a battery management controller (BMC) having a CPU and a memory.
  • the control unit is connected to each battery of the battery pack by an electric wire.
  • the control unit monitors the status of each battery.
  • the control unit centrally controls each battery. More specifically, a control unit connected to each battery and having a CPU and a memory monitors the state of each battery by detecting the temperature, current, voltage, frequency of use, etc. in each battery and controls each battery. do.
  • each of the batteries connected in parallel has variations in characteristics such as internal resistance due to the state of the electrodes and the state of the electrolyte.
  • characteristics such as internal resistance due to the state of the electrodes and the state of the electrolyte.
  • the control unit controls the charge amount of the batteries having different charge amounts by detecting the state of each battery.
  • the present inventor has examined various configurations of battery packs for electric vehicles suitable for pure electric vehicles.
  • the present inventor has studied setting the charging voltage of the battery pack for an electric vehicle to 60 V or less, and intentionally connecting a plurality of lithium ion batteries in series without connecting them in parallel with each other. Further, the present inventor has examined a lithium ion battery having a continuous maximum charging rate of 10 C or more as a battery of a battery pack for an electric vehicle. The present inventor has found that, with this configuration, the battery pack for an electric vehicle can be miniaturized with a simple configuration and can be charged in a short time.
  • each lithium-ion battery does not have a control device having a CPU such as a battery management controller (BMC) or a battery management system (BMS) that centrally manages the current, voltage, or temperature of each lithium-ion battery. It is possible to keep the balance of the amount of charge in. That is, it is possible to maintain the balance of the charge amount in each lithium ion battery without a configuration in which the control device centrally controls each lithium ion battery. Therefore, a small battery pack for an electric vehicle can be realized with a simple configuration.
  • BMC battery management controller
  • BMS battery management system
  • the battery pack for electric vehicles operates within the range belonging to the "extra low voltage” (ELV or safety extra low voltage: SELV) in the standard IEC60950 of the International Electrotechnical Commission (IEC). do. Since the voltage of the battery pack for electric vehicles is low, the insulation structure can be made simpler than that for high voltage.
  • ELV extra low voltage
  • the voltage applied to both ends of a plurality of lithium ion batteries connected in series is a low voltage belonging to the "extra low voltage". Therefore, for example, a smaller number of lithium-ion batteries can be connected in series than in the case of belonging to a voltage range higher than the "extra-low voltage" voltage. Therefore, for example, it is possible to reduce variations in the charging capacity characteristics of each lithium-ion battery included in the battery pack for an electric vehicle, as compared with the case where many lithium-ion batteries are used to cope with a high voltage. .. From this, it is possible to maintain the balance of the charge amount in each lithium ion battery without providing a control device such as a battery management system (BMS). Therefore, a small battery pack for an electric vehicle can be realized with a simple configuration.
  • BMS battery management system
  • each of the plurality of lithium-ion batteries connected in series has a continuous maximum charging rate of 10C or more
  • the continuous maximum charging rate of 10C or more as a battery pack for an electric vehicle without connecting a plurality of lithium-ion batteries in parallel.
  • the battery pack for an electric vehicle has a continuous maximum charging rate of 10 C or more, for example, 50% or more of the charging capacity of the battery pack for an electric vehicle can be charged in a short time of 3 minutes or less. This makes it possible, for example, to charge an electric vehicle equipped with a battery pack for an electric vehicle in a time close to the time required for replenishing liquid fuel in a conventional or current gas station. Therefore, it is not necessary to occupy the charging station for a long time.
  • the insulating structure can be simplified. It is possible to realize a small battery pack for an electric vehicle with a simple configuration. Further, since a maximum charging rate of 10 C or more can be realized as a battery pack for an electric vehicle without connecting a plurality of lithium ion batteries in parallel, the battery pack for an electric vehicle can be charged in a short time. In this way, it is possible to realize a battery pack for an electric vehicle that has a simple configuration, is compact, and can be charged in a short time.
  • the battery pack for an electric vehicle according to each viewpoint of the present invention completed based on the above findings has the following configurations.
  • a battery pack for an electric vehicle used for a pure electric vehicle is With multiple lithium-ion batteries A case accommodating the plurality of lithium ion batteries and An electrical connection connector that is connected to a mating connector provided on the vehicle body of the pure electric vehicle and transmits a current input / output to the vehicle body.
  • Each of the plurality of lithium-ion batteries has a continuous maximum charging rate of 10 C or more and is connected in series without being connected in parallel to each other, and the maximum charge of the battery pack for an electric vehicle corresponding to the voltage across the series connection.
  • the voltage is 60 V or less.
  • the battery pack for an electric vehicle in the above configuration includes a plurality of lithium ion batteries.
  • a plurality of lithium-ion batteries are connected in series without being connected in parallel with each other. Therefore, the currents flowing through each lithium-ion battery during charging are substantially equal. Therefore, it is easy to maintain the balance of the charge amount in each lithium ion battery. Therefore, for example, it is possible to maintain the balance of the charge amount in each lithium-ion battery without providing a control device such as a battery management system (BMS) that centrally manages the current, voltage, or temperature of each lithium-ion battery. Is. Therefore, a small battery pack for an electric vehicle can be realized with a simple configuration.
  • BMS battery management system
  • the battery pack for electric vehicles operates within the range belonging to the "extra low voltage” (ELV or safety extra low voltage: SELV) in the standard IEC60950 of the International Electrotechnical Commission (IEC). do. Since the voltage of the battery pack for electric vehicles is low, the insulation structure can be made simpler than that for high voltage.
  • ELV extra low voltage
  • the voltage applied to both ends of the plurality of lithium ion batteries connected in series is a low voltage belonging to the “extra low voltage”. Therefore, for example, a smaller number of lithium-ion batteries can be connected in series than in the case of belonging to a voltage range higher than the "extra-low voltage" voltage. Therefore, for example, it is possible to reduce variations in the charging capacity characteristics of each lithium-ion battery included in the battery pack for an electric vehicle, as compared with the case where many lithium-ion batteries are used to cope with a high voltage. .. From this, it is possible to maintain the balance of the charge amount in each lithium ion battery without providing a control device such as a battery management system (BMS).
  • BMS battery management system
  • a small battery pack for an electric vehicle can be realized with a simple configuration. Since each of the plurality of lithium-ion batteries connected in series has a continuous maximum charging rate of 10C or more, the continuous maximum charging rate of 10C or more as a battery pack for an electric vehicle without connecting a plurality of lithium-ion batteries in parallel. Can be realized.
  • the battery pack for an electric vehicle has a continuous maximum charging rate of 10 C or more, for example, 50% or more of the charging capacity of the battery pack for an electric vehicle can be charged within 3 minutes.
  • the insulating structure can be simplified.
  • a battery pack for a small electric vehicle can be realized with a simple configuration.
  • a continuous maximum charging rate of 10 C or more can be realized as a battery pack for an electric vehicle without connecting a plurality of lithium ion batteries in parallel, the battery pack for an electric vehicle can be charged in a short time. In this way, it is possible to realize a battery pack for an electric vehicle that has a simple configuration, is compact, and can be charged in a short time.
  • the battery pack for an electric vehicle can adopt the following configuration.
  • Each of the plurality of lithium ion batteries has a negative electrode containing at least one selected from the group consisting of spinel-type lithium titanate, niobium titanium-containing composite oxide, and graphite.
  • the allowable range of charge voltage and discharge voltage is wider than that of a lithium ion battery in which the negative electrode does not have any of spinel-type lithium titanate, niobium-titanium-containing composite oxide, and graphite. Therefore, it is easy to keep the balance of the charge amount in each lithium ion battery without providing a control device such as a battery management system (BMS). Therefore, a small battery pack for an electric vehicle can be realized with a simpler configuration.
  • BMS battery management system
  • the battery pack for an electric vehicle can adopt the following configuration.
  • a relay that is connected in series with the plurality of lithium ion batteries and cuts off the current flowing through the plurality of lithium ion batteries is provided.
  • the electric connector carelessly contacts some conductor outside the battery pack for the electric vehicle and causes a short circuit. It is possible to suppress the situation where the conductor is welded to the electrical connector due to a large current. Therefore, without providing a control device such as a battery management system (BMS), it is possible to suppress a situation in which, for example, an external conductor is welded to an electrical connection connector with a simple configuration.
  • BMS battery management system
  • the battery pack for an electric vehicle can adopt the following configuration.
  • the battery pack for an electric vehicle acquires at least one parameter of the current, voltage, or temperature detected from each of the plurality of lithium ion batteries, and based on the acquired at least one parameter, the said battery pack. It does not include a control device configured to change the voltage and / or current of at least one of the plurality of lithium ion batteries.
  • each of the plurality of lithium-ion batteries has a continuous maximum charging rate of 10 C or more and is connected in series without being connected in parallel to each other, and is a battery pack for an electric vehicle corresponding to the voltage across the series connection.
  • the maximum charging voltage is 60 V or less. Since each of the plurality of lithium-ion batteries is not connected in parallel, the above configuration can maintain the balance of the charge amount in each lithium-ion battery while omitting the above-mentioned control device. Therefore, it is possible to realize a battery pack for an electric vehicle that has a simple configuration, is compact, and can be charged in a short time.
  • the battery pack for an electric vehicle can adopt the following configuration. (5) It is a pure electric vehicle
  • the pure electric vehicle is A battery pack for an electric vehicle according to any one of (1) to (4) and A mating connector configured to be connected to the electrical connector of the battery pack for an electric vehicle,
  • Motor control configured to control power supply from the battery pack for an electric vehicle to a motor via the mating connector and power supply from the motor to the battery pack for an electric vehicle via the mating connector.
  • the motor is provided with the motor configured to drive the drive wheels with electric power supplied from the motor control device, while generating electric power by driving the drive wheels.
  • At least one parameter of the current, voltage or temperature detected from each of the plurality of lithium ion batteries is acquired, and based on the acquired at least one parameter, among the plurality of lithium ion batteries. It does not include a control device configured to change the voltage and / or current of at least one of the lithium-ion batteries.
  • the pure electric vehicle of (5) The pure electric vehicle is a saddle-mounted vehicle.
  • the saddle-mounted vehicle is A steering bar handle provided so as to extend in the left-right direction of the saddle-mounted vehicle, and Equipped with a saddle configured for the driver to sit across As a lean vehicle, the driver who grips the bar handle at the time of turning is configured to turn by shifting the weight so as to lean inward of the curve.
  • a pure electric vehicle is a vehicle that runs on the electric power stored in a battery pack.
  • the electric power referred to here includes, for example, at least the chemical energy stored in the secondary battery pack.
  • the pure motor vehicle may also include a capacitor and may be configured to run on the physical energy stored in the capacitor in addition to the chemical energy.
  • a pure motor vehicle is, for example, a vehicle that does not have an engine. Vehicles equipped with an engine as an internal combustion engine are not included in pure electric vehicles. For example, a plug-in hybrid vehicle that has a function of charging with electric power supplied from the outside of the vehicle and can run on an engine mounted on the vehicle is not included in a pure electric vehicle.
  • the pure electric vehicle is, for example, a saddle-mounted vehicle.
  • the pure electric vehicle is, for example, a pure electric saddle type vehicle.
  • a saddle-mounted vehicle is a vehicle that rides in a riding style. The driver sits across the saddle of a saddle-mounted vehicle.
  • the saddle-mounted vehicle is, for example, a lean vehicle. Examples of the saddle-type vehicle include a scooter type, a moped type, an off-road type, and an on-road type motorcycle.
  • the saddle-mounted vehicle is not limited to a motorcycle, and may be, for example, an ATV (All-Terrain Vehicle) or the like, or may be a motorcycle.
  • a tricycle may have two front wheels and one rear wheel, or may have one front wheel and two rear wheels.
  • the pure electric vehicle is not particularly limited, and may be, for example, an automobile having four or more wheels and a passenger compartment.
  • the battery pack for electric vehicles is a battery pack used for pure electric vehicles.
  • a battery pack for an electric vehicle is a pack in which a plurality of lithium-ion batteries are integrally combined.
  • the battery pack for an electric vehicle is mounted on the body of a pure electric vehicle.
  • the battery pack for electric vehicles is removable from the vehicle body.
  • the battery pack for an electric vehicle may be removable from the vehicle body without a tool other than a key such as a spanner, or may be removable from the vehicle body by using a tool such as a spanner.
  • Lithium-ion batteries are batteries that can be charged and discharged.
  • a lithium ion battery is a secondary battery that charges and discharges by a chemical reaction of electrodes.
  • Lithium-ion batteries are charged and discharged by oxidation and reduction reactions of electrodes.
  • Lithium-ion batteries convert stored chemical energy into electrical energy.
  • the terminal voltage of a lithium-ion battery is not proportional to the amount of power stored in the battery.
  • lithium ion capacitors are not included in lithium ion batteries.
  • Lithium-ion batteries contain a lithium oxide in the positive electrode. Lithium batteries that use lithium metal for the positive electrode are not included in lithium ion batteries.
  • the lithium ion battery is a non-aqueous lithium ion battery that uses a non-aqueous electrolyte such as an organic solvent.
  • a lithium-ion battery is a battery that can store electric power for driving a motor of a pure electric vehicle. Lithium-ion batteries can store electric power supplied from the outside of a pure electric vehicle. Further, the lithium ion battery can store the electric power supplied from the motor when the motor of the pure electric vehicle generates electric power. That is, the regenerative current of the motor can be stored.
  • the maximum charging rate is the maximum maximum charging rate allowed by the power storage unit.
  • the maximum charging rate represents the speed of charging.
  • the unit is C.
  • the continuous maximum charge rate is the maximum maximum charge rate allowed when charging continuously rather than instantaneously.
  • the magnitude of the current that completely charges the capacity of the battery in one hour is defined as 1C.
  • 1C For example, when the capacity of the battery is 2Ah, 1C is 2A.
  • the electrical connector transmits the current input and output to the vehicle body.
  • the electrical connector transmits the current output to the motor of a pure electric vehicle.
  • the electrical connector transmits the current supplied by the motor when the motor of a pure electric vehicle generates electricity.
  • the electrical connector may be used as a connector for transmitting a current supplied from the outside of a pure electric vehicle.
  • the electrical connection connector may be provided as a connector different from the connector that transmits the current supplied from the outside of the pure electric vehicle.
  • the electrical connector is attached to, for example, a case.
  • the electrical connector is supported, for example, in a case.
  • the electrical connector is fixed to the case, for example.
  • the electrical connection connector is not limited to this, and may be swingably supported by the case so that it can be easily connected to the mating connector, for example.
  • the electrical connector may be connected to, for example, a cable extending through the case and extending to the outside of the case. That is, the electrical connector may be physically connected to the case via a cable without being supported by the case. That is, the electrical connector does not have to be attached to the case, for example.
  • connection includes a state in which an electrical component is inserted in the middle.
  • electrical components include switches, relays, resistors, connection terminals, and fuses.
  • the connection is, for example, by wiring a lead wire.
  • the wiring is not limited to one composed of one lead wire, and may be a plurality of connected lead wires.
  • the terminology used herein is for the purpose of defining only specific embodiments and is not intended to limit the invention.
  • the term “and / or” includes any or all combinations of one or more related listed components.
  • the use of the terms “including, including,””comprising,” or “having,” and variations thereof, is a feature, process, operation, described. It identifies the presence of elements, components and / or their equivalents, but can include one or more of steps, actions, elements, components, and / or groups thereof.
  • the terms “attached”, “combined” and / or their equivalents are widely used and are both direct and indirect attachments and bindings unless otherwise specified. Including.
  • the present invention it is possible to realize a battery pack for an electric vehicle that can be miniaturized with a simple configuration and can be charged in a short time.
  • FIG. 1 is a diagram schematically showing a battery pack for an electric vehicle according to the first embodiment of the present invention.
  • the battery pack 1 for an electric vehicle shown in FIG. 1 is a battery pack used for a pure electric vehicle 100 (see FIG. 2).
  • the battery pack 1 for an electric vehicle is a battery pack that can be charged and discharged.
  • the battery pack 1 for an electric vehicle is charged at a voltage equal to or lower than the maximum charging voltage.
  • the maximum charging voltage of the battery pack 1 for an electric vehicle is 60 V or less.
  • the maximum charging voltage of the battery pack 1 for an electric vehicle is, for example, 48V. However, the maximum charging voltage may be set to, for example, 14V, or may be set to, for example, 36V.
  • the battery pack 1 for an electric vehicle includes a lithium ion battery 11, a case 12, and an electric connector 13.
  • the battery pack 1 for an electric vehicle includes five lithium ion batteries 11.
  • the lithium ion batteries 11 are connected in series without being connected in parallel with each other.
  • the number of lithium-ion batteries 11 is set so that the maximum voltage across the series is equal to or greater than the maximum voltage of the battery pack 1 for an electric vehicle.
  • the lithium ion battery 11 is a battery that can be charged and discharged.
  • the lithium ion battery 11 is a secondary battery that charges and discharges by a chemical reaction of electrodes.
  • the lithium ion battery 11 contains a lithium oxide in the positive electrode.
  • the lithium ion battery is a non-aqueous lithium ion battery that uses a non-aqueous electrolyte.
  • the lithium ion battery contains, for example, at least one selected from the group consisting of spinel-type lithium titanate, niobium titanium-containing composite oxide, and graphite in the negative electrode.
  • the negative electrode of the lithium ion battery is not particularly limited, and a negative electrode containing a substance other than the above can also be adopted.
  • the lithium ion battery 11 has a larger maximum charging current than a battery using another positive electrode material such as a lead battery or a nickel hydrogen battery.
  • the lithium ion battery 11 has a continuous maximum charging rate of 10 C or more.
  • the case 12 houses the lithium-ion battery 11.
  • Case 12 has, for example, a closed structure. More specifically, the case 12 has a structure in which the lithium ion battery 11 cannot be seen from the outside. As a result, the situation in which a foreign substance is inserted from the outside of the battery pack 1 for an electric vehicle and comes into contact with the lithium ion battery 11 is suppressed.
  • the case 12 has, for example, a waterproof structure. For example, when the battery pack 1 for an electric vehicle is provided in a saddle-type vehicle as a pure electric vehicle (see FIG. 2), the battery pack 1 for an electric vehicle may be exposed to a liquid such as water or oil. The case 12 suppresses the ingress of liquid. Therefore, the contact between the lithium ion battery 11 and the liquid is suppressed.
  • the electric connection connector 13 is connected to a mating connector (not shown) provided on the vehicle body 102 (see FIG. 2) of the pure electric vehicle 100, and transmits an input / output current to the vehicle body 102.
  • the electric power stored in the battery pack 1 for the electric vehicle is supplied to the vehicle body of the pure electric vehicle through the electric connector 13. Further, at the time of regeneration, the regenerative power is supplied from the vehicle body of the pure electric vehicle to the battery pack 1 for the electric vehicle through the electric connector 13.
  • the electrical connection connector 13 of the present embodiment can also be connected to a charging device provided outside the pure electric vehicle 100, such as a charging station. While the pure electric vehicle 100 is stopped, the mating connector provided in the external charging device is connected instead of the mating connector provided in the vehicle body 102 (see FIG. 2). As a result, the battery pack 1 for the electric vehicle is charged.
  • the battery pack 1 for electric vehicles is also equipped with a bus bar 14.
  • the bus bar 14 is a conductor that connects the lithium ion battery 11 and the electrical connector 13.
  • the bus bar 14 connects the lithium ion batteries 11 to each other.
  • the bus bar 14 connects the lithium ion battery 11 and the electrical connector 13 in series.
  • the lithium ion batteries 11 included in the battery pack 1 for an electric vehicle of the present embodiment are connected in series without being connected in parallel to each other.
  • Each lithium-ion battery 11 has a variation in internal resistance.
  • the currents flowing through the lithium-ion batteries 11 connected in series are substantially equal regardless of the difference in internal resistance. Therefore, it is easy to maintain the balance of the charge amount in each lithium ion battery 11. For example, when charging is started from a state where the charge amount of each lithium ion battery 11 is 0, the current integrated amount of each lithium ion battery 11 at an arbitrary time is substantially equal. That is, the charge amount of each lithium ion battery 11 is substantially equal. Further, even when each lithium ion battery 11 is discharged, the current flowing through each lithium ion battery 11 is substantially equal.
  • each lithium ion battery 11 at an arbitrary time is substantially equal. Therefore, the timing at which each lithium ion battery 11 is fully charged during charging is substantially the same. Therefore, for example, it is possible to maintain the balance of the charge amount in each lithium-ion battery without providing a control device such as a battery management system (BMS) that centrally manages the current, voltage, or temperature of each lithium-ion battery. Is. Therefore, the battery pack 1 for an electric vehicle can be miniaturized with a simple configuration.
  • the standard working voltage of each lithium ion battery 11 is, for example, 2.3V. However, each lithium ion battery 11 can be charged with a voltage exceeding the standard working voltage.
  • Each lithium ion battery 11 is charged with a voltage of, for example, 3 V or more.
  • the lithium ion battery 11 is configured to be connected in series without being connected in parallel to each other, and the maximum voltage that can be charged by the battery pack 1 for an electric vehicle is 60 V or less. In this case, the maximum voltage applied to both ends of the set of lithium ion batteries 11 connected in series is 60 V or less.
  • the battery pack 1 for an electric vehicle operates in a range belonging to the "extra low voltage” (ELV or safety extra low voltage: SELV) in the standard IEC60950 of the International Electrotechnical Commission (IEC).
  • ELV extra low voltage
  • SELV safety extra low voltage
  • the lithium ion battery 11 a lithium ion battery having a charging capacity of 5 Ah or more and 40 Ah or less can be adopted.
  • the maximum charging voltage of such a lithium ion battery 11 is 3V
  • the maximum charging voltage of the battery pack 1 for an electric vehicle having five lithium ion batteries 11 connected in series is 15V.
  • the continuous maximum charge flow of the lithium ion battery 11 is 50 A.
  • the continuous maximum charge flow of the lithium ion battery 11 is 200 A.
  • the ability to fully charge the battery is difficult to grasp only from the charging current. This is because the ability of a battery to be fully charged depends not only on the charging current but also on the charging capacity. Therefore, in the present specification, as a capacity for the battery to be fully charged, a display based on a charging rate in consideration of a difference in charging capacity is adopted.
  • the voltage applied to both ends of the plurality of lithium ion batteries connected in series is a low voltage belonging to the “extra low voltage”. Therefore, for example, a smaller number of lithium-ion batteries 11 can be connected in series as compared with the case where a voltage higher than the "extra-low voltage” is applied.
  • the battery pack 1 for an electric vehicle of the present embodiment has five lithium ion batteries 11 connected in series. Therefore, for example, as compared with the case where many lithium-ion batteries are used to cope with a high voltage higher than the "extra-low voltage", the battery pack 1 for an electric vehicle of the present embodiment is made of each lithium-ion battery 11. It is possible to reduce variations in the characteristics of charging capacity. For this reason, the battery pack 1 for an electric vehicle of the present embodiment can more easily maintain the balance of the charge amount in each lithium ion battery without providing a control device such as a battery management system (BMS).
  • BMS battery management system
  • each lithium ion battery included in the battery pack 1 for an electric vehicle of the present embodiment has a continuous maximum charging rate of 10C or more, 10C as the battery pack 1 for an electric vehicle without connecting a plurality of lithium ion batteries in parallel.
  • the above continuous maximum charging rate can be realized.
  • the battery pack 1 for an electric vehicle has a continuous maximum charging rate of 10 C or more, it is possible to charge 50% or more of the charging capacity of the battery pack 1 for an electric vehicle within 3 minutes.
  • the electric vehicle equipped with the battery pack 1 for the electric vehicle of the present embodiment can be charged in a time close to the time required for replenishing the liquid fuel in the conventional or current gas station. Therefore, the time to occupy the charging station is short.
  • the assumption of the amount of electric power to be charged is, for example, 50% of the charging capacity of the battery pack for an electric vehicle.
  • a pure electric vehicle that does not have an auxiliary power source such as an engine generator is usually charged with a sufficient margin for a charge amount of 0%.
  • a pure electric vehicle is charged at a high frequency, for example, when the driver is at home, even when the charge amount of the battery pack 1 for the electric vehicle is more than 50%. For example, if 50% or more of the battery pack 1 for an electric vehicle can be charged within 3 minutes, the battery pack 1 for an electric vehicle will be charged more frequently.
  • the charging station when there is a charging station on the traveling path, even if the charge amount of the battery pack 1 for an electric vehicle is 70% or more, it is conceivable to stop by the charging station for several minutes to charge the battery pack 1. Further, for example, when the charging station is equipped with a plurality of charging devices, it is possible to distinguish between a charging device dedicated to a vehicle (first lane) that completes charging within a few minutes and a charging device for a vehicle that does not. .. In this case, a specific vehicle that can be fully charged within a few minutes has a short waiting time and can be charged after a short stay.
  • the battery pack 1 for an electric vehicle of the present embodiment has a lithium ion battery 11 connected in series without being connected in parallel. Therefore, the continuous maximum charging rate and the maximum charging current of the battery pack 1 for the electric vehicle cannot exceed the continuous maximum charging rate and the maximum charging current of the lithium ion battery 11. In other words, the continuous maximum charging rate and the maximum charging current of the battery pack 1 for the electric vehicle are mainly restricted by the continuous maximum charging rate and the maximum charging current of the lithium ion battery 11.
  • the lithium ion battery 11 having a continuous maximum charging rate of 10 C or more for example, A lithium-ion battery with a charging capacity of 40 Ah or less and a maximum charging current of 400 A, A lithium-ion battery with a charging capacity of 20 Ah or less and a maximum charging current of 200 A, A lithium-ion battery having a charging capacity of 10 Ah or less and a maximum charging current of 100 A, or Lithium-ion batteries having a charging capacity of 5 Ah or less and a maximum charging current of 50 A can be mentioned.
  • the maximum distance that the pure electric vehicle 100 (see FIG. 2) can travel with the charged electric power depends on the total charge amount of the battery pack 1 for the electric vehicle.
  • the total charge amount of the battery pack 1 for an electric vehicle is proportional to the number of built-in lithium ion batteries 11. Since the lithium ion batteries 11 are connected in series without being connected in parallel, the number of lithium ion batteries 11 can be set independently of the maximum charging current and the maximum continuous charging rate.
  • the number of lithium-ion batteries 11 included in the battery pack 1 for an electric vehicle is equal to the number of series-connected lithium-ion batteries 11.
  • the maximum distance that the pure electric vehicle 100 can travel can be set by the number of lithium ion batteries 11 included in the battery pack 1 for the electric vehicle.
  • the charging voltage of the battery pack 1 for an electric vehicle is proportional to the number of lithium ion batteries 11. That is, when the continuous charge rate [C] of the battery pack 1 for an electric vehicle is maintained at the same level as the continuous charge rate of each lithium ion battery 11, the charge voltage of one lithium ion battery 11 and the number of lithium ion batteries 11 are maintained. Is substantially the charging voltage of the battery pack 1 for the electric vehicle.
  • the maximum charging voltage of the battery pack 1 for an electric vehicle is 60 V or less. Therefore, the number of lithium ion batteries 11 is set so that the above product is 60 V or less.
  • a continuous maximum charging rate of 20C or more can be realized as the battery pack 1 for an electric vehicle.
  • the battery pack 1 for the electric vehicle can be charged in a shorter period of time.
  • the battery pack for an electric vehicle has a continuous maximum charging rate of 20 C or more, it is possible to charge 50% or more of the charging capacity of the battery pack 1 for an electric vehicle within 1.5 minutes.
  • the lithium ion battery 11 having a continuous maximum charging rate of 20 C or more for example, A lithium-ion battery with a charging capacity of 20 Ah or less and a maximum charging current of 400 A, A lithium-ion battery with a charging capacity of 10 Ah or less and a maximum charging current of 200 A, A lithium-ion battery having a charging capacity of 5 Ah or less and a maximum charging current of 100 A, or Lithium-ion batteries having a charging capacity of 2.5 Ah or less and a maximum charging current of 50 A can be mentioned.
  • a continuous maximum charging rate of 40C or more can be realized as the battery pack 1 for an electric vehicle.
  • the battery pack 1 for the electric vehicle can be charged in a shorter period of time.
  • the battery pack for an electric vehicle has a continuous maximum charging rate of 40 C or more, it is possible to charge 50% or more of the charging capacity of the battery pack 1 for an electric vehicle in less than one minute.
  • the lithium ion battery 11 having a continuous maximum charging rate of 40 C or more for example, A lithium-ion battery with a charging capacity of 10 Ah or less and a maximum charging current of 400 A, A lithium-ion battery with a charging capacity of 5 Ah or less and a maximum charging current of 200 A, A lithium-ion battery having a charging capacity of 2.5 Ah or less and a maximum charging current of 100 A, or Lithium-ion batteries having a charging capacity of 1.25 Ah or less and a maximum charging current of 50 A can be mentioned.
  • each lithium ion battery 11 is omitted while omitting a control device such as a battery management controller (BMC). It is possible to keep the balance of the amount of charge in.
  • the insulating structure can be simplified. Therefore, a small battery pack 1 for an electric vehicle can be realized with a simple configuration. Then, since a continuous maximum charging rate of, for example, 10 C or more can be realized as the battery pack 1 for an electric vehicle without connecting a plurality of lithium ion batteries 11 in parallel, the battery pack for an electric vehicle can be charged in a short time. In this way, it is possible to realize a battery pack for an electric vehicle that has a simple configuration, is compact, and can be charged in a short time.
  • FIG. 2 is a diagram showing an outline of a pure electric vehicle as an application example of the battery pack 1 for an electric vehicle shown in FIG.
  • the pure electric vehicle 100 shown in FIG. 2 has a battery pack 1 for an electric vehicle.
  • the pure electric vehicle 100 includes a vehicle body 102 and wheels 103a and 103b.
  • the vehicle body 102 is provided with a motor control device 104 and a motor 105.
  • the vehicle body 102 includes a saddle 107 and a bar handle 108 for steering.
  • the saddle 107 is configured so that the driver sits across it.
  • the steering bar handle 108 is provided so as to extend in the left-right direction of the pure electric vehicle 100.
  • the pure electric vehicle 100 is configured to turn as a lean vehicle by shifting the weight so as to lean inward of the curve by a driver who holds the bar handle 108 at the time of turning.
  • the pure electric vehicle 100 does not include an engine as an internal combustion engine.
  • the pure electric vehicle 100 does not have a control device.
  • the control device referred to here acquires at least one parameter of the current, voltage, or temperature detected from each of the plurality of lithium ion batteries 11 in the battery pack 1 for an electric vehicle, and at least one of the acquired parameters. It is configured to change the voltage and / or current of at least one lithium ion battery 11 among the plurality of lithium ion batteries 11 based on the parameters.
  • Such a control device is also not provided in the battery pack 1 for an electric vehicle.
  • the rear wheel 103b is a driving wheel.
  • the motor 105 drives the wheels 103b by the electric power supplied from the battery pack 1 for the electric vehicle.
  • the pure electric vehicle 100 runs by driving the wheels 103b.
  • the electric power of the battery pack 1 for the electric vehicle is supplied to the motor 105 via the motor control device 104.
  • the battery pack 1 for an electric vehicle is connected to the motor control device 104 via the electric connection connector 13. That is, the battery pack 1 for the electric vehicle is connected to the vehicle body 102 of the pure electric vehicle 100 via the electric connection connector 13.
  • the electric current is transmitted from the battery pack 1 for the electric vehicle to the motor control device 104 via the electric connector 13.
  • the pure electric vehicle 100 is braked by the regenerative braking of the motor 105
  • the power generated by the motor 105 is supplied to the electric vehicle battery pack 1 via the motor control device 104.
  • the battery pack 1 for the electric vehicle is charged.
  • the pure electric vehicle 100 shown in FIG. 2 has a function of being charged by electric power supplied from the outside of the pure electric vehicle 100. More specifically, the battery pack 1 for an electric vehicle has a function of being charged by electric power supplied from the outside of the pure electric vehicle 100.
  • the mating connector provided in the motor control device 104 is removed from the electric connection connector 13, and the connector of the charging device provided outside the pure electric vehicle 100 is connected to the electric connection connector 13.
  • the connector of the charging device provided externally is, for example, a connector provided in the charging device of the charging station.
  • the connector of the charging device for example, a connector of a charging device provided in a general household and using a commercial power source can also be adopted.
  • the battery pack for an electric vehicle has a continuous maximum charging rate of 10 C or more, for example, 50% or more of the charging capacity of the battery pack 1 for an electric vehicle can be charged within 3 minutes. Therefore, the pure electric vehicle 100 does not need to occupy the charging station for a long time for charging.
  • a continuous maximum charging rate of 40C or more can be realized as the battery pack 1 for an electric vehicle.
  • the battery pack 1 for the electric vehicle can be charged in a shorter period of time. Therefore, the time to occupy the charging station is short.
  • FIG. 3 is a diagram schematically showing a battery pack for an electric vehicle according to a second embodiment of the present invention.
  • the electric vehicle battery pack 21 according to the present embodiment is different from the electric vehicle battery pack 1 according to the first embodiment in that it further includes a charging connector 15 and a relay 18.
  • Other configurations are designated by the same reference numerals as those of the battery pack 1 for electric vehicles shown in FIG. 1, and some description thereof will be omitted.
  • the dedicated charging connector 15 of the battery pack 21 for an electric vehicle shown in FIG. 3 is connected to a connector of a charging device provided outside the pure electric vehicle 100.
  • the charging-dedicated connector 15 is connected to the set of lithium-ion batteries 11 in parallel with the electrical connection connector 13.
  • the charging-dedicated connector 15 is used only when the battery pack 21 for the electric vehicle is charged by the electric power supplied from the outside of the pure electric vehicle 100.
  • the battery pack 21 for an electric vehicle has an electric connection connector 13 and a charging-only connector 15. Therefore, the battery pack 21 for the electric vehicle can be charged while maintaining the connection state of the vehicle body 102 of the pure electric vehicle 100 with respect to the electric connection connector 13. Therefore, the charging operation can be facilitated, and the degree of freedom in the installation position of the battery pack 21 for the electric vehicle can be increased.
  • Each lithium ion battery 11 has a negative electrode containing at least one selected from the group consisting of spinel-type lithium titanate, niobium titanium-containing composite oxide, and graphite. Therefore, each lithium ion battery 11 has a wide allowable range of charge voltage and discharge voltage. Therefore, it is easy to keep the balance of the charge amount in each lithium ion battery without providing a control device such as a battery management system (BMS).
  • BMS battery management system
  • the relay 18 of the battery pack 21 for an electric vehicle conducts or cuts off the current flowing through the lithium ion battery 11.
  • the relay 18 of the battery pack 21 for an electric vehicle is configured to be turned on when, for example, a mating connector is connected to the electric connection connector 13 or the charging-only connector 15. For example, it is configured to be turned on by the current that energizes the mating connector.
  • a device for detecting a physical connection or a signal received from the other party at the time of connection may be provided.
  • the configuration of the present embodiment it is possible to suppress a situation in which the current of the lithium ion battery 11 carelessly flows to the outside from the electric connection connector 13 or the charging dedicated connector 15. Therefore, for example, when the battery pack 21 for an electric vehicle is removed from the vehicle body 102 (see FIG. 2) or during the work of being attached to the vehicle body, the electric connection connector 13 or the charging-dedicated connector 15 is the battery pack for the electric vehicle. It is possible to prevent a situation in which the conductor is inadvertently contacted with some conductor outside the 21 and the conductor is welded to the electric connection connector 13 or the charging dedicated connector 15 due to a large current due to a short circuit. Without providing a control device such as a battery management system (BMS), it is possible to suppress a situation in which, for example, an external conductor is welded to the electrical connection connector 13 or the charging-only connector 15 with a simple configuration.
  • BMS battery management system
  • the present invention is not limited to the above-mentioned example, and for example, the following configurations (7) to (11) can be adopted.
  • Examples of the following embodiments (7) to (11) include the above-described embodiments.
  • a battery pack for an electric vehicle according to any one of (1) to (4).
  • the case has a liquidtight structure.
  • the battery pack for an electric vehicle may be exposed to a liquid such as water or oil, the ingress of the liquid is suppressed depending on the case. Therefore, the contact between the lithium ion battery and the liquid is suppressed.
  • a battery pack for an electric vehicle according to any one of (1) to (4).
  • Each of the plurality of lithium-ion batteries has a continuous maximum charging rate of 40 C or more.
  • a maximum charging rate of 40 C or more can be realized as a battery pack for an electric vehicle, so that the battery pack for an electric vehicle can be charged in a shorter time.
  • a battery pack for an electric vehicle according to any one of (1) to (4).
  • Each of the plurality of lithium ion batteries has a capacity of 5 Ah or more.
  • the battery pack for the electric vehicle can be charged to the extent that the pure electric vehicle can run for normal purposes.
  • a battery pack for an electric vehicle according to any one of (1) to (4).
  • Each of the plurality of lithium ion batteries has a capacity of 20 Ah or less.
  • the battery pack for the electric vehicle can be charged to the extent that the pure electric vehicle can be driven for long-distance travel.
  • a battery pack for an electric vehicle according to any one of (1) to (4).
  • the minimum charging voltage of the battery pack for an electric vehicle is 12V.
  • the battery pack for electric vehicles is charged with a charging voltage of 12V or higher.
  • the battery pack for electric vehicles will not be charged at a voltage less than 12V.
  • Each of the lithium-ion batteries connected in series can be charged with enough electric power to drive a pure electric vehicle.

Abstract

The purpose of the present invention is to provide an electric vehicle battery pack (1) which has achieved a reduction in size using a simple configuration and which is capable of being charged in a short time. The electric vehicle battery pack (1) comprises: a plurality of lithium-ion batteries (11); a case (12) which houses the plurality of lithium-ion batteries (11); and an electrical connection connector (13) which connects to a mating connector provided on the vehicle body (102) of a pure electric vehicle (100) and transfers current that is input to and output from the vehicle body (102). The plurality of lithium-ion batteries (11) each have a continuous maximum charge rate of 10C or more and are connected in series without being connected in parallel with each other, and the maximum charge voltage of the electric vehicle battery pack (1), which corresponds to the voltage across both ends of the series connection, is 60 V or less.

Description

電動車両用電池パック及びピュア電動車両Battery pack for electric vehicles and pure electric vehicles
 本発明は、電動車両用電池パック及びピュア電動車両に関する。 The present invention relates to a battery pack for an electric vehicle and a pure electric vehicle.
 例えば、特許文献1には、鞍乗型車両の電池パックが示されている。特許文献1の鞍乗型車両は、エンジンを有さない車両、即ちピュア電動車両である。特許文献1には、鞍乗型車両の例として電動二輪車が記載されている。特許文献1の電池パックは、ピュア電動車両である鞍乗型車両に備えられる。
 特許文献1の電池パックは、電池ユニットを収容する複数のケースを備える。複数のケースのうち一部のケースの間に放熱用空間が形成される。これによって、特許文献1の技術では、電池パックにおけるエネルギー容量を大きくしつつ放熱性の増加が図られている。
For example, Patent Document 1 discloses a battery pack for a saddle-mounted vehicle. The saddle-mounted vehicle of Patent Document 1 is a vehicle without an engine, that is, a pure electric vehicle. Patent Document 1 describes an electric motorcycle as an example of a saddle-mounted vehicle. The battery pack of Patent Document 1 is provided in a saddle-mounted vehicle which is a pure electric vehicle.
The battery pack of Patent Document 1 includes a plurality of cases for accommodating a battery unit. A heat dissipation space is formed between some of the plurality of cases. As a result, in the technique of Patent Document 1, heat dissipation is increased while increasing the energy capacity of the battery pack.
特開2013-232280号公報Japanese Unexamined Patent Publication No. 2013-232280
 ピュア電動車両に用いる電動車両用電池パックは、車両への搭載性を高めるために簡単な構成で小型化することが望まれている。また、ピュア電動車両に用いる電動車両用電池パックは、例えば短時間で充電可能であることが望まれている。 It is desired that the battery pack for an electric vehicle used for a pure electric vehicle be miniaturized with a simple configuration in order to improve the mountability on the vehicle. Further, it is desired that the battery pack for an electric vehicle used for a pure electric vehicle can be charged in a short time, for example.
 本発明の目的は、簡単な構成で小型化でき短時間で充電可能な電動車両用電池パックを提供することである。 An object of the present invention is to provide a battery pack for an electric vehicle that can be miniaturized with a simple configuration and can be charged in a short time.
 本発明者らは、ピュア電動車両に適した電動車両用電池パックの特性について検討した。この結果、本発明者らは、次のことを見いだした。 The present inventors examined the characteristics of a battery pack for an electric vehicle suitable for a pure electric vehicle. As a result, the present inventors have found the following.
 電池パックでは、通常、大きなエネルギー容量、即ち充電容量を得るため、複数の電池が組合せて用いられている。
 例えば、特許文献1の電池パックは、複数の電池を有する。例えば、特許文献1では、エネルギー容量を大きくするため、例えば168個の電池が、並列及び直列接続されている。より詳細には、並列接続された12個の電池が1つの組を構成し、14の組が直列接続されている。また、特許文献1の電池パックは、制御部を有する。制御部は、CPU及びメモリを有するバッテリマネジメントコントローラ(BMC)である。制御部は、電池パックが有する各電池と電線で接続されている。制御部は、各電池の状態を監視する。制御部は、各電池の制御を集中して行なう。
 より詳細には、各電池に接続され、CPU及びメモリを有する制御部は、各電池における温度、電流、電圧及び使用頻度等を検出することによって各電池の状態を監視するとともに、各電池を制御する。
In a battery pack, a plurality of batteries are usually used in combination in order to obtain a large energy capacity, that is, a charging capacity.
For example, the battery pack of Patent Document 1 has a plurality of batteries. For example, in Patent Document 1, for example, 168 batteries are connected in parallel and in series in order to increase the energy capacity. More specifically, 12 batteries connected in parallel form one set, and 14 sets are connected in series. Further, the battery pack of Patent Document 1 has a control unit. The control unit is a battery management controller (BMC) having a CPU and a memory. The control unit is connected to each battery of the battery pack by an electric wire. The control unit monitors the status of each battery. The control unit centrally controls each battery.
More specifically, a control unit connected to each battery and having a CPU and a memory monitors the state of each battery by detecting the temperature, current, voltage, frequency of use, etc. in each battery and controls each battery. do.
 特許文献1の電池パックでは、1つの組をなす12個の電池が並列接続されている。並列接続された電池のそれぞれは、電極の状態や電解質の状態に起因して内部抵抗といった特性のばらつきを有する。充電時、並列接続された電池には互いに等しい電圧が印加される。しかし、並列接続された電池には特性のばらつきに応じた電流が流れる。つまり、並列接続された電池の充電量は、厳密には、特性のばらつきに応じて異なる。制御部は、各電池の状態を検出することによって、異なる充電量を有する電池の充電量を制御する。 In the battery pack of Patent Document 1, 12 batteries forming one set are connected in parallel. Each of the batteries connected in parallel has variations in characteristics such as internal resistance due to the state of the electrodes and the state of the electrolyte. When charging, batteries equal to each other are applied to the batteries connected in parallel. However, a current flows through the batteries connected in parallel according to the variation in characteristics. That is, strictly speaking, the charge amount of the batteries connected in parallel differs depending on the variation in the characteristics. The control unit controls the charge amount of the batteries having different charge amounts by detecting the state of each battery.
 本発明者は、電動車両用電池パックについてピュア電動車両に適した種々の構成を検討した。本発明者は、電動車両用電池パックの充電電圧を60V以下に設定するとともに、複数のリチウムイオン電池を敢えて互いに並列接続することなく敢えて直列接続することを検討した。また、本発明者は、電動車両用電池パックの電池として、10C以上の連続最大充電レートを有するリチウムイオン電池を検討した。本発明者は、この構成によって、電動車両用電池パックが簡単な構成で小型化でき短時間で充電可能となることを見いだした。 The present inventor has examined various configurations of battery packs for electric vehicles suitable for pure electric vehicles. The present inventor has studied setting the charging voltage of the battery pack for an electric vehicle to 60 V or less, and intentionally connecting a plurality of lithium ion batteries in series without connecting them in parallel with each other. Further, the present inventor has examined a lithium ion battery having a continuous maximum charging rate of 10 C or more as a battery of a battery pack for an electric vehicle. The present inventor has found that, with this configuration, the battery pack for an electric vehicle can be miniaturized with a simple configuration and can be charged in a short time.
 複数のリチウムイオン電池が互いに並列接続されることなく直列接続される場合、充電時に各リチウムイオン電池に流れる電流は実質的に等しくなる。このため、各リチウムイオン電池における充電量のバランスが保ちやすい。従って、例えば、各リチウムイオン電池の電流、電圧、又は温度を集中的に管理するバッテリマネジメントコントローラ(BMC)又はバッテリマネジメントシステム(BMS)といったCPUを有する制御装置を設けることなしに、各リチウムイオン電池における充電量のバランスを保つことが可能である。つまり、制御装置で各リチウムイオン電池を集中制御する構成無しに、各リチウムイオン電池における充電量のバランスを保つことが可能である。従って、簡単な構成で小型の電動車両用電池パックを実現できる。 When a plurality of lithium-ion batteries are connected in series without being connected in parallel to each other, the current flowing through each lithium-ion battery during charging is substantially equal. Therefore, it is easy to maintain the balance of the charge amount in each lithium ion battery. Therefore, for example, each lithium-ion battery does not have a control device having a CPU such as a battery management controller (BMC) or a battery management system (BMS) that centrally manages the current, voltage, or temperature of each lithium-ion battery. It is possible to keep the balance of the amount of charge in. That is, it is possible to maintain the balance of the charge amount in each lithium ion battery without a configuration in which the control device centrally controls each lithium ion battery. Therefore, a small battery pack for an electric vehicle can be realized with a simple configuration.
 また、複数のリチウムイオン電池は、互いに並列接続されることなく直列接続される構成としつつ、電動車両用電池パックが充電できる最大電圧は、60V以下である。この場合、直列接続された複数のリチウムイオン電池の両端に掛かる最大電圧は、60V以下である。
 このため、電動車両用電池パックは、国際電気標準会議(International Electrotechnical Commission:IEC)の規格IEC60950における「特別低電圧」(extra low voltage:ELV、又はsafety extra low voltage:SELV)に属する範囲で動作する。電動車両用電池パックの電圧は低電圧であるため高電圧用に較べて絶縁構造が簡単にできる。
Further, while the plurality of lithium ion batteries are configured to be connected in series without being connected in parallel to each other, the maximum voltage that the battery pack for an electric vehicle can charge is 60 V or less. In this case, the maximum voltage applied to both ends of the plurality of lithium ion batteries connected in series is 60 V or less.
Therefore, the battery pack for electric vehicles operates within the range belonging to the "extra low voltage" (ELV or safety extra low voltage: SELV) in the standard IEC60950 of the International Electrotechnical Commission (IEC). do. Since the voltage of the battery pack for electric vehicles is low, the insulation structure can be made simpler than that for high voltage.
 また、上述したように、直列接続された複数のリチウムイオン電池の両端に掛かる電圧は、「特別低電圧」に属する低い電圧である。このため、例えば「特別低電圧」の電圧よりも高電圧の範囲に属する場合と比べて少ない数のリチウムイオン電池を直列接続することができる。このため、例えば、高電圧に対応するために多くのリチウムイオン電池を用いる場合と比べて、電動車両用電池パックが備える各リチウムイオン電池の充電能力の特性のばらつきを低減することが可能である。このことから、バッテリマネジメントシステム(BMS)といった制御装置を設けることなしに、各リチウムイオン電池における充電量のバランスを保つことが可能である。従って、簡単な構成で小型の電動車両用電池パックを実現できる。 Further, as described above, the voltage applied to both ends of a plurality of lithium ion batteries connected in series is a low voltage belonging to the "extra low voltage". Therefore, for example, a smaller number of lithium-ion batteries can be connected in series than in the case of belonging to a voltage range higher than the "extra-low voltage" voltage. Therefore, for example, it is possible to reduce variations in the charging capacity characteristics of each lithium-ion battery included in the battery pack for an electric vehicle, as compared with the case where many lithium-ion batteries are used to cope with a high voltage. .. From this, it is possible to maintain the balance of the charge amount in each lithium ion battery without providing a control device such as a battery management system (BMS). Therefore, a small battery pack for an electric vehicle can be realized with a simple configuration.
 直列接続された複数のリチウムイオン電池のそれぞれが10C以上の連続最大充電レートを有することによって、複数のリチウムイオン電池を並列接続すること無しに、電動車両用電池パックとして10C以上の連続最大充電レートが実現できる。電動車両用電池パックが10C以上の連続最大充電レートを有することによって、例えば、電動車両用電池パックの充電容量の50%以上を3分以内の短時間で充電することが可能である。これによって、例えば、電動車両用電池パックを搭載した電動車両を、従来又は現在のガスステーションにおける液体燃料の補給に掛かる時間に近い時間で充電することが可能となる。従って、充電ステーションを長時間占拠する必要がない。 Since each of the plurality of lithium-ion batteries connected in series has a continuous maximum charging rate of 10C or more, the continuous maximum charging rate of 10C or more as a battery pack for an electric vehicle without connecting a plurality of lithium-ion batteries in parallel. Can be realized. When the battery pack for an electric vehicle has a continuous maximum charging rate of 10 C or more, for example, 50% or more of the charging capacity of the battery pack for an electric vehicle can be charged in a short time of 3 minutes or less. This makes it possible, for example, to charge an electric vehicle equipped with a battery pack for an electric vehicle in a time close to the time required for replenishing liquid fuel in a conventional or current gas station. Therefore, it is not necessary to occupy the charging station for a long time.
 このように、並列接続を無くすことにより、バッテリマネジメントコントローラ(BMC)といった制御装置を省略しつつ、各リチウムイオン電池における充電量のバランスを保つことが可能である。また、絶縁構造も簡単にすることが可能となる。簡単な構成で小型の電動車両用電池パックを実現することが可能である。そして、複数のリチウムイオン電池を並列接続すること無しに、電動車両用電池パックとして10C以上の最大充電レートが実現できるので、電動車両用電池パックを短時間で充電可能である。
 このように、簡単な構成で小型であり、短時間で充電可能な電動車両用電池パックを実現できる。
In this way, by eliminating the parallel connection, it is possible to maintain the balance of the charge amount in each lithium ion battery while omitting the control device such as the battery management controller (BMC). In addition, the insulating structure can be simplified. It is possible to realize a small battery pack for an electric vehicle with a simple configuration. Further, since a maximum charging rate of 10 C or more can be realized as a battery pack for an electric vehicle without connecting a plurality of lithium ion batteries in parallel, the battery pack for an electric vehicle can be charged in a short time.
In this way, it is possible to realize a battery pack for an electric vehicle that has a simple configuration, is compact, and can be charged in a short time.
 以上の知見に基づいて完成した本発明の各観点による電動車両用電池パックは、次の構成を備える。 The battery pack for an electric vehicle according to each viewpoint of the present invention completed based on the above findings has the following configurations.
 (1)ピュア電動車両に用いる電動車両用電池パックであって、
 前記電動車両用電池パックは、
複数のリチウムイオン電池と、
前記複数のリチウムイオン電池を収容するケースと、
前記ピュア電動車両の車体に設けられる相手コネクタと接続され、前記車体に対し入出力される電流を伝達する電気接続コネクタと、
を備え、
 前記複数のリチウムイオン電池の各々は、10C以上の連続最大充電レートを有するとともに互いに並列接続されることなく直列接続され、前記直列接続の両端の電圧に対応する前記電動車両用電池パックの最大充電電圧は60V以下である。
(1) A battery pack for an electric vehicle used for a pure electric vehicle.
The battery pack for an electric vehicle is
With multiple lithium-ion batteries
A case accommodating the plurality of lithium ion batteries and
An electrical connection connector that is connected to a mating connector provided on the vehicle body of the pure electric vehicle and transmits a current input / output to the vehicle body.
With
Each of the plurality of lithium-ion batteries has a continuous maximum charging rate of 10 C or more and is connected in series without being connected in parallel to each other, and the maximum charge of the battery pack for an electric vehicle corresponding to the voltage across the series connection. The voltage is 60 V or less.
 上記構成における電動車両用電池パックは、複数のリチウムイオン電池を備える。複数のリチウムイオン電池は、互いに並列接続されることなく直列接続される。従って、充電時に各リチウムイオン電池に流れる電流は実質的に等しい。このため、各リチウムイオン電池における充電量のバランスが保ちやすい。従って、例えば、各リチウムイオン電池の電流、電圧、又は温度を集中的に管理するバッテリマネジメントシステム(BMS)といった制御装置を設けることなしに、各リチウムイオン電池における充電量のバランスを保つことが可能である。従って、簡単な構成で小型の電動車両用電池パックを実現できる。 The battery pack for an electric vehicle in the above configuration includes a plurality of lithium ion batteries. A plurality of lithium-ion batteries are connected in series without being connected in parallel with each other. Therefore, the currents flowing through each lithium-ion battery during charging are substantially equal. Therefore, it is easy to maintain the balance of the charge amount in each lithium ion battery. Therefore, for example, it is possible to maintain the balance of the charge amount in each lithium-ion battery without providing a control device such as a battery management system (BMS) that centrally manages the current, voltage, or temperature of each lithium-ion battery. Is. Therefore, a small battery pack for an electric vehicle can be realized with a simple configuration.
 また、複数のリチウムイオン電池は、互いに並列接続されることなく直列接続される構成としつつ、電動車両用電池パックが充電できる最大電圧は、60V以下である。この場合、直列接続された複数のリチウムイオン電池の両端に掛かる最大電圧は、60V以下である。
 このため、電動車両用電池パックは、国際電気標準会議(International Electrotechnical Commission:IEC)の規格IEC60950における「特別低電圧」(extra low voltage:ELV、又はsafety extra low voltage:SELV)に属する範囲で動作する。電動車両用電池パックの電圧は低電圧であるため高電圧用に較べて絶縁構造が簡単にできる。
Further, while the plurality of lithium ion batteries are configured to be connected in series without being connected in parallel to each other, the maximum voltage that the battery pack for an electric vehicle can charge is 60 V or less. In this case, the maximum voltage applied to both ends of the plurality of lithium ion batteries connected in series is 60 V or less.
Therefore, the battery pack for electric vehicles operates within the range belonging to the "extra low voltage" (ELV or safety extra low voltage: SELV) in the standard IEC60950 of the International Electrotechnical Commission (IEC). do. Since the voltage of the battery pack for electric vehicles is low, the insulation structure can be made simpler than that for high voltage.
 また、上述したように、直列接続された複数のリチウムイオン電池の両端に掛かる電圧は、「特別低電圧」に属する低い電圧である。このため、例えば「特別低電圧」の電圧よりも高電圧の範囲に属する場合と比べて少ない数のリチウムイオン電池を直列接続することができる。このため、例えば、高電圧に対応するために多くのリチウムイオン電池を用いる場合と比べて、電動車両用電池パックが備える各リチウムイオン電池の充電能力の特性のばらつきを低減することが可能である。このことから、バッテリマネジメントシステム(BMS)といった制御装置を設けることなしに、各リチウムイオン電池における充電量のバランスを保つことが可能である。従って、簡単な構成で小型の電動車両用電池パックを実現できる。
 直列接続された複数のリチウムイオン電池のそれぞれが10C以上の連続最大充電レートを有することによって、複数のリチウムイオン電池を並列接続すること無しに、電動車両用電池パックとして10C以上の連続最大充電レートが実現できる。電動車両用電池パックが10C以上の連続最大充電レートを有することによって、例えば、電動車両用電池パックの充電容量の50%以上を3分以内で充電することが可能である。
Further, as described above, the voltage applied to both ends of the plurality of lithium ion batteries connected in series is a low voltage belonging to the “extra low voltage”. Therefore, for example, a smaller number of lithium-ion batteries can be connected in series than in the case of belonging to a voltage range higher than the "extra-low voltage" voltage. Therefore, for example, it is possible to reduce variations in the charging capacity characteristics of each lithium-ion battery included in the battery pack for an electric vehicle, as compared with the case where many lithium-ion batteries are used to cope with a high voltage. .. From this, it is possible to maintain the balance of the charge amount in each lithium ion battery without providing a control device such as a battery management system (BMS). Therefore, a small battery pack for an electric vehicle can be realized with a simple configuration.
Since each of the plurality of lithium-ion batteries connected in series has a continuous maximum charging rate of 10C or more, the continuous maximum charging rate of 10C or more as a battery pack for an electric vehicle without connecting a plurality of lithium-ion batteries in parallel. Can be realized. When the battery pack for an electric vehicle has a continuous maximum charging rate of 10 C or more, for example, 50% or more of the charging capacity of the battery pack for an electric vehicle can be charged within 3 minutes.
 このように、並列接続を無くすことにより、バッテリマネジメントコントローラ(BMC)といった制御装置を省略しつつ、各リチウムイオン電池における充電量のバランスを保つことが可能である。また、絶縁構造も簡単にすることが可能となる。簡単な構成で小型の電動車両用電池パックを実現できる。そして、複数のリチウムイオン電池を並列接続すること無しに、電動車両用電池パックとして10C以上の連続最大充電レートが実現できるので、電動車両用電池パックを短時間で充電可能である。
 このように、簡単な構成で小型であり、短時間で充電可能な電動車両用電池パックを実現できる。
In this way, by eliminating the parallel connection, it is possible to maintain the balance of the charge amount in each lithium ion battery while omitting the control device such as the battery management controller (BMC). In addition, the insulating structure can be simplified. A battery pack for a small electric vehicle can be realized with a simple configuration. Further, since a continuous maximum charging rate of 10 C or more can be realized as a battery pack for an electric vehicle without connecting a plurality of lithium ion batteries in parallel, the battery pack for an electric vehicle can be charged in a short time.
In this way, it is possible to realize a battery pack for an electric vehicle that has a simple configuration, is compact, and can be charged in a short time.
 本発明の一つの観点によれば、電動車両用電池パックは、以下の構成を採用できる。 According to one viewpoint of the present invention, the battery pack for an electric vehicle can adopt the following configuration.
 (2) (1)の電動車両用電池パックであって、
 前記複数のリチウムイオン電池の各々は、スピネル型チタン酸リチウム、ニオブチタン含有複合酸化物、及びグラファイトからなる群から選択される少なくともいずれかを含有する負極を有する。
(2) The battery pack for electric vehicles of (1).
Each of the plurality of lithium ion batteries has a negative electrode containing at least one selected from the group consisting of spinel-type lithium titanate, niobium titanium-containing composite oxide, and graphite.
 上記構成によれば、充電又は放電に伴う負極からのリチウムイオンの出入りの前後で、リチウムイオンを受容する結晶構造の変形を抑えることができる。このため、負極が、スピネル型チタン酸リチウム、ニオブチタン含有複合酸化物、及びグラファイトのいずれも有さないリチウムイオン電池と比べ、充電電圧及び放電電圧の許容範囲が広い。従って、バッテリマネジメントシステム(BMS)といった制御装置を設けることなしに、各リチウムイオン電池における充電量のバランスを保つことが容易である。従って、より簡単な構成で小型の電動車両用電池パックを実現できる。 According to the above configuration, it is possible to suppress deformation of the crystal structure that receives lithium ions before and after the inflow and outflow of lithium ions from the negative electrode due to charging or discharging. Therefore, the allowable range of charge voltage and discharge voltage is wider than that of a lithium ion battery in which the negative electrode does not have any of spinel-type lithium titanate, niobium-titanium-containing composite oxide, and graphite. Therefore, it is easy to keep the balance of the charge amount in each lithium ion battery without providing a control device such as a battery management system (BMS). Therefore, a small battery pack for an electric vehicle can be realized with a simpler configuration.
 本発明の一つの観点によれば、電動車両用電池パックは、以下の構成を採用できる。
 (3) (1)又は(2)の電動車両用電池パックであって、
 前記複数のリチウムイオン電池と直列に接続され、前記複数のリチウムイオン電池に流れる電流を遮断するリレーを備える。
According to one aspect of the present invention, the battery pack for an electric vehicle can adopt the following configuration.
(3) The battery pack for an electric vehicle according to (1) or (2).
A relay that is connected in series with the plurality of lithium ion batteries and cuts off the current flowing through the plurality of lithium ion batteries is provided.
 上記構成によれば、複数のリチウムイオン電池の電流が不用意に電気接続コネクタから外部に流れる事態を抑制することが可能である。このため、例えば電動車両用電池パックが車体から取外される場合又は車体に取付けられる作業の最中に、電気接続コネクタが電動車両用電池パックの外部で不用意に何らかの導体に接触しショートによる大電流によって導体が電気接続コネクタに溶着する事態を抑制することが可能である。このため、バッテリマネジメントシステム(BMS)といった制御装置を設けること無しに、簡単な構成で、例えば外部の導体が電気接続コネクタに溶着する事態を抑制することが可能である。 According to the above configuration, it is possible to suppress a situation in which the currents of a plurality of lithium ion batteries inadvertently flow from the electrical connection connector to the outside. For this reason, for example, when the battery pack for an electric vehicle is removed from the vehicle body or during the work of being attached to the vehicle body, the electric connector carelessly contacts some conductor outside the battery pack for the electric vehicle and causes a short circuit. It is possible to suppress the situation where the conductor is welded to the electrical connector due to a large current. Therefore, without providing a control device such as a battery management system (BMS), it is possible to suppress a situation in which, for example, an external conductor is welded to an electrical connection connector with a simple configuration.
 本発明の一つの観点によれば、電動車両用電池パックは、以下の構成を採用できる。
 (4) (1)から(3)いずれか1の電動車両用電池パックであって、
 前記電動車両用電池パックは、前記複数のリチウムイオン電池の各々から検出される電流、電圧又は温度のうち、少なくとも1つのパラメータを取得するとともに、取得された前記少なくとも1つのパラメータに基づいて、前記複数のリチウムイオン電池のうち、少なくとも1つの前記リチウムイオン電池の電圧及び/又は電流を変更するように構成された制御装置を備えていない。
According to one aspect of the present invention, the battery pack for an electric vehicle can adopt the following configuration.
(4) A battery pack for an electric vehicle according to any one of (1) to (3).
The battery pack for an electric vehicle acquires at least one parameter of the current, voltage, or temperature detected from each of the plurality of lithium ion batteries, and based on the acquired at least one parameter, the said battery pack. It does not include a control device configured to change the voltage and / or current of at least one of the plurality of lithium ion batteries.
 上記構成においては、複数のリチウムイオン電池の各々は、10C以上の連続最大充電レートを有するとともに互いに並列接続されることなく直列接続され、直列接続の両端の電圧に対応する電動車両用電池パックの最大充電電圧は60V以下である。複数のリチウムイオン電池の各々が並列接続されていないので、上記構成は、上述の制御装置を省略しつつ、各リチウムイオン電池における充電量のバランスを保つことが可能である。従って、簡単な構成で小型であり、短時間で充電可能な電動車両用電池パックを実現できる。 In the above configuration, each of the plurality of lithium-ion batteries has a continuous maximum charging rate of 10 C or more and is connected in series without being connected in parallel to each other, and is a battery pack for an electric vehicle corresponding to the voltage across the series connection. The maximum charging voltage is 60 V or less. Since each of the plurality of lithium-ion batteries is not connected in parallel, the above configuration can maintain the balance of the charge amount in each lithium-ion battery while omitting the above-mentioned control device. Therefore, it is possible to realize a battery pack for an electric vehicle that has a simple configuration, is compact, and can be charged in a short time.
 本発明の一つの観点によれば、電動車両用電池パックは、以下の構成を採用できる。
 (5) ピュア電動車両であって、
前記ピュア電動車両は、
(1)から(4)のいずれか1の電動車両用電池パックと、
前記電動車両用電池パックの前記電気接続コネクタと接続されるように構成された相手コネクタと、
駆動輪と、
前記電動車両用電池パックから前記相手コネクタを介したモータへの電力供給と、前記モータから前記相手コネクタを介した前記電動車両用電池パックへの電力供給とを制御するように構成されたモータ制御装置と、
前記モータ制御装置から供給される電力によって前記駆動輪を駆動する一方、前記駆動輪が駆動されることにより電力を発生させるように構成された前記モータと
を備え、
前記複数のリチウムイオン電池の各々から検出される電流、電圧又は温度のうち、少なくとも1つのパラメータを取得するとともに、取得された前記少なくとも1つのパラメータに基づいて、前記複数のリチウムイオン電池のうち、少なくとも1つの前記リチウムイオン電池の電圧及び/又は電流を変更するように構成された制御装置を備えていない。
According to one aspect of the present invention, the battery pack for an electric vehicle can adopt the following configuration.
(5) It is a pure electric vehicle
The pure electric vehicle is
A battery pack for an electric vehicle according to any one of (1) to (4) and
A mating connector configured to be connected to the electrical connector of the battery pack for an electric vehicle,
With the drive wheels
Motor control configured to control power supply from the battery pack for an electric vehicle to a motor via the mating connector and power supply from the motor to the battery pack for an electric vehicle via the mating connector. With the device
The motor is provided with the motor configured to drive the drive wheels with electric power supplied from the motor control device, while generating electric power by driving the drive wheels.
Of the plurality of lithium ion batteries, at least one parameter of the current, voltage or temperature detected from each of the plurality of lithium ion batteries is acquired, and based on the acquired at least one parameter, among the plurality of lithium ion batteries. It does not include a control device configured to change the voltage and / or current of at least one of the lithium-ion batteries.
 上記構成によれば、簡単な構成で小型であり、短時間で電池パックに充電可能なピュア電動車両を実現できる。 According to the above configuration, it is possible to realize a pure electric vehicle that has a simple configuration, is compact, and can charge the battery pack in a short time.
 (6) (5)のピュア電動車両であって、
前記ピュア電動車両は、鞍乗型車両であり、
前記鞍乗型車両は、
前記鞍乗型車両の左右方向に延びるように設けられた操舵用のバーハンドルと、
運転者が跨って着座するように構成されたサドルと
を備え、
リーン車両として、旋回時に前記バーハンドルを把持する運転者によってカーブ内側にリーンするように体重移動が行われることにより旋回するように構成されている。
(6) The pure electric vehicle of (5)
The pure electric vehicle is a saddle-mounted vehicle.
The saddle-mounted vehicle is
A steering bar handle provided so as to extend in the left-right direction of the saddle-mounted vehicle, and
Equipped with a saddle configured for the driver to sit across
As a lean vehicle, the driver who grips the bar handle at the time of turning is configured to turn by shifting the weight so as to lean inward of the curve.
 リーン車両としての鞍乗型車両にとって、運転者の操作に対する応答性や軽快性は重要であり、小型化に対する要求が高い。その一方で、ピュア電動車両には電池パックが搭載される。そのため、リーン車両としてのピュア電動鞍乗型車両にとって、応答性や軽快性を高いレベルで実現することに苦労した。しかし、上記構成によれば、応答性や軽快性に優れ、簡単な構成で小型化でき短時間で電池パックを充電可能な、リーン車両としてのピュア電動鞍乗型車両を提供できる。 For a saddle-type vehicle as a lean vehicle, responsiveness and agility to the driver's operation are important, and there is a high demand for miniaturization. On the other hand, pure electric vehicles are equipped with battery packs. Therefore, for a pure electric saddle-type vehicle as a lean vehicle, it was difficult to achieve a high level of responsiveness and agility. However, according to the above configuration, it is possible to provide a pure electric saddle-type vehicle as a lean vehicle, which is excellent in responsiveness and lightness, can be miniaturized with a simple configuration, and can charge a battery pack in a short time.
 ピュア電動車両は、電池パックに蓄えられた電力で走行する車両である。ここでいう電力は、例えば、少なくとも、二次電池パックに蓄えられた化学的エネルギーを含む。ピュア電動車両は、キャパシタも備え、化学的エネルギーに加えて、キャパシタに蓄えられた物理エネルギーで走行するように構成されていてもよい。ピュア電動車両は、例えばエンジンを有さない車両である。内燃機関としてのエンジンが搭載された車両はピュア電動車両に含まれない。例えば、車両の外部から供給される電力で充電する機能を有し、搭載されたエンジンでも走行可能なプラグインハイブリッド車は、ピュア電動車両に含まれない。
 ピュア電動車両は、例えば、鞍乗型車両である。即ち、ピュア電動車両は、例えば、ピュア電動鞍乗型車両である。鞍乗型車両は、騎乗スタイルで乗車する車両である。運転者は、鞍乗型車両のサドルに跨って着座する。鞍乗型車両は、例えば、リーン車両である。鞍乗型車両としては、例えば、スクータ型、モペット型、オフロード型、オンロード型の自動二輪車が挙げられる。また、鞍乗型車両としては、自動二輪車に限定されず、例えば、ATV(All-Terrain Vehicle)等であってもよく、自動三輪車であってもよい。自動三輪車は、2つの前輪と1つの後輪とを備えていてもよく、1つの前輪と2つの後輪とを備えていてもよい。また、ピュア電動車両は、特に限られず、例えば4つ以上の車輪と車室を有する自動車でもよい。
A pure electric vehicle is a vehicle that runs on the electric power stored in a battery pack. The electric power referred to here includes, for example, at least the chemical energy stored in the secondary battery pack. The pure motor vehicle may also include a capacitor and may be configured to run on the physical energy stored in the capacitor in addition to the chemical energy. A pure motor vehicle is, for example, a vehicle that does not have an engine. Vehicles equipped with an engine as an internal combustion engine are not included in pure electric vehicles. For example, a plug-in hybrid vehicle that has a function of charging with electric power supplied from the outside of the vehicle and can run on an engine mounted on the vehicle is not included in a pure electric vehicle.
The pure electric vehicle is, for example, a saddle-mounted vehicle. That is, the pure electric vehicle is, for example, a pure electric saddle type vehicle. A saddle-mounted vehicle is a vehicle that rides in a riding style. The driver sits across the saddle of a saddle-mounted vehicle. The saddle-mounted vehicle is, for example, a lean vehicle. Examples of the saddle-type vehicle include a scooter type, a moped type, an off-road type, and an on-road type motorcycle. Further, the saddle-mounted vehicle is not limited to a motorcycle, and may be, for example, an ATV (All-Terrain Vehicle) or the like, or may be a motorcycle. A tricycle may have two front wheels and one rear wheel, or may have one front wheel and two rear wheels. The pure electric vehicle is not particularly limited, and may be, for example, an automobile having four or more wheels and a passenger compartment.
 電動車両用電池パックは、ピュア電動車両に用いる電池パックである。電動車両用電池パックは、複数のリチウムイオン電池を一体に組合せたパックである。電動車両用電池パックは、ピュア電動車両の車体に搭載される。電動車両用電池パックは、車体に対し取り外し可能である。但し、電動車両用電池パックは、キー以外の例えばスパナといった工具無しに車体から取り外し可能でもよく、あるいは、スパナといった工具を用いることによって車体から取り外し可能でもよい。 The battery pack for electric vehicles is a battery pack used for pure electric vehicles. A battery pack for an electric vehicle is a pack in which a plurality of lithium-ion batteries are integrally combined. The battery pack for an electric vehicle is mounted on the body of a pure electric vehicle. The battery pack for electric vehicles is removable from the vehicle body. However, the battery pack for an electric vehicle may be removable from the vehicle body without a tool other than a key such as a spanner, or may be removable from the vehicle body by using a tool such as a spanner.
 リチウムイオン電池は、充電及び放電が可能な電池である。リチウムイオン電池は、電極の化学反応によって充電及び放電を行う二次電池である。リチウムイオン電池は、電極の酸化及び還元反応によって充電及び放電を行う。リチウムイオン電池は、蓄えられた化学エネルギーを電気エネルギーに変換する。リチウムイオン電池の端子電圧は、電池に蓄えられた電力量と比例しない。例えば、リチウムイオンキャパシタは、リチウムイオン電池に含まれない。
 リチウムイオン電池は、正極にリチウム酸化物を含有する。正極にリチウム金属を用いるリチウム電池は、リチウムイオン電池に含まれない。リチウムイオン電池は、例えば、有機溶媒といった非水電解質を用いる非水リチウムイオン電池である。
 リチウムイオン電池は、ピュア電動車両のモータを駆動するための電力を蓄えることができる電池である。リチウムイオン電池は、ピュア電動車両の外部から供給される電力を蓄えることができる。また、リチウムイオン電池は、ピュア電動車両のモータが発電する場合、モータから供給される電力を蓄えることができる。即ち、モータの回生電流を蓄えることができる。
Lithium-ion batteries are batteries that can be charged and discharged. A lithium ion battery is a secondary battery that charges and discharges by a chemical reaction of electrodes. Lithium-ion batteries are charged and discharged by oxidation and reduction reactions of electrodes. Lithium-ion batteries convert stored chemical energy into electrical energy. The terminal voltage of a lithium-ion battery is not proportional to the amount of power stored in the battery. For example, lithium ion capacitors are not included in lithium ion batteries.
Lithium-ion batteries contain a lithium oxide in the positive electrode. Lithium batteries that use lithium metal for the positive electrode are not included in lithium ion batteries. The lithium ion battery is a non-aqueous lithium ion battery that uses a non-aqueous electrolyte such as an organic solvent.
A lithium-ion battery is a battery that can store electric power for driving a motor of a pure electric vehicle. Lithium-ion batteries can store electric power supplied from the outside of a pure electric vehicle. Further, the lithium ion battery can store the electric power supplied from the motor when the motor of the pure electric vehicle generates electric power. That is, the regenerative current of the motor can be stored.
 最大充電レートとは、蓄電部が許容する最大の最大充電レートである。最大充電レートとは、充電のスピードを表す。単位はCである。連続最大充電レートは、瞬間的でなく、連続して充電される場合に許容する最大の最大充電レートである。連続充電の場合即ち定電流充電測定の場合、電池の容量を1時間で完全充電させる電流の大きさを1Cと定義される。例えば、電池の容量が2Ahである場合、1Cは、2Aである。 The maximum charging rate is the maximum maximum charging rate allowed by the power storage unit. The maximum charging rate represents the speed of charging. The unit is C. The continuous maximum charge rate is the maximum maximum charge rate allowed when charging continuously rather than instantaneously. In the case of continuous charging, that is, in the case of constant current charging measurement, the magnitude of the current that completely charges the capacity of the battery in one hour is defined as 1C. For example, when the capacity of the battery is 2Ah, 1C is 2A.
 電気接続コネクタは、車体に対し入出力される電流を伝達する。例えば、電気接続コネクタは、ピュア電動車両のモータに向けて出力された電流を伝達する。また例えば、電気接続コネクタは、ピュア電動車両のモータが発電する場合、モータから供給される電流を伝達する。
 電気接続コネクタは、ピュア電動車両の外部から供給される電流を伝達するコネクタとして利用されてもよい。但し、電気接続コネクタは、ピュア電動車両の外部から供給される電流を伝達するコネクタと異なるコネクタとして設けられてもよい。
The electrical connector transmits the current input and output to the vehicle body. For example, the electrical connector transmits the current output to the motor of a pure electric vehicle. Also, for example, the electrical connector transmits the current supplied by the motor when the motor of a pure electric vehicle generates electricity.
The electrical connector may be used as a connector for transmitting a current supplied from the outside of a pure electric vehicle. However, the electrical connection connector may be provided as a connector different from the connector that transmits the current supplied from the outside of the pure electric vehicle.
 また、電気接続コネクタは、例えばケースに取付けられている。電気接続コネクタは、例えばケースに支持されている。電気接続コネクタは、例えばケースに固定されている。
 但し、電気接続コネクタは、これに限られず、例えば相手コネクタとの接続がしやすいように揺動自在にケースに支持されてもよい。また、電気接続コネクタは、例えばケースを貫通してケースの外部に延出したケーブルに接続されていてもよい。即ち、電気接続コネクタはケースに支持されることなく、ケーブルを介してケースと物理的に接続されていてもよい。つまり、電気接続コネクタは、例えばケースに取付けられていなくともよい。
Further, the electrical connector is attached to, for example, a case. The electrical connector is supported, for example, in a case. The electrical connector is fixed to the case, for example.
However, the electrical connection connector is not limited to this, and may be swingably supported by the case so that it can be easily connected to the mating connector, for example. Further, the electrical connector may be connected to, for example, a cable extending through the case and extending to the outside of the case. That is, the electrical connector may be physically connected to the case via a cable without being supported by the case. That is, the electrical connector does not have to be attached to the case, for example.
 接続には、途中に電気部品が挿入された状態を含む。このような電気部品としては、例えば、スイッチ、リレー、抵抗器、接続端子、及びヒューズが挙げられる。なお、接続は、例えば、リード線の配線による。ただし、配線は、1つのリード線で構成されるものに限られず、繋ぎ合わされた複数本のリード線でもよい。 The connection includes a state in which an electrical component is inserted in the middle. Examples of such electrical components include switches, relays, resistors, connection terminals, and fuses. The connection is, for example, by wiring a lead wire. However, the wiring is not limited to one composed of one lead wire, and may be a plurality of connected lead wires.
 本明細書にて使用される専門用語は特定の実施例のみを定義する目的であって発明を制限する意図を有しない。
 本明細書にて使用される用語「および/または」はひとつの、または複数の関連した列挙された構成物のあらゆるまたはすべての組み合わせを含む。
 本明細書中で使用される場合、用語「含む、備える(including)」「含む、備える(comprising)」または「有する(having)」およびその変形の使用は、記載された特徴、工程、操作、要素、成分および/またはそれらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、および/またはそれらのグループのうちの1つまたは複数を含むことができる。
 本明細書中で使用される場合、用語「取り付けられた」、「結合された」および/またはそれらの等価物は広く使用され、特に指定しない限り直接的および間接的な取り付け、および結合の両方を包含する。
 他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。
 一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的または過度に形式的な意味で解釈されることはない。
 本発明の説明においては、多数の技術および工程が開示されていると理解される。
 これらの各々は個別の利益を有し、それぞれは、他の開示された技術の1つ以上、または、場合によっては全てと共に使用することもできる。
 したがって、明確にするために、この説明は、不要に個々のステップの可能な組み合わせをすべて繰り返すことを控える。
 それにもかかわらず、明細書および特許請求の範囲は、そのような組み合わせがすべて本発明および請求項の範囲内にあることを理解して読まれるべきである。
 本明細書では、新しい電動車両用電池パックについて説明する。
 以下の説明では、説明の目的で、本発明の完全な理解を提供するために多数の具体的な詳細を述べる。
 しかしながら、当業者には、これらの特定の詳細なしに本発明を実施できることが明らかである。
 本開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面または説明によって示される特定の実施形態に限定することを意図するものではない。
The terminology used herein is for the purpose of defining only specific embodiments and is not intended to limit the invention.
As used herein, the term "and / or" includes any or all combinations of one or more related listed components.
As used herein, the use of the terms "including, including,""comprising," or "having," and variations thereof, is a feature, process, operation, described. It identifies the presence of elements, components and / or their equivalents, but can include one or more of steps, actions, elements, components, and / or groups thereof.
As used herein, the terms "attached", "combined" and / or their equivalents are widely used and are both direct and indirect attachments and bindings unless otherwise specified. Including.
Unless otherwise defined, all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by those skilled in the art to which the present invention belongs.
Terms such as those defined in commonly used dictionaries should be construed to have meaning consistent with the relevant technology and in the context of the present disclosure and are expressly defined herein. Unless it is, it will not be interpreted in an ideal or overly formal sense.
It is understood that a number of techniques and processes are disclosed in the description of the present invention.
Each of these has its own interests, and each may be used in conjunction with one or more of the other disclosed techniques, or in some cases all.
Therefore, for clarity, this description refrains from unnecessarily repeating all possible combinations of individual steps.
Nevertheless, the specification and claims should be read with the understanding that all such combinations are within the scope of the present invention and claims.
This specification describes a new battery pack for an electric vehicle.
In the following description, for purposes of illustration, a number of specific details are given to provide a complete understanding of the present invention.
However, it will be apparent to those skilled in the art that the present invention can be practiced without these particular details.
The present disclosure should be considered as an example of the invention and is not intended to limit the invention to the particular embodiments set forth in the drawings or description below.
 本発明によれば、簡単な構成で小型化でき短時間で充電可能な電動車両用電池パックを実現できる。 According to the present invention, it is possible to realize a battery pack for an electric vehicle that can be miniaturized with a simple configuration and can be charged in a short time.
本発明の第一実施形態に係る電動車両用電池パックを模式的に示す図である。It is a figure which shows typically the battery pack for electric vehicles which concerns on 1st Embodiment of this invention. 図1に示した電動車両用電池パックの適用例としてのピュア電動車両の概略を示す図である。It is a figure which shows the outline of a pure electric vehicle as an application example of the battery pack for an electric vehicle shown in FIG. 本発明の第二実施形態に係る電動車両用電池パックを模式的に示す図である。It is a figure which shows typically the battery pack for electric vehicles which concerns on 2nd Embodiment of this invention.
 以下、本発明を、実施形態に基づいて図面を参照しつつ説明する。 Hereinafter, the present invention will be described based on the embodiments with reference to the drawings.
[第一実施形態]
 図1は、本発明の第一実施形態に係る電動車両用電池パックを模式的に示す図である。
[First Embodiment]
FIG. 1 is a diagram schematically showing a battery pack for an electric vehicle according to the first embodiment of the present invention.
 図1に示す電動車両用電池パック1は、ピュア電動車両100(図2参照)に用いる電池パックである。電動車両用電池パック1は、充電及び放電が可能な電池パックである。電動車両用電池パック1は、最大充電電圧以下の電圧で充電される。電動車両用電池パック1の最大充電電圧は、60V以下である。電動車両用電池パック1の最大充電電圧は、例えば48Vである。但し、最大充電電圧は、例えば14Vに設定されてもよく、また、例えば36Vに設定されてもよい。 The battery pack 1 for an electric vehicle shown in FIG. 1 is a battery pack used for a pure electric vehicle 100 (see FIG. 2). The battery pack 1 for an electric vehicle is a battery pack that can be charged and discharged. The battery pack 1 for an electric vehicle is charged at a voltage equal to or lower than the maximum charging voltage. The maximum charging voltage of the battery pack 1 for an electric vehicle is 60 V or less. The maximum charging voltage of the battery pack 1 for an electric vehicle is, for example, 48V. However, the maximum charging voltage may be set to, for example, 14V, or may be set to, for example, 36V.
 電動車両用電池パック1は、リチウムイオン電池11と、ケース12と、電気接続コネクタ13とを備える。 The battery pack 1 for an electric vehicle includes a lithium ion battery 11, a case 12, and an electric connector 13.
 図1に示す例では、電動車両用電池パック1は、5つのリチウムイオン電池11を備える。リチウムイオン電池11は、互いに並列接続されることなく直列接続されている。
 リチウムイオン電池11の数は、直列接続した両端の最大電圧が、電動車両用電池パック1の最大電圧以上となるように設定される。
 リチウムイオン電池11は、充電及び放電が可能な電池である。リチウムイオン電池11は、電極の化学反応によって充電及び放電を行う二次電池である。リチウムイオン電池11は、正極にリチウム酸化物を含有する。リチウムイオン電池は、非水電解質を用いる非水リチウムイオン電池である。リチウムイオン電池は負極に、例えば、スピネル型チタン酸リチウム、ニオブチタン含有複合酸化物、及びグラファイトからなる群から選択される少なくともいずれかを含有する。但し、リチウムイオン電池の負極は特に限られず、上記以外の物質を含有する負極も採用され得る。
 リチウムイオン電池11は、例えば鉛電池やニッケル水素電池といった他の正極材料を用いた電池と比べて最大充電電流が大きい。リチウムイオン電池11は、10C以上の連続最大充電レートを有する。
In the example shown in FIG. 1, the battery pack 1 for an electric vehicle includes five lithium ion batteries 11. The lithium ion batteries 11 are connected in series without being connected in parallel with each other.
The number of lithium-ion batteries 11 is set so that the maximum voltage across the series is equal to or greater than the maximum voltage of the battery pack 1 for an electric vehicle.
The lithium ion battery 11 is a battery that can be charged and discharged. The lithium ion battery 11 is a secondary battery that charges and discharges by a chemical reaction of electrodes. The lithium ion battery 11 contains a lithium oxide in the positive electrode. The lithium ion battery is a non-aqueous lithium ion battery that uses a non-aqueous electrolyte. The lithium ion battery contains, for example, at least one selected from the group consisting of spinel-type lithium titanate, niobium titanium-containing composite oxide, and graphite in the negative electrode. However, the negative electrode of the lithium ion battery is not particularly limited, and a negative electrode containing a substance other than the above can also be adopted.
The lithium ion battery 11 has a larger maximum charging current than a battery using another positive electrode material such as a lead battery or a nickel hydrogen battery. The lithium ion battery 11 has a continuous maximum charging rate of 10 C or more.
 ケース12は、リチウムイオン電池11を収容する。ケース12は、例えば閉鎖構造を有する。
 より詳細には、ケース12は、外部からリチウムイオン電池11が見えないような構造を有する。これによって、電動車両用電池パック1の外部から異物が差し込まれてリチウムイオン電池11に接触する事態が抑制される。
 さらに詳細には、ケース12は、例えば防水構造を有する。例えば、電動車両用電池パック1が、ピュア電動両(図2参照)としての鞍乗型車両に備えられる場合、電動車両用電池パック1が、水又は油といった液体を浴びる可能性がある。ケース12によって、液体の進入が抑制される。従って、リチウムイオン電池11と液体の接触が抑制される。
The case 12 houses the lithium-ion battery 11. Case 12 has, for example, a closed structure.
More specifically, the case 12 has a structure in which the lithium ion battery 11 cannot be seen from the outside. As a result, the situation in which a foreign substance is inserted from the outside of the battery pack 1 for an electric vehicle and comes into contact with the lithium ion battery 11 is suppressed.
More specifically, the case 12 has, for example, a waterproof structure. For example, when the battery pack 1 for an electric vehicle is provided in a saddle-type vehicle as a pure electric vehicle (see FIG. 2), the battery pack 1 for an electric vehicle may be exposed to a liquid such as water or oil. The case 12 suppresses the ingress of liquid. Therefore, the contact between the lithium ion battery 11 and the liquid is suppressed.
 電気接続コネクタ13は、ピュア電動車両100の車体102(図2参照)に設けられる図示しない相手コネクタと接続され、車体102に対し入出力される電流を伝達する。電動車両用電池パック1に蓄えられた電力は、電気接続コネクタ13を通して、ピュア電動車両の車体に供給される。
 また、回生時、ピュア電動車両の車体から、回生電力が、電気接続コネクタ13を通して、電動車両用電池パック1に供給される。
 本実施形態の電気接続コネクタ13は、例えば充電ステーションといったピュア電動車両100の外部に設けられた充電装置にも接続可能である。ピュア電動車両100が停車中に、車体102(図2参照)に設けられた相手コネクタの代わりに、外部の充電装置に設けられた相手コネクタが接続される。これによって、電動車両用電池パック1が充電される。
The electric connection connector 13 is connected to a mating connector (not shown) provided on the vehicle body 102 (see FIG. 2) of the pure electric vehicle 100, and transmits an input / output current to the vehicle body 102. The electric power stored in the battery pack 1 for the electric vehicle is supplied to the vehicle body of the pure electric vehicle through the electric connector 13.
Further, at the time of regeneration, the regenerative power is supplied from the vehicle body of the pure electric vehicle to the battery pack 1 for the electric vehicle through the electric connector 13.
The electrical connection connector 13 of the present embodiment can also be connected to a charging device provided outside the pure electric vehicle 100, such as a charging station. While the pure electric vehicle 100 is stopped, the mating connector provided in the external charging device is connected instead of the mating connector provided in the vehicle body 102 (see FIG. 2). As a result, the battery pack 1 for the electric vehicle is charged.
 電動車両用電池パック1には、バスバ14も備えられている。バスバ14は、リチウムイオン電池11及び電気接続コネクタ13を接続する導体である。バスバ14は、リチウムイオン電池11どうしを接続する。バスバ14は、リチウムイオン電池11及び電気接続コネクタ13を直列に接続する。 The battery pack 1 for electric vehicles is also equipped with a bus bar 14. The bus bar 14 is a conductor that connects the lithium ion battery 11 and the electrical connector 13. The bus bar 14 connects the lithium ion batteries 11 to each other. The bus bar 14 connects the lithium ion battery 11 and the electrical connector 13 in series.
 本実施形態の電動車両用電池パック1が備える各リチウムイオン電池11は、互いに並列接続されることなく直列接続される。各リチウムイオン電池11は、内部抵抗のばらつきを有する。しかし、直列接続された各リチウムイオン電池11に流れる電流は、内部抵抗の差に拘わらず実質的に等しい。このため、各リチウムイオン電池11における充電量のバランスが保ちやすい。
 例えば、各リチウムイオン電池11の充電量が0の状態から充電を開始する場合、任意の時刻における各リチウムイオン電池11の電流積算量は実質的に等しい。即ち、各リチウムイオン電池11の充電量は実質的に等しい。また、各リチウムイオン電池11が放電する場合にも、各リチウムイオン電池11に流れる電流は実質的に等しい。このため、任意の時刻における各リチウムイオン電池11の充電量は実質的に等しい。従って、各リチウムイオン電池11は、充電中に満充電となるタイミングも実質的に等しい。
 従って、例えば、各リチウムイオン電池の電流、電圧、又は温度を集中的に管理するバッテリマネジメントシステム(BMS)といった制御装置を設けることなしに、各リチウムイオン電池における充電量のバランスを保つことが可能である。従って、電動車両用電池パック1が簡単な構成で小型化できる。
 各リチウムイオン電池11の標準使用電圧は、例えば2.3Vである。但し、各リチウムイオン電池11は、標準使用電圧を超えた電圧で充電可能である。各リチウムイオン電池11は、例えば、3V以上の電圧で充電される。
The lithium ion batteries 11 included in the battery pack 1 for an electric vehicle of the present embodiment are connected in series without being connected in parallel to each other. Each lithium-ion battery 11 has a variation in internal resistance. However, the currents flowing through the lithium-ion batteries 11 connected in series are substantially equal regardless of the difference in internal resistance. Therefore, it is easy to maintain the balance of the charge amount in each lithium ion battery 11.
For example, when charging is started from a state where the charge amount of each lithium ion battery 11 is 0, the current integrated amount of each lithium ion battery 11 at an arbitrary time is substantially equal. That is, the charge amount of each lithium ion battery 11 is substantially equal. Further, even when each lithium ion battery 11 is discharged, the current flowing through each lithium ion battery 11 is substantially equal. Therefore, the charge amount of each lithium ion battery 11 at an arbitrary time is substantially equal. Therefore, the timing at which each lithium ion battery 11 is fully charged during charging is substantially the same.
Therefore, for example, it is possible to maintain the balance of the charge amount in each lithium-ion battery without providing a control device such as a battery management system (BMS) that centrally manages the current, voltage, or temperature of each lithium-ion battery. Is. Therefore, the battery pack 1 for an electric vehicle can be miniaturized with a simple configuration.
The standard working voltage of each lithium ion battery 11 is, for example, 2.3V. However, each lithium ion battery 11 can be charged with a voltage exceeding the standard working voltage. Each lithium ion battery 11 is charged with a voltage of, for example, 3 V or more.
 また、リチウムイオン電池11は、互いに並列接続されることなく直列接続される構成としつつ、電動車両用電池パック1が充電できる最大電圧は、60V以下である。この場合、直列接続されたリチウムイオン電池11の組の両端に掛かる最大電圧は、60V以下である。 Further, the lithium ion battery 11 is configured to be connected in series without being connected in parallel to each other, and the maximum voltage that can be charged by the battery pack 1 for an electric vehicle is 60 V or less. In this case, the maximum voltage applied to both ends of the set of lithium ion batteries 11 connected in series is 60 V or less.
 電動車両用電池パック1は、国際電気標準会議(International Electrotechnical Commission:IEC)の規格IEC60950における「特別低電圧」(extra low voltage:ELV、又はsafety extra low voltage:SELV)に属する範囲で動作する。電動車両用電池パック1の内部におけるいずれのノードの電位差も60Vを超えない。
 このため、電池パックに用いられる各ノードの絶縁の程度は、「機能絶縁」(Operational Insulation)の範囲で足りる。電動車両用電池パック1の電圧は低電圧であるため高電圧用に較べて絶縁構造が簡単にできる。
The battery pack 1 for an electric vehicle operates in a range belonging to the "extra low voltage" (ELV or safety extra low voltage: SELV) in the standard IEC60950 of the International Electrotechnical Commission (IEC). The potential difference of any node inside the battery pack 1 for an electric vehicle does not exceed 60 V.
Therefore, the degree of insulation of each node used in the battery pack is sufficient within the range of "operational insulation". Since the voltage of the battery pack 1 for an electric vehicle is a low voltage, an insulating structure can be made simpler than that for a high voltage.
 例えば、リチウムイオン電池11として、5Ah以上40Ah以下の充電容量を有するリチウムイオン電池が採用され得る。このようなリチウムイオン電池11の最大充電電圧が3Vである場合、直列接続された5個のリチウムイオン電池11を有する電動車両用電池パック1最大充電電圧は、15Vである。
 例えば、リチウムイオン電池11が5Ahの充電容量及び10Cの連続最大充電レートを有する場合、リチウムイオン電池11の連続最大充電流は50Aである。また、例えば、リチウムイオン電池11が20Ahの充電容量及び10Cの連続最大充電レートを有する場合、リチウムイオン電池11の連続最大充電流は200Aである。このように、電池を満充電にする能力は、充電電流のみから把握されにくい。電池が満充電になるための能力は、充電電流だけでなく充電容量に応じて異なるからである。そこで、本明細書では、電池が満充電になるための能力として、充電容量の差を考慮した充電レートによる表示が採用されている。
For example, as the lithium ion battery 11, a lithium ion battery having a charging capacity of 5 Ah or more and 40 Ah or less can be adopted. When the maximum charging voltage of such a lithium ion battery 11 is 3V, the maximum charging voltage of the battery pack 1 for an electric vehicle having five lithium ion batteries 11 connected in series is 15V.
For example, when the lithium ion battery 11 has a charge capacity of 5 Ah and a continuous maximum charge rate of 10 C, the continuous maximum charge flow of the lithium ion battery 11 is 50 A. Further, for example, when the lithium ion battery 11 has a charge capacity of 20 Ah and a continuous maximum charge rate of 10 C, the continuous maximum charge flow of the lithium ion battery 11 is 200 A. As described above, the ability to fully charge the battery is difficult to grasp only from the charging current. This is because the ability of a battery to be fully charged depends not only on the charging current but also on the charging capacity. Therefore, in the present specification, as a capacity for the battery to be fully charged, a display based on a charging rate in consideration of a difference in charging capacity is adopted.
 また、上述したように、直列接続された複数のリチウムイオン電池の両端に掛かる電圧は、「特別低電圧」に属する低い電圧である。このため、例えば「特別低電圧」の電圧よりも高電圧が掛かる場合と比べて少ない数のリチウムイオン電池11を直列接続することができる。例えば、本実施形態の電動車両用電池パック1は、直列接続された5個のリチウムイオン電池11を有する。
 このため、例えば、「特別低電圧」よりも高い高電圧に対応するために多くのリチウムイオン電池を用いる場合と比べて、本実施形態の電動車両用電池パック1は、各リチウムイオン電池11の充電能力の特性のばらつきを低減することが可能である。
 このことから、本実施形態の電動車両用電池パック1は、バッテリマネジメントシステム(BMS)といった制御装置を設けることなしに、各リチウムイオン電池における充電量のバランスをより保ちやすい。
Further, as described above, the voltage applied to both ends of the plurality of lithium ion batteries connected in series is a low voltage belonging to the “extra low voltage”. Therefore, for example, a smaller number of lithium-ion batteries 11 can be connected in series as compared with the case where a voltage higher than the "extra-low voltage" is applied. For example, the battery pack 1 for an electric vehicle of the present embodiment has five lithium ion batteries 11 connected in series.
Therefore, for example, as compared with the case where many lithium-ion batteries are used to cope with a high voltage higher than the "extra-low voltage", the battery pack 1 for an electric vehicle of the present embodiment is made of each lithium-ion battery 11. It is possible to reduce variations in the characteristics of charging capacity.
For this reason, the battery pack 1 for an electric vehicle of the present embodiment can more easily maintain the balance of the charge amount in each lithium ion battery without providing a control device such as a battery management system (BMS).
 本実施形態の電動車両用電池パック1が有する各リチウムイオン電池が10C以上の連続最大充電レートを有することによって、複数のリチウムイオン電池を並列接続すること無しに、電動車両用電池パック1として10C以上の連続最大充電レートが実現可能になる。
 例えば、電動車両用電池パック1が10C以上の連続最大充電レートを有することによって、電動車両用電池パック1の充電容量の50%以上を3分以内で充電することが可能である。これによって、例えば、本実施形態の電動車両用電池パック1を搭載した電動車両を、従来又は現在のガスステーションにおける液体燃料の補給に掛かる時間に近い時間で充電することが可能となる。従って、充電ステーションを占拠する時間が短い。
 ここで、充電する電力量の想定を、例えば電動車両用電池パックの充電容量の50%とするのは、
 エンジン発電機といった補助電源を備えないピュア電動車両は、通常、0%の充電量に対し十分な余裕を見込んで充電される場合が多いためである。例えば、ピュア電動車両は、電動車両用電池パック1の充電量が50%よりも多い場合でも、例えば運転者の在宅時といった高い頻度で充電される。
 例えば3分以内で電動車両用電池パック1の50%以上が充電可能であれば、電動車両用電池パック1はより頻繁に充電されるようになる。具体的には、走行経路に充電ステーションがある場合、たとえ電動車両用電池パック1の充電量が70%以上でもその充電ステーションに数分間立ち寄って充電する使い方が考えられる。
 また、例えば、充電ステーションが複数台の充電装置を備える場合、数分以内に充電が完了する車両専用の充電装置(ファーストレーン)と、そうでない車両用の充電装置を区別することが可能になる。この場合、数分以内に充電が完了できる特定の車両は、待ち時間も少なく短時間の滞在で充電が終了する。
Since each lithium ion battery included in the battery pack 1 for an electric vehicle of the present embodiment has a continuous maximum charging rate of 10C or more, 10C as the battery pack 1 for an electric vehicle without connecting a plurality of lithium ion batteries in parallel. The above continuous maximum charging rate can be realized.
For example, when the battery pack 1 for an electric vehicle has a continuous maximum charging rate of 10 C or more, it is possible to charge 50% or more of the charging capacity of the battery pack 1 for an electric vehicle within 3 minutes. As a result, for example, the electric vehicle equipped with the battery pack 1 for the electric vehicle of the present embodiment can be charged in a time close to the time required for replenishing the liquid fuel in the conventional or current gas station. Therefore, the time to occupy the charging station is short.
Here, the assumption of the amount of electric power to be charged is, for example, 50% of the charging capacity of the battery pack for an electric vehicle.
This is because a pure electric vehicle that does not have an auxiliary power source such as an engine generator is usually charged with a sufficient margin for a charge amount of 0%. For example, a pure electric vehicle is charged at a high frequency, for example, when the driver is at home, even when the charge amount of the battery pack 1 for the electric vehicle is more than 50%.
For example, if 50% or more of the battery pack 1 for an electric vehicle can be charged within 3 minutes, the battery pack 1 for an electric vehicle will be charged more frequently. Specifically, when there is a charging station on the traveling path, even if the charge amount of the battery pack 1 for an electric vehicle is 70% or more, it is conceivable to stop by the charging station for several minutes to charge the battery pack 1.
Further, for example, when the charging station is equipped with a plurality of charging devices, it is possible to distinguish between a charging device dedicated to a vehicle (first lane) that completes charging within a few minutes and a charging device for a vehicle that does not. .. In this case, a specific vehicle that can be fully charged within a few minutes has a short waiting time and can be charged after a short stay.
 本実施形態の電動車両用電池パック1は、並列接続されることなく直列接続されたリチウムイオン電池11を有する。従って、電動車両用電池パック1の連続最大充電レート及び最大充電電流は、リチウムイオン電池11の連続最大充電レート及び最大充電電流を超えることができない。言換えると、電動車両用電池パック1の連続最大充電レート及び最大充電電流は、主に、リチウムイオン電池11の連続最大充電レート及び最大充電電流の制約を受ける。
 10C以上の連続最大充電レートを有するリチウムイオン電池11の例としては、例えば、
40Ah以下の充電容量及び400Aの最大充電電流を有するリチウムイオン電池、
20Ah以下の充電容量及び200Aの最大充電電流を有するリチウムイオン電池、
10Ah以下の充電容量及び100Aの最大充電電流を有するリチウムイオン電池、又は、
5Ah以下の充電容量及び50Aの最大充電電流を有するリチウムイオン電池、が挙げられる。
The battery pack 1 for an electric vehicle of the present embodiment has a lithium ion battery 11 connected in series without being connected in parallel. Therefore, the continuous maximum charging rate and the maximum charging current of the battery pack 1 for the electric vehicle cannot exceed the continuous maximum charging rate and the maximum charging current of the lithium ion battery 11. In other words, the continuous maximum charging rate and the maximum charging current of the battery pack 1 for the electric vehicle are mainly restricted by the continuous maximum charging rate and the maximum charging current of the lithium ion battery 11.
As an example of the lithium ion battery 11 having a continuous maximum charging rate of 10 C or more, for example,
A lithium-ion battery with a charging capacity of 40 Ah or less and a maximum charging current of 400 A,
A lithium-ion battery with a charging capacity of 20 Ah or less and a maximum charging current of 200 A,
A lithium-ion battery having a charging capacity of 10 Ah or less and a maximum charging current of 100 A, or
Lithium-ion batteries having a charging capacity of 5 Ah or less and a maximum charging current of 50 A can be mentioned.
 充電容量が5Ah以下のリチウムイオン電池を選択することによって、充電装置から供給可能な充電電流が50A程度であっても、10C以上の連続充電レートが提供可能である。 By selecting a lithium-ion battery having a charging capacity of 5 Ah or less, it is possible to provide a continuous charging rate of 10 C or more even if the charging current that can be supplied from the charging device is about 50 A.
 一方で、充電された電力でピュア電動車両100(図2参照)が走行可能な最大距離は、電動車両用電池パック1の総充電量に依存する。電動車両用電池パック1の総充電量は、内蔵するリチウムイオン電池11の数に比例する。リチウムイオン電池11は、並列接続されることなく直列接続されるので、リチウムイオン電池11の数は、最大充電電流及び連続最大充電レートと独立に設定することができる。なお、電動車両用電池パック1が備えるリチウムイオン電池11の数は、リチウムイオン電池11の直列接続の数に等しい。
 ピュア電動車両100の設計において、電動車両用電池パック1が有するリチウムイオン電池11の数によって、ピュア電動車両100の走行可能な最大距離を設定することができる。
 電動車両用電池パック1の充電電圧は、リチウムイオン電池11の数に比例する。つまり、電動車両用電池パック1の連続充電レート[C]を、各リチウムイオン電池11の連続充電レートを等価に維持する場合、1つのリチウムイオン電池11の充電電圧と、リチウムイオン電池11の数の積が、実質的に電動車両用電池パック1の充電電圧となる。
 電動車両用電池パック1の最大充電電圧は、60V以下である。このため、リチウムイオン電池11の数は、上記の積が60V以下となるように設定される。
On the other hand, the maximum distance that the pure electric vehicle 100 (see FIG. 2) can travel with the charged electric power depends on the total charge amount of the battery pack 1 for the electric vehicle. The total charge amount of the battery pack 1 for an electric vehicle is proportional to the number of built-in lithium ion batteries 11. Since the lithium ion batteries 11 are connected in series without being connected in parallel, the number of lithium ion batteries 11 can be set independently of the maximum charging current and the maximum continuous charging rate. The number of lithium-ion batteries 11 included in the battery pack 1 for an electric vehicle is equal to the number of series-connected lithium-ion batteries 11.
In the design of the pure electric vehicle 100, the maximum distance that the pure electric vehicle 100 can travel can be set by the number of lithium ion batteries 11 included in the battery pack 1 for the electric vehicle.
The charging voltage of the battery pack 1 for an electric vehicle is proportional to the number of lithium ion batteries 11. That is, when the continuous charge rate [C] of the battery pack 1 for an electric vehicle is maintained at the same level as the continuous charge rate of each lithium ion battery 11, the charge voltage of one lithium ion battery 11 and the number of lithium ion batteries 11 are maintained. Is substantially the charging voltage of the battery pack 1 for the electric vehicle.
The maximum charging voltage of the battery pack 1 for an electric vehicle is 60 V or less. Therefore, the number of lithium ion batteries 11 is set so that the above product is 60 V or less.
 例えば、各リチウムイオン電池が20C以上の連続最大充電レートを有する場合には、電動車両用電池パック1として20C以上の連続最大充電レートが実現可能になる。この場合、電動車両用電池パック1をより短い期間で充電することが可能である。
 例えば、電動車両用電池パックが20C以上の連続最大充電レートを有することによって、電動車両用電池パック1の充電容量の50%以上を1.5分以内で充電することが可能である。
 20C以上の連続最大充電レートを有するリチウムイオン電池11の例としては、例えば、
20Ah以下の充電容量及び400Aの最大充電電流を有するリチウムイオン電池、
10Ah以下の充電容量及び200Aの最大充電電流を有するリチウムイオン電池、
5Ah以下の充電容量及び100Aの最大充電電流を有するリチウムイオン電池、又は、
2.5Ah以下の充電容量及び50Aの最大充電電流を有するリチウムイオン電池、が挙げられる。
For example, when each lithium-ion battery has a continuous maximum charging rate of 20C or more, a continuous maximum charging rate of 20C or more can be realized as the battery pack 1 for an electric vehicle. In this case, the battery pack 1 for the electric vehicle can be charged in a shorter period of time.
For example, when the battery pack for an electric vehicle has a continuous maximum charging rate of 20 C or more, it is possible to charge 50% or more of the charging capacity of the battery pack 1 for an electric vehicle within 1.5 minutes.
As an example of the lithium ion battery 11 having a continuous maximum charging rate of 20 C or more, for example,
A lithium-ion battery with a charging capacity of 20 Ah or less and a maximum charging current of 400 A,
A lithium-ion battery with a charging capacity of 10 Ah or less and a maximum charging current of 200 A,
A lithium-ion battery having a charging capacity of 5 Ah or less and a maximum charging current of 100 A, or
Lithium-ion batteries having a charging capacity of 2.5 Ah or less and a maximum charging current of 50 A can be mentioned.
 例えば、各リチウムイオン電池が40C以上の連続最大充電レートを有する場合には、電動車両用電池パック1として40C以上の連続最大充電レートが実現可能になる。この場合、電動車両用電池パック1をより短い期間で充電することが可能である。
 例えば、電動車両用電池パックが40C以上の連続最大充電レートを有することによって、電動車両用電池パック1の充電容量の50%以上を1分未満で充電することが可能である。
 40C以上の連続最大充電レートを有するリチウムイオン電池11の例としては、例えば、
10Ah以下の充電容量及び400Aの最大充電電流を有するリチウムイオン電池、
5Ah以下の充電容量及び200Aの最大充電電流を有するリチウムイオン電池、
2.5Ah以下の充電容量及び100Aの最大充電電流を有するリチウムイオン電池、又は、
1.25Ah以下の充電容量及び50Aの最大充電電流を有するリチウムイオン電池、が挙げられる。
For example, when each lithium-ion battery has a continuous maximum charging rate of 40C or more, a continuous maximum charging rate of 40C or more can be realized as the battery pack 1 for an electric vehicle. In this case, the battery pack 1 for the electric vehicle can be charged in a shorter period of time.
For example, when the battery pack for an electric vehicle has a continuous maximum charging rate of 40 C or more, it is possible to charge 50% or more of the charging capacity of the battery pack 1 for an electric vehicle in less than one minute.
As an example of the lithium ion battery 11 having a continuous maximum charging rate of 40 C or more, for example,
A lithium-ion battery with a charging capacity of 10 Ah or less and a maximum charging current of 400 A,
A lithium-ion battery with a charging capacity of 5 Ah or less and a maximum charging current of 200 A,
A lithium-ion battery having a charging capacity of 2.5 Ah or less and a maximum charging current of 100 A, or
Lithium-ion batteries having a charging capacity of 1.25 Ah or less and a maximum charging current of 50 A can be mentioned.
 上述したように、本実施形態の電動車両用電池パック1によれば、リチウムイオン電池11の並列接続を無くすことにより、バッテリマネジメントコントローラ(BMC)といった制御装置を省略しつつ、各リチウムイオン電池11における充電量のバランスを保つことが可能である。また、絶縁構造も簡単にすることが可能となる。従って、簡単な構成で小型の電動車両用電池パック1を実現できる。そして、複数のリチウムイオン電池11を並列接続すること無しに、電動車両用電池パック1として例えば10C以上の連続最大充電レートが実現できるので、電動車両用電池パックを短時間で充電可能である。
 このように、簡単な構成で小型であり、短時間で充電可能な電動車両用電池パックを実現できる。
As described above, according to the battery pack 1 for an electric vehicle of the present embodiment, by eliminating the parallel connection of the lithium ion batteries 11, each lithium ion battery 11 is omitted while omitting a control device such as a battery management controller (BMC). It is possible to keep the balance of the amount of charge in. In addition, the insulating structure can be simplified. Therefore, a small battery pack 1 for an electric vehicle can be realized with a simple configuration. Then, since a continuous maximum charging rate of, for example, 10 C or more can be realized as the battery pack 1 for an electric vehicle without connecting a plurality of lithium ion batteries 11 in parallel, the battery pack for an electric vehicle can be charged in a short time.
In this way, it is possible to realize a battery pack for an electric vehicle that has a simple configuration, is compact, and can be charged in a short time.
 図2は、図1に示した電動車両用電池パック1の適用例としてのピュア電動車両の概略を示す図である。
 図2に示すピュア電動車両100は、電動車両用電池パック1を有している。ピュア電動車両100は、車体102、及び、車輪103a,103bを備えている。車体102には、モータ制御装置104、及び、モータ105が設けられている。車体102は、サドル107と、操舵用のバーハンドル108とを備えている。サドル107は、運転者が跨って着座するように構成されている。操舵用のバーハンドル108は、ピュア電動車両100の左右方向に延びるように設けられている。ピュア電動車両100は、リーン車両として、旋回時にバーハンドル108を把持する運転者によってカーブ内側にリーンするように体重移動が行われることにより旋回するように構成されている。ピュア電動車両100は、内燃機関としてのエンジンを備えていない。ピュア電動車両100は、制御装置を備えていない。ここでいう制御装置は、電動車両用電池パック1における複数のリチウムイオン電池11の各々から検出される電流、電圧又は温度のうち、少なくとも1つのパラメータを取得するとともに、取得された前記少なくとも1つのパラメータに基づいて、複数のリチウムイオン電池11のうち、少なくとも1つのリチウムイオン電池11の電圧及び/又は電流を変更するように構成されている。このような制御装置は、電動車両用電池パック1にも設けられていない。
 後ろの車輪103bは駆動輪である。モータ105は、電動車両用電池パック1から供給される電力によって車輪103bを駆動する。車輪103bが駆動されることによってピュア電動車両100が走行する。
 電動車両用電池パック1の電力は、モータ制御装置104を介してモータ105に供給される。電動車両用電池パック1は、電気接続コネクタ13を介して、モータ制御装置104と接続されている。即ち、電動車両用電池パック1は、電気接続コネクタ13を介して、ピュア電動車両100の車体102と接続されている。電流は、電動車両用電池パック1から、電気接続コネクタ13を介して、モータ制御装置104に伝達される。
 例えば、ピュア電動車両100がモータ105の回生制動によって制動される場合、モータ105で発電された電力が、モータ制御装置104を介して電動車両用電池パック1に供給される。この時、電動車両用電池パック1が充電される。
FIG. 2 is a diagram showing an outline of a pure electric vehicle as an application example of the battery pack 1 for an electric vehicle shown in FIG.
The pure electric vehicle 100 shown in FIG. 2 has a battery pack 1 for an electric vehicle. The pure electric vehicle 100 includes a vehicle body 102 and wheels 103a and 103b. The vehicle body 102 is provided with a motor control device 104 and a motor 105. The vehicle body 102 includes a saddle 107 and a bar handle 108 for steering. The saddle 107 is configured so that the driver sits across it. The steering bar handle 108 is provided so as to extend in the left-right direction of the pure electric vehicle 100. The pure electric vehicle 100 is configured to turn as a lean vehicle by shifting the weight so as to lean inward of the curve by a driver who holds the bar handle 108 at the time of turning. The pure electric vehicle 100 does not include an engine as an internal combustion engine. The pure electric vehicle 100 does not have a control device. The control device referred to here acquires at least one parameter of the current, voltage, or temperature detected from each of the plurality of lithium ion batteries 11 in the battery pack 1 for an electric vehicle, and at least one of the acquired parameters. It is configured to change the voltage and / or current of at least one lithium ion battery 11 among the plurality of lithium ion batteries 11 based on the parameters. Such a control device is also not provided in the battery pack 1 for an electric vehicle.
The rear wheel 103b is a driving wheel. The motor 105 drives the wheels 103b by the electric power supplied from the battery pack 1 for the electric vehicle. The pure electric vehicle 100 runs by driving the wheels 103b.
The electric power of the battery pack 1 for the electric vehicle is supplied to the motor 105 via the motor control device 104. The battery pack 1 for an electric vehicle is connected to the motor control device 104 via the electric connection connector 13. That is, the battery pack 1 for the electric vehicle is connected to the vehicle body 102 of the pure electric vehicle 100 via the electric connection connector 13. The electric current is transmitted from the battery pack 1 for the electric vehicle to the motor control device 104 via the electric connector 13.
For example, when the pure electric vehicle 100 is braked by the regenerative braking of the motor 105, the power generated by the motor 105 is supplied to the electric vehicle battery pack 1 via the motor control device 104. At this time, the battery pack 1 for the electric vehicle is charged.
 図2に示すピュア電動車両100は、ピュア電動車両100の外部から供給される電力で充電される機能を有する。より詳細には、電動車両用電池パック1は、ピュア電動車両100の外部から供給される電力で充電される機能を有する。
 例えば、電気接続コネクタ13から、モータ制御装置104に設けられた相手コネクタが取り外され、ピュア電動車両100の外部に設けられた充電装置のコネクタが電気接続コネクタ13に接続される。外部に設けられた充電装置のコネクタは、例えば、充電ステーションの充電装置に設けられたコネクタである。充電装置のコネクタとして、例えば、一般家庭に設けられ商用電源を用いる充電装置のコネクタも採用可能である。
The pure electric vehicle 100 shown in FIG. 2 has a function of being charged by electric power supplied from the outside of the pure electric vehicle 100. More specifically, the battery pack 1 for an electric vehicle has a function of being charged by electric power supplied from the outside of the pure electric vehicle 100.
For example, the mating connector provided in the motor control device 104 is removed from the electric connection connector 13, and the connector of the charging device provided outside the pure electric vehicle 100 is connected to the electric connection connector 13. The connector of the charging device provided externally is, for example, a connector provided in the charging device of the charging station. As the connector of the charging device, for example, a connector of a charging device provided in a general household and using a commercial power source can also be adopted.
 電動車両用電池パックが10C以上の連続最大充電レートを有することによって、例えば、電動車両用電池パック1の充電容量の50%以上を3分以内で充電することが可能である。従って、ピュア電動車両100は、充電のため、充電ステーションを長時間占拠する必要がない。 Since the battery pack for an electric vehicle has a continuous maximum charging rate of 10 C or more, for example, 50% or more of the charging capacity of the battery pack 1 for an electric vehicle can be charged within 3 minutes. Therefore, the pure electric vehicle 100 does not need to occupy the charging station for a long time for charging.
 例えば、各リチウムイオン電池が40C以上の連続最大充電レートを有する場合には、電動車両用電池パック1として40C以上の連続最大充電レートが実現できる。この場合、電動車両用電池パック1をより短い期間で充電することが可能である。従って、充電ステーションを占拠する時間が短い。 For example, when each lithium-ion battery has a continuous maximum charging rate of 40C or more, a continuous maximum charging rate of 40C or more can be realized as the battery pack 1 for an electric vehicle. In this case, the battery pack 1 for the electric vehicle can be charged in a shorter period of time. Therefore, the time to occupy the charging station is short.
[第二実施形態]
 図3は、本発明の第二実施形態に係る電動車両用電池パックを模式的に示す図である。
[Second Embodiment]
FIG. 3 is a diagram schematically showing a battery pack for an electric vehicle according to a second embodiment of the present invention.
 本実施形態に係る電動車両用電池パック21は、第一実施形態に係る電動車両用電池パック1に対し、充電専用コネクタ15、及びリレー18を更に備える点が異なる。この他の構成は、図1に示す電動車両用電池パック1と同じ符号を付し、一部の説明を省略する。 The electric vehicle battery pack 21 according to the present embodiment is different from the electric vehicle battery pack 1 according to the first embodiment in that it further includes a charging connector 15 and a relay 18. Other configurations are designated by the same reference numerals as those of the battery pack 1 for electric vehicles shown in FIG. 1, and some description thereof will be omitted.
 図3に示す電動車両用電池パック21の充電専用コネクタ15は、ピュア電動車両100の外部に設けられた充電装置のコネクタが接続される。充電専用コネクタ15は、リチウムイオン電池11の組に対し、電気接続コネクタ13と並列に接続されている。充電専用コネクタ15は、ピュア電動車両100の外部から供給される電力で電動車両用電池パック21が充電される場合のみ使用される。
 電動車両用電池パック21は、電気接続コネクタ13と充電専用コネクタ15とを有する。このため、ピュア電動車両100の車体102の、電気接続コネクタ13に対する接続状態を維持したまま、電動車両用電池パック21を充電することができる。従って、充電作業を容易にできるとともに、電動車両用電池パック21の設置位置の自由度を高めることができる。
The dedicated charging connector 15 of the battery pack 21 for an electric vehicle shown in FIG. 3 is connected to a connector of a charging device provided outside the pure electric vehicle 100. The charging-dedicated connector 15 is connected to the set of lithium-ion batteries 11 in parallel with the electrical connection connector 13. The charging-dedicated connector 15 is used only when the battery pack 21 for the electric vehicle is charged by the electric power supplied from the outside of the pure electric vehicle 100.
The battery pack 21 for an electric vehicle has an electric connection connector 13 and a charging-only connector 15. Therefore, the battery pack 21 for the electric vehicle can be charged while maintaining the connection state of the vehicle body 102 of the pure electric vehicle 100 with respect to the electric connection connector 13. Therefore, the charging operation can be facilitated, and the degree of freedom in the installation position of the battery pack 21 for the electric vehicle can be increased.
 各リチウムイオン電池11は、スピネル型チタン酸リチウム、ニオブチタン含有複合酸化物、及びグラファイトからなる群から選択される少なくともいずれかを含有する負極を有する。このため、各リチウムイオン電池11は、充電電圧及び放電電圧の許容範囲が広い。従って、バッテリマネジメントシステム(BMS)といった制御装置を設けることなしに、各リチウムイオン電池における充電量のバランスを保つことが容易である。 Each lithium ion battery 11 has a negative electrode containing at least one selected from the group consisting of spinel-type lithium titanate, niobium titanium-containing composite oxide, and graphite. Therefore, each lithium ion battery 11 has a wide allowable range of charge voltage and discharge voltage. Therefore, it is easy to keep the balance of the charge amount in each lithium ion battery without providing a control device such as a battery management system (BMS).
 電動車両用電池パック21のリレー18は、リチウムイオン電池11に流れる電流を導通又は遮断する。
 電動車両用電池パック21のリレー18は、例えば、電気接続コネクタ13又は充電専用コネクタ15に相手コネクタが接続された場合にオン状態となるように構成されている。例えば、相手コネクタに通電する電流によってオン状態となるように構成されている。オン状態とする手段として、例えば、物理的な接続、又は接続時に相手から受信する信号を検出する装置が設けられてもよい。
The relay 18 of the battery pack 21 for an electric vehicle conducts or cuts off the current flowing through the lithium ion battery 11.
The relay 18 of the battery pack 21 for an electric vehicle is configured to be turned on when, for example, a mating connector is connected to the electric connection connector 13 or the charging-only connector 15. For example, it is configured to be turned on by the current that energizes the mating connector. As a means for turning on the state, for example, a device for detecting a physical connection or a signal received from the other party at the time of connection may be provided.
 本実施形態の構成によれば、リチウムイオン電池11の電流が不用意に電気接続コネクタ13又は充電専用コネクタ15から外部に流れる事態を抑制することが可能である。このため、例えば電動車両用電池パック21が車体102(図2参照)から取外される場合又は車体に取付けられる作業の最中に、電気接続コネクタ13又は充電専用コネクタ15が電動車両用電池パック21の外部で不用意に何らかの導体に接触し、ショートによる大電流によって導体が電気接続コネクタ13又は充電専用コネクタ15に溶着する事態を抑制することが可能である。
 バッテリマネジメントシステム(BMS)といった制御装置を設けること無しに、簡単な構成で、例えば外部の導体が電気接続コネクタ13又は充電専用コネクタ15に溶着する事態を抑制することが可能である。
According to the configuration of the present embodiment, it is possible to suppress a situation in which the current of the lithium ion battery 11 carelessly flows to the outside from the electric connection connector 13 or the charging dedicated connector 15. Therefore, for example, when the battery pack 21 for an electric vehicle is removed from the vehicle body 102 (see FIG. 2) or during the work of being attached to the vehicle body, the electric connection connector 13 or the charging-dedicated connector 15 is the battery pack for the electric vehicle. It is possible to prevent a situation in which the conductor is inadvertently contacted with some conductor outside the 21 and the conductor is welded to the electric connection connector 13 or the charging dedicated connector 15 due to a large current due to a short circuit.
Without providing a control device such as a battery management system (BMS), it is possible to suppress a situation in which, for example, an external conductor is welded to the electrical connection connector 13 or the charging-only connector 15 with a simple configuration.
 本発明は、上述した例に限定されず、例えば、下記(7)~(11)の構成を採用し得る。下記(7)~(11)の実施形態としては、上述した実施形態が挙げられる。 The present invention is not limited to the above-mentioned example, and for example, the following configurations (7) to (11) can be adopted. Examples of the following embodiments (7) to (11) include the above-described embodiments.
 (7) (1)から(4)いずれか1の電動車両用電池パックであって、
 前記ケースは、液密構造を有する。
(7) A battery pack for an electric vehicle according to any one of (1) to (4).
The case has a liquidtight structure.
  上記構成によれば、電動車両用電池パックが、水又は油といった液体を浴びる可能性がある場合でも、ケースによって、液体の進入が抑制される。従って、リチウムイオン電池と液体の接触が抑制される。 According to the above configuration, even if the battery pack for an electric vehicle may be exposed to a liquid such as water or oil, the ingress of the liquid is suppressed depending on the case. Therefore, the contact between the lithium ion battery and the liquid is suppressed.
 (8) (1)から(4)いずれか1の電動車両用電池パックであって、
 前記複数のリチウムイオン電池の各々は40C以上の連続最大充電レートを有する。
(8) A battery pack for an electric vehicle according to any one of (1) to (4).
Each of the plurality of lithium-ion batteries has a continuous maximum charging rate of 40 C or more.
 上記構成によれば、電動車両用電池パックとして40C以上の最大充電レートが実現できるので、電動車両用電池パックをより短時間で充電可能である。 According to the above configuration, a maximum charging rate of 40 C or more can be realized as a battery pack for an electric vehicle, so that the battery pack for an electric vehicle can be charged in a shorter time.
 (9) (1)から(4)いずれか1の電動車両用電池パックであって、
 前記複数のリチウムイオン電池の各々は、5Ah以上の容量を有する。
(9) A battery pack for an electric vehicle according to any one of (1) to (4).
Each of the plurality of lithium ion batteries has a capacity of 5 Ah or more.
 上記構成によれば、60V以下の電圧で充電する場合でも、ピュア電動車両を通常の用途で走行できる程度に電動車両用電池パックが充電できる。 According to the above configuration, even when charging with a voltage of 60 V or less, the battery pack for the electric vehicle can be charged to the extent that the pure electric vehicle can run for normal purposes.
 (10) (1)から(4)いずれか1の電動車両用電池パックであって、
 前記複数のリチウムイオン電池の各々は、20Ah以下の容量を有する。
(10) A battery pack for an electric vehicle according to any one of (1) to (4).
Each of the plurality of lithium ion batteries has a capacity of 20 Ah or less.
 上記構成によれば、60V以下の電圧で充電する場合でも、ピュア電動車両を長距離移動の用途で走行できる程度に電動車両用電池パックが充電できる。 According to the above configuration, even when charging with a voltage of 60 V or less, the battery pack for the electric vehicle can be charged to the extent that the pure electric vehicle can be driven for long-distance travel.
 (11) (1)から(4)いずれか1の電動車両用電池パックであって、
 前記電動車両用電池パックの最低充電電圧は、12Vである。
(11) A battery pack for an electric vehicle according to any one of (1) to (4).
The minimum charging voltage of the battery pack for an electric vehicle is 12V.
 電動車両用電池パックが12V以上の充電電圧で充電される。電動車両用電池パックが12V未満の電圧では充電されない。直列接続されたリチウムイオン電池のそれぞれに、ピュア電動車両を走行できる程度の電力を充電することができる。 The battery pack for electric vehicles is charged with a charging voltage of 12V or higher. The battery pack for electric vehicles will not be charged at a voltage less than 12V. Each of the lithium-ion batteries connected in series can be charged with enough electric power to drive a pure electric vehicle.
 1,21  電動車両用電池パック
 11  リチウムイオン電池
 12  ケース
 13  電気接続コネクタ
1,21 Electric vehicle battery pack 11 Lithium-ion battery 12 Case 13 Electrical connector

Claims (6)

  1. ピュア電動車両に用いる電動車両用電池パックであって、
     前記電動車両用電池パックは、
    複数のリチウムイオン電池と、
    前記複数のリチウムイオン電池を収容するケースと、
    前記ピュア電動車両の車体に設けられる相手コネクタと接続され、前記車体に対し入出力される電流を伝達する電気接続コネクタと、
    を備え、
     前記複数のリチウムイオン電池の各々は、10C以上の連続最大充電レートを有するとともに互いに並列接続されることなく直列接続され、前記直列接続の両端の電圧に対応する前記電動車両用電池パックの最大充電電圧は60V以下である。
    A battery pack for electric vehicles used for pure electric vehicles.
    The battery pack for an electric vehicle is
    With multiple lithium-ion batteries
    A case accommodating the plurality of lithium ion batteries and
    An electrical connection connector that is connected to a mating connector provided on the vehicle body of the pure electric vehicle and transmits a current input / output to the vehicle body.
    With
    Each of the plurality of lithium-ion batteries has a continuous maximum charging rate of 10 C or more and is connected in series without being connected in parallel to each other, and the maximum charge of the battery pack for an electric vehicle corresponding to the voltage across the series connection. The voltage is 60 V or less.
  2.  請求項1に記載の電動車両用電池パックであって、
     前記複数のリチウムイオン電池の各々は、スピネル型チタン酸リチウム、ニオブチタン含有複合酸化物、及びグラファイトからなる群から選択される少なくともいずれかを含有する負極を有する。
    The battery pack for an electric vehicle according to claim 1.
    Each of the plurality of lithium ion batteries has a negative electrode containing at least one selected from the group consisting of spinel-type lithium titanate, niobium titanium-containing composite oxide, and graphite.
  3.  請求項1又は2に記載の電動車両用電池パックであって、
     前記複数のリチウムイオン電池と直列に接続され、前記複数のリチウムイオン電池に流れる電流を遮断するリレーを備える。
    The battery pack for an electric vehicle according to claim 1 or 2.
    A relay that is connected in series with the plurality of lithium ion batteries and cuts off the current flowing through the plurality of lithium ion batteries is provided.
  4.  請求項1から3いずれか1項に記載の電動車両用電池パックであって、
     前記電動車両用電池パックは、前記複数のリチウムイオン電池の各々から検出される電流、電圧又は温度のうち、少なくとも1つのパラメータを取得するとともに、取得された前記少なくとも1つのパラメータに基づいて、前記複数のリチウムイオン電池のうち、少なくとも1つの前記リチウムイオン電池の電圧及び/又は電流を変更するように構成された制御装置を備えていない。
    The battery pack for an electric vehicle according to any one of claims 1 to 3.
    The battery pack for an electric vehicle acquires at least one parameter of the current, voltage, or temperature detected from each of the plurality of lithium ion batteries, and based on the acquired at least one parameter, the said battery pack. It does not include a control device configured to change the voltage and / or current of at least one of the plurality of lithium ion batteries.
  5.  ピュア電動車両であって、
    前記ピュア電動車両は、
    請求項1から4いずれか1に記載の電動車両用電池パックと、
    前記電動車両用電池パックの前記電気接続コネクタと接続されるように構成された相手コネクタと、
    駆動輪と、
    前記電動車両用電池パックから前記相手コネクタを介したモータへの電力供給と、前記モータから前記相手コネクタを介した前記電動車両用電池パックへの電力供給とを制御するように構成されたモータ制御装置と、
    前記モータ制御装置から供給される電力によって前記駆動輪を駆動する一方、前記駆動輪が駆動されることにより電力を発生させるように構成された前記モータと
    を備え、
    前記複数のリチウムイオン電池の各々から検出される電流、電圧又は温度のうち、少なくとも1つのパラメータを取得するとともに、取得された前記少なくとも1つのパラメータに基づいて、前記複数のリチウムイオン電池のうち、少なくとも1つの前記リチウムイオン電池の電圧及び/又は電流を変更するように構成された制御装置を備えていない。
    It ’s a pure electric vehicle,
    The pure electric vehicle is
    The battery pack for an electric vehicle according to any one of claims 1 to 4.
    A mating connector configured to be connected to the electrical connector of the battery pack for an electric vehicle,
    With the drive wheels
    Motor control configured to control power supply from the battery pack for an electric vehicle to a motor via the mating connector and power supply from the motor to the battery pack for an electric vehicle via the mating connector. With the device
    The motor is provided with the motor configured to drive the drive wheels with electric power supplied from the motor control device, while generating electric power by driving the drive wheels.
    Of the plurality of lithium ion batteries, at least one parameter of the current, voltage or temperature detected from each of the plurality of lithium ion batteries is acquired, and based on the acquired at least one parameter, among the plurality of lithium ion batteries. It does not include a control device configured to change the voltage and / or current of at least one of the lithium-ion batteries.
  6.  請求項5に記載のピュア電動車両であって、
    前記ピュア電動車両は、鞍乗型車両であり、
    前記鞍乗型車両は、
    前記鞍乗型車両の左右方向に延びるように設けられた操舵用のバーハンドルと、
    運転者が跨って着座するように構成されたサドルと
    を備え、
    リーン車両として、旋回時に前記バーハンドルを把持する運転者によってカーブ内側にリーンするように体重移動が行われることにより旋回するように構成されている。
    The pure electric vehicle according to claim 5.
    The pure electric vehicle is a saddle-mounted vehicle.
    The saddle-mounted vehicle is
    A steering bar handle provided so as to extend in the left-right direction of the saddle-mounted vehicle, and
    Equipped with a saddle configured for the driver to sit across
    As a lean vehicle, the driver who grips the bar handle at the time of turning is configured to turn by shifting the weight so as to lean inward of the curve.
PCT/JP2020/017298 2020-04-22 2020-04-22 Electric vehicle battery pack and pure electric vehicle WO2021214903A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2020/017298 WO2021214903A1 (en) 2020-04-22 2020-04-22 Electric vehicle battery pack and pure electric vehicle
DE112021002473.6T DE112021002473T5 (en) 2020-04-22 2021-04-20 Straddle vehicle battery pack and straddle vehicle
PCT/JP2021/015984 WO2021215425A1 (en) 2020-04-22 2021-04-20 Straddled vehicle battery pack and straddled vehicle
FR2104219A FR3109675A1 (en) 2020-04-22 2021-04-22 Saddle Vehicle and Saddle Vehicle Battery Pack
TW110114504A TWI820416B (en) 2020-04-22 2021-04-22 Straddle-type vehicle battery pack and straddle-type vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/017298 WO2021214903A1 (en) 2020-04-22 2020-04-22 Electric vehicle battery pack and pure electric vehicle

Publications (1)

Publication Number Publication Date
WO2021214903A1 true WO2021214903A1 (en) 2021-10-28

Family

ID=78269110

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/017298 WO2021214903A1 (en) 2020-04-22 2020-04-22 Electric vehicle battery pack and pure electric vehicle
PCT/JP2021/015984 WO2021215425A1 (en) 2020-02-04 2021-04-20 Straddled vehicle battery pack and straddled vehicle

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015984 WO2021215425A1 (en) 2020-02-04 2021-04-20 Straddled vehicle battery pack and straddled vehicle

Country Status (1)

Country Link
WO (2) WO2021214903A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052968A (en) * 2005-08-17 2007-03-01 Hitachi Maxell Ltd Battery pack, mobile equipment, and charging method of battery pack
JP2013232280A (en) * 2010-11-22 2013-11-14 Yamaha Motor Co Ltd Battery pack for saddle-riding type vehicle and saddle-riding type vehicle
JP2014180185A (en) * 2013-03-15 2014-09-25 Toshiba Corp Battery module
JP2015153719A (en) * 2014-02-19 2015-08-24 株式会社東芝 Power supply system, and vehicle
JP2018006307A (en) * 2016-07-05 2018-01-11 永浦 千恵子 Power storage system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333553A (en) * 2005-05-23 2006-12-07 Fujitsu Ten Ltd Battery charge state calculating system and method, and battery monitor
JP4709710B2 (en) * 2006-08-04 2011-06-22 株式会社東芝 Non-aqueous electrolyte battery, battery pack and automobile
JP2013051857A (en) * 2011-08-31 2013-03-14 Sony Corp Power storage device, electronic apparatus, electric vehicle, and electric power system
JP2013112303A (en) * 2011-11-30 2013-06-10 Daihatsu Motor Co Ltd Power supply device for hybrid vehicle
JP7134624B2 (en) * 2016-12-15 2022-09-12 ストアドット リミテッド Electric vehicles with adaptable fast charging utilizing supercapacitor emulating batteries
JP2019160446A (en) * 2018-03-08 2019-09-19 ヤマハ発動機株式会社 Lean vehicle battery and lean vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052968A (en) * 2005-08-17 2007-03-01 Hitachi Maxell Ltd Battery pack, mobile equipment, and charging method of battery pack
JP2013232280A (en) * 2010-11-22 2013-11-14 Yamaha Motor Co Ltd Battery pack for saddle-riding type vehicle and saddle-riding type vehicle
JP2014180185A (en) * 2013-03-15 2014-09-25 Toshiba Corp Battery module
JP2015153719A (en) * 2014-02-19 2015-08-24 株式会社東芝 Power supply system, and vehicle
JP2018006307A (en) * 2016-07-05 2018-01-11 永浦 千恵子 Power storage system

Also Published As

Publication number Publication date
WO2021215425A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
JP6419992B2 (en) Hybrid energy storage module system
US7404459B2 (en) Electric vehicle
JP5484985B2 (en) Power supply device and vehicle equipped with this power supply device
WO2013140605A1 (en) Storage battery control device and electricity storage device
JP5772781B2 (en) Vehicle, power supply system, and control method for power supply system
CN108656968B (en) Power supply device for vehicle
JPH11196537A (en) Battery system and electric vehicle using the same
JP2014060875A (en) Battery pack and electric automobile
US11830999B2 (en) Hybrid energy storage module system having auxiliary battery
JP2015091200A (en) Vehicle and battery pack
WO2016190191A1 (en) Internal combustion engine control apparatus
JP5777547B2 (en) Vehicle control device and vehicle
JP6949886B2 (en) Power supply circuit
WO2021214903A1 (en) Electric vehicle battery pack and pure electric vehicle
WO2021214904A1 (en) Electric vehicle battery pack and pure electric vehicle
CN110234531B (en) Control system, mobile body, and control method
JP2008041620A (en) Battery pack system
JP2008236910A (en) Controller of storage device
TWI820416B (en) Straddle-type vehicle battery pack and straddle-type vehicle
TWI832046B (en) Straddle-type vehicle battery pack and straddle-type vehicle
JP6312474B2 (en) Vehicle power supply system
GB2608956A (en) Straddled vehicle battery pack and straddled vehicle
JP2012112811A (en) Secondary battery device and vehicle
TW202144227A (en) Straddled vehicle battery pack and straddled vehicle
KR101543265B1 (en) Power supply for a vehicle and power supply method of the vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP