WO2021215380A1 - Carboxyl group-containing crosslinked polymer or salt thereof, and use thereof - Google Patents

Carboxyl group-containing crosslinked polymer or salt thereof, and use thereof Download PDF

Info

Publication number
WO2021215380A1
WO2021215380A1 PCT/JP2021/015807 JP2021015807W WO2021215380A1 WO 2021215380 A1 WO2021215380 A1 WO 2021215380A1 JP 2021015807 W JP2021015807 W JP 2021015807W WO 2021215380 A1 WO2021215380 A1 WO 2021215380A1
Authority
WO
WIPO (PCT)
Prior art keywords
crosslinked polymer
mass
salt
less
polymer
Prior art date
Application number
PCT/JP2021/015807
Other languages
French (fr)
Japanese (ja)
Inventor
朋子 仲野
篤史 西脇
直彦 斎藤
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to JP2022517026A priority Critical patent/JPWO2021215380A1/ja
Publication of WO2021215380A1 publication Critical patent/WO2021215380A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/20Esters of polyhydric alcohols or polyhydric phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/02Acids; Metal salts or ammonium salts thereof, e.g. maleic acid or itaconic acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a carboxyl group-containing crosslinked polymer or a salt thereof, and its use.
  • Carboxyl group-containing polymers are used in various applications such as thickeners and viscosity modifiers for cosmetics, binders for non-aqueous electrolyte secondary battery electrodes, sedimentation inhibitors for pigments, and dispersion stabilizers for metal powders. ing.
  • a thickener for cosmetics when the carboxyl group-containing polymer is linear, it has a spinnability and feels sticky, but as the degree of cross-linking is increased, the spinnability becomes higher. It has the characteristic that it decreases and you can feel the freshness. Therefore, in cosmetics that do not require spinnability and require freshness, a carboxyl group-containing crosslinked polymer is often used because of the advantage that high viscosity can be obtained with a small amount of use.
  • a binder for a non-aqueous electrolyte secondary battery electrode a carboxyl group-containing crosslinked polymer is often used because of the advantages of being able to impart good binding properties and cycle characteristics.
  • various secondary batteries such as nickel hydrogen secondary batteries, lithium ion secondary batteries, and electric double layer capacitors expand, the demand for improving energy density, reliability, and durability tends to increase.
  • specifications for using a silicon-based active material as a negative electrode active material are increasing.
  • Patent Document 1 discloses a crosslinked acrylic acid-based polymer having a specific particle size in a 1% NaCl aqueous solution.
  • the microcrosslinked acrylic acid system disclosed in Patent Documents 1 and 2 as a binder of particles in the slurry (for example, a binder of the active material in the lithium ion secondary battery electrode slurry).
  • the fine cross-linking of the acrylic acid-based polymer can enhance the binding property between the particles in the slurry, while the spread of the polymer in water is increased and the viscosity is increased even with a small amount of addition.
  • the coatability and the coating performance for example, the cycle characteristics of the lithium ion secondary battery
  • the binders for secondary battery electrodes disclosed in Patent Documents 1 and 2 can all impart good cycle characteristics and binding properties, but as the performance of the secondary battery is improved, the cycle characteristics become more favorable. There is an increasing demand for improveable binders.
  • the secondary battery electrode is generally obtained by applying a composition for an electrode mixture layer containing an active material and a binder (hereinafter, also referred to as “electrode slurry”) to the surface of an electrode current collector and drying it. At this time, it is advantageous to increase the solid content concentration of the electrode slurry from the viewpoint of increasing the drying efficiency of the electrode slurry and improving the productivity of the electrode. However, usually, as the solid content concentration increases, it becomes difficult to ensure good coatability. As described above, the binders disclosed in Patent Documents 1 and 2 have a large increase in viscosity even when added in a small amount, so that it is difficult to increase the solid content concentration.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to achieve both coatability and coating performance of a composition containing a carboxyl group-containing crosslinked polymer or a salt thereof. It is to provide a crosslinked polymer or a salt thereof. Furthermore, when the solid content concentration of the composition for the electrode mixture layer is higher than before, it is possible to obtain a secondary battery that exhibits excellent cycle characteristics while ensuring coatability by reducing the viscosity of the electrode slurry. It is to provide a binder for a secondary battery electrode that can be made. In addition, the present invention also provides a composition for a secondary battery electrode mixture layer containing the above binder, a secondary battery electrode obtained by using the composition, and a secondary battery.
  • the non-uniform network structure size obtained by measurement by the small-angle X-ray scattering method is a specific value or less, or a carboxyl group-containing crosslinked polymer or a crosslinked polymer thereof.
  • the present invention has been completed by finding that by using a salt, excellent coating performance can be exhibited while ensuring the coatability of the crosslinked polymer or a composition containing the salt thereof.
  • the solid content concentration of the composition for the secondary battery electrode mixture layer containing the binder for the secondary battery electrode containing the carboxyl group-containing crosslinked polymer or a salt thereof, the active material and water is high, the composition may be used.
  • the non-uniform network structure size obtained by the small angle X-ray scattering method measurement is less than a specific value.
  • a carboxyl group-containing crosslinked polymer or a salt thereof By containing a carboxyl group-containing crosslinked polymer or a salt thereof, the coatability is ensured by reducing the viscosity of the electrode slurry. At the same time, they have found that a secondary battery exhibiting excellent cycle characteristics can be obtained, and have completed the present invention.
  • the present invention is as follows.
  • Non-uniform network structure size of the crosslinked polymer calculated by curve fitting with the following formula (1) to the scattering intensity curve I (q) obtained by measuring a 1% by mass concentration aqueous solution of the crosslinked polymer.
  • a carboxyl group-containing crosslinked polymer or a salt thereof, wherein ⁇ (hereinafter, also referred to as “ ⁇ 1”) is 80 or less.
  • the crosslinked polymer or a salt thereof is neutralized to a degree of neutralization of 80 to 100 mol%, and then the particle size measured in an aqueous medium is 0.1 ⁇ m or more and 5.0 ⁇ m or less in terms of volume-based median diameter.
  • a binder for a secondary battery electrode which comprises the carboxyl group-containing crosslinked polymer according to any one of [1] to [6] or a salt thereof.
  • a secondary battery electrode comprising a mixture layer formed from the composition for the secondary battery electrode mixture layer according to [8] on the surface of a current collector.
  • the coatability and the coating film performance of the composition containing the crosslinked polymer or the salt thereof can be compatible with each other. Furthermore, according to the binder for the secondary battery electrode containing the carboxyl group-containing crosslinked polymer of the present invention or a salt thereof, the viscosity of the electrode slurry is higher than the conventional one when the solid content concentration of the composition for the electrode mixture layer is higher. It is possible to obtain a secondary battery that exhibits excellent cycle characteristics while ensuring coatability by reducing the amount.
  • the carboxyl group-containing crosslinked polymer of the present invention or a salt thereof (hereinafter, also referred to as “the present crosslinked polymer”) has a degree of neutralization by a small angle X-ray scattering method (measurement temperature: 25.0 ⁇ 0.1 ° C.). Calculated by curve fitting with the above formula (1) to the scattering intensity curve I (q) obtained by measuring a 1% by mass concentration aqueous solution of the present crosslinked polymer neutralized to 50 to 100 mol%. , The non-uniform network structure size ⁇ ( ⁇ 1) of this crosslinked polymer is 80 or less. ⁇ will be described in detail in "3. Characteristics of the Crosslinked Polymer" and “Examples” described later.
  • the binder for a secondary battery electrode containing the crosslinked polymer or a salt thereof is a composition for a secondary battery electrode mixture layer by mixing with an active material and water.
  • the present composition is in a slurry state that can be applied to a current collector.
  • the secondary battery electrode of the present invention can be obtained by forming a mixture layer formed from the above composition on the surface of a current collector such as a copper foil or an aluminum foil.
  • this binder is used in a composition for a secondary battery electrode mixture layer containing a silicon-based active material described later as an active material, the effect of the present invention is particularly large, which is preferable.
  • (meth) acrylic means acrylic and / or methacrylic
  • (meth) acrylate means acrylate and / or methacrylate
  • (meth) acryloyl group means an acryloyl group and / or a methacryloyl group.
  • the crosslinked polymer has a structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter, also referred to as “component (a)”), and is a single amount containing an ethylenically unsaturated carboxylic acid monomer.
  • component (a) ethylenically unsaturated carboxylic acid monomer
  • the body component can be introduced into the polymer by precipitation polymerization or dispersion polymerization.
  • the crosslinked polymer has a carboxyl group by having such a structural unit, the adhesiveness to the current collector is improved, and the lithium ion desolvation effect and the ionic conductivity are excellent, so that the resistance is small. , An electrode having excellent high-rate characteristics can be obtained. Further, since water swelling property is imparted, the dispersion stability of the active material or the like in the present composition can be enhanced.
  • Examples of the ethylenically unsaturated carboxylic acid monomer include (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid; and (meth) acrylamide alkyl such as (meth) acrylamide hexane acid and (meth) acrylamide dodecanoic acid.
  • Carboxylic acid; ethylenically unsaturated monomers having carboxyl groups such as monohydroxyethyl succinate (meth) acrylate, ⁇ -carboxy-caprolactone mono (meth) acrylate, ⁇ -carboxyethyl (meth) acrylate, or (partial) thereof.
  • Alkali neutralized products may be mentioned, and one of these may be used alone, or two or more thereof may be used in combination.
  • a compound having an acryloyl group as a polymerizable functional group is preferable, and acrylic acid is particularly preferable, in that a polymer having a long primary chain length can be obtained due to a high polymerization rate and the binder has a good binding force.
  • acrylic acid is used as the ethylenically unsaturated carboxylic acid monomer, a polymer having a high carboxyl group content can be obtained.
  • the content of the component (a) in the present crosslinked polymer is not particularly limited, but may be, for example, 10% by mass or more and 100% by mass or less with respect to all the structural units of the present crosslinked polymer.
  • the lower limit is, for example, 20% by mass or more, for example, 30% by mass or more, and for example, 40% by mass or more.
  • the lower limit is 50% by mass or more, the dispersion stability of the present composition becomes good and a higher binding force can be obtained, which is preferable, and it may be 60% by mass or more, or 70% by mass or more. It may be 80% by mass or more.
  • the upper limit is, for example, 99.9% by mass or less, for example, 99.5% by mass or less, for example, 99% by mass or less, for example, 98% by mass or less, and for example, 95% by mass. It is less than or equal to, for example, 90% by mass or less, and for example, 80% by mass or less.
  • the range may be a range in which such a lower limit and an upper limit are appropriately combined, and is, for example, 10% by mass or more and 100% by mass or less, and for example, 50% by mass or more and 100% by mass or less, and for example. It can be 50% by mass or more and 99.9% by mass or less, and can be, for example, 50% by mass or more and 99% by mass or less, and can be, for example, 50% by mass or more and 98% by mass or less.
  • the crosslinked polymer may contain a structural unit derived from another ethylenically unsaturated monomer copolymerizable with the component (hereinafter, also referred to as “component (b)”).
  • component (b) includes, for example, an ethylenically unsaturated monomer compound having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, or a nonionic ethylenically unsaturated monomer.
  • the structural unit from which it is derived can be mentioned.
  • These structural units are ethylenically unsaturated monomer compounds having anionic groups other than carboxyl groups such as sulfonic acid groups and phosphoric acid groups, or monomers containing nonionic ethylenically unsaturated monomers. Can be introduced by copolymerizing.
  • the ratio of the component (b) can be 0% by mass or more and 90% by mass or less with respect to all the structural units of the present crosslinked polymer.
  • the ratio of the component (b) may be 1% by mass or more and 60% by mass or less, 2% by mass or more and 50% by mass or less, and 5% by mass or more and 40% by mass or less. It may be 10% by mass or more and 30% by mass or less. Further, when the component (b) is contained in an amount of 1% by mass or more with respect to all the structural units of the crosslinked polymer, the affinity for the electrolytic solution is improved, so that the effect of improving the lithium ion conductivity can be expected.
  • nonionic ethylenically unsaturated monomers are preferable from the viewpoint of obtaining electrodes having good bending resistance, and nonionic ethylenically unsaturated monomers are preferable.
  • the monomer include (meth) acrylamide and its derivatives, a nitrile group-containing ethylenically unsaturated monomer, an alicyclic structure-containing ethylenically unsaturated monomer, and the like.
  • Examples of the (meth) acrylamide derivative include N-alkyl (meth) acrylamide compounds such as isopropyl (meth) acrylamide and t-butyl (meth) acrylamide; Nn-butoxymethyl (meth) acrylamide and N-isobutoxymethyl.
  • N-alkoxyalkyl (meth) acrylamide compounds such as (meth) acrylamide; N, N-dialkyl (meth) acrylamide compounds such as dimethyl (meth) acrylamide and diethyl (meth) acrylamide include one of them. It may be used alone or in combination of two or more.
  • nitrile group-containing ethylenically unsaturated monomer examples include (meth) achlorinitrile; (meth) cyanomethyl acrylate, (meth) cyanoethyl acrylate and other (meth) acrylate cyanoalkyl ester compounds; 4-cyanostyrene. , 4-Cyano- ⁇ -methylstyrene and other unsaturated aromatic compounds containing cyano groups; examples thereof include vinylidene cyanide, and one of these may be used alone or in combination of two or more. You may use it.
  • acrylonitrile is preferable because it has a high nitrile group content.
  • Examples of the alicyclic structure-containing ethylenically unsaturated monomer include cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, and (meth).
  • Cyclodecyl acrylate and cyclododecyl (meth) acrylate and other aliphatic substituents may have (meth) cycloalkyl acrylate; isobornyl (meth) acrylate, adamantyl (meth) acrylate, (meth).
  • Cycloalkyl polyalcohol mono (meth) acrylate and the like can be mentioned, and one of these may be used alone, or two or more thereof may be used in combination.
  • the crosslinked polymer or a salt thereof has excellent binder binding properties, and is an amount of (meth) acrylamide and its derivatives, a nitrile group-containing ethylenically unsaturated monomer, and an alicyclic structure-containing ethylenically unsaturated monomer. It is preferable to include a structural unit derived from a body or the like. Further, when a structural unit derived from a hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g / 100 ml or less is introduced as the component (b), a strong interaction with the electrode material can be achieved. , Can exhibit good binding properties to active materials.
  • the above-mentioned "hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g / 100 ml or less" is particularly selected.
  • An alicyclic structure-containing ethylenically unsaturated monomer is preferable.
  • (meth) acrylic acid ester examples include (meth) methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like.
  • Aromatic (meth) acrylic acid ester compounds such as (meth) phenyl acrylate, (meth) phenylmethyl acrylate, and (meth) phenylethyl acrylate; Examples thereof include (meth) acrylic acid alkoxyalkyl ester compounds such as 2-methoxyethyl (meth) acrylic acid and 2-ethoxyethyl (meth) acrylic acid, and one of these may be used alone. Two or more types may be used in combination.
  • an aromatic (meth) acrylic acid ester compound can be preferably used.
  • Compounds having an ether bond such as (meth) acrylic acid alkoxyalkyl esters such as 2-methoxyethyl (meth) acrylate and 2-ethoxyethyl (meth) acrylate, from the viewpoint of further improving lithium ion conductivity and high-rate characteristics. Is preferable, and 2-methoxyethyl (meth) acrylate is more preferable.
  • nonionic ethylenically unsaturated monomers a compound having an acryloyl group is preferable in that a polymer having a long primary chain length can be obtained due to its high polymerization rate and the binding force of the binder is improved. Further, as the nonionic ethylenically unsaturated monomer, a compound having a homopolymer glass transition temperature (Tg) of 0 ° C. or lower is preferable in terms of improving the bending resistance of the obtained electrode.
  • Tg homopolymer glass transition temperature
  • the crosslinked polymer may be in the form of a salt in which some or all of the carboxyl groups contained in the polymer are neutralized.
  • the type of salt is not particularly limited, but alkali metal salts such as lithium salt, sodium salt and potassium salt; alkaline earth metal salts such as calcium salt and barium salt; other metal salts such as magnesium salt and aluminum salt; ammonium. Examples thereof include salts and organic amine salts. Among these, alkali metal salts and magnesium salts are preferable, and alkali metal salts are more preferable, from the viewpoint that adverse effects on battery characteristics are unlikely to occur.
  • the present crosslinked polymer is a crosslinked polymer having a crosslinked structure.
  • the cross-linking method in the present cross-linked polymer is not particularly limited, and examples thereof include the following methods. 1) Copolymerization of crosslinkable monomers 2) Utilizing chain transfer to polymer chains during radical polymerization 3) After synthesizing a polymer having a reactive functional group, post-crosslinking is performed by adding a crosslinking agent as necessary. Since the present crosslinked polymer has a crosslinked structure, the crosslinked polymer or the binder containing a salt thereof can have an excellent binding force.
  • the method by copolymerization of crosslinkable monomers is preferable because the operation is simple and the degree of crosslinking can be easily controlled.
  • crosslinkable monomer examples include a polyfunctional polymerizable monomer having two or more polymerizable unsaturated groups, a monomer having a self-crosslinkable crosslinkable functional group such as a hydrolyzable silyl group, and the like. Can be mentioned.
  • the polyfunctional polymerizable monomer is a compound having two or more polymerizable functional groups such as a (meth) acryloyl group and an alkenyl group in the molecule, and is a polyfunctional (meth) acrylate compound, a polyfunctional alkenyl compound, ( Meta) Examples thereof include compounds having both an acryloyl group and an alkenyl group. These compounds may be used alone or in combination of two or more. Among these, a polyfunctional alkenyl compound is preferable because a uniform crosslinked structure can be easily obtained, and a polyfunctional allyl ether compound having two or more allyl ether groups in the molecule is particularly preferable.
  • polyfunctional (meth) acrylate compound examples include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and polypropylene glycol di (meth) acrylate.
  • Di (meth) acrylates of dihydric alcohols such as meta) acrylate; trimethylol propantri (meth) acrylate, tri (meth) acrylate of trimethyl propanethylene oxide modified product, glycerin tri (meth) acrylate, pentaerythritol tri (meth) Tri (meth) acrylates of trivalent or higher polyhydric alcohols such as meta) acrylates and pentaerythritol tetra (meth) acrylates, poly (meth) acrylates such as tetra (meth) acrylates; Bisamides and the like can be mentioned.
  • polyfunctional alkenyl compound examples include polyfunctional allyl ether compounds such as trimethylolpropanediallyl ether, trimethylolpropanetriallyl ether, pentaerythritol diallyl ether, pentaerythritol triallyl ether, tetraallyloxyethane, and polyallyl saccharose; diallyl phthalate and the like.
  • Polyfunctional allyl compound examples thereof include polyfunctional vinyl compounds such as divinylbenzene.
  • Compounds having both (meth) acryloyl group and alkenyl group include allyl (meth) acrylate, isopropenyl (meth) acrylate, butenyl (meth) acrylate, pentenyl (meth) acrylate, and (meth) acrylate. 2- (2-Vinyloxyethoxy) ethyl and the like can be mentioned.
  • the monomer having a self-crosslinkable crosslinkable functional group include a hydrolyzable silyl group-containing vinyl monomer, N-methylol (meth) acrylamide, N-methoxyalkyl (meth) acrylate and the like. Can be mentioned. These compounds can be used alone or in combination of two or more.
  • the hydrolyzable silyl group-containing vinyl monomer is not particularly limited as long as it is a vinyl monomer having at least one hydrolyzable silyl group.
  • vinyl silanes such as vinyl trimethoxysilane, vinyl triethoxysilane, vinyl methyl dimethoxysilane, vinyl dimethyl methoxysilanen; silyl such as trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylate, methyldimethoxysilylpropyl acrylate and the like.
  • Group-containing acrylic acid esters silyl group-containing methacrylate esters such as trimethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate, methyldimethoxysilylpropyl methacrylate, dimethylmethoxysilylpropyl methacrylate; trimethoxysilylpropyl vinyl ether and the like.
  • Cyril group-containing vinyl ethers examples thereof include silyl group-containing vinyl esters such as trimethoxysilyl undecanoate vinyl.
  • the amount of the crosslinkable monomer used is the total amount of monomers other than the crosslinkable monomer (non-crosslinkable monomer). It is preferably 0.05 parts by mass or more and 5.0 parts by mass or less, more preferably 0.1 parts by mass or more and 5.0 parts by mass or less, and further preferably 0.2 parts by mass or more with respect to 100 parts by mass. It is 4.0 parts by mass or less, more preferably 0.3 parts by mass or more and 3.0 parts by mass or less.
  • the amount of the crosslinkable monomer used is 0.05 parts by mass or more, it is preferable in that the binding property and the stability of the electrode slurry are improved.
  • the amount of the crosslinkable monomer used may be 0.02 to 1.7 mol% with respect to the total amount of the monomers other than the crosslinkable monomer (non-crosslinkable monomer). It is preferably 0.10 to 1.0 mol%, more preferably 0.10 to 1.0 mol%.
  • the crosslinked polymer is a monomer component containing the above ethylenically unsaturated carboxylic acid monomer in the presence of an exchange chain transfer mechanism type control agent (hereinafter, also referred to as “the present monomer”). It is obtained by precipitation polymerization or dispersion polymerization.
  • precipitation polymerization is a method for producing a polymer by carrying out a polymerization reaction in a solvent that dissolves a monomer as a raw material but does not substantially dissolve the polymer to be produced.
  • Dispersion stabilizers can also be used to control the particle size of the polymer.
  • the secondary aggregation can also be suppressed by selecting a dispersion stabilizer, a polymerization solvent, or the like. In general, precipitation polymerization in which secondary agglutination is suppressed is also called dispersion polymerization.
  • the exchange chain transfer mechanism type control agent includes a control agent (hereinafter, also referred to as “RAFT agent”) in the reversible addition-cleaving chain transfer polymerization method (RAFT method).
  • RAFT agent a control agent in the polymerization method using an organic tellurium compound (TERP method)
  • TRIP method organic tellurium compound
  • SBRP method organic antimony compound
  • BIRP method organic bismuth compound
  • the exchange chain transfer mechanism type control agent a polymer having a polymer chain of one or more kinds of vinyl-based monomers and a living radical polymerization active unit by the exchange chain transfer mechanism (hereinafter, simply "the first polymer").
  • a control agent other than the polymer can be used, which will be described in detail in paragraphs [0052] to [0078] described later.
  • the first polymer and the control agent other than the polymer may be used alone or in combination.
  • Precipitation polymerization or dispersion polymerization of this monomer in the presence of an exchange chain transfer mechanism type control agent shortens the primary chain length, and the same chain length forms a uniform crosslinked structure. It is possible to increase the degree of water swelling of the polymer.
  • the RAFT agent and the control agent in the iodine transfer polymerization method are preferable, and the RAFT agent is more preferable, because the crosslinked structure of the present crosslinked polymer can be made more uniform.
  • RAFT agents include a first polymer having a living radical polymerization active unit by a reversible addition-cleavage chain transfer method (detailed below) and / or a RAFT agent (dithioester) other than the first polymer.
  • RAFT agent dithioester
  • Compounds, xanthate compounds, trithiocarbonate compounds, dithiocarbamate compounds, etc. can be used.
  • Specific examples of the RAFT agent other than the first polymer include 2-cyano-2-propylbenzodithioate, 2-phenyl-2-propylbenzodithioate, trithiocarbonate, and 2-cyano-.
  • 2-propyldodecyltrithiocarbonate 2- (dodecylthiocarbonothio oil thio) propionic acid, 3-((1-carboxyethylthio) carbonothio oil thio)) propionic acid, 2- (dodecylthio carbonothio oil thio) Methyl 2-methylpropanoate, 1,4-bis (n-dodecylsulfanylthiocarbonylsulfanylmethyl) benzene, dibenzyltrithiocarbonate, distyryltrithiocarbonate, dicumyltrithiocarbonate, cyanomethyl-N-methyl-N- Examples thereof include phenyldithiocarbamate.
  • the RAFT agents those having trithiocarbonate in the molecule are particularly preferable in that the crosslinked structure of the present crosslinked polymer can be made more uniform.
  • a first polymer having a living radical active unit by the iodine transfer polymerization method (detailed later) and / or a control agent other than the first polymer shall be used.
  • the control agent other than the first polymer include alkyl groups such as methyl iodide, methylene iodide, iodoform, carbon tetraiodide, 1-phenylethyl iodide, and benzyl iodide.
  • Examples thereof include -2-phenylacetic acid) ethylene glycol, bis (2-iodoisobutyric acid) ethylene glycol, 1,5-diiodo-2,4-dimethylbenzene, and 2-iodopropionitrile.
  • the exchange chain transfer mechanism type control agent may be a monofunctional one having one active site, or a bifunctional or more agent having two or more active sites.
  • a bifunctional or higher exchange chain transfer mechanism type control agent is one in which a polymer chain is extended in a bidirectional or higher direction. From the viewpoint of producing the present crosslinked polymer, it may be preferable to use a bifunctional or trifunctional or higher exchange chain transfer mechanism type control agent.
  • the amount of the exchange chain transfer mechanism type control agent used is 0.0001 to 0.50 mol% with respect to the total amount of the present monomer in that the crosslinked structure of the crosslinked polymer can be made more uniform. It is more preferable, it is more preferably 0.0001 to 0.40 mol%, further preferably 0.0001 to 0.30 mol%, and more preferably 0.0002 to 0.30 mol%. More preferred.
  • polymerization initiator used together with the exchange chain transfer mechanism type control agent known polymerization initiators such as azo compounds, organic peroxides, and inorganic peroxides can be used, but are not particularly limited.
  • the conditions of use can be adjusted by known methods such as heat initiation, redox initiation with a reducing agent, and UV initiation so that the amount of radicals generated is appropriate.
  • an azo compound is preferable because it is easy to handle for safety and side reactions during radical polymerization are unlikely to occur.
  • azo compounds include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), and 2,2'-azobis (4-methoxy-2, 4-Dimethylvaleronitrile), dimethyl-2,2'-azobis (2-methylpropionate), 2,2'-azobis (2-methylbutyronitrile), 1,1'-azobis (cyclohexane-1-) Carbonitrile), 2,2'-azobis [N- (2-propenyl) -2-methylpropionamide], 2,2'-azobis (N-butyl-2-methylpropionamide) and the like. Only one kind of the radical polymerization initiator may be used, or two or more kinds thereof may be used in combination.
  • the preferable amount of the polymerization initiator used is, for example, 0.001 to 2 parts by mass and, for example, 0.005 to 1 part by mass, when the total amount of the monomer components used is 100 parts by mass. Further, for example, it is 0.01 to 0.1 parts by mass.
  • the amount of the polymerization initiator used is 0.001 part by mass or more, the polymerization reaction can be stably carried out, and when it is 2 parts by mass or less, a polymer having a long primary chain length can be easily obtained.
  • the proportion of the polymerization initiator used is not particularly limited, but the amount of the polymerization initiator used per 1 mol of the exchange chain transfer mechanism type control agent is 0.5 mol from the viewpoint that the crosslinked structure of the present crosslinked polymer can be made uniform. It is preferably less than or equal to 0.2 mol or less. Further, from the viewpoint of stably performing the polymerization reaction, the lower limit of the amount of the polymerization initiator used with respect to 1 mol of the exchange chain transfer mechanism type control agent is 0.001 mol.
  • the amount of the polymerization initiator used with respect to 1 mol of the exchange chain transfer mechanism type control agent is preferably in the range of 0.001 mol or more and 0.5 mol or less, and more preferably in the range of 0.005 mol or more and 0.2 mol or less.
  • the polymerization solvent a solvent selected from water, various organic solvents and the like can be used in consideration of the type of monomer used and the like. In order to obtain a polymer having a longer primary chain length, it is preferable to use a solvent having a small chain transfer constant.
  • Specific examples of the polymerization solvent include water-soluble solvents such as methanol, t-butyl alcohol, acetone, methyl ethyl ketone, acetonitrile and tetrahydrofuran, as well as benzene, ethyl acetate, dichloroethane, n-hexane, cyclohexane and n-heptane.
  • the water-soluble solvent refers to a solvent having a solubility in water at 20 ° C. of more than 10 g / 100 ml.
  • Methyl ethyl ketone and acetonitrile are different in that they are easy to unravel), that a polymer with a small chain transfer constant and a large degree of polymerization (primary chain length) can be obtained, and that the operation is easy during the process neutralization described later. preferable.
  • a highly polar solvent preferably include water and methanol.
  • the amount of the highly polar solvent used is preferably 0.05 to 20.0% by mass, more preferably 0.1 to 10.0% by mass, still more preferably 0.1 to 5% by mass based on the total mass of the medium. It is 0.0% by mass, more preferably 0.1 to 1.0% by mass.
  • the polymerization rate is improved when a highly polar solvent is added, and it becomes easy to obtain a polymer having a long primary chain length.
  • a highly polar solvent water is particularly preferable because it has a large effect of improving the polymerization rate.
  • the reaction temperature during the polymerization reaction in the presence of the exchange chain transfer mechanism type controller is preferably 30 ° C. or higher and 120 ° C. or lower, more preferably 40 ° C. or higher and 110 ° C. or lower, and further preferably 50 ° C. or higher and 100 ° C. or higher. It is below ° C.
  • the reaction temperature is 30 ° C. or higher, the polymerization reaction can proceed smoothly.
  • the reaction temperature is 120 ° C. or lower, side reactions can be suppressed and restrictions on the initiators and solvents that can be used are relaxed.
  • the crosslinked polymer dispersion obtained through the polymerization step can be obtained in a powder state by subjecting the dispersion to a reduced pressure and / or heat treatment in the drying step and distilling off the solvent.
  • a solid-liquid separation step such as centrifugation and filtration, an organic solvent or an organic solvent / water. It is preferable to include a cleaning step using a mixed solvent.
  • an alkaline compound is added to the dispersion of the crosslinked polymer obtained in the polymerization step to add weight.
  • step neutralization After neutralizing the coalescence (hereinafter, also referred to as "step neutralization"), the solvent may be removed in a drying step.
  • post-neutralization an alkaline compound is added when preparing the slurry composition to neutralize the polymer (hereinafter, "post-neutralization”). It may also be called).
  • post-neutralization is added when preparing the slurry composition to neutralize the polymer. It may also be called).
  • process neutralization is preferable because the secondary aggregates tend to be easily disintegrated.
  • first monomer a polymerized chain of one kind or two or more kinds of vinyl-based monomers (hereinafter, also simply referred to as “first monomer”)
  • first monomer a polymer (first polymer) having a living radical polymerization active unit by an exchange chain transfer mechanism and a “first polymer chain”
  • the first polymer is used as a starting point for the polymerization of the present monomer and the polymerization of the crosslinked polymer.
  • the present crosslinked polymer which can be used as a dispersion stabilizer in a solvent and has a polymer chain having a structural unit derived from the present monomer bonded to the polymer chain of the first polymer, is obtained as dispersed fine particles. Can be done. By doing so, the polymerization stability, that is, the aggregation of the present crosslinked polymer during the polymerization step is suppressed, the generation of coarse aggregated particles is suppressed, the particle size is small, and the particle size distribution is narrow. You can get coalescence.
  • the first polymer In order to make the first polymer function as a dispersion stabilizer in producing the present crosslinked polymer by polymerizing the present monomer in the presence of the first polymer, for example, the first polymer is used. , 0.3 parts by mass or more and 50 parts by mass or less can be used with respect to 100 parts by mass of the total mass of this monomer. By using it in such a range, it is possible to produce the present crosslinked polymer mainly containing the present monomer while allowing the first polymer to function as a dispersion stabilizer.
  • the amount of the first polymer is less than 0.3 parts by mass, it is difficult to obtain a sufficient dispersion stabilizing effect, and the particle size of the crosslinked polymer tends to exceed 0.3 ⁇ m, even if it exceeds 50 parts by mass. This is because it is difficult to improve the functionality as a dispersion stabilizer, and the effect of reducing the particle size of the crosslinked polymer is also reduced.
  • the first polymer can be used with respect to 100 parts by mass of the total mass of the present monomer, for example, 0.5 parts by mass or more, and for example, 1 part by mass or more. Further, the first polymer can be used, for example, 40 parts by mass or less, for example, 30 parts by mass or less, and for example, 20 parts by mass or less.
  • the range of the amount of the first polymer used with respect to 100 parts by mass of the total mass of the present monomer can be set by appropriately combining the above upper limit and lower limit.
  • the polymerization conditions for producing the first polymer are well known to those skilled in the art, and examples of the polymerization process include various processes such as bulk polymerization, solution polymerization, suspension polymerization and emulsion polymerization. Considering that it is a polymerization starting point in the production of coalescence and that it functions as a dispersion stabilizer, solution polymerization can be used, for example. Further, the polymerization conditions such as the type of the exchange chain transfer mechanism control agent, the type and amount of the polymerization initiator, the polymerization solvent, and the reaction temperature are described in the above paragraphs [0040] to [0043] and [0045] to [0049].
  • the amount of the exchange chain transfer mechanism control agent used is appropriately adjusted according to the number average molecular weight (Mn) of the target first polymer.
  • Mn number average molecular weight
  • a RAFT agent and a control agent in the iodine transfer polymerization method are preferable in that the molecular weight distribution of the first polymer can be reduced.
  • the concentration at the time of producing the first polymer is not particularly limited with respect to the total mass of the amount charged such as the polymerization solvent and the first monomer, but is, for example, 10% by mass or more and 80% by mass. % Or less, for example, 15% by mass or more and 70% by mass or less, and for example, 20% by mass or more and 70% by mass or less.
  • a living polymerization active unit is provided at the end of the first polymerization chain, and the exchange chain transfer mechanism type having two or more functionalitys is used.
  • a control agent when used, it is branched in two or more directions with the living polymerization active unit as a base point, and each of them is provided with a first polymerization chain.
  • the other polymerized chain when another polymerized chain is provided, the other polymerized chain is directly bonded to the living polymerization active unit, and the first polymerization is carried out more distally to the living polymerization active unit.
  • the first polymerized chain is bonded to the distal end of the other polymerized chain so that the chain is provided.
  • the first polymer may also include two or more first polymerized chains. For example, after performing living radical polymerization or the like using one or more first monomers of a certain composition, one or more first monomers of another composition are used. By carrying out living radical polymerization or the like, a first polymer having a first polymerization chain (block) having a structural unit derived from the first monomer having a different composition can be obtained.
  • the number average molecular weight (Mn) of the first polymer is not particularly limited, but is, for example, 3,000 or more, for example, 5,000 or more, and for example, 7,000 or more. Also, for example, 8,000 or more, and for example, 10,000 or more. Further, the Mn is 50,000 or less, for example, 30,000 or less, and for example, 25,000 or less, and for example, 20,000 or less, and for example, 15,000 or less. And, for example, 14,000 or less, and for example, 12,000 or less.
  • the range of Mn can be set by appropriately combining the above-mentioned lower limit and upper limit, and is, for example, 5,000 or more and 25,000 or less, and for example, 10,000 or more and 25,000 or less. For example, it is 10,000 or more and 15,000 or less, and for example, 10,000 or more and 14,000 or less.
  • the weight average molecular weight (Mw) of the first polymer is not particularly limited, but is, for example, 5,000 or more, for example, 7,000 or more, and for example, 9,000 or more. Also, for example, 10,000 or more, for example, 13,000 or more, and for example, 15,000 or more. Further, the Mw is 60,000 or less, for example, 55,000 or less, and for example, 50,000 or less, and for example, 45,000 or less, and for example, 40,000 or less. And, for example, 36,000 or less, and for example, 35,000 or less, and for example, 30,000 or less, and for example, 25,000 or less.
  • the range of Mw can be set by appropriately combining the above-mentioned lower limit and upper limit, and is, for example, 1,000 or more and 40,000 or less, and for example, 10,000 or more and 35,000 or less. For example, it is 10,000 or more and 30,000 or less, and for example, 15,000 or more and 25,000 or less.
  • Both Mw and Mn of the first polymer can be measured by gel permeation chromatography using polystyrene as a standard substance.
  • the details of the chromatography conditions the conditions disclosed in the subsequent examples can be adopted.
  • the molecular weight distribution (Mw / Mn) of the first polymer is not particularly limited, but is, for example, 2.5 or less, for example, 2.4 or less, and for example, 2.3 or less. Yes, for example 2.0 or less, and for example 1.6 or less, and for example 1.5 or less, and for example 1.4 or less, and for example 1.3 or less. be. Further, the molecular weight distribution is, for example, 1.1 or more, for example, 1.2 or more, and for example, 1.3 or more, and for example, 1.4 or more, and for example, 1.5 or more. Is.
  • the range of the molecular weight distribution can be set by appropriately combining the above-mentioned lower limit and upper limit. For example, 1.1 or more and 2.5 or less, for example, 1.1 or more and 2.4 or less, and for example, 1 It can be 1 or more and 2.3 or less, and for example, 1.1 or more and 2.0 or less.
  • the molecular weight distribution is preferably 2.4 or less, and in order to obtain the present crosslinked polymer having a smaller particle size, it is preferably 1.7 or less, and more preferably 1. It is 6 or less, and more preferably 1.4 or less.
  • first monomer examples include styrenes, (meth) acrylonitrile compounds, maleimide compounds, unsaturated acid anhydrides and unsaturated carboxylic acid compounds. One or a combination of two or more of these can be used.
  • Styrenes include styrene and its derivatives. Specific compounds include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, vinyltoluene, vinylxylene, vinylnaphthalene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-ethylstyrene, and m-.
  • styrene, o-methoxystyrene, m-methoxystyrene, p-methoxystyrene, o-hydroxystyrene, m-hydroxystyrene, and p-hydroxystyrene are preferable from the viewpoint of polymerizable property.
  • Examples of the (meth) acrylonitrile compound include (meth) acrylonitrile, acrylonitrile, ⁇ -methylacrylonitrile, and the like.
  • acrylonitrile is used.
  • the maleimide compound includes a maleimide and an N-substituted maleimide compound.
  • the N-substituted maleimide compound include N-methylmaleimide, N-ethylmaleimide, Nn-propylmaleimide, N-isopropylmaleimide, Nn-butylmaleimide, N-isobutylmaleimide, and N-tert-butyl.
  • N-alkyl-substituted maleimide compounds such as maleimide, N-pentylmaleimide, N-hexylmaleimide, N-heptylmaleimide, N-octylmaleimide, N-laurylmaleimide, N-stearylmaleimide; N-cyclopentylmaleimide, N-cyclohexylmaleimide, etc.
  • N-Cycloalkyl-substituted maleimide compounds N-phenylmaleimide, N- (4-hydroxyphenyl) maleimide, N- (4-acetylphenyl) maleimide, N- (4-methoxyphenyl) maleimide, N- (4-ethoxy) Examples thereof include N-aryl-substituted maleimide compounds such as phenyl) maleimide, N- (4-chlorophenyl) maleimide, N- (4-bromophenyl) maleimide, and N-benzylmaleimide, and one or more of these. Can be used. For example, N-phenylmaleimide is used.
  • examples of the unsaturated acid anhydride include maleic anhydride, itaconic anhydride, citraconic anhydride and the like, and one or more of these can be used.
  • unsaturated carboxylic acid compounds include (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, silicic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, maleic anhydride, and anhydrous.
  • unsaturated dicarboxylic acids such as itaconic acid and citraconic anhydride, and monoalkyl esters of unsaturated dicarboxylic acids, and one or more of them can be used.
  • the first monomer preferably contains, for example, at least styrenes.
  • styrenes are easy to carry out in the living room and can impart appropriate hydrophobicity and affinity to organic solvents. It is possible to impart hydrophobicity or affinity to an organic solvent to the first polymerized chain.
  • the present crosslinked polymer is produced by the dispersion polymerization method in a polar organic solvent, the first polymer tends to be present on the surface layer of the present crosslinked polymer. The dispersion stability of the crosslinked polymer is improved.
  • Styrene is, for example, 20% by mass or more of the total mass of the first monomer. This is because if the content is 20% by mass or more, the living polymerization is facilitated, and an appropriate hydrophobicity and an affinity for an organic solvent can be appropriately imparted. Further, for example, it is 30% by mass or more, and for example, 35% by mass or more, and for example, 40% by mass or more, and for example, 50% by mass or more, and for example, 60% by mass or more. Further, for example, it is 65% by mass or more, for example, 70% by mass or more, and for example, 75% by mass or more.
  • the styrenes are 100% by mass or less of the total mass, and are, for example, 95% by mass or less, and are, for example, 90% by mass or less, and are, for example, 85% by mass or less, and are, for example,. It is 80% by mass or less, and for example, 75% by mass or less.
  • the range of the styrenes with respect to the total mass can be set by appropriately combining the above-mentioned lower limit and upper limit, and is, for example, 20% by mass or more and 95% by mass or less, and for example, 30% by mass or more and 75% by mass or more. And, for example, 35% by mass or more and 85% by mass or less.
  • the (meth) acrylonitrile compound, maleimide compound, acid anhydride and unsaturated carboxylic acid compound can be used alone, and it is preferable to use one or more of these four types in combination with styrenes. This is because all of these four types can maintain, regulate or impart the hydrophobicity or organic solvent affinity of the first polymerized chain.
  • one or more of (meth) acrylonitrile compounds such as acrylonitrile, maleimide compounds such as N-phenylmaleimide, and acid anhydrides.
  • a combination of styrene and acrylonitrile, styrene and N-phenylmaleimide and the like is preferable.
  • the unsaturated carboxylic acid compound is preferable in that the polarity of the first polymer can be easily changed.
  • the total amount of these one or more first monomers other than styrenes is the first monomer for polymerizing the first polymerized chain (first). It is, for example, 20% by mass or more of the total mass of the first monomer unit of the polymerized chain). Further, for example, it is 25% by mass or more, and for example, 30% by mass or more, and for example, 35% by mass or more, and for example, 40% by mass or more, and for example, 50% by mass or more. Further, for example, it is 60% by mass or more.
  • the (meth) acrylonitrile compound is 80% by mass or less of the total mass, and is, for example, 75% by mass or less, and is, for example, 70% by mass or less, and is, for example, 65% by mass or less. Further, for example, it is 60% by mass or less, for example, 55% by mass or less, and for example, 50% by mass or less.
  • the range of the styrenes with respect to the total mass can be set by appropriately combining the above lower limit and upper limit, and is, for example, 20% by mass or more and 65% by mass or less, and for example, 25% by mass or more and 50% by mass or more. It is as follows.
  • the first polymerized chain may be a polymerized chain containing only the first monomer described above, but if necessary, other vinyl-based monomers other than the above may be used as the first monomer. be able to.
  • known vinyl-based monomers such as (meth) acrylic acid esters such as (meth) acrylic acid and alkyl (meth) acrylic acid can be used.
  • these other monomers are, for example, 10% by mass or less, for example, 5% by mass or less, for example, 3% by mass or less, or, for example, the total mass of the monomers constituting the first polymerized chain. 1, 1% by mass or less, and for example, 0.5% by mass or less.
  • the first polymer may include a block (another polymer chain) different from that of the first polymer chain.
  • Such other polymerized chains may be added, for example, in another synthetic step after the formation of the first polymerized chain.
  • a radical polymerization initiator and another vinyl-based monomer are continuously or newly supplied to the first polymer having the first polymer chain to have a composition different from that of the first polymer chain. It is possible to obtain a first polymer having another polymer chain (block) composed of units derived from a monomer other than the first monomer.
  • a part of the monomer common to the present monomer used in the present crosslinked polymer can be partially linked in advance. It can be provided in the first polymer.
  • the first polymer has a living radical polymerization active unit by an exchange chain transfer mechanism, it can be used as a solubility or dispersion stabilizer in the polymerization solvent of the first polymer in the precipitation polymerization or dispersion polymerization of this monomer.
  • Various monomers can be selected for the function of.
  • RAFT method reversible addition-cleavage chain transfer polymerization method
  • iodine transfer polymerization method a polymerization method using an organic tellurium compound
  • TMP method a polymerization method using an organic tellurium compound
  • SBRP method organic antimony compound
  • BIRP method organic bismuth compound
  • the RAFT method and the iodine transfer polymerization method are preferable, and the RAFT method is more preferable, because the particle size of the crosslinked polymer can be reduced.
  • the crosslinked polymer or a salt thereof is 1% by mass of the crosslinked polymer neutralized to a neutralization degree of 50 to 100 mol% by a small-angle X-ray scattering method (measurement temperature: 25.0 ⁇ 0.1 ° C.).
  • the non-uniform network structure size ⁇ ( ⁇ 1) of the crosslinked polymer calculated by curve fitting with the following formula (1) is 80 or less with respect to the scattering intensity curve I (q) obtained by measuring the concentrated aqueous solution. Is.
  • the above equation (1) is a correlation between the “Lorentz square model” (Shibayama M.
  • ⁇ 1 is the coatability and coating performance of the composition containing the crosslinked polymer or a salt thereof (in the case of a composition containing a binder for a secondary battery electrode containing the crosslinked polymer or a salt thereof, an active material and water).
  • 5 of the crosslinked polymer neutralized to a degree of neutralization of 50 to 100 mol% by the above-mentioned ⁇ 1 and the small-angle X-ray scattering method (measurement temperature: 25.0 ⁇ 0.1 ° C.).
  • the non-uniform network structure size ⁇ ( ⁇ 5) of the crosslinked polymer calculated by curve fitting with the above formula (1) with respect to the scattering intensity curve I (q) obtained by measuring the mass% concentration aqueous solution.
  • the difference ⁇ ( ⁇ 1- ⁇ 5) is preferably 50 or less, more preferably 30 or less, further preferably 20 or less, further preferably 10 or less, and 5.0 or less. Is even more preferable.
  • ⁇ 1 and ⁇ 5 are obtained by a method according to the method described in Examples.
  • the crosslinked polymer or a salt thereof preferably has a viscosity of 100 mPa ⁇ s or more in a 2% by mass aqueous solution thereof.
  • the viscosity of the 2 mass% concentration aqueous solution may be 1,000 mPa ⁇ s or more, 10,000 mPa ⁇ s or more, or 50,000 mPa ⁇ s or more.
  • the crosslinked polymer or a salt thereof absorbs water and becomes swollen in water.
  • the crosslinked polymer has an appropriate degree of crosslinkage, the larger the amount of hydrophilic groups contained in the crosslinked polymer, the easier it is for the crosslinked polymer to absorb water and swell.
  • the degree of cross-linking the lower the degree of cross-linking, the easier it is for the cross-linked polymer to swell.
  • the number of cross-linking points is the same, the larger the molecular weight (primary chain length), the more cross-linking points that contribute to the formation of the three-dimensional network, so that the cross-linked polymer is less likely to swell.
  • the viscosity of the crosslinked polymer aqueous solution can be adjusted by adjusting the amount of hydrophilic groups of the crosslinked polymer, the number of crosslinked points, the primary chain length, and the like.
  • the number of the cross-linking points can be adjusted by, for example, the amount of the cross-linking monomer used, the chain transfer reaction to the polymer chain, the post-crosslinking reaction, and the like.
  • the primary chain length of the polymer can be adjusted by setting conditions related to the amount of radicals generated such as the initiator and the polymerization temperature, and selecting the polymerization solvent in consideration of chain transfer and the like.
  • the crosslinked polymer does not exist as a mass (secondary agglomerate) having a large particle size, but is well dispersed as water-swelled particles having an appropriate particle size.
  • a binder containing the above is preferable because it can exhibit good binding performance.
  • the particle size (water-swelling particle size) when a crosslinked polymer having a degree of neutralization based on a carboxyl group of 80 to 100 mol% is dispersed in water is a volume-based median diameter. It is preferably in the range of 0.1 ⁇ m or more and 5.0 ⁇ m or less.
  • the more preferable range of the particle size is 0.1 ⁇ m or more and 4.0 ⁇ m or less, the more preferable range is 0.1 ⁇ m or more and 3.0 ⁇ m or less, and the more preferable range is 0.2 ⁇ m or more and 3.0 ⁇ m or less. Yes, and even more preferable ranges are 0.3 ⁇ m or more and 3.0 ⁇ m or less.
  • the composition When the particle size is in the range of 0.1 ⁇ m or more and 5.0 ⁇ m or less, the composition is uniformly present in a suitable size in the present composition, so that the present composition is highly stable and exhibits excellent binding properties. It becomes possible to do. If the particle size exceeds 5.0 ⁇ m, the binding property may be insufficient as described above. In addition, there is a risk that the coatability will be insufficient because it is difficult to obtain a smooth coated surface. On the other hand, when the particle size is less than 0.1 ⁇ m, there is concern from the viewpoint of stable manufacturability.
  • acid groups such as a carboxyl group derived from an ethylenically unsaturated carboxylic acid monomer are neutralized so that the degree of neutralization is 20 mol% or more in the present composition, and the mode of the salt is It is preferable to use as.
  • the degree of neutralization is more preferably 50 mol% or more, further preferably 70 mol% or more, still more preferably 75 mol% or more, still more preferably 80 mol% or more, and particularly preferably. It is 85 mol% or more.
  • the upper limit of the degree of neutralization is 100 mol%, and may be 98 mol% or 95 mol%.
  • the range of the degree of neutralization may be appropriately combined with the above lower limit value and upper limit value, and may be, for example, 50 mol% or more and 100 mol% or less, or 75 mol% or more and 100 mol% or less. , 80 mol% or more and 100 mol% or less.
  • the degree of neutralization is 20 mol% or more, the water swelling property is good and the dispersion stabilizing effect is easily obtained, which is preferable.
  • the degree of neutralization can be calculated by calculation from the charged values of a monomer having an acid group such as a carboxyl group and a neutralizing agent used for neutralization.
  • the crosslinked polymer or a salt thereof preferably has a water swelling degree of 20 or more and 80 or less at pH 8.
  • the degree of water swelling is within the above range, the crosslinked polymer or a salt thereof swells appropriately in an aqueous medium, so that a sufficient adhesive area to the active material and the current collector is provided when forming the electrode mixture layer. It becomes possible to secure it, and the binding property tends to be good.
  • the degree of water swelling may be, for example, 21 or more, 23 or more, 25 or more, 27 or more, or 30 or more.
  • the degree of water swelling is 20 or more, the crosslinked polymer or a salt thereof spreads on the surface of the active material or the current collector, and a sufficient adhesive area can be secured, so that good binding property can be obtained.
  • the upper limit of the degree of water swelling at pH 8 may be 75 or less, 70 or less, 65 or less, 60 or less, or 55 or less.
  • the range of the degree of water swelling at pH 8 can be set by appropriately combining the above upper limit value and lower limit value, and is, for example, 23 or more and 70 or less, and for example, 25 or more and 65 or less, and for example, 25. It is 55 or less.
  • the degree of water swelling at pH 8 can be obtained by measuring the degree of swelling of the crosslinked polymer or a salt thereof in water at pH 8.
  • the water having a pH of 8 for example, ion-exchanged water can be used, and the pH value may be adjusted by using an appropriate acid or alkali, a buffer solution or the like, if necessary.
  • the pH at the time of measurement is, for example, in the range of 8.0 ⁇ 0.5, preferably in the range of 8.0 ⁇ 0.3, more preferably in the range of 8.0 ⁇ 0.2, and further. It is preferably in the range of 8.0 ⁇ 0.1.
  • a person skilled in the art can adjust the degree of water swelling by controlling the composition and structure of the crosslinked polymer or a salt thereof.
  • the degree of water swelling can be increased by introducing an acidic functional group or a highly hydrophilic structural unit into the crosslinked polymer. Further, by lowering the degree of cross-linking of the cross-linked polymer, the degree of water swelling is usually increased.
  • composition for secondary battery electrode mixture layer of the present invention contains the present binder, active material and water.
  • the amount of the binder used in the composition is, for example, 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the total amount of the active material.
  • the amount used is, for example, 0.2 parts by mass or more and 10 parts by mass or less, for example, 0.3 parts by mass or more and 8 parts by mass or less, and for example, 0.4 parts by mass or more and 5 parts by mass or less. ..
  • the amount of the binder used is 0.1 parts by mass or more, sufficient binding property can be obtained.
  • the dispersion stability of the active material and the like can be ensured, and a uniform mixture layer can be formed.
  • the amount of the binder used is 20 parts by mass or less, the composition does not have a high viscosity, and the coatability to the current collector can be ensured. As a result, a mixture layer having a uniform and smooth surface can be formed.
  • a lithium salt of a transition metal oxide can be used as the positive electrode active material, and for example, a layered rock salt type and a spinel type lithium-containing metal oxide can be used.
  • a spinel type positive electrode active material lithium manganate and the like can be mentioned.
  • phosphates include olivine-type lithium iron phosphate and the like.
  • the positive electrode active material one of the above may be used alone, or two or more thereof may be combined and used as a mixture or a composite.
  • the dispersion liquid becomes alkaline by exchanging lithium ions on the surface of the active material and hydrogen ions in water. Therefore, there is a risk that aluminum foil (Al) or the like, which is a general current collector material for positive electrodes, will be corroded. In such a case, it is preferable to neutralize the alkali content eluted from the active material by using the present crosslinked polymer which has not been neutralized or partially neutralized as the binder.
  • the amount of the unneutralized or partially neutralized present crosslinked polymer used is such that the amount of unneutralized carboxyl groups of the present crosslinked polymer is equal to or more than the amount of alkali eluted from the active material. It is preferable to use it.
  • a conductive auxiliary agent since all positive electrode active materials have low electrical conductivity, they are generally used by adding a conductive auxiliary agent.
  • the conductive auxiliary agent include carbon-based materials such as carbon black, carbon nanotubes, carbon fibers, graphite fine powder, and carbon fibers. Among these, carbon black, carbon nanotubes, and carbon fibers are easy to obtain excellent conductivity. Is preferable. Further, as the carbon black, Ketjen black and acetylene black are preferable.
  • the conductive auxiliary agent one of the above types may be used alone, or two or more types may be used in combination.
  • the amount of the conductive auxiliary agent used can be, for example, 0.2 to 20 parts by mass with respect to 100 parts by mass of the total amount of the active material from the viewpoint of achieving both conductivity and energy density, and for example, 0. It can be 2 to 10 parts by mass.
  • the positive electrode active material a material whose surface is coated with a conductive carbon-based material may be used.
  • examples of the negative electrode active material include carbon-based materials, lithium metals, lithium alloys, metal oxides, and the like, and one or a combination of two or more of these can be used.
  • active materials made of carbon-based materials such as natural graphite, artificial graphite, hard carbon and soft carbon (hereinafter, also referred to as "carbon-based active material") are preferable, and graphite such as natural graphite and artificial graphite, Also, hard carbon is more preferred.
  • graphite spherical graphite is preferably used from the viewpoint of battery performance, and the preferable range of the particle size thereof is, for example, 1 to 20 ⁇ m, and for example, 5 to 15 ⁇ m.
  • a metal such as silicon or tin that can occlude lithium or a metal oxide can be used as the negative electrode active material.
  • silicon has a higher capacity than graphite, and is an active material made of a silicon-based material such as silicon, a silicon alloy, and a silicon oxide such as silicon monoxide (SiO) (hereinafter, also referred to as "silicon-based active material").
  • silicon-based active material has a high capacity, the volume change due to charging and discharging is large. Therefore, it is preferable to use it in combination with the above carbon-based active material.
  • the amount of the silicon-based active material is large, the electrode material may be disintegrated and the cycle characteristics (durability) may be significantly deteriorated.
  • the amount used is, for example, 60% by mass or less, and for example, 30% by mass or less, based on the carbon-based active material.
  • the carbon-based active material itself has good electrical conductivity, it is not always necessary to add a conductive additive.
  • a conductive additive is added for the purpose of further reducing resistance, the amount used is, for example, 10 parts by mass or less with respect to 100 parts by mass of the total amount of the active material, and for example, 5 from the viewpoint of energy density. It is less than a part by mass.
  • the amount of the active material used is, for example, in the range of 10 to 75% by mass, and for example, in the range of 30 to 65% by mass, based on the total amount of the composition. If the amount of the active material used is 10% by mass or more, migration of the binder or the like can be suppressed, and the drying cost of the medium is also advantageous. On the other hand, if it is 75% by mass or less, the fluidity and coatability of the present composition can be ensured, and a uniform mixture layer can be formed.
  • This composition uses water as a medium. Further, for the purpose of adjusting the properties and dryness of the composition, lower alcohols such as methanol and ethanol, carbonates such as ethylene carbonate, ketones such as acetone, and water-soluble organic substances such as tetrahydrofuran and N-methylpyrrolidone. It may be a mixed solvent with a solvent.
  • the proportion of water in the mixing medium is, for example, 50% by mass or more, and for example, 70% by mass or more.
  • the content of the medium containing water in the entire composition is, for example, from the viewpoint of the coatability of the slurry, the energy cost required for drying, and the productivity. , 25-60% by mass, and can be, for example, 35-60% by mass.
  • the present composition may further contain other binder components such as styrene-butadiene rubber (SBR) -based latex, carboxymethyl cellulose (CMC), acrylic-based latex, and polyvinylidene fluoride-based latex.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • acrylic-based latex acrylic-based latex
  • polyvinylidene fluoride-based latex polyvinylidene fluoride-based latex.
  • the amount used may be, for example, 0.1 to 5 parts by mass or less, and for example, 0.1 to 2 parts by mass, based on 100 parts by mass of the total amount of the active material. It can be less than or equal to parts, and can be, for example, 0.1 to 1 part by mass or less. If the amount of the other binder component used exceeds 5 parts by mass, the resistance increases and the high rate characteristics may become insufficient.
  • SBR-based latex and CMC are preferable, and SBR
  • the SBR latex is an aqueous dispersion of a copolymer having a structural unit derived from an aromatic vinyl monomer such as styrene and a structural unit derived from an aliphatic conjugated diene monomer such as 1,3-butadiene. Show the body.
  • aromatic vinyl monomer include ⁇ -methylstyrene, vinyltoluene, divinylbenzene and the like in addition to styrene, and one or more of these can be used.
  • the structural unit derived from the aromatic vinyl monomer in the copolymer can be, for example, in the range of 20 to 70% by mass, and for example, 30 to 60, mainly from the viewpoint of binding property. It can be in the range of% by mass.
  • aliphatic conjugated diene-based monomer in addition to 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3- Butadiene and the like can be mentioned, and one or more of these can be used.
  • the structural unit derived from the aliphatic conjugated diene-based monomer in the copolymer is, for example, 30 to 70% by mass in that the binding property of the binder and the flexibility of the obtained electrode are good. It can be in the range of 40 to 60% by mass, for example.
  • styrene / butadiene-based monomers include nitrile group-containing monomers such as (meth) acrylonitrile and (meth) as other monomers in order to further improve performance such as binding properties.
  • a carboxyl group-containing monomer such as acrylic acid, itanconic acid, and maleic acid, and an ester group-containing monomer such as methyl (meth) acrylate may be used as the copolymerization monomer.
  • the structural unit derived from the other monomer in the copolymer can be, for example, in the range of 0 to 30% by mass, or can be, for example, in the range of 0 to 20% by mass.
  • the CMC refers to a substitute obtained by substituting a nonionic cellulosic semi-synthetic polymer compound with a carboxymethyl group and a salt thereof.
  • the nonionic cellulose-based semi-synthetic polymer compound include alkyl celluloses such as methyl cellulose, methyl ethyl cellulose, ethyl cellulose, and microcrystallin cellulose; Examples thereof include hydroxyethyl cellulose, hydroxybutyl methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose stearoxy ether, carboxymethyl hydroxyethyl cellulose, alkyl hydroxyethyl cellulose, hydroxyalkyl cellulose such as nonoxynyl hydroxyethyl cellulose and the like.
  • the composition for the secondary battery electrode mixture layer of the present invention contains the above-mentioned active material, water and a binder as essential constituents, and can be obtained by mixing the respective components using known means.
  • the mixing method of each component is not particularly limited, and a known method can be adopted.
  • powder components such as an active material, a conductive additive and a binder are dry-blended and then mixed with a dispersion medium such as water.
  • the method of dispersion kneading is preferable.
  • the present composition is obtained in a slurry state, it is preferable to finish the composition into a slurry having no poor dispersion or aggregation.
  • a known mixer such as a planetary mixer, a thin film swirl mixer, or a self-revolving mixer can be used, but a thin film swirl mixer is used because a good dispersion state can be obtained in a short time. It is preferable to do this.
  • a thin film swirl mixer it is preferable to pre-disperse in advance with a stirrer such as a disper.
  • the pH of the slurry is not particularly limited as long as the effects of the present invention are exhibited, but is preferably less than 12.5. For example, when CMC is blended, there is little concern about hydrolysis thereof, and 11.5. It is more preferably less than 10.5 and even more preferably less than 10.5.
  • the viscosity of the slurry is not particularly limited as long as the effect of the present invention is exhibited, but the B-type viscosity (25 ° C.) at 20 rpm can be, for example, in the range of 100 to 6,000 mPa ⁇ s, and for example. , 500 to 5,000 mPa ⁇ s, or, for example, the range of 1,000 to 4,000 mPa ⁇ s.
  • the viscosity of the slurry is within the above range, good coatability can be ensured.
  • Secondary battery electrode The secondary battery electrode of the present invention is provided with a mixture layer formed from the composition for the mixture layer of the secondary battery electrode of the present invention on the surface of a current collector such as copper or aluminum. ..
  • the mixture layer is formed by applying the present composition to the surface of the current collector and then drying and removing a medium such as water.
  • the method for applying the present composition is not particularly limited, and known methods such as a doctor blade method, a dip method, a roll coating method, a comma coating method, a curtain coating method, a gravure coating method and an extrusion method can be adopted. can.
  • the drying can be performed by a known method such as blowing warm air, reducing the pressure, (far) infrared rays, and irradiating microwaves.
  • the mixture layer obtained after drying is subjected to a compression treatment by a mold press, a roll press or the like. By compressing, the active material and the binder can be brought into close contact with each other, and the strength of the mixture layer and the adhesion to the current collector can be improved.
  • the thickness of the mixture layer can be adjusted to, for example, about 30 to 80% before compression by compression, and the thickness of the mixture layer after compression is generally about 4 to 200 ⁇ m.
  • Secondary battery A secondary battery can be manufactured by providing the secondary battery electrode of the present invention with a separator and an electrolytic solution.
  • the electrolytic solution may be in the form of a liquid or in the form of a gel.
  • the separator is arranged between the positive electrode and the negative electrode of the battery, and plays a role of preventing a short circuit due to contact between the two electrodes and holding an electrolytic solution to ensure ionic conductivity.
  • the separator is preferably a film-like insulating microporous membrane having good ion permeability and mechanical strength.
  • polyolefins such as polyethylene and polypropylene, polytetrafluoroethylene and the like can be used.
  • the electrolytic solution a known one that is generally used depending on the type of active material can be used.
  • specific solvents include cyclic carbonates having a high dielectric constant and a high dissolving ability of an electrolyte such as propylene carbonate and ethylene carbonate, and low-viscosity chains such as ethylmethyl carbonate, dimethyl carbonate and diethyl carbonate. Examples thereof include form carbonates, which can be used alone or as a mixed solvent.
  • the electrolytic solution is used by dissolving lithium salts such as LiPF 6 , LiSbF 6 , LiBF 4 , LiClO 4 , and LiAlO 4 in these solvents.
  • an aqueous potassium hydroxide solution can be used as the electrolytic solution.
  • the secondary battery is obtained by forming a positive electrode plate and a negative electrode plate partitioned by a separator into a spiral or laminated structure and storing them in a case or the like.
  • the secondary battery provided with the electrode having the mixture layer formed from the composition for the mixture layer for the secondary battery electrode containing the binder for the secondary battery electrode disclosed in the present specification It is suitable for in-vehicle secondary batteries and the like because it exhibits good durability (cycle characteristics) even after repeated charging and discharging.
  • image processing software Igor Pro8
  • the two-dimensional scattering image for analysis was converted into a one-dimensional scattering spectrum. Specifically, the two-dimensional scattering image for analysis is read into X-ray data processing software (Igor Pro8) and integrated over all directional angles, so that the horizontal axis is the scattering vector q ( ⁇ -1 ) and the vertical axis is the vertical axis. A one-dimensional scattering spectrum (scattering intensity curve I (q)) was obtained. Next, as the baseline correction, the minimum value of the scattering intensity in the analysis target region was obtained, and the minimum value was subtracted over the entire region to perform the baseline correction.
  • X-ray data processing software Igor Pro8
  • the obtained corrected one-dimensional scattering profile was fitted using the following formula (1) to determine ⁇ ( ⁇ 1) in a 1% by mass aqueous solution and ⁇ ( ⁇ 5) in a 5% by mass aqueous solution.
  • means the structural size of the non-uniform network of the crosslinked polymer, and as shown in FIG. 1, when there is a portion having a dense degree of crosslink, the size is described by ⁇ . .. Waveform separation software (Igor Pro8) was used for fitting.
  • the measuring device is shown in FIG.
  • the measuring device is composed of ⁇ 1> to ⁇ 3> in FIG. ⁇ 1> It is composed of a burette 1, a pinch cock 2, a silicon tube 3 and a polytetrafluoroethylene tube 4 having a branch tube for venting air.
  • a support cylinder 8 having a large number of holes on the bottom surface is installed on the funnel 5, and a filter paper 10 for an apparatus is installed on the support cylinder 8.
  • the sample 6 (measurement sample) of the crosslinked polymer or a salt thereof is sandwiched between two sample fixing filter papers 7, and the sample fixing filter paper is fixed by the adhesive tape 9.
  • All the filter papers used are ADVANTEC No. 2.
  • the inner diameter is 55 mm.
  • ⁇ 1> and ⁇ 2> are connected by a silicon tube 3.
  • the heights of the funnel 5 and the support cylinder 8 are fixed with respect to the burette 1, and the lower end of the polytetrafluoroethylene tube 4 installed inside the burette branch pipe and the bottom surface of the support cylinder 8 are at the same height. (Dotted line in FIG. 1).
  • the measuring method will be described below.
  • the pinch cock 2 in ⁇ 1> is removed, ion-exchanged water is poured from the upper part of the burette 1 through the silicon tube 3, and the burette 1 to the filter paper 10 for the device are filled with the ion-exchanged water 12.
  • the pinch cock 2 is closed, and air is removed from the polytetrafluoroethylene tube 4 connected to the burette branch pipe with a rubber stopper. In this way, the ion-exchanged water 12 is continuously supplied from the burette 1 to the filter paper 10 for the apparatus.
  • the reading (a) of the scale of the burette 1 is recorded.
  • the water absorption amount (d) of only two filter papers 7 containing no sample of the crosslinked polymer or a salt thereof is measured.
  • the above operation was performed, and the degree of water swelling was calculated from the following formula.
  • the value measured by the method described later was used.
  • Water swelling degree ⁇ dry weight of measurement sample (g) + (cd) ⁇ / ⁇ dry weight of measurement sample (g) ⁇
  • the dry weight (g) of the measurement sample the weight (g) of the measurement sample ⁇ (solid content (%) ⁇ 100)
  • the particle size distribution of the hydrogel was measured with a laser diffraction / scattering particle size distribution meter (Microtrack MT-3300EXII, manufactured by Microtrac Bell) using ion-exchanged water as a dispersion medium.
  • a laser diffraction / scattering particle size distribution meter Microtrack MT-3300EXII, manufactured by Microtrac Bell
  • the particle size distribution shape measured after several minutes became stable.
  • the particle size distribution was measured to obtain a volume-based median diameter (D50) as a representative value of the particle size.
  • a hydrogel fine particle dispersion in which the polymer salt was swollen in water was prepared. After adjusting each of the obtained hydrogel fine particle dispersions to 25 ° C. ⁇ 1 ° C., the viscosity at a rotor speed of 12 rpm was measured using a B-type viscometer (TVB-10 manufactured by Toki Sangyo Co., Ltd.).
  • the reaction rate of the obtained polymer 1 was 72%.
  • the molecular weight of the polymer 1 was Mn11,900, Mw15,500, and Mw / Mn was 1.30. Styrene and acrylonitrile correspond to the first monomer.
  • the molecular weight of the first polymer was measured by gel permeation chromatography (GPC). That is, a polystyrene-equivalent number average molecular weight (Mn) and a weight average molecular weight (Mw) were obtained by THF-based GPC. Moreover, the molecular weight distribution (Mw / Mn) was calculated from the obtained values.
  • GPC gel permeation chromatography
  • LiOH / H 2 O lithium hydroxide / monohydrate
  • the obtained polymerization reaction solution was centrifuged to settle the polymer particles, and then the supernatant was removed. Then, after redispersing the precipitate in acetonitrile having the same weight as the polymerization reaction solution, the washing operation of precipitating the polymer particles by centrifugation to remove the supernatant was repeated twice.
  • the precipitate was recovered and dried at 80 ° C. for 3 hours under reduced pressure conditions to remove volatile components to obtain a powder of the carboxyl group-containing polymer salt R-1. Since the carboxyl group-containing polymer salt R-1 has hygroscopicity, it was stored in a container having a water vapor barrier property.
  • the degree of water swelling was 36.4, the particle size in the aqueous medium was 1.72 ⁇ m, and the viscosity of the 2% by mass aqueous solution was 9,110 mPa ⁇ s.
  • Table 1 shows the degree of water swelling of R-2 to R-17, the particle size in the aqueous medium, and the viscosity of the 2% by mass aqueous solution.
  • the particle diameter in an aqueous medium of R-3 (degree of neutralization 70 mol%) was measured after adjusting the neutralization degree of 90 mol% by LiOH ⁇ H 2 O.
  • FIG. 1 An example of the small-angle X-ray scattering measurement result is shown in FIG. 1 (Production Example 2: R-2, Comparative Production Example 2: R-17).
  • a broad peak was observed in the vicinity of q of 0.03 to 0.10 ⁇ -1 in a 1% by mass aqueous solution. This is a peak due to scattering of charged groups derived from carboxyl groups existing inside the particles in which the hydrogel fine particles are dispersed in water.
  • a peak was observed in the vicinity of q 0.07 to 0.20 ⁇ -1. It can be considered that this is because the hydrogel fine particles were densely packed in water and the structure was apparently uniform, so that the peak derived from the cross-linking was confirmed.
  • R-2 showed a small value of ⁇ in a 1% by mass aqueous solution and a small value of ⁇ as compared with R-17, it is considered that R-2 has a more uniform crosslinked structure. be able to.
  • ⁇ 1, ⁇ 5 calculated by curve fitting the scattering intensity curve I (q) obtained by measuring R-1, R-3 to R-16 by small-angle X-ray scattering by the following formula (1). And ⁇ are shown in Table 1.
  • composition containing carboxyl group-containing crosslinked polymer salt >> (Example 1: Evaluation of composition containing carboxyl group-containing crosslinked polymer salt R-1) ⁇ Preparation of slurry composition (composition for electrode mixture layer)> Prepare a SiOx (0.8 ⁇ x ⁇ 1.2) surface coated with 10% carbon by the CVD method (hereinafter referred to as "Si-based active material"), and prepare artificial graphite and Si-based active material. The mixture was used as the active material.
  • Si-based active material a SiOx (0.8 ⁇ x ⁇ 1.2) surface coated with 10% carbon by the CVD method
  • Si-based active material As the binder, a mixture of the present crosslinked polymer salt R-1, styrene-butadiene rubber (SBR) -based latex, and carboxymethyl cellulose (CMC) was used.
  • NMP N-methylpyrrolidone
  • VGCF vapor layer carbon fiber
  • PVDF polyvinylidene fluoride
  • a mixture layer was formed by applying the positive electrode composition to an aluminum current collector (thickness: 15 ⁇ m) and drying it. Then, after rolling so that the thickness of the mixture layer was 88 ⁇ m and the packing density was 3.1 g / cm 3 , the mixture was punched 3 cm square to obtain a positive electrode plate.
  • a lithium ion secondary battery of a laminated cell was produced.
  • the electrolytic solution one in which LiPF 6 was dissolved at a concentration of 1.0 mol / liter in a mixed solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (DEC) at a volume ratio of 25:75 was used.
  • the performance of the coating film obtained from the electrode slurry was evaluated by measuring the cycle characteristics of the lithium ion secondary battery.
  • the lithium-ion secondary battery of the laminated cell produced above is charged / discharged at a charge / discharge rate of 0.2 C under the conditions of 2.7 to 3.4 V by CC discharge to obtain an initial capacity of C0. It was measured. Further, charging and discharging were repeated in an environment of 25 ° C., and the capacity C50 after 50 cycles was measured.
  • the cycle characteristic ( ⁇ C) calculated by the following formula was 91.8%, and the cycle characteristic based on the following criteria was evaluated as “ ⁇ ”. The higher the value of ⁇ C, the better the cycle characteristics.
  • ⁇ C C50 / C0 ⁇ 100 (%) ⁇ Evaluation criteria> ⁇ : Charge / discharge capacity retention rate is 95.0% or more ⁇ : Charge / discharge capacity retention rate is 90.0% or more and less than 95.0% ⁇ : Charge / discharge capacity retention rate is 85.0% or more and less than 90.0% ⁇ : Charge / discharge capacity retention rate is less than 85.0%
  • Example 2 to 15 and Comparative Examples 1 to 2 An electrode slurry was prepared as a slurry composition by performing the same operation as in Example 1 except that the crosslinked polymer salt was as shown in Table 2, and the slurry viscosity was measured. In addition, the coatability of the electrode slurry and the cycle characteristics of the secondary battery obtained by using the electrode slurry were evaluated. The results are shown in Table 2.
  • the non-uniform network structure size ⁇ 1 was smaller than when the iodine transfer polymerization control agent was used (Example 13), and ⁇ ( ⁇ 1- ⁇ 5) was used. ) Is also a small value, so that the coating performance is excellent (in this embodiment, the charge / discharge capacity retention rate is high and the cycle characteristics are excellent).
  • a slurry composition containing a crosslinked polymer having a non-uniform network structure size ⁇ 1 of more than 80 either the coating film performance (cycle characteristics of the secondary battery) or the coatability was significantly inferior (). Comparative Examples 1 and 2).
  • the composition containing the carboxyl group-containing crosslinked polymer of the present invention or a salt thereof is excellent in both coatability and coating performance, it is a thickener for cosmetics, a viscosity modifier, and a non-aqueous electrolyte secondary battery electrode. It is expected to be applied to various applications such as binders for plastics, anti-settling agents for pigments, and dispersion stabilizers for metal powders.
  • a secondary battery provided with an electrode obtained by using a composition for a secondary battery electrode mixture layer containing a binder for a secondary battery electrode containing the carboxyl group-containing crosslinked polymer of the present invention or a salt thereof. Is expected to be applied to in-vehicle secondary batteries because it exhibits good durability (cycle characteristics). It is also useful for the use of active materials containing silicon, and is expected to contribute to increasing the capacity of batteries. Above all, it is useful for a non-aqueous electrolyte lithium ion secondary battery having a high energy density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides a carboxyl group-containing crosslinked polymer or a salt thereof, which can achieve both coatability and coating film performance of a composition containing the crosslinked polymer or the salt thereof. The carboxyl group-containing crosslinked polymer or the salt thereof is provided such that the non-uniform network structure size Ξ of the crosslinked polymer is at most 80, as calculated by curve fitting, with equation (1), the scattering intensity curve I (q) which is obtained by measuring a 1 mass% aqueous solution of the crosslinked polymer neutralized to a neutralization degree of 50-100 mol% through a small-angle X-ray scattering method (measuring temperature: 25.0±0.1°C). I(q): Intensity of scattered radiation Ξ: Non-uniform network structure size of crosslinked polymer A: Fitting parameter B: Fitting parameter q: Scattering vector q*: Distance between charged groups L: Electrostatic shielding length of polymer chain m: Fitting parameter

Description

カルボキシル基含有架橋重合体又はその塩及びその利用Carboxyl group-containing crosslinked polymer or salt thereof and its use
 本発明は、カルボキシル基含有架橋重合体又はその塩及びその利用に関する。 The present invention relates to a carboxyl group-containing crosslinked polymer or a salt thereof, and its use.
 カルボキシル基含有重合体は、化粧品用の増粘剤や粘度調整剤、非水電解質二次電池電極用のバインダー、顔料用の沈降防止剤、金属粉の分散安定剤等の様々な用途に利用されている。
 これらの用途の中でも、化粧品用の増粘剤としては、カルボキシル基含有重合体が直鎖のときは曳糸性を有し、ベタツキが感じられるが、架橋度を高めていくにつれて曳糸性は減少し、みずみずしさが感じられるようになるという特徴を備えている。そのため、曳糸性が不要でみずみずしさが求められる化粧品では、少量の使用で高い増粘性が得られるという利点から、カルボキシル基含有架橋重合体が用いられる場合が多い。
Carboxyl group-containing polymers are used in various applications such as thickeners and viscosity modifiers for cosmetics, binders for non-aqueous electrolyte secondary battery electrodes, sedimentation inhibitors for pigments, and dispersion stabilizers for metal powders. ing.
Among these uses, as a thickener for cosmetics, when the carboxyl group-containing polymer is linear, it has a spinnability and feels sticky, but as the degree of cross-linking is increased, the spinnability becomes higher. It has the characteristic that it decreases and you can feel the freshness. Therefore, in cosmetics that do not require spinnability and require freshness, a carboxyl group-containing crosslinked polymer is often used because of the advantage that high viscosity can be obtained with a small amount of use.
 また、非水電解質二次電池電極用バインダーとしても、良好な結着性及びサイクル特性を付与し得る利点から、カルボキシル基含有架橋重合体が用いられる場合が多い。
 ここで、ニッケル水素二次電池、リチウムイオン二次電池、電気二重層キャパシタ等の各種二次電池の用途が拡大するにつれて、エネルギー密度、信頼性及び耐久性向上への要求が強まる傾向にある。例えば、リチウムイオン二次電池の電気容量を高める目的で、負極用活物質としてシリコン系の活物質を用いる仕様が増えてきている。しかしながら、シリコン系活物質は充放電時の体積変化が大きいことが知られており、繰り返し使用するにつれて電極合剤層の剥離又は脱落等が生じ、その結果、電池の容量が低下し、サイクル特性(耐久性)が悪化するという問題があった。このような不具合を抑制するために、バインダーによって活物質間を強固に結着させること(結着性)や活物質のサイズを小さくして膨潤収縮に伴う応力を緩和すること、電解液の添加剤を工夫することで耐久性を改善する検討が行われている。
Further, as a binder for a non-aqueous electrolyte secondary battery electrode, a carboxyl group-containing crosslinked polymer is often used because of the advantages of being able to impart good binding properties and cycle characteristics.
Here, as the applications of various secondary batteries such as nickel hydrogen secondary batteries, lithium ion secondary batteries, and electric double layer capacitors expand, the demand for improving energy density, reliability, and durability tends to increase. For example, for the purpose of increasing the electric capacity of a lithium ion secondary battery, specifications for using a silicon-based active material as a negative electrode active material are increasing. However, it is known that the volume of a silicon-based active material changes significantly during charging and discharging, and the electrode mixture layer peels off or falls off as it is used repeatedly, resulting in a decrease in battery capacity and cycle characteristics. There was a problem that (durability) deteriorated. In order to suppress such defects, a binder is used to firmly bond the active materials (bonding property), the size of the active material is reduced to alleviate the stress associated with swelling and shrinkage, and the addition of an electrolytic solution is performed. Studies are being conducted to improve durability by devising agents.
 そのような中、良好なサイクル特性を有しシリコン系活物質を用いた負極合剤層の耐久性向上へ効果を奏するバインダーとして、アクリル酸系重合体が有効であることが報告されている。特許文献1では、特定の架橋剤によりポリアクリル酸を架橋したポリマーを結着剤として用いることにより、シリコンを含む活物資とを用いた場合であっても、電極構造が破壊されることなく良好なサイクル特性を示すことが開示されている。特許文献2には、1%NaCl水溶液中で特定の粒径を有する架橋したアクリル酸系重合体が開示されている。 Under such circumstances, it has been reported that an acrylic acid-based polymer is effective as a binder that has good cycle characteristics and is effective in improving the durability of the negative electrode mixture layer using a silicon-based active material. In Patent Document 1, by using a polymer obtained by cross-linking polyacrylic acid with a specific cross-linking agent as a binder, the electrode structure is not destroyed even when using an active material containing silicon. It is disclosed that it exhibits various cycle characteristics. Patent Document 2 discloses a crosslinked acrylic acid-based polymer having a specific particle size in a 1% NaCl aqueous solution.
国際公開第2014/065407号International Publication No. 2014/060407 国際公開第2017/073589号International Publication No. 2017/073589
 発明者らの検討によれば、スラリー中の粒子のバインダー(例えば、リチウムイオン二次電池電極スラリー中の活物質のバインダー)として、特許文献1及び2に開示される微架橋化したアクリル酸系重合体を用いる場合、アクリル酸系重合体の微架橋化によって、スラリー中の粒子間の結着性を高めることができる一方で、当該重合体の水中での拡がりが増して少量の添加でも粘度が大きく上昇するため、スラリー粘度の低減には限界があり、塗工性と塗膜性能(例えば、リチウムイオン二次電池のサイクル特性)を両立できず問題となる事があった。 According to the studies by the inventors, the microcrosslinked acrylic acid system disclosed in Patent Documents 1 and 2 as a binder of particles in the slurry (for example, a binder of the active material in the lithium ion secondary battery electrode slurry). When a polymer is used, the fine cross-linking of the acrylic acid-based polymer can enhance the binding property between the particles in the slurry, while the spread of the polymer in water is increased and the viscosity is increased even with a small amount of addition. There is a limit to the reduction of the slurry viscosity, and there is a problem that the coatability and the coating performance (for example, the cycle characteristics of the lithium ion secondary battery) cannot be compatible with each other.
 また、特許文献1及び2に開示される二次電池電極用バインダーは、いずれも良好なサイクル特性及び結着性を付与し得るものであるが、二次電池の性能向上に伴い、よりサイクル特性向上が可能なバインダーを求める要求が高まりつつある。
 さらにまた、一般に、二次電池電極は、活物質及びバインダーを含む電極合剤層用組成物(以下、「電極スラリー」ともいう。)を電極集電体表面に塗布乾燥することにより得られる。この際、電極スラリーの乾燥効率を高め、電極の生産性を向上する観点から、電極スラリーの固形分濃度を高くすることが有利である。しかしながら、通常、固形分濃度を高くするにつれて、良好な塗工性を確保することが難しくなる。特許文献1及び2に開示されるバインダーは、前述の通り、少量の添加でも粘度が大きく上昇するため、固形分濃度を高めることが困難であった。
Further, the binders for secondary battery electrodes disclosed in Patent Documents 1 and 2 can all impart good cycle characteristics and binding properties, but as the performance of the secondary battery is improved, the cycle characteristics become more favorable. There is an increasing demand for improveable binders.
Furthermore, the secondary battery electrode is generally obtained by applying a composition for an electrode mixture layer containing an active material and a binder (hereinafter, also referred to as “electrode slurry”) to the surface of an electrode current collector and drying it. At this time, it is advantageous to increase the solid content concentration of the electrode slurry from the viewpoint of increasing the drying efficiency of the electrode slurry and improving the productivity of the electrode. However, usually, as the solid content concentration increases, it becomes difficult to ensure good coatability. As described above, the binders disclosed in Patent Documents 1 and 2 have a large increase in viscosity even when added in a small amount, so that it is difficult to increase the solid content concentration.
 本発明は、このような事情に鑑みてなされたものであり、その目的は、カルボキシル基含有架橋重合体又はその塩を含む組成物の塗工性及び塗膜性能を両立させる事ができる、当該架橋重合体又はその塩を提供することである。
 さらにまた、従来よりも電極合材層用組成物の固形分濃度が高い場合において、電極スラリーの粘度低減により塗工性を確保しつつ、優れたサイクル特性を発揮する二次電池を得ることができる、二次電池電極用バインダーを提供することである。また、併せて、上記バインダーを含む二次電池電極合剤層用組成物、当該組成物を用いて得られる二次電池電極及び二次電池を提供することである。
The present invention has been made in view of such circumstances, and an object of the present invention is to achieve both coatability and coating performance of a composition containing a carboxyl group-containing crosslinked polymer or a salt thereof. It is to provide a crosslinked polymer or a salt thereof.
Furthermore, when the solid content concentration of the composition for the electrode mixture layer is higher than before, it is possible to obtain a secondary battery that exhibits excellent cycle characteristics while ensuring coatability by reducing the viscosity of the electrode slurry. It is to provide a binder for a secondary battery electrode that can be made. In addition, the present invention also provides a composition for a secondary battery electrode mixture layer containing the above binder, a secondary battery electrode obtained by using the composition, and a secondary battery.
 本発明者らは、上記課題を解決するために鋭意検討した結果、小角X線散乱法測定による測定で得られる不均一網目構造サイズが特定の値以下である、カルボキシル基含有架橋重合体又はその塩を用いることによって、当該架橋重合体又はその塩を含む組成物の塗工性を確保しつつ、優れた塗膜性能を発揮することができることを見出し、本発明を完成した。
 さらにまた、カルボキシル基含有架橋重合体又はその塩を含む二次電池電極用バインダー、活物質及び水を含む二次電池電極合剤層用組成物の固形分濃度が高い場合において、当該組成物が、小角X線散乱法測定による測定で得られる不均一網目構造サイズが特定の値以下である、カルボキシル基含有架橋重合体又はその塩を含むことによって、電極スラリーの粘度低減により塗工性を確保しつつ、優れたサイクル特性を発揮する二次電池を得ることができることを見出し、本発明を完成した。
As a result of diligent studies to solve the above problems, the present inventors have found that the non-uniform network structure size obtained by measurement by the small-angle X-ray scattering method is a specific value or less, or a carboxyl group-containing crosslinked polymer or a crosslinked polymer thereof. The present invention has been completed by finding that by using a salt, excellent coating performance can be exhibited while ensuring the coatability of the crosslinked polymer or a composition containing the salt thereof.
Furthermore, when the solid content concentration of the composition for the secondary battery electrode mixture layer containing the binder for the secondary battery electrode containing the carboxyl group-containing crosslinked polymer or a salt thereof, the active material and water is high, the composition may be used. , The non-uniform network structure size obtained by the small angle X-ray scattering method measurement is less than a specific value. By containing a carboxyl group-containing crosslinked polymer or a salt thereof, the coatability is ensured by reducing the viscosity of the electrode slurry. At the same time, they have found that a secondary battery exhibiting excellent cycle characteristics can be obtained, and have completed the present invention.
 本発明は以下の通りである。
〔1〕カルボキシル基含有架橋重合体又はその塩であって、小角X線散乱法(測定温度:25.0±0.1℃)により、中和度50~100モル%に中和された前記架橋重合体の1質量%濃度水溶液を測定することで得られる散乱強度曲線I(q)に対し、下記式(1)でカーブフィッティングして算出される、前記架橋重合体の不均一網目構造サイズΞ(以下、「Ξ1」ともいう。)が80以下である、カルボキシル基含有架橋重合体又はその塩。
Figure JPOXMLDOC01-appb-M000002
〔2〕前記Ξ1と、小角X線散乱法(測定温度:25.0±0.1℃)により、中和度50~100モル%に中和された前記架橋重合体の5質量%濃度水溶液を測定することで得られる散乱強度曲線I(q)に対し、前記式(1)でカーブフィッティングして算出される、前記架橋重合体の不均一網目構造サイズΞ(以下、「Ξ5」ともいう。)の差ΔΞ(Ξ1-Ξ5)が50以下である、〔1〕に記載のカルボキシル基含有架橋重合体又はその塩。
〔3〕前記架橋重合体は、その全構造単位に対し、エチレン性不飽和カルボン酸単量体に由来する構造単位を50質量%以上100質量%以下含む、〔1〕又は〔2〕に記載のカルボキシル基含有架橋重合体又はその塩。
〔4〕前記架橋重合体は、架橋性単量体により架橋されたものであり、当該架橋性単量体の使用量が非架橋性単量体の総量100質量部に対して0.1質量部以上2.0質量部以下である、〔1〕~〔3〕のいずれか一に記載のカルボキシル基含有架橋重合体又はその塩。
〔5〕前記架橋重合体又はその塩は、中和度80~100モル%に中和された後、水媒体中で測定した粒子径が、体積基準メジアン径で0.1μm以上5.0μm以下である、〔1〕~〔4〕のいずれか一に記載のカルボキシル基含有架橋重合体又はその塩。
〔6〕前記架橋重合体又はその塩は、pH8における水膨潤度が20以上80以下である、〔1〕~〔5〕のいずれか一に記載のカルボキシル基含有架橋重合体又はその塩。
〔7〕〔1〕~〔6〕のいずれか一に記載のカルボキシル基含有架橋重合体又はその塩を含む、二次電池電極用バインダー。
〔8〕〔7〕に記載の二次電池電極用バインダー、活物質及び水を含む二次電池電極合剤層用組成物。
〔9〕集電体表面に、〔8〕に記載の二次電池電極合剤層用組成物から形成される合剤層を備える、二次電池電極。
〔10〕〔9〕に記載の二次電池電極を備える二次電池。
The present invention is as follows.
[1] The above-mentioned crosslinked polymer containing a carboxyl group or a salt thereof, which has been neutralized to a degree of neutralization of 50 to 100 mol% by a small-angle X-ray scattering method (measurement temperature: 25.0 ± 0.1 ° C.). Non-uniform network structure size of the crosslinked polymer calculated by curve fitting with the following formula (1) to the scattering intensity curve I (q) obtained by measuring a 1% by mass concentration aqueous solution of the crosslinked polymer. A carboxyl group-containing crosslinked polymer or a salt thereof, wherein Ξ (hereinafter, also referred to as “Ξ1”) is 80 or less.
Figure JPOXMLDOC01-appb-M000002
[2] A 5% by mass aqueous solution of the crosslinked polymer neutralized to a degree of neutralization of 50 to 100 mol% by the small angle X-ray scattering method (measurement temperature: 25.0 ± 0.1 ° C.) with the above Ξ1. The non-uniform network structure size Ξ (hereinafter, also referred to as “Ξ5”) of the crosslinked polymer, which is calculated by curve fitting with the above formula (1) with respect to the scattering intensity curve I (q) obtained by measuring. .) The carboxyl group-containing crosslinked polymer or salt thereof according to [1], wherein the difference ΔΞ (Ξ1-Ξ5) is 50 or less.
[3] The crosslinked polymer according to [1] or [2], wherein the crosslinked polymer contains 50% by mass or more and 100% by mass or less of structural units derived from an ethylenically unsaturated carboxylic acid monomer with respect to all the structural units. Carboxyl group-containing crosslinked polymer or a salt thereof.
[4] The crosslinked polymer is crosslinked with a crosslinkable monomer, and the amount of the crosslinkable monomer used is 0.1 mass by mass with respect to 100 parts by mass of the total amount of the non-crosslinkable monomer. The carboxyl group-containing crosslinked polymer according to any one of [1] to [3] or a salt thereof, which is not more than parts and not more than 2.0 parts by mass.
[5] The crosslinked polymer or a salt thereof is neutralized to a degree of neutralization of 80 to 100 mol%, and then the particle size measured in an aqueous medium is 0.1 μm or more and 5.0 μm or less in terms of volume-based median diameter. The carboxyl group-containing crosslinked polymer according to any one of [1] to [4] or a salt thereof.
[6] The carboxyl group-containing crosslinked polymer or salt thereof according to any one of [1] to [5], wherein the crosslinked polymer or a salt thereof has a water swelling degree of 20 or more and 80 or less at pH 8.
[7] A binder for a secondary battery electrode, which comprises the carboxyl group-containing crosslinked polymer according to any one of [1] to [6] or a salt thereof.
[8] The composition for a secondary battery electrode mixture layer containing the binder for the secondary battery electrode, the active material, and water according to [7].
[9] A secondary battery electrode comprising a mixture layer formed from the composition for the secondary battery electrode mixture layer according to [8] on the surface of a current collector.
[10] A secondary battery including the secondary battery electrode according to [9].
 本発明のカルボキシル基含有架橋重合体又はその塩によれば、当該架橋重合体又はその塩を含む組成物の塗工性及び塗膜性能を両立させる事できる。
 さらにまた、本発明のカルボキシル基含有架橋重合体又はその塩を含む二次電池電極用バインダーによれば、従来よりも電極合剤層用組成物の固形分濃度が高い場合において、電極スラリーの粘度低減により塗工性を確保しつつ、優れたサイクル特性を発揮する二次電池を得ることができる。
According to the carboxyl group-containing crosslinked polymer of the present invention or a salt thereof, the coatability and the coating film performance of the composition containing the crosslinked polymer or the salt thereof can be compatible with each other.
Furthermore, according to the binder for the secondary battery electrode containing the carboxyl group-containing crosslinked polymer of the present invention or a salt thereof, the viscosity of the electrode slurry is higher than the conventional one when the solid content concentration of the composition for the electrode mixture layer is higher. It is possible to obtain a secondary battery that exhibits excellent cycle characteristics while ensuring coatability by reducing the amount.
架橋重合体の不均一網目構造サイズΞ(点線箇所)を示す模式図であり、Ξの値としては左図の方が右図より小さいことを意味する。It is a schematic diagram showing the non-uniform network structure size Ξ (dotted line part) of the crosslinked polymer, and it means that the value of Ξ in the left figure is smaller than that in the right figure. カルボキシル基含有架橋重合体塩R-2(1質量%濃度水溶液及び5質量%濃度水溶液)の小角X線散乱法による測定で得られた散乱強度曲線I(q)を示す図である。It is a figure which shows the scattering intensity curve I (q) obtained by the small-angle X-ray scattering method of the carboxyl group-containing crosslinked polymer salt R-2 (1 mass% concentration aqueous solution and 5 mass% concentration aqueous solution). カルボキシル基含有架橋重合体塩R-17(1質量%濃度水溶液及び5質量%濃度水溶液)の小角X線散乱法による測定で得られた散乱強度曲線I(q)を示す図である。It is a figure which shows the scattering intensity curve I (q) obtained by the small-angle X-ray scattering method of the carboxyl group-containing crosslinked polymer salt R-17 (1 mass% concentration aqueous solution and 5 mass% concentration aqueous solution). 架橋重合体又はその塩の水膨潤度の測定に用いる装置を示す図である。It is a figure which shows the apparatus used for measuring the water swelling degree of a crosslinked polymer or a salt thereof.
 本発明のカルボキシル基含有架橋重合体又はその塩(以下、「本架橋重合体」ともいう。)は、小角X線散乱法(測定温度:25.0±0.1℃)により、中和度50~100モル%に中和された本架橋重合体の1質量%濃度水溶液を測定することにより得られる散乱強度曲線I(q)に対し、上記式(1)でカーブフィッティングして算出される、本架橋重合体の不均一網目構造サイズΞ(Ξ1)が80以下である。なお、Ξについては、後記「3.本架橋重合体の特性」及び「実施例」において、詳述する。 The carboxyl group-containing crosslinked polymer of the present invention or a salt thereof (hereinafter, also referred to as “the present crosslinked polymer”) has a degree of neutralization by a small angle X-ray scattering method (measurement temperature: 25.0 ± 0.1 ° C.). Calculated by curve fitting with the above formula (1) to the scattering intensity curve I (q) obtained by measuring a 1% by mass concentration aqueous solution of the present crosslinked polymer neutralized to 50 to 100 mol%. , The non-uniform network structure size Ξ (Ξ1) of this crosslinked polymer is 80 or less. Ξ will be described in detail in "3. Characteristics of the Crosslinked Polymer" and "Examples" described later.
 さらにまた、本架橋重合体又はその塩を含む二次電池電極用バインダー(以下、「本バインダー」ともいう。)は、活物質及び水と混合することにより二次電池電極合剤層用組成物(以下、「本組成物」ともいう。)とすることができる。上記の組成物は、集電体への塗工が可能なスラリー状態である。銅箔又はアルミニウム箔等の集電体表面に上記組成物から形成される合剤層を形成することにより、本発明の二次電池電極が得られる。ここで、本バインダーは、活物質として後述のケイ素系活物質を含む二次電池電極合剤層用組成物に用いる場合、本発明の奏する効果が特に大きい点で好ましい。 Furthermore, the binder for a secondary battery electrode containing the crosslinked polymer or a salt thereof (hereinafter, also referred to as “the binder”) is a composition for a secondary battery electrode mixture layer by mixing with an active material and water. (Hereinafter, also referred to as "the present composition"). The above composition is in a slurry state that can be applied to a current collector. The secondary battery electrode of the present invention can be obtained by forming a mixture layer formed from the above composition on the surface of a current collector such as a copper foil or an aluminum foil. Here, when this binder is used in a composition for a secondary battery electrode mixture layer containing a silicon-based active material described later as an active material, the effect of the present invention is particularly large, which is preferable.
 以下に、本架橋重合体、本バインダー、本バインダーを用いて得られる二次電池電極合剤層用組成物、二次電池電極及び二次電池の各々について詳細に説明する。
 尚、本明細書において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。また、「(メタ)アクリロイル基」とは、アクリロイル基及び/又はメタクリロイル基を意味する。
Hereinafter, each of the present crosslinked polymer, the present binder, the composition for the secondary battery electrode mixture layer obtained by using the present binder, the secondary battery electrode, and the secondary battery will be described in detail.
In addition, in this specification, "(meth) acrylic" means acrylic and / or methacrylic, and "(meth) acrylate" means acrylate and / or methacrylate. Further, the “(meth) acryloyl group” means an acryloyl group and / or a methacryloyl group.
1.本架橋重合体の構造単位
<エチレン性不飽和カルボン酸単量体に由来する構造単位>
 本架橋重合体は、エチレン性不飽和カルボン酸単量体に由来する構造単位(以下、「(a)成分」ともいう。)を有し、エチレン性不飽和カルボン酸単量体を含む単量体成分を沈殿重合若しくは分散重合することにより重合体に導入することができる。本架橋重合体が、係る構造単位を有することによりカルボキシル基を有することで、集電体への接着性が向上するとともに、リチウムイオンの脱溶媒和効果及びイオン伝導性に優れるため、抵抗が小さく、ハイレート特性に優れた電極が得られる。また、水膨潤性が付与されるため、本組成物中における活物質等の分散安定性を高めることができる。
1. 1. Structural unit of this crosslinked polymer <Structural unit derived from ethylenically unsaturated carboxylic acid monomer>
The crosslinked polymer has a structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter, also referred to as “component (a)”), and is a single amount containing an ethylenically unsaturated carboxylic acid monomer. The body component can be introduced into the polymer by precipitation polymerization or dispersion polymerization. Since the crosslinked polymer has a carboxyl group by having such a structural unit, the adhesiveness to the current collector is improved, and the lithium ion desolvation effect and the ionic conductivity are excellent, so that the resistance is small. , An electrode having excellent high-rate characteristics can be obtained. Further, since water swelling property is imparted, the dispersion stability of the active material or the like in the present composition can be enhanced.
 エチレン性不飽和カルボン酸単量体としては、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸;(メタ)アクリルアミドヘキサン酸及び(メタ)アクリルアミドドデカン酸等の(メタ)アクリルアミドアルキルカルボン酸;コハク酸モノヒドロキシエチル(メタ)アクリレート、ω-カルボキシ-カプロラクトンモノ(メタ)アクリレート、β-カルボキシエチル(メタ)アクリレート等のカルボキシル基を有するエチレン性不飽和単量体又はそれらの(部分)アルカリ中和物が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。上記の中でも、重合速度が大きいために一次鎖長の長い重合体が得られ、バインダーの結着力が良好となる点で重合性官能基としてアクリロイル基を有する化合物が好ましく、特に好ましくはアクリル酸である。エチレン性不飽和カルボン酸単量体としてアクリル酸を用いた場合、カルボキシル基含有量の高い重合体を得ることができる。 Examples of the ethylenically unsaturated carboxylic acid monomer include (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid; and (meth) acrylamide alkyl such as (meth) acrylamide hexane acid and (meth) acrylamide dodecanoic acid. Carboxylic acid; ethylenically unsaturated monomers having carboxyl groups such as monohydroxyethyl succinate (meth) acrylate, ω-carboxy-caprolactone mono (meth) acrylate, β-carboxyethyl (meth) acrylate, or (partial) thereof. ) Alkali neutralized products may be mentioned, and one of these may be used alone, or two or more thereof may be used in combination. Among the above, a compound having an acryloyl group as a polymerizable functional group is preferable, and acrylic acid is particularly preferable, in that a polymer having a long primary chain length can be obtained due to a high polymerization rate and the binder has a good binding force. be. When acrylic acid is used as the ethylenically unsaturated carboxylic acid monomer, a polymer having a high carboxyl group content can be obtained.
 本架橋重合体における(a)成分の含有量は、特に限定するものではないが、例えば、本架橋重合体の全構造単位に対して10質量%以上、100質量%以下含むことができる。かかる範囲で(a)成分を含有することで、集電体に対する優れた接着性を容易に確保することができる。下限は、例えば20質量%以上であり、また例えば30質量%以上であり、また例えば40質量%以上である。下限が50質量%以上の場合、本組成物の分散安定性が良好となり、より高い結着力が得られるため好ましく、60質量%以上であってもよく、70質量%以上であってもよく、80質量%以上であってもよい。また、上限は、例えば、99.9質量%以下であり、また例えば99.5質量%以下であり、また例えば99質量%以下であり、また例えば98質量%以下であり、また例えば95質量%以下であり、また例えば90質量%以下であり、また例えば80質量%以下である。範囲としては、こうした下限及び上限を適宜組み合わせた範囲とすることができるが、例えば、10質量%以上、100質量%以下であり、また例えば50質量%以上、100質量%以下であり、また例えば50質量%以上、99.9質量%以下であり、また例えば50質量%以上、99質量%以下であり、また例えば50質量%以上、98質量%以下などとすることができる。 The content of the component (a) in the present crosslinked polymer is not particularly limited, but may be, for example, 10% by mass or more and 100% by mass or less with respect to all the structural units of the present crosslinked polymer. By containing the component (a) in such a range, excellent adhesiveness to the current collector can be easily ensured. The lower limit is, for example, 20% by mass or more, for example, 30% by mass or more, and for example, 40% by mass or more. When the lower limit is 50% by mass or more, the dispersion stability of the present composition becomes good and a higher binding force can be obtained, which is preferable, and it may be 60% by mass or more, or 70% by mass or more. It may be 80% by mass or more. Further, the upper limit is, for example, 99.9% by mass or less, for example, 99.5% by mass or less, for example, 99% by mass or less, for example, 98% by mass or less, and for example, 95% by mass. It is less than or equal to, for example, 90% by mass or less, and for example, 80% by mass or less. The range may be a range in which such a lower limit and an upper limit are appropriately combined, and is, for example, 10% by mass or more and 100% by mass or less, and for example, 50% by mass or more and 100% by mass or less, and for example. It can be 50% by mass or more and 99.9% by mass or less, and can be, for example, 50% by mass or more and 99% by mass or less, and can be, for example, 50% by mass or more and 98% by mass or less.
<その他の構造単位>
 本架橋重合体は、(a)成分以外に、これらと共重合可能な他のエチレン性不飽和単量体に由来する構造単位(以下、「(b)成分」ともいう。)を含むことができる。(b)成分としては、例えば、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、又は非イオン性のエチレン性不飽和単量体等に由来する構造単位が挙げられる。これらの構造単位は、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、又は非イオン性のエチレン性不飽和単量体を含む単量体を共重合することにより導入することができる。
<Other structural units>
In addition to the component (a), the crosslinked polymer may contain a structural unit derived from another ethylenically unsaturated monomer copolymerizable with the component (hereinafter, also referred to as “component (b)”). can. The component (b) includes, for example, an ethylenically unsaturated monomer compound having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, or a nonionic ethylenically unsaturated monomer. The structural unit from which it is derived can be mentioned. These structural units are ethylenically unsaturated monomer compounds having anionic groups other than carboxyl groups such as sulfonic acid groups and phosphoric acid groups, or monomers containing nonionic ethylenically unsaturated monomers. Can be introduced by copolymerizing.
 (b)成分の割合は、本架橋重合体の全構造単位に対し、0質量%以上、90質量%以下とすることができる。(b)成分の割合は、1質量%以上、60質量%以下であってもよく、2質量%以上、50質量%以下であってもよく、5質量%以上、40質量%以下であってもよく、10質量%以上、30質量%以下であってもよい。また、本架橋重合体の全構造単位に対して(b)成分を1質量%以上含む場合、電解液への親和性が向上するため、リチウムイオン伝導性が向上する効果も期待できる。 The ratio of the component (b) can be 0% by mass or more and 90% by mass or less with respect to all the structural units of the present crosslinked polymer. The ratio of the component (b) may be 1% by mass or more and 60% by mass or less, 2% by mass or more and 50% by mass or less, and 5% by mass or more and 40% by mass or less. It may be 10% by mass or more and 30% by mass or less. Further, when the component (b) is contained in an amount of 1% by mass or more with respect to all the structural units of the crosslinked polymer, the affinity for the electrolytic solution is improved, so that the effect of improving the lithium ion conductivity can be expected.
 (b)成分としては、前記した中でも、耐屈曲性が良好な電極が得られる観点から非イオン性のエチレン性不飽和単量体に由来する構造単位が好ましく、非イオン性のエチレン性不飽和単量体としては、(メタ)アクリルアミド及びその誘導体、ニトリル基含有エチレン性不飽和単量体、脂環構造含有エチレン性不飽和単量体等が挙げられる。 As the component (b), among the above, structural units derived from nonionic ethylenically unsaturated monomers are preferable from the viewpoint of obtaining electrodes having good bending resistance, and nonionic ethylenically unsaturated monomers are preferable. Examples of the monomer include (meth) acrylamide and its derivatives, a nitrile group-containing ethylenically unsaturated monomer, an alicyclic structure-containing ethylenically unsaturated monomer, and the like.
 (メタ)アクリルアミド誘導体としては、例えば、イソプロピル(メタ)アクリルアミド、t-ブチル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド化合物;N-n-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミド等のN-アルコキシアルキル(メタ)アクリルアミド化合物;ジメチル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド等のN,N-ジアルキル(メタ)アクリルアミド化合物が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the (meth) acrylamide derivative include N-alkyl (meth) acrylamide compounds such as isopropyl (meth) acrylamide and t-butyl (meth) acrylamide; Nn-butoxymethyl (meth) acrylamide and N-isobutoxymethyl. N-alkoxyalkyl (meth) acrylamide compounds such as (meth) acrylamide; N, N-dialkyl (meth) acrylamide compounds such as dimethyl (meth) acrylamide and diethyl (meth) acrylamide include one of them. It may be used alone or in combination of two or more.
 ニトリル基含有エチレン性不飽和単量体としては、例えば、(メタ)アクロリニトリル;(メタ)アクリル酸シアノメチル、(メタ)アクリル酸シアノエチル等の(メタ)アクリル酸シアノアルキルエステル化合物;4-シアノスチレン、4-シアノ-α-メチルスチレン等のシアノ基含有不飽和芳香族化合物;シアン化ビニリデン等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。上記の中でも、ニトリル基含有量が多い点でアクリロニトリルが好ましい。 Examples of the nitrile group-containing ethylenically unsaturated monomer include (meth) achlorinitrile; (meth) cyanomethyl acrylate, (meth) cyanoethyl acrylate and other (meth) acrylate cyanoalkyl ester compounds; 4-cyanostyrene. , 4-Cyano-α-methylstyrene and other unsaturated aromatic compounds containing cyano groups; examples thereof include vinylidene cyanide, and one of these may be used alone or in combination of two or more. You may use it. Among the above, acrylonitrile is preferable because it has a high nitrile group content.
 脂環構造含有エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸t-ブチルシクロヘキシル、(メタ)アクリル酸シクロデシル及び(メタ)アクリル酸シクロドデシル等の脂肪族置換基を有していてもよい(メタ)アクリル酸シクロアルキルエステル;(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸ジシクロペンタニル、並びに、シクロヘキサンジメタノールモノ(メタ)アクリレート及びシクロデカンジメタノールモノ(メタ)アクリレート等のシクロアルキルポリアルコールモノ(メタ)アクリレート等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the alicyclic structure-containing ethylenically unsaturated monomer include cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, and (meth). ) Cyclodecyl acrylate and cyclododecyl (meth) acrylate and other aliphatic substituents may have (meth) cycloalkyl acrylate; isobornyl (meth) acrylate, adamantyl (meth) acrylate, (meth). ) Dicyclopentenyl acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and cyclohexanedimethanol mono (meth) acrylate and cyclodecanedimethanol mono (meth) acrylate, etc. Cycloalkyl polyalcohol mono (meth) acrylate and the like can be mentioned, and one of these may be used alone, or two or more thereof may be used in combination.
 本架橋重合体又はその塩は、バインダーの結着性が優れる点で、(メタ)アクリルアミド及びその誘導体、並びに、ニトリル基含有エチレン性不飽和単量体、脂環構造含有エチレン性不飽和単量体等に由来する構造単位を含むことが好ましい。また、(b)成分として、水中への溶解性が1g/100ml以下の疎水性のエチレン性不飽和単量体に由来する構造単位を導入した場合、電極材料と強い相互作用を奏することができ、活物質に対して良好な結着性を発揮することができる。これにより、堅固で一体性の良好な電極合剤層を得ることができるため、前記した「水中への溶解性が1g/100ml以下の疎水性のエチレン性不飽和単量体」としては、特に脂環構造含有エチレン性不飽和単量体が好ましい。 The crosslinked polymer or a salt thereof has excellent binder binding properties, and is an amount of (meth) acrylamide and its derivatives, a nitrile group-containing ethylenically unsaturated monomer, and an alicyclic structure-containing ethylenically unsaturated monomer. It is preferable to include a structural unit derived from a body or the like. Further, when a structural unit derived from a hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g / 100 ml or less is introduced as the component (b), a strong interaction with the electrode material can be achieved. , Can exhibit good binding properties to active materials. As a result, a solid and well-integrated electrode mixture layer can be obtained. Therefore, the above-mentioned "hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g / 100 ml or less" is particularly selected. An alicyclic structure-containing ethylenically unsaturated monomer is preferable.
 また、その他の非イオン性のエチレン性不飽和単量体としては、例えば(メタ)アクリル酸エステルを用いてもよい。(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸アルキルエステル化合物;
(メタ)アクリル酸フェニル、(メタ)アクリル酸フェニルメチル、(メタ)アクリル酸フェニルエチル等の芳香族(メタ)アクリル酸エステル化合物;
(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル等の(メタ)アクリル酸アルコキシアルキルエステル化合物等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
Further, as the other nonionic ethylenically unsaturated monomer, for example, (meth) acrylic acid ester may be used. Examples of the (meth) acrylic acid ester include (meth) methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like. Meta) Acrylic acid alkyl ester compound;
Aromatic (meth) acrylic acid ester compounds such as (meth) phenyl acrylate, (meth) phenylmethyl acrylate, and (meth) phenylethyl acrylate;
Examples thereof include (meth) acrylic acid alkoxyalkyl ester compounds such as 2-methoxyethyl (meth) acrylic acid and 2-ethoxyethyl (meth) acrylic acid, and one of these may be used alone. Two or more types may be used in combination.
 活物質との結着性及びサイクル特性の観点からは、芳香族(メタ)アクリル酸エステル化合物を好ましく用いることができる。リチウムイオン伝導性及びハイレート特性がより向上する観点から、(メタ)アクリル酸2-メトキシエチル及び(メタ)アクリル酸2-エトキシエチルなどの(メタ)アクリル酸アルコキシアルキルエステル等、エーテル結合を有する化合物が好ましく、(メタ)アクリル酸2-メトキシエチルがより好ましい。 From the viewpoint of binding property to the active material and cycle characteristics, an aromatic (meth) acrylic acid ester compound can be preferably used. Compounds having an ether bond, such as (meth) acrylic acid alkoxyalkyl esters such as 2-methoxyethyl (meth) acrylate and 2-ethoxyethyl (meth) acrylate, from the viewpoint of further improving lithium ion conductivity and high-rate characteristics. Is preferable, and 2-methoxyethyl (meth) acrylate is more preferable.
 非イオン性のエチレン性不飽和単量体の中でも、重合速度が速いために一次鎖長の長い重合体が得られ、バインダーの結着力が良好となる点でアクリロイル基を有する化合物が好ましい。また、非イオン性のエチレン性不飽和単量体としては、得られる電極の耐屈曲性が良好となる点でホモポリマーのガラス転移温度(Tg)が0℃以下の化合物が好ましい。 Among the nonionic ethylenically unsaturated monomers, a compound having an acryloyl group is preferable in that a polymer having a long primary chain length can be obtained due to its high polymerization rate and the binding force of the binder is improved. Further, as the nonionic ethylenically unsaturated monomer, a compound having a homopolymer glass transition temperature (Tg) of 0 ° C. or lower is preferable in terms of improving the bending resistance of the obtained electrode.
 本架橋重合体は、当該重合体中に含まれるカルボキシル基の一部又は全部が中和された塩の形態であってもよい。塩の種類としては特に限定しないが、リチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩;カルシウム塩及びバリウム塩等のアルカリ土類金属塩;マグネシウム塩、アルミニウム塩等のその他の金属塩;アンモニウム塩及び有機アミン塩等が挙げられる。これらの中でも電池特性への悪影響が生じにくい点からアルカリ金属塩及びマグネシウム塩が好ましく、アルカリ金属塩がより好ましい。 The crosslinked polymer may be in the form of a salt in which some or all of the carboxyl groups contained in the polymer are neutralized. The type of salt is not particularly limited, but alkali metal salts such as lithium salt, sodium salt and potassium salt; alkaline earth metal salts such as calcium salt and barium salt; other metal salts such as magnesium salt and aluminum salt; ammonium. Examples thereof include salts and organic amine salts. Among these, alkali metal salts and magnesium salts are preferable, and alkali metal salts are more preferable, from the viewpoint that adverse effects on battery characteristics are unlikely to occur.
 本架橋重合体は、架橋構造を有する架橋重合体である。本架橋重合体における架橋方法は特に制限されるものではなく、例えば以下の方法による態様が例示される。
1)架橋性単量体の共重合
2)ラジカル重合時のポリマー鎖への連鎖移動を利用
3)反応性官能基を有する重合体を合成後、必要に応じて架橋剤を添加して後架橋
 本架橋重合体が架橋構造を有することにより、当該架橋重合体又はその塩を含むバインダーは、優れた結着力を有することができる。上記の内でも、操作が簡便であり、架橋の程度を制御し易い点から架橋性単量体の共重合による方法が好ましい。
The present crosslinked polymer is a crosslinked polymer having a crosslinked structure. The cross-linking method in the present cross-linked polymer is not particularly limited, and examples thereof include the following methods.
1) Copolymerization of crosslinkable monomers 2) Utilizing chain transfer to polymer chains during radical polymerization 3) After synthesizing a polymer having a reactive functional group, post-crosslinking is performed by adding a crosslinking agent as necessary. Since the present crosslinked polymer has a crosslinked structure, the crosslinked polymer or the binder containing a salt thereof can have an excellent binding force. Among the above, the method by copolymerization of crosslinkable monomers is preferable because the operation is simple and the degree of crosslinking can be easily controlled.
<架橋性単量体>
 架橋性単量体としては、2個以上の重合性不飽和基を有する多官能重合性単量体、及び加水分解性シリル基等の自己架橋可能な架橋性官能基を有する単量体等が挙げられる。
<Crosslinkable monomer>
Examples of the crosslinkable monomer include a polyfunctional polymerizable monomer having two or more polymerizable unsaturated groups, a monomer having a self-crosslinkable crosslinkable functional group such as a hydrolyzable silyl group, and the like. Can be mentioned.
 上記多官能重合性単量体は、(メタ)アクリロイル基、アルケニル基等の重合性官能基を分子内に2つ以上有する化合物であり、多官能(メタ)アクリレート化合物、多官能アルケニル化合物、(メタ)アクリロイル基及びアルケニル基の両方を有する化合物等が挙げられる。これらの化合物は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの内でも、均一な架橋構造を得やすい点で多官能アルケニル化合物が好ましく、分子内に2個以上のアリルエーテル基を有する多官能アリルエーテル化合物が特に好ましい。 The polyfunctional polymerizable monomer is a compound having two or more polymerizable functional groups such as a (meth) acryloyl group and an alkenyl group in the molecule, and is a polyfunctional (meth) acrylate compound, a polyfunctional alkenyl compound, ( Meta) Examples thereof include compounds having both an acryloyl group and an alkenyl group. These compounds may be used alone or in combination of two or more. Among these, a polyfunctional alkenyl compound is preferable because a uniform crosslinked structure can be easily obtained, and a polyfunctional allyl ether compound having two or more allyl ether groups in the molecule is particularly preferable.
 多官能(メタ)アクリレート化合物としては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等の2価アルコールのジ(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性体のトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の3価以上の多価アルコールのトリ(メタ)アクリレート、テトラ(メタ)アクリレート等のポリ(メタ)アクリレート;メチレンビスアクリルアミド、ヒドロキシエチレンビスアクリルアミド等のビスアミド類等を挙げることができる。 Examples of the polyfunctional (meth) acrylate compound include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and polypropylene glycol di (meth) acrylate. Di (meth) acrylates of dihydric alcohols such as meta) acrylate; trimethylol propantri (meth) acrylate, tri (meth) acrylate of trimethyl propanethylene oxide modified product, glycerin tri (meth) acrylate, pentaerythritol tri (meth) Tri (meth) acrylates of trivalent or higher polyhydric alcohols such as meta) acrylates and pentaerythritol tetra (meth) acrylates, poly (meth) acrylates such as tetra (meth) acrylates; Bisamides and the like can be mentioned.
 多官能アルケニル化合物としては、トリメチロールプロパンジアリルエーテル、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールジアリルエーテル、ペンタエリスリトールトリアリルエーテル、テトラアリルオキシエタン、ポリアリルサッカロース等の多官能アリルエーテル化合物;ジアリルフタレート等の多官能アリル化合物;ジビニルベンゼン等の多官能ビニル化合物等を挙げることができる。 Examples of the polyfunctional alkenyl compound include polyfunctional allyl ether compounds such as trimethylolpropanediallyl ether, trimethylolpropanetriallyl ether, pentaerythritol diallyl ether, pentaerythritol triallyl ether, tetraallyloxyethane, and polyallyl saccharose; diallyl phthalate and the like. Polyfunctional allyl compound; Examples thereof include polyfunctional vinyl compounds such as divinylbenzene.
 (メタ)アクリロイル基及びアルケニル基の両方を有する化合物としては、(メタ)アクリル酸アリル、(メタ)アクリル酸イソプロペニル、(メタ)アクリル酸ブテニル、(メタ)アクリル酸ペンテニル、(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル等を挙げることができる。 Compounds having both (meth) acryloyl group and alkenyl group include allyl (meth) acrylate, isopropenyl (meth) acrylate, butenyl (meth) acrylate, pentenyl (meth) acrylate, and (meth) acrylate. 2- (2-Vinyloxyethoxy) ethyl and the like can be mentioned.
 上記自己架橋可能な架橋性官能基を有する単量体の具体的な例としては、加水分解性シリル基含有ビニル単量体、N-メチロール(メタ)アクリルアミド、N-メトキシアルキル(メタ)アクリレート等が挙げられる。これらの化合物は、1種単独であるいは2種以上を組み合わせて用いることができる。 Specific examples of the monomer having a self-crosslinkable crosslinkable functional group include a hydrolyzable silyl group-containing vinyl monomer, N-methylol (meth) acrylamide, N-methoxyalkyl (meth) acrylate and the like. Can be mentioned. These compounds can be used alone or in combination of two or more.
 加水分解性シリル基含有ビニル単量体としては、加水分解性シリル基を少なくとも1個有するビニル単量体であれば、特に限定されない。例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシランン等のビニルシラン類;アクリル酸トリメトキシシリルプロピル、アクリル酸トリエトキシシリルプロピル、アクリル酸メチルジメトキシシリルプロピル等のシリル基含有アクリル酸エステル類;メタクリル酸トリメトキシシリルプロピル、メタクリル酸トリエトキシシリルプロピル、メタクリル酸メチルジメトキシシリルプロピル、メタクリル酸ジメチルメトキシシリルプロピル等のシリル基含有メタクリル酸エステル類;トリメトキシシリルプロピルビニルエーテル等のシリル基含有ビニルエーテル類;トリメトキシシリルウンデカン酸ビニル等のシリル基含有ビニルエステル類等を挙げることができる。 The hydrolyzable silyl group-containing vinyl monomer is not particularly limited as long as it is a vinyl monomer having at least one hydrolyzable silyl group. For example, vinyl silanes such as vinyl trimethoxysilane, vinyl triethoxysilane, vinyl methyl dimethoxysilane, vinyl dimethyl methoxysilanen; silyl such as trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylate, methyldimethoxysilylpropyl acrylate and the like. Group-containing acrylic acid esters; silyl group-containing methacrylate esters such as trimethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate, methyldimethoxysilylpropyl methacrylate, dimethylmethoxysilylpropyl methacrylate; trimethoxysilylpropyl vinyl ether and the like. Cyril group-containing vinyl ethers; Examples thereof include silyl group-containing vinyl esters such as trimethoxysilyl undecanoate vinyl.
 本架橋重合体が架橋性単量体により架橋されたものである場合、当該架橋性単量体の使用量は、架橋性単量体以外の単量体(非架橋性単量体)の総量100質量部に対して好ましくは0.05質量部以上5.0質量部以下であり、より好ましくは0.1質量部以上5.0質量部以下であり、さらに好ましくは0.2質量部以上4.0質量部以下であり、一層好ましくは0.3質量部以上3.0質量部以下である。架橋性単量体の使用量が0.05質量部以上であれば、結着性及び電極スラリーの安定性がより良好となる点で好ましい。5.0質量部以下であれば、沈殿重合若しくは分散重合の安定性が高くなる傾向がある。
 同様に、上記架橋性単量体の使用量は、架橋性単量体以外の単量体(非架橋性単量体)の総量に対して0.02~1.7モル%であることが好ましく、0.10~1.0モル%であることがより好ましい。
When the present crosslinked polymer is crosslinked with a crosslinkable monomer, the amount of the crosslinkable monomer used is the total amount of monomers other than the crosslinkable monomer (non-crosslinkable monomer). It is preferably 0.05 parts by mass or more and 5.0 parts by mass or less, more preferably 0.1 parts by mass or more and 5.0 parts by mass or less, and further preferably 0.2 parts by mass or more with respect to 100 parts by mass. It is 4.0 parts by mass or less, more preferably 0.3 parts by mass or more and 3.0 parts by mass or less. When the amount of the crosslinkable monomer used is 0.05 parts by mass or more, it is preferable in that the binding property and the stability of the electrode slurry are improved. If it is 5.0 parts by mass or less, the stability of precipitation polymerization or dispersion polymerization tends to be high.
Similarly, the amount of the crosslinkable monomer used may be 0.02 to 1.7 mol% with respect to the total amount of the monomers other than the crosslinkable monomer (non-crosslinkable monomer). It is preferably 0.10 to 1.0 mol%, more preferably 0.10 to 1.0 mol%.
2.本架橋重合体の製造方法
 本架橋重合体は、交換連鎖移動機構型制御剤の存在下、上記エチレン性不飽和カルボン酸単量体を含む単量体成分(以下、「本単量体」ともいう。)を沈殿重合又は分散重合することにより得られる。
 ここで、沈殿重合は、原料である単量体を溶解するが、生成する重合体を実質溶解しない溶媒中で重合反応を行うことにより重合体を製造する方法である。重合の進行とともにポリマー粒子は凝集及び成長により大きくなり、数十nm~数百nmの一次粒子が数μm~数十μmに二次凝集したポリマー粒子の分散液が得られる。ポリマーの粒子サイズを制御するために分散安定剤を使用することもできる。
 尚、分散安定剤や重合溶剤等を選定することにより上記二次凝集を抑制することもできる。一般に、二次凝集を抑制した沈殿重合は、分散重合とも呼ばれる。
2. Method for Producing the Crosslinked Polymer The crosslinked polymer is a monomer component containing the above ethylenically unsaturated carboxylic acid monomer in the presence of an exchange chain transfer mechanism type control agent (hereinafter, also referred to as “the present monomer”). It is obtained by precipitation polymerization or dispersion polymerization.
Here, precipitation polymerization is a method for producing a polymer by carrying out a polymerization reaction in a solvent that dissolves a monomer as a raw material but does not substantially dissolve the polymer to be produced. As the polymerization progresses, the polymer particles become larger due to aggregation and growth, and a dispersion liquid of the polymer particles in which the primary particles of several tens of nm to several hundreds nm are secondarily aggregated to several μm to several tens of μm can be obtained. Dispersion stabilizers can also be used to control the particle size of the polymer.
The secondary aggregation can also be suppressed by selecting a dispersion stabilizer, a polymerization solvent, or the like. In general, precipitation polymerization in which secondary agglutination is suppressed is also called dispersion polymerization.
交換連鎖移動機構型制御剤について
 本発明に係る交換連鎖移動機構型制御剤としては、可逆的付加-開裂連鎖移動重合法(RAFT法)における制御剤(以下、「RAFT剤」ともいう。)、ヨウ素移動重合法における制御剤、有機テルル化合物を用いる重合法(TERP法)における制御剤、有機アンチモン化合物を用いる重合法(SBRP法)における制御剤、有機ビスマス化合物を用いる重合法(BIRP法)における制御剤等が挙げられる。交換連鎖移動機構型制御剤としては、1種又は2種以上のビニル系単量体の重合鎖と交換連鎖移動機構によるリビングラジカル重合活性単位を有する重合体(以下、単に「第1の重合体」ともいう。後記の段落[0052]~[0078]で詳述する。)、当該重合体以外の制御剤を用いることができる。第1の重合体、当該重合体以外の制御剤は、それぞれ単独で用いても良いし、併用しても良い。
 交換連鎖移動機構型制御剤の存在下、本単量体を沈殿重合又は分散重合することで、一次鎖長が短くなるとともに、鎖長が揃うことで均一な架橋構造を形成するため、本架橋重合体の水膨潤度を高くすることが可能となる。これに伴い、電極スラリー粘度の低減による良好な塗工性と優れたサイクル特性を両立させることができるものと推定される。
 これらの中でも、本架橋重合体の架橋構造をより均一にすることができる点で、RAFT剤及びヨウ素移動重合法における制御剤が好ましく、RAFT剤がより好ましい。
Regarding the exchange chain transfer mechanism type control agent The exchange chain transfer mechanism type control agent according to the present invention includes a control agent (hereinafter, also referred to as “RAFT agent”) in the reversible addition-cleaving chain transfer polymerization method (RAFT method). In the iodine transfer polymerization method, the control agent in the polymerization method using an organic tellurium compound (TERP method), the control agent in the polymerization method using an organic antimony compound (SBRP method), and the polymerization method using an organic bismuth compound (BIRP method). Control agents and the like can be mentioned. As the exchange chain transfer mechanism type control agent, a polymer having a polymer chain of one or more kinds of vinyl-based monomers and a living radical polymerization active unit by the exchange chain transfer mechanism (hereinafter, simply "the first polymer"). A control agent other than the polymer can be used, which will be described in detail in paragraphs [0052] to [0078] described later. The first polymer and the control agent other than the polymer may be used alone or in combination.
Precipitation polymerization or dispersion polymerization of this monomer in the presence of an exchange chain transfer mechanism type control agent shortens the primary chain length, and the same chain length forms a uniform crosslinked structure. It is possible to increase the degree of water swelling of the polymer. Along with this, it is presumed that good coatability and excellent cycle characteristics can be achieved at the same time by reducing the viscosity of the electrode slurry.
Among these, the RAFT agent and the control agent in the iodine transfer polymerization method are preferable, and the RAFT agent is more preferable, because the crosslinked structure of the present crosslinked polymer can be made more uniform.
 RAFT剤としては、可逆的付加-開裂連鎖移動法によるリビングラジカル重合活性単位を有する第1の重合体(後記に詳述)、及び/又は、当該第1の重合体以外のRAFT剤(ジチオエステル化合物、キサンテート化合物、トリチオカーボネート化合物、ジチオカーバメート化合物等)を使用することができる。
 上記第1の重合体以外のRAFT剤としては、具体的には、例えば、2-シアノ-2-プロピルベンゾジチオエート、2-フェニル-2-プロピルベンゾジチオエート、トリチオカーボネート、2-シアノ-2-プロピルドデシルトリチオカーボネート、2-(ドデシルチオカルボノチオイルチオ)プロピオン酸、3-((1-カルボキシエチルチオ)カルボノチオイルチオ))プロピオン酸、2-(ドデシルチオカルボノチオイルチオ)-2-メチルプロパン酸メチル、1,4-ビス(n-ドデシルスルファニルチオカルボニルスルファニルメチル)ベンゼン、ジベンジルトリチオカーボネート、ジスチリルトリチオカーボネート、ジクミルトリチオカーボネート、シアノメチル-N-メチル-N-フェニルジチオカーバメート等が挙げられる。
 RAFT剤の中では、本架橋重合体の架橋構造をより一層均一にすることができる点で、分子内にトリチオカーボネートを有するものが特に好ましい。
RAFT agents include a first polymer having a living radical polymerization active unit by a reversible addition-cleavage chain transfer method (detailed below) and / or a RAFT agent (dithioester) other than the first polymer. Compounds, xanthate compounds, trithiocarbonate compounds, dithiocarbamate compounds, etc.) can be used.
Specific examples of the RAFT agent other than the first polymer include 2-cyano-2-propylbenzodithioate, 2-phenyl-2-propylbenzodithioate, trithiocarbonate, and 2-cyano-. 2-propyldodecyltrithiocarbonate, 2- (dodecylthiocarbonothio oil thio) propionic acid, 3-((1-carboxyethylthio) carbonothio oil thio)) propionic acid, 2- (dodecylthio carbonothio oil thio) Methyl 2-methylpropanoate, 1,4-bis (n-dodecylsulfanylthiocarbonylsulfanylmethyl) benzene, dibenzyltrithiocarbonate, distyryltrithiocarbonate, dicumyltrithiocarbonate, cyanomethyl-N-methyl-N- Examples thereof include phenyldithiocarbamate.
Among the RAFT agents, those having trithiocarbonate in the molecule are particularly preferable in that the crosslinked structure of the present crosslinked polymer can be made more uniform.
 ヨウ素移動重合法における制御剤は、ヨウ素移動重合法によるリビングラジカル活性単位を有する第1の重合体(後記に詳述)、及び/又は、当該第1の重合体以外の制御剤を使用することができる。
 上記第1の重合体以外の制御剤としては、具体的には、例えば、ヨウ化メチル、ヨウ化メチレン、ヨードホルム、四ヨウ化炭素、1-フェニルエチルヨージド、ベンジルヨージド等のアルキル基の炭素数が1~20のパフルオロアルキルパーフルオロアルキルヨージド、2-ヨードプロピオン酸エチル、2-ヨードイソ酪酸メチル、2-ヨードイソ酪酸エチル、2-ヨード-2-フェニル酢酸エチル、ビス(2-ヨード-2-フェニル酢酸)エチレングリコール、ビス(2-ヨードイソ酪酸)エチレングリコール、1,5-ジヨード-2,4-ジメチルベンゼン、2-ヨードプロピオニトリル等が挙げられる。
As the control agent in the iodine transfer polymerization method, a first polymer having a living radical active unit by the iodine transfer polymerization method (detailed later) and / or a control agent other than the first polymer shall be used. Can be done.
Specific examples of the control agent other than the first polymer include alkyl groups such as methyl iodide, methylene iodide, iodoform, carbon tetraiodide, 1-phenylethyl iodide, and benzyl iodide. Pafluoroalkyl perfluoroalkyl iodide having 1 to 20 carbon atoms, ethyl 2-iodopropionate, methyl 2-iodoisobutyrate, ethyl 2-iodoisobutyrate, ethyl 2-iodo-2-phenylacetate, bis (2-iodine) Examples thereof include -2-phenylacetic acid) ethylene glycol, bis (2-iodoisobutyric acid) ethylene glycol, 1,5-diiodo-2,4-dimethylbenzene, and 2-iodopropionitrile.
 交換連鎖移動機構型制御剤は、活性点を1個所備える1官能性のものであってもよいし、2個所以上備える2官能性以上のものを用いることもできる。2官能性以上の交換連鎖移動機構型制御剤は、2方向性以上に重合鎖が伸長するものである。本架橋重合体の製造の観点からは、2官能性又は3官能性以上の交換連鎖移動機構型制御剤を用いることが好適な場合がある。 The exchange chain transfer mechanism type control agent may be a monofunctional one having one active site, or a bifunctional or more agent having two or more active sites. A bifunctional or higher exchange chain transfer mechanism type control agent is one in which a polymer chain is extended in a bidirectional or higher direction. From the viewpoint of producing the present crosslinked polymer, it may be preferable to use a bifunctional or trifunctional or higher exchange chain transfer mechanism type control agent.
 交換連鎖移動機構型制御剤の使用量としては、架橋重合体の架橋構造をより均一にすることができる点で、本単量体の総量に対して0.0001~0.50モル%であることが好ましく、0.0001~0.40モル%であることがより好ましく、0.0001~0.30モル%であることがさらに好ましく、0.0002~0.30モル%であることがより一層好ましい。 The amount of the exchange chain transfer mechanism type control agent used is 0.0001 to 0.50 mol% with respect to the total amount of the present monomer in that the crosslinked structure of the crosslinked polymer can be made more uniform. It is more preferable, it is more preferably 0.0001 to 0.40 mol%, further preferably 0.0001 to 0.30 mol%, and more preferably 0.0002 to 0.30 mol%. More preferred.
 交換連鎖移動機構型制御剤とともに用いる重合開始剤としては、アゾ系化合物、有機過酸化物、無機過酸化物等の公知の重合開始剤を用いることができるが、特に限定されるものではない。熱開始、還元剤を併用したレドックス開始、UV開始等、公知の方法で適切なラジカル発生量となるように使用条件を調整することができる。一次鎖長の長い本架橋重合体を得るためには、製造時間が許容される範囲内で、ラジカル発生量がより少なくなるように条件を設定することが好ましい。
 前記の重合開始剤の中でも、安全上取り扱い易く、ラジカル重合時の副反応が起こりにくい点からは、アゾ化合物が好ましい。上記アゾ化合物の具体例としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)等が挙げられる。上記ラジカル重合開始剤は1種類のみ使用しても又は2種以上を併用してもよい。
As the polymerization initiator used together with the exchange chain transfer mechanism type control agent, known polymerization initiators such as azo compounds, organic peroxides, and inorganic peroxides can be used, but are not particularly limited. The conditions of use can be adjusted by known methods such as heat initiation, redox initiation with a reducing agent, and UV initiation so that the amount of radicals generated is appropriate. In order to obtain the present crosslinked polymer having a long primary chain length, it is preferable to set the conditions so that the amount of radicals generated is smaller within the allowable range of the production time.
Among the above-mentioned polymerization initiators, an azo compound is preferable because it is easy to handle for safety and side reactions during radical polymerization are unlikely to occur. Specific examples of the above azo compounds include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), and 2,2'-azobis (4-methoxy-2, 4-Dimethylvaleronitrile), dimethyl-2,2'-azobis (2-methylpropionate), 2,2'-azobis (2-methylbutyronitrile), 1,1'-azobis (cyclohexane-1-) Carbonitrile), 2,2'-azobis [N- (2-propenyl) -2-methylpropionamide], 2,2'-azobis (N-butyl-2-methylpropionamide) and the like. Only one kind of the radical polymerization initiator may be used, or two or more kinds thereof may be used in combination.
 重合開始剤の好ましい使用量は、用いる単量体成分の総量を100質量部としたときに、例えば、0.001~2質量部であり、また例えば、0.005~1質量部であり、また例えば、0.01~0.1質量部である。重合開始剤の使用量が0.001質量部以上であれば重合反応を安定的に行うことができ、2質量部以下であれば一次鎖長の長い重合体を得やすい。
 重合開始剤の使用割合は特に制限されないが、本架橋重合体の架橋構造を均一にすることができる点から、上記交換連鎖移動機構型制御剤1molに対する上記重合開始剤の使用量を0.5mol以下とすることが好ましく、0.2mol以下とするのがより好ましい。また、重合反応を安定的に行う観点から、交換連鎖移動機構型制御剤1molに対する重合開始剤の使用量の下限は、0.001molである。よって、交換連鎖移動機構型制御剤1molに対する重合開始剤の使用量は、0.001mol以上0.5mol以下の範囲が好ましく、0.005mol以上0.2mol以下の範囲がより好ましい。
The preferable amount of the polymerization initiator used is, for example, 0.001 to 2 parts by mass and, for example, 0.005 to 1 part by mass, when the total amount of the monomer components used is 100 parts by mass. Further, for example, it is 0.01 to 0.1 parts by mass. When the amount of the polymerization initiator used is 0.001 part by mass or more, the polymerization reaction can be stably carried out, and when it is 2 parts by mass or less, a polymer having a long primary chain length can be easily obtained.
The proportion of the polymerization initiator used is not particularly limited, but the amount of the polymerization initiator used per 1 mol of the exchange chain transfer mechanism type control agent is 0.5 mol from the viewpoint that the crosslinked structure of the present crosslinked polymer can be made uniform. It is preferably less than or equal to 0.2 mol or less. Further, from the viewpoint of stably performing the polymerization reaction, the lower limit of the amount of the polymerization initiator used with respect to 1 mol of the exchange chain transfer mechanism type control agent is 0.001 mol. Therefore, the amount of the polymerization initiator used with respect to 1 mol of the exchange chain transfer mechanism type control agent is preferably in the range of 0.001 mol or more and 0.5 mol or less, and more preferably in the range of 0.005 mol or more and 0.2 mol or less.
 重合溶媒は、使用する単量体の種類等を考慮して水及び各種有機溶剤等から選択される溶媒を使用することができる。より一次鎖長の長い重合体を得るためには、連鎖移動定数の小さい溶媒を使用することが好ましい。
 具体的な重合溶媒としては、メタノール、t-ブチルアルコール、アセトン、メチルエチルケトン、アセトニトリル及びテトラヒドロフラン等の水溶性溶剤の他、ベンゼン、酢酸エチル、ジクロロエタン、n-ヘキサン、シクロヘキサン及びn-ヘプタン等が挙げられ、これらの1種を単独であるいは2種以上を組み合わせて用いることができる。又は、これらと水との混合溶媒として用いてもよい。本発明において水溶性溶剤とは、20℃における水への溶解度が10g/100mlより大きいものを指す。
 上記の内、粗大粒子の生成や反応器への付着が小さく重合安定性が良好であること、析出した本架橋重合体が二次凝集しにくい(若しくは二次凝集が生じても水媒体中で解れやすい)こと、連鎖移動定数が小さく重合度(一次鎖長)の大きい重合体が得られること、及び後述する工程中和の際に操作が容易であること等の点で、メチルエチルケトン及びアセトニトリルが好ましい。
As the polymerization solvent, a solvent selected from water, various organic solvents and the like can be used in consideration of the type of monomer used and the like. In order to obtain a polymer having a longer primary chain length, it is preferable to use a solvent having a small chain transfer constant.
Specific examples of the polymerization solvent include water-soluble solvents such as methanol, t-butyl alcohol, acetone, methyl ethyl ketone, acetonitrile and tetrahydrofuran, as well as benzene, ethyl acetate, dichloroethane, n-hexane, cyclohexane and n-heptane. , One of these can be used alone or in combination of two or more. Alternatively, it may be used as a mixed solvent of these and water. In the present invention, the water-soluble solvent refers to a solvent having a solubility in water at 20 ° C. of more than 10 g / 100 ml.
Of the above, the formation of coarse particles and adhesion to the reactor are small and the polymerization stability is good, and the precipitated present crosslinked polymer is difficult to secondary agglomerate (or even if secondary agglomeration occurs in an aqueous medium. Methyl ethyl ketone and acetonitrile are different in that they are easy to unravel), that a polymer with a small chain transfer constant and a large degree of polymerization (primary chain length) can be obtained, and that the operation is easy during the process neutralization described later. preferable.
 また、同じく工程中和において中和反応を安定かつ速やかに進行させるため、重合溶媒中に高極性溶媒を少量加えておくことが好ましい。係る高極性溶媒としては、好ましくは水及びメタノールが挙げられる。高極性溶媒の使用量は、媒体の全質量に基づいて好ましくは0.05~20.0質量%であり、より好ましくは0.1~10.0質量%、さらに好ましくは0.1~5.0質量%であり、一層好ましくは0.1~1.0質量%である。高極性溶媒の割合が0.05質量%以上であれば、上記中和反応への効果が認められ、20.0質量%以下であれば重合反応への悪影響も見られない。また、アクリル酸等の親水性の高いエチレン性不飽和カルボン酸単量体の重合では、高極性溶媒を加えた場合には重合速度が向上し、一次鎖長の長い重合体を得やすくなる。高極性溶媒の中でも特に水は上記重合速度を向上させる効果が大きく好ましい。 Similarly, in order to allow the neutralization reaction to proceed stably and quickly in the process neutralization, it is preferable to add a small amount of a highly polar solvent to the polymerization solvent. Such highly polar solvents preferably include water and methanol. The amount of the highly polar solvent used is preferably 0.05 to 20.0% by mass, more preferably 0.1 to 10.0% by mass, still more preferably 0.1 to 5% by mass based on the total mass of the medium. It is 0.0% by mass, more preferably 0.1 to 1.0% by mass. When the proportion of the highly polar solvent is 0.05% by mass or more, the effect on the neutralization reaction is recognized, and when it is 20.0% by mass or less, no adverse effect on the polymerization reaction is observed. Further, in the polymerization of highly hydrophilic ethylenically unsaturated carboxylic acid monomer such as acrylic acid, the polymerization rate is improved when a highly polar solvent is added, and it becomes easy to obtain a polymer having a long primary chain length. Among the highly polar solvents, water is particularly preferable because it has a large effect of improving the polymerization rate.
 交換連鎖移動機構型制御剤の存在下における重合反応の際の反応温度は、好ましくは30℃以上120℃以下であり、より好ましくは40℃以上110℃以下であり、さらに好ましくは50℃以上100℃以下である。反応温度が30℃以上であれば、重合反応を円滑に進めることができる。一方、反応温度が120℃以下であれば、副反応が抑制できるとともに、使用できる開始剤や溶剤に関する制限が緩和される。 The reaction temperature during the polymerization reaction in the presence of the exchange chain transfer mechanism type controller is preferably 30 ° C. or higher and 120 ° C. or lower, more preferably 40 ° C. or higher and 110 ° C. or lower, and further preferably 50 ° C. or higher and 100 ° C. or higher. It is below ° C. When the reaction temperature is 30 ° C. or higher, the polymerization reaction can proceed smoothly. On the other hand, when the reaction temperature is 120 ° C. or lower, side reactions can be suppressed and restrictions on the initiators and solvents that can be used are relaxed.
 重合工程を経て得られた架橋重合体の分散液は、乾燥工程において減圧及び/又は加熱処理等を行い溶媒留去することにより、目的とする架橋重合体を粉末状態で得ることができる。この際、上記乾燥工程の前に、未反応単量体(及びその塩)を除去する目的で、重合工程に引き続き、遠心分離及び濾過等の固液分離工程、有機溶剤又は有機溶剤/水の混合溶剤を用いた洗浄工程を備えることが好ましい。
 上記洗浄工程を備えた場合、架橋重合体が二次凝集した場合であっても使用時に解れやすく、さらに残存する未反応単量体が除去されることにより、塗膜性能の点でも良好な性能を示す。
The crosslinked polymer dispersion obtained through the polymerization step can be obtained in a powder state by subjecting the dispersion to a reduced pressure and / or heat treatment in the drying step and distilling off the solvent. At this time, for the purpose of removing the unreacted monomer (and its salt) before the drying step, following the polymerization step, a solid-liquid separation step such as centrifugation and filtration, an organic solvent or an organic solvent / water. It is preferable to include a cleaning step using a mixed solvent.
When the above cleaning step is provided, even when the crosslinked polymer is secondarily agglutinated, it is easily unraveled at the time of use, and the remaining unreacted monomer is removed, so that the coating film performance is also good. Is shown.
 本発明の製造方法では、エチレン性不飽和カルボン酸単量体として未中和又は部分中和塩を用いた場合、重合工程により得られた架橋重合体の分散液にアルカリ化合物を添加して重合体を中和(以下、「工程中和」ともいう)した後、乾燥工程で溶媒を除去してもよい。また、未中和若しくは部分中和塩状態のまま架橋重合体の粉末を得た後、スラリー組成物を調製する際にアルカリ化合物を添加して、重合体を中和(以下、「後中和」ともいう)してもよい。上記の内、工程中和の方が、二次凝集体が解れやすい傾向にあり好ましい。 In the production method of the present invention, when an unneutralized or partially neutralized salt is used as the ethylenically unsaturated carboxylic acid monomer, an alkaline compound is added to the dispersion of the crosslinked polymer obtained in the polymerization step to add weight. After neutralizing the coalescence (hereinafter, also referred to as "step neutralization"), the solvent may be removed in a drying step. Further, after obtaining the powder of the crosslinked polymer in an unneutralized or partially neutralized salt state, an alkaline compound is added when preparing the slurry composition to neutralize the polymer (hereinafter, "post-neutralization"). It may also be called). Of the above, process neutralization is preferable because the secondary aggregates tend to be easily disintegrated.
 ここで、交換連鎖移動機構型制御剤としては、前記の通り、1種又は2種以上のビニル系単量体(以下、単に、「第1の単量体」ともいう。)の重合鎖(以下、単に、「第1の重合鎖」ともいう。)と交換連鎖移動機構によるリビングラジカル重合活性単位を有する重合体(第1の重合体)を用いることができる。 Here, as the exchange chain transfer mechanism type control agent, as described above, a polymerized chain (hereinafter, also simply referred to as “first monomer”) of one kind or two or more kinds of vinyl-based monomers (hereinafter, also simply referred to as “first monomer”) ( Hereinafter, a polymer (first polymer) having a living radical polymerization active unit by an exchange chain transfer mechanism and a “first polymer chain”) can be used.
 第1の重合体の存在下、本単量体を重合して本架橋重合体を製造するにあたって、第1の重合体を本単量体の重合の基点として用いるとともに、当該架橋重合体の重合溶媒中における分散安定剤として用いることができ、第1の重合体の重合鎖に対して、本単量体由来の構造単位を有する重合鎖を結合させた本架橋重合体を分散微粒子として得ることができる。こうすることで、重合安定性、すなわち、重合工程中の本架橋重合体の凝集を抑制して、粗大な凝集粒子の発生を抑制し、粒子径が小さく、かつ粒子径分布の狭い本架橋重合体を得ることができる。 In producing the present crosslinked polymer by polymerizing the present monomer in the presence of the first polymer, the first polymer is used as a starting point for the polymerization of the present monomer and the polymerization of the crosslinked polymer. The present crosslinked polymer, which can be used as a dispersion stabilizer in a solvent and has a polymer chain having a structural unit derived from the present monomer bonded to the polymer chain of the first polymer, is obtained as dispersed fine particles. Can be done. By doing so, the polymerization stability, that is, the aggregation of the present crosslinked polymer during the polymerization step is suppressed, the generation of coarse aggregated particles is suppressed, the particle size is small, and the particle size distribution is narrow. You can get coalescence.
 第1の重合体の存在下、本単量体を重合して本架橋重合体を製造するにあたって、第1の重合体を分散安定剤として機能させるためには、例えば、第1の重合体を、本単量体の総質量100質量部に対して、0.3質量部以上50質量部以下用いることができる。かかる範囲で用いることで、第1の重合体を分散安定剤として機能させつつ、本単量体を主として含有する本架橋重合体を製造することができる。また、第1の重合体が0.3質量部未満であると、十分な分散安定効果が出にくく、本架橋重合体の粒子径が0.3μmを超えやすくなり、50質量部を超えても、分散安定剤としての機能性も向上しにくく、かつ本架橋重合体の小粒子径化の効果も小さくなってしまうからである。 In order to make the first polymer function as a dispersion stabilizer in producing the present crosslinked polymer by polymerizing the present monomer in the presence of the first polymer, for example, the first polymer is used. , 0.3 parts by mass or more and 50 parts by mass or less can be used with respect to 100 parts by mass of the total mass of this monomer. By using it in such a range, it is possible to produce the present crosslinked polymer mainly containing the present monomer while allowing the first polymer to function as a dispersion stabilizer. Further, if the amount of the first polymer is less than 0.3 parts by mass, it is difficult to obtain a sufficient dispersion stabilizing effect, and the particle size of the crosslinked polymer tends to exceed 0.3 μm, even if it exceeds 50 parts by mass. This is because it is difficult to improve the functionality as a dispersion stabilizer, and the effect of reducing the particle size of the crosslinked polymer is also reduced.
 第1の重合体は、本単量体の総質量100質量部に対して、また例えば、0.5質量部以上、また例えば、1質量部以上用いることができる。また、第1の重合体は、また例えば、40質量部以下、また例えば、30質量部以下、また例えば、20質量部以下用いることができる。第1の重合体の本単量体の総質量100質量部に対する使用量の範囲は、上記上限と下限を適宜組み合わせて設定できる。 The first polymer can be used with respect to 100 parts by mass of the total mass of the present monomer, for example, 0.5 parts by mass or more, and for example, 1 part by mass or more. Further, the first polymer can be used, for example, 40 parts by mass or less, for example, 30 parts by mass or less, and for example, 20 parts by mass or less. The range of the amount of the first polymer used with respect to 100 parts by mass of the total mass of the present monomer can be set by appropriately combining the above upper limit and lower limit.
第1の重合体の製造方法
 公知の交換連鎖移動機構型制御剤の存在下、第1の単量体を含む単量体組成物を重合することで、第1の単量体由来の構造単位を有する第1の重合鎖と交換連鎖移動機構によるリビング重合活性単位を備える第1の重合体を得ることができる。
Method for Producing First Polymer By polymerizing a monomer composition containing the first monomer in the presence of a known exchange chain transfer mechanism type control agent, a structural unit derived from the first monomer It is possible to obtain a first polymer having a first polymer chain having the above and a living polymerization active unit by an exchange chain transfer mechanism.
 第1の重合体を製造する際の重合条件は、当業者において周知であり、重合プロセスとしては、塊状重合、溶液重合、懸濁重合及び乳化重合等の各種プロセスが挙げられるが、本架橋重合体の製造における重合基点であることや分散安定剤的に機能することを考慮すると、例えば、溶液重合を用いることができる。また、交換連鎖移動機構制御剤の種類、重合開始剤の種類及び使用量、重合溶媒、反応温度等の重合条件は、前記の段落[0040]~[0043]及び[0045]~[0049]に準じて適宜選択され、交換連鎖移動機構制御剤の使用量は、目標とする第1の重合体の数平均分子量(Mn)に応じて適宜調整される。
 交換連鎖移動機構制御剤としては、RAFT剤及びヨウ素移動重合法における制御剤が第1の重合体の分子量分布を小さくできる点で好ましい。
 さらに、第1の重合体を製造する際の濃度は、重合溶媒と第1の単量体など仕込み量の総質量に対して、特に限定するものではないが、例えば、10質量%以上80質量%以下、また例えば、15質量%以上70質量%以下、また例えば、20質量%以上70質量%以下などとすることができる。
The polymerization conditions for producing the first polymer are well known to those skilled in the art, and examples of the polymerization process include various processes such as bulk polymerization, solution polymerization, suspension polymerization and emulsion polymerization. Considering that it is a polymerization starting point in the production of coalescence and that it functions as a dispersion stabilizer, solution polymerization can be used, for example. Further, the polymerization conditions such as the type of the exchange chain transfer mechanism control agent, the type and amount of the polymerization initiator, the polymerization solvent, and the reaction temperature are described in the above paragraphs [0040] to [0043] and [0045] to [0049]. The amount of the exchange chain transfer mechanism control agent used is appropriately adjusted according to the number average molecular weight (Mn) of the target first polymer.
As the exchange chain transfer mechanism control agent, a RAFT agent and a control agent in the iodine transfer polymerization method are preferable in that the molecular weight distribution of the first polymer can be reduced.
Further, the concentration at the time of producing the first polymer is not particularly limited with respect to the total mass of the amount charged such as the polymerization solvent and the first monomer, but is, for example, 10% by mass or more and 80% by mass. % Or less, for example, 15% by mass or more and 70% by mass or less, and for example, 20% by mass or more and 70% by mass or less.
 典型的には、1官能性の交換連鎖移動機構型制御剤を用いた場合には、リビング重合活性単位を第1の重合鎖の末端に備える態様となり、2官能性以上の交換連鎖移機構型制御剤を用いた場合には、リビング重合活性単位を基点として2方向以上に分岐してそれぞれに第1の重合鎖を備える態様となる。なお、いずれの態様においても、別の重合鎖を備える場合には、この別の重合鎖が、リビング重合活性単位に直接結合され、リビング重合活性単位に対してより遠位側に第1の重合鎖が備えられるように、当該別の重合鎖の遠位末端に第1の重合鎖が結合された態様となっている。 Typically, when a monofunctional exchange chain transfer mechanism type control agent is used, a living polymerization active unit is provided at the end of the first polymerization chain, and the exchange chain transfer mechanism type having two or more functionalitys is used. When a control agent is used, it is branched in two or more directions with the living polymerization active unit as a base point, and each of them is provided with a first polymerization chain. In any of the embodiments, when another polymerized chain is provided, the other polymerized chain is directly bonded to the living polymerization active unit, and the first polymerization is carried out more distally to the living polymerization active unit. The first polymerized chain is bonded to the distal end of the other polymerized chain so that the chain is provided.
 第1の重合体は、2種以上の第1の重合鎖を備えることもできる。例えば、ある種の組成の1種又は2種以上の第1の単量体を用いてリビングラジカル重合等を実施後に、他の組成で1種又は2種以上の第1の単量体を用いてリビングラジカル重合等を実施することで、異なる組成の第1の単量体由来の構造単位を有する第1の重合鎖(ブロック)を備える第1の重合体を得ることができる。
 
The first polymer may also include two or more first polymerized chains. For example, after performing living radical polymerization or the like using one or more first monomers of a certain composition, one or more first monomers of another composition are used. By carrying out living radical polymerization or the like, a first polymer having a first polymerization chain (block) having a structural unit derived from the first monomer having a different composition can be obtained.
 第1の重合体の数平均分子量(Mn)は、特に限定するものではないが、例えば、3,000以上であり、また例えば、5,000以上であり、また例えば、7,000以上であり、また例えば、8,000以上であり、また例えば、10,000以上である。また、同Mnは、50,000以下であり、また例えば、30,000以下であり、また例えば、25,000以下であり、また例えば、20,000以下であり、また例えば、15,000以下であり、また例えば、14,000以下であり、また例えば、12,000以下である。Mnの範囲としては、上記した下限及び上限を適宜組み合わせて設定することができるが、例えば、5,000以上25,000以下であり、また例えば、10,000以上25,000以下であり、また例えば、10,000以上15,000以下であり、また例えば、10,000以上14,000以下である。 The number average molecular weight (Mn) of the first polymer is not particularly limited, but is, for example, 3,000 or more, for example, 5,000 or more, and for example, 7,000 or more. Also, for example, 8,000 or more, and for example, 10,000 or more. Further, the Mn is 50,000 or less, for example, 30,000 or less, and for example, 25,000 or less, and for example, 20,000 or less, and for example, 15,000 or less. And, for example, 14,000 or less, and for example, 12,000 or less. The range of Mn can be set by appropriately combining the above-mentioned lower limit and upper limit, and is, for example, 5,000 or more and 25,000 or less, and for example, 10,000 or more and 25,000 or less. For example, it is 10,000 or more and 15,000 or less, and for example, 10,000 or more and 14,000 or less.
 第1の重合体の重量平均分子量(Mw)は、特に限定するものではないが、例えば、5,000以上であり、また例えば、7,000以上であり、また例えば、9,000以上であり、また例えば、10,000以上であり、また例えば、13,000以上であり、また例えば、15,000以上である。また、同Mwは、60,000以下であり、また例えば、55,000以下であり、また例えば、50,000以下であり、また例えば、45,000以下であり、また例えば、40,000以下であり、また例えば、36,000以下であり、また例えば、35,000以下であり、また例えば、30,000以下であり、また例えば、25、000以下である。Mwの範囲としては、上記した下限及び上限を適宜組み合わせて設定することができるが、例えば、1,000以上40,000以下であり、また例えば、10,000以上35,000以下であり、また例えば、10,000以上30,000以下であり、また例えば、15,000以上25,000以下である。 The weight average molecular weight (Mw) of the first polymer is not particularly limited, but is, for example, 5,000 or more, for example, 7,000 or more, and for example, 9,000 or more. Also, for example, 10,000 or more, for example, 13,000 or more, and for example, 15,000 or more. Further, the Mw is 60,000 or less, for example, 55,000 or less, and for example, 50,000 or less, and for example, 45,000 or less, and for example, 40,000 or less. And, for example, 36,000 or less, and for example, 35,000 or less, and for example, 30,000 or less, and for example, 25,000 or less. The range of Mw can be set by appropriately combining the above-mentioned lower limit and upper limit, and is, for example, 1,000 or more and 40,000 or less, and for example, 10,000 or more and 35,000 or less. For example, it is 10,000 or more and 30,000 or less, and for example, 15,000 or more and 25,000 or less.
 なお、第1の重合体のMw及びMnは、いずれも、ポリスチレンを標準物質として用いたゲルパーミエーションクロマトグラフィーにて測定することができる。クロマトグラフィー条件の詳細は、後段の実施例に開示する条件を採用することができる。 Both Mw and Mn of the first polymer can be measured by gel permeation chromatography using polystyrene as a standard substance. As for the details of the chromatography conditions, the conditions disclosed in the subsequent examples can be adopted.
 第1の重合体の分子量分布(Mw/Mn)は、特に限定するものではないが、例えば、2.5以下であり、また例えば、2.4以下であり、また例えば、2.3以下であり、また例えば、2.0以下であり、また例えば、1.6以下であり、また例えば、1.5以下であり、また例えば、1.4以下であり、また例えば、1.3以下である。また、分子量分布は、例えば、1.1以上であり、また例えば、1.2以上であり、また例えば、1.3以上であり、また例えば、1.4以上、また例えば、1.5以上である。分子量分布の範囲としては、上記した下限及び上限を適宜組み合わせて設定することができるが、例えば、1.1以上2.5以下、また例えば、1.1以上2.4以下、また例えば、1.1以上2.3以下、また例えば、1.1以上2.0以下などとすることができる。 The molecular weight distribution (Mw / Mn) of the first polymer is not particularly limited, but is, for example, 2.5 or less, for example, 2.4 or less, and for example, 2.3 or less. Yes, for example 2.0 or less, and for example 1.6 or less, and for example 1.5 or less, and for example 1.4 or less, and for example 1.3 or less. be. Further, the molecular weight distribution is, for example, 1.1 or more, for example, 1.2 or more, and for example, 1.3 or more, and for example, 1.4 or more, and for example, 1.5 or more. Is. The range of the molecular weight distribution can be set by appropriately combining the above-mentioned lower limit and upper limit. For example, 1.1 or more and 2.5 or less, for example, 1.1 or more and 2.4 or less, and for example, 1 It can be 1 or more and 2.3 or less, and for example, 1.1 or more and 2.0 or less.
 第1の重合体の分子量分布は小さいほど、得られる本架橋重合体の粒子径が小さくなる傾向がある。分子量分布が2.4以下であることが好適であり、より小さい粒子径の本架橋重合体を得るには、同1.7以下であることが好適であり、さらに好適には、同1.6以下であり、一層好適には、1.4以下である。 The smaller the molecular weight distribution of the first polymer, the smaller the particle size of the obtained crosslinked polymer tends to be. The molecular weight distribution is preferably 2.4 or less, and in order to obtain the present crosslinked polymer having a smaller particle size, it is preferably 1.7 or less, and more preferably 1. It is 6 or less, and more preferably 1.4 or less.
<第1の単量体>
 第1の単量体としては、例えば、スチレン類、(メタ)アクリロニトリル化合物、マレイミド化合物、不飽和酸無水物及び不飽和カルボン酸化合物が挙げられる。これらのうち1種又は2種以上を組み合わせて用いることができる。
<First monomer>
Examples of the first monomer include styrenes, (meth) acrylonitrile compounds, maleimide compounds, unsaturated acid anhydrides and unsaturated carboxylic acid compounds. One or a combination of two or more of these can be used.
 スチレン類としては、スチレン及びその誘導体が含まれる。具体的な化合物としては、スチレン、α-メチルスチレン、β-メチルスチレン、ビニルトルエン、ビニルキシレン、ビニルナフタレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、p-n-ブチルスチレン、p-イソブチルスチレン、p-t-ブチルスチレン、o-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレン、o-クロロメチルスチレン、p-クロロメチルスチレン、o-クロロスチレン、p-クロロスチレン、o-ヒドロキシスチレン、m-ヒドロキシスチレン、p-ヒドロキシスチレン、ジビニルベンゼン等が例示され、これらの内の1種又は2種以上を用いることができる。これらの中でも、重合性の観点から、スチレン、o-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレン、o-ヒドロキシスチレン、m-ヒドロキシスチレン、p-ヒドロキシスチレンが好ましい。 Styrenes include styrene and its derivatives. Specific compounds include styrene, α-methylstyrene, β-methylstyrene, vinyltoluene, vinylxylene, vinylnaphthalene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-ethylstyrene, and m-. Ethylstyrene, p-ethylstyrene, pn-butylstyrene, p-isobutylstyrene, pt-butylstyrene, o-methoxystyrene, m-methoxystyrene, p-methoxystyrene, o-chloromethylstyrene, p- Examples thereof include chloromethylstyrene, o-chlorostyrene, p-chlorostyrene, o-hydroxystyrene, m-hydroxystyrene, p-hydroxystyrene, divinylbenzene, etc., and one or more of these may be used. can. Among these, styrene, o-methoxystyrene, m-methoxystyrene, p-methoxystyrene, o-hydroxystyrene, m-hydroxystyrene, and p-hydroxystyrene are preferable from the viewpoint of polymerizable property.
 (メタ)アクリロニトリル化合物としては、(メタ)アクリロニトリル、アクリロ二トリル、α-メチルアクリロニトリル等が挙げられる。例えば、アクリロニトリルが用いられる。 Examples of the (meth) acrylonitrile compound include (meth) acrylonitrile, acrylonitrile, α-methylacrylonitrile, and the like. For example, acrylonitrile is used.
 マレイミド化合物としては、マレイミド化合物には、マレイミド及びN-置換マレイミド化合物が含まれる。N-置換マレイミド化合物の具体例としては、N-メチルマレイミド、N-エチルマレイミド、N-n-プロピルマレイミド、N-イソプロピルマレイミド、N-n-ブチルマレイミド、N-イソブチルマレイミド、N-tert-ブチルマレイミド、N-ペンチルマレイミド、N-ヘキシルマレイミド、N-ヘプチルマレイミド、N-オクチルマレイミド、N-ラウリルマレイミド、N-ステアリルマレイミド等のN-アルキル置換マレイミド化合物;N-シクロペンチルマレイミド、N-シクロヘキシルマレイミド等のN-シクロアルキル置換マレイミド化合物;N-フェニルマレイミド、N-(4-ヒドロキシフェニル)マレイミド、N-(4-アセチルフェニル)マレイミド、N-(4-メトキシフェニル)マレイミド、N-(4-エトキシフェニル)マレイミド、N-(4-クロロフェニル)マレイミド、N-(4-ブロモフェニル)マレイミド、N-ベンジルマレイミド等のN-アリール置換マレイミド化合物などが挙げられ、これらの内の1種又は2種以上を用いることができる。例えば、N-フェニルマレイミドが用いられる。 As the maleimide compound, the maleimide compound includes a maleimide and an N-substituted maleimide compound. Specific examples of the N-substituted maleimide compound include N-methylmaleimide, N-ethylmaleimide, Nn-propylmaleimide, N-isopropylmaleimide, Nn-butylmaleimide, N-isobutylmaleimide, and N-tert-butyl. N-alkyl-substituted maleimide compounds such as maleimide, N-pentylmaleimide, N-hexylmaleimide, N-heptylmaleimide, N-octylmaleimide, N-laurylmaleimide, N-stearylmaleimide; N-cyclopentylmaleimide, N-cyclohexylmaleimide, etc. N-Cycloalkyl-substituted maleimide compounds; N-phenylmaleimide, N- (4-hydroxyphenyl) maleimide, N- (4-acetylphenyl) maleimide, N- (4-methoxyphenyl) maleimide, N- (4-ethoxy) Examples thereof include N-aryl-substituted maleimide compounds such as phenyl) maleimide, N- (4-chlorophenyl) maleimide, N- (4-bromophenyl) maleimide, and N-benzylmaleimide, and one or more of these. Can be used. For example, N-phenylmaleimide is used.
 また、不飽和酸無水物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられ、これらのうち1種又は2種以上を用いることができる。 Further, examples of the unsaturated acid anhydride include maleic anhydride, itaconic anhydride, citraconic anhydride and the like, and one or more of these can be used.
 不飽和カルボン酸化合物としては、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、シトラコン酸、ケイ皮酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、無水マレイン酸、無水イタコン酸及び無水シトラコン酸等の不飽和ジカルボン酸並びに不飽和ジカルボン酸のモノアルキルエステル等が挙げられ、これのうち、1種又は2種以上を用いることができる。 Examples of unsaturated carboxylic acid compounds include (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, silicic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, maleic anhydride, and anhydrous. Examples thereof include unsaturated dicarboxylic acids such as itaconic acid and citraconic anhydride, and monoalkyl esters of unsaturated dicarboxylic acids, and one or more of them can be used.
 第1の単量体としては、これらの中でも、例えば、少なくともスチレン類を含むことが好ましい。スチレン類は、リビング重合が容易で、適度な疎水性と有機溶媒に対する親和性を付与できるからである。第1の重合鎖に疎水性ないし有機溶媒に対する親和性を付与することができる。こうすることで、例えば、極性有機溶媒中での分散重合法により本架橋重合体を製造する場合には、第1の重合体が、本架橋重合体の表層に存在する傾向が生じて、本架橋重合体の分散安定性が向上される。 Among these, the first monomer preferably contains, for example, at least styrenes. This is because styrenes are easy to carry out in the living room and can impart appropriate hydrophobicity and affinity to organic solvents. It is possible to impart hydrophobicity or affinity to an organic solvent to the first polymerized chain. By doing so, for example, when the present crosslinked polymer is produced by the dispersion polymerization method in a polar organic solvent, the first polymer tends to be present on the surface layer of the present crosslinked polymer. The dispersion stability of the crosslinked polymer is improved.
 スチレン類は、第1の単量体の総質量のうち、例えば、20質量%以上である。20質量%以上であるとリビング重合が容易となり、適度な疎水性と有機溶媒に対する親和性を適切に付与できるからである。また例えば、30質量%以上であり、また例えば、35質量%以上であり、また例えば、40質量%以上であり、また例えば、50質量%以上であり、また例えば、60質量%以上であり、また例えば、65質量%以上であり、また例えば、70質量%以上であり、また例えば、75質量%以上である。また、スチレン類は、前記総質量の100質量%以下であり、また例えば、95質量%以下であり、また例えば、90質量%以下であり、また例えば、85質量%以下であり、また例えば、80質量%以下であり、また例えば、75質量%以下である。スチレン類の前記総質量に対する範囲としては、上記した下限及び上限を適宜組み合わせて設定することができるが、例えば、20質量%以上95質量%以下であり、また例えば、30質量%以上75質量%以下であり、また例えば、35質量%以上85質量%以下である。 Styrene is, for example, 20% by mass or more of the total mass of the first monomer. This is because if the content is 20% by mass or more, the living polymerization is facilitated, and an appropriate hydrophobicity and an affinity for an organic solvent can be appropriately imparted. Further, for example, it is 30% by mass or more, and for example, 35% by mass or more, and for example, 40% by mass or more, and for example, 50% by mass or more, and for example, 60% by mass or more. Further, for example, it is 65% by mass or more, for example, 70% by mass or more, and for example, 75% by mass or more. Further, the styrenes are 100% by mass or less of the total mass, and are, for example, 95% by mass or less, and are, for example, 90% by mass or less, and are, for example, 85% by mass or less, and are, for example,. It is 80% by mass or less, and for example, 75% by mass or less. The range of the styrenes with respect to the total mass can be set by appropriately combining the above-mentioned lower limit and upper limit, and is, for example, 20% by mass or more and 95% by mass or less, and for example, 30% by mass or more and 75% by mass or more. And, for example, 35% by mass or more and 85% by mass or less.
 (メタ)アクリロニトリル化合物、マレイミド化合物、酸無水物及び不飽和カルボン酸化合物は、それぞれ、単独でも使用できるほか、これら4種のうち1種又は2種以上をスチレン類と組み合わせて用いることが好ましい。これら4種は、いずれも、第1の重合鎖の疎水性又は有機溶媒親和性を維持、調節又は付与することができるからである。中でも、アクリロニトリルなどの(メタ)アクリロニトリル化合物、N-フェニルマレイミドなどのマレイミド化合物及び酸無水物のうちの1種又は2種以上である。中でも、スチレンとアクリロニトリル、スチレンとN-フェニルマレイミドなどの組み合わせが好適である。なお、不飽和カルボン酸化合物は、第1の重合体の極性を容易に変化させることができる点等において好ましい。 The (meth) acrylonitrile compound, maleimide compound, acid anhydride and unsaturated carboxylic acid compound can be used alone, and it is preferable to use one or more of these four types in combination with styrenes. This is because all of these four types can maintain, regulate or impart the hydrophobicity or organic solvent affinity of the first polymerized chain. Among them, one or more of (meth) acrylonitrile compounds such as acrylonitrile, maleimide compounds such as N-phenylmaleimide, and acid anhydrides. Of these, a combination of styrene and acrylonitrile, styrene and N-phenylmaleimide and the like is preferable. The unsaturated carboxylic acid compound is preferable in that the polarity of the first polymer can be easily changed.
 スチレン類と組み合わせて用いる場合、スチレン類以外のこれら1種又は2種以上の第1の単量体の総量は、第1の重合鎖を重合するための第1の単量体(第1の重合鎖の第1の単量体単位)の総質量のうち、例えば、20質量%以上である。また例えば、25質量%以上であり、また例えば、30質量%以上であり、また例えば、35質量%以上であり、また例えば、40質量%以上であり、また例えば、50質量%以上であり、また例えば、60質量%以上である。また、(メタ)アクリロニトリル化合物は、前記総質量の80質量%以下であり、また例えば、75質量%以下であり、また例えば、70質量%以下であり、また例えば、65質量%以下であり、また例えば、60質量%以下であり、また例えば、55質量%以下であり、また例えば、50質量%以下である。スチレン類の前記総質量に対する範囲としては、上記した下限及び上限を適宜組み合わせて設定することができるが、例えば、20質量%以上65質量%以下であり、また例えば、25質量%以上50質量%以下である。 When used in combination with styrenes, the total amount of these one or more first monomers other than styrenes is the first monomer for polymerizing the first polymerized chain (first). It is, for example, 20% by mass or more of the total mass of the first monomer unit of the polymerized chain). Further, for example, it is 25% by mass or more, and for example, 30% by mass or more, and for example, 35% by mass or more, and for example, 40% by mass or more, and for example, 50% by mass or more. Further, for example, it is 60% by mass or more. The (meth) acrylonitrile compound is 80% by mass or less of the total mass, and is, for example, 75% by mass or less, and is, for example, 70% by mass or less, and is, for example, 65% by mass or less. Further, for example, it is 60% by mass or less, for example, 55% by mass or less, and for example, 50% by mass or less. The range of the styrenes with respect to the total mass can be set by appropriately combining the above lower limit and upper limit, and is, for example, 20% by mass or more and 65% by mass or less, and for example, 25% by mass or more and 50% by mass or more. It is as follows.
<第1の重合鎖>
 第1の重合鎖は、上記した第1の単量体のみの重合鎖であってもよいが、必要に応じて、上記以外の他のビニル系単量体を第1の単量体として用いることができる。例えば、(メタ)アクリル酸、(メタ)アクリル酸アルキルなどの(メタ)アクリル酸エステル等の公知のビニル系単量体を用いることができる。
なお、こうした他の単量体は、第1の重合鎖を構成する単量体の総質量の、例えば10質量%以下、また例えば、5質量%以下、また例えば、3質量%以下、また例えば、1質量%以下であり、また例えば、0.5質量%以下である。
<First polymerized chain>
The first polymerized chain may be a polymerized chain containing only the first monomer described above, but if necessary, other vinyl-based monomers other than the above may be used as the first monomer. be able to. For example, known vinyl-based monomers such as (meth) acrylic acid esters such as (meth) acrylic acid and alkyl (meth) acrylic acid can be used.
It should be noted that these other monomers are, for example, 10% by mass or less, for example, 5% by mass or less, for example, 3% by mass or less, or, for example, the total mass of the monomers constituting the first polymerized chain. 1, 1% by mass or less, and for example, 0.5% by mass or less.
 また、第1の重合体は、第1の重合鎖とは異なるブロック(他の重合鎖)を備えることもできる。かかる他の重合鎖は、例えば、第1の重合鎖の形成後に、別の合成工程で付加されてもよい。この場合には、第1の重合鎖を備える第1の重合体に、引き続きあるいは新たにラジカル重合開始剤と他のビニル系単量体を供給して、第1の重合鎖とは異なる組成の第1の単量体以外の単量体に由来する単位からなる他の重合鎖(ブロック)を備える第1の重合体を得ることができる。後述するリビングラジカル活性単位に直接連結され、かつ第1の重合鎖に連結されるように備えられることで、本架橋重合体に用いる本単量体と共通する単量体の一部を予め、第1の重合体中に備えることができる。 Further, the first polymer may include a block (another polymer chain) different from that of the first polymer chain. Such other polymerized chains may be added, for example, in another synthetic step after the formation of the first polymerized chain. In this case, a radical polymerization initiator and another vinyl-based monomer are continuously or newly supplied to the first polymer having the first polymer chain to have a composition different from that of the first polymer chain. It is possible to obtain a first polymer having another polymer chain (block) composed of units derived from a monomer other than the first monomer. By being provided so as to be directly linked to the living radical active unit, which will be described later, and to be linked to the first polymerized chain, a part of the monomer common to the present monomer used in the present crosslinked polymer can be partially linked in advance. It can be provided in the first polymer.
<リビングラジカル重合活性単位>
 第1の重合体は、交換連鎖移動機構によるリビングラジカル重合活性単位を備えるため、本単量体の沈殿重合又は分散重合にあたって、第1の重合体の重合溶媒への溶解性や分散安定剤としての機能のために、種々のモノマーを選択することができる。
<Living radical polymerization active unit>
Since the first polymer has a living radical polymerization active unit by an exchange chain transfer mechanism, it can be used as a solubility or dispersion stabilizer in the polymerization solvent of the first polymer in the precipitation polymerization or dispersion polymerization of this monomer. Various monomers can be selected for the function of.
 第1の重合体におけるリビングラジカル重合活性単位の交換連鎖移動機構としては、可逆的付加-開裂連鎖移動重合法(RAFT法)、ヨウ素移動重合法、有機テルル化合物を用いる重合法(TERP法)、有機アンチモン化合物を用いる重合法(SBRP法)、有機ビスマス化合物を用いる重合法(BIRP法)等が挙げられる。これらの中でも、本架橋重合体の粒子径を小さくできる点で、RAFT法及びヨウ素移動重合法が好ましく、RAFT法がより好ましい。 As the exchange chain transfer mechanism of the living radical polymerization active unit in the first polymer, a reversible addition-cleavage chain transfer polymerization method (RAFT method), an iodine transfer polymerization method, a polymerization method using an organic tellurium compound (TERP method), and the like. Examples thereof include a polymerization method using an organic antimony compound (SBRP method) and a polymerization method using an organic bismuth compound (BIRP method). Among these, the RAFT method and the iodine transfer polymerization method are preferable, and the RAFT method is more preferable, because the particle size of the crosslinked polymer can be reduced.
3.本架橋重合体の特性
<本架橋重合体の不均一網目構造サイズ>
 本架橋重合体又はその塩は、小角X線散乱法(測定温度:25.0±0.1℃)により、中和度50~100モル%に中和された前記架橋重合体の1質量%濃度水溶液を測定することで得られる散乱強度曲線I(q)に対し、下記式(1)でカーブフィッティングして算出される、本架橋重合体の不均一網目構造サイズΞ(Ξ1)が80以下である。
Figure JPOXMLDOC01-appb-M000003
 ここで、上記式(1)は、架橋の不均一構造を記述できる「ローレンツ2乗モデル」(Shibayama M. et al., Macromolecules 2009,42, 1344-)と、カルボキシル基由来の電解質間の相関を記述できる「ブロードピークモデル」(Shibayama M. et al., Journal of Chemistry Physics 2018, 149, 163301-)を組み合わせた式である。
3. 3. Characteristics of the present crosslinked polymer <Non-uniform network structure size of the present crosslinked polymer>
The crosslinked polymer or a salt thereof is 1% by mass of the crosslinked polymer neutralized to a neutralization degree of 50 to 100 mol% by a small-angle X-ray scattering method (measurement temperature: 25.0 ± 0.1 ° C.). The non-uniform network structure size Ξ (Ξ1) of the crosslinked polymer calculated by curve fitting with the following formula (1) is 80 or less with respect to the scattering intensity curve I (q) obtained by measuring the concentrated aqueous solution. Is.
Figure JPOXMLDOC01-appb-M000003
Here, the above equation (1) is a correlation between the “Lorentz square model” (Shibayama M. et al., Macromolecules 2009, 42, 1344) capable of describing the non-uniform structure of cross-linking and the electrolyte derived from the carboxyl group. This is a combination of "broad peak models" (Shibayama M. et al., Journal of Chemistry Physics 2018, 149, 163301-) that can describe.
 Ξ1は、本架橋重合体又はその塩を含む組成物の塗工性及び塗膜性能(本架橋重合体又はその塩を含む二次電池電極用バインダー、活物質及び水を含む組成物の場合には、塗工性及びサイクル特性)に優れる観点から、80以下であり、70以下であることが好ましく、60以下であることがより好ましく、50以下であることがさらに好ましく、40以下であることが一層好ましい。
 さらに、上述の観点から、前記Ξ1と、小角X線散乱法(測定温度:25.0±0.1℃)により、中和度50~100モル%に中和された前記架橋重合体の5質量%濃度水溶液を測定することで得られる散乱強度曲線I(q)に対し、前記式(1)でカーブフィッティングして算出される、前記架橋重合体の不均一網目構造サイズΞ(Ξ5)の差ΔΞ(Ξ1-Ξ5)が50以下であることが好ましく、30以下であることがより好ましく、20以下であることがさらに好ましく、10以下であることが一層好ましく、5.0以下であることがより一層好ましい。
 ここで、Ξ1、Ξ5は、実施例に記載の方法に従う方法により得られる。
Ξ1 is the coatability and coating performance of the composition containing the crosslinked polymer or a salt thereof (in the case of a composition containing a binder for a secondary battery electrode containing the crosslinked polymer or a salt thereof, an active material and water). Is 80 or less, preferably 70 or less, more preferably 60 or less, further preferably 50 or less, and more preferably 40 or less, from the viewpoint of excellent coatability and cycle characteristics. Is more preferable.
Further, from the above viewpoint, 5 of the crosslinked polymer neutralized to a degree of neutralization of 50 to 100 mol% by the above-mentioned Ξ1 and the small-angle X-ray scattering method (measurement temperature: 25.0 ± 0.1 ° C.). The non-uniform network structure size Ξ (Ξ5) of the crosslinked polymer calculated by curve fitting with the above formula (1) with respect to the scattering intensity curve I (q) obtained by measuring the mass% concentration aqueous solution. The difference ΔΞ (Ξ1-Ξ5) is preferably 50 or less, more preferably 30 or less, further preferably 20 or less, further preferably 10 or less, and 5.0 or less. Is even more preferable.
Here, Ξ1 and Ξ5 are obtained by a method according to the method described in Examples.
<本架橋重合体の水溶液粘度>
 本架橋重合体又はその塩は、その2質量%濃度水溶液の粘度が100mPa・s以上であることが好ましい。2質量%濃度水溶液の粘度が100mPa・s以上の場合、架橋重合体を含む組成物の保存安定性が高く、優れた結着性を発揮することが可能となる。2質量%濃度水溶液の粘度は、1,000mPa・s以上であってもよく、10,000mPa・s以上であってもよく、50,000mPa・s以上であってもよい
 水溶液粘度は、所定の濃度となる量の本架橋重合体又はその塩を水中に均一に溶解又は分散した後、実施例に記載の方法に従い、12rpmにおけるB型粘度(25℃)を測定することにより得られる。
<Aqueous viscosity of this crosslinked polymer>
The crosslinked polymer or a salt thereof preferably has a viscosity of 100 mPa · s or more in a 2% by mass aqueous solution thereof. When the viscosity of the 2% by mass aqueous solution is 100 mPa · s or more, the storage stability of the composition containing the crosslinked polymer is high, and excellent binding property can be exhibited. The viscosity of the 2 mass% concentration aqueous solution may be 1,000 mPa · s or more, 10,000 mPa · s or more, or 50,000 mPa · s or more. It is obtained by uniformly dissolving or dispersing the present crosslinked polymer or a salt thereof in an amount to be a concentration in water, and then measuring the B-type viscosity (25 ° C.) at 12 rpm according to the method described in Examples.
 本架橋重合体又はその塩は、水中では水を吸収して膨潤した状態となる。一般に、架橋重合体が適度な架橋度を有する場合、当該架橋重合体が有する親水性基の量が多いほど、架橋重合体は水を吸収して膨潤し易くなる。また、架橋度についていえば、架橋度が低いほど、架橋重合体は膨潤し易くなる。但し、架橋点の数が同じであっても、分子量(一次鎖長)が大きいほど三次元ネットワークの形成に寄与する架橋点が増えるため、架橋重合体は膨潤し難くなる。よって、架橋重合体の親水性基の量、架橋点の数及び一次鎖長等を調整することにより、架橋重合体水溶液の粘度を調節することができる。この際、上記架橋点の数は、例えば、架橋性単量体の使用量、ポリマー鎖への連鎖移動反応及び後架橋反応等により調整が可能である。また、重合体の一次鎖長は、開始剤及び重合温度等のラジカル発生量に関連する条件の設定、並びに、連鎖移動等を考慮した重合溶媒の選択等により調整することができる。 The crosslinked polymer or a salt thereof absorbs water and becomes swollen in water. In general, when the crosslinked polymer has an appropriate degree of crosslinkage, the larger the amount of hydrophilic groups contained in the crosslinked polymer, the easier it is for the crosslinked polymer to absorb water and swell. Regarding the degree of cross-linking, the lower the degree of cross-linking, the easier it is for the cross-linked polymer to swell. However, even if the number of cross-linking points is the same, the larger the molecular weight (primary chain length), the more cross-linking points that contribute to the formation of the three-dimensional network, so that the cross-linked polymer is less likely to swell. Therefore, the viscosity of the crosslinked polymer aqueous solution can be adjusted by adjusting the amount of hydrophilic groups of the crosslinked polymer, the number of crosslinked points, the primary chain length, and the like. At this time, the number of the cross-linking points can be adjusted by, for example, the amount of the cross-linking monomer used, the chain transfer reaction to the polymer chain, the post-crosslinking reaction, and the like. Further, the primary chain length of the polymer can be adjusted by setting conditions related to the amount of radicals generated such as the initiator and the polymerization temperature, and selecting the polymerization solvent in consideration of chain transfer and the like.
<本架橋重合体の粒子径>
 本組成物において、本架橋重合体は大粒径の塊(二次凝集体)として存在することなく、適度な粒子径を有する水膨潤粒子として良好に分散していることが、当該架橋重合体を含むバインダーが良好な結着性能を発揮し得るため好ましい。
<Particle size of this crosslinked polymer>
In the present composition, the crosslinked polymer does not exist as a mass (secondary agglomerate) having a large particle size, but is well dispersed as water-swelled particles having an appropriate particle size. A binder containing the above is preferable because it can exhibit good binding performance.
 本架橋重合体は、当該架橋重合体が有するカルボキシル基に基づく中和度が80~100モル%であるものを水中に分散させた際の粒子径(水膨潤粒子径)が、体積基準メジアン径で0.1μm以上、5.0μm以下の範囲にあることが好ましい。上記粒子径のより好ましい範囲は0.1μm以上、4.0μm以下であり、さらに好ましい範囲は0.1μm以上、3.0μm以下であり、一層好ましい範囲は0.2μm以上、3.0μm以下であり、より一層好ましい範囲は0.3μm以上、3.0μm以下である。粒子径が0.1μm以上、5.0μm以下の範囲であれば、本組成物中において好適な大きさで均一に存在するため、本組成物の安定性が高く、優れた結着性を発揮することが可能となる。粒子径が5.0μmを超えると、上記の通り結着性が不十分となる虞がある。また、平滑性な塗面が得られにくい点で、塗工性が不十分となる虞がある。一方、粒子径が0.1μm未満の場合には、安定製造性の観点において懸念される。 In this crosslinked polymer, the particle size (water-swelling particle size) when a crosslinked polymer having a degree of neutralization based on a carboxyl group of 80 to 100 mol% is dispersed in water is a volume-based median diameter. It is preferably in the range of 0.1 μm or more and 5.0 μm or less. The more preferable range of the particle size is 0.1 μm or more and 4.0 μm or less, the more preferable range is 0.1 μm or more and 3.0 μm or less, and the more preferable range is 0.2 μm or more and 3.0 μm or less. Yes, and even more preferable ranges are 0.3 μm or more and 3.0 μm or less. When the particle size is in the range of 0.1 μm or more and 5.0 μm or less, the composition is uniformly present in a suitable size in the present composition, so that the present composition is highly stable and exhibits excellent binding properties. It becomes possible to do. If the particle size exceeds 5.0 μm, the binding property may be insufficient as described above. In addition, there is a risk that the coatability will be insufficient because it is difficult to obtain a smooth coated surface. On the other hand, when the particle size is less than 0.1 μm, there is concern from the viewpoint of stable manufacturability.
 本架橋重合体は、本組成物中において、中和度が20モル%以上となるように、エチレン性不飽和カルボン酸単量体由来のカルボキシル基等の酸基が中和され、塩の態様として用いることが好ましい。上記中和度は、より好ましくは50モル%以上であり、さらに好ましくは70モル%以上であり、一層好ましくは75モル%以上であり、より一層好ましくは80モル%以上であり、特に好ましくは85モル%以上である。中和度の上限値は100モル%であり、98モル%であってもよく95モル%であってもよい。中和度の範囲は、上記下限値及び上限値を適宜組合せることができ、例えば、50モル%以上100モル%以下であってもよく、75モル%以上100モル%以下であってもよく、80モル%以上100モル%以下であってもよい。中和度が20モル%以上の場合、水膨潤性が良好となり分散安定化効果が得やすいという点で好ましい。本明細書では、上記中和度は、カルボキシル基等の酸基を有する単量体及び中和に用いる中和剤の仕込み値から計算により算出することができる。なお、中和度は架橋重合体又はその塩を、減圧条件下、80℃で3時間乾燥処理後の粉末をIR測定し、カルボン酸のC=O基由来のピークとカルボン酸塩のC=O基由来のピークの強度比より確認することができる。 In the present crosslinked polymer, acid groups such as a carboxyl group derived from an ethylenically unsaturated carboxylic acid monomer are neutralized so that the degree of neutralization is 20 mol% or more in the present composition, and the mode of the salt is It is preferable to use as. The degree of neutralization is more preferably 50 mol% or more, further preferably 70 mol% or more, still more preferably 75 mol% or more, still more preferably 80 mol% or more, and particularly preferably. It is 85 mol% or more. The upper limit of the degree of neutralization is 100 mol%, and may be 98 mol% or 95 mol%. The range of the degree of neutralization may be appropriately combined with the above lower limit value and upper limit value, and may be, for example, 50 mol% or more and 100 mol% or less, or 75 mol% or more and 100 mol% or less. , 80 mol% or more and 100 mol% or less. When the degree of neutralization is 20 mol% or more, the water swelling property is good and the dispersion stabilizing effect is easily obtained, which is preferable. In the present specification, the degree of neutralization can be calculated by calculation from the charged values of a monomer having an acid group such as a carboxyl group and a neutralizing agent used for neutralization. The degree of neutralization was determined by measuring the IR of the crosslinked polymer or a salt thereof after drying the crosslinked polymer or a salt thereof at 80 ° C. for 3 hours under reduced pressure, and measuring the peak derived from the C = O group of the carboxylic acid and the C = of the carboxylate. It can be confirmed from the intensity ratio of the peak derived from the O group.
<本架橋重合体の水膨潤度>
 本明細書では、水膨潤度は架橋重合体又はその塩の乾燥時の重量「(W)g」、及び当該架橋重合体又はその塩を水で飽和膨潤させた際に吸収される水の量「(W)g」とから、以下の式に基づいて算出される。
(水膨潤度)={(W)+(W)}/(W
<Water swelling degree of this crosslinked polymer>
In this specification, the water swelling degree of the dry crosslinked polymer or a salt thereof by weight "(W A) g", and the cross-linked polymer or a salt thereof of water absorbed when the saturation swelling with water since the amount "(W B) g", it is calculated based on the following equation.
(Water swelling degree) = {(W A) + (W B)} / (W A)
 架橋重合体又はその塩は、pH8における水膨潤度が20以上、80以下であることが好ましい。水膨潤度が上記範囲であれば、架橋重合体又はその塩が水媒体中で適度に膨潤するため、電極合剤層を形成する際に、活物質及び集電体への十分な接着面積を確保することが可能となり、結着性が良好となる傾向がある。上記水膨潤度は、例えば21以上であってもよく、23以上であってもよく、25以上であってもよく、27以上であってもよく、30以上であってもよい。水膨潤度が20以上の場合、架橋重合体又はその塩が活物質や集電体の表面において広がり、十分な接着面積を確保することができるため、良好な結着性が得られる。pH8における水膨潤度の上限値は、75以下であってもよく、70以下であってもよく、65以下であってもよく、60以下であってもよく、55以下であってもよい。水膨潤度が60を超えると、架橋重合体又はその塩を含む電極合剤層用組成物(電極スラリー)の粘度が高くなる傾向が有り、合剤層の均一性が不足する結果、十分な結着力が得られないことがある。また、電極スラリーの塗工性が低下する虞がある。pH8における水膨潤度の範囲は、上記上限値及び下限値を適宜組合せることにより設定できるが、例えば、23以上、70以下であり、また例えば、25以上、65以下であり、また例えば、25以上、55以下である。
 pH8における水膨潤度は、pH8の水中における架橋重合体又はその塩の膨潤度を測定することにより得ることができる。上記pH8の水としては、例えばイオン交換水を使用することができ、必要に応じて適当な酸若しくはアルカリ、又は緩衝液等を用いてpHの値を調整してもよい。測定時のpHは、例えば、8.0±0.5の範囲であり、好ましくは8.0±0.3の範囲であり、より好ましくは8.0±0.2の範囲であり、さらに好ましくは8.0±0.1の範囲である。
The crosslinked polymer or a salt thereof preferably has a water swelling degree of 20 or more and 80 or less at pH 8. When the degree of water swelling is within the above range, the crosslinked polymer or a salt thereof swells appropriately in an aqueous medium, so that a sufficient adhesive area to the active material and the current collector is provided when forming the electrode mixture layer. It becomes possible to secure it, and the binding property tends to be good. The degree of water swelling may be, for example, 21 or more, 23 or more, 25 or more, 27 or more, or 30 or more. When the degree of water swelling is 20 or more, the crosslinked polymer or a salt thereof spreads on the surface of the active material or the current collector, and a sufficient adhesive area can be secured, so that good binding property can be obtained. The upper limit of the degree of water swelling at pH 8 may be 75 or less, 70 or less, 65 or less, 60 or less, or 55 or less. When the degree of water swelling exceeds 60, the viscosity of the composition for the electrode mixture layer (electrode slurry) containing the crosslinked polymer or a salt thereof tends to increase, resulting in insufficient uniformity of the mixture layer, which is sufficient. Cohesiveness may not be obtained. In addition, the coatability of the electrode slurry may decrease. The range of the degree of water swelling at pH 8 can be set by appropriately combining the above upper limit value and lower limit value, and is, for example, 23 or more and 70 or less, and for example, 25 or more and 65 or less, and for example, 25. It is 55 or less.
The degree of water swelling at pH 8 can be obtained by measuring the degree of swelling of the crosslinked polymer or a salt thereof in water at pH 8. As the water having a pH of 8, for example, ion-exchanged water can be used, and the pH value may be adjusted by using an appropriate acid or alkali, a buffer solution or the like, if necessary. The pH at the time of measurement is, for example, in the range of 8.0 ± 0.5, preferably in the range of 8.0 ± 0.3, more preferably in the range of 8.0 ± 0.2, and further. It is preferably in the range of 8.0 ± 0.1.
 尚、当業者であれば、架橋重合体又はその塩の組成及び構造等を制御することにより、その水膨潤度の調整を行うことができる。例えば、架橋重合体に酸性官能基、又は親水性の高い構造単位を導入することにより、水膨潤度を高くすることができる。また、架橋重合体の架橋度を低くすることによっても、通常その水膨潤度は高くなる。 A person skilled in the art can adjust the degree of water swelling by controlling the composition and structure of the crosslinked polymer or a salt thereof. For example, the degree of water swelling can be increased by introducing an acidic functional group or a highly hydrophilic structural unit into the crosslinked polymer. Further, by lowering the degree of cross-linking of the cross-linked polymer, the degree of water swelling is usually increased.
4.二次電池電極合剤層用組成物
 本発明の二次電池電極合剤層用組成物は、本バインダー、活物質及び水を含む。
 本組成物における本バインダーの使用量は、活物質の全量100質量部に対して、例えば、0.1質量部以上20質量部以下である。上記使用量は、また例えば、0.2質量部以上10質量部以下であり、また例えば0.3質量部以上8質量部以下であり、また例えば0.4質量部以上5質量部以下である。バインダーの使用量が0.1質量部以上であれば、十分な結着性を得ることができる。また、活物質等の分散安定性を確保することができ、均一な合剤層を形成することができる。バインダーの使用量が20質量部以下であれば、本組成物が高粘度となることはなく、集電体への塗工性を確保することができる。その結果、均一で平滑な表面を有する合剤層を形成することができる。
4. Composition for secondary battery electrode mixture layer The composition for secondary battery electrode mixture layer of the present invention contains the present binder, active material and water.
The amount of the binder used in the composition is, for example, 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the total amount of the active material. The amount used is, for example, 0.2 parts by mass or more and 10 parts by mass or less, for example, 0.3 parts by mass or more and 8 parts by mass or less, and for example, 0.4 parts by mass or more and 5 parts by mass or less. .. When the amount of the binder used is 0.1 parts by mass or more, sufficient binding property can be obtained. In addition, the dispersion stability of the active material and the like can be ensured, and a uniform mixture layer can be formed. When the amount of the binder used is 20 parts by mass or less, the composition does not have a high viscosity, and the coatability to the current collector can be ensured. As a result, a mixture layer having a uniform and smooth surface can be formed.
 上記活物質の内、正極活物質としては遷移金属酸化物のリチウム塩を用いることができ、例えば、層状岩塩型及びスピネル型のリチウム含有金属酸化物を使用することができる。層状岩塩型の正極活物質の具体的な化合物としては、コバルト酸リチウム、ニッケル酸リチウム、並びに、三元系と呼ばれるNCM{Li(Ni,Co,Mn)、x+y+z=1}及びNCA{Li(Ni1-a-bCoAlb)}等が挙げられる。また、スピネル型の正極活物質としてはマンガン酸リチウム等が挙げられる。酸化物以外にもリン酸塩、ケイ酸塩及び硫黄等が使用され、リン酸塩としては、オリビン型のリン酸鉄リチウム等が挙げられる。正極活物質としては、上記のうちの1種を単独で使用してもよく、2種以上を組み合わせて混合物又は複合物として使用してもよい。 Among the above active materials, a lithium salt of a transition metal oxide can be used as the positive electrode active material, and for example, a layered rock salt type and a spinel type lithium-containing metal oxide can be used. Specific compounds of the positive electrode active material of layered rock-salt, lithium cobaltate, lithium nickelate, and, NCM {Li (Ni x, Co y, Mn z), x + y + z = 1} called ternary and NCA {Li (Ni 1-ab Co a Al b )} and the like can be mentioned. Moreover, as a spinel type positive electrode active material, lithium manganate and the like can be mentioned. In addition to oxides, phosphates, silicates, sulfur and the like are used, and examples of phosphates include olivine-type lithium iron phosphate and the like. As the positive electrode active material, one of the above may be used alone, or two or more thereof may be combined and used as a mixture or a composite.
 尚、層状岩塩型のリチウム含有金属酸化物を含む正極活物質を水に分散させた場合、活物質表面のリチウムイオンと水中の水素イオンとが交換されることにより、分散液がアルカリ性を示す。このため、一般的な正極用集電体材料であるアルミ箔(Al)等が腐食される虞がある。このような場合には、バインダーとして未中和又は部分中和された本架橋重合体を用いることにより、活物質から溶出するアルカリ分を中和することが好ましい。また、未中和又は部分中和された本架橋重合体の使用量は、本架橋重合体の中和されていないカルボキシル基量が活物質から溶出するアルカリ量に対して当量以上となるように用いることが好ましい。 When a positive electrode active material containing a layered rock salt type lithium-containing metal oxide is dispersed in water, the dispersion liquid becomes alkaline by exchanging lithium ions on the surface of the active material and hydrogen ions in water. Therefore, there is a risk that aluminum foil (Al) or the like, which is a general current collector material for positive electrodes, will be corroded. In such a case, it is preferable to neutralize the alkali content eluted from the active material by using the present crosslinked polymer which has not been neutralized or partially neutralized as the binder. Further, the amount of the unneutralized or partially neutralized present crosslinked polymer used is such that the amount of unneutralized carboxyl groups of the present crosslinked polymer is equal to or more than the amount of alkali eluted from the active material. It is preferable to use it.
 正極活物質はいずれも電気伝導性が低いため、導電助剤を添加して使用されるのが一般的である。導電助剤としては、カーボンブラック、カーボンナノチューブ、カーボンファイバー、黒鉛微粉、炭素繊維等の炭素系材料が挙げられ、これらの内、優れた導電性を得やすい点からカーボンブラック、カーボンナノチューブ及びカーボンファイバーが好ましい。また、カーボンブラックとしては、ケッチェンブラック及びアセチレンブラックが好ましい。導電助剤は、上記の1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。導電助剤の使用量は、導電性とエネルギー密度を両立するという観点から、活物質の全量100質量部に対して、例えば、0.2~20質量部とすることができ、また例えば、0.2~10質量部とすることができる。また、正極活物質は導電性を有する炭素系材料で表面コーティングしたものを使用してもよい。 Since all positive electrode active materials have low electrical conductivity, they are generally used by adding a conductive auxiliary agent. Examples of the conductive auxiliary agent include carbon-based materials such as carbon black, carbon nanotubes, carbon fibers, graphite fine powder, and carbon fibers. Among these, carbon black, carbon nanotubes, and carbon fibers are easy to obtain excellent conductivity. Is preferable. Further, as the carbon black, Ketjen black and acetylene black are preferable. As the conductive auxiliary agent, one of the above types may be used alone, or two or more types may be used in combination. The amount of the conductive auxiliary agent used can be, for example, 0.2 to 20 parts by mass with respect to 100 parts by mass of the total amount of the active material from the viewpoint of achieving both conductivity and energy density, and for example, 0. It can be 2 to 10 parts by mass. Further, as the positive electrode active material, a material whose surface is coated with a conductive carbon-based material may be used.
 一方、負極活物質としては、例えば炭素系材料、リチウム金属、リチウム合金及び金属酸化物等が挙げられ、これらの内の1種又は2種以上を組み合わせて用いることができる。これらの内でも、天然黒鉛、人造黒鉛、ハードカーボン及びソフトカーボン等の炭素系材料からなる活物質(以下、「炭素系活物質」ともいう。)が好ましく、天然黒鉛及び人造黒鉛等の黒鉛、並びにハードカーボンがより好ましい。また、黒鉛の場合、電池性能の面から球形化黒鉛が好適に用いられ、その粒子サイズの好ましい範囲は、例えば、1~20μmであり、また例えば、5~15μmである。また、エネルギー密度を高くするために、ケイ素やスズなどのリチウムを吸蔵できる金属又は金属酸化物等を負極活物質として使用することもできる。その中でも、ケイ素は黒鉛に比べて高容量であり、ケイ素、ケイ素合金及び一酸化ケイ素(SiO)等のケイ素酸化物のようなケイ素系材料からなる活物質(以下、「ケイ素系活物質」ともいう。)を用いることができる。しかし、上記ケイ素系活物質は高容量である反面充放電に伴う体積変化が大きい。このため、上記炭素系活物質と併用するのが好ましい。この場合、ケイ素系活物質の配合量が多いと電極材料の崩壊を招き、サイクル特性(耐久性)が大きく低下する場合がある。このような観点から、ケイ素系活物質を併用する場合、その使用量は炭素系活物質に対して、例えば、60質量%以下であり、また例えば、30質量%以下である。 On the other hand, examples of the negative electrode active material include carbon-based materials, lithium metals, lithium alloys, metal oxides, and the like, and one or a combination of two or more of these can be used. Among these, active materials made of carbon-based materials such as natural graphite, artificial graphite, hard carbon and soft carbon (hereinafter, also referred to as "carbon-based active material") are preferable, and graphite such as natural graphite and artificial graphite, Also, hard carbon is more preferred. Further, in the case of graphite, spherical graphite is preferably used from the viewpoint of battery performance, and the preferable range of the particle size thereof is, for example, 1 to 20 μm, and for example, 5 to 15 μm. Further, in order to increase the energy density, a metal such as silicon or tin that can occlude lithium or a metal oxide can be used as the negative electrode active material. Among them, silicon has a higher capacity than graphite, and is an active material made of a silicon-based material such as silicon, a silicon alloy, and a silicon oxide such as silicon monoxide (SiO) (hereinafter, also referred to as "silicon-based active material"). ) Can be used. However, while the silicon-based active material has a high capacity, the volume change due to charging and discharging is large. Therefore, it is preferable to use it in combination with the above carbon-based active material. In this case, if the amount of the silicon-based active material is large, the electrode material may be disintegrated and the cycle characteristics (durability) may be significantly deteriorated. From such a viewpoint, when a silicon-based active material is used in combination, the amount used is, for example, 60% by mass or less, and for example, 30% by mass or less, based on the carbon-based active material.
 炭素系活物質は、それ自身が良好な電気伝導性を有するため、必ずしも導電助剤を添加する必要はない。抵抗をより低減する等の目的で導電助剤を添加する場合、エネルギー密度の観点からその使用量は活物質の全量100質量部に対して、例えば、10質量部以下であり、また例えば、5質量部以下である。 Since the carbon-based active material itself has good electrical conductivity, it is not always necessary to add a conductive additive. When a conductive additive is added for the purpose of further reducing resistance, the amount used is, for example, 10 parts by mass or less with respect to 100 parts by mass of the total amount of the active material, and for example, 5 from the viewpoint of energy density. It is less than a part by mass.
 本組成物がスラリー状態の場合、活物質の使用量は、本組成物全量に対して、例えば、10~75質量%の範囲であり、また例えば、30~65質量%の範囲である。活物質の使用量が10質量%以上であればバインダー等のマイグレーションが抑えられるとともに、媒体の乾燥コストの面でも有利となる。一方、75質量%以下であれば、本組成物の流動性及び塗工性を確保することができ、均一な合剤層を形成することができる。 When the composition is in a slurry state, the amount of the active material used is, for example, in the range of 10 to 75% by mass, and for example, in the range of 30 to 65% by mass, based on the total amount of the composition. If the amount of the active material used is 10% by mass or more, migration of the binder or the like can be suppressed, and the drying cost of the medium is also advantageous. On the other hand, if it is 75% by mass or less, the fluidity and coatability of the present composition can be ensured, and a uniform mixture layer can be formed.
 本組成物は、媒体として水を使用する。また、本組成物の性状及び乾燥性等を調整する目的で、メタノール及びエタノール等の低級アルコール類、エチレンカーボネート等のカーボネート類、アセトン等のケトン類、テトラヒドロフラン、N-メチルピロリドン等の水溶性有機溶剤との混合溶媒としてもよい。混合媒体中の水の割合は、例えば、50質量%以上であり、また例えば、70質量%以上である。 This composition uses water as a medium. Further, for the purpose of adjusting the properties and dryness of the composition, lower alcohols such as methanol and ethanol, carbonates such as ethylene carbonate, ketones such as acetone, and water-soluble organic substances such as tetrahydrofuran and N-methylpyrrolidone. It may be a mixed solvent with a solvent. The proportion of water in the mixing medium is, for example, 50% by mass or more, and for example, 70% by mass or more.
 本組成物を塗工可能なスラリー状態とする場合、本組成物全体に占める水を含む媒体の含有量は、スラリーの塗工性、及び乾燥に必要なエネルギーコスト、生産性の観点から、例えば、25~60質量%の範囲とすることができ、また例えば、35~60質量%とすることができる。 When the composition is in a coatable slurry state, the content of the medium containing water in the entire composition is, for example, from the viewpoint of the coatability of the slurry, the energy cost required for drying, and the productivity. , 25-60% by mass, and can be, for example, 35-60% by mass.
 本組成物は、さらに、スチレンブタジエンゴム(SBR)系ラテックス、カルボキシメチルセルロース(CMC)、アクリル系ラテックス及びポリフッ化ビニリデン系ラテックス等の他のバインダー成分を併用してもよい。他のバインダー成分を併用する場合、その使用量は、活物質の全量100質量部に対して、例えば、0.1~5質量部以下とすることができ、また例えば、0.1~2質量部以下とすることができ、また例えば、0.1~1質量部以下とすることができる。他のバインダー成分の使用量が5質量部を超えると抵抗が増大し、ハイレート特性が不十分なものとなる場合がある。上記の中でも、結着性及び耐屈曲性のバランスに優れる点で、SBR系ラテックス、CMCが好ましく、SBR系ラテックス及びCMCを併用する事がより好ましい。 The present composition may further contain other binder components such as styrene-butadiene rubber (SBR) -based latex, carboxymethyl cellulose (CMC), acrylic-based latex, and polyvinylidene fluoride-based latex. When other binder components are used in combination, the amount used may be, for example, 0.1 to 5 parts by mass or less, and for example, 0.1 to 2 parts by mass, based on 100 parts by mass of the total amount of the active material. It can be less than or equal to parts, and can be, for example, 0.1 to 1 part by mass or less. If the amount of the other binder component used exceeds 5 parts by mass, the resistance increases and the high rate characteristics may become insufficient. Among the above, SBR-based latex and CMC are preferable, and SBR-based latex and CMC are more preferable in combination because they are excellent in the balance between binding property and bending resistance.
 上記SBR系ラテックスとは、スチレン等の芳香族ビニル単量体に由来する構造単位及び1,3-ブタジエン等の脂肪族共役ジエン系単量体に由来する構造単位を有する共重合体の水系分散体を示す。上記芳香族ビニル単量体としては、スチレンの他にα-メチルスチレン、ビニルトルエン、ジビニルベンゼン等が挙げられ、これらの内の1種又は2種以上を用いることができる。上記共重合体中における上記芳香族ビニル単量体に由来する構造単位は、主に結着性の観点から、例えば、20~70質量%の範囲とすることができ、また例えば、30~60質量%の範囲とすることができる。
 上記脂肪族共役ジエン系単量体としては、1,3-ブタジエンの他に2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン等が挙げられ、これらの内の1種又は2種以上を用いることができる。上記共重合体中における上記脂肪族共役ジエン系単量体に由来する構造単位は、バインダーの結着性及び得られる電極の柔軟性が良好なものとなる点で、例えば、30~70質量%の範囲とすることができ、また例えば、40~60質量%の範囲とすることができる。
 スチレン/ブタジエン系ラテックスは、上記の単量体以外にも、結着性等の性能をさらに向上させるために、その他の単量体として(メタ)アクリロニトリル等のニトリル基含有単量体、(メタ)アクリル酸、イタンコン酸、マレイン酸等のカルボキシル基含有単量体、(メタ)アクリル酸メチル等のエステル基含有単量体を共重合単量体として用いてもよい。
 上記共重合体中における上記その他の単量体に由来する構造単位は、例えば、0~30質量%の範囲とすることができ、また例えば、0~20質量%の範囲とすることができる。
The SBR latex is an aqueous dispersion of a copolymer having a structural unit derived from an aromatic vinyl monomer such as styrene and a structural unit derived from an aliphatic conjugated diene monomer such as 1,3-butadiene. Show the body. Examples of the aromatic vinyl monomer include α-methylstyrene, vinyltoluene, divinylbenzene and the like in addition to styrene, and one or more of these can be used. The structural unit derived from the aromatic vinyl monomer in the copolymer can be, for example, in the range of 20 to 70% by mass, and for example, 30 to 60, mainly from the viewpoint of binding property. It can be in the range of% by mass.
As the above-mentioned aliphatic conjugated diene-based monomer, in addition to 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3- Butadiene and the like can be mentioned, and one or more of these can be used. The structural unit derived from the aliphatic conjugated diene-based monomer in the copolymer is, for example, 30 to 70% by mass in that the binding property of the binder and the flexibility of the obtained electrode are good. It can be in the range of 40 to 60% by mass, for example.
In addition to the above-mentioned monomers, styrene / butadiene-based monomers include nitrile group-containing monomers such as (meth) acrylonitrile and (meth) as other monomers in order to further improve performance such as binding properties. ) A carboxyl group-containing monomer such as acrylic acid, itanconic acid, and maleic acid, and an ester group-containing monomer such as methyl (meth) acrylate may be used as the copolymerization monomer.
The structural unit derived from the other monomer in the copolymer can be, for example, in the range of 0 to 30% by mass, or can be, for example, in the range of 0 to 20% by mass.
 上記CMCとは、ノニオン性セルロース系半合成高分子化合物をカルボキシメチル基により置換した置換体及びその塩を示す。上記ノニオン性セルロース系半合成高分子化合物としては、例えば、メチルセルロース、メチルエチルセルロース、エチルセルロース、マイクロクリスタリンセルロース等のアルキルセルロース;
ヒドロキシエチルセルロース、ヒドロキシブチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロースステアロキシエーテル、カルボキシメチルヒドロキシエチルセルロース、アルキルヒドロキシエチルセルロース、ノノキシニルヒドロキシエチルセルロース等のヒドロキシアルキルセルロースなどが挙げられる。
The CMC refers to a substitute obtained by substituting a nonionic cellulosic semi-synthetic polymer compound with a carboxymethyl group and a salt thereof. Examples of the nonionic cellulose-based semi-synthetic polymer compound include alkyl celluloses such as methyl cellulose, methyl ethyl cellulose, ethyl cellulose, and microcrystallin cellulose;
Examples thereof include hydroxyethyl cellulose, hydroxybutyl methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose stearoxy ether, carboxymethyl hydroxyethyl cellulose, alkyl hydroxyethyl cellulose, hydroxyalkyl cellulose such as nonoxynyl hydroxyethyl cellulose and the like.
 本発明の二次電池電極合剤層用組成物は、上記の活物質、水及びバインダーを必須の構成成分とするものであり、公知の手段を用いて各成分を混合することにより得られる。各成分の混合方法は特段制限されるものではなく、公知の方法を採用することができるが、活物質、導電助剤及びバインダー等の粉末成分をドライブレンドした後、水等の分散媒と混合し、分散混練する方法が好ましい。本組成物をスラリー状態で得る場合、分散不良や凝集のないスラリーに仕上げることが好ましい。混合手段としては、プラネタリーミキサー、薄膜旋回式ミキサー及び自公転式ミキサー等の公知のミキサーを使用することができるが、短時間で良好な分散状態が得られる点で薄膜旋回式ミキサーを使用して行うことが好ましい。また、薄膜旋回式ミキサーを用いる場合は、予めディスパー等の攪拌機で予備分散を行うことが好ましい。上記スラリーのpHは、本発明の効果を奏する限り特に制限されないが、12.5未満であることが好ましく、例えば、CMCを配合する場合にはその加水分解の懸念が小さい点で、11.5未満であることがより好ましく、10.5未満であることがさらに好ましい。また、上記スラリーの粘度は、本発明の効果を奏する限り特に制限されないが、20rpmにおけるB型粘度(25℃)として、例えば、100~6,000mPa・sの範囲とすることができ、また例えば、500~5,000mPa・s、また例えば、1,000~4,000mPa・sの範囲とすることができる。スラリーの粘度が上記の範囲内であれば、良好な塗工性を確保することができる。 The composition for the secondary battery electrode mixture layer of the present invention contains the above-mentioned active material, water and a binder as essential constituents, and can be obtained by mixing the respective components using known means. The mixing method of each component is not particularly limited, and a known method can be adopted. However, powder components such as an active material, a conductive additive and a binder are dry-blended and then mixed with a dispersion medium such as water. However, the method of dispersion kneading is preferable. When the present composition is obtained in a slurry state, it is preferable to finish the composition into a slurry having no poor dispersion or aggregation. As the mixing means, a known mixer such as a planetary mixer, a thin film swirl mixer, or a self-revolving mixer can be used, but a thin film swirl mixer is used because a good dispersion state can be obtained in a short time. It is preferable to do this. When using a thin film swirl mixer, it is preferable to pre-disperse in advance with a stirrer such as a disper. The pH of the slurry is not particularly limited as long as the effects of the present invention are exhibited, but is preferably less than 12.5. For example, when CMC is blended, there is little concern about hydrolysis thereof, and 11.5. It is more preferably less than 10.5 and even more preferably less than 10.5. The viscosity of the slurry is not particularly limited as long as the effect of the present invention is exhibited, but the B-type viscosity (25 ° C.) at 20 rpm can be, for example, in the range of 100 to 6,000 mPa · s, and for example. , 500 to 5,000 mPa · s, or, for example, the range of 1,000 to 4,000 mPa · s. When the viscosity of the slurry is within the above range, good coatability can be ensured.
5.二次電池電極
 本発明の二次電池電極は、銅又はアルミニウム等の集電体表面に本発明の二次電池電極合剤層用組成物から形成される合剤層を備えてなるものである。合剤層は、集電体の表面に本組成物を塗工した後、水等の媒体を乾燥除去することにより形成される。本組成物を塗工する方法は特に限定されず、ドクターブレード法、ディップ法、ロールコート法、コンマコート法、カーテンコート法、グラビアコート法及びエクストルージョン法などの公知の方法を採用することができる。また、上記乾燥は、温風吹付け、減圧、(遠)赤外線、マイクロ波照射等の公知の方法により行うことができる。
 通常、乾燥後に得られた合剤層には、金型プレス及びロールプレス等による圧縮処理が施される。圧縮することにより活物質及びバインダーを密着させ、合剤層の強度及び集電体への密着性を向上させることができる。圧縮により合剤層の厚みを、例えば、圧縮前の30~80%程度に調整することができ、圧縮後の合剤層の厚みは4~200μm程度が一般的である。
5. Secondary battery electrode The secondary battery electrode of the present invention is provided with a mixture layer formed from the composition for the mixture layer of the secondary battery electrode of the present invention on the surface of a current collector such as copper or aluminum. .. The mixture layer is formed by applying the present composition to the surface of the current collector and then drying and removing a medium such as water. The method for applying the present composition is not particularly limited, and known methods such as a doctor blade method, a dip method, a roll coating method, a comma coating method, a curtain coating method, a gravure coating method and an extrusion method can be adopted. can. Further, the drying can be performed by a known method such as blowing warm air, reducing the pressure, (far) infrared rays, and irradiating microwaves.
Usually, the mixture layer obtained after drying is subjected to a compression treatment by a mold press, a roll press or the like. By compressing, the active material and the binder can be brought into close contact with each other, and the strength of the mixture layer and the adhesion to the current collector can be improved. The thickness of the mixture layer can be adjusted to, for example, about 30 to 80% before compression by compression, and the thickness of the mixture layer after compression is generally about 4 to 200 μm.
6.二次電池
 本発明の二次電池電極にセパレータ及び電解液を備えることにより、二次電池を作製することができる。電解液は液状であってもよく、ゲル状であってもよい。
 セパレータは電池の正極及び負極間に配され、両極の接触による短絡の防止や電解液を保持してイオン導電性を確保する役割を担う。セパレータにはフィルム状の絶縁性微多孔膜であって、良好なイオン透過性及び機械的強度を有するものが好ましい。具体的な素材としては、ポリエチレン及びポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン等を使用することができる。
6. Secondary battery A secondary battery can be manufactured by providing the secondary battery electrode of the present invention with a separator and an electrolytic solution. The electrolytic solution may be in the form of a liquid or in the form of a gel.
The separator is arranged between the positive electrode and the negative electrode of the battery, and plays a role of preventing a short circuit due to contact between the two electrodes and holding an electrolytic solution to ensure ionic conductivity. The separator is preferably a film-like insulating microporous membrane having good ion permeability and mechanical strength. As a specific material, polyolefins such as polyethylene and polypropylene, polytetrafluoroethylene and the like can be used.
 電解液は、活物質の種類に応じて一般的に使用される公知のものを用いることができる。リチウムイオン二次電池では、具体的な溶媒として、プロピレンカーボネート及びエチレンカーボネート等の高誘電率で電解質の溶解能力の高い環状カーボネート、並びに、エチルメチルカーボネート、ジメチルカーボネート及びジエチルカーボネート等の粘性の低い鎖状カーボネート等が挙げられ、これらを単独で又は混合溶媒として使用することができる。電解液は、これらの溶媒にLiPF、LiSbF、LiBF、LiClO、LiAlO等のリチウム塩を溶解して使用される。ニッケル水素二次電池では、電解液として水酸化カリウム水溶液を使用することができる。二次電池は、セパレータで仕切られた正極板及び負極板を渦巻き状又は積層構造にしてケース等に収納することにより得られる。 As the electrolytic solution, a known one that is generally used depending on the type of active material can be used. In a lithium ion secondary battery, specific solvents include cyclic carbonates having a high dielectric constant and a high dissolving ability of an electrolyte such as propylene carbonate and ethylene carbonate, and low-viscosity chains such as ethylmethyl carbonate, dimethyl carbonate and diethyl carbonate. Examples thereof include form carbonates, which can be used alone or as a mixed solvent. The electrolytic solution is used by dissolving lithium salts such as LiPF 6 , LiSbF 6 , LiBF 4 , LiClO 4 , and LiAlO 4 in these solvents. In the nickel-metal hydride secondary battery, an aqueous potassium hydroxide solution can be used as the electrolytic solution. The secondary battery is obtained by forming a positive electrode plate and a negative electrode plate partitioned by a separator into a spiral or laminated structure and storing them in a case or the like.
 以上説明したように、本明細書に開示される二次電池電極用バインダーを含む二次電池電極合剤層用組成物より形成される合剤層を備えた電極を具備した二次電池は、充放電を繰り返しても良好な耐久性(サイクル特性)を示すため、車載用二次電池等に好適である。 As described above, the secondary battery provided with the electrode having the mixture layer formed from the composition for the mixture layer for the secondary battery electrode containing the binder for the secondary battery electrode disclosed in the present specification It is suitable for in-vehicle secondary batteries and the like because it exhibits good durability (cycle characteristics) even after repeated charging and discharging.
 以下、実施例に基づいて本発明を具体的に説明する。尚、本発明は、これらの実施例により限定されるものではない。尚、以下において「部」及び「%」は、特に断らない限り質量部及び質量%を意味する。 Hereinafter, the present invention will be specifically described based on Examples. The present invention is not limited to these examples. In the following, "parts" and "%" mean parts by mass and% by mass unless otherwise specified.
≪カルボキシル基含有架橋重合体(塩)の評価≫
(小角X線散乱法による架橋重合体の不均一網目構造サイズΞの測定)
1.測定試料の調製方法
<1>1質量%濃度水溶液の調製
 カルボキシル基含有架橋重合体塩の粉末0.5g、及びイオン交換水49.5gを100ccの容器に量りとり、自転/公転式攪拌機(シンキー社製、あわとり錬太郎AR-250)にセットした。次いで、撹拌(自転速度2000rpm/公転速度800rpm、7分)、さらに脱泡(自転速度2200rpm/公転速度60rpm、1分)処理を行いカルボキシル基含有架橋重合体塩が水に膨潤した状態の1質量%濃度水溶液を調製した。
<2>5質量%濃度水溶液の調製
 カルボキシル基含有架橋重合体塩の粉末2.5g、及びイオン交換水47.5gを100ccの容器に量りとり、<1>と同様の操作を行い、5質量%濃度水溶液を調製した。
<< Evaluation of carboxyl group-containing crosslinked polymer (salt) >>
(Measurement of non-uniform network structure size Ξ of crosslinked polymer by small-angle X-ray scattering method)
1. 1. Preparation method of measurement sample <1> Preparation of 1 mass% concentration aqueous solution 0.5 g of carboxyl group-containing crosslinked polymer salt powder and 49.5 g of ion-exchanged water are weighed in a 100 cc container, and a rotating / revolving stirrer (sinky). It was set in Awatori Rentaro AR-250) manufactured by the company. Next, stirring (rotation speed 2000 rpm / revolution speed 800 rpm, 7 minutes) and defoaming (rotation speed 2200 rpm / revolution speed 60 rpm, 1 minute) treatment were performed to obtain 1 mass of the carboxyl group-containing crosslinked polymer salt swollen in water. A% concentration aqueous solution was prepared.
<2> Preparation of 5% by mass aqueous solution Weigh 2.5 g of carboxyl group-containing crosslinked polymer salt powder and 47.5 g of ion-exchanged water in a 100 cc container, and perform the same operation as in <1> to 5 mass. A% concentration aqueous solution was prepared.
2.小角X線散乱測定の方法
<1>装置
 小角X線散乱測定は、アントンパール社製SAXSpoint2.0を使用して実施した。X線源は、Primux100 microマイクロフォーカスX線源を用いた(波長1.542ÅのCu Kα線)。検出器は、2D EIGER2RシリーズHPC検出器を使用した。
 測定試料と検出器との距離は3.0mであり、これは0.015~4.0Å-1の測定可能なq範囲を実現する(散乱ベクトルqは、q=4π/λsinθによって求められ、2θは散乱角である)。
 測定は、25.0℃の温度で実施され、0.1℃の精度を有するペルチエ素子によって制御した。未加工の散乱データは、相対透過率を用いて、セル及びべヘン酸銀の散乱に対して補正した。
2. Method of Small-angle X-ray Scattering Measurement <1> Equipment Small-angle X-ray scattering measurement was carried out using SAXSpoint 2.0 manufactured by Anton Pearl Co., Ltd. As the X-ray source, a Primux100 micro microfocus X-ray source was used (Cu Kα ray having a wavelength of 1.542 Å). As the detector, a 2D EIGER2R series HPC detector was used.
The distance between the measurement sample and the detector is 3.0 m, which realizes a measurable q range of 0.015 to 4.0 Å -1 (scattering vector q is determined by q = 4π / λsinθ and is determined by q = 4π / λsinθ. 2θ is the scattering angle).
The measurements were performed at a temperature of 25.0 ° C. and controlled by a Pertier element with an accuracy of 0.1 ° C. The raw scatter data was corrected for cell and silver behenate scatter using relative transmittance.
<2>測定方法
 前記1.で得られた1質量%濃度水溶液及び5質量%濃度水溶液をそれぞれポリイミドフィルム(カプトン 東レデュポン社製)で挟まれたセル(セル厚み:1mm)に注入し、真空下で維持して空気からの散乱を低減して、かつ露光時間を調整して強力なX線で検出器が損傷しないよう設定した上で、サンプルにX線を照射してサンプルの二次元散乱像を得た。
 次いで、前記の手順で得られたサンプルの二次元散乱像からバックグランドの補正を行った。具体的には、サンプルが無い状態で前記手順と同じ操作を行ったバックグランドの二次元散乱像を取得して、画像処理ソフト(Igor Pro8)を用いてサンプルの二次元散乱像からバックグランドの二次元散乱像を差し引いて、解析用の二次元散乱像を得た。解析用の二次元散乱像にはリング状の散乱が確認された。
<2> Measurement method 1. Inject the 1% by mass aqueous solution and the 5% by mass aqueous solution obtained in After reducing the scattering and adjusting the exposure time so that the detector was not damaged by strong X-rays, the sample was irradiated with X-rays to obtain a two-dimensional scattered image of the sample.
Next, the background was corrected from the two-dimensional scattered image of the sample obtained in the above procedure. Specifically, a two-dimensional scattering image of the background obtained by performing the same operation as the above procedure in the absence of the sample is obtained, and the two-dimensional scattering image of the sample is used to obtain the background two-dimensional scattering image using image processing software (Igor Pro8). The two-dimensional scattering image was subtracted to obtain a two-dimensional scattering image for analysis. Ring-shaped scattering was confirmed in the two-dimensional scattering image for analysis.
<3>解析方法
 解析用の二次元散乱像から一次元散乱スペクトルに変換した。具体的には、解析用の二次元散乱像をX線データ処理ソフト(Igor Pro8)に読み込ませて、全方位角にわたって積分することで、横軸を散乱ベクトルq(Å-1)、縦軸を散乱放射線の強度とした一次元散乱スペクトル(散乱強度曲線I(q))を得た。次に、ベースライン補正として、解析対象領域の散乱強度の最小値を求めて、全領域にわたって最小値を差し引いてベースライン補正を行った。
 得られた補正後の一次元散乱プロファイルについて、下記式(1)を用いてフィッティングを行い、1質量%濃度水溶液におけるΞ(Ξ1)、5質量%濃度水溶液におけるΞ(Ξ5)を求めた。下記式(1)中、Ξは架橋重合体の不均一網目の構造サイズを意味し、図1に示すように、架橋度が密な部分が存在した場合に、そのサイズがΞによって記述される。
 なお、フィッティングには波形分離ソフト(Igor Pro8)を使用した。
Figure JPOXMLDOC01-appb-M000004
<3> Analysis method The two-dimensional scattering image for analysis was converted into a one-dimensional scattering spectrum. Specifically, the two-dimensional scattering image for analysis is read into X-ray data processing software (Igor Pro8) and integrated over all directional angles, so that the horizontal axis is the scattering vector q (Å -1 ) and the vertical axis is the vertical axis. A one-dimensional scattering spectrum (scattering intensity curve I (q)) was obtained. Next, as the baseline correction, the minimum value of the scattering intensity in the analysis target region was obtained, and the minimum value was subtracted over the entire region to perform the baseline correction.
The obtained corrected one-dimensional scattering profile was fitted using the following formula (1) to determine Ξ (Ξ1) in a 1% by mass aqueous solution and Ξ (Ξ5) in a 5% by mass aqueous solution. In the following formula (1), Ξ means the structural size of the non-uniform network of the crosslinked polymer, and as shown in FIG. 1, when there is a portion having a dense degree of crosslink, the size is described by Ξ. ..
Waveform separation software (Igor Pro8) was used for fitting.
Figure JPOXMLDOC01-appb-M000004
(pH8における水膨潤度)
 pH8における水膨潤度は、以下の方法によって測定した。測定装置を図1に示す。
 測定装置は図1における<1>~<3>から構成される。
<1> 空気抜きするための枝管が付いたビュレット1、ピンチコック2、シリコンチューブ3及びポリテトラフルオロエチレンチューブ4から成る。
<2> ロート5の上に底面に多数の穴が空いた支柱円筒8、さらにその上に装置用濾紙10が設置されている。
<3> 架橋重合体又はその塩の試料6(測定試料)は2枚の試料固定用濾紙7に挟まれ、試料固定用濾紙は粘着テープ9によって固定される。なお、使用する濾紙は全てADVANTEC No.2、内径55mmである。
<1>と<2>とはシリコンチューブ3によって繋がれる。
 また、ロート5及び支柱円筒8は、ビュレット1に対する高さが固定されており、ビュレット枝管の内部に設置されたポリテトラフルオロエチレンチューブ4の下端と支柱円筒8の底面とが同じ高さになる様に設定されている(図1中の点線)。
(Water swelling degree at pH 8)
The degree of water swelling at pH 8 was measured by the following method. The measuring device is shown in FIG.
The measuring device is composed of <1> to <3> in FIG.
<1> It is composed of a burette 1, a pinch cock 2, a silicon tube 3 and a polytetrafluoroethylene tube 4 having a branch tube for venting air.
<2> A support cylinder 8 having a large number of holes on the bottom surface is installed on the funnel 5, and a filter paper 10 for an apparatus is installed on the support cylinder 8.
<3> The sample 6 (measurement sample) of the crosslinked polymer or a salt thereof is sandwiched between two sample fixing filter papers 7, and the sample fixing filter paper is fixed by the adhesive tape 9. All the filter papers used are ADVANTEC No. 2. The inner diameter is 55 mm.
<1> and <2> are connected by a silicon tube 3.
Further, the heights of the funnel 5 and the support cylinder 8 are fixed with respect to the burette 1, and the lower end of the polytetrafluoroethylene tube 4 installed inside the burette branch pipe and the bottom surface of the support cylinder 8 are at the same height. (Dotted line in FIG. 1).
 測定方法について以下に説明する。
<1>にあるピンチコック2を外し、ビュレット1の上部からシリコンチューブ3を通してイオン交換水を入れ、ビュレット1から装置用濾紙10までイオン交換水12で満たされた状態とする。次いで、ピンチコック2を閉じ、ビュレット枝管にゴム栓で接続されたポリテトラフルオロエチレンチューブ4から空気を除去する。こうして、ビュレット1から装置用濾紙10までイオン交換水12が連続的に供給される状態とする。
 次に、装置用濾紙10からにじみ出た余分なイオン交換水12を除去した後、ビュレット1の目盛りの読み(a)を記録する。
 測定試料の乾燥粉末0.1~0.2gを秤量し、<3>にある様に、試料固定用濾紙7の中央部に均一に置く。もう1枚の濾紙でサンプルを挟み、粘着テープ9で2枚の濾紙を留め、サンプルを固定する。サンプルが固定された濾紙を<2>に示される装置用濾紙10上に載置する。
 次に、装置用濾紙10上に蓋11を載置した時点から、30分間経過した後のビュレット1の目盛りの読み(b)を記録する。
 測定試料の吸水量と2枚の試料固定用濾紙7の吸水量の合計(c)は(a-b)で求められる。同様の操作により、架橋重合体又はその塩の試料を含まない、2枚の濾紙7のみの吸水量(d)を測定する。
 上記操作を行い、水膨潤度を以下の式より計算した。なお、計算に使用する固形分は、後述する方法により測定した値を使用した。
 水膨潤度={測定試料の乾燥重量(g)+(c-d)}/{測定試料の乾燥重量(g)}
 ただし、測定試料の乾燥重量(g)=測定試料の重量(g)×(固形分(%)÷100)
The measuring method will be described below.
The pinch cock 2 in <1> is removed, ion-exchanged water is poured from the upper part of the burette 1 through the silicon tube 3, and the burette 1 to the filter paper 10 for the device are filled with the ion-exchanged water 12. Next, the pinch cock 2 is closed, and air is removed from the polytetrafluoroethylene tube 4 connected to the burette branch pipe with a rubber stopper. In this way, the ion-exchanged water 12 is continuously supplied from the burette 1 to the filter paper 10 for the apparatus.
Next, after removing the excess ion-exchanged water 12 oozing from the filter paper 10 for the device, the reading (a) of the scale of the burette 1 is recorded.
Weigh 0.1 to 0.2 g of the dry powder of the measurement sample, and place it evenly on the center of the sample fixing filter paper 7 as shown in <3>. The sample is sandwiched between another filter paper, and the two filter papers are fastened with the adhesive tape 9 to fix the sample. The filter paper on which the sample is fixed is placed on the device filter paper 10 shown in <2>.
Next, the reading (b) of the scale of the burette 1 is recorded 30 minutes after the lid 11 is placed on the filter paper 10 for the device.
The total (c) of the water absorption of the measurement sample and the water absorption of the two sample fixing filter papers 7 is obtained by (ab). By the same operation, the water absorption amount (d) of only two filter papers 7 containing no sample of the crosslinked polymer or a salt thereof is measured.
The above operation was performed, and the degree of water swelling was calculated from the following formula. As the solid content used in the calculation, the value measured by the method described later was used.
Water swelling degree = {dry weight of measurement sample (g) + (cd)} / {dry weight of measurement sample (g)}
However, the dry weight (g) of the measurement sample = the weight (g) of the measurement sample × (solid content (%) ÷ 100)
 ここで、固形分の測定方法について以下に記載する。
試料約0.5gを、予め重さを測定しておいた秤量瓶[秤量瓶の重さ=B(g)]に採取して、秤量瓶ごと正確に秤量した後[W(g)]、その試料を秤量瓶ごと無風乾燥機内に収容して155℃で45分間乾燥してその時の重さを秤量瓶ごと測定し[W(g)]、以下の式により固形分を求めた。
 固形分(%)=(W-B)/(W-B)×100
Here, the method for measuring the solid content will be described below.
Approximately 0.5 g of the sample is collected in a weighing bottle [weight of the weighing bottle = B (g)] whose weight has been measured in advance, and the entire weighing bottle is accurately weighed [W 0 (g)]. The sample was placed in a windless dryer together with the weighing bottle, dried at 155 ° C. for 45 minutes, and the weight at that time was measured together with the weighing bottle [W 1 (g)], and the solid content was determined by the following formula.
Solid content (%) = (W 1- B) / (W 0- B) x 100
(水媒体中での粒子径(水膨潤粒子径)の測定)
 カルボキシル基含有架橋重合体塩の粉末0.25g、及びイオン交換水49.75gを100ccの容器に量りとり、自転/公転式攪拌機(シンキー社製、あわとり錬太郎AR-250)にセットした。次いで、撹拌(自転速度2,000rpm/公転速度800rpm、7分)、さらに脱泡(自転速度2,200rpm/公転速度60rpm、1分)処理を行い、カルボキシル基含有架橋重合体塩が水に膨潤した状態のハイドロゲルを作製した。
 次に、イオン交換水を分散媒とするレーザー回折/散乱式粒度分布計(マイクロトラックベル社製、マイクロトラックMT-3300EXII)にて上記ハイドロゲルの粒度分布測定を行った。ハイドロゲルに対し、過剰量の分散媒を循環しているところに、適切な散乱光強度が得られる量のハイドロゲルを投入したところ、数分後に測定される粒度分布形状が安定した。安定を確認次第、粒度分布測定を行い、粒子径の代表値としての体積基準メジアン径(D50)を得た。
(Measurement of particle size (water-swelling particle size) in water medium)
0.25 g of the carboxyl group-containing crosslinked polymer salt powder and 49.75 g of ion-exchanged water were weighed in a 100 cc container and set in a rotating / revolving stirrer (Awatori Rentaro AR-250, manufactured by Shinky). Next, stirring (rotation speed 2,000 rpm / revolution speed 800 rpm, 7 minutes) and defoaming (rotation speed 2,200 rpm / revolution speed 60 rpm, 1 minute) are performed, and the carboxyl group-containing crosslinked polymer salt swells in water. A hydrogel in a state of being prepared was prepared.
Next, the particle size distribution of the hydrogel was measured with a laser diffraction / scattering particle size distribution meter (Microtrack MT-3300EXII, manufactured by Microtrac Bell) using ion-exchanged water as a dispersion medium. When an amount of hydrogel capable of obtaining an appropriate scattered light intensity was added to the place where an excessive amount of dispersion medium was circulated with respect to the hydrogel, the particle size distribution shape measured after several minutes became stable. As soon as the stability was confirmed, the particle size distribution was measured to obtain a volume-based median diameter (D50) as a representative value of the particle size.
(2質量%濃度水溶液粘度の測定)
 カルボキシル基含有架橋重合体塩の粉末2.0部、及びイオン交換水98部を容器に秤量し、自転/公転式
撹拌機(シンキー社製、あわとり錬太郎AR-250)にセットした。次いで撹拌(自転
速度2,000rpm/公転速度800rpm、7分)、さらに脱泡(自転速度2,200rpm/公転速度60rpm、1分)処理を未膨潤粉末状部がなくなるまで繰り返し、カルボキシル基含有架橋重合体塩が水に膨潤した状態のハイドロゲル微粒子分散液を調製した。得られた各ハイドロゲル微粒子分散液を25℃±1℃に調整した後、B型粘度計(東機産業社製、TVB-10)を用いて、ローター速度12rpmにおける粘度を測定した。
(Measurement of viscosity of 2% by mass aqueous solution)
2.0 parts of the carboxyl group-containing crosslinked polymer salt powder and 98 parts of the ion-exchanged water were weighed in a container and set in a rotating / revolving stirrer (Awatori Rentaro AR-250, manufactured by Shinky). Next, stirring (rotation speed 2,000 rpm / revolution speed 800 rpm, 7 minutes) and defoaming (rotation speed 2,200 rpm / revolution speed 60 rpm, 1 minute) were repeated until there were no unswelled powdery parts, and carboxyl group-containing cross-linking was performed. A hydrogel fine particle dispersion in which the polymer salt was swollen in water was prepared. After adjusting each of the obtained hydrogel fine particle dispersions to 25 ° C. ± 1 ° C., the viscosity at a rotor speed of 12 rpm was measured using a B-type viscometer (TVB-10 manufactured by Toki Sangyo Co., Ltd.).
≪第1の重合体の合成≫
(重合体1)
 攪拌機、温度計、還流冷却器及び窒素導入管を備えた反応器内にRAFT剤(ジベンジルトリチオカーボネート:DBTTC)2.0部、2,2’-アゾビス(2-メチルブチロニトリル)(日本ファインケム社製、商品名「ABN-E」)0.410部、スチレン(St)75部、アクリロニトリル(AN)25部、及びアニソール67部を仕込み、窒素バブリングで十分脱気し、80℃の恒温槽で重合を開始した。4時間後、室温まで冷却し反応を停止した。上記重合溶液を、メタノール/水=90/10(vоl%)から再沈殿精製、真空乾燥することで重合体1を得た。ガスクロマトグラフィーによる試験の結果、得られた重合体1の反応率は72%であった。重合体1の分子量は、Mn11,900、Mw15,500、Mw/Mnは1.30であった。なお、スチレン及びアクリロニトリルが、第1の単量体に対応している。
≪Synthesis of the first polymer≫
(Polymer 1)
2.0 parts of RAFT agent (dibenzyltrithiocarbonate: DBTTC), 2,2'-azobis (2-methylbutylonitrile) (2-methylbutylonitrile) in a reactor equipped with a stirrer, thermometer, reflux condenser and nitrogen introduction tube. Japan Finechem Co., Ltd., trade name "ABN-E") 0.410 parts, styrene (St) 75 parts, acrylonitrile (AN) 25 parts, and anisole 67 parts were charged, sufficiently degassed by nitrogen bubbling, and at 80 ° C. Polymerization was started in a constant temperature bath. After 4 hours, the reaction was stopped by cooling to room temperature. The above polymerization solution was reprecipitated and purified from methanol / water = 90/10 (vоl%) and vacuum dried to obtain a polymer 1. As a result of the test by gas chromatography, the reaction rate of the obtained polymer 1 was 72%. The molecular weight of the polymer 1 was Mn11,900, Mw15,500, and Mw / Mn was 1.30. Styrene and acrylonitrile correspond to the first monomer.
(第1の重合体の分子量の測定方法)
 第1の重合体の分子量の測定をゲルパーミエーションクロマトグラフィー(GPC)にて行った。すなわち、THF系GPCにより、ポリスチレン換算による数平均分子量(Mn)及び重量平均分子量(Mw)を得た。また、得られた値から分子量分布(Mw/Mn)を算出した。なお、GPCは以下の条件で行った。
(Method for measuring the molecular weight of the first polymer)
The molecular weight of the first polymer was measured by gel permeation chromatography (GPC). That is, a polystyrene-equivalent number average molecular weight (Mn) and a weight average molecular weight (Mw) were obtained by THF-based GPC. Moreover, the molecular weight distribution (Mw / Mn) was calculated from the obtained values. The GPC was performed under the following conditions.
カラム:東ソー製TSKgel SuperMultiporeHZ-M×4本
溶媒:テトラヒドロフラン
温度:40℃
検出器:RI
流速:600μL/min
Column: Tosoh TSKgel SuperMultipore HZ-M x 4 Solvent: Tetrahydrofuran Temperature: 40 ° C
Detector: RI
Flow velocity: 600 μL / min
≪カルボキシル基含有架橋重合体塩の製造≫
(製造例1:カルボキシル基含有架橋重合体塩R-1の製造)
 重合には、攪拌翼、温度計、還流冷却器及び窒素導入管を備えた反応器を用いた。
 反応器内にアセトニトリル567部、イオン交換水2.20部、アクリル酸(以下、「AA」という。)100部、DBTTC0.001部、トリメチロールプロパンジアリルエーテル(ダイソー社製、商品名「ネオアリルT-20」)0.90部及び上記AAに対して1.0モル%に相当するトリエチルアミンを仕込んだ。反応器内を十分に窒素置換した後、加温して内温を55℃まで昇温した。内温が55℃で安定したことを確認した後、重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬工業社製、商品名「V-65」)0.040部を添加したところ、反応液に白濁が認められたため、この点を重合開始点とした。なお、単量体濃度は15.0%と算出された。重合開始点から12時間経過した時点で反応液の冷却を開始し、内温が25℃まで低下した後、水酸化リチウム・一水和物(以下、「LiOH・HO」という)の粉末52.4部を添加した。添加後室温下12時間撹拌を継続して、カルボキシル基含有重合体塩R-1(Li塩、中和度90モル%)の粒子が媒体に分散したスラリー状の重合反応液を得た。
<< Production of crosslinked polymer salt containing carboxyl group >>
(Production Example 1: Production of Carboxyl Group-Containing Crosslinked Polymer Salt R-1)
A reactor equipped with a stirring blade, a thermometer, a reflux condenser and a nitrogen introduction tube was used for the polymerization.
In the reactor, 567 parts of acetonitrile, 2.20 parts of ion-exchanged water, 100 parts of acrylic acid (hereinafter referred to as "AA"), 0.001 part of DBTTC, trimethylolpropane diallyl ether (manufactured by Daiso, trade name "Neoallyl T"). -20 ") 0.90 parts and 1.0 mol% of triethylamine with respect to the above AA were charged. After sufficiently replacing the inside of the reactor with nitrogen, the inside temperature was raised to 55 ° C. by heating. After confirming that the internal temperature was stable at 55 ° C., 2,2'-azobis (2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd., trade name "V-65") 0 as a polymerization initiator. When .040 parts were added, white turbidity was observed in the reaction solution, and this point was set as the polymerization initiation point. The monomer concentration was calculated to be 15.0%. Cooling of the reaction solution is started 12 hours after the polymerization start point, and after the internal temperature is lowered to 25 ° C., a powder of lithium hydroxide / monohydrate (hereinafter referred to as “LiOH / H 2 O”) is used. 52.4 parts were added. After the addition, stirring was continued at room temperature for 12 hours to obtain a slurry-like polymerization reaction solution in which particles of the carboxyl group-containing polymer salt R-1 (Li salt, neutralization degree 90 mol%) were dispersed in a medium.
 得られた重合反応液を遠心分離して重合体粒子を沈降させた後、上澄みを除去した。その後、重合反応液と同重量のアセトニトリルに沈降物を再分散させた後、遠心分離により重合体粒子を沈降させて上澄みを除去する洗浄操作を2回繰り返した。沈降物を回収し、減圧条件下、80℃で3時間乾燥処理を行い、揮発分を除去することにより、カルボキシル基含有重合体塩R-1の粉末を得た。カルボキシル基含有重合体塩R-1は吸湿性を有するため、水蒸気バリア性を有する容器に密封保管した。なお、カルボキシル基含有重合体塩R-1の粉末をIR測定し、カルボン酸のC=O基由来のピークとカルボン酸LiのC=O由来のピークの強度比より中和度を求めたところ、仕込みからの計算値に等しく90モル%であった。また、水膨潤度は36.4であり、水媒体中での粒子径は1.72μmであり、2質量%濃度水溶液粘度は9,110mPa・sであった。 The obtained polymerization reaction solution was centrifuged to settle the polymer particles, and then the supernatant was removed. Then, after redispersing the precipitate in acetonitrile having the same weight as the polymerization reaction solution, the washing operation of precipitating the polymer particles by centrifugation to remove the supernatant was repeated twice. The precipitate was recovered and dried at 80 ° C. for 3 hours under reduced pressure conditions to remove volatile components to obtain a powder of the carboxyl group-containing polymer salt R-1. Since the carboxyl group-containing polymer salt R-1 has hygroscopicity, it was stored in a container having a water vapor barrier property. The powder of the carboxyl group-containing polymer salt R-1 was measured by IR, and the degree of neutralization was determined from the intensity ratio of the peak derived from the C = O group of the carboxylic acid and the peak derived from the C = O of the carboxylic acid Li. , 90 mol% equal to the calculated value from the preparation. The degree of water swelling was 36.4, the particle size in the aqueous medium was 1.72 μm, and the viscosity of the 2% by mass aqueous solution was 9,110 mPa · s.
(製造例2~15及び比較製造例1~2:カルボキシル基含有架橋重合体塩R-2~R-17の製造)
 単量体、架橋性単量体、及び中和剤の仕込み量を表1に記載の通りとした以外は製造例1と同様の操作を行い、カルボキシル基含有架橋重合体塩R-2~R-17を含む重合反応液を得た。
 次いで、各重合反応液について製造例1と同様の操作を行い、粉末状のカルボキシル基含有架橋重合体塩R-2~R-17を得た。各カルボキシル基含有架橋重合体塩は、水蒸気バリア性を有する容器に密封保管した。R-2~R-17の水膨潤度、水媒体中での粒子径及び2質量%濃度水溶液粘度を表1に示す。なお、R-3(中和度70モル%)の水媒体中での粒子径については、LiOH・HOにより中和度を90モル%に調整した上で測定を行った。
(Production Examples 2 to 15 and Comparative Production Examples 1 to 2: Carboxyl group-containing crosslinked polymer salts R-2 to R-17)
The same operation as in Production Example 1 was carried out except that the amounts of the monomer, the crosslinkable monomer and the neutralizing agent were as shown in Table 1, and the carboxyl group-containing crosslinked polymer salts R-2 to R were carried out. A polymerization reaction solution containing -17 was obtained.
Next, the same operations as in Production Example 1 were carried out for each polymerization reaction solution to obtain powdery carboxyl group-containing crosslinked polymer salts R-2 to R-17. Each carboxyl group-containing crosslinked polymer salt was sealed and stored in a container having a water vapor barrier property. Table 1 shows the degree of water swelling of R-2 to R-17, the particle size in the aqueous medium, and the viscosity of the 2% by mass aqueous solution. Incidentally, the particle diameter in an aqueous medium of R-3 (degree of neutralization 70 mol%) was measured after adjusting the neutralization degree of 90 mol% by LiOH · H 2 O.
(小角X線散乱測定)
 小角X線散乱測定結果の例を図1(製造例2:R-2、比較製造例2:R-17)に示した。
 いずれのサンプルも、1質量%濃度水溶液においては、qが0.03~0.10Å-1付近にブロードなピークが観測されている。これは、ハイドロゲル微粒子が水中に分散されており、粒子内部に存在するカルボキシル基に由来する荷電基の散乱によるピークである。
 一方、5質量%濃度水溶液においては、qが0.07~0.20Å-1付近にピークが観測されている。これは、ハイドロゲル微粒子が水中で密にパッキングされた状態のため、見かけ上均一な構造に近づいたため、その架橋由来のピークが確認されたと考えることができる。
(Small-angle X-ray scattering measurement)
An example of the small-angle X-ray scattering measurement result is shown in FIG. 1 (Production Example 2: R-2, Comparative Production Example 2: R-17).
In each sample, a broad peak was observed in the vicinity of q of 0.03 to 0.10 Å -1 in a 1% by mass aqueous solution. This is a peak due to scattering of charged groups derived from carboxyl groups existing inside the particles in which the hydrogel fine particles are dispersed in water.
On the other hand, in the 5% by mass aqueous solution, a peak was observed in the vicinity of q 0.07 to 0.20 Å -1. It can be considered that this is because the hydrogel fine particles were densely packed in water and the structure was apparently uniform, so that the peak derived from the cross-linking was confirmed.
 1質量%濃度水溶液では、図1で示したグラフについて、q*=0.053Å-1、L=15.4Å-1として、式(1)を用いたフィッティングを行うことで、R-2ではΞ1=43.3Å-1、R-17ではΞ1=154.4Å-1と算出された。また、5質量%濃度水溶液では、図1で示したグラフについて、q*=0.10Å-1、L=10.0Å-1として式(1)を用いたフィッティングを行うことで、R-2ではΞ5=41.6Å-1、R-17ではΞ5=32.8Å-1と算出された。
 いずれも、Ξ5と比較してΞ1の方が大きい値を示している。これは、1質量%濃度水溶液においては、ハイドロゲルが水中でパッキングされておらず、水を十分に吸収できる飽和膨潤状態にあるため、架橋の疎密がより明確となって、大きい不均一網目の構造サイズが観測されたと考えることができる。
 一方、5質量%濃度水溶液においては、ハイドロゲルが水中でパッキングされているため、架橋の疎密が打ち消されたため、見た目上、均一な網目に近い構造となり結果的に小さい不均一網目の構造サイズが観測されたと考えることができる。そのため、ΔΞ(Ξ1-Ξ5)は、間接的に架橋の疎密の度合いを示すとみなすことができる。R-2がR-17と比較して1質量%濃度水溶液におけるΞが小さく、かつΔΞも小さい値を示した結果から考察すると、R-2がより均一な架橋構造を有していると考えることができる。
 なお、R-1、R-3~R-16を小角X線散乱測定することで得られる散乱強度曲線I(q)に対し、下記式(1)でカーブフィッティングして算出されたΞ1、Ξ5及びΔΞを表1に示す。
In the 1 mass% aqueous solution, the graph shown in FIG. 1 was fitted using the formula (1) with q * = 0.053 Å -1 and L = 15.4 Å -1, and in R-2, For Ξ1 = 43.3 Å -1 , and for R-17, Ξ 1 = 154.4 Å -1 was calculated. Further, in the 5 mass% aqueous solution, the graph shown in FIG. 1 was fitted using the formula (1) with q * = 0.10 Å -1 and L = 10.0 Å -1, R-2. Then, Ξ5 = 41.6 Å -1 , and in R-17, Ξ 5 = 32.8 Å -1 .
In each case, Ξ1 shows a larger value than Ξ5. This is because in a 1% by mass aqueous solution, the hydrogel is not packed in water and is in a saturated swelling state capable of sufficiently absorbing water, so that the sparseness of the crosslinks becomes clearer and a large non-uniform network is formed. It can be considered that the structure size was observed.
On the other hand, in the 5% by mass aqueous solution, since the hydrogel is packed in water, the sparseness and density of the crosslinks are canceled out, so that the structure looks like a uniform mesh, resulting in a small non-uniform mesh structure size. It can be considered that it was observed. Therefore, ΔΞ (Ξ1-Ξ5) can be considered to indirectly indicate the degree of sparseness of the crosslinks. Considering from the result that R-2 showed a small value of Ξ in a 1% by mass aqueous solution and a small value of ΔΞ as compared with R-17, it is considered that R-2 has a more uniform crosslinked structure. be able to.
It should be noted that Ξ1, Ξ5 calculated by curve fitting the scattering intensity curve I (q) obtained by measuring R-1, R-3 to R-16 by small-angle X-ray scattering by the following formula (1). And ΔΞ are shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1において用いた化合物の詳細を以下に示す。
 AA:アクリル酸
 IBXA:アクリル酸イソボルニル
 BM1430:2-(ドデシルチオカルボノチオイルチオ)プロピオン酸
 IBME:2-ヨードイソ酪酸メチル
 T-20:トリメチロールプロパンジアリルエーテル(ダイソー社製、商品名「ネオアリルT-20」)
 P-30:ペンタエリスリトールトリアリルエーテル(ダイソー社製、商品名「ネオアリルP-30」)
 TEA:トリエチルアミン
 AcN:アセトニトリル
 V-65:2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬工業社製)
 LiOH・HO:水酸化リチウム・一水和物
 NaCO:炭酸ナトリウム
 KCO:炭酸カリウム
Details of the compounds used in Table 1 are shown below.
AA: Acrylic acid IBXA: Isobornyl acrylate BM1430: 2- (Dodecylthiocarbonothio oilthio) Propionic acid IBME: 2-Methyl iodoisobutyrate T-20: Trimethylolpropane diallyl ether (manufactured by Daiso, trade name "Neoallyl T-" 20 "))
P-30: Pentaerythritol triallyl ether (manufactured by Daiso, trade name "Neoallyl P-30")
TEA: Triethylamine AcN: Acetonitrile V-65: 2,2'-azobis (2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd.)
LiOH ・ H 2 O: Lithium hydroxide ・ Monohydrate Na 2 CO 3 : Sodium carbonate K 2 CO 3 : Potassium carbonate
≪カルボキシル基含有架橋重合体塩を含む組成物の評価≫
(実施例1:カルボキシル基含有架橋重合体塩R-1を含む組成物の評価)
<スラリー組成物(電極合剤層用組成物)の調製>
 SiOx(0.8<x<1.2)の表面にCVD法で炭素を10%コートしたものを準備し(以下、「Si系活物質」という。)、人造黒鉛とSi系活物質とを混合したものを活物質として用いた。また、バインダーとしては、本架橋重合体塩R-1、スチレンブタジエンゴム(SBR)系ラテックス及びカルボキシメチルセルロース(CMC)の混合物を用いた。
 電極合剤層用組成物の固形分濃度が50質量%となるように、水を希釈溶媒として、人造黒鉛:Si系活物質:R-1:SBR:CMC=90:10:1.0:1.0:1.0(固形分)の質量比でプライミクス社製T.K.ハイビスミックスを用いて2時間混合し、スラリー組成物として、スラリー状態の電極合剤層用組成物(電極スラリー)を調製した。電極スラリーの粘度は3,670mPa・sであり、十分低い値であった。
 得られた電極スラリーを用いて電極を作製し、その評価を行った。具体的な手順及び評価方法等について以下に示す。
<< Evaluation of composition containing carboxyl group-containing crosslinked polymer salt >>
(Example 1: Evaluation of composition containing carboxyl group-containing crosslinked polymer salt R-1)
<Preparation of slurry composition (composition for electrode mixture layer)>
Prepare a SiOx (0.8 <x <1.2) surface coated with 10% carbon by the CVD method (hereinafter referred to as "Si-based active material"), and prepare artificial graphite and Si-based active material. The mixture was used as the active material. As the binder, a mixture of the present crosslinked polymer salt R-1, styrene-butadiene rubber (SBR) -based latex, and carboxymethyl cellulose (CMC) was used.
Artificial graphite: Si-based active material: R-1: SBR: CMC = 90: 10: 1.0: using water as a diluting solvent so that the solid content concentration of the composition for the electrode mixture layer is 50% by mass. With a mass ratio of 1.0: 1.0 (solid content), T.I. K. The mixture was mixed for 2 hours using a hibis mix to prepare a slurry-state composition for an electrode mixture layer (electrode slurry) as a slurry composition. The viscosity of the electrode slurry was 3,670 mPa · s, which was a sufficiently low value.
An electrode was prepared using the obtained electrode slurry and evaluated. The specific procedure and evaluation method are shown below.
<負極極板の作製>
 上記電極スラリーを銅箔(厚み:20μm)の両面に塗布し、乾燥することにより合剤層を形成した。その後、合剤層の厚みが27μm、充填密度が1.3g/cmになるよう圧延した後、3cm正方に打ち抜いて負極極板を得た。
<Manufacturing of negative electrode plate>
The electrode slurry was applied to both sides of a copper foil (thickness: 20 μm) and dried to form a mixture layer. Then, after rolling so that the thickness of the mixture layer was 27 μm and the packing density was 1.3 g / cm 3 , the negative electrode electrode plate was obtained by punching 3 cm square.
(電極スラリーの塗工性)
 上記負極極板の作製における電極スラリーの塗工性は、以下の基準に基づき評価され、「◎」と評価された。
<評価基準>
 ◎:表面に筋ムラ、ブツ等の外観異常が全く認められない。
 〇:表面に筋ムラ、ブツ等の外観異常がわずかに認められる。
  △:表面に筋ムラ、ブツ等の外観異常が少し認められる。
 ×:表面に筋ムラ、ブツ等の外観異常が顕著に認められる。
(Applicability of electrode slurry)
The coatability of the electrode slurry in the production of the negative electrode electrode plate was evaluated based on the following criteria, and was evaluated as “⊚”.
<Evaluation criteria>
⊚: No abnormal appearance such as streaks or bumps is observed on the surface.
〇: Slight abnormalities in appearance such as streaks and bumps are observed on the surface.
Δ: Some appearance abnormalities such as streaks and bumps are observed on the surface.
X: Appearance abnormalities such as streaks and bumps are noticeably observed on the surface.
<正極極板の作製>
 N-メチルピロリドン(NMP)溶媒中、正極活物質としてリン酸鉄リチウム(LFP)を100部、導電剤としてカーボンナノチューブを0.2部、ケッチェンブラックを2部、気層法炭素繊維(VGCF)0.6部を混合して添加し、電極組成物用バインダーとしてポリフッ化ビニリデン(PVDF)を混合し、正極用組成物を調製した。アルミニウム集電体(厚み:15μm)に前記正極用組成物を塗布乾燥することにより合剤層を形成した。その後、合剤層の厚みが88μm、充填密度が3.1g/cmになるように圧延した後、3cm正方に打ち抜いて正極極板を得た。
<Manufacturing of positive electrode plate>
In N-methylpyrrolidone (NMP) solvent, 100 parts of lithium iron phosphate (LFP) as the positive electrode active material, 0.2 parts of carbon nanotubes as the conductive agent, 2 parts of Ketjen black, and vapor layer carbon fiber (VGCF). ) 0.6 part was mixed and added, and polyvinylidene fluoride (PVDF) was mixed as a binder for the electrode composition to prepare a composition for a positive electrode. A mixture layer was formed by applying the positive electrode composition to an aluminum current collector (thickness: 15 μm) and drying it. Then, after rolling so that the thickness of the mixture layer was 88 μm and the packing density was 3.1 g / cm 3 , the mixture was punched 3 cm square to obtain a positive electrode plate.
<二次電池の作製>
 上記正極極板、上記負極極板及びセパレータを用いて、ラミネート型セルのリチウムイオン二次電池を作製した。電解液としてはエチレンカーボネート(EC)、エチルメチルカーボネート(DEC)を体積比で25:75とした混合溶媒に、LiPFを1.0mol/リットルの濃度で溶解させたものを用いた。
<Making secondary batteries>
Using the positive electrode plate, the negative electrode plate, and the separator, a lithium ion secondary battery of a laminated cell was produced. As the electrolytic solution, one in which LiPF 6 was dissolved at a concentration of 1.0 mol / liter in a mixed solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (DEC) at a volume ratio of 25:75 was used.
(塗膜性能)
 上記電極スラリーから得られた塗膜の性能について、本実施例においては、リチウムイオン二次電池のサイクル特性を測定する事で評価した。
 上記で作製したラミネート型セルのリチウムイオン二次電池を、CC放電にて2.7から3.4Vの条件下、0.2Cの充放電レートにて充放電の操作を行い、初期容量C0を測定した。さらに、25℃の環境下で充放電を繰り返し、50サイクル後の容量C50を測定した。以下の式で算出されるサイクル特性(ΔC)は91.8%であり、以下の基準に基づくサイクル特性は「〇」と評価された。なお、ΔCの値が高いほどサイクル特性に優れることを示す。
 ΔC=C50/C0×100(%)
<評価基準>
 ◎:充放電容量保持率が95.0%以上
 〇:充放電容量保持率が90.0%以上95.0%未満
 △:充放電容量保持率が85.0%以上90.0%未満
 ×:充放電容量保持率が85.0%未満
(Coating film performance)
In this example, the performance of the coating film obtained from the electrode slurry was evaluated by measuring the cycle characteristics of the lithium ion secondary battery.
The lithium-ion secondary battery of the laminated cell produced above is charged / discharged at a charge / discharge rate of 0.2 C under the conditions of 2.7 to 3.4 V by CC discharge to obtain an initial capacity of C0. It was measured. Further, charging and discharging were repeated in an environment of 25 ° C., and the capacity C50 after 50 cycles was measured. The cycle characteristic (ΔC) calculated by the following formula was 91.8%, and the cycle characteristic based on the following criteria was evaluated as “◯”. The higher the value of ΔC, the better the cycle characteristics.
ΔC = C50 / C0 × 100 (%)
<Evaluation criteria>
⊚: Charge / discharge capacity retention rate is 95.0% or more 〇: Charge / discharge capacity retention rate is 90.0% or more and less than 95.0% Δ: Charge / discharge capacity retention rate is 85.0% or more and less than 90.0% × : Charge / discharge capacity retention rate is less than 85.0%
(実施例2~15、及び比較例1~2)
 本架橋重合体塩を表2に記載の通りとした以外は、実施例1と同様の操作を行うことにより、スラリー組成物として電極スラリーを調製し、そのスラリー粘度を測定した。また、当該電極スラリーの塗工性、それを用いて得られた二次電池のサイクル特性を評価した。結果を表2に示す。
(Examples 2 to 15 and Comparative Examples 1 to 2)
An electrode slurry was prepared as a slurry composition by performing the same operation as in Example 1 except that the crosslinked polymer salt was as shown in Table 2, and the slurry viscosity was measured. In addition, the coatability of the electrode slurry and the cycle characteristics of the secondary battery obtained by using the electrode slurry were evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
≪評価結果≫
 実施例1~15の結果から明らかなように、本発明の本架橋重合体塩を含むスラリー組成物は、いずれも塗工性が良好であるとともに、当該組成物の塗膜性能(本実施例においては、当該組成物を使用して得られた電極を備えた二次電池のサイクル特性)にも優れるものであった。
 これらの中でも、水膨潤度及び水媒体中での粒子径が同等の場合(実施例2、12、13)で比較すると、交換連鎖移動機構型制御剤として、可逆的付加開裂型連鎖移動重合における制御剤を用いた場合(実施例2、12)の方が、ヨウ素移動重合制御剤を用いた場合(実施例13)よりも不均一網目構造サイズΞ1が小さい値であり、ΔΞ(Ξ1-Ξ5)も小さい値であるために、塗膜性能に優れた(本実施例においては、充放電容量保持率が高く、サイクル特性に優れた)。
 これらに対して、不均一網目構造サイズΞ1が80超である架橋重合体を含むスラリー組成物の場合、塗膜性能(二次電池のサイクル特性)あるいは塗工性のいずれかが著しく劣った(比較例1及び2)。
≪Evaluation result≫
As is clear from the results of Examples 1 to 15, all the slurry compositions containing the crosslinked polymer salt of the present invention have good coatability and the coating performance of the composition (the present example). The cycle characteristics of the secondary battery provided with the electrodes obtained by using the composition) were also excellent.
Among these, when the water swelling degree and the particle size in the aqueous medium are the same (Examples 2, 12, and 13), as an exchange chain transfer mechanism type control agent, in reversible addition cleavage type chain transfer polymerization. When the control agent was used (Examples 2 and 12), the non-uniform network structure size Ξ1 was smaller than when the iodine transfer polymerization control agent was used (Example 13), and ΔΞ (Ξ1-Ξ5) was used. ) Is also a small value, so that the coating performance is excellent (in this embodiment, the charge / discharge capacity retention rate is high and the cycle characteristics are excellent).
On the other hand, in the case of a slurry composition containing a crosslinked polymer having a non-uniform network structure size Ξ1 of more than 80, either the coating film performance (cycle characteristics of the secondary battery) or the coatability was significantly inferior (). Comparative Examples 1 and 2).
 本発明のカルボキシル基含有架橋重合体又はその塩を含む組成物は、塗工性及び塗膜性能のいずれにも優れるため、化粧品用の増粘剤や粘度調整剤、非水電解質二次電池電極用のバインダー、顔料用の沈降防止剤、金属粉の分散安定剤等の様々な用途への適用が期待される。
 さらにまた、本発明のカルボキシル基含有架橋重合体又はその塩を含有する二次電池電極用バインダーを含む二次電池電極合剤層用組成物を使用して得られた電極を備えた二次電池は、良好な耐久性(サイクル特性)を示すため、車載用二次電池への適用が期待される。また、シリコンを含む活物質の使用にも有用であり、電池の高容量化への寄与が期待される。中でも、エネルギー密度が高い非水電解質リチウムイオン二次電池に有用である。
Since the composition containing the carboxyl group-containing crosslinked polymer of the present invention or a salt thereof is excellent in both coatability and coating performance, it is a thickener for cosmetics, a viscosity modifier, and a non-aqueous electrolyte secondary battery electrode. It is expected to be applied to various applications such as binders for plastics, anti-settling agents for pigments, and dispersion stabilizers for metal powders.
Furthermore, a secondary battery provided with an electrode obtained by using a composition for a secondary battery electrode mixture layer containing a binder for a secondary battery electrode containing the carboxyl group-containing crosslinked polymer of the present invention or a salt thereof. Is expected to be applied to in-vehicle secondary batteries because it exhibits good durability (cycle characteristics). It is also useful for the use of active materials containing silicon, and is expected to contribute to increasing the capacity of batteries. Above all, it is useful for a non-aqueous electrolyte lithium ion secondary battery having a high energy density.

Claims (10)

  1.  カルボキシル基含有架橋重合体又はその塩であって、
     小角X線散乱法(測定温度:25.0±0.1℃)により、中和度50~100モル%に中和された前記架橋重合体の1質量%濃度水溶液を測定することで得られる散乱強度曲線I(q)に対し、下記式(1)でカーブフィッティングして算出される、前記架橋重合体の不均一網目構造サイズΞ(以下、「Ξ1」という。)が80以下である、カルボキシル基含有架橋重合体又はその塩。
    Figure JPOXMLDOC01-appb-M000001
    A carboxyl group-containing crosslinked polymer or a salt thereof.
    It is obtained by measuring a 1% by mass concentration aqueous solution of the crosslinked polymer neutralized to a neutralization degree of 50 to 100 mol% by a small-angle X-ray scattering method (measurement temperature: 25.0 ± 0.1 ° C.). The non-uniform network structure size Ξ (hereinafter referred to as “Ξ1”) of the crosslinked polymer calculated by curve fitting with the following formula (1) with respect to the scattering intensity curve I (q) is 80 or less. A carboxyl group-containing crosslinked polymer or a salt thereof.
    Figure JPOXMLDOC01-appb-M000001
  2.  前記Ξ1と、小角X線散乱法(測定温度:25.0±0.1℃)により、中和度50~100モル%に中和された前記架橋重合体の5質量%濃度水溶液を測定することで得られる散乱強度曲線I(q)に対し、前記式(1)でカーブフィッティングして算出される、前記架橋重合体の不均一網目構造サイズΞ(以下、「Ξ5」という。)の差ΔΞ(Ξ1-Ξ5)が50以下である、請求項1に記載のカルボキシル基含有架橋重合体又はその塩。 A 5% by mass aqueous solution of the crosslinked polymer neutralized to a neutralization degree of 50 to 100 mol% is measured by the small angle X-ray scattering method (measurement temperature: 25.0 ± 0.1 ° C.) with Ξ1. The difference in the non-uniform network structure size Ξ (hereinafter referred to as “Ξ5”) of the crosslinked polymer calculated by curve fitting with the above formula (1) with respect to the scattering intensity curve I (q) obtained. The carboxyl group-containing crosslinked polymer according to claim 1, or a salt thereof, wherein ΔΞ (Ξ1-Ξ5) is 50 or less.
  3.  前記架橋重合体は、その全構造単位に対し、エチレン性不飽和カルボン酸単量体に由来する構造単位を50質量%以上100質量%以下含む、請求項1又は2に記載のカルボキシル基含有架橋重合体又はその塩。 The carboxyl group-containing crosslink according to claim 1 or 2, wherein the crosslinked polymer contains 50% by mass or more and 100% by mass or less of structural units derived from an ethylenically unsaturated carboxylic acid monomer with respect to all the structural units thereof. Polymer or salt thereof.
  4.  前記架橋重合体は、架橋性単量体により架橋されたものであり、当該架橋性単量体の使用量が非架橋性単量体の総量100質量部に対して0.1質量部以上2.0質量部以下である、請求項1~3のいずれか1項に記載のカルボキシル基含有架橋重合体又はその塩。 The crosslinked polymer is crosslinked with a crosslinkable monomer, and the amount of the crosslinkable monomer used is 0.1 part by mass or more with respect to 100 parts by mass of the total amount of the non-crosslinkable monomer. The carboxyl group-containing crosslinked polymer according to any one of claims 1 to 3, which is 0.0 parts by mass or less, or a salt thereof.
  5.  前記架橋重合体又はその塩は、中和度80~100モル%に中和された後、水媒体中で測定した粒子径が、体積基準メジアン径で0.1μm以上5.0μm以下である、請求項1~4のいずれか1項に記載のカルボキシル基含有架橋重合体又はその塩。 The crosslinked polymer or a salt thereof is neutralized to a degree of neutralization of 80 to 100 mol%, and then the particle size measured in an aqueous medium is 0.1 μm or more and 5.0 μm or less in terms of volume-based median diameter. The carboxyl group-containing crosslinked polymer according to any one of claims 1 to 4 or a salt thereof.
  6.  前記架橋重合体又はその塩は、pH8における水膨潤度が20以上80以下である、請求項1~5のいずれか1項に記載のカルボキシル基含有架橋重合体又はその塩。 The carboxyl group-containing crosslinked polymer or salt thereof according to any one of claims 1 to 5, wherein the crosslinked polymer or a salt thereof has a water swelling degree of 20 or more and 80 or less at pH 8.
  7.  請求項1~6のいずれか1項に記載のカルボキシル基含有架橋重合体又はその塩を含む、二次電池電極用バインダー。 A binder for a secondary battery electrode containing the carboxyl group-containing crosslinked polymer according to any one of claims 1 to 6 or a salt thereof.
  8.  請求項7に記載の二次電池電極用バインダー、活物質及び水を含む二次電池電極合剤層用組成物。 The composition for a secondary battery electrode mixture layer containing the binder for the secondary battery electrode, the active material, and water according to claim 7.
  9.  集電体表面に、請求項8に記載の二次電池電極合剤層用組成物から形成される合剤層を備える、二次電池電極。 A secondary battery electrode comprising a mixture layer formed from the composition for the secondary battery electrode mixture layer according to claim 8 on the surface of a current collector.
  10.  請求項9に記載の二次電池電極を備える二次電池。 A secondary battery including the secondary battery electrode according to claim 9.
PCT/JP2021/015807 2020-04-23 2021-04-19 Carboxyl group-containing crosslinked polymer or salt thereof, and use thereof WO2021215380A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022517026A JPWO2021215380A1 (en) 2020-04-23 2021-04-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-076816 2020-04-23
JP2020076816 2020-04-23

Publications (1)

Publication Number Publication Date
WO2021215380A1 true WO2021215380A1 (en) 2021-10-28

Family

ID=78269378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015807 WO2021215380A1 (en) 2020-04-23 2021-04-19 Carboxyl group-containing crosslinked polymer or salt thereof, and use thereof

Country Status (2)

Country Link
JP (1) JPWO2021215380A1 (en)
WO (1) WO2021215380A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024772A1 (en) * 2022-07-27 2024-02-01 東亞合成株式会社 Binder for nonaqueous electrolyte secondary battery electrodes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988395A (en) * 2022-06-22 2022-09-02 湖北冠毓新材料科技有限公司 Method for manufacturing solid dispersion type carbon tube

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534264A (en) * 2007-07-25 2010-11-04 アルケマ フランス Copolymer latex, its production method and its use in paper and cardboard processing
JP2011530640A (en) * 2008-08-12 2011-12-22 アルケマ フランス Method for the synthesis of amphiphilic gradient copolymers soluble in alkaline media
WO2016171028A1 (en) * 2015-04-22 2016-10-27 東亞合成株式会社 Binder for nonaqueous electrolyte secondary battery electrodes and use of same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534264A (en) * 2007-07-25 2010-11-04 アルケマ フランス Copolymer latex, its production method and its use in paper and cardboard processing
JP2011530640A (en) * 2008-08-12 2011-12-22 アルケマ フランス Method for the synthesis of amphiphilic gradient copolymers soluble in alkaline media
WO2016171028A1 (en) * 2015-04-22 2016-10-27 東亞合成株式会社 Binder for nonaqueous electrolyte secondary battery electrodes and use of same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
URAYAMA MAINA, OKAMURA SHINTARO, NISHIMINE JUN, SUENAGA YASUKU: "Graft polymerization of acrylic acid on the surface of mono-disperse polymer particles using RAFT agents", JAPANESE JOURNAL OF POLYMER SCIENCE AND TECHNOLOGY, SOCIETY OF POLYMER SCIENCE JP, JP, vol. 72, no. 4, 25 April 2015 (2015-04-25), JP , pages 184 - 189, XP055865129, ISSN: 0386-2186, DOI: 10.1295/koron.2014-0096 *
ZHENG GENHUA, ZHENG QUAN, PAN CAIYUAN: "One-Pot Synthesis of Micelles with a Cross-Linked Poly(acrylic acid) Core", MACROMOLECULAR CHEMISTRY AND PHYSICS, vol. 207, no. 2, 23 January 2006 (2006-01-23), DE , pages 216 - 223, XP055865134, ISSN: 1022-1352, DOI: 10.1002/macp.200500428 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024772A1 (en) * 2022-07-27 2024-02-01 東亞合成株式会社 Binder for nonaqueous electrolyte secondary battery electrodes

Also Published As

Publication number Publication date
JPWO2021215380A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
JP6150031B1 (en) Nonaqueous electrolyte secondary battery electrode binder, method for producing the same, and use thereof
JP6729603B2 (en) Binder for non-aqueous electrolyte secondary battery electrode, method for producing the same, and use thereof
JP7476801B2 (en) Binder for secondary battery electrodes and its use
JP6354929B1 (en) Nonaqueous electrolyte secondary battery electrode binder and use thereof
WO2021215380A1 (en) Carboxyl group-containing crosslinked polymer or salt thereof, and use thereof
JP6981466B2 (en) Method for producing crosslinked polymer or salt thereof
WO2019155773A1 (en) Binder for secondary battery electrode, and application thereof
WO2021070738A1 (en) Secondary battery electrode binder, secondary battery electrode mixture layer composition, secondary battery electrode, and secondary battery
WO2022131239A1 (en) Secondary battery electrode binder and method for producing same, secondary battery electrode mixture layer composition, secondary battery electrode, and secondary battery
JP7372602B2 (en) Binder for secondary battery electrodes and its use
WO2022138613A1 (en) Secondary battery electrode binder and use of same
JP6944610B2 (en) Binder for non-aqueous electrolyte secondary battery electrodes
WO2020218049A1 (en) Secondary battery electrode binder and use therefor
WO2021215381A1 (en) Method for producing carboxyl group-containing crosslinked polymer or salt thereof
JP7234934B2 (en) Binder for secondary battery electrode and its use
WO2020110847A1 (en) Binder for secondary battery electrode, composition for secondary battery electrode mixture layer, and secondary battery electrode
JP6988888B2 (en) Binder for non-aqueous electrolyte secondary battery electrode, its manufacturing method, and its application
WO2021241404A1 (en) Non-aqueous electrolyte secondary battery electrode binder and use therefor
JP2022107014A (en) Method for manufacturing binder for nonaqueous electrolyte secondary battery electrode
JP7226442B2 (en) Binder for secondary battery electrode and its use
WO2024024772A1 (en) Binder for nonaqueous electrolyte secondary battery electrodes
JP7480703B2 (en) Composition for secondary battery electrode mixture layer and secondary battery electrode
WO2022130989A1 (en) Binder for lithium-sulfur secondary battery electrode, and use thereof
JPWO2020040148A1 (en) Binder for secondary battery electrode mixture layer, composition for secondary battery electrode mixture layer and secondary battery electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793202

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21793202

Country of ref document: EP

Kind code of ref document: A1