WO2020218049A1 - Secondary battery electrode binder and use therefor - Google Patents

Secondary battery electrode binder and use therefor Download PDF

Info

Publication number
WO2020218049A1
WO2020218049A1 PCT/JP2020/016240 JP2020016240W WO2020218049A1 WO 2020218049 A1 WO2020218049 A1 WO 2020218049A1 JP 2020016240 W JP2020016240 W JP 2020016240W WO 2020218049 A1 WO2020218049 A1 WO 2020218049A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
secondary battery
crosslinked polymer
less
salt
Prior art date
Application number
PCT/JP2020/016240
Other languages
French (fr)
Japanese (ja)
Inventor
篤史 西脇
朋子 仲野
直彦 斎藤
綾乃 日笠山
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to JP2021515994A priority Critical patent/JP7428181B2/en
Publication of WO2020218049A1 publication Critical patent/WO2020218049A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder for a secondary battery electrode and its use. More specifically, the present invention relates to a binder for a secondary battery electrode, a composition for a mixture layer of a secondary battery electrode obtained by using the binder for a secondary battery electrode, a secondary battery electrode, and a secondary battery.
  • a secondary battery various power storage devices such as a nickel hydrogen secondary battery, a lithium ion secondary battery, and an electric double layer capacitor have been put into practical use.
  • the electrodes used in these secondary batteries are produced by applying, drying, or the like on a current collector a composition for forming an electrode mixture layer containing an active material, a binder, and the like.
  • a composition for forming an electrode mixture layer containing an active material, a binder, and the like for example, in a lithium ion secondary battery, an aqueous binder containing styrene-butadiene rubber (SBR) latex and carboxymethyl cellulose (CMC) is used as the binder used in the composition for the negative electrode mixture layer.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • a binder having excellent dispersibility and binding property a binder containing an aqueous acrylic acid polymer solution or an aqueous dispersion is known.
  • NMP N-methyl-2-pyrrolidone
  • PVDF polyvinylidene fluoride
  • Patent Document 1 discloses an acrylic acid-based polymer crosslinked with polyalkenyl ether as a binder for forming a negative electrode mixture layer of a lithium ion secondary battery.
  • Patent Document 2 describes lithium containing a copolymer obtained by polymerizing a monomer composition containing an ethylenically unsaturated carboxylic acid compound and a compound having an ethylenically unsaturated bond exhibiting a specific water solubility. Binders for ion secondary battery electrodes are disclosed.
  • Patent Document 3 describes a crosslinked polymer or a salt thereof containing a specific amount of a structural unit derived from an ethylenically unsaturated carboxylic acid monomer, which is in salt water after the crosslinked polymer is neutralized and water-swelled.
  • a binder for a non-aqueous electrolyte secondary battery electrode containing a crosslinked polymer having a particle size of a specific small particle size range is disclosed.
  • Electrode slurry a composition for an electrode mixture layer (hereinafter, also referred to as “electrode slurry”) containing a binder and an electrode active material disclosed in Patent Documents 1 to 3.
  • the electrode slurry becomes highly viscous and uniform coating becomes difficult, which in turn makes uniform coating difficult.
  • Affecting cohesiveness and cycle characteristics could be a problem.
  • the present invention has been made in view of such circumstances, and even when the solid content concentration of the electrode slurry is increased to about 50% by mass, the electrode slurry can be uniformly coated, and the result is high.
  • a binder for a secondary battery electrode capable of exhibiting wearability and cycle characteristics.
  • a composition for a secondary battery electrode mixture layer, a secondary battery electrode, and a secondary battery obtained by using the above binder are also provided.
  • the present inventors have made the crosslinked weight even when the solid content concentration of the electrode slurry using the binder containing the crosslinked polymer is increased to about 50% by mass. We have found that by setting the ratio of the sol content contained in the coalescence to a specific value, uniform coating of the electrode slurry is possible, and high binding properties and cycle characteristics can be exhibited. completed.
  • the present invention is as follows.
  • the crosslinked polymer or a salt thereof is a binder for a secondary battery electrode having a sol content of less than 5.0% by mass.
  • the crosslinked polymer or a salt thereof is neutralized to a degree of neutralization of 80 to 100 mol%, and then the particle size measured in an aqueous medium is 0.1 ⁇ m or more and 10 ⁇ m or less in terms of volume-based median diameter.
  • a secondary battery electrode comprising a mixture layer formed from the composition for the secondary battery electrode mixture layer according to the above [6] on the surface of a current collector.
  • the binder for the secondary battery electrode of the present invention it is possible to obtain a secondary battery having a mixture layer having excellent binding properties and having excellent cycle characteristics. Therefore, even when the active material contains a silicon-based active material, it can contribute to improving the durability of the secondary battery.
  • the binder for a secondary battery electrode of the present invention contains a crosslinked polymer or a salt thereof, and can be mixed with an active material and water to form a secondary battery electrode mixture layer composition (hereinafter, simply "the present composition”. It can also be called.). It is preferable that the above composition is an electrode slurry in a slurry state that can be applied to the current collector from the viewpoint of achieving the effect of the present invention, but it is prepared in a wet powder state and applied to the surface of the current collector. It may be possible to cope with press working.
  • the secondary battery electrode of the present invention can be obtained by forming a mixture layer formed from the above composition on the surface of a current collector such as a copper foil or an aluminum foil.
  • (meth) acrylic means acrylic and / or methacryl
  • (meth) acrylate means acrylate and / or methacrylate
  • (meth) acryloyl group means an acryloyl group and / or a methacryloyl group.
  • the binder of the present invention contains a crosslinked polymer or a salt thereof.
  • the crosslinked polymer may have a structural unit derived from an ethylenically unsaturated carboxylic acid.
  • the crosslinked polymer can have a structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter, also referred to as “component (a)”).
  • component (a) ethylenically unsaturated carboxylic acid monomer
  • the crosslinked polymer has a carboxyl group by having such a structural unit, the adhesiveness to the current collector is improved, and the lithium ion desolvation effect and the ionic conductivity are excellent, so that the resistance is small and the high rate is obtained.
  • An electrode having excellent characteristics can be obtained. Further, since water swelling property is imparted, the dispersion stability of the active material or the like in the mixture layer composition can be enhanced.
  • the component (a) can be introduced into a crosslinked polymer, for example, by polymerizing a monomer containing an ethylenically unsaturated carboxylic acid monomer. In addition, it can also be obtained by (co) polymerizing a (meth) acrylic acid ester monomer and then hydrolyzing it. Further, after polymerizing (meth) acrylamide, (meth) acrylonitrile or the like, it may be treated with a strong alkali, or it may be a method of reacting an acid anhydride with a polymer having a hydroxyl group.
  • Examples of the ethylenically unsaturated carboxylic acid monomer include (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid; and (meth) acrylamide alkyl such as (meth) acrylamide hexane acid and (meth) acrylamide dodecanoic acid.
  • Carboxylic acid; ethylenically unsaturated monomers having a carboxyl group such as monohydroxyethyl succinate (meth) acrylate, ⁇ -carboxy-caprolactone mono (meth) acrylate, ⁇ -carboxyethyl (meth) acrylate, or (partial) thereof.
  • Alkaline neutralized products may be mentioned, and one of these may be used alone, or two or more thereof may be used in combination.
  • a compound having an acryloyl group as a polymerizable functional group is preferable, and acrylic acid is particularly preferable, in that a polymer having a long primary chain length can be obtained because the polymerization rate is high and the binding force of the binder is good. is there.
  • acrylic acid is used as the ethylenically unsaturated carboxylic acid monomer, a polymer having a high carboxyl group content can be obtained.
  • the content of the component (a) in the crosslinked polymer is not particularly limited, but can be, for example, 10% by mass or more and 100% by mass or less with respect to all the structural units of the crosslinked polymer.
  • the lower limit is, for example, 20% by mass or more, for example, 30% by mass or more, and for example, 40% by mass or more.
  • the lower limit may be 60% by mass or more, 70% by mass or more, or 80% by mass or more.
  • the upper limit is, for example, 99% by mass or less, for example 98% by mass or less, for example 95% by mass or less, and for example 90% by mass or less.
  • the range may be a range in which such a lower limit and an upper limit are appropriately combined, and is, for example, 10% by mass or more and 100% by mass or less, and for example, 20% by mass or more and 100% by mass or less, and for example. It can be 30% by mass or more and 100% by mass or less, and can be, for example, 50% by mass or more and 100% by mass or less, and can be, for example, 50% by mass or more and 99% by mass or less.
  • the crosslinked polymer can contain structural units derived from other ethylenically unsaturated monomers copolymerizable with the component (a) (hereinafter, also referred to as “component (b)”). ..
  • component (b) is a structural unit derived from a monomer having an ethylenically unsaturated group other than the component (a), and for example, an anionic group other than the carboxyl group such as a sulfonic acid group and a phosphoric acid group. Examples thereof include structural units derived from the ethylenically unsaturated monomer compound having, a nonionic ethylenically unsaturated monomer, and the like.
  • These structural units are an ethylenically unsaturated monomer compound having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, or a monomer containing a nonionic ethylenically unsaturated monomer. Can be introduced by copolymerizing.
  • the ratio of the component (b) can be 0% by mass or more and 90% by mass or less with respect to all the structural units of the crosslinked polymer.
  • the ratio of the component (b) may be 1% by mass or more and 60% by mass or less, 2% by mass or more and 50% by mass or less, and 5% by mass or more and 40% by mass or less. It may be 10% by mass or more and 30% by mass or less. Further, when the component (b) is contained in an amount of 1% by mass or more with respect to all the structural units of the crosslinked polymer, the affinity for the electrolytic solution is improved, so that the effect of improving the lithium ion conductivity can be expected.
  • a structural unit derived from a nonionic ethylenically unsaturated monomer is preferable from the viewpoint of obtaining an electrode having good bending resistance, and a nonionic ethylenically unsaturated monomer is preferable.
  • the metric include (meth) acrylamide and its derivatives, an alicyclic structure-containing ethylenically unsaturated monomer, and a hydroxyl group-containing ethylenically unsaturated monomer.
  • Examples of the (meth) acrylamide derivative include N-alkyl (meth) acrylamide compounds such as isopropyl (meth) acrylamide and t-butyl (meth) acrylamide; Nn-butoxymethyl (meth) acrylamide and N-isobutoxymethyl.
  • N-alkoxyalkyl (meth) acrylamide compounds such as (meth) acrylamide; N, N-dialkyl (meth) acrylamide compounds such as dimethyl (meth) acrylamide and diethyl (meth) acrylamide are mentioned, and one of them is used. It may be used alone or in combination of two or more.
  • Examples of the alicyclic structure-containing ethylenically unsaturated monomer include cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, and (meth).
  • Cyclodecyl acrylate and cyclododecyl (meth) acrylate and other aliphatic substituents may have (meth) cycloalkyl acrylate; isobornyl (meth) acrylate, adamantyl (meth) acrylate, (meth).
  • Cycloalkyl polyalcohol mono (meth) acrylate and the like can be mentioned, and one of these may be used alone, or two or more thereof may be used in combination.
  • hydroxyl group-containing ethylenically unsaturated monomer examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate, and one of them is used alone. It may be used in combination, or two or more kinds may be used in combination.
  • (meth) acrylic acid ester examples include (meth) methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • Acrylic acid alkyl ester compound (Meta) Acrylic acid aralkyl ester compounds such as (meth) phenyl acrylate, (meth) phenylmethyl acrylate, (meth) phenylethyl acrylate; Examples thereof include (meth) acrylic acid alkoxyalkyl ester compounds such as 2-methoxyethyl (meth) acrylic acid and 2-ethoxyethyl (meth) acrylic acid, and one of these may be used alone. Two or more types may be used in combination.
  • the present polymer or a salt thereof preferably contains a structural unit derived from (meth) acrylamide and its derivative, an alicyclic structure-containing ethylenically unsaturated monomer, etc., in that the binder has excellent binding properties.
  • a structural unit derived from a hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g / 100 ml or less is introduced as the component (b)
  • a strong interaction with the electrode material can be achieved.
  • a solid and well-integrated electrode mixture layer can be obtained.
  • hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g / 100 ml or less is particularly selected.
  • An alicyclic structure-containing ethylenically unsaturated monomer is preferable.
  • the crosslinked polymer or salt thereof according to the present invention preferably contains a structural unit derived from a hydroxyl group-containing ethylenically unsaturated monomer because the cycle characteristics of the obtained secondary battery are improved. It is preferably contained in an amount of 0.5% by mass or more and 70% by mass or less, more preferably 0.5% by mass or more and 50% by mass or less, and further preferably 1.0% by mass or more and 50% by mass or less.
  • a compound having an acryloyl group is preferable in that a polymer having a long primary chain length can be obtained due to its high polymerization rate and the binder has a good binding force.
  • the crosslinked polymer may be a salt.
  • the type of salt is not particularly limited, but alkali metal salts such as lithium, sodium and potassium; alkaline earth metal salts such as calcium salt and barium salt; other metal salts such as magnesium salt and aluminum salt; ammonium salt and organic Examples include amine salts.
  • alkali metal salts and magnesium salts are preferable, and alkali metal salts are more preferable, from the viewpoint that adverse effects on battery characteristics are unlikely to occur. Further, from the viewpoint of obtaining a secondary battery having low resistance, a lithium salt is particularly preferable.
  • the cross-linking method in the cross-linked polymer of the present invention is not particularly limited, and examples thereof include the following methods. 1) Copolymerization of crosslinkable monomers 2) Utilizing chain transfer to polymer chains during radical polymerization 3) After synthesizing a polymer having a reactive functional group, post-crosslinking is performed by adding a crosslinking agent as necessary. Since the polymer has a crosslinked structure, the binder containing the polymer or a salt thereof can have an excellent binding force. Among the above, the method by copolymerization of crosslinkable monomers is preferable from the viewpoint of simple operation and easy control of the degree of crosslinking.
  • crosslinkable monomer examples include a polyfunctional polymerizable monomer having two or more polymerizable unsaturated groups, a monomer having a self-crosslinkable crosslinkable functional group such as a hydrolyzable silyl group, and the like. Can be mentioned.
  • the polyfunctional polymerizable monomer is a compound having two or more polymerizable functional groups such as a (meth) acryloyl group and an alkenyl group in the molecule, and is a polyfunctional (meth) acrylate compound, a polyfunctional alkenyl compound, ( Meta) Examples thereof include compounds having both an acryloyl group and an alkenyl group. Only one of these compounds may be used alone, or two or more of these compounds may be used in combination. Among these, a polyfunctional alkenyl compound is preferable because a uniform crosslinked structure can be easily obtained and a sol fraction can be easily adjusted, and a polyfunctional allyl ether compound having a plurality of allyl ether groups in the molecule is particularly preferable.
  • polyfunctional (meth) acrylate compound examples include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and polypropylene glycol di (meth) acrylate.
  • Di (meth) acrylates of dihydric alcohols such as meta) acrylate; trimethylol propantri (meth) acrylate, tri (meth) acrylate of trimethyl propanethylene oxide modified product, glycerin tri (meth) acrylate, pentaerythritol tri (meth) Tri (meth) acrylates of trivalent or higher polyhydric alcohols such as meta) acrylates and pentaerythritol tetra (meth) acrylates, poly (meth) acrylates such as tetra (meth) acrylates; methylenebisacrylamide, hydroxyethylenebisacrylamide, etc. Bisamides and the like can be mentioned.
  • polyfunctional alkenyl compound examples include polyfunctional allyl ether compounds such as trimethylolpropanediallyl ether, trimethylolpropanetriallyl ether, pentaerythritol diallyl ether, pentaerythritol triallyl ether, tetraallyloxyethane, and polyallyl saccharose; diallyl phthalate and the like.
  • Polyfunctional allyl compound examples thereof include polyfunctional vinyl compounds such as divinylbenzene.
  • Compounds having both (meth) acryloyl group and alkenyl group include allyl (meth) acrylate, isopropenyl (meth) acrylate, butenyl (meth) acrylate, pentenyl (meth) acrylate, and (meth) acrylate. 2- (2-Vinyloxyethoxy) ethyl and the like can be mentioned.
  • the above-mentioned monomer having a crosslinkable functional group include a hydrolyzable silyl group-containing vinyl monomer, N-methylol (meth) acrylamide, N-methoxyalkyl (meth) acrylate and the like. Can be mentioned. These compounds can be used alone or in combination of two or more.
  • the hydrolyzable silyl group-containing vinyl monomer is not particularly limited as long as it is a vinyl monomer having at least one hydrolyzable silyl group.
  • vinylsilanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, vinyldimethylmethoxysilanen; silyls such as trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylate, methyldimethoxysilylpropyl acrylate and the like.
  • Group-containing acrylic acid esters silyl group-containing methacrylate esters such as trimethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate, methyldimethoxysilylpropyl methacrylate, dimethylmethoxysilylpropyl methacrylate; trimethoxysilylpropyl vinyl ether and the like.
  • Cyril group-containing vinyl ethers; silyl group-containing vinyl esters such as trimethoxysilyl undecanoate vinyl and the like can be mentioned.
  • the amount of the crosslinkable monomer used is the total amount of monomers other than the crosslinkable monomer (non-crosslinkable monomer). On the other hand, it is preferably 0.3 to 5 mol%, more preferably 0.7 to 5 mol%, further preferably 0.7 to 3 mol%, and 1.5 to 3 mol%. Is more preferable.
  • the amount of the crosslinkable monomer used is 0.3 mol% or more, the binding property and the stability of the electrode slurry are more preferable. If it is 5 mol% or less, the stability of the crosslinked polymer tends to be high.
  • the amount of the crosslinkable monomer used is preferably 0.7 to 20% by mass, more preferably 1.0 to 15% by mass, and further preferably 1.0 to 15% by mass, based on the total constituent monomers of the crosslinked polymer. Is 2.0 to 10% by mass, more preferably 3.0 to 10% by mass.
  • the sol fraction of the crosslinked polymer or a salt thereof is less than 5.0% by mass.
  • the lower limit of the sol fraction may be 0.1% by mass or more, 0.2% by mass or more, 0.5% by mass or more, or 1.0% by mass or more. It may be.
  • the sol content in the present specification is mainly composed of a polymer having no three-dimensional crosslinked structure, and the sol content contained in the crosslinked polymer or a salt thereof can be adjusted by a known method. it can. That is, the sol fraction can be set in a desired range by adjusting the type of the cross-linking agent, the amount used thereof, the primary chain length of the polymer, and the like. For example, the sol fraction generally decreases by increasing the amount of the cross-linking agent used or increasing the primary chain length.
  • the weight average molecular weight of the sol content of the crosslinked polymer or a salt thereof is preferably 300,000 or less in terms of polyethylene oxide / polyethylene glycol. It is more preferably 200,000 or less, further preferably 150,000 or less, and even more preferably 100,000 or less.
  • the lower limit of the weight average molecular weight of the sol content may be 1,000 or more, 2,000 or more, 3,000 or more, or 5,000 or more. It may be 10,000 or more.
  • the weight average molecular weight of the sol content of the crosslinked polymer is a value in terms of polyethylene oxide / polyethylene glycol, and can be measured by the method described in Examples of the present specification.
  • ⁇ Particle diameter of crosslinked polymer> when the crosslinked polymer does not exist as a mass (secondary agglomerate) having a large particle size and is well dispersed as water-swelled particles having an appropriate particle size, the crosslinked polymer is included.
  • the binder is preferable because it can exhibit good binding performance.
  • the crosslinked polymer of the present invention or a salt thereof has a particle size (water-swelling particle size) when a crosslinked polymer having a degree of neutralization based on a carboxyl group of 80 to 100 mol% is dispersed in water.
  • the volume-based median diameter is preferably in the range of 0.1 ⁇ m or more and 10.0 ⁇ m or less.
  • the particle size is in the range of 0.1 ⁇ m or more and 10.0 ⁇ m or less, the composition is uniformly present in a suitable size in the present composition, so that the present composition is highly stable and exhibits excellent binding properties. It becomes possible to do. If the particle size exceeds 10.0 ⁇ m, the binding property may be insufficient as described above.
  • the lower limit of the particle size may be 0.2 ⁇ m or more, 0.3 ⁇ m or more, or 0.5 ⁇ m or more.
  • the upper limit of the particle size may be 9.0 ⁇ m or less, 8.0 ⁇ m or less, 7.0 ⁇ m or less, 5.0 ⁇ m or less, 3.0 ⁇ m or less. There may be.
  • the range of the particle size can be set by appropriately combining the above lower limit value and upper limit value, and may be, for example, 0.1 ⁇ m or more and 9.0 ⁇ m or less, and 0.2 ⁇ m or more and 8.0 ⁇ m or less. It may be 0.3 ⁇ m or more and 5.0 ⁇ m or less.
  • the water-swelled particle size can be measured by the method described in the examples of the present specification.
  • the crosslinked polymer is unneutralized or has a neutralization degree of less than 80 mol%, neutralize it to a neutralization degree of 80 to 100 mol% with an alkali metal hydroxide or the like, and measure the particle size when dispersed in water. do it.
  • the crosslinked polymer or a salt thereof often exists as agglomerated particles in which primary particles are associated and aggregated in the state of powder or solution (dispersion liquid).
  • the crosslinked polymer or a salt thereof has extremely excellent dispersibility, and is neutralized to a degree of neutralization of 80 to 100 mol% to be water.
  • the agglomerated particles are disintegrated, and even if it is a dispersion of almost primary particles or a secondary agglomerate, a stable dispersed state in which the particle size is in the range of 0.1 to 10.0 ⁇ m is formed. It is a thing.
  • the particle size distribution which is the value obtained by dividing the volume average particle size of the water-swelled particle size by the number average particle size, is preferably 10 or less, more preferably 5.0 or less, from the viewpoint of bondability and coatability. Yes, more preferably 3.0 or less, still more preferably 1.5 or less.
  • the lower limit of the particle size distribution is usually 1.0.
  • the particle size (dry particle size) of the crosslinked polymer of the present invention or a salt thereof at the time of drying is preferably in the range of 0.03 ⁇ m or more and 3 ⁇ m or less in terms of volume-based median diameter.
  • a more preferable range of the particle size is 0.1 ⁇ m or more and 1 ⁇ m or less, and a more preferable range is 0.3 ⁇ m or more and 0.8 ⁇ m or less.
  • the degree of neutralization is 20 to 100 mol% in the present composition. It is preferably used as an embodiment of the salt.
  • the degree of neutralization is more preferably 50 to 100 mol%, and even more preferably 60 to 95 mol%. When the degree of neutralization is 20 mol% or more, the water swelling property is good and the dispersion stabilizing effect is easily obtained, which is preferable.
  • the degree of neutralization can be calculated by calculation from the charged values of a monomer having an acid group such as a carboxyl group and a neutralizing agent used for neutralization.
  • the crosslinked polymer of the present invention has a three-dimensional crosslinked structure and exists as a microgel in a medium such as water.
  • a three-dimensional crosslinked polymer is insoluble in a solvent, so its molecular weight cannot be measured. Similarly, it is usually difficult to measure and quantify the primary chain length of crosslinked polymers.
  • the crosslinked polymer of the present invention or a salt thereof preferably has a water swelling degree of 3.0 or more and 100 or less at pH 8.
  • the degree of water swelling is within the above range, the crosslinked polymer or a salt thereof swells appropriately in an aqueous medium, so that a sufficient adhesive area to the active material and the current collector is provided when forming the electrode mixture layer. It is possible to secure it, and the binding property tends to be good.
  • the degree of water swelling may be, for example, 4.0 or more, 5.0 or more, 7.0 or more, 10 or more, or 15 or more. May be good.
  • the degree of water swelling When the degree of water swelling is 3.0 or more, the crosslinked polymer or a salt thereof spreads on the surface of the active material or the current collector, and a sufficient adhesive area can be secured, so that good binding property can be obtained.
  • the upper limit of the degree of water swelling at pH 8 may be 95 or less, 90 or less, 80 or less, 60 or less, or 50 or less.
  • the degree of water swelling exceeds 100, the viscosity of the present composition (electrode slurry) containing the crosslinked polymer or a salt thereof tends to increase, and as a result of insufficient uniformity of the mixture layer, sufficient binding force is obtained. It may not be possible. In addition, the coatability of the electrode slurry may decrease.
  • the range of the degree of water swelling at pH 8 can be set by appropriately combining the above upper limit value and lower limit value, and is, for example, 4.0 or more and 100 or less, and for example, 5.0 or more and 100 or less. Further, for example, it is 5.0 or more and 80 or less.
  • the degree of water swelling at pH 8 can be obtained by measuring the degree of swelling of the crosslinked polymer or a salt thereof in water at pH 8.
  • the water having a pH of 8 for example, ion-exchanged water can be used, and the pH value may be adjusted by using an appropriate acid or alkali, a buffer solution or the like, if necessary.
  • the pH at the time of measurement is, for example, in the range of 8.0 ⁇ 0.5, preferably in the range of 8.0 ⁇ 0.3, more preferably in the range of 8.0 ⁇ 0.2, and further. It is preferably in the range of 8.0 ⁇ 0.1.
  • a person skilled in the art can adjust the degree of water swelling by controlling the composition and structure of the crosslinked polymer or a salt thereof.
  • the degree of water swelling can be increased by introducing an acidic functional group or a highly hydrophilic structural unit into the crosslinked polymer. Further, by lowering the degree of cross-linking of the cross-linked polymer, the degree of water swelling is usually increased.
  • crosslinked polymer ⁇ Method for producing crosslinked polymer or salt thereof>
  • known polymerization methods such as solution polymerization, precipitation polymerization, suspension polymerization, and emulsion polymerization can be used, but in terms of productivity, precipitation polymerization and suspension polymerization (reverse phase suspension polymerization) ) Is preferable.
  • Non-homogeneous polymerization methods such as precipitation polymerization, suspension polymerization, and emulsion polymerization are preferable, and the precipitation polymerization method is more preferable, in that better performance can be obtained in terms of binding property and the like.
  • Precipitation polymerization is a method for producing a polymer by carrying out a polymerization reaction in a solvent that dissolves an unsaturated monomer as a raw material but does not substantially dissolve the polymer to be produced.
  • the polymer particles become larger due to aggregation and growth, and a dispersion liquid of the polymer particles in which the primary particles of several tens of nm to several hundred nm are secondarily aggregated to several ⁇ m to several tens of ⁇ m can be obtained.
  • Dispersion stabilizers can also be used to control the particle size of the polymer.
  • the dispersion stabilizer examples include a dispersion stabilizer produced by the living radical polymerization method, a macromonomer type dispersion stabilizer, and a nonionic surfactant.
  • the secondary aggregation can also be suppressed by selecting a dispersion stabilizer, a polymerization solvent, or the like. In general, precipitation polymerization in which secondary aggregation is suppressed is also called dispersion polymerization.
  • a solvent selected from water, various organic solvents, etc. can be used as the polymerization solvent in consideration of the type of monomer used. In order to obtain a polymer having a longer primary chain length, it is preferable to use a solvent having a small chain transfer constant.
  • the polymerization solvent examples include water-soluble solvents such as methanol, t-butyl alcohol, acetone, methyl ethyl ketone, acetonitrile and tetrahydrofuran, as well as benzene, ethyl acetate, dichloroethane, n-hexane, cyclohexane and n-heptane. , One of these can be used alone or in combination of two or more. Alternatively, it may be used as a mixed solvent of these and water.
  • the water-soluble solvent refers to a solvent having a solubility in water at 20 ° C. of more than 10 g / 100 ml.
  • the formation of coarse particles and adhesion to the reactor are small and the polymerization stability is good, and the precipitated polymer fine particles are difficult to secondary agglomerate (or even if secondary agglomeration occurs, they dissolve in the aqueous medium.
  • Methyl ethyl ketone and acetonitrile are preferable because they are easy to use), a polymer having a small chain transfer constant and a large degree of polymerization (primary chain length) can be obtained, and the operation is easy during the step neutralization described later. ..
  • a highly polar solvent preferably include water and methanol.
  • the amount of the highly polar solvent used is preferably 0.05 to 20.0% by mass, more preferably 0.1 to 10.0% by mass, still more preferably 0.1 to 5% by mass based on the total mass of the medium. It is 0.0% by mass, more preferably 0.1 to 1.0% by mass. If the proportion of the highly polar solvent is 0.05% by mass or more, the effect on the neutralization reaction is recognized, and if it is 20.0% by mass or less, no adverse effect on the polymerization reaction is observed.
  • the polymerization rate is improved when a highly polar solvent is added, and it becomes easy to obtain a polymer having a long primary chain length.
  • a highly polar solvent water is particularly preferable because it has a large effect of improving the polymerization rate.
  • the crosslinked polymer or a salt thereof it is preferable to include a polymerization step of polymerizing a monomer component containing an ethylenically unsaturated carboxylic acid monomer.
  • the ethylenically unsaturated carboxylic acid monomer from which the component (a) is derived is 10% by mass or more and 100% by mass or less, and the other ethylenically unsaturated monomer from which the component (b) is derived is 0% by mass.
  • the polymerization step 10% by mass or more and 100% by mass or less of the structural unit (component (a)) derived from the ethylenically unsaturated carboxylic acid monomer is introduced into the crosslinked polymer, and other ethylenically unsaturated products are introduced.
  • the structural unit (component (b)) derived from the monomer is introduced in an amount of 0% by mass or more and 90% by mass or less.
  • the amount of the ethylenically unsaturated carboxylic acid monomer used is, for example, 20% by mass or more and 100% by mass or less, and for example, 30% by mass or more and 100% by mass or less, and for example, 50% by mass. As mentioned above, it is 100% by mass or less.
  • Examples of the other ethylenically unsaturated monomer include an ethylenically unsaturated monomer compound having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, and a nonionic ethylenically.
  • Examples include unsaturated monomers.
  • Specific examples of the compound include monomeric compounds into which the above-mentioned component (b) can be introduced.
  • the other ethylenically unsaturated monomer may contain 0% by mass or more and 90% by mass or less, or 1% by mass or more and 60% by mass or less, based on the total amount of the monomer components. It may be 10% by mass or more and 50% by mass or less, or 10% by mass or more and 30% by mass or less. Further, the above-mentioned crosslinkable monomer may be used in the same manner.
  • the monomer component polymerized in the polymerization step may contain a crosslinkable monomer.
  • the crosslinkable monomer as described above, it has a polyfunctional polymerizable monomer having two or more polymerizable unsaturated groups and a self-crosslinkable crosslinkable functional group such as a hydrolyzable silyl group. Examples include monomers.
  • the amount of the crosslinkable monomer used is preferably 0.1 part by mass or more and 2.0 parts by mass or less with respect to 100 parts by mass of the total amount of the monomers other than the crosslinkable monomer (non-crosslinkable monomer). It is more preferably 0.3 parts by mass or more and 1.5 parts by mass or less, and further preferably 0.5 parts by mass or more and 1.5 parts by mass or less.
  • the monomer concentration at the time of polymerization is preferably high from the viewpoint of obtaining a polymer having a longer primary chain length.
  • the monomer concentration at the start of polymerization is generally in the range of about 2 to 40% by mass, preferably in the range of 5 to 40% by mass.
  • the "monomer concentration" indicates the monomer concentration in the reaction solution at the time when the polymerization is started.
  • the crosslinked polymer may be produced by carrying out a polymerization reaction in the presence of a basic compound.
  • the monomer concentration may be 13.0% by mass or more, preferably 15.0% by mass or more, more preferably 17.0% by mass or more, and further preferably 19.0% by mass or more. It is more preferably 20.0% by mass or more.
  • the monomer concentration is still preferably 22.0% by mass or more, and even more preferably 25.0% by mass or more.
  • the higher the monomer concentration at the time of polymerization the higher the molecular weight can be, and a polymer having a long primary chain length can be produced. Further, a polymer having a long primary chain length tends to be incorporated into a three-dimensional crosslinked structure, so that the sol fraction tends to be reduced.
  • the upper limit of the monomer concentration differs depending on the type of monomer and solvent used, the polymerization method, various polymerization conditions, etc., but if the heat of the polymerization reaction can be removed, the precipitation polymerization is as described above. It is about 40%, about 50% for suspension polymerization, and about 70% for emulsion polymerization.
  • the above-mentioned base compound is a so-called alkaline compound, and either an inorganic base compound or an organic base compound may be used.
  • an inorganic base compound By carrying out the polymerization reaction in the presence of a basic compound, the polymerization reaction can be stably carried out even under high monomer concentration conditions such as exceeding 13.0% by mass.
  • the polymer obtained by polymerizing at such a high monomer concentration has a high molecular weight (because the primary chain length is long), and therefore has excellent binding properties.
  • the inorganic base compound include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide, and alkalis such as sodium carbonate and potassium carbonate.
  • Examples thereof include metal carbonates, and one or more of these can be used.
  • Examples of the organic base compound include ammonia and organic amine compounds, and one or more of these can be used. Of these, an organic amine compound is preferable from the viewpoint of polymerization stability and binding property of a binder containing the obtained crosslinked polymer or a salt thereof.
  • organic amine compound examples include monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, monobutylamine, dibutylamine, tributylamine, monohexylamine, dihexylamine, trihexylamine, trioctylamine and tridodecylamine.
  • N-alkyl substituted amines such as: monoethanolamine, diethanolamine, triethanolamine, propanolamine, dimethylethanolamine and (alkyl) alkanolamines such as N, N-dimethylethanolamine; pyridine, piperidine, piperazine, 1,8- Cyclic amines such as bis (dimethylamino) naphthalene, morpholin and diazabicycloundecene (DBU); diethylenetriamine, N, N-dimethylbenzylamine, and one or more of these can be used. ..
  • the C / N value is preferably 3 or more, more preferably 5 or more, still more preferably 10 or more, still more preferably 20 or more.
  • the amount of the base compound used is preferably in the range of 0.001 mol% or more and 4.0 mol% or less with respect to the ethylenically unsaturated carboxylic acid monomer. When the amount of the basic compound used is within this range, the polymerization reaction can be smoothly carried out.
  • the amount used may be 0.05 mol% or more and 4.0 mol% or less, 0.1 mol% or more and 4.0 mol% or less, and 0.1 mol% or more and 3.0 mol. It may be 0.1 mol% or more and 2.0 mol% or less.
  • the amount of the base compound used represents the molar concentration of the base compound used with respect to the ethylenically unsaturated carboxylic acid monomer, and does not mean the degree of neutralization. That is, the valence of the base compound used is not considered.
  • polymerization initiator known polymerization initiators such as azo compounds, organic peroxides, and inorganic peroxides can be used, but the polymerization initiator is not particularly limited.
  • the conditions of use can be adjusted by known methods such as heat initiation, redox initiation with a reducing agent, and UV initiation so that the amount of radicals generated is appropriate.
  • heat initiation heat initiation
  • redox initiation with a reducing agent
  • UV initiation UV initiation
  • Examples of the azo compound include 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (N-butyl-2-methylpropionamide), and 2- (tert-butylazo) -2.
  • -Cyanopropane, 2,2'-azobis (2,4,4-trimethylpentane), 2,2'-azobis (2-methylpropane) and the like, and one or more of these are used. be able to.
  • organic peroxide examples include 2,2-bis (4,5-di-t-butylperoxycyclohexyl) propane (manufactured by Nichiyu Co., Ltd., trade name "Pertetra A”) and 1,1-di (t-).
  • inorganic peroxide examples include potassium persulfate, sodium persulfate, ammonium persulfate and the like.
  • potassium persulfate sodium persulfate
  • sodium persulfate sodium persulfate
  • ammonium persulfate and the like.
  • sodium sulfite, sodium thiosulfate, sodium formaldehyde sulfoxylate, ascorbic acid, sulfurous acid gas (SO 2 ), ferrous sulfate and the like can be used as the reducing agent.
  • the preferable amount of the polymerization initiator used is, for example, 0.001 to 2 parts by mass and, for example, 0.005 to 1 part by mass, when the total amount of the monomer components used is 100 parts by mass. Further, for example, it is 0.01 to 0.1 parts by mass.
  • the amount of the polymerization initiator used is 0.001 part by mass or more, the polymerization reaction can be stably carried out, and when it is 2 parts by mass or less, a polymer having a long primary chain length can be easily obtained.
  • the polymerization temperature depends on conditions such as the type and concentration of the monomer used, but is preferably 0 to 100 ° C., more preferably 20 to 80 ° C., the polymerization temperature may be constant, or the polymerization reaction. It may change over time.
  • the crosslinked polymer dispersion obtained through the polymerization step can be obtained in a powder state by subjecting the crosslinked polymer dispersion to a reduced pressure and / or heat treatment in the drying step and distilling off the solvent.
  • a solid-liquid separation step such as centrifugation and filtration, and water.
  • the polymerization reaction of the monomer composition containing the ethylenically unsaturated carboxylic acid monomer is carried out in the presence of the basic compound, and the alkaline compound is added to the polymer dispersion obtained in the polymerization step.
  • step neutralization After neutralizing the polymer (hereinafter, also referred to as “step neutralization”), the solvent may be removed in a drying step.
  • an alkaline compound is added when preparing the electrode slurry to neutralize the polymer (hereinafter, also referred to as “post-neutralization”). You may say).
  • post-neutralization an alkaline compound is added when preparing the electrode slurry to neutralize the polymer. You may say).
  • process neutralization is preferable because the secondary aggregates tend to be easily disintegrated.
  • composition for a secondary battery electrode mixing layer of the present invention contains a binder, an active material and water containing the crosslinked polymer or a salt thereof.
  • the amount of the crosslinked polymer or its salt used in the present composition is, for example, 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the total amount of the active material.
  • the amount used is, for example, 0.2 parts by mass or more and 10 parts by mass or less, for example, 0.3 parts by mass or more and 8 parts by mass or less, and for example, 0.4 parts by mass or more and 5 parts by mass or less. ..
  • the amount of the crosslinked polymer and its salt used is less than 0.1 parts by mass, sufficient binding properties may not be obtained. In addition, the dispersion stability of the active material or the like may become insufficient, and the uniformity of the formed mixture layer may decrease. On the other hand, when the amount of the crosslinked polymer and its salt used exceeds 20 parts by mass, the composition may have a high viscosity and the coatability on the current collector may be lowered. As a result, the obtained mixture layer may have bumps or irregularities, which may adversely affect the electrode characteristics.
  • the amount of the crosslinked polymer and its salt used is within the above range, a composition having excellent dispersion stability can be obtained, and a mixture layer having extremely high adhesion to the current collector can be obtained. As a result, the durability of the battery is improved. Further, the crosslinked polymer and its salt show sufficiently high binding property to the active material even in a small amount (for example, 5% by mass or less) and have a carboxy anion, so that the interfacial resistance is small and the high rate characteristic is obtained. An excellent electrode can be obtained.
  • a lithium salt of a transition metal oxide can be used as the positive electrode active material, and for example, a layered rock salt type and a spinel type lithium-containing metal oxide can be used.
  • ⁇ Li (Ni 1-ab Co a Al b ) ⁇ and the like can be mentioned.
  • a spinel type positive electrode active material lithium manganate and the like can be mentioned.
  • Phosphates, silicates, sulfur and the like are used in addition to oxides, and examples of the phosphate include olivine-type lithium iron phosphate and the like.
  • the positive electrode active material one of the above may be used alone, or two or more thereof may be combined and used as a mixture or a composite.
  • the dispersion liquid becomes alkaline due to the exchange of lithium ions on the surface of the active material and hydrogen ions in water. Therefore, there is a risk that aluminum foil (Al), which is a general current collector material for positive electrodes, will be corroded.
  • Al aluminum foil
  • the amount of the unneutralized or partially neutralized crosslinked polymer used should be equal to or greater than the amount of alkali eluted from the active material in the amount of unneutralized carboxyl groups in the crosslinked polymer. Is preferable.
  • a conductive auxiliary agent since all positive electrode active materials have low electrical conductivity, they are generally used by adding a conductive auxiliary agent.
  • the conductive auxiliary agent include carbon-based materials such as carbon black, carbon nanotubes, carbon fibers, graphite fine powder, and carbon fibers. Among these, carbon black, carbon nanotubes, and carbon fibers are easy to obtain excellent conductivity. , Are preferred. Further, as the carbon black, Ketjen black and acetylene black are preferable.
  • the conductive auxiliary agent one of the above types may be used alone, or two or more types may be used in combination.
  • the amount of the conductive auxiliary agent used can be, for example, 0.2 to 20 parts by mass with respect to 100 parts by mass of the total amount of the active material from the viewpoint of achieving both conductivity and energy density, and for example, 0. It can be 2 to 10 parts by mass.
  • the positive electrode active material a material whose surface is coated with a conductive carbon-based material may be used.
  • examples of the negative electrode active material include carbon-based materials, lithium metals, lithium alloys, metal oxides, and the like, and one or a combination of two or more of these can be used.
  • active materials made of carbon-based materials such as natural graphite, artificial graphite, hard carbon and soft carbon (hereinafter, also referred to as "carbon-based active material") are preferable, graphite such as natural graphite and artificial graphite, and graphite. Hard carbon is more preferred.
  • spherical graphite is preferably used from the viewpoint of battery performance, and the preferable range of the particle size thereof is, for example, 1 to 20 ⁇ m, and for example, 5 to 15 ⁇ m.
  • a metal or a metal oxide capable of occluding lithium such as silicon or tin can be used as the negative electrode active material.
  • silicon has a higher capacity than graphite, and is an active material made of a silicon-based material such as silicon, a silicon alloy, and a silicon oxide such as silicon monoxide (SiO) (hereinafter, also referred to as "silicon-based active material").
  • silicon-based active material has a high capacity, the volume change due to charging and discharging is large. Therefore, it is preferable to use it in combination with the above carbon-based active material.
  • the amount of the silicon active material used is preferably 2 to 80% by mass with respect to the total amount of the carbon-based active material and the silicon-based active material.
  • the amount of the silicon-based active material used may be 5 to 70% by mass, 8 to 60% by mass, or 10 to 50% by mass.
  • the binder containing the crosslinked polymer of the present invention has a structural unit (component (a)) in which the crosslinked polymer is derived from an ethylenically unsaturated carboxylic acid monomer.
  • component (a) has a high affinity for a silicon-based active material and exhibits good binding properties. Therefore, since the binder of the present invention exhibits excellent binding properties even when a high-capacity type active material containing a silicon-based active material is used, it is also effective for improving the durability of the obtained electrode. It is considered to be.
  • the crosslinked polymer of the present invention has a structural unit (component (b)) derived from a specific monomer having a hydroxyl group.
  • component (b) a structural unit derived from a specific monomer having a hydroxyl group.
  • the carbon-based active material itself has good electrical conductivity, it is not always necessary to add a conductive additive.
  • a conductive additive is added for the purpose of further reducing resistance, the amount used is, for example, 10 parts by mass or less with respect to 100 parts by mass of the total amount of the active material, and for example, 5 from the viewpoint of energy density. It is less than a part by mass.
  • the amount of the active material used is, for example, in the range of 10 to 75% by mass with respect to the total amount of the composition. If the amount of the active material used is 10% by mass or more, migration of the binder or the like can be suppressed. Further, since it is advantageous in terms of the drying cost of the medium, the amount of the active material used is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass or more. .. On the other hand, if it is 75% by mass or less, the fluidity and coatability of the present composition can be ensured, and a uniform mixture layer can be formed.
  • This composition uses water as a medium. Further, for the purpose of adjusting the properties and dryness of the composition, lower alcohols such as methanol and ethanol, carbonates such as ethylene carbonate, ketones such as acetone, and water-soluble organic substances such as tetrahydrofuran and N-methylpyrrolidone. It may be a mixed solvent with a solvent.
  • the proportion of water in the mixing medium is, for example, 50% by mass or more, and for example, 70% by mass or more.
  • the solid content concentration is not limited to about 50% by mass, and the content of the medium containing water in the entire composition is the coating of the electrode slurry. From the viewpoint of workability, energy cost required for drying, and productivity, it can be, for example, in the range of 25 to 90% by mass, for example, 35 to 70% by mass, and for example, 45. It can be up to 70% by mass.
  • the binder of the present invention may consist only of the crosslinked polymer or a salt thereof, but other than this, other styrene / butadiene latex (SBR), acrylic latex, polyvinylidene fluoride latex and the like. Binder components may be used in combination. When other binder components are used in combination, the amount used may be, for example, 0.1 to 5 parts by mass or less, and for example, 0.1 to 2 parts by mass, based on 100 parts by mass of the total amount of the active material. It can be less than or equal to parts, and can be, for example, 0.1 to 1 part by mass or less. If the amount of the other binder component used exceeds 5% by mass, the resistance increases and the high rate characteristics may become insufficient. Among the above, styrene / butadiene latex is preferable from the viewpoint of excellent balance between binding property and bending resistance.
  • the styrene / butadiene latex is a copolymer having a structural unit derived from an aromatic vinyl monomer such as styrene and a structural unit derived from an aliphatic conjugated diene monomer such as 1,3-butadiene. Shows an aqueous dispersion.
  • aromatic vinyl monomer include ⁇ -methylstyrene, vinyltoluene, divinylbenzene and the like in addition to styrene, and one or more of these can be used.
  • the structural unit derived from the aromatic vinyl monomer in the copolymer can be, for example, in the range of 20 to 70% by mass, and for example, 30 to 60, mainly from the viewpoint of binding property. It can be in the range of% by mass.
  • Examples of the aliphatic conjugated diene monomer include 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, and 2-chloro-1,3-in addition to 1,3-butadiene. Butadiene and the like can be mentioned, and one or more of these can be used.
  • the structural unit derived from the aliphatic conjugated diene-based monomer in the copolymer is, for example, 30 to 70% by mass in that the binding property of the binder and the flexibility of the obtained electrode are good. It can be in the range of 40 to 60% by mass, for example.
  • styrene / butadiene-based monomers include nitrile group-containing monomers such as (meth) acrylonitrile and (meth) as other monomers in order to further improve performance such as binding properties.
  • a carboxyl group-containing monomer such as acrylic acid, itanconic acid, and maleic acid, and an ester group-containing monomer such as methyl (meth) acrylate may be used as the copolymerization monomer.
  • the structural unit derived from the other monomer in the copolymer can be, for example, in the range of 0 to 30% by mass, or can be, for example, in the range of 0 to 20% by mass.
  • the present composition contains the above-mentioned active material, water and a binder as essential constituents, and can be obtained by mixing the respective components using known means.
  • the mixing method of each component is not particularly limited, and a known method can be adopted. However, after dry-blending powder components such as an active material, a conductive additive, and crosslinked polymer particles as a binder, water is used. A method of mixing with a dispersion medium such as the above and dispersing and kneading is preferable.
  • a dispersion medium such as the above and dispersing and kneading is preferable.
  • a known mixer such as a planetary mixer, a thin film swirl mixer, or a self-revolving mixer can be used, but a thin film swirl mixer is used because a good dispersion state can be obtained in a short time. It is preferable to do this.
  • a thin film swirl mixer it is preferable to pre-disperse in advance with a stirrer such as a disper.
  • the viscosity of the electrode slurry can be, for example, in the range of 500 to 10,000 mPa ⁇ s.
  • the upper limit of the viscosity is preferably 7,000 mPa ⁇ s or less, more preferably 6,000 mPa ⁇ s or less, and further preferably 5,000 mPa ⁇ s or less. It is more preferably 4,000 mPa ⁇ s or less, and even more preferably 3,000 mPa ⁇ s or less.
  • the slurry viscosity can be measured by the method described in Examples under the condition of a liquid temperature of 25 ° C.
  • the present composition when the present composition is obtained in a wet powder state, it is preferable to knead the composition in a uniform state without uneven concentration using a Henschel mixer, a blender, a planetary mixer, a twin-screw kneader or the like.
  • the secondary battery electrode of the present invention comprises a mixture layer formed from the present composition on the surface of a current collector such as copper or aluminum.
  • the mixture layer is formed by applying the present composition to the surface of the current collector and then drying and removing a medium such as water.
  • the method for applying the present composition is not particularly limited, and known methods such as a doctor blade method, a dip method, a roll coating method, a comma coating method, a curtain coating method, a gravure coating method and an extrusion method can be adopted. it can. Further, the drying can be performed by a known method such as blowing warm air, reducing the pressure, (far) infrared rays, and irradiating microwaves.
  • the mixture layer obtained after drying is subjected to a compression treatment by a mold press, a roll press or the like.
  • a compression treatment by a mold press, a roll press or the like.
  • the thickness of the mixture layer can be adjusted to, for example, about 30 to 80% before compression by compression, and the thickness of the mixture layer after compression is generally about 4 to 200 ⁇ m.
  • Secondary battery A secondary battery can be manufactured by providing the electrode for the secondary battery of the present invention with a separator and an electrolytic solution.
  • the electrolytic solution may be in the form of a liquid or a gel.
  • the separator is arranged between the positive electrode and the negative electrode of the battery, and plays a role of preventing a short circuit due to contact between the two electrodes and holding an electrolytic solution to ensure ionic conductivity.
  • the separator is preferably a film-like insulating microporous membrane having good ion permeability and mechanical strength.
  • polyolefins such as polyethylene and polypropylene, polytetrafluoroethylene and the like can be used.
  • the electrolytic solution a known one that is generally used depending on the type of active material can be used.
  • specific solvents include cyclic carbonates having a high dielectric constant and a high dissolving ability of an electrolyte such as propylene carbonate and ethylene carbonate, and low-viscosity chains such as ethylmethyl carbonate, dimethyl carbonate and diethyl carbonate. Examples thereof include a state carbonate, and these can be used alone or as a mixed solvent.
  • the electrolytic solution is used by dissolving lithium salts such as LiPF 6 , LiSbF 6 , LiBF 4 , LiClO 4 , and LiAlO 4 in these solvents.
  • an aqueous potassium hydroxide solution can be used as the electrolytic solution.
  • the secondary battery is obtained by forming a positive electrode plate and a negative electrode plate partitioned by a separator into a spiral or laminated structure and storing them in a case or the like.
  • the binder for the secondary battery electrode disclosed in the present specification exhibits excellent adhesion to the electrode material and excellent adhesion to the current collector in the mixture layer. Therefore, the secondary battery provided with the electrodes obtained by using the above binder is expected to ensure good integrity and to exhibit good durability (cycle characteristics) even after repeated charging and discharging, and is in-vehicle. Suitable for secondary batteries and the like.
  • the particle size distribution of the hydrogel was measured with a laser diffraction / scattering type particle size distribution meter (Microtrac MT-3300EXII, manufactured by Microtrac Bell) using ion-exchanged water as a dispersion medium.
  • a laser diffraction / scattering type particle size distribution meter Microtrac MT-3300EXII, manufactured by Microtrac Bell
  • the particle size distribution shape measured after several minutes became stable.
  • the particle size distribution is measured, and the volume-based median diameter (D50) as a representative value of the particle size and the particle size distribution represented by (volume-based average particle size) / (number-based average particle size) are obtained. Obtained.
  • the degree of water swelling at pH 8 was measured by the following method.
  • the measuring device is shown in FIG.
  • the measuring device is composed of ⁇ 1> to ⁇ 3> in FIG. ⁇ 1> It is composed of a burette 1, a pinch cock 2, a silicon tube 3 and a polytetrafluoroethylene tube 4 having a branch tube for venting air.
  • a support cylinder 8 having a large number of holes on the bottom surface is installed on the funnel 5, and a filter paper 10 for an apparatus is installed on the support cylinder 8.
  • the sample 6 (measurement sample) of the crosslinked polymer or a salt thereof is sandwiched between two sample fixing filter papers 7, and the sample fixing filter paper is fixed by the adhesive tape 9.
  • All the filter papers used are ADVANTEC No. 2.
  • the inner diameter is 55 mm.
  • ⁇ 1> and ⁇ 2> are connected by a silicon tube 3.
  • the heights of the funnel 5 and the support cylinder 8 are fixed with respect to the burette 1, and the lower end of the polytetrafluoroethylene tube 4 installed inside the burette branch pipe and the bottom surface of the support cylinder 8 are at the same height. It is set to be (dotted line in FIG. 1).
  • the measuring method will be described below.
  • the pinch cock 2 in ⁇ 1> is removed, ion-exchanged water is poured from the upper part of the burette 1 through the silicon tube 3, and the burette 1 to the filter paper 10 for the device are filled with the ion-exchanged water 12.
  • the pinch cock 2 is closed, and air is removed from the polytetrafluoroethylene tube 4 connected to the burette branch pipe with a rubber stopper. In this way, the ion-exchanged water 12 is continuously supplied from the burette 1 to the filter paper 10 for the apparatus.
  • the reading (a) of the scale of the burette 1 is recorded.
  • the water absorption amount (d) of only two filter papers 7 containing no sample of the crosslinked polymer or a salt thereof is measured.
  • the above operation was performed, and the degree of water swelling was calculated from the following formula.
  • the value measured by the method described later was used.
  • Water swelling degree ⁇ dry weight of measurement sample (g) + (cd) ⁇ / ⁇ dry weight of measurement sample (g) ⁇
  • the dry weight (g) of the measurement sample the weight (g) of the measurement sample ⁇ (solid content (%) ⁇ 100)
  • the polymerization reaction is continued while adjusting the external temperature (water bath temperature) to maintain the internal temperature at 30 ° C., and when 24 hours have passed from the polymerization initiation point, the reaction solution is cooled and the internal temperature reaches 20 ° C. after reduction, lithium hydroxide monohydrate (hereinafter, "LiOH ⁇ H 2 O" hereinafter.) was added 52.4 parts of powder. After the addition, stirring was continued at room temperature for 12 hours to obtain a slurry-like polymerization reaction solution in which particles of the crosslinked polymer salt R-1 (Li salt, neutralization degree 90 mol%) were dispersed in a medium.
  • LiOH ⁇ H 2 O lithium hydroxide monohydrate
  • the obtained polymerization reaction solution was centrifuged to settle the polymer particles, and then the supernatant was removed. Then, after redispersing the precipitate in acetonitrile having the same weight as the polymerization reaction solution, the washing operation of precipitating the polymer particles by centrifugation to remove the supernatant was repeated twice.
  • the sediment was recovered and dried under reduced pressure at 80 ° C. for 3 hours to remove volatile components to obtain a powder of the crosslinked polymer salt R-1. Since the crosslinked polymer salt R-1 has hygroscopicity, it was stored in a container having a water vapor barrier property.
  • the particle size (water-swelled particle size) of the crosslinked polymer salt R-1 obtained above was measured in an aqueous medium, it was 2.6 ⁇ m, and the particle size distribution was calculated to be 1.3.
  • the degree of water swelling was 83, the sol fraction was 4.7% by mass, and the Mw of the sol was 55,000.
  • AA CEAA acrylate: ⁇ -carboxyethyl acrylate (manufactured by SIGMA-ALDRICH, trade name "2-carboxyethyl acrylate")
  • IBXA Isobornyl acrylate HEA: 2-Hydroxyethyl acrylate
  • T-20 Trimethylolpropane diallyl ether (manufactured by Daiso, trade name "Neoallyl T-20")
  • TMPTMA Trimethylolpropane Trimethacrylate
  • TDA Tridodecylamine AcN: Acetonitrile MeOH: Methanol
  • V-70 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd.)
  • LiOH ⁇ H 2 O Lithium hydroxide ⁇ Monohydrate Na 2 CO 3 : Sodium carbonate K 2 CO 3 : Potassium
  • Example 1 An electrode using the crosslinked polymer salt R-1 was prepared and evaluated. The specific procedure and evaluation method are shown below.
  • composition for electrode mixture layer Prepare a SiOx (0.8 ⁇ x ⁇ 1.2) surface coated with 10% carbon by the CVD method (hereinafter referred to as "Si-based active material"), and mix graphite and Si-based active material.
  • Si-based active material a SiOx (0.8 ⁇ x ⁇ 1.2) surface coated with 10% carbon by the CVD method
  • Si-based active material a mixture of crosslinked polymer salt R-1, styrene / butadiene latex (SBR) and carboxymethyl cellulose (CMC) was used.
  • Graphite: Si-based active material: R-1: SBR: CMC 90: 10: 1.0: 1 using water as a diluting solvent so that the solid content concentration of the composition for the negative electrode mixture layer is 50% by mass. With a mass ratio of 0.0: 1.0 (solid content), T.I. K.
  • the mixture was mixed for 2 hours using a hibis mix to prepare a composition for an electrode mixture layer (electrode slurry)
  • NMP N-methylpyrrolidone
  • VGCF vapor layer carbon fiber
  • PVDF polyvinylidene fluoride
  • a mixture layer was formed by applying the positive electrode composition to an aluminum current collector (thickness: 15 ⁇ m) and drying it. Then, after rolling so that the thickness of the mixture layer was 88 ⁇ m and the packing density was 3.1 g / cm 3 , the mixture was punched 3 cm square to obtain a positive electrode plate.
  • a laminated lithium ion secondary battery was produced using the above positive electrode, negative electrode and separator.
  • As the electrolytic solution a mixed solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (DEC) at a volume ratio of 25:75 and LiPF 6 dissolved at a concentration of 1.0 mol / liter was used.
  • ⁇ C C 50 / C 0 ⁇ 100 (%) (Evaluation criteria)
  • Examples 2 to 16 and Comparative Example 1 An electrode slurry was prepared by performing the same operation as in Example 1 except that the crosslinked polymer salt was used as shown in Table 2, and the slurry viscosity was measured. In addition, the coatability of the electrode slurry, the peel strength of the negative electrode plate obtained by using the electrode slurry, and the cycle characteristics of the battery were evaluated. The results are shown in Table 2.
  • a secondary battery electrode and a secondary battery are manufactured using a binder for a secondary battery electrode belonging to the present invention.
  • a binder for a secondary battery electrode belonging to the present invention As is clear from the results of Examples 1 to 16, even if the solid content concentration of the electrode slurry is 50% by mass, good coatability is exhibited, and all the electrodes have high peel strength and are excellent. It showed a good binding property. Further, it was confirmed that the charge / discharge retention rate of the battery was 60% or more, and the cycle characteristics were excellent.
  • the amount of the crosslinked polymer used is large.
  • the charge / discharge retention rate of the batteries using the salts R-2 to R-5 was very high, and the batteries had excellent durability. Further, the charge / discharge retention rate of the battery using the crosslinked polymer salts R-8 and R-9 containing a specific amount of the structural unit derived from the hydroxyl group-containing ethylenically unsaturated monomer is very high, and excellent durability is obtained. It turned out to have.
  • Comparative Example 1 using the crosslinked polymer salt R-17 having a sol fraction of 5% by mass or more the coatability and the bondability of the electrodes were inferior, and the cycle characteristics were insufficient.
  • the binder for the secondary battery electrode of the present invention exhibits excellent binding properties in the mixture layer, and the secondary battery provided with the electrodes obtained by using the above binder has good durability (cycle characteristics). showed that. Therefore, it is expected to be applied to in-vehicle secondary batteries. It is also useful for the use of active materials containing silicon, and is expected to contribute to increasing the capacity of batteries.
  • the binder for a secondary battery electrode of the present invention can be particularly preferably used for a non-aqueous electrolyte secondary battery electrode, and is particularly useful for a non-aqueous electrolyte lithium ion secondary battery having a high energy density.

Abstract

The present invention provides a secondary battery electrode binder with which an electrode slurry can be coated uniformly even when the solid component concentration of the electrode slurry is increased to approximately 50 mass%, and high binding properties and cycle characteristics can be exhibited. The present invention relates to a secondary battery electrode binder containing a cross-linked polymer or a salt thereof, wherein the cross-linked polymer or salt thereof has a sol fraction of less than 5.0 mass%.

Description

二次電池電極用バインダー及びその利用Binder for secondary battery electrode and its use
 本発明は二次電池電極用バインダー及びその利用に関する。詳細には、二次電池電極用バインダー、並びに、当該二次電池電極用バインダーを用いて得られる二次電池電極合剤層用組成物、二次電池電極及び二次電池に関する。 The present invention relates to a binder for a secondary battery electrode and its use. More specifically, the present invention relates to a binder for a secondary battery electrode, a composition for a mixture layer of a secondary battery electrode obtained by using the binder for a secondary battery electrode, a secondary battery electrode, and a secondary battery.
 二次電池として、ニッケル水素二次電池、リチウムイオン二次電池、電気二重層キャパシタ等の様々な蓄電デバイスが実用化されている。これらの二次電池に使用される電極は、活物質及びバインダー等を含む電極合剤層を形成するための組成物を集電体上に塗布・乾燥等することにより作製される。例えばリチウムイオン二次電池では、負極合剤層用組成物に用いられるバインダーとして、スチレンブタジエンゴム(SBR)ラテックス及びカルボキシメチルセルロース(CMC)を含む水系のバインダーが使用されている。また、分散性及び結着性に優れるバインダーとして、アクリル酸系重合体水溶液又は水分散液を含むバインダーが知られている。一方、正極合剤層に用いられるバインダーとしては、ポリフッ化ビニリデン(PVDF)のN-メチル-2-ピロリドン(NMP)溶液が広く使用されている。 As a secondary battery, various power storage devices such as a nickel hydrogen secondary battery, a lithium ion secondary battery, and an electric double layer capacitor have been put into practical use. The electrodes used in these secondary batteries are produced by applying, drying, or the like on a current collector a composition for forming an electrode mixture layer containing an active material, a binder, and the like. For example, in a lithium ion secondary battery, an aqueous binder containing styrene-butadiene rubber (SBR) latex and carboxymethyl cellulose (CMC) is used as the binder used in the composition for the negative electrode mixture layer. Further, as a binder having excellent dispersibility and binding property, a binder containing an aqueous acrylic acid polymer solution or an aqueous dispersion is known. On the other hand, as a binder used for the positive electrode mixture layer, an N-methyl-2-pyrrolidone (NMP) solution of polyvinylidene fluoride (PVDF) is widely used.
 各種二次電池の用途が拡大するにつれて、エネルギー密度、信頼性及び耐久性向上への要求が強まる傾向にある。例えば、リチウムイオン二次電池の電気容量を高める目的で、負極用活物質としてシリコン系の活物質を用いる仕様が増えてきている。しかしながら、シリコン系活物質は充放電時の体積変化が大きいことが知られており、繰り返し使用するにつれて電極合剤層の剥離又は脱落等が生じ、その結果、電池の容量が低下し、サイクル特性(耐久性)が悪化するという問題があった。このような不具合を抑制するためには、一般的にはバインダーの結着性を高めることが有効であり、耐久性を改善する目的で、バインダーの結着性向上に関する検討が行われている。 As the applications of various secondary batteries expand, the demand for improved energy density, reliability and durability tends to increase. For example, for the purpose of increasing the electric capacity of a lithium ion secondary battery, specifications for using a silicon-based active material as a negative electrode active material are increasing. However, it is known that the volume of a silicon-based active material changes significantly during charging and discharging, and the electrode mixture layer peels off or falls off as it is used repeatedly, resulting in a decrease in battery capacity and cycle characteristics. There was a problem that (durability) deteriorated. In order to suppress such a defect, it is generally effective to improve the binder's binding property, and for the purpose of improving the durability, studies on improving the binder's binding property have been conducted.
 例えば、特許文献1では、リチウムイオン二次電池の負極合剤層を形成する結着剤としてポリアルケニルエーテルにより架橋したアクリル酸系重合体が開示されている。特許文献2には、エチレン性不飽和カルボン酸化合物と、特定の水溶解度を示すエチレン性不飽和結合を有する化合物と、を含む単量体組成物を重合して得られる共重合体を含むリチウムイオン二次電池電極用バインダーが開示されている。特許文献3には、エチレン性不飽和カルボン酸単量体由来の構造単位を特定量含む架橋重合体又はその塩であって、当該架橋重合体を中和し、水膨潤させた後の塩水中の粒子径が、特定の小粒径範囲を示す架橋重合体を含む非水電解質二次電池電極用バインダーが開示されている。 For example, Patent Document 1 discloses an acrylic acid-based polymer crosslinked with polyalkenyl ether as a binder for forming a negative electrode mixture layer of a lithium ion secondary battery. Patent Document 2 describes lithium containing a copolymer obtained by polymerizing a monomer composition containing an ethylenically unsaturated carboxylic acid compound and a compound having an ethylenically unsaturated bond exhibiting a specific water solubility. Binders for ion secondary battery electrodes are disclosed. Patent Document 3 describes a crosslinked polymer or a salt thereof containing a specific amount of a structural unit derived from an ethylenically unsaturated carboxylic acid monomer, which is in salt water after the crosslinked polymer is neutralized and water-swelled. A binder for a non-aqueous electrolyte secondary battery electrode containing a crosslinked polymer having a particle size of a specific small particle size range is disclosed.
国際公開第2014/065407号International Publication No. 2014/06547 国際公開第2015/186363号International Publication No. 2015/186363 国際公開第2017/073589号International Publication No. 2017/073589
 特許文献1~3に開示されるバインダーは、いずれも良好な結着性を付与し得るものである。しかしながら、本発明者らの検討によれば、特許文献1~3に開示されるバインダー及び電極活物質を含む電極合剤層用組成物(以下、「電極スラリー」ともいう。)を用いた電極の製造に際し、溶媒乾燥時間の短縮による生産性向上のために、当該電極スラリーの固形分濃度を50質量%程度まで高めた場合、当該電極スラリーが高粘度化して均一塗工が困難となり、ひいては、結着性やサイクル特性に影響を与えることが問題となることがあった。 All of the binders disclosed in Patent Documents 1 to 3 can impart good binding properties. However, according to the studies by the present inventors, an electrode using a composition for an electrode mixture layer (hereinafter, also referred to as “electrode slurry”) containing a binder and an electrode active material disclosed in Patent Documents 1 to 3. When the solid content concentration of the electrode slurry is increased to about 50% by mass in order to improve productivity by shortening the drying time of the solvent, the electrode slurry becomes highly viscous and uniform coating becomes difficult, which in turn makes uniform coating difficult. , Affecting cohesiveness and cycle characteristics could be a problem.
 本発明は、このような事情に鑑みてなされたものであり、電極スラリーの固形分濃度を50質量%程度まで高めた場合であっても、電極スラリーの均一塗工が可能であり、高い結着性及びサイクル特性を発揮することが可能な二次電池電極用バインダーを提供する。また、併せて、上記バインダーを用いて得られる二次電池電極合剤層用組成物、二次電池電極及び二次電池も提供する。 The present invention has been made in view of such circumstances, and even when the solid content concentration of the electrode slurry is increased to about 50% by mass, the electrode slurry can be uniformly coated, and the result is high. Provided is a binder for a secondary battery electrode capable of exhibiting wearability and cycle characteristics. In addition, a composition for a secondary battery electrode mixture layer, a secondary battery electrode, and a secondary battery obtained by using the above binder are also provided.
 本発明者らは、上記課題を解決するために鋭意検討した結果、架橋重合体を含むバインダーを用いた電極スラリーの固形分濃度を50質量%程度まで高めた場合であっても、当該架橋重合体に含まれるゾル分の割合を特定の値にすることによって、電極スラリーの均一塗工が可能であり、高い結着性及びサイクル特性を発揮することが可能となる事を見出し、本発明を完成した。 As a result of diligent studies to solve the above problems, the present inventors have made the crosslinked weight even when the solid content concentration of the electrode slurry using the binder containing the crosslinked polymer is increased to about 50% by mass. We have found that by setting the ratio of the sol content contained in the coalescence to a specific value, uniform coating of the electrode slurry is possible, and high binding properties and cycle characteristics can be exhibited. completed.
 本発明は以下の通りである。
〔1〕架橋重合体又はその塩を含有する二次電池電極用バインダーであって、
 前記架橋重合体又はその塩は、ゾル分率が5.0質量%未満である、二次電池電極用バインダー。
〔2〕前記架橋重合体又はその塩は、エチレン性不飽和カルボン酸単量体に由来する構造単位を50質量%以上100質量%以下含む、前記〔1〕に記載の二次電池電極用バインダー。
〔3〕前記架橋重合体又はその塩は、中和度80~100モル%に中和された後、水媒体中で測定した粒子径が、体積基準メジアン径で0.1μm以上10μm以下である、前記〔1〕又は〔2〕に記載の二次電池電極用バインダー。
〔4〕前記架橋重合体又はその塩は、pH8における水膨潤度が3.0以上、100以下である、前記〔1〕~〔3〕のいずれか一に記載の二次電池電極用バインダー。
〔5〕前記ゾル分のポリエチレンオキシド/ポリエチレングリコール換算による重量平均分子量が300,000以下である、前記〔1〕~〔4〕のいずれか一に記載の二次電池電極用バインダー。
〔6〕前記〔1〕~〔5〕のいずれか一に記載の二次電池電極用バインダー、活物質及び水を含む、二次電池電極合剤層用組成物。
〔7〕集電体表面に、前記〔6〕に記載の二次電池電極合剤層用組成物から形成される合剤層を備える、二次電池電極。
〔8〕前記〔7〕に記載の二次電池電極を備える、二次電池。
The present invention is as follows.
[1] A binder for a secondary battery electrode containing a crosslinked polymer or a salt thereof.
The crosslinked polymer or a salt thereof is a binder for a secondary battery electrode having a sol content of less than 5.0% by mass.
[2] The binder for a secondary battery electrode according to the above [1], wherein the crosslinked polymer or a salt thereof contains 50% by mass or more and 100% by mass or less of a structural unit derived from an ethylenically unsaturated carboxylic acid monomer. ..
[3] The crosslinked polymer or a salt thereof is neutralized to a degree of neutralization of 80 to 100 mol%, and then the particle size measured in an aqueous medium is 0.1 μm or more and 10 μm or less in terms of volume-based median diameter. , The binder for the secondary battery electrode according to the above [1] or [2].
[4] The binder for a secondary battery electrode according to any one of [1] to [3] above, wherein the crosslinked polymer or a salt thereof has a water swelling degree of 3.0 or more and 100 or less at pH 8.
[5] The binder for a secondary battery electrode according to any one of [1] to [4] above, wherein the weight average molecular weight of the sol in terms of polyethylene oxide / polyethylene glycol is 300,000 or less.
[6] A composition for a secondary battery electrode mixture layer containing the binder for the secondary battery electrode, the active material, and water according to any one of the above [1] to [5].
[7] A secondary battery electrode comprising a mixture layer formed from the composition for the secondary battery electrode mixture layer according to the above [6] on the surface of a current collector.
[8] A secondary battery including the secondary battery electrode according to the above [7].
 本発明の二次電池電極用バインダーによれば、結着性に優れた合剤層を有するとともに、サイクル特性に優れた二次電池を得ることができる。このため、活物質にシリコン系活物質を含む場合であっても、二次電池の耐久性向上に寄与し得る。 According to the binder for the secondary battery electrode of the present invention, it is possible to obtain a secondary battery having a mixture layer having excellent binding properties and having excellent cycle characteristics. Therefore, even when the active material contains a silicon-based active material, it can contribute to improving the durability of the secondary battery.
架橋重合体又はその塩の水膨潤度の測定に用いる装置を示す図である。It is a figure which shows the apparatus used for measuring the water swelling degree of a crosslinked polymer or a salt thereof.
 本発明の二次電池電極用バインダーは、架橋重合体又はその塩を含有するものであり、活物質及び水と混合することにより二次電池電極合剤層組成物(以下、単に「本組成物」ともいう。)とすることができる。上記の組成物は、集電体への塗工が可能なスラリー状態の電極スラリーであることが、本発明の効果を奏する点で好ましいが、湿粉状態として調製し、集電体表面へのプレス加工に対応できるようにしてもよい。銅箔又はアルミニウム箔等の集電体表面に上記組成物から形成される合剤層を形成することにより、本発明の二次電池電極が得られる。 The binder for a secondary battery electrode of the present invention contains a crosslinked polymer or a salt thereof, and can be mixed with an active material and water to form a secondary battery electrode mixture layer composition (hereinafter, simply "the present composition". It can also be called.). It is preferable that the above composition is an electrode slurry in a slurry state that can be applied to the current collector from the viewpoint of achieving the effect of the present invention, but it is prepared in a wet powder state and applied to the surface of the current collector. It may be possible to cope with press working. The secondary battery electrode of the present invention can be obtained by forming a mixture layer formed from the above composition on the surface of a current collector such as a copper foil or an aluminum foil.
 以下に、本発明の二次電池電極用バインダー、当該バインダーを用いて得られる二次電池電極合剤層用組成物、二次電池電極及び二次電池の各々について詳細に説明する。
 尚、本明細書において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。また、「(メタ)アクリロイル基」とは、アクリロイル基及び/又はメタクリロイル基を意味する。
Hereinafter, each of the binder for the secondary battery electrode of the present invention, the composition for the mixture layer of the secondary battery electrode obtained by using the binder, the secondary battery electrode, and the secondary battery will be described in detail.
In addition, in this specification, "(meth) acrylic" means acrylic and / or methacryl, and "(meth) acrylate" means acrylate and / or methacrylate. Further, the “(meth) acryloyl group” means an acryloyl group and / or a methacryloyl group.
 本発明のバインダーは、架橋重合体又はその塩を含む。当該架橋重合体は、エチレン性不飽和カルボン酸に由来する構造単位を有していてもよい。 The binder of the present invention contains a crosslinked polymer or a salt thereof. The crosslinked polymer may have a structural unit derived from an ethylenically unsaturated carboxylic acid.
1.架橋重合体
<エチレン性不飽和カルボン酸単量体に由来する構造単位>
 架橋重合体は、エチレン性不飽和カルボン酸単量体に由来する構造単位(以下、「(a)成分」ともいう)を有することができる。架橋重合体が、係る構造単位を有することによりカルボキシル基を有する場合、集電体への接着性が向上するとともに、リチウムイオンの脱溶媒和効果及びイオン伝導性に優れるため、抵抗が小さく、ハイレート特性に優れた電極が得られる。また、水膨潤性が付与されるため、合剤層組成物中における活物質等の分散安定性を高めることができる。
 上記(a)成分は、例えば、エチレン性不飽和カルボン酸単量体を含む単量体を重合することにより架橋重合体に導入することができる。その他にも、(メタ)アクリル酸エステル単量体を(共)重合した後、加水分解することによっても得られる。また、(メタ)アクリルアミド及び(メタ)アクリロニトリル等を重合した後、強アルカリで処理してもよいし、水酸基を有する重合体に酸無水物を反応させる方法であってもよい。
1. 1. Crosslinked polymer <Structural unit derived from ethylenically unsaturated carboxylic acid monomer>
The crosslinked polymer can have a structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter, also referred to as “component (a)”). When the crosslinked polymer has a carboxyl group by having such a structural unit, the adhesiveness to the current collector is improved, and the lithium ion desolvation effect and the ionic conductivity are excellent, so that the resistance is small and the high rate is obtained. An electrode having excellent characteristics can be obtained. Further, since water swelling property is imparted, the dispersion stability of the active material or the like in the mixture layer composition can be enhanced.
The component (a) can be introduced into a crosslinked polymer, for example, by polymerizing a monomer containing an ethylenically unsaturated carboxylic acid monomer. In addition, it can also be obtained by (co) polymerizing a (meth) acrylic acid ester monomer and then hydrolyzing it. Further, after polymerizing (meth) acrylamide, (meth) acrylonitrile or the like, it may be treated with a strong alkali, or it may be a method of reacting an acid anhydride with a polymer having a hydroxyl group.
 エチレン性不飽和カルボン酸単量体としては、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸;(メタ)アクリルアミドヘキサン酸及び(メタ)アクリルアミドドデカン酸等の(メタ)アクリルアミドアルキルカルボン酸;コハク酸モノヒドロキシエチル(メタ)アクリレート、ω-カルボキシ-カプロラクトンモノ(メタ)アクリレート、β-カルボキシエチル(メタ)アクリレート等のカルボキシル基を有するエチレン性不飽和単量体又はそれらの(部分)アルカリ中和物が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。上記の中でも、重合速度が大きいために一次鎖長の長い重合体が得られ、バインダーの結着力が良好となる点で重合性官能基としてアクリロイル基を有する化合物が好ましく、特に好ましくはアクリル酸である。エチレン性不飽和カルボン酸単量体としてアクリル酸を用いた場合、カルボキシル基含有量の高い重合体を得ることができる。 Examples of the ethylenically unsaturated carboxylic acid monomer include (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid; and (meth) acrylamide alkyl such as (meth) acrylamide hexane acid and (meth) acrylamide dodecanoic acid. Carboxylic acid; ethylenically unsaturated monomers having a carboxyl group such as monohydroxyethyl succinate (meth) acrylate, ω-carboxy-caprolactone mono (meth) acrylate, β-carboxyethyl (meth) acrylate, or (partial) thereof. ) Alkaline neutralized products may be mentioned, and one of these may be used alone, or two or more thereof may be used in combination. Among the above, a compound having an acryloyl group as a polymerizable functional group is preferable, and acrylic acid is particularly preferable, in that a polymer having a long primary chain length can be obtained because the polymerization rate is high and the binding force of the binder is good. is there. When acrylic acid is used as the ethylenically unsaturated carboxylic acid monomer, a polymer having a high carboxyl group content can be obtained.
 架橋重合体における(a)成分の含有量は、特に限定するものではないが、例えば、架橋重合体の全構造単位に対して10質量%以上、100質量%以下含むことができる。かかる範囲で(a)成分を含有することで、集電体に対する優れた接着性を容易に確保することができる。下限は、例えば20質量%以上であり、また例えば30質量%以上であり、また例えば40質量%以上である。下限が50質量%以上の場合、分散安定性、結着性及び二次電池としての耐久性が良好となる点で好ましい。下限は、60質量%以上であってもよく、70質量%以上であってもよく、80質量%以上であってもよい。また、上限は、例えば、99質量%以下であり、また例えば98質量%以下であり、また例えば95質量%以下であり、また例えば90質量%以下である。範囲としては、こうした下限及び上限を適宜組み合わせた範囲とすることができるが、例えば、10質量%以上、100質量%以下であり、また例えば20質量%以上、100質量%以下であり、また例えば30質量%以上、100質量%以下であり、また例えば50質量%以上、100質量%以下であり、また例えば50質量%以上、99質量%以下などとすることができる。 The content of the component (a) in the crosslinked polymer is not particularly limited, but can be, for example, 10% by mass or more and 100% by mass or less with respect to all the structural units of the crosslinked polymer. By containing the component (a) in such a range, excellent adhesiveness to the current collector can be easily ensured. The lower limit is, for example, 20% by mass or more, for example, 30% by mass or more, and for example, 40% by mass or more. When the lower limit is 50% by mass or more, it is preferable in that the dispersion stability, the binding property and the durability as a secondary battery are good. The lower limit may be 60% by mass or more, 70% by mass or more, or 80% by mass or more. The upper limit is, for example, 99% by mass or less, for example 98% by mass or less, for example 95% by mass or less, and for example 90% by mass or less. The range may be a range in which such a lower limit and an upper limit are appropriately combined, and is, for example, 10% by mass or more and 100% by mass or less, and for example, 20% by mass or more and 100% by mass or less, and for example. It can be 30% by mass or more and 100% by mass or less, and can be, for example, 50% by mass or more and 100% by mass or less, and can be, for example, 50% by mass or more and 99% by mass or less.
<その他の構造単位>
 架橋重合体は、(a)成分以外に、これらと共重合可能な他のエチレン性不飽和単量体に由来する構造単位(以下、「(b)成分」ともいう。)を含むことができる。(b)成分としては、(a)成分以外のエチレン性不飽和基を有する単量体に由来する構造単位であり、例えば、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、又は非イオン性のエチレン性不飽和単量体等に由来する構造単位が挙げられる。これらの構造単位は、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、又は非イオン性のエチレン性不飽和単量体を含む単量体を共重合することにより導入することができる。
<Other structural units>
In addition to the component (a), the crosslinked polymer can contain structural units derived from other ethylenically unsaturated monomers copolymerizable with the component (a) (hereinafter, also referred to as “component (b)”). .. The component (b) is a structural unit derived from a monomer having an ethylenically unsaturated group other than the component (a), and for example, an anionic group other than the carboxyl group such as a sulfonic acid group and a phosphoric acid group. Examples thereof include structural units derived from the ethylenically unsaturated monomer compound having, a nonionic ethylenically unsaturated monomer, and the like. These structural units are an ethylenically unsaturated monomer compound having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, or a monomer containing a nonionic ethylenically unsaturated monomer. Can be introduced by copolymerizing.
 (b)成分の割合は、架橋重合体の全構造単位に対し、0質量%以上、90質量%以下とすることができる。(b)成分の割合は、1質量%以上、60質量%以下であってもよく、2質量%以上、50質量%以下であってもよく、5質量%以上、40質量%以下であってもよく、10質量%以上、30質量%以下であってもよい。また、架橋重合体の全構造単位に対して(b)成分を1質量%以上含む場合、電解液への親和性が向上するため、リチウムイオン伝導性が向上する効果も期待できる。 The ratio of the component (b) can be 0% by mass or more and 90% by mass or less with respect to all the structural units of the crosslinked polymer. The ratio of the component (b) may be 1% by mass or more and 60% by mass or less, 2% by mass or more and 50% by mass or less, and 5% by mass or more and 40% by mass or less. It may be 10% by mass or more and 30% by mass or less. Further, when the component (b) is contained in an amount of 1% by mass or more with respect to all the structural units of the crosslinked polymer, the affinity for the electrolytic solution is improved, so that the effect of improving the lithium ion conductivity can be expected.
 (b)成分としては、前記した中でも、耐屈曲性良好な電極が得られる観点から非イオン性のエチレン性不飽和単量体に由来する構造単位が好ましく、非イオン性のエチレン性不飽和単量体としては、(メタ)アクリルアミド及びその誘導体、脂環構造含有エチレン性不飽和単量体、水酸基含有エチレン性不飽和単量体等が挙げられる。 As the component (b), among the above-mentioned components, a structural unit derived from a nonionic ethylenically unsaturated monomer is preferable from the viewpoint of obtaining an electrode having good bending resistance, and a nonionic ethylenically unsaturated monomer is preferable. Examples of the metric include (meth) acrylamide and its derivatives, an alicyclic structure-containing ethylenically unsaturated monomer, and a hydroxyl group-containing ethylenically unsaturated monomer.
 (メタ)アクリルアミド誘導体としては、例えば、イソプロピル(メタ)アクリルアミド、t-ブチル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド化合物;N-n-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミド等のN-アルコキシアルキル(メタ)アクリルアミド化合物;ジメチル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド等のN,N-ジアルキル(メタ)アクリルアミド化合物が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the (meth) acrylamide derivative include N-alkyl (meth) acrylamide compounds such as isopropyl (meth) acrylamide and t-butyl (meth) acrylamide; Nn-butoxymethyl (meth) acrylamide and N-isobutoxymethyl. N-alkoxyalkyl (meth) acrylamide compounds such as (meth) acrylamide; N, N-dialkyl (meth) acrylamide compounds such as dimethyl (meth) acrylamide and diethyl (meth) acrylamide are mentioned, and one of them is used. It may be used alone or in combination of two or more.
 脂環構造含有エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸t-ブチルシクロヘキシル、(メタ)アクリル酸シクロデシル及び(メタ)アクリル酸シクロドデシル等の脂肪族置換基を有していてもよい(メタ)アクリル酸シクロアルキルエステル;(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸ジシクロペンタニル、並びに、シクロヘキサンジメタノールモノ(メタ)アクリレート及びシクロデカンジメタノールモノ(メタ)アクリレート等のシクロアルキルポリアルコールモノ(メタ)アクリレート等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the alicyclic structure-containing ethylenically unsaturated monomer include cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, and (meth). ) Cyclodecyl acrylate and cyclododecyl (meth) acrylate and other aliphatic substituents may have (meth) cycloalkyl acrylate; isobornyl (meth) acrylate, adamantyl (meth) acrylate, (meth). ) Dicyclopentenyl acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and cyclohexanedimethanol mono (meth) acrylate and cyclodecanedimethanol mono (meth) acrylate, etc. Cycloalkyl polyalcohol mono (meth) acrylate and the like can be mentioned, and one of these may be used alone, or two or more thereof may be used in combination.
 水酸基含有エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル及び(メタ)アクリル酸ヒドロキシブチル等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the hydroxyl group-containing ethylenically unsaturated monomer include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate, and one of them is used alone. It may be used in combination, or two or more kinds may be used in combination.
 その他の非イオン性のエチレン性不飽和単量体としては、例えば(メタ)アクリル酸エステルを用いてもよい。(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル及び(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸アルキルエステル化合物;
(メタ)アクリル酸フェニル、(メタ)アクリル酸フェニルメチル、(メタ)アクリル酸フェニルエチル等の(メタ)アクリル酸アラルキルエステル化合物;
(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル等の(メタ)アクリル酸アルコキシアルキルエステル化合物等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
As the other nonionic ethylenically unsaturated monomer, for example, (meth) acrylic acid ester may be used. Examples of the (meth) acrylic acid ester include (meth) methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. Meta) Acrylic acid alkyl ester compound;
(Meta) Acrylic acid aralkyl ester compounds such as (meth) phenyl acrylate, (meth) phenylmethyl acrylate, (meth) phenylethyl acrylate;
Examples thereof include (meth) acrylic acid alkoxyalkyl ester compounds such as 2-methoxyethyl (meth) acrylic acid and 2-ethoxyethyl (meth) acrylic acid, and one of these may be used alone. Two or more types may be used in combination.
 本重合体又はその塩は、バインダーの結着性が優れる点で、(メタ)アクリルアミド及びその誘導体、脂環構造含有エチレン性不飽和単量体等に由来する構造単位を含むことが好ましい。また、(b)成分として、水中への溶解性が1g/100ml以下の疎水性のエチレン性不飽和単量体に由来する構造単位を導入した場合、電極材料と強い相互作用を奏することができ、活物質に対して良好な結着性を発揮することができる。これにより、堅固で一体性の良好な電極合剤層を得ることができるため、前記した「水中への溶解性が1g/100ml以下の疎水性のエチレン性不飽和単量体」としては、特に脂環構造含有エチレン性不飽和単量体が好ましい。 The present polymer or a salt thereof preferably contains a structural unit derived from (meth) acrylamide and its derivative, an alicyclic structure-containing ethylenically unsaturated monomer, etc., in that the binder has excellent binding properties. Further, when a structural unit derived from a hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g / 100 ml or less is introduced as the component (b), a strong interaction with the electrode material can be achieved. , Can exhibit good binding properties to active materials. As a result, a solid and well-integrated electrode mixture layer can be obtained. Therefore, the above-mentioned "hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g / 100 ml or less" is particularly selected. An alicyclic structure-containing ethylenically unsaturated monomer is preferable.
 本発明に係る架橋重合体又はその塩は、得られる二次電池のサイクル特性が向上することから、水酸基含有エチレン性不飽和単量体に由来する構造単位を含むことが好ましく、当該構造単位を0.5質量%以上、70質量%以下含むことが好ましく、0.5質量%以上、50質量%以下含むことがより好ましく、1.0質量%以上、50質量%以下含むことがさらに好ましい。 The crosslinked polymer or salt thereof according to the present invention preferably contains a structural unit derived from a hydroxyl group-containing ethylenically unsaturated monomer because the cycle characteristics of the obtained secondary battery are improved. It is preferably contained in an amount of 0.5% by mass or more and 70% by mass or less, more preferably 0.5% by mass or more and 50% by mass or less, and further preferably 1.0% by mass or more and 50% by mass or less.
 非イオン性のエチレン性不飽和単量体の中でも、重合速度が速いために一次鎖長の長い重合体が得られ、バインダーの結着力が良好となる点でアクリロイル基を有する化合物が好ましい。 Among the nonionic ethylenically unsaturated monomers, a compound having an acryloyl group is preferable in that a polymer having a long primary chain length can be obtained due to its high polymerization rate and the binder has a good binding force.
 架橋重合体は塩であってもよい。塩の種類としては特に限定しないが、リチウム、ナトリウム、カリウム等のアルカリ金属塩;カルシウム塩及びバリウム塩等のアルカリ土類金属塩;マグネシウム塩、アルミニウム塩等のその他の金属塩;アンモニウム塩及び有機アミン塩等が挙げられる。これらの中でも電池特性への悪影響が生じにくい点からアルカリ金属塩及びマグネシウム塩が好ましく、アルカリ金属塩がより好ましい。また、抵抗の低い二次電池が得られる観点から、リチウム塩が特に好ましい。 The crosslinked polymer may be a salt. The type of salt is not particularly limited, but alkali metal salts such as lithium, sodium and potassium; alkaline earth metal salts such as calcium salt and barium salt; other metal salts such as magnesium salt and aluminum salt; ammonium salt and organic Examples include amine salts. Among these, alkali metal salts and magnesium salts are preferable, and alkali metal salts are more preferable, from the viewpoint that adverse effects on battery characteristics are unlikely to occur. Further, from the viewpoint of obtaining a secondary battery having low resistance, a lithium salt is particularly preferable.
<架橋重合体の態様>
 本発明の架橋重合体における架橋方法は特に制限されるものではなく、例えば以下の方法による態様が例示される。
1)架橋性単量体の共重合
2)ラジカル重合時のポリマー鎖への連鎖移動を利用
3)反応性官能基を有する重合体を合成後、必要に応じて架橋剤を添加して後架橋
 重合体が架橋構造を有することにより、当該重合体又はその塩を含むバインダーは、優れた結着力を有することができる。上記の内でも、操作が簡便であり、架橋の程度を制御し易い点から架橋性単量体の共重合による方法が好ましい。
<Aspects of crosslinked polymer>
The cross-linking method in the cross-linked polymer of the present invention is not particularly limited, and examples thereof include the following methods.
1) Copolymerization of crosslinkable monomers 2) Utilizing chain transfer to polymer chains during radical polymerization 3) After synthesizing a polymer having a reactive functional group, post-crosslinking is performed by adding a crosslinking agent as necessary. Since the polymer has a crosslinked structure, the binder containing the polymer or a salt thereof can have an excellent binding force. Among the above, the method by copolymerization of crosslinkable monomers is preferable from the viewpoint of simple operation and easy control of the degree of crosslinking.
<架橋性単量体>
 架橋性単量体としては、2個以上の重合性不飽和基を有する多官能重合性単量体、及び加水分解性シリル基等の自己架橋可能な架橋性官能基を有する単量体等が挙げられる。
<Crosslinkable monomer>
Examples of the crosslinkable monomer include a polyfunctional polymerizable monomer having two or more polymerizable unsaturated groups, a monomer having a self-crosslinkable crosslinkable functional group such as a hydrolyzable silyl group, and the like. Can be mentioned.
 上記多官能重合性単量体は、(メタ)アクリロイル基、アルケニル基等の重合性官能基を分子内に2つ以上有する化合物であり、多官能(メタ)アクリレート化合物、多官能アルケニル化合物、(メタ)アクリロイル基及びアルケニル基の両方を有する化合物等が挙げられる。これらの化合物は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの内でも、均一な架橋構造を得やすく、ゾル分率の調整が容易な点で多官能アルケニル化合物が好ましく、分子内に複数のアリルエーテル基を有する多官能アリルエーテル化合物が特に好ましい。 The polyfunctional polymerizable monomer is a compound having two or more polymerizable functional groups such as a (meth) acryloyl group and an alkenyl group in the molecule, and is a polyfunctional (meth) acrylate compound, a polyfunctional alkenyl compound, ( Meta) Examples thereof include compounds having both an acryloyl group and an alkenyl group. Only one of these compounds may be used alone, or two or more of these compounds may be used in combination. Among these, a polyfunctional alkenyl compound is preferable because a uniform crosslinked structure can be easily obtained and a sol fraction can be easily adjusted, and a polyfunctional allyl ether compound having a plurality of allyl ether groups in the molecule is particularly preferable.
 多官能(メタ)アクリレート化合物としては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等の2価アルコールのジ(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性体のトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の3価以上の多価アルコールのトリ(メタ)アクリレート、テトラ(メタ)アクリレート等のポリ(メタ)アクリレート;メチレンビスアクリルアミド、ヒドロキシエチレンビスアクリルアミド等のビスアミド類等を挙げることができる。 Examples of the polyfunctional (meth) acrylate compound include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and polypropylene glycol di (meth) acrylate. Di (meth) acrylates of dihydric alcohols such as meta) acrylate; trimethylol propantri (meth) acrylate, tri (meth) acrylate of trimethyl propanethylene oxide modified product, glycerin tri (meth) acrylate, pentaerythritol tri (meth) Tri (meth) acrylates of trivalent or higher polyhydric alcohols such as meta) acrylates and pentaerythritol tetra (meth) acrylates, poly (meth) acrylates such as tetra (meth) acrylates; methylenebisacrylamide, hydroxyethylenebisacrylamide, etc. Bisamides and the like can be mentioned.
 多官能アルケニル化合物としては、トリメチロールプロパンジアリルエーテル、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールジアリルエーテル、ペンタエリスリトールトリアリルエーテル、テトラアリルオキシエタン、ポリアリルサッカロース等の多官能アリルエーテル化合物;ジアリルフタレート等の多官能アリル化合物;ジビニルベンゼン等の多官能ビニル化合物等を挙げることができる。 Examples of the polyfunctional alkenyl compound include polyfunctional allyl ether compounds such as trimethylolpropanediallyl ether, trimethylolpropanetriallyl ether, pentaerythritol diallyl ether, pentaerythritol triallyl ether, tetraallyloxyethane, and polyallyl saccharose; diallyl phthalate and the like. Polyfunctional allyl compound; Examples thereof include polyfunctional vinyl compounds such as divinylbenzene.
 (メタ)アクリロイル基及びアルケニル基の両方を有する化合物としては、(メタ)アクリル酸アリル、(メタ)アクリル酸イソプロペニル、(メタ)アクリル酸ブテニル、(メタ)アクリル酸ペンテニル、(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル等を挙げることができる。 Compounds having both (meth) acryloyl group and alkenyl group include allyl (meth) acrylate, isopropenyl (meth) acrylate, butenyl (meth) acrylate, pentenyl (meth) acrylate, and (meth) acrylate. 2- (2-Vinyloxyethoxy) ethyl and the like can be mentioned.
 上記自己架橋可能な架橋性官能基を有する単量体の具体的な例としては、加水分解性シリル基含有ビニル単量体、N-メチロール(メタ)アクリルアミド、N-メトキシアルキル(メタ)アクリレート等が挙げられる。これらの化合物は、1種単独であるいは2種以上を組み合わせて用いることができる。 Specific examples of the above-mentioned monomer having a crosslinkable functional group include a hydrolyzable silyl group-containing vinyl monomer, N-methylol (meth) acrylamide, N-methoxyalkyl (meth) acrylate and the like. Can be mentioned. These compounds can be used alone or in combination of two or more.
 加水分解性シリル基含有ビニル単量体としては、加水分解性シリル基を少なくとも1個有するビニル単量体であれば、特に限定されない。例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシランン等のビニルシラン類;アクリル酸トリメトキシシリルプロピル、アクリル酸トリエトキシシリルプロピル、アクリル酸メチルジメトキシシリルプロピル等のシリル基含有アクリル酸エステル類;メタクリル酸トリメトキシシリルプロピル、メタクリル酸トリエトキシシリルプロピル、メタクリル酸メチルジメトキシシリルプロピル、メタクリル酸ジメチルメトキシシリルプロピル等のシリル基含有メタクリル酸エステル類;トリメトキシシリルプロピルビニルエーテル等のシリル基含有ビニルエーテル類;トリメトキシシリルウンデカン酸ビニル等のシリル基含有ビニルエステル類等を挙げることができる。 The hydrolyzable silyl group-containing vinyl monomer is not particularly limited as long as it is a vinyl monomer having at least one hydrolyzable silyl group. For example, vinylsilanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, vinyldimethylmethoxysilanen; silyls such as trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylate, methyldimethoxysilylpropyl acrylate and the like. Group-containing acrylic acid esters; silyl group-containing methacrylate esters such as trimethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate, methyldimethoxysilylpropyl methacrylate, dimethylmethoxysilylpropyl methacrylate; trimethoxysilylpropyl vinyl ether and the like. Cyril group-containing vinyl ethers; silyl group-containing vinyl esters such as trimethoxysilyl undecanoate vinyl and the like can be mentioned.
 架橋重合体が架橋性単量体により架橋されたものである場合、上記架橋性単量体の使用量は、架橋性単量体以外の単量体(非架橋性単量体)の総量に対して0.3~5モル%であることが好ましく、0.7~5モル%であることがより好ましく、0.7~3モル%であることがさらに好ましく、1.5~3モル%であることが一層好ましい。架橋性単量体の使用量が0.3モル%以上であれば結着性及び電極スラリーの安定性がより良好となる点で好ましい。5モル%以下であれば、架橋重合体の安定性が高くなる傾向がある。 When the crosslinked polymer is crosslinked with a crosslinkable monomer, the amount of the crosslinkable monomer used is the total amount of monomers other than the crosslinkable monomer (non-crosslinkable monomer). On the other hand, it is preferably 0.3 to 5 mol%, more preferably 0.7 to 5 mol%, further preferably 0.7 to 3 mol%, and 1.5 to 3 mol%. Is more preferable. When the amount of the crosslinkable monomer used is 0.3 mol% or more, the binding property and the stability of the electrode slurry are more preferable. If it is 5 mol% or less, the stability of the crosslinked polymer tends to be high.
 また、架橋性単量体の使用量は、架橋重合体の全構成単量体中、好ましくは0.7~20質量%であり、より好ましくは1.0~15質量%であり、さらに好ましくは2.0~10質量%であり、一層好ましくは3.0~10質量%である。 The amount of the crosslinkable monomer used is preferably 0.7 to 20% by mass, more preferably 1.0 to 15% by mass, and further preferably 1.0 to 15% by mass, based on the total constituent monomers of the crosslinked polymer. Is 2.0 to 10% by mass, more preferably 3.0 to 10% by mass.
<架橋重合体のゾル分率>
 架橋重合体又はその塩のゾル分率は、5.0質量%未満である。ゾル分率が上記である場合、優れた結着性を示す電極が得られるとともに、当該電極を含む二次電池のサイクル特性向上に対しても優れた効果を奏する。ゾル分率の下限値は、0.1質量%以上であってもよく、0.2質量%以上であってもよく、0.5質量%以上であってもよく、1.0質量%以上であっても良い。
<Sol fraction of crosslinked polymer>
The sol fraction of the crosslinked polymer or a salt thereof is less than 5.0% by mass. When the sol fraction is the above, an electrode showing excellent binding property can be obtained, and an excellent effect is also exerted on improving the cycle characteristics of the secondary battery including the electrode. The lower limit of the sol fraction may be 0.1% by mass or more, 0.2% by mass or more, 0.5% by mass or more, or 1.0% by mass or more. It may be.
 本明細書におけるゾル分は、主に三次元架橋構造を有さない重合体から構成されるものであり、架橋重合体又はその塩に含まれるゾル分率は、公知の方法により調整することができる。すなわち、架橋剤の種類及びその使用量、重合体の一次鎖長等を調整することにより、ゾル分率を所望の範囲に設定することができる。例えば架橋剤使用量の増量や、一次鎖長を増大させることにより、ゾル分率は一般的に減少する。 The sol content in the present specification is mainly composed of a polymer having no three-dimensional crosslinked structure, and the sol content contained in the crosslinked polymer or a salt thereof can be adjusted by a known method. it can. That is, the sol fraction can be set in a desired range by adjusting the type of the cross-linking agent, the amount used thereof, the primary chain length of the polymer, and the like. For example, the sol fraction generally decreases by increasing the amount of the cross-linking agent used or increasing the primary chain length.
<架橋重合体のゾル分の重量平均分子量>
 架橋重合体又はその塩のゾル分の重量平均分子量は、ポリエチレンオキシド/ポリエチレングリコール換算の値として300,000以下であることが好ましい。より好ましくは200,000以下であり、さらに好ましくは150,000以下であり、一層好ましくは100,000以下である。ゾル分の重量平均分子量が上記である場合、電極スラリーの塗工性に優れ、優れた結着性を示す電極が得られるとともに、当該電極を含む二次電池のサイクル特性向上に対しても優れた効果を奏する。ゾル分の重量平均分子量の下限値は、1,000以上であってもよく、2,000以上であってもよく、3,000以上であってもよく、5,000以上であってもよく、10,000以上であってもよい。
 なお、上記架橋重合体のゾル分の重量平均分子量は、ポリエチレンオキシド/ポリエチレングリコール換算の値であり、本明細書実施例に記載の方法により測定することができる。
<Weight average molecular weight of crosslinked polymer sol>
The weight average molecular weight of the sol content of the crosslinked polymer or a salt thereof is preferably 300,000 or less in terms of polyethylene oxide / polyethylene glycol. It is more preferably 200,000 or less, further preferably 150,000 or less, and even more preferably 100,000 or less. When the weight average molecular weight of the sol is as described above, the electrode slurry is excellent in coatability, an electrode showing excellent binding property can be obtained, and the cycle characteristics of the secondary battery including the electrode are also improved. Has an effect. The lower limit of the weight average molecular weight of the sol content may be 1,000 or more, 2,000 or more, 3,000 or more, or 5,000 or more. It may be 10,000 or more.
The weight average molecular weight of the sol content of the crosslinked polymer is a value in terms of polyethylene oxide / polyethylene glycol, and can be measured by the method described in Examples of the present specification.
<架橋重合体の粒子径>
 本組成物において、架橋重合体が大粒径の塊(二次凝集体)として存在することなく、適度な粒径を有する水膨潤粒子として良好に分散している場合、当該架橋重合体を含むバインダーが良好な結着性能を発揮し得るため好ましい。
<Particle diameter of crosslinked polymer>
In the present composition, when the crosslinked polymer does not exist as a mass (secondary agglomerate) having a large particle size and is well dispersed as water-swelled particles having an appropriate particle size, the crosslinked polymer is included. The binder is preferable because it can exhibit good binding performance.
 本発明の架橋重合体又はその塩は、該架橋重合体が有するカルボキシル基に基づく中和度が80~100モル%であるものを水中に分散させた際の粒子径(水膨潤粒子径)が、体積基準メジアン径で0.1μm以上、10.0μm以下の範囲にあることが好ましい。粒子径が0.1μm以上、10.0μm以下の範囲であれば、本組成物中において好適な大きさで均一に存在するため、本組成物の安定性が高く、優れた結着性を発揮することが可能となる。粒子径が10.0μmを超えると、上記の通り結着性が不十分となる虞がある。また、平滑性な塗面が得られにくい点で、塗工性が不十分となる虞がある。一方、粒子径が0.1μm未満の場合には、安定製造性の観点において懸念される。上記粒子径の下限は、0.2μm以上であってもよく、0.3μm以上であってもよく、0.5μm以上であってもよい。粒子径の上限は9.0μm以下であってもよく、8.0μm以下であってもよく、7.0μm以下であってもよく、5.0μm以下であってもよく、3.0μm以下であってもよい。粒子径の範囲は、上記下限値及び上限値を適宜組合わせて設定することができ、例えば、0.1μm以上、9.0μm以下であってもよく、0.2μm以上、8.0μm以下であってもよく、0.3μm以上、5.0μm以下であってもよい。
 なお、上記水膨潤粒子径は、本明細書実施例に記載の方法により測定することができる。
The crosslinked polymer of the present invention or a salt thereof has a particle size (water-swelling particle size) when a crosslinked polymer having a degree of neutralization based on a carboxyl group of 80 to 100 mol% is dispersed in water. The volume-based median diameter is preferably in the range of 0.1 μm or more and 10.0 μm or less. When the particle size is in the range of 0.1 μm or more and 10.0 μm or less, the composition is uniformly present in a suitable size in the present composition, so that the present composition is highly stable and exhibits excellent binding properties. It becomes possible to do. If the particle size exceeds 10.0 μm, the binding property may be insufficient as described above. In addition, there is a risk that the coatability will be insufficient because it is difficult to obtain a smooth coated surface. On the other hand, when the particle size is less than 0.1 μm, there is concern from the viewpoint of stable manufacturability. The lower limit of the particle size may be 0.2 μm or more, 0.3 μm or more, or 0.5 μm or more. The upper limit of the particle size may be 9.0 μm or less, 8.0 μm or less, 7.0 μm or less, 5.0 μm or less, 3.0 μm or less. There may be. The range of the particle size can be set by appropriately combining the above lower limit value and upper limit value, and may be, for example, 0.1 μm or more and 9.0 μm or less, and 0.2 μm or more and 8.0 μm or less. It may be 0.3 μm or more and 5.0 μm or less.
The water-swelled particle size can be measured by the method described in the examples of the present specification.
 架橋重合体が未中和若しくは中和度80モル%未満の場合は、アルカリ金属水酸化物等により中和度80~100モル%に中和し、水中に分散させた際の粒子径を測定すればよい。一般に、架橋重合体又はその塩は、粉末又は溶液(分散液)の状態では一次粒子が会合、凝集した塊状粒子として存在する場合が多い。上記の水分散させた際の粒子径が上記範囲である場合、当該架橋重合体又はその塩は極めて優れた分散性を有するものであり、中和度80~100モル%に中和して水分散することにより塊状粒子が解れ、ほぼ一次粒子の分散体、若しくは2次凝集体であっても、その粒子径が0.1~10.0μmの範囲内にある、安定な分散状態を形成するものである。 If the crosslinked polymer is unneutralized or has a neutralization degree of less than 80 mol%, neutralize it to a neutralization degree of 80 to 100 mol% with an alkali metal hydroxide or the like, and measure the particle size when dispersed in water. do it. In general, the crosslinked polymer or a salt thereof often exists as agglomerated particles in which primary particles are associated and aggregated in the state of powder or solution (dispersion liquid). When the particle size when dispersed in water is in the above range, the crosslinked polymer or a salt thereof has extremely excellent dispersibility, and is neutralized to a degree of neutralization of 80 to 100 mol% to be water. By dispersing, the agglomerated particles are disintegrated, and even if it is a dispersion of almost primary particles or a secondary agglomerate, a stable dispersed state in which the particle size is in the range of 0.1 to 10.0 μm is formed. It is a thing.
 水膨潤粒子径の体積平均粒子径を個数平均粒子径で除した値である粒子径分布は、結着性及び塗工性の観点から好ましくは10以下であり、より好ましくは5.0以下であり、さらに好ましくは3.0以下であり、一層好ましくは1.5以下である。上記粒子径分布の下限値は、通常は1.0である。 The particle size distribution, which is the value obtained by dividing the volume average particle size of the water-swelled particle size by the number average particle size, is preferably 10 or less, more preferably 5.0 or less, from the viewpoint of bondability and coatability. Yes, more preferably 3.0 or less, still more preferably 1.5 or less. The lower limit of the particle size distribution is usually 1.0.
 また、本発明の架橋重合体又はその塩の乾燥時における粒子径(乾燥粒子径)は、体積基準メジアン径で0.03μm以上、3μm以下の範囲にあることが好ましい。上記粒子径のより好ましい範囲は0.1μm以上、1μm以下であり、さらに好ましい範囲は0.3μm以上、0.8μm以下である。 Further, the particle size (dry particle size) of the crosslinked polymer of the present invention or a salt thereof at the time of drying is preferably in the range of 0.03 μm or more and 3 μm or less in terms of volume-based median diameter. A more preferable range of the particle size is 0.1 μm or more and 1 μm or less, and a more preferable range is 0.3 μm or more and 0.8 μm or less.
 架橋重合体又はその塩は、本組成物中において、中和度が20~100モル%となるように、エチレン性不飽和カルボン酸単量体由来のカルボキシル基等の酸基が中和され、塩の態様として用いることが好ましい。上記中和度は50~100モル%であることがより好ましく、60~95モル%であることがさらに好ましい。中和度が20モル%以上の場合、水膨潤性が良好となり分散安定化効果が得やすいという点で好ましい。本明細書では、上記中和度は、カルボキシル基等の酸基を有する単量体及び中和に用いる中和剤の仕込み値から計算により算出することができる。なお、中和度は架橋重合体又はその塩を、減圧条件下、80℃で3時間乾燥処理後の粉末をIR測定し、カルボン酸のC=O基由来のピークとカルボン酸塩のC=O基由来のピークの強度比より確認することができる。 In the crosslinked polymer or a salt thereof, acid groups such as a carboxyl group derived from an ethylenically unsaturated carboxylic acid monomer are neutralized so that the degree of neutralization is 20 to 100 mol% in the present composition. It is preferably used as an embodiment of the salt. The degree of neutralization is more preferably 50 to 100 mol%, and even more preferably 60 to 95 mol%. When the degree of neutralization is 20 mol% or more, the water swelling property is good and the dispersion stabilizing effect is easily obtained, which is preferable. In the present specification, the degree of neutralization can be calculated by calculation from the charged values of a monomer having an acid group such as a carboxyl group and a neutralizing agent used for neutralization. The degree of neutralization was determined by measuring the IR of the crosslinked polymer or its salt after drying it at 80 ° C. for 3 hours under reduced pressure conditions, and measuring the peak derived from the C = O group of the carboxylic acid and the C = of the carboxylate. It can be confirmed from the intensity ratio of the peak derived from the O group.
<架橋重合体の分子量(一次鎖長)>
 本発明の架橋重合体は、三次元架橋構造を有し、水などの媒体中でミクロゲルとして存在するものである。一般的に、このような三次元架橋重合体は溶媒に不溶であるため、その分子量を測定することはできない。同様に、架橋重合体の一次鎖長を測定し、定量することも、通常は困難である。
<Molecular weight of crosslinked polymer (primary chain length)>
The crosslinked polymer of the present invention has a three-dimensional crosslinked structure and exists as a microgel in a medium such as water. In general, such a three-dimensional crosslinked polymer is insoluble in a solvent, so its molecular weight cannot be measured. Similarly, it is usually difficult to measure and quantify the primary chain length of crosslinked polymers.
<架橋重合体の水膨潤度>
 本明細書では、水膨潤度は架橋重合体又はその塩の乾燥時の重量「(W)g」、及び当該架橋重合体又はその塩を水で飽和膨潤させた際に吸収される水の量「(W)g」とから、以下の式に基づいて算出される。
(水膨潤度)={(W)+(W)}/(W
<Water swelling degree of crosslinked polymer>
In this specification, the water swelling degree of the dry crosslinked polymer or a salt thereof by weight "(W A) g", and the cross-linked polymer or a salt thereof of water absorbed when the saturation swelling with water since the amount "(W B) g", it is calculated based on the following equation.
(Water swelling degree) = {(W A) + (W B)} / (W A)
 本発明の架橋重合体又はその塩は、pH8における水膨潤度が3.0以上、100以下であることが好ましい。水膨潤度が上記範囲であれば、架橋重合体又はその塩が水媒体中で適度に膨潤するため、電極合剤層を形成する際に、活物質及び集電体への十分な接着面積を確保することが可能となり、結着性が良好となる傾向がある。上記水膨潤度は、例えば4.0以上であってもよく、5.0以上であってもよく、7.0以上であってもよく、10以上であってもよく、15以上であってもよい。水膨潤度が3.0以上の場合、架橋重合体又はその塩が活物質や集電体の表面において広がり、十分な接着面積を確保することができるため、良好な結着性が得られる。pH8における水膨潤度の上限値は、95以下であってもよく、90以下であってもよく、80以下であってもよく、60以下であってもよく、50以下であってもよい。水膨潤度が100を超えると、架橋重合体又はその塩を含む本組成物(電極スラリー)の粘度が高くなる傾向が有り、合剤層の均一性が不足する結果、十分な結着力が得られないことがある。また、電極スラリーの塗工性が低下する虞がある。pH8における水膨潤度の範囲は、上記上限値及び下限値を適宜組合せることにより設定できるが、例えば、4.0以上、100以下であり、また例えば、5.0以上、100以下であり、また例えば、5.0以上、80以下である。
 pH8における水膨潤度は、pH8の水中における架橋重合体又はその塩の膨潤度を測定することにより得ることができる。上記pH8の水としては、例えばイオン交換水を使用することができ、必要に応じて適当な酸若しくはアルカリ、又は緩衝液等を用いてpHの値を調整してもよい。測定時のpHは、例えば、8.0±0.5の範囲であり、好ましくは8.0±0.3の範囲であり、より好ましくは8.0±0.2の範囲であり、さらに好ましくは8.0±0.1の範囲である。
The crosslinked polymer of the present invention or a salt thereof preferably has a water swelling degree of 3.0 or more and 100 or less at pH 8. When the degree of water swelling is within the above range, the crosslinked polymer or a salt thereof swells appropriately in an aqueous medium, so that a sufficient adhesive area to the active material and the current collector is provided when forming the electrode mixture layer. It is possible to secure it, and the binding property tends to be good. The degree of water swelling may be, for example, 4.0 or more, 5.0 or more, 7.0 or more, 10 or more, or 15 or more. May be good. When the degree of water swelling is 3.0 or more, the crosslinked polymer or a salt thereof spreads on the surface of the active material or the current collector, and a sufficient adhesive area can be secured, so that good binding property can be obtained. The upper limit of the degree of water swelling at pH 8 may be 95 or less, 90 or less, 80 or less, 60 or less, or 50 or less. When the degree of water swelling exceeds 100, the viscosity of the present composition (electrode slurry) containing the crosslinked polymer or a salt thereof tends to increase, and as a result of insufficient uniformity of the mixture layer, sufficient binding force is obtained. It may not be possible. In addition, the coatability of the electrode slurry may decrease. The range of the degree of water swelling at pH 8 can be set by appropriately combining the above upper limit value and lower limit value, and is, for example, 4.0 or more and 100 or less, and for example, 5.0 or more and 100 or less. Further, for example, it is 5.0 or more and 80 or less.
The degree of water swelling at pH 8 can be obtained by measuring the degree of swelling of the crosslinked polymer or a salt thereof in water at pH 8. As the water having a pH of 8, for example, ion-exchanged water can be used, and the pH value may be adjusted by using an appropriate acid or alkali, a buffer solution or the like, if necessary. The pH at the time of measurement is, for example, in the range of 8.0 ± 0.5, preferably in the range of 8.0 ± 0.3, more preferably in the range of 8.0 ± 0.2, and further. It is preferably in the range of 8.0 ± 0.1.
 尚、当業者であれば、架橋重合体又はその塩の組成及び構造等を制御することにより、その水膨潤度の調整を行うことができる。例えば、架橋重合体に酸性官能基、又は親水性の高い構造単位を導入することにより、水膨潤度を高くすることができる。また、架橋重合体の架橋度を低くすることによっても、通常その水膨潤度は高くなる。 A person skilled in the art can adjust the degree of water swelling by controlling the composition and structure of the crosslinked polymer or a salt thereof. For example, the degree of water swelling can be increased by introducing an acidic functional group or a highly hydrophilic structural unit into the crosslinked polymer. Further, by lowering the degree of cross-linking of the cross-linked polymer, the degree of water swelling is usually increased.
<架橋重合体又はその塩の製造方法>
 架橋重合体は、溶液重合、沈殿重合、懸濁重合、乳化重合等の公知の重合方法を使用することが可能であるが、生産性の点で沈殿重合及び懸濁重合(逆相懸濁重合)が好ましい。結着性等に関してより良好な性能が得られる点で、沈殿重合、懸濁重合、乳化重合等の不均一系の重合法が好ましく、中でも沈殿重合法がより好ましい。
 沈殿重合は、原料である不飽和単量体を溶解するが、生成する重合体を実質溶解しない溶媒中で重合反応を行うことにより重合体を製造する方法である。重合の進行とともにポリマー粒子は凝集及び成長により大きくなり、数十nm~数百nmの一次粒子が数μm~数十μmに二次凝集したポリマー粒子の分散液が得られる。ポリマーの粒子サイズを制御するために分散安定剤を使用することもできる。

 具体的な分散安定剤としては、リビングラジカル重合法により製造される分散安定剤、マクロモノマー型分散安定剤、ノニオン性界面活性剤等が挙げられる。 尚、分散安定剤や重合溶剤等を選定することにより上記二次凝集を抑制することもできる。一般に、二次凝集を抑制した沈殿重合は、分散重合とも呼ばれる。
<Method for producing crosslinked polymer or salt thereof>
As the crosslinked polymer, known polymerization methods such as solution polymerization, precipitation polymerization, suspension polymerization, and emulsion polymerization can be used, but in terms of productivity, precipitation polymerization and suspension polymerization (reverse phase suspension polymerization) ) Is preferable. Non-homogeneous polymerization methods such as precipitation polymerization, suspension polymerization, and emulsion polymerization are preferable, and the precipitation polymerization method is more preferable, in that better performance can be obtained in terms of binding property and the like.
Precipitation polymerization is a method for producing a polymer by carrying out a polymerization reaction in a solvent that dissolves an unsaturated monomer as a raw material but does not substantially dissolve the polymer to be produced. As the polymerization progresses, the polymer particles become larger due to aggregation and growth, and a dispersion liquid of the polymer particles in which the primary particles of several tens of nm to several hundred nm are secondarily aggregated to several μm to several tens of μm can be obtained. Dispersion stabilizers can also be used to control the particle size of the polymer.

Specific examples of the dispersion stabilizer include a dispersion stabilizer produced by the living radical polymerization method, a macromonomer type dispersion stabilizer, and a nonionic surfactant. The secondary aggregation can also be suppressed by selecting a dispersion stabilizer, a polymerization solvent, or the like. In general, precipitation polymerization in which secondary aggregation is suppressed is also called dispersion polymerization.
 沈殿重合の場合、重合溶媒は、使用する単量体の種類等を考慮して水及び各種有機溶剤等から選択される溶媒を使用することができる。より一次鎖長の長い重合体を得るためには、連鎖移動定数の小さい溶媒を使用することが好ましい。 In the case of precipitation polymerization, a solvent selected from water, various organic solvents, etc. can be used as the polymerization solvent in consideration of the type of monomer used. In order to obtain a polymer having a longer primary chain length, it is preferable to use a solvent having a small chain transfer constant.
 具体的な重合溶媒としては、メタノール、t-ブチルアルコール、アセトン、メチルエチルケトン、アセトニトリル及びテトラヒドロフラン等の水溶性溶剤の他、ベンゼン、酢酸エチル、ジクロロエタン、n-ヘキサン、シクロヘキサン及びn-ヘプタン等が挙げられ、これらの1種を単独であるいは2種以上を組み合わせて用いることができる。又は、これらと水との混合溶媒として用いてもよい。本発明において水溶性溶剤とは、20℃における水への溶解度が10g/100mlより大きいものを指す。
 上記の内、粗大粒子の生成や反応器への付着が小さく重合安定性が良好であること、析出した重合体微粒子が二次凝集しにくい(若しくは二次凝集が生じても水媒体中で解れやすい)こと、連鎖移動定数が小さく重合度(一次鎖長)の大きい重合体が得られること、及び後述する工程中和の際に操作が容易であること等の点で、メチルエチルケトン及びアセトニトリルが好ましい。
Specific examples of the polymerization solvent include water-soluble solvents such as methanol, t-butyl alcohol, acetone, methyl ethyl ketone, acetonitrile and tetrahydrofuran, as well as benzene, ethyl acetate, dichloroethane, n-hexane, cyclohexane and n-heptane. , One of these can be used alone or in combination of two or more. Alternatively, it may be used as a mixed solvent of these and water. In the present invention, the water-soluble solvent refers to a solvent having a solubility in water at 20 ° C. of more than 10 g / 100 ml.
Of the above, the formation of coarse particles and adhesion to the reactor are small and the polymerization stability is good, and the precipitated polymer fine particles are difficult to secondary agglomerate (or even if secondary agglomeration occurs, they dissolve in the aqueous medium. Methyl ethyl ketone and acetonitrile are preferable because they are easy to use), a polymer having a small chain transfer constant and a large degree of polymerization (primary chain length) can be obtained, and the operation is easy during the step neutralization described later. ..
 また、同じく工程中和において中和反応を安定かつ速やかに進行させるため、重合溶媒中に高極性溶媒を少量加えておくことが好ましい。係る高極性溶媒としては、好ましくは水及びメタノールが挙げられる。高極性溶媒の使用量は、媒体の全質量に基づいて好ましくは0.05~20.0質量%であり、より好ましくは0.1~10.0質量%、さらに好ましくは0.1~5.0質量%であり、一層好ましくは0.1~1.0質量%である。高極性溶媒の割合が0.05質量%以上であれば、上記中和反応への効果が認められ、20.0質量%以下であれば重合反応への悪影響も見られない。また、アクリル酸等の親水性の高いエチレン性不飽和カルボン酸単量体の重合では、高極性溶媒を加えた場合には重合速度が向上し、一次鎖長の長い重合体を得やすくなる。高極性溶媒の中でも特に水は上記重合速度を向上させる効果が大きく好ましい。 Similarly, in order to allow the neutralization reaction to proceed stably and quickly in the process neutralization, it is preferable to add a small amount of a highly polar solvent to the polymerization solvent. Such highly polar solvents preferably include water and methanol. The amount of the highly polar solvent used is preferably 0.05 to 20.0% by mass, more preferably 0.1 to 10.0% by mass, still more preferably 0.1 to 5% by mass based on the total mass of the medium. It is 0.0% by mass, more preferably 0.1 to 1.0% by mass. If the proportion of the highly polar solvent is 0.05% by mass or more, the effect on the neutralization reaction is recognized, and if it is 20.0% by mass or less, no adverse effect on the polymerization reaction is observed. Further, in the polymerization of a highly hydrophilic ethylenically unsaturated carboxylic acid monomer such as acrylic acid, the polymerization rate is improved when a highly polar solvent is added, and it becomes easy to obtain a polymer having a long primary chain length. Among the highly polar solvents, water is particularly preferable because it has a large effect of improving the polymerization rate.
 架橋重合体又はその塩の製造においては、エチレン性不飽和カルボン酸単量体を含む単量体成分を重合する重合工程を備えることが好ましい。例えば、(a)成分の由来となるエチレン性不飽和カルボン酸単量体を10質量%以上、100質量%以下、及び(b)成分の由来となる他のエチレン性不飽和単量体0質量%以上、90質量%以下を含む単量体成分を重合する重合工程を備えることが好ましい。
 該重合工程により、架橋重合体には、エチレン性不飽和カルボン酸単量体に由来する構造単位((a)成分)が10質量%以上、100質量%以下導入され、他のエチレン性不飽和単量体に由来する構造単位((b)成分)が0質量%以上、90質量%以下導入される。エチレン性不飽和カルボン酸単量体の使用量は、また例えば、20質量%以上、100質量%以下であり、また例えば、30質量%以上、100質量%以下であり、また例えば、50質量%以上、100質量%以下である。
In the production of the crosslinked polymer or a salt thereof, it is preferable to include a polymerization step of polymerizing a monomer component containing an ethylenically unsaturated carboxylic acid monomer. For example, the ethylenically unsaturated carboxylic acid monomer from which the component (a) is derived is 10% by mass or more and 100% by mass or less, and the other ethylenically unsaturated monomer from which the component (b) is derived is 0% by mass. It is preferable to include a polymerization step of polymerizing a monomer component containing% or more and 90% by mass or less.
By the polymerization step, 10% by mass or more and 100% by mass or less of the structural unit (component (a)) derived from the ethylenically unsaturated carboxylic acid monomer is introduced into the crosslinked polymer, and other ethylenically unsaturated products are introduced. The structural unit (component (b)) derived from the monomer is introduced in an amount of 0% by mass or more and 90% by mass or less. The amount of the ethylenically unsaturated carboxylic acid monomer used is, for example, 20% by mass or more and 100% by mass or less, and for example, 30% by mass or more and 100% by mass or less, and for example, 50% by mass. As mentioned above, it is 100% by mass or less.
 上記他のエチレン性不飽和単量体としては、例えば、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、並びに、非イオン性のエチレン性不飽和単量体等が挙げられる。具体的な化合物としては、上述した(b)成分を導入可能な単量体化合物が挙げられる。上記他のエチレン性不飽和単量体は、単量体成分の全量に対して0質量%以上、90質量%以下含んでもよく、1質量%以上、60質量%以下であってもよく、5質量%以上、50質量%以下であってもよく、10質量%以上、30質量%以下であってもよい。また、同様に上記架橋性単量体を使用してもよい。 Examples of the other ethylenically unsaturated monomer include an ethylenically unsaturated monomer compound having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, and a nonionic ethylenically. Examples include unsaturated monomers. Specific examples of the compound include monomeric compounds into which the above-mentioned component (b) can be introduced. The other ethylenically unsaturated monomer may contain 0% by mass or more and 90% by mass or less, or 1% by mass or more and 60% by mass or less, based on the total amount of the monomer components. It may be 10% by mass or more and 50% by mass or less, or 10% by mass or more and 30% by mass or less. Further, the above-mentioned crosslinkable monomer may be used in the same manner.
 重合工程において重合される単量体成分は、架橋性単量体を含んでいてもよい。架橋性単量体としては、既述した通り、2個以上の重合性不飽和基を有する多官能重合性単量体、及び加水分解性シリル基等の自己架橋可能な架橋性官能基を有する単量体等が挙げられる。
架橋性単量体の使用量は、架橋性単量体以外の単量体(非架橋性単量体)の総量100質量部に対して好ましくは0.1質量部以上2.0質量部以下であり、より好ましくは0.3質量部以上1.5質量部以下であり、さらに好ましくは0.5質量部以上1.5質量部以下である。
The monomer component polymerized in the polymerization step may contain a crosslinkable monomer. As the crosslinkable monomer, as described above, it has a polyfunctional polymerizable monomer having two or more polymerizable unsaturated groups and a self-crosslinkable crosslinkable functional group such as a hydrolyzable silyl group. Examples include monomers.
The amount of the crosslinkable monomer used is preferably 0.1 part by mass or more and 2.0 parts by mass or less with respect to 100 parts by mass of the total amount of the monomers other than the crosslinkable monomer (non-crosslinkable monomer). It is more preferably 0.3 parts by mass or more and 1.5 parts by mass or less, and further preferably 0.5 parts by mass or more and 1.5 parts by mass or less.
 重合時の単量体濃度については、より一次鎖長の長い重合体を得る観点から高い方が好ましい。ただし、単量体濃度が高すぎると、重合体粒子の凝集が進行し易い他、重合熱の制御が困難となり重合反応が暴走する虞がある。このため、例えば沈殿重合法の場合、重合開始時の単量体濃度は、2~40質量%程度の範囲が一般的であり、好ましくは5~40質量%の範囲である。
 なお、本明細書において「単量体濃度」とは、重合を開始する時点における反応液中の単量体濃度を示す。
The monomer concentration at the time of polymerization is preferably high from the viewpoint of obtaining a polymer having a longer primary chain length. However, if the monomer concentration is too high, the agglutination of the polymer particles tends to proceed, and it becomes difficult to control the heat of polymerization, which may cause the polymerization reaction to run away. Therefore, for example, in the case of the precipitation polymerization method, the monomer concentration at the start of polymerization is generally in the range of about 2 to 40% by mass, preferably in the range of 5 to 40% by mass.
In the present specification, the "monomer concentration" indicates the monomer concentration in the reaction solution at the time when the polymerization is started.
 架橋重合体は、塩基化合物の存在下に重合反応を行うことにより製造してもよい。塩基化合物存在下において重合反応を行うことにより、高い単量体濃度条件下であっても、重合反応を安定に実施することができる。単量体濃度は、13.0質量%以上であってもよく、好ましくは15.0質量%以上であり、より好ましくは17.0質量%以上であり、更に好ましくは19.0質量%以上であり、一層好ましくは20.0質量%以上である。単量体濃度はなお好ましくは22.0質量%以上であり、より一層好ましくは25.0質量%以上である。一般に、重合時の単量体濃度を高くするほど高分子量化が可能であり、一次鎖長の長い重合体を製造することができる。また、一次鎖長の長い重合体は、三次元架橋構造に組み込まれる傾向があるため、ゾル分率が低減される傾向がある。
 
The crosslinked polymer may be produced by carrying out a polymerization reaction in the presence of a basic compound. By carrying out the polymerization reaction in the presence of a basic compound, the polymerization reaction can be stably carried out even under high monomer concentration conditions. The monomer concentration may be 13.0% by mass or more, preferably 15.0% by mass or more, more preferably 17.0% by mass or more, and further preferably 19.0% by mass or more. It is more preferably 20.0% by mass or more. The monomer concentration is still preferably 22.0% by mass or more, and even more preferably 25.0% by mass or more. In general, the higher the monomer concentration at the time of polymerization, the higher the molecular weight can be, and a polymer having a long primary chain length can be produced. Further, a polymer having a long primary chain length tends to be incorporated into a three-dimensional crosslinked structure, so that the sol fraction tends to be reduced.
 単量体濃度の上限値は、使用する単量体及び溶媒の種類、並びに、重合方法及び各種重合条件等により異なるが、重合反応熱の除熱が可能であれば、沈殿重合では上記の通り概ね40%程度、懸濁重合では概ね50%程度、乳化重合では概ね70%程度である。 The upper limit of the monomer concentration differs depending on the type of monomer and solvent used, the polymerization method, various polymerization conditions, etc., but if the heat of the polymerization reaction can be removed, the precipitation polymerization is as described above. It is about 40%, about 50% for suspension polymerization, and about 70% for emulsion polymerization.
 上記塩基化合物は、いわゆるアルカリ性化合物であり、無機塩基化合物及び有機塩基化合物の何れを用いてもよい。塩基化合物存在下において重合反応を行うことにより、例えば13.0質量%を超えるような高い単量体濃度条件下であっても、重合反応を安定に実施することができる。また、このような高い単量体濃度で重合して得られた重合体は、分子量が高いため(一次鎖長が長いため)結着性にも優れる。
 無機塩基化合物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、水酸化カルシウム、水酸化マグネシウム等のアルカリ土類金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩などが挙げられ、これらの内の1種又は2種以上を用いることができる。
 有機塩基化合物としては、アンモニア及び有機アミン化合物が挙げられ、これらの内の1種又は2種以上を用いることができる。中でも、重合安定性及び得られる架橋重合体又はその塩を含むバインダーの結着性の観点から、有機アミン化合物が好ましい。
The above-mentioned base compound is a so-called alkaline compound, and either an inorganic base compound or an organic base compound may be used. By carrying out the polymerization reaction in the presence of a basic compound, the polymerization reaction can be stably carried out even under high monomer concentration conditions such as exceeding 13.0% by mass. In addition, the polymer obtained by polymerizing at such a high monomer concentration has a high molecular weight (because the primary chain length is long), and therefore has excellent binding properties.
Examples of the inorganic base compound include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide, and alkalis such as sodium carbonate and potassium carbonate. Examples thereof include metal carbonates, and one or more of these can be used.
Examples of the organic base compound include ammonia and organic amine compounds, and one or more of these can be used. Of these, an organic amine compound is preferable from the viewpoint of polymerization stability and binding property of a binder containing the obtained crosslinked polymer or a salt thereof.
 有機アミン化合物としては、例えば、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、モノブチルアミン、ジブチルアミン、トリブチルアミン、モノヘキシルアミン、ジヘキシルアミン、トリヘキシルアミン、トリオクチルアミン及びトリドデシルアミン等のN-アルキル置換アミン;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、プロパノールアミン、ジメチルエタノールアミン及びN,N-ジメチルエタノールアミン等の(アルキル)アルカノールアミン;ピリジン、ピペリジン、ピペラジン、1,8-ビス(ジメチルアミノ)ナフタレン、モルホリン及びジアザビシクロウンデセン(DBU)等の環状アミン;ジエチレントリアミン、N、N-ジメチルベンジルアミンが挙げられ、これらの内の1種又は2種以上を用いることができる。
 これらの内でも、長鎖アルキル基を有する疎水性アミンを用いた場合、より大きな静電反発及び立体反発が得られることから、単量体濃度の高い場合であっても重合安定性を確保しやすい点で好ましい。具体的には、有機アミン化合物に存在する窒素原子数に対する炭素原子数の比で表される値(C/N)が高い程、立体反発効果による重合安定化効果が高い。上記C/Nの値は、好ましくは3以上であり、より好ましくは5以上であり、さらに好ましくは10以上であり、一層好ましくは20以上である。
Examples of the organic amine compound include monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, monobutylamine, dibutylamine, tributylamine, monohexylamine, dihexylamine, trihexylamine, trioctylamine and tridodecylamine. N-alkyl substituted amines such as: monoethanolamine, diethanolamine, triethanolamine, propanolamine, dimethylethanolamine and (alkyl) alkanolamines such as N, N-dimethylethanolamine; pyridine, piperidine, piperazine, 1,8- Cyclic amines such as bis (dimethylamino) naphthalene, morpholin and diazabicycloundecene (DBU); diethylenetriamine, N, N-dimethylbenzylamine, and one or more of these can be used. ..
Among these, when a hydrophobic amine having a long-chain alkyl group is used, larger electrostatic repulsion and steric repulsion can be obtained, so that polymerization stability is ensured even when the monomer concentration is high. It is preferable because it is easy. Specifically, the higher the value (C / N) represented by the ratio of the number of carbon atoms to the number of nitrogen atoms present in the organic amine compound, the higher the polymerization stabilizing effect due to the steric repulsion effect. The C / N value is preferably 3 or more, more preferably 5 or more, still more preferably 10 or more, still more preferably 20 or more.
 塩基化合物の使用量は、上記エチレン性不飽和カルボン酸単量体に対し、0.001モル%以上4.0モル%以下の範囲とすることが好ましい。塩基化合物の使用量がこの範囲であれば、重合反応を円滑に行うことができる。使用量は、0.05モル%以上4.0モル%以下であってもよく、0.1モル%以上4.0モル%以下であってもよく、0.1モル%以上3.0モル%以下であってもよく、0.1モル%以上2.0モル%以下であってもよい。
 尚、本明細書では、塩基化合物の使用量は、エチレン性不飽和カルボン酸単量体に対して用いた塩基化合物のモル濃度を表したものであり、中和度を意味するものではない。すなわち、用いる塩基化合物の価数は考慮しない。
The amount of the base compound used is preferably in the range of 0.001 mol% or more and 4.0 mol% or less with respect to the ethylenically unsaturated carboxylic acid monomer. When the amount of the basic compound used is within this range, the polymerization reaction can be smoothly carried out. The amount used may be 0.05 mol% or more and 4.0 mol% or less, 0.1 mol% or more and 4.0 mol% or less, and 0.1 mol% or more and 3.0 mol. It may be 0.1 mol% or more and 2.0 mol% or less.
In this specification, the amount of the base compound used represents the molar concentration of the base compound used with respect to the ethylenically unsaturated carboxylic acid monomer, and does not mean the degree of neutralization. That is, the valence of the base compound used is not considered.
 重合開始剤は、アゾ系化合物、有機過酸化物、無機過酸化物等の公知の重合開始剤を用いることができるが、特に限定されるものではない。熱開始、還元剤を併用したレドックス開始、UV開始等、公知の方法で適切なラジカル発生量となるように使用条件を調整することができる。一次鎖長の長い架橋重合体を得るためには、製造時間が許容される範囲内で、ラジカル発生量がより少なくなるように条件を設定することが好ましい。 As the polymerization initiator, known polymerization initiators such as azo compounds, organic peroxides, and inorganic peroxides can be used, but the polymerization initiator is not particularly limited. The conditions of use can be adjusted by known methods such as heat initiation, redox initiation with a reducing agent, and UV initiation so that the amount of radicals generated is appropriate. In order to obtain a crosslinked polymer having a long primary chain length, it is preferable to set the conditions so that the amount of radicals generated is smaller within the allowable range of the production time.
 上記アゾ系化合物としては、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2-(tert-ブチルアゾ)-2-シアノプロパン、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス(2-メチルプロパン)等が挙げられ、これらの内の1種又は2種以上を用いることができる。 Examples of the azo compound include 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (N-butyl-2-methylpropionamide), and 2- (tert-butylazo) -2. -Cyanopropane, 2,2'-azobis (2,4,4-trimethylpentane), 2,2'-azobis (2-methylpropane) and the like, and one or more of these are used. be able to.
 上記有機過酸化物としては、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン(日油社製、商品名「パーテトラA」)、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン(同「パーヘキサHC」)、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン(同「パーヘキサC」)、n-ブチル-4,4-ジ(t-ブチルパーオキシ)バレレート(同「パーヘキサV」)、2,2-ジ(t-ブチルパーオキシ)ブタン(同「パーヘキサ22」)、t-ブチルハイドロパーオキサイド(同「パーブチルH」)、クメンハイドロパーオキサイド(同「パークミルH」)、1,1,3,3-テトラメチルブチルハイドロパーオキサイド(同「パーオクタH」)、t-ブチルクミルパーオキサイド(同「パーブチルC」)、ジ-t-ブチルパーオキサイド(同「パーブチルD」)、ジ-t-ヘキシルパーオキサイド(同「パーヘキシルD」)、ジ(3,5,5-トリメチルヘキサノイル)パーオキサイド(同「パーロイル355」)、ジラウロイルパーオキサイド(同「パーロイルL」)、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート(同「パーロイルTCP」)、ジ-2-エチルヘキシルパーオキシジカーボネート(同「パーロイルOPP」)、ジ-sec-ブチルパーオキシジカーボネート(同「パーロイルSBP」)、クミルパーオキシネオデカノエート(同「パークミルND」)、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート(同「パーオクタND」)、t-ヘキシルパーオキシネオデカノエート(同「パーヘキシルND」)、t-ブチルパーオキシネオデカノエート(同「パーブチルND」)、t-ブチルパーオキシネオヘプタノエート(同「パーブチルNHP」)、t-ヘキシルパーオキシピバレート(同「パーヘキシルPV」)、t-ブチルパーオキシピバレート(同「パーブチルPV」)、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイル)ヘキサン(同「パーヘキサ250」)、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(同「パーオクタO」)、t-ヘキシルパーオキシ-2-エチルヘキサノエート(同「パーヘキシルO」)、t-ブチルパーオキシ-2-エチルヘキサノエート(同「パーブチルO」)、t-ブチルパーオキシラウレート(同「パーブチルL」)、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート(同「パーブチル355」)、t-ヘキシルパーオキシイソプロピルモノカーボネート(同「パーヘキシルI」)、t-ブチルパーオキシイソプロピルモノカーボネート(同「パーブチルI」)、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(同「パーブチルE」)、t-ブチルパーオキシアセテート(同「パーブチルA」)、t-ヘキシルパーオキシベンゾエート(同「パーヘキシルZ」)及びt-ブチルパーオキシベンゾエート(同「パーブチルZ」)等が挙げられ、これらの内の1種又は2種以上を用いることができる。 Examples of the organic peroxide include 2,2-bis (4,5-di-t-butylperoxycyclohexyl) propane (manufactured by Nichiyu Co., Ltd., trade name "Pertetra A") and 1,1-di (t-). Hexylperoxy) cyclohexane (“Perhexa HC”), 1,1-di (t-butylperoxy) cyclohexane (“Perhexa C”), n-butyl-4,4-di (t-butylperoxy) Valerate (same as "Perhexa V"), 2,2-di (t-butylperoxy) butane (same as "Perhexa 22"), t-butylhydroperoxide (same as "Perbutyl H"), Kumen Hydroperoxide (same as "Perbutyl H") "Park Mill H"), 1,1,3,3-tetramethylbutylhydroperoxide ("Perocta H"), t-butylcumyl peroxide ("Perbutyl C"), di-t-butyl peroxide ("Peroctyl H") "Perbutyl D"), di-t-hexyl peroxide ("Perhexyl D"), di (3,5,5-trimethylhexanoyl) peroxide ("Perloyl355"), dilauroyl peroxide (same "Perloyl355") "Parloyl L"), bis (4-t-butylcyclohexyl) peroxydicarbonate (same as "parloyl TCP"), di-2-ethylhexyl peroxydicarbonate (same as "parloyl OPP"), di-sec-butylper Oxydicarbonate (“Perloyl SBP”), Kumil Peroxyneodecanoate (“Parkmill ND”), 1,1,3,3-Tetramethylbutylperoxyneodecanoate (“Perocta ND”) , T-Hexyl peroxyneodecanoate (same as "Perhexyl ND"), t-butyl peroxyneodecanoate (same as "Perbutyl ND"), t-butyl peroxyneeoheptanoeate (same as "Perbutyl NHP") ), T-Hexyl peroxypivalate (“Perhexyl PV”), t-Butyl peroxypivalate (“Perbutyl PV”), 2,5-dimethyl-2,5-di (2-ethylhexanoyl) Hexane (same as "Perhexa 250"), 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate (same as "Perocta O"), t-hexylperoxy-2-ethylhexanoate (same as "Perocta O") "Perhexyl O"), t-Butylperoxy-2-ethylhexanoate ("Perbutyl O"), t-Butylperoxylaurate ("Perbutyl L"), t-Butyl Peroxy -3,5,5-trimethylhexanoate (“Perbutyl 355”), t-hexyl peroxyisopropyl monocarbonate (“Perhexyl I”), t-butyl peroxyisopropyl monocarbonate (“Perbutyl I”) , T-Butylperoxy-2-ethylhexyl monocarbonate (“Perbutyl E”), t-Butylperoxyacetate (“Perbutyl A”), t-hexyl peroxybenzoate (“Perhexyl Z”) and t- Butyl peroxybenzoate (the same "perbutyl Z") and the like can be mentioned, and one or more of these can be used.
 上記無機過酸化物としては、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等が挙げられる。
 また、レドックス開始の場合、亜硫酸ナトリウム、チオ硫酸ナトリウム、ナトリウムホルムアルデヒドスルホキシレート、アスコルビン酸、亜硫酸ガス(SO)、硫酸第一鉄等を還元剤として用いることができる。
Examples of the inorganic peroxide include potassium persulfate, sodium persulfate, ammonium persulfate and the like.
When redox is started, sodium sulfite, sodium thiosulfate, sodium formaldehyde sulfoxylate, ascorbic acid, sulfurous acid gas (SO 2 ), ferrous sulfate and the like can be used as the reducing agent.
 重合開始剤の好ましい使用量は、用いる単量体成分の総量を100質量部としたときに、例えば、0.001~2質量部であり、また例えば、0.005~1質量部であり、また例えば、0.01~0.1質量部である。重合開始剤の使用量が0.001質量部以上であれば重合反応を安定的に行うことができ、2質量部以下であれば一次鎖長の長い重合体を得やすい。 The preferable amount of the polymerization initiator used is, for example, 0.001 to 2 parts by mass and, for example, 0.005 to 1 part by mass, when the total amount of the monomer components used is 100 parts by mass. Further, for example, it is 0.01 to 0.1 parts by mass. When the amount of the polymerization initiator used is 0.001 part by mass or more, the polymerization reaction can be stably carried out, and when it is 2 parts by mass or less, a polymer having a long primary chain length can be easily obtained.
 重合温度は、使用する単量体の種類及び濃度等の条件にもよるが、0~100℃が好ましく、20~80℃がより好ましく、重合温度は一定であってもよいし、重合反応の期間において変化するものであってもよい。 The polymerization temperature depends on conditions such as the type and concentration of the monomer used, but is preferably 0 to 100 ° C., more preferably 20 to 80 ° C., the polymerization temperature may be constant, or the polymerization reaction. It may change over time.
 重合工程を経て得られた架橋重合体分散液は、乾燥工程において減圧及び/又は加熱処理等を行い溶媒留去することにより、目的とする架橋重合体を粉末状態で得ることができる。この際、上記乾燥工程の前に、未反応単量体(及びその塩)、開始剤由来の不純物等を除去する目的で、重合工程に引き続き、遠心分離及び濾過等の固液分離工程、水、メタノール又は重合溶媒と同一の溶媒等を用いた洗浄工程を備えることが好ましい。上記洗浄工程を備えた場合、架橋重合体が二次凝集した場合であっても使用時に解れやすく、さらに残存する未反応単量体が除去されることにより結着性や電池特性の点でも良好な性能を示す。 The crosslinked polymer dispersion obtained through the polymerization step can be obtained in a powder state by subjecting the crosslinked polymer dispersion to a reduced pressure and / or heat treatment in the drying step and distilling off the solvent. At this time, prior to the drying step, for the purpose of removing unreacted monomers (and salts thereof), impurities derived from the initiator, etc., following the polymerization step, a solid-liquid separation step such as centrifugation and filtration, and water. , It is preferable to provide a cleaning step using the same solvent as methanol or a polymerization solvent. When the above cleaning step is provided, even if the crosslinked polymer is secondarily aggregated, it is easily unraveled at the time of use, and the remaining unreacted monomer is removed, which is good in terms of binding property and battery characteristics. Shows excellent performance.
 本製造方法では、塩基化合物存在下にエチレン性不飽和カルボン酸単量体を含む単量体組成物の重合反応を行うが、重合工程により得られた重合体分散液にアルカリ化合物を添加して重合体を中和(以下、「工程中和」ともいう)した後、乾燥工程で溶媒を除去してもよい。また、上記工程中和の処理を行わずに架橋重合体の粉末を得た後、電極スラリーを調製する際にアルカリ化合物を添加して、重合体を中和(以下、「後中和」ともいう)してもよい。上記の内、工程中和の方が、二次凝集体が解れやすい傾向にあり好ましい。 In this production method, the polymerization reaction of the monomer composition containing the ethylenically unsaturated carboxylic acid monomer is carried out in the presence of the basic compound, and the alkaline compound is added to the polymer dispersion obtained in the polymerization step. After neutralizing the polymer (hereinafter, also referred to as “step neutralization”), the solvent may be removed in a drying step. Further, after obtaining the powder of the crosslinked polymer without performing the above-mentioned step neutralization treatment, an alkaline compound is added when preparing the electrode slurry to neutralize the polymer (hereinafter, also referred to as “post-neutralization”). You may say). Of the above, process neutralization is preferable because the secondary aggregates tend to be easily disintegrated.
2.二次電池電極合剤層用組成物
 本発明の二次電池電極合剤層用組成物は、上記架橋重合体又はその塩を含有するバインダー、活物質及び水を含む。
 本組成物における架橋重合体又はその塩の使用量は、活物質の全量100質量部に対して、例えば、0.1質量部以上20質量部以下である。上記使用量は、また例えば、0.2質量部以上10質量部以下であり、また例えば0.3質量部以上8質量部以下であり、また例えば0.4質量部以上5質量部以下である。架橋重合体及びその塩の使用量が0.1質量部未満の場合、十分な結着性が得られないことがある。また、活物質等の分散安定性が不十分となり、形成される合剤層の均一性が低下する場合がある。一方、架橋重合体及びその塩の使用量が20質量部を超える場合、本組成物が高粘度となり集電体への塗工性が低下することがある。その結果、得られた合剤層にブツや凹凸が生じて電極特性に悪影響を及ぼす虞がある。
2. Composition for Secondary Battery Electrode Mixing Layer The composition for a secondary battery electrode mixing layer of the present invention contains a binder, an active material and water containing the crosslinked polymer or a salt thereof.
The amount of the crosslinked polymer or its salt used in the present composition is, for example, 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the total amount of the active material. The amount used is, for example, 0.2 parts by mass or more and 10 parts by mass or less, for example, 0.3 parts by mass or more and 8 parts by mass or less, and for example, 0.4 parts by mass or more and 5 parts by mass or less. .. If the amount of the crosslinked polymer and its salt used is less than 0.1 parts by mass, sufficient binding properties may not be obtained. In addition, the dispersion stability of the active material or the like may become insufficient, and the uniformity of the formed mixture layer may decrease. On the other hand, when the amount of the crosslinked polymer and its salt used exceeds 20 parts by mass, the composition may have a high viscosity and the coatability on the current collector may be lowered. As a result, the obtained mixture layer may have bumps or irregularities, which may adversely affect the electrode characteristics.
 架橋重合体及びその塩の使用量が上記範囲内であれば、分散安定性に優れた組成物が得られるとともに、集電体への密着性が極めて高い合剤層を得ることができ、結果として電池の耐久性が向上する。さらに、上記架橋重合体及びその塩は、活物質に対して少量(例えば5質量%以下)でも十分高い結着性を示し、かつ、カルボキシアニオンを有することから、界面抵抗が小さく、ハイレート特性に優れた電極が得られる。 When the amount of the crosslinked polymer and its salt used is within the above range, a composition having excellent dispersion stability can be obtained, and a mixture layer having extremely high adhesion to the current collector can be obtained. As a result, the durability of the battery is improved. Further, the crosslinked polymer and its salt show sufficiently high binding property to the active material even in a small amount (for example, 5% by mass or less) and have a carboxy anion, so that the interfacial resistance is small and the high rate characteristic is obtained. An excellent electrode can be obtained.
 上記活物質の内、正極活物質としては遷移金属酸化物のリチウム塩を用いることができ、例えば、層状岩塩型及びスピネル型のリチウム含有金属酸化物を使用することができる。層状岩塩型の正極活物質の具体的な化合物としては、コバルト酸リチウム、ニッケル酸リチウム、並びに、三元系と呼ばれるNCM{Li(Ni,Co,Mn)、x+y+z=1}及びNCA{Li(Ni1-a-bCoAlb)}等が挙げられる。また、スピネル型の正極活物質としてはマンガン酸リチウム等が挙げられる。酸化物以外にもリン酸塩、ケイ酸塩及び硫黄等が使用され、リン酸塩としては、オリビン型のリン酸鉄リチウム等が挙げられる。正極活物質としては、上記のうちの1種を単独で使用してもよく、2種以上を組み合わせて混合物又は複合物として使用してもよい。 Among the above active materials, a lithium salt of a transition metal oxide can be used as the positive electrode active material, and for example, a layered rock salt type and a spinel type lithium-containing metal oxide can be used. Specific compounds of the layered rock salt type positive electrode active material include lithium cobalt oxide, lithium nickel oxide, and NCM {Li (Ni x , Co y , Mn z ), x + y + z = 1} and NCA, which are called ternary systems. {Li (Ni 1-ab Co a Al b )} and the like can be mentioned. Moreover, as a spinel type positive electrode active material, lithium manganate and the like can be mentioned. Phosphates, silicates, sulfur and the like are used in addition to oxides, and examples of the phosphate include olivine-type lithium iron phosphate and the like. As the positive electrode active material, one of the above may be used alone, or two or more thereof may be combined and used as a mixture or a composite.
 尚、層状岩塩型のリチウム含有金属酸化物を含む正極活物質を水に分散させた場合、活物質表面のリチウムイオンと水中の水素イオンとが交換されることにより、分散液がアルカリ性を示す。このため、一般的な正極用集電体材料であるアルミ箔(Al)等が腐食される虞がある。このような場合には、バインダーとして未中和又は部分中和された架橋重合体を用いることにより、活物質から溶出するアルカリ分を中和することが好ましい。また、未中和又は部分中和された架橋重合体の使用量は、架橋重合体の中和されていないカルボキシル基量が活物質から溶出するアルカリ量に対して当量以上となるように用いることが好ましい。 When a positive electrode active material containing a layered rock salt type lithium-containing metal oxide is dispersed in water, the dispersion liquid becomes alkaline due to the exchange of lithium ions on the surface of the active material and hydrogen ions in water. Therefore, there is a risk that aluminum foil (Al), which is a general current collector material for positive electrodes, will be corroded. In such a case, it is preferable to neutralize the alkali content eluted from the active material by using an unneutralized or partially neutralized crosslinked polymer as the binder. The amount of the unneutralized or partially neutralized crosslinked polymer used should be equal to or greater than the amount of alkali eluted from the active material in the amount of unneutralized carboxyl groups in the crosslinked polymer. Is preferable.
正極活物質はいずれも電気伝導性が低いため、導電助剤を添加して使用されるのが一般的である。導電助剤としては、カーボンブラック、カーボンナノチューブ、カーボンファイバー、黒鉛微粉、炭素繊維等の炭素系材料が挙げられ、これらの内、優れた導電性を得やすい点からカーボンブラック、カーボンナノチューブ及びカーボンファイバー、が好ましい。また、カーボンブラックとしては、ケッチェンブラック及びアセチレンブラックが好ましい。導電助剤は、上記の1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。導電助剤の使用量は、導電性とエネルギー密度を両立するという観点から活物質の全量100質量部に対して、例えば、0.2~20質量部とすることができ、また例えば、0.2~10質量部とすることができる。また正極活物質は導電性を有する炭素系材料で表面コーティングしたものを使用してもよい。 Since all positive electrode active materials have low electrical conductivity, they are generally used by adding a conductive auxiliary agent. Examples of the conductive auxiliary agent include carbon-based materials such as carbon black, carbon nanotubes, carbon fibers, graphite fine powder, and carbon fibers. Among these, carbon black, carbon nanotubes, and carbon fibers are easy to obtain excellent conductivity. , Are preferred. Further, as the carbon black, Ketjen black and acetylene black are preferable. As the conductive auxiliary agent, one of the above types may be used alone, or two or more types may be used in combination. The amount of the conductive auxiliary agent used can be, for example, 0.2 to 20 parts by mass with respect to 100 parts by mass of the total amount of the active material from the viewpoint of achieving both conductivity and energy density, and for example, 0. It can be 2 to 10 parts by mass. Further, as the positive electrode active material, a material whose surface is coated with a conductive carbon-based material may be used.
 一方、負極活物質としては、例えば炭素系材料、リチウム金属、リチウム合金及び金属酸化物等が挙げられ、これらの内の1種又は2種以上を組み合わせて用いることができる。これらの内でも、天然黒鉛、人造黒鉛、ハードカーボン及びソフトカーボン等の炭素系材料からなる活物質(以下、「炭素系活物質」ともいう)が好ましく、天然黒鉛及び人造黒鉛等の黒鉛、並びにハードカーボンがより好ましい。また、黒鉛の場合、電池性能の面から球形化黒鉛が好適に用いられ、その粒子サイズの好ましい範囲は、例えば、1~20μmであり、また例えば、5~15μmである。また、エネルギー密度を高くするために、ケイ素やスズなどのリチウムを吸蔵できる金属又は金属酸化物等を負極活物質として使用することもできる。その中でも、ケイ素は黒鉛に比べて高容量であり、ケイ素、ケイ素合金及び一酸化ケイ素(SiO)等のケイ素酸化物のようなケイ素系材料からなる活物質(以下、「ケイ素系活物質」ともいう)を用いることができる。しかし、上記ケイ素系活物質は高容量である反面充放電に伴う体積変化が大きい。このため、上記炭素系活物質と併用するのが好ましい。この場合、ケイ素活物質の使用量は、炭素系活物質及びケイ素系活物質の総量に対し、好ましくは2~80質量%である。ケイ素系活物質の使用量は、5~70質量%であってもよく、8~60質量%であってもよく、10~50質量%であってもよい。 On the other hand, examples of the negative electrode active material include carbon-based materials, lithium metals, lithium alloys, metal oxides, and the like, and one or a combination of two or more of these can be used. Among these, active materials made of carbon-based materials such as natural graphite, artificial graphite, hard carbon and soft carbon (hereinafter, also referred to as "carbon-based active material") are preferable, graphite such as natural graphite and artificial graphite, and graphite. Hard carbon is more preferred. Further, in the case of graphite, spherical graphite is preferably used from the viewpoint of battery performance, and the preferable range of the particle size thereof is, for example, 1 to 20 μm, and for example, 5 to 15 μm. Further, in order to increase the energy density, a metal or a metal oxide capable of occluding lithium such as silicon or tin can be used as the negative electrode active material. Among them, silicon has a higher capacity than graphite, and is an active material made of a silicon-based material such as silicon, a silicon alloy, and a silicon oxide such as silicon monoxide (SiO) (hereinafter, also referred to as "silicon-based active material"). ) Can be used. However, while the silicon-based active material has a high capacity, the volume change due to charging and discharging is large. Therefore, it is preferable to use it in combination with the above carbon-based active material. In this case, the amount of the silicon active material used is preferably 2 to 80% by mass with respect to the total amount of the carbon-based active material and the silicon-based active material. The amount of the silicon-based active material used may be 5 to 70% by mass, 8 to 60% by mass, or 10 to 50% by mass.
 本発明の架橋重合体を含むバインダーは、当該架橋重合体がエチレン性不飽和カルボン酸単量体に由来する構造単位((a)成分)を有する。ここで、(a)成分はケイ素系活物質に対する親和性が高く、良好な結着性を示す。このため、本発明のバインダーはケイ素系活物質を含む高容量タイプの活物質を用いた場合にも優れた結着性を示すことから、得られる電極の耐久性向上に対しても有効であるものと考えられる。 The binder containing the crosslinked polymer of the present invention has a structural unit (component (a)) in which the crosslinked polymer is derived from an ethylenically unsaturated carboxylic acid monomer. Here, the component (a) has a high affinity for a silicon-based active material and exhibits good binding properties. Therefore, since the binder of the present invention exhibits excellent binding properties even when a high-capacity type active material containing a silicon-based active material is used, it is also effective for improving the durability of the obtained electrode. It is considered to be.
 また、本発明の架橋重合体は、水酸基を有する特定の単量体に由来する構造単位((b)成分)を有する。架橋重合体が(b)成分を有する場合、電極スラリーの粘度の上昇を抑制又は低減することができる。かかる効果が得られる理由は明確ではないが、架橋重合体が当該重合体の側鎖に比較的フレキシブルな水酸基を有するため、重合体中のカルボキシル基と相互作用する結果、水中における架橋重合体の膨らみが抑制されたことによるものと推察している。ただし、上記推察は、本発明の範囲を制限するものではない。 Further, the crosslinked polymer of the present invention has a structural unit (component (b)) derived from a specific monomer having a hydroxyl group. When the crosslinked polymer has the component (b), an increase in the viscosity of the electrode slurry can be suppressed or reduced. The reason why such an effect can be obtained is not clear, but since the crosslinked polymer has a relatively flexible hydroxyl group in the side chain of the polymer, as a result of interacting with the carboxyl group in the polymer, the crosslinked polymer in water It is presumed that this was due to the suppression of swelling. However, the above inference does not limit the scope of the present invention.
 炭素系活物質は、それ自身が良好な電気伝導性を有するため、必ずしも導電助剤を添加する必要はない。抵抗をより低減する等の目的で導電助剤を添加する場合、エネルギー密度の観点からその使用量は活物質の全量100質量部に対して、例えば、10質量部以下であり、また例えば、5質量部以下である。 Since the carbon-based active material itself has good electrical conductivity, it is not always necessary to add a conductive additive. When a conductive additive is added for the purpose of further reducing resistance, the amount used is, for example, 10 parts by mass or less with respect to 100 parts by mass of the total amount of the active material, and for example, 5 from the viewpoint of energy density. It is less than a part by mass.
 本組成物がスラリー状態の場合、活物質の使用量は、本組成物全量に対して、例えば、10~75質量%の範囲である。活物質の使用量が10質量%以上であればバインダー等のマイグレーションが抑えられる。また、媒体の乾燥コストの面でも有利となることから、活物質の使用量は、好ましくは30質量%以上であり、より好ましくは40質量%以上であり、さらに好ましくは50質量%以上である。一方、75質量%以下であれば本組成物の流動性及び塗工性を確保することができ、均一な合剤層を形成することができる。 When the composition is in a slurry state, the amount of the active material used is, for example, in the range of 10 to 75% by mass with respect to the total amount of the composition. If the amount of the active material used is 10% by mass or more, migration of the binder or the like can be suppressed. Further, since it is advantageous in terms of the drying cost of the medium, the amount of the active material used is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass or more. .. On the other hand, if it is 75% by mass or less, the fluidity and coatability of the present composition can be ensured, and a uniform mixture layer can be formed.
 本組成物は、媒体として水を使用する。また、本組成物の性状及び乾燥性等を調整する目的で、メタノール及びエタノール等の低級アルコール類、エチレンカーボネート等のカーボネート類、アセトン等のケトン類、テトラヒドロフラン、N-メチルピロリドン等の水溶性有機溶剤との混合溶媒としてもよい。混合媒体中の水の割合は、例えば、50質量%以上であり、また例えば、70質量%以上である。 This composition uses water as a medium. Further, for the purpose of adjusting the properties and dryness of the composition, lower alcohols such as methanol and ethanol, carbonates such as ethylene carbonate, ketones such as acetone, and water-soluble organic substances such as tetrahydrofuran and N-methylpyrrolidone. It may be a mixed solvent with a solvent. The proportion of water in the mixing medium is, for example, 50% by mass or more, and for example, 70% by mass or more.
 本組成物を塗工可能なスラリー状態とする場合、その固形分濃度が50質量%程度に限定されるものではなく、本組成物全体に占める水を含む媒体の含有量は、電極スラリーの塗工性、乾燥に必要なエネルギーコスト、及び生産性の観点から、例えば、25~90質量%の範囲とすることができ、また例えば、35~70質量%とすることができ、また例えば、45~70質量%とすることができる。 When the present composition is put into a coatingable slurry state, the solid content concentration is not limited to about 50% by mass, and the content of the medium containing water in the entire composition is the coating of the electrode slurry. From the viewpoint of workability, energy cost required for drying, and productivity, it can be, for example, in the range of 25 to 90% by mass, for example, 35 to 70% by mass, and for example, 45. It can be up to 70% by mass.
 本発明のバインダーは、上記架橋重合体又はその塩のみからなるものであってもよいが、これ以外にもスチレン/ブタジエン系ラテックス(SBR)、アクリル系ラテックス及びポリフッ化ビニリデン系ラテックス等の他のバインダー成分を併用してもよい。他のバインダー成分を併用する場合、その使用量は、活物質の全量100質量部に対して、例えば、0.1~5質量部以下とすることができ、また例えば、0.1~2質量部以下とすることができ、また例えば、0.1~1質量部以下とすることができる。他のバインダー成分の使用量が5質量%を超えると抵抗が増大し、ハイレート特性が不十分なものとなる場合がある。上記の中でも、結着性及び耐屈曲性のバランスに優れる点で、スチレン/ブタジエン系ラテックスが好ましい。 The binder of the present invention may consist only of the crosslinked polymer or a salt thereof, but other than this, other styrene / butadiene latex (SBR), acrylic latex, polyvinylidene fluoride latex and the like. Binder components may be used in combination. When other binder components are used in combination, the amount used may be, for example, 0.1 to 5 parts by mass or less, and for example, 0.1 to 2 parts by mass, based on 100 parts by mass of the total amount of the active material. It can be less than or equal to parts, and can be, for example, 0.1 to 1 part by mass or less. If the amount of the other binder component used exceeds 5% by mass, the resistance increases and the high rate characteristics may become insufficient. Among the above, styrene / butadiene latex is preferable from the viewpoint of excellent balance between binding property and bending resistance.
 上記スチレン/ブタジエン系ラテックスとは、スチレン等の芳香族ビニル単量体に由来する構造単位及び1,3-ブタジエン等の脂肪族共役ジエン系単量体に由来する構造単位を有する共重合体の水系分散体を示す。上記芳香族ビニル単量体としては、スチレンの他にα-メチルスチレン、ビニルトルエン、ジビニルベンゼン等が挙げられ、これらの内の1種又は2種以上を用いることができる。上記共重合体中における上記芳香族ビニル単量体に由来する構造単位は、主に結着性の観点から、例えば、20~70質量%の範囲とすることができ、また例えば、30~60質量%の範囲とすることができる。 The styrene / butadiene latex is a copolymer having a structural unit derived from an aromatic vinyl monomer such as styrene and a structural unit derived from an aliphatic conjugated diene monomer such as 1,3-butadiene. Shows an aqueous dispersion. Examples of the aromatic vinyl monomer include α-methylstyrene, vinyltoluene, divinylbenzene and the like in addition to styrene, and one or more of these can be used. The structural unit derived from the aromatic vinyl monomer in the copolymer can be, for example, in the range of 20 to 70% by mass, and for example, 30 to 60, mainly from the viewpoint of binding property. It can be in the range of% by mass.
 上記脂肪族共役ジエン系単量体としては、1,3-ブタジエンの他に2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン等が挙げられ、これらの内の1種又は2種以上を用いることができる。上記共重合体中における上記脂肪族共役ジエン系単量体に由来する構造単位は、バインダーの結着性及び得られる電極の柔軟性が良好なものとなる点で、例えば、30~70質量%の範囲とすることができ、また例えば、40~60質量%の範囲とすることができる。 Examples of the aliphatic conjugated diene monomer include 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, and 2-chloro-1,3-in addition to 1,3-butadiene. Butadiene and the like can be mentioned, and one or more of these can be used. The structural unit derived from the aliphatic conjugated diene-based monomer in the copolymer is, for example, 30 to 70% by mass in that the binding property of the binder and the flexibility of the obtained electrode are good. It can be in the range of 40 to 60% by mass, for example.
 スチレン/ブタジエン系ラテックスは、上記の単量体以外にも、結着性等の性能をさらに向上させるために、その他の単量体として(メタ)アクリロニトリル等のニトリル基含有単量体、(メタ)アクリル酸、イタンコン酸、マレイン酸等のカルボキシル基含有単量体、(メタ)アクリル酸メチル等のエステル基含有単量体を共重合単量体として用いてもよい。
 上記共重合体中における上記その他の単量体に由来する構造単位は、例えば、0~30質量%の範囲とすることができ、また例えば、0~20質量%の範囲とすることができる。
In addition to the above-mentioned monomers, styrene / butadiene-based monomers include nitrile group-containing monomers such as (meth) acrylonitrile and (meth) as other monomers in order to further improve performance such as binding properties. ) A carboxyl group-containing monomer such as acrylic acid, itanconic acid, and maleic acid, and an ester group-containing monomer such as methyl (meth) acrylate may be used as the copolymerization monomer.
The structural unit derived from the other monomer in the copolymer can be, for example, in the range of 0 to 30% by mass, or can be, for example, in the range of 0 to 20% by mass.
 本組成物は、上記の活物質、水及びバインダーを必須の構成成分とするものであり、公知の手段を用いて各成分を混合することにより得られる。各成分の混合方法は特段制限されるものではなく、公知の方法を採用することができるが、活物質、導電助剤及びバインダーである架橋重合体粒子等の粉末成分をドライブレンドした後、水等の分散媒と混合し、分散混練する方法が好ましい。本組成物をスラリー状態で得る場合、分散不良や凝集のない電極スラリーに仕上げることが好ましい。混合手段としては、プラネタリーミキサー、薄膜旋回式ミキサー及び自公転式ミキサー等の公知のミキサーを使用することができるが、短時間で良好な分散状態が得られる点で薄膜旋回式ミキサーを使用して行うことが好ましい。また、薄膜旋回式ミキサーを用いる場合は、予めディスパー等の攪拌機で予備分散を行うことが好ましい。また、上記電極スラリーの粘度は、例えば、500~10,000mPa・sの範囲とすることができる。電極スラリーの塗工性の観点から、粘度の上限は、好ましくは7,000mPa・s以下であり、より好ましくは6,000mPa・s以下であり、さらに好ましくは5,000mPa・s以下であり、一層好ましくは4,000mPa・s以下であり、より一層好ましくは3,000mPa・s以下である。尚、スラリー粘度は、液温25℃の条件下、実施例に記載の方法により測定することができる。 The present composition contains the above-mentioned active material, water and a binder as essential constituents, and can be obtained by mixing the respective components using known means. The mixing method of each component is not particularly limited, and a known method can be adopted. However, after dry-blending powder components such as an active material, a conductive additive, and crosslinked polymer particles as a binder, water is used. A method of mixing with a dispersion medium such as the above and dispersing and kneading is preferable. When the present composition is obtained in a slurry state, it is preferable to finish the electrode slurry without poor dispersion or aggregation. As the mixing means, a known mixer such as a planetary mixer, a thin film swirl mixer, or a self-revolving mixer can be used, but a thin film swirl mixer is used because a good dispersion state can be obtained in a short time. It is preferable to do this. When using a thin film swirl mixer, it is preferable to pre-disperse in advance with a stirrer such as a disper. The viscosity of the electrode slurry can be, for example, in the range of 500 to 10,000 mPa · s. From the viewpoint of coatability of the electrode slurry, the upper limit of the viscosity is preferably 7,000 mPa · s or less, more preferably 6,000 mPa · s or less, and further preferably 5,000 mPa · s or less. It is more preferably 4,000 mPa · s or less, and even more preferably 3,000 mPa · s or less. The slurry viscosity can be measured by the method described in Examples under the condition of a liquid temperature of 25 ° C.
 一方、本組成物を湿粉状態で得る場合、ヘンシェルミキサー、ブレンダ―、プラネタリーミキサー及び2軸混練機等を用いて、濃度ムラのない均一な状態まで混練することが好ましい。 On the other hand, when the present composition is obtained in a wet powder state, it is preferable to knead the composition in a uniform state without uneven concentration using a Henschel mixer, a blender, a planetary mixer, a twin-screw kneader or the like.
3.二次電池電極
 本発明の二次電池電極は、銅又はアルミニウム等の集電体表面に本組成物から形成される合剤層を備えてなるものである。合剤層は、集電体の表面に本組成物を塗工した後、水等の媒体を乾燥除去することにより形成される。本組成物を塗工する方法は特に限定されず、ドクターブレード法、ディップ法、ロールコート法、コンマコート法、カーテンコート法、グラビアコート法及びエクストルージョン法などの公知の方法を採用することができる。また、上記乾燥は、温風吹付け、減圧、(遠)赤外線、マイクロ波照射等の公知の方法により行うことができる。
 通常、乾燥後に得られた合剤層には、金型プレス及びロールプレス等による圧縮処理が施される。圧縮することにより活物質及びバインダーを密着させ、合剤層の強度及び集電体への密着性を向上させることができる。圧縮により合剤層の厚みを、例えば、圧縮前の30~80%程度に調整することができ、圧縮後の合剤層の厚みは4~200μm程度が一般的である。
3. 3. Secondary Battery Electrode The secondary battery electrode of the present invention comprises a mixture layer formed from the present composition on the surface of a current collector such as copper or aluminum. The mixture layer is formed by applying the present composition to the surface of the current collector and then drying and removing a medium such as water. The method for applying the present composition is not particularly limited, and known methods such as a doctor blade method, a dip method, a roll coating method, a comma coating method, a curtain coating method, a gravure coating method and an extrusion method can be adopted. it can. Further, the drying can be performed by a known method such as blowing warm air, reducing the pressure, (far) infrared rays, and irradiating microwaves.
Usually, the mixture layer obtained after drying is subjected to a compression treatment by a mold press, a roll press or the like. By compressing, the active material and the binder can be brought into close contact with each other, and the strength of the mixture layer and the adhesion to the current collector can be improved. The thickness of the mixture layer can be adjusted to, for example, about 30 to 80% before compression by compression, and the thickness of the mixture layer after compression is generally about 4 to 200 μm.
4.二次電池
 本発明の二次電池用電極にセパレータ及び電解液を備えることにより、二次電池を作製することができる。電解液は液状であってもよく、ゲル状であってもよい。
 セパレータは電池の正極及び負極間に配され、両極の接触による短絡の防止や電解液を保持してイオン導電性を確保する役割を担う。セパレータにはフィルム状の絶縁性微多孔膜であって、良好なイオン透過性及び機械的強度を有するものが好ましい。具体的な素材としては、ポリエチレン及びポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン等を使用することができる。
4. Secondary battery A secondary battery can be manufactured by providing the electrode for the secondary battery of the present invention with a separator and an electrolytic solution. The electrolytic solution may be in the form of a liquid or a gel.
The separator is arranged between the positive electrode and the negative electrode of the battery, and plays a role of preventing a short circuit due to contact between the two electrodes and holding an electrolytic solution to ensure ionic conductivity. The separator is preferably a film-like insulating microporous membrane having good ion permeability and mechanical strength. As a specific material, polyolefins such as polyethylene and polypropylene, polytetrafluoroethylene and the like can be used.
 電解液は、活物質の種類に応じて一般的に使用される公知のものを用いることができる。リチウムイオン二次電池では、具体的な溶媒として、プロピレンカーボネート及びエチレンカーボネート等の高誘電率で電解質の溶解能力の高い環状カーボネート、並びに、エチルメチルカーボネート、ジメチルカーボネート及びジエチルカーボネート等の粘性の低い鎖状カーボネート等が挙げられ、これらを単独で又は混合溶媒として使用することができる。電解液は、これらの溶媒にLiPF、LiSbF、LiBF、LiClO、LiAlO等のリチウム塩を溶解して使用される。ニッケル水素二次電池では、電解液として水酸化カリウム水溶液を使用することができる。二次電池は、セパレータで仕切られた正極板及び負極板を渦巻き状又は積層構造にしてケース等に収納することにより得られる。 As the electrolytic solution, a known one that is generally used depending on the type of active material can be used. In a lithium ion secondary battery, specific solvents include cyclic carbonates having a high dielectric constant and a high dissolving ability of an electrolyte such as propylene carbonate and ethylene carbonate, and low-viscosity chains such as ethylmethyl carbonate, dimethyl carbonate and diethyl carbonate. Examples thereof include a state carbonate, and these can be used alone or as a mixed solvent. The electrolytic solution is used by dissolving lithium salts such as LiPF 6 , LiSbF 6 , LiBF 4 , LiClO 4 , and LiAlO 4 in these solvents. In the nickel-metal hydride secondary battery, an aqueous potassium hydroxide solution can be used as the electrolytic solution. The secondary battery is obtained by forming a positive electrode plate and a negative electrode plate partitioned by a separator into a spiral or laminated structure and storing them in a case or the like.
 以上説明したように、本明細書に開示される二次電池電極用バインダーは、合剤層において電極材料との優れた結着性と集電体との優れた接着性とを示す。このため、上記バインダーを使用して得られた電極を備えた二次電池は、良好な一体性を確保でき、充放電を繰り返しても良好な耐久性(サイクル特性)を示すと予想され、車載用二次電池等に好適である。 As described above, the binder for the secondary battery electrode disclosed in the present specification exhibits excellent adhesion to the electrode material and excellent adhesion to the current collector in the mixture layer. Therefore, the secondary battery provided with the electrodes obtained by using the above binder is expected to ensure good integrity and to exhibit good durability (cycle characteristics) even after repeated charging and discharging, and is in-vehicle. Suitable for secondary batteries and the like.
 以下、実施例に基づいて本発明を具体的に説明する。尚、本発明は、これらの実施例により限定されるものではない。尚、以下において「部」及び「%」は、特に断らない限り質量部及び質量%を意味する。
 以下の例において、架橋重合体(塩)についての評価は、以下の方法により実施した。
Hereinafter, the present invention will be specifically described based on Examples. The present invention is not limited to these examples. In the following, "parts" and "%" mean parts by mass and% by mass unless otherwise specified.
In the following example, the evaluation of the crosslinked polymer (salt) was carried out by the following method.
(1)水媒体中での粒子径(水膨潤粒子径)の測定
 架橋重合体塩の粉末0.25g、及びイオン交換水49.75gを100ccの容器に量りとり、自転/公転式攪拌機(シンキー社製、あわとり錬太郎AR-250)にセットした。次いで、撹拌(自転速度2000rpm/公転速度800rpm、7分)、さらに脱泡(自転速度2200rpm/公転速度60rpm、1分)処理を行い架橋重合体塩が水に膨潤した状態のハイドロゲルを作成した。
 次に、イオン交換水を分散媒とするレーザー回折/散乱式粒度分布計(マイクロトラックベル社製、マイクロトラックMT-3300EXII)にて上記ハイドロゲルの粒度分布測定を行った。ハイドロゲルに対し、過剰量の分散媒を循環しているところに、適切な散乱光強度が得られる量のハイドロゲルを投入したところ、数分後に測定される粒度分布形状が安定した。安定を確認次第、粒度分布測定を行い、粒子径の代表値としての体積基準メジアン径(D50)、及び(体積基準平均粒子径)/(個数基準平均粒子径)で表される粒子径分布を得た。
(1) Measurement of particle size (water-swelling particle size) in an aqueous medium Weigh 0.25 g of crosslinked polymer salt powder and 49.75 g of ion-exchanged water in a 100 cc container, and use a rotating / revolving stirrer (sinky). It was set in Awatori Rentaro AR-250) manufactured by the company. Next, stirring (rotation speed 2000 rpm / revolution speed 800 rpm, 7 minutes) and defoaming (rotation speed 2200 rpm / revolution speed 60 rpm, 1 minute) were performed to prepare a hydrogel in which the crosslinked polymer salt was swollen in water. ..
Next, the particle size distribution of the hydrogel was measured with a laser diffraction / scattering type particle size distribution meter (Microtrac MT-3300EXII, manufactured by Microtrac Bell) using ion-exchanged water as a dispersion medium. When an amount of hydrogel capable of obtaining an appropriate scattered light intensity was added to the place where an excessive amount of dispersion medium was circulated with respect to the hydrogel, the particle size distribution shape measured after several minutes became stable. As soon as the stability is confirmed, the particle size distribution is measured, and the volume-based median diameter (D50) as a representative value of the particle size and the particle size distribution represented by (volume-based average particle size) / (number-based average particle size) are obtained. Obtained.
(2)pH8における水膨潤度
 pH8における水膨潤度は、以下の方法によって測定した。測定装置を図1に示す。
 測定装置は図1における<1>~<3>から構成される。
<1> 空気抜きするための枝管が付いたビュレット1、ピンチコック2、シリコンチューブ3及びポリテトラフルオロエチレンチューブ4から成る。
<2> ロート5の上に底面に多数の穴が空いた支柱円筒8、さらにその上に装置用濾紙10が設置されている。
<3> 架橋重合体又はその塩の試料6(測定試料)は2枚の試料固定用濾紙7に挟まれ、試料固定用濾紙は粘着テープ9によって固定される。なお、使用する濾紙は全てADVANTEC No.2、内径55mmである。
<1>と<2>とはシリコンチューブ3によって繋がれる。
 また、ロート5及び支柱円筒8は、ビュレット1に対する高さが固定されており、ビュレット枝管の内部に設置されたポリテトラフルオロエチレンチューブ4の下端と支柱円筒8の底面とが同じ高さになる様に設定されている(図1中の点線)。
(2) Degree of water swelling at pH 8 The degree of water swelling at pH 8 was measured by the following method. The measuring device is shown in FIG.
The measuring device is composed of <1> to <3> in FIG.
<1> It is composed of a burette 1, a pinch cock 2, a silicon tube 3 and a polytetrafluoroethylene tube 4 having a branch tube for venting air.
<2> A support cylinder 8 having a large number of holes on the bottom surface is installed on the funnel 5, and a filter paper 10 for an apparatus is installed on the support cylinder 8.
<3> The sample 6 (measurement sample) of the crosslinked polymer or a salt thereof is sandwiched between two sample fixing filter papers 7, and the sample fixing filter paper is fixed by the adhesive tape 9. All the filter papers used are ADVANTEC No. 2. The inner diameter is 55 mm.
<1> and <2> are connected by a silicon tube 3.
Further, the heights of the funnel 5 and the support cylinder 8 are fixed with respect to the burette 1, and the lower end of the polytetrafluoroethylene tube 4 installed inside the burette branch pipe and the bottom surface of the support cylinder 8 are at the same height. It is set to be (dotted line in FIG. 1).
 測定方法について以下に説明する。
<1>にあるピンチコック2を外し、ビュレット1の上部からシリコンチューブ3を通してイオン交換水を入れ、ビュレット1から装置用濾紙10までイオン交換水12で満たされた状態とする。次いで、ピンチコック2を閉じ、ビュレット枝管にゴム栓で接続されたポリテトラフルオロエチレンチューブ4から空気を除去する。こうして、ビュレット1から装置用濾紙10までイオン交換水12が連続的に供給される状態とする。
 次に、装置用濾紙10からにじみ出た余分なイオン交換水12を除去した後、ビュレット1の目盛りの読み(a)を記録する。
 測定試料の乾燥粉末0.1~0.2gを秤量し、<3>にある様に、試料固定用濾紙7の中央部に均一に置く。もう1枚の濾紙でサンプルを挟み、粘着テープ9で2枚の濾紙を留め、サンプルを固定する。サンプルが固定された濾紙を<2>に示される装置用濾紙10上に載置する。
 次に、装置用濾紙10上に蓋11を載置した時点から、30分間経過した後のビュレット1の目盛りの読み(b)を記録する。
 測定試料の吸水量と2枚の試料固定用濾紙7の吸水量の合計(c)は(a-b)で求められる。同様の操作により、架橋重合体又はその塩の試料を含まない、2枚の濾紙7のみの吸水量(d)を測定する。
 上記操作を行い、水膨潤度を以下の式より計算した。なお、計算に使用する固形分は、後述する方法により測定した値を使用した。
 水膨潤度={測定試料の乾燥重量(g)+(c-d)}/{測定試料の乾燥重量(g)}
 ただし、測定試料の乾燥重量(g)=測定試料の重量(g)×(固形分(%)÷100)
The measuring method will be described below.
The pinch cock 2 in <1> is removed, ion-exchanged water is poured from the upper part of the burette 1 through the silicon tube 3, and the burette 1 to the filter paper 10 for the device are filled with the ion-exchanged water 12. Next, the pinch cock 2 is closed, and air is removed from the polytetrafluoroethylene tube 4 connected to the burette branch pipe with a rubber stopper. In this way, the ion-exchanged water 12 is continuously supplied from the burette 1 to the filter paper 10 for the apparatus.
Next, after removing the excess ion-exchanged water 12 that has exuded from the filter paper 10 for the device, the reading (a) of the scale of the burette 1 is recorded.
Weigh 0.1 to 0.2 g of the dry powder of the measurement sample, and place it evenly on the center of the sample fixing filter paper 7 as shown in <3>. The sample is sandwiched between another filter paper, and the two filter papers are fastened with the adhesive tape 9 to fix the sample. The filter paper on which the sample is fixed is placed on the filter paper 10 for equipment shown in <2>.
Next, the reading (b) of the scale of the burette 1 is recorded 30 minutes after the lid 11 is placed on the filter paper 10 for the device.
The total (c) of the water absorption of the measurement sample and the water absorption of the two sample fixing filter papers 7 is obtained by (ab). By the same operation, the water absorption amount (d) of only two filter papers 7 containing no sample of the crosslinked polymer or a salt thereof is measured.
The above operation was performed, and the degree of water swelling was calculated from the following formula. As the solid content used in the calculation, the value measured by the method described later was used.
Water swelling degree = {dry weight of measurement sample (g) + (cd)} / {dry weight of measurement sample (g)}
However, the dry weight (g) of the measurement sample = the weight (g) of the measurement sample × (solid content (%) ÷ 100)
 ここで、固形分の測定方法について以下に記載する。
試料約0.5gを、予め重さを測定しておいた秤量瓶[秤量瓶の重さ=B(g)]に採取して、秤量瓶ごと正確に秤量した後[W(g)]、その試料を秤量瓶ごと無風乾燥機内に収容して155℃で45分間乾燥してその時の重さを秤量瓶ごと測定し[W(g)]、以下の式により固形分を求めた。
 固形分(%)=(W-B)/(W-B)×100
Here, the method for measuring the solid content will be described below.
Approximately 0.5 g of the sample is collected in a weighing bottle [weight of the weighing bottle = B (g)] whose weight has been measured in advance, and the entire weighing bottle is accurately weighed [W 0 (g)]. The sample was placed in a windless dryer together with the weighing bottle, dried at 155 ° C. for 45 minutes, and the weight at that time was measured together with the weighing bottle [W 1 (g)], and the solid content was determined by the following formula.
Solid content (%) = (W 1- B) / (W 0- B) x 100
(3)ゾル分率の測定
 濃度0.5質量%の架橋重合体水分散液を調製し、4000rpmで30分間の遠心分離を行った後、上澄み液を採取した。この上澄み液をイオン交換水で15倍希釈し、測定試料とした。ICP発光分析(ICAP 7600/Thermo Fischer Scientific社製)により測定試料中のLi(又はNa、K)濃度を測定した。
 以下の式により、表1記載の仕込み値から算出されるLi(又はNa、K)濃度[M(ppm)]に対する前記測定試料中のLi(又はNa、K)濃度[M(ppm)]の割合から、ゾル分率を算出した。
 ゾル分率(%)=M/M×100
(3) Measurement of sol fraction A crosslinked polymer aqueous dispersion having a concentration of 0.5% by mass was prepared, centrifuged at 4000 rpm for 30 minutes, and then the supernatant was collected. This supernatant was diluted 15-fold with ion-exchanged water to prepare a measurement sample. The Li (or Na, K) concentration in the measurement sample was measured by ICP emission spectrometry (ICAP 7600 / Thermo Fisher Scientific).
By the following equation, Li calculated from the charged values of Table 1 (or Na, K) concentrations Li of the measurement sample for [M 1 (ppm)] (or Na, K) concentration [M 2 (ppm) ], The sol fraction was calculated.
Sol fraction (%) = M 2 / M 1 x 100
(4)ゾル分の重量平均分子量の測定
 濃度0.5質量%の架橋重合体水分散液を調製し、4000rpmで30分間の遠心分離を行った後、上澄み液を採取した。以下に記載の条件にて、この上澄み液の水系ゲルパーミエーションクロマトグラフィー(GPC)測定を行い、ポリエチレンオキシド/ポリエチレングリコール換算による重量平均分子量(Mw)を得た。
(4) Measurement of Weight Average Molecular Weight of Sol A crosslinked polymer aqueous dispersion having a concentration of 0.5% by mass was prepared, centrifuged at 4000 rpm for 30 minutes, and then the supernatant was collected. Under the conditions described below, the supernatant was measured by aqueous gel permeation chromatography (GPC) to obtain a weight average molecular weight (Mw) in terms of polyethylene oxide / polyethylene glycol.
○水系GPC測定条件
 カラム:東ソー製TSKgel GMPW×1本(推定排除限界:5000万)
 ポリエチレンオキシド/ポリエチレングリコール標準物質分子量:
 (Mp:ピークトップ分子量、Mw:重量平均分子量、Mn:数平均分子量)
 サンプル1:Mp=969000、Mw=1020000、Mn=884000
 サンプル2:Mp=450000、Mw=480000、Mn=398000
 サンプル3:Mp=222000、Mw=220000、Mn=197000
 サンプル4:Mp=86200、Mw=87800、Mn=75800
 サンプル5:Mp=42700、Mw=40100、Mn=30700
 サンプル6:Mp=18600、Mw=17900、Mn=14900
 サンプル7:Mp=6690、Mw=6550、Mn=6170
 サンプル8:Mp=2100、Mw=2090、Mn=2030
 サンプル9:Mp=599、Mw=601、Mn=560
 サンプル10:Mp=238、Mw=238、Mn=238
 検量線:上記ポリエチレンオキシド/ポリエチレングリコール標準物質分子量のMp値を用いて3次式で作成した。
 溶媒:0.1M NaNO水溶液
 温度:40℃
 検出器:RI
 流速:500μL/min
○ Water-based GPC measurement conditions Column: Tosoh TSKgel GMPW x 1 (estimated exclusion limit: 50 million)
Polyethylene Oxide / Polyethylene Glycol Standard Material Molecular Weight:
(Mp: peak top molecular weight, Mw: weight average molecular weight, Mn: number average molecular weight)
Sample 1: Mp = 969000, Mw = 1020000, Mn = 884000
Sample 2: Mp = 450000, Mw = 480000, Mn = 398000
Sample 3: Mp = 222000, Mw = 220,000, Mn = 197,000
Sample 4: Mp = 86200, Mw = 87800, Mn = 75800
Sample 5: Mp = 42700, Mw = 40100, Mn = 30700
Sample 6: Mp = 18600, Mw = 17900, Mn = 14900
Sample 7: Mp = 6690, Mw = 6550, Mn = 6170
Sample 8: Mp = 2100, Mw = 2090, Mn = 2030
Sample 9: Mp = 599, Mw = 601 and Mn = 560
Sample 10: Mp = 238, Mw = 238, Mn = 238
Calibration curve: Prepared by a cubic formula using the Mp value of the above-mentioned polyethylene oxide / polyethylene glycol standard substance molecular weight.
Solvent: 0.1M NaNO 3 aqueous solution Temperature: 40 ° C
Detector: RI
Flow velocity: 500 μL / min
≪分散安定剤の製造≫
(合成例1:分散剤Aの製造)
 攪拌機、温度計を装着した1Lフラスコに、RAFT剤としてS,S-ジベンジルトリチオカーボネート(Bоrоn Mоlecular社製、商品名「DBTTC」)2.0部、2,2’-アゾビス(2-メチルブチロニトリル)(日本ファインケム社製、商品名「ABN-E」)0.41部、スチレン75部、アクリロニトリル25部、及びアニソール67部を仕込み、窒素バブリングで十分脱気し、80℃の恒温槽でリビングラジカル重合を開始した。4時間後、室温まで冷却し反応を停止した。上記重合溶液を、メタノール/水=90/10(vоl%)から再沈殿精製、真空乾燥することで重合体(以下、「分散剤A」という。)を得た。
 以下に記載の条件にて、THF系ゲルパーミエーションクロマトグラフィー(GPC)で測定を行った結果、ポリスチレン換算による数平均分子量(Mn)は11,900、重量平均分子量は(Mn)15,500、Mw/Mnは1.30であった。
≪Manufacturing of dispersion stabilizer≫
(Synthesis Example 1: Production of Dispersant A)
2.0 parts of S, S-dibenzyltrithiocarbonate (manufactured by Bоrrоn Mоclecal, trade name "DBTTC"), 2,2'-azobis (2-methyl) as a RAFT agent in a 1 L flask equipped with a stirrer and a thermometer. Butyronitrile) (manufactured by Japan Finechem Company, Inc., trade name "ABN-E") 0.41 part, styrene 75 parts, acrylonitrile 25 parts, and anisole 67 parts were charged, sufficiently degassed by nitrogen bubbling, and kept at a constant temperature of 80 ° C. Living radical polymerization was started in the tank. After 4 hours, the reaction was stopped by cooling to room temperature. The above polymerization solution was reprecipitated and purified from methanol / water = 90/10 (vоl%) and vacuum dried to obtain a polymer (hereinafter referred to as “dispersant A”).
As a result of measurement by THF-based gel permeation chromatography (GPC) under the conditions described below, the polystyrene-equivalent number average molecular weight (Mn) was 11,900, and the weight average molecular weight was (Mn) 15,500. Mw / Mn was 1.30.
○THF系GPC測定条件
 カラム:東ソー製TSKgel SuperMultiporeHZ-M×4本
 溶媒:テトラヒドロフラン
 温度:40℃
 検出器:RI
 流速:600μL/min
○ THF-based GPC measurement conditions Column: Tosoh TSKgel SuperMultipore HZ-M x 4 Solvent: Tetrahydrofuran Temperature: 40 ° C
Detector: RI
Flow velocity: 600 μL / min
≪架橋重合体塩の製造≫
(製造例1:架橋重合体塩R-1の製造)
 重合には、攪拌翼、温度計、還流冷却器及び窒素導入管を備えた反応器を用いた。
 反応器内にアセトニトリル580部、イオン交換水2.38部、アクリル酸(以下、「AA」という。)100部、トリメチロールプロパンジアリルエーテル(ダイソー社製、商品名「ネオアリルT-20」)2.0部及び上記AAに対して1.0モル%に相当するトリドデシルアミン(BASF社製、商品名「Alamine 304-1」)を仕込んだ。反応器内を十分に窒素置換した後、加温して内温を30℃まで昇温した。内温が30℃で安定したことを確認した後、重合開始剤として2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(和光純薬工業社製、商品名「V-70」)0.90部を添加したところ、反応液に白濁が認められたため、この点を重合開始点とした。なお、単量体濃度は15.0%と算出された。
 外温(水バス温度)を調整して内温を30℃に維持しながら重合反応を継続し、重合開始点から24時間経過した時点で反応液の冷却を開始し、内温が20℃まで低下した後、水酸化リチウム・一水和物(以下、「LiOH・HO」という。)の粉末52.4部を添加した。添加後室温下12時間撹拌を継続して、架橋重合体塩R-1(Li塩、中和度90モル%)の粒子が媒体に分散したスラリー状の重合反応液を得た。
≪Manufacturing of crosslinked polymer salt≫
(Production Example 1: Production of crosslinked polymer salt R-1)
A reactor equipped with a stirring blade, a thermometer, a reflux condenser and a nitrogen introduction tube was used for the polymerization.
In the reactor, 580 parts of acetonitrile, 2.38 parts of ion-exchanged water, 100 parts of acrylic acid (hereinafter referred to as "AA"), trimethylpropandiallyl ether (manufactured by Daiso, trade name "Neoallyl T-20") 2 0.0 parts and 1.0 mol% of tridodecylamine (manufactured by BASF, trade name "Alamine 304-1") were charged with respect to the above AA. After sufficiently replacing the inside of the reactor with nitrogen, the inside temperature was raised to 30 ° C. by heating. After confirming that the internal temperature was stable at 30 ° C., 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd., trade name "V-" was used as a polymerization initiator. 70 ”) When 0.90 parts were added, white turbidity was observed in the reaction solution, and this point was set as the polymerization initiation point. The monomer concentration was calculated to be 15.0%.
The polymerization reaction is continued while adjusting the external temperature (water bath temperature) to maintain the internal temperature at 30 ° C., and when 24 hours have passed from the polymerization initiation point, the reaction solution is cooled and the internal temperature reaches 20 ° C. after reduction, lithium hydroxide monohydrate (hereinafter, "LiOH · H 2 O" hereinafter.) was added 52.4 parts of powder. After the addition, stirring was continued at room temperature for 12 hours to obtain a slurry-like polymerization reaction solution in which particles of the crosslinked polymer salt R-1 (Li salt, neutralization degree 90 mol%) were dispersed in a medium.
 得られた重合反応液を遠心分離して重合体粒子を沈降させた後、上澄みを除去した。その後、重合反応液と同重量のアセトニトリルに沈降物を再分散させた後、遠心分離により重合体粒子を沈降させて上澄みを除去する洗浄操作を2回繰り返した。沈降物を回収し、減圧条件下、80℃で3時間乾燥処理を行い、揮発分を除去することにより、架橋重合体塩R-1の粉末を得た。架橋重合体塩R-1は吸湿性を有するため、水蒸気バリア性を有する容器に密封保管した。なお、架橋重合体塩R-1の粉末をIR測定し、カルボン酸のC=O基由来のピークとカルボン酸LiのC=O由来のピークの強度比より中和度を求めたところ、仕込みからの計算値に等しく90モル%であった。
 上記で得られた架橋重合体塩R-1について水媒体中での粒子径(水膨潤粒子径)を測定したところ、2.6μmであり、粒子径分布は1.3と算出された。また、水膨潤度は83であり、ゾル分率は4.7質量%であり、ゾル分のMwは55,000であった。
The obtained polymerization reaction solution was centrifuged to settle the polymer particles, and then the supernatant was removed. Then, after redispersing the precipitate in acetonitrile having the same weight as the polymerization reaction solution, the washing operation of precipitating the polymer particles by centrifugation to remove the supernatant was repeated twice. The sediment was recovered and dried under reduced pressure at 80 ° C. for 3 hours to remove volatile components to obtain a powder of the crosslinked polymer salt R-1. Since the crosslinked polymer salt R-1 has hygroscopicity, it was stored in a container having a water vapor barrier property. The powder of the crosslinked polymer salt R-1 was measured by IR, and the degree of neutralization was determined from the intensity ratio of the peak derived from the C = O group of the carboxylic acid and the peak derived from the C = O of the carboxylic acid Li. It was 90 mol%, which was equal to the value calculated from.
When the particle size (water-swelled particle size) of the crosslinked polymer salt R-1 obtained above was measured in an aqueous medium, it was 2.6 μm, and the particle size distribution was calculated to be 1.3. The degree of water swelling was 83, the sol fraction was 4.7% by mass, and the Mw of the sol was 55,000.
(製造例2~16及び比較製造例1:架橋重合体塩R-2~R-17の製造)
 各原料の仕込み量を表1に記載の通りとした以外は製造例1と同様の操作を行い、架橋重合体塩R-2~R-17を含む重合反応液を得た。
 次いで、各重合反応液について製造例1と同様の操作を行い、粉末状の架橋重合体塩R-2~R-17を得た。各架橋重合体塩は、水蒸気バリア性を有する容器に密封保管した。
 得られた各重合体塩について、製造例1と同様に物性値を測定し、結果を表1に示した。
(Production Examples 2 to 16 and Comparative Production Example 1: Production of crosslinked polymer salts R-2 to R-17)
The same operation as in Production Example 1 was carried out except that the amount of each raw material charged was as shown in Table 1, to obtain a polymerization reaction solution containing crosslinked polymer salts R-2 to R-17.
Next, the same operations as in Production Example 1 were carried out for each polymerization reaction solution to obtain powdered crosslinked polymer salts R-2 to R-17. Each crosslinked polymer salt was sealed and stored in a container having a water vapor barrier property.
Physical property values of each of the obtained polymer salts were measured in the same manner as in Production Example 1, and the results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において用いた化合物の詳細を以下に示す。
AA:アクリル酸
CEAA:β-カルボキシエチルアクリレート(SIGMA-ALDRICH社製、商品名「アクリル酸2-カルボキシエチル」)
IBXA:アクリル酸イソボルニル
HEA:アクリル酸2-ヒドロキシエチル
T-20:トリメチロールプロパンジアリルエーテル(ダイソー社製、商品名「ネオアリルT-20」)
TMPTMA:トリメチロールプロパントリメタクリレート
TDA:トリドデシルアミン
AcN:アセトニトリル
MeOH:メタノール
V-70:2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(和光純薬工業社製)
LiOH・HO:水酸化リチウム・一水和物
NaCO:炭酸ナトリウム
CO:炭酸カリウム
Details of the compounds used in Table 1 are shown below.
AA: CEAA acrylate: β-carboxyethyl acrylate (manufactured by SIGMA-ALDRICH, trade name "2-carboxyethyl acrylate")
IBXA: Isobornyl acrylate HEA: 2-Hydroxyethyl acrylate T-20: Trimethylolpropane diallyl ether (manufactured by Daiso, trade name "Neoallyl T-20")
TMPTMA: Trimethylolpropane Trimethacrylate TDA: Tridodecylamine AcN: Acetonitrile MeOH: Methanol V-70: 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd.)
LiOH ・ H 2 O: Lithium hydroxide ・ Monohydrate Na 2 CO 3 : Sodium carbonate K 2 CO 3 : Potassium carbonate
実施例1
 架橋重合体塩R-1を用いた電極を作製し、その評価を行った。具体的な手順及び評価方法等について以下に示す。
Example 1
An electrode using the crosslinked polymer salt R-1 was prepared and evaluated. The specific procedure and evaluation method are shown below.
<電極合剤層用組成物の調製>
 SiOx(0.8<x<1.2)の表面にCVD法で炭素を10%コートしたものを準備し(以下、「Si系活物質」という。)、黒鉛とSi系活物質とを混合したものを活物質として用いた。また、バインダーとしては、架橋重合体塩R-1、スチレン/ブタジエン系ラテックス(SBR)及びカルボキシメチルセルロース(CMC)の混合物を用いた。
 負極合剤層用組成物の固形分濃度が50質量%となるように、水を希釈溶媒として、黒鉛:Si系活物質:R-1:SBR:CMC=90:10:1.0:1.0:1.0(固形分)の質量比でプライミクス社製T.K.ハイビスミックスを用いて2時間混合し、スラリー状態の電極合剤層用組成物(電極スラリー)を調製した。
<Preparation of composition for electrode mixture layer>
Prepare a SiOx (0.8 <x <1.2) surface coated with 10% carbon by the CVD method (hereinafter referred to as "Si-based active material"), and mix graphite and Si-based active material. Was used as an active material. As the binder, a mixture of crosslinked polymer salt R-1, styrene / butadiene latex (SBR) and carboxymethyl cellulose (CMC) was used.
Graphite: Si-based active material: R-1: SBR: CMC = 90: 10: 1.0: 1 using water as a diluting solvent so that the solid content concentration of the composition for the negative electrode mixture layer is 50% by mass. With a mass ratio of 0.0: 1.0 (solid content), T.I. K. The mixture was mixed for 2 hours using a hibis mix to prepare a composition for an electrode mixture layer (electrode slurry) in a slurry state.
(電極スラリーの粘度測定)
 上記で得られた電極スラリーについて、E型粘度計(40rpm、25℃)にてスラリー粘度を測定したところ、3,910mPa・sであった。
(Measurement of viscosity of electrode slurry)
When the slurry viscosity of the electrode slurry obtained above was measured with an E-type viscometer (40 rpm, 25 ° C.), it was 3,910 mPa · s.
<負極極板の作製>
 上記電極スラリーを銅箔(厚み:20μm)の両面に塗布し、乾燥することにより合剤層を形成した。その後、合剤層の厚みが27μm、充填密度が1.3g/cmになるよう圧延した後、3cm正方に打ち抜いて負極極板を得た。
<Manufacturing of negative electrode plate>
The electrode slurry was applied to both sides of a copper foil (thickness: 20 μm) and dried to form a mixture layer. Then, after rolling so that the thickness of the mixture layer was 27 μm and the packing density was 1.3 g / cm 3 , the negative electrode plate was obtained by punching 3 cm square.
(塗工性)
 上記負極極板の作製における電極スラリーの塗工性は、以下の基準に基づき評価され、「○」と評価された。
(評価基準)
 ○:表面に筋ムラ、ブツ等の外観異常がまったく認められない。
 △:表面に筋ムラ、ブツ等の外観異常がわずかに認められる。
 ×:表面に筋ムラ、ブツ等の外観異常が顕著に認められる。
(Paintability)
The coatability of the electrode slurry in the production of the negative electrode electrode plate was evaluated based on the following criteria, and was evaluated as “◯”.
(Evaluation criteria)
◯: No abnormal appearance such as streaks or bumps is observed on the surface.
Δ: Slight abnormalities in appearance such as streaks and bumps are observed on the surface.
X: Appearance abnormalities such as streaks and bumps are noticeably observed on the surface.
(90°剥離強度(結着性))
 120mm×30mmのアクリル板上に両面テープ(ニチバン株式会社製ナイスタックNW-20)を介して100mm×25mmサイズの負極極板の合剤層面を貼付けた。日本電産シンポ株式会社製小型卓上試験機(FGS-TV及びFGP-5)を用いて、測定温度25℃、引張速度50mm/分における90°剥離を行い、合剤層と銅箔間の剥離強度を測定することにより結着性を評価した。剥離強度は24.2N/mと高く、良好であった。
(90 ° peel strength (bonding property))
A mixture layer surface of a 100 mm × 25 mm size negative electrode electrode plate was attached to a 120 mm × 30 mm acrylic plate via a double-sided tape (Nichiban Co., Ltd. Nystack NW-20). Using a small tabletop tester (FGS-TV and FGP-5) manufactured by Nidec-Shimpo Co., Ltd., 90 ° peeling was performed at a measurement temperature of 25 ° C. and a tensile speed of 50 mm / min, and peeling between the mixture layer and the copper foil. The binding property was evaluated by measuring the strength. The peel strength was as high as 24.2 N / m, which was good.
(電池特性の評価)
 次いで、架橋重合体塩R-1を用いた上記負極極板を含む電池を作製し、その評価を行った。具体的な手順及び評価方法等について以下に示す。
(Evaluation of battery characteristics)
Next, a battery containing the negative electrode plate using the crosslinked polymer salt R-1 was prepared and evaluated. The specific procedure and evaluation method are shown below.
<正極極板の作製>
 N-メチルピロリドン(NMP)溶媒中、正極活物質としてリン酸鉄リチウム(LFP)を100部、導電剤としてカーボンナノチューブを0.2部、ケッチェンブラックを2部、気層法炭素繊維(VGCF)0.6部を混合して添加し、電極組成物用バインダーとしてポリフッ化ビニリデン(PVDF)を混合し、正極用組成物を調製した。アルミニウム集電体(厚み:15μm)に前記正極用組成物を塗布乾燥することにより合剤層を形成した。その後、合剤層の厚みが88μm、充填密度が3.1g/cmになるように圧延した後、3cm正方に打ち抜いて正極極板を得た。
<Manufacturing of positive electrode plate>
In N-methylpyrrolidone (NMP) solvent, 100 parts of lithium iron phosphate (LFP) as the positive electrode active material, 0.2 parts of carbon nanotubes as the conductive agent, 2 parts of Ketjen black, and vapor layer carbon fiber (VGCF). ) 0.6 part was mixed and added, and polyvinylidene fluoride (PVDF) was mixed as a binder for the electrode composition to prepare a composition for a positive electrode. A mixture layer was formed by applying the positive electrode composition to an aluminum current collector (thickness: 15 μm) and drying it. Then, after rolling so that the thickness of the mixture layer was 88 μm and the packing density was 3.1 g / cm 3 , the mixture was punched 3 cm square to obtain a positive electrode plate.
(電池の作製)
 上記正極、負極及びセパレータを用いて、ラミネート型リチウムイオン二次電池を作製した。電解液としてはエチレンカーボネート(EC)、エチルメチルカーボネート(DEC)を体積比で25:75とした混合溶媒に、LiPFを1.0mol/リットルの濃度で溶解させたものを用いた。
(Battery production)
A laminated lithium ion secondary battery was produced using the above positive electrode, negative electrode and separator. As the electrolytic solution, a mixed solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (DEC) at a volume ratio of 25:75 and LiPF 6 dissolved at a concentration of 1.0 mol / liter was used.
(サイクル特性の評価)
 上記で作成したラミネート型セルのリチウムイオン二次電池を、CC放電にて2.7から3.4Vの条件下、0.2Cの充放電レートにて充放電の操作を行い、初期容量Cを測定した。さらに、25℃の環境下で充放電を繰り返し、50サイクル後の容量C50を測定した。以下の式で算出されるサイクル特性(ΔC)は75%であり、以下の基準に基づくサイクル特性は「B」と評価された。なお、ΔCの値が高いほどサイクル特性に優れることを示す。
 ΔC=C50/C×100(%)
(評価基準)
 A:充放電容量保持率が80%以上
 B:充放電容量保持率が70%以上80%未満
 C:充放電容量保持率が60%以上70%未満
 D:充放電容量保持率が60%未満
(Evaluation of cycle characteristics)
The lithium-ion secondary battery of the laminated cell created above is charged / discharged at a charge / discharge rate of 0.2 C under the conditions of 2.7 to 3.4 V by CC discharge, and the initial capacity is C 0. Was measured. Furthermore, repeated charging and discharging under 25 ° C. environment was measured capacitance C 50 after 50 cycles. The cycle characteristic (ΔC) calculated by the following formula was 75%, and the cycle characteristic based on the following criteria was evaluated as “B”. The higher the value of ΔC, the better the cycle characteristics.
ΔC = C 50 / C 0 × 100 (%)
(Evaluation criteria)
A: Charge / discharge capacity retention rate is 80% or more B: Charge / discharge capacity retention rate is 70% or more and less than 80% C: Charge / discharge capacity retention rate is 60% or more and less than 70% D: Charge / discharge capacity retention rate is less than 60%
実施例2~16、及び比較例1
 架橋重合体塩を表2の通りに用いた以外は実施例1と同様の操作を行うことにより電極スラリーを調製し、そのスラリー粘度を測定した。また、当該電極スラリーの塗工性、それを用いて得られた負極極板の剥離強度、及び電池のサイクル特性を評価した。結果を表2に示した。
Examples 2 to 16 and Comparative Example 1
An electrode slurry was prepared by performing the same operation as in Example 1 except that the crosslinked polymer salt was used as shown in Table 2, and the slurry viscosity was measured. In addition, the coatability of the electrode slurry, the peel strength of the negative electrode plate obtained by using the electrode slurry, and the cycle characteristics of the battery were evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 各実施例は、本発明に属する二次電池電極用バインダーを用いて二次電池電極及び二次電池を作製したものである。実施例1~16の結果から明らかなように、電極スラリーの固形分濃度が50質量%であっても、良好な塗工性を示し、いずれの電極も高い値の剥離強度が得られ、優れた結着性を示すものであった。さらに、電池の充放電保持率も60%以上であり、サイクル特性に優れるものであることが確認された。これらの中でも、構成単量体及び中和度が同一の架橋重合体塩において(R-1~R-5)、架橋性単量体の使用量に着目すると、その使用量が多い架橋重合体塩R-2~R-5を用いた電池の充放電保持率は非常に高く、優れた耐久性を有するものであることが分かった。また、水酸基含有エチレン性不飽和単量体に由来する構造単位を特定量含む架橋重合体塩R-8及びR-9を用いた電池の充放電保持率は非常に高く、優れた耐久性を有するものであることが分かった。 In each example, a secondary battery electrode and a secondary battery are manufactured using a binder for a secondary battery electrode belonging to the present invention. As is clear from the results of Examples 1 to 16, even if the solid content concentration of the electrode slurry is 50% by mass, good coatability is exhibited, and all the electrodes have high peel strength and are excellent. It showed a good binding property. Further, it was confirmed that the charge / discharge retention rate of the battery was 60% or more, and the cycle characteristics were excellent. Among these, when focusing on the amount of the crosslinkable monomer used in the crosslinked polymer salts having the same constituent monomer and the same degree of neutralization (R-1 to R-5), the amount of the crosslinked polymer used is large. It was found that the charge / discharge retention rate of the batteries using the salts R-2 to R-5 was very high, and the batteries had excellent durability. Further, the charge / discharge retention rate of the battery using the crosslinked polymer salts R-8 and R-9 containing a specific amount of the structural unit derived from the hydroxyl group-containing ethylenically unsaturated monomer is very high, and excellent durability is obtained. It turned out to have.
 一方、ゾル分率が5質量%以上である架橋重合体塩R-17を用いた比較例1では、塗工性及び電極の結着性は劣り、サイクル特性は不十分なものであった。 On the other hand, in Comparative Example 1 using the crosslinked polymer salt R-17 having a sol fraction of 5% by mass or more, the coatability and the bondability of the electrodes were inferior, and the cycle characteristics were insufficient.
 本発明の二次電池電極用バインダーは、合剤層において優れた結着性を示すとともに、上記バインダーを使用して得られた電極を備えた二次電池は、良好な耐久性(サイクル特性)を示した。このため、車載用二次電池への適用が期待される。また、シリコンを含む活物質の使用にも有用であり、電池の高容量化への寄与が期待される。
 本発明の二次電池電極用バインダーは、特に非水電解質二次電池電極に好適に用いることができ、中でも、エネルギー密度が高い非水電解質リチウムイオン二次電池に有用である。
The binder for the secondary battery electrode of the present invention exhibits excellent binding properties in the mixture layer, and the secondary battery provided with the electrodes obtained by using the above binder has good durability (cycle characteristics). showed that. Therefore, it is expected to be applied to in-vehicle secondary batteries. It is also useful for the use of active materials containing silicon, and is expected to contribute to increasing the capacity of batteries.
The binder for a secondary battery electrode of the present invention can be particularly preferably used for a non-aqueous electrolyte secondary battery electrode, and is particularly useful for a non-aqueous electrolyte lithium ion secondary battery having a high energy density.

Claims (8)

  1.  架橋重合体又はその塩を含有する二次電池電極用バインダーであって、
     前記架橋重合体又はその塩は、ゾル分率が5.0質量%未満である、二次電池電極用バインダー。
    A binder for a secondary battery electrode containing a crosslinked polymer or a salt thereof.
    The crosslinked polymer or a salt thereof is a binder for a secondary battery electrode having a sol content of less than 5.0% by mass.
  2.  前記架橋重合体又はその塩は、エチレン性不飽和カルボン酸単量体に由来する構造単位を50質量%以上100質量%以下含む、請求項1に記載の二次電池電極用バインダー。 The binder for a secondary battery electrode according to claim 1, wherein the crosslinked polymer or a salt thereof contains 50% by mass or more and 100% by mass or less of a structural unit derived from an ethylenically unsaturated carboxylic acid monomer.
  3.  前記架橋重合体又はその塩は、中和度80~100モル%に中和された後、水媒体中で測定した粒子径が、体積基準メジアン径で0.1μm以上10μm以下である、請求項1又は2に記載の二次電池電極用バインダー。 The crosslinked polymer or a salt thereof is neutralized to a degree of neutralization of 80 to 100 mol%, and then the particle size measured in an aqueous medium is 0.1 μm or more and 10 μm or less in terms of volume-based median diameter. The binder for a secondary battery electrode according to 1 or 2.
  4.  前記架橋重合体又はその塩は、pH8における水膨潤度が3.0以上、100以下である、請求項1~3のいずれか1項に記載の二次電池電極用バインダー。 The binder for a secondary battery electrode according to any one of claims 1 to 3, wherein the crosslinked polymer or a salt thereof has a water swelling degree of 3.0 or more and 100 or less at pH 8.
  5.  前記ゾル分のポリエチレンオキシド/ポリエチレングリコール換算による重量平均分子量が300,000以下である、請求項1~4のいずれか1項に記載の二次電池電極用バインダー。 The binder for a secondary battery electrode according to any one of claims 1 to 4, wherein the weight average molecular weight of the sol in terms of polyethylene oxide / polyethylene glycol is 300,000 or less.
  6.  請求項1~5のいずれか1項に記載の二次電池電極用バインダー、活物質及び水を含む、二次電池電極合剤層用組成物。 A composition for a secondary battery electrode mixture layer containing the binder for the secondary battery electrode, the active material, and water according to any one of claims 1 to 5.
  7.  集電体表面に、請求項6に記載の二次電池電極合剤層用組成物から形成される合剤層を備える、二次電池電極。 A secondary battery electrode comprising a mixture layer formed from the composition for the secondary battery electrode mixture layer according to claim 6 on the surface of a current collector.
  8.  請求項7に記載の二次電池電極を備える、二次電池。 A secondary battery comprising the secondary battery electrode according to claim 7.
PCT/JP2020/016240 2019-04-26 2020-04-13 Secondary battery electrode binder and use therefor WO2020218049A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021515994A JP7428181B2 (en) 2019-04-26 2020-04-13 Binder for secondary battery electrodes and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019084970 2019-04-26
JP2019-084970 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020218049A1 true WO2020218049A1 (en) 2020-10-29

Family

ID=72942687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016240 WO2020218049A1 (en) 2019-04-26 2020-04-13 Secondary battery electrode binder and use therefor

Country Status (2)

Country Link
JP (1) JP7428181B2 (en)
WO (1) WO2020218049A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023023978A1 (en) * 2021-08-25 2023-03-02 宁德时代新能源科技股份有限公司 Modified graphite and preparation method therefor, secondary battery, battery module, battery pack and electric device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130134909A (en) * 2012-05-31 2013-12-10 주식회사 엘지화학 Nonaqueous binder composition
WO2014200003A1 (en) * 2013-06-12 2014-12-18 Tdk株式会社 Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery using same
JP2018206658A (en) * 2017-06-07 2018-12-27 積水化学工業株式会社 Binder for power storage device negative electrode
JP2019157000A (en) * 2018-03-14 2019-09-19 テクノUmg株式会社 Aqueous binder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130134909A (en) * 2012-05-31 2013-12-10 주식회사 엘지화학 Nonaqueous binder composition
WO2014200003A1 (en) * 2013-06-12 2014-12-18 Tdk株式会社 Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery using same
JP2018206658A (en) * 2017-06-07 2018-12-27 積水化学工業株式会社 Binder for power storage device negative electrode
JP2019157000A (en) * 2018-03-14 2019-09-19 テクノUmg株式会社 Aqueous binder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023023978A1 (en) * 2021-08-25 2023-03-02 宁德时代新能源科技股份有限公司 Modified graphite and preparation method therefor, secondary battery, battery module, battery pack and electric device
US11791466B2 (en) 2021-08-25 2023-10-17 Contemporary Amperex Technology Co., Limited Modified graphite and preparation method thereof, secondary battery, battery module, battery pack, and electrical device

Also Published As

Publication number Publication date
JPWO2020218049A1 (en) 2020-10-29
JP7428181B2 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
US20170352886A1 (en) Binder for nonaqueous electrolyte secondary battery electrode, manufacturing method therefor and use therefor
JP6638747B2 (en) Binder for secondary battery electrode and its use
JP6354929B1 (en) Nonaqueous electrolyte secondary battery electrode binder and use thereof
JP6981466B2 (en) Method for producing crosslinked polymer or salt thereof
JP6944610B2 (en) Binder for non-aqueous electrolyte secondary battery electrodes
WO2021070738A1 (en) Secondary battery electrode binder, secondary battery electrode mixture layer composition, secondary battery electrode, and secondary battery
JP6792054B2 (en) Binder for non-aqueous electrolyte secondary battery electrodes
JP7372602B2 (en) Binder for secondary battery electrodes and its use
WO2020110847A1 (en) Binder for secondary battery electrode, composition for secondary battery electrode mixture layer, and secondary battery electrode
JP7234934B2 (en) Binder for secondary battery electrode and its use
JP7160222B2 (en) Method for producing binder for non-aqueous electrolyte secondary battery electrode
JP6988888B2 (en) Binder for non-aqueous electrolyte secondary battery electrode, its manufacturing method, and its application
WO2020218049A1 (en) Secondary battery electrode binder and use therefor
WO2021241404A1 (en) Non-aqueous electrolyte secondary battery electrode binder and use therefor
JP7226442B2 (en) Binder for secondary battery electrode and its use
JP7078047B2 (en) Binder for non-aqueous electrolyte secondary battery electrode and its use
JP6897759B2 (en) Method for producing crosslinked polymer or salt thereof
JP7211418B2 (en) Binder for secondary battery electrode and its use
JP7322882B2 (en) Binder for secondary battery electrode and its use
WO2024024772A1 (en) Binder for nonaqueous electrolyte secondary battery electrodes
JPWO2020090695A1 (en) Binder for secondary battery electrode and its use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021515994

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20796092

Country of ref document: EP

Kind code of ref document: A1