WO2021215357A1 - Image processing device, image display system, image processing method, and program - Google Patents

Image processing device, image display system, image processing method, and program Download PDF

Info

Publication number
WO2021215357A1
WO2021215357A1 PCT/JP2021/015671 JP2021015671W WO2021215357A1 WO 2021215357 A1 WO2021215357 A1 WO 2021215357A1 JP 2021015671 W JP2021015671 W JP 2021015671W WO 2021215357 A1 WO2021215357 A1 WO 2021215357A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
image
medical image
processor
grid
Prior art date
Application number
PCT/JP2021/015671
Other languages
French (fr)
Japanese (ja)
Inventor
佳児 中村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022517016A priority Critical patent/JP7430249B2/en
Publication of WO2021215357A1 publication Critical patent/WO2021215357A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]

Definitions

  • the present invention relates to an image processing device, an image display system, an image processing method and a program.
  • CT is an abbreviation for Computed Tomography.
  • Patent Document 1 describes a medical image processing system that analyzes a medical image, generates diagnostic support information based on the analysis result, and displays the diagnostic support information using a display device.
  • the system described in the document produces diagnostic support images suitable for reference to diagnostic support information.
  • the diagnostic support image applied to the system is superposed with scale and evenly spaced grid patterns. This makes it easier to recognize the position and size of the structure in the diagnostic support image.
  • Patent Document 2 describes a medical imaging system that irradiates a specific part of a patient as a subject and generates a still image of the subject.
  • the system described in the document performs a reduction process on a medical image to generate a preview image.
  • the system divides the irradiation field of the preview image into a plurality of small areas, and extracts the feature amount from the signal value of each small area.
  • Patent Document 3 describes an ultrasonic diagnostic apparatus that generates an ultrasonic image of a subject.
  • the apparatus described in the same document superimposes a color Doppler image of a region of interest on a B-mode tomographic image and displays it using a display unit.
  • the apparatus determines whether or not the pixel is included in the region of interest based on the pixel value of the designated pixel.
  • Patent Document 4 describes an image display device that reads a CT image taken by using an image capturing device, generates various images for medical diagnosis, and displays the generated images using a screen.
  • the document discloses voxel data obtained from CT images.
  • the bounding box can be displayed for each isolated area, but when displaying a plurality of bounding boxes on one screen, the screen can be difficult to see.
  • the judgment of the extent of the lesion area may differ from doctor to doctor.
  • CAD computer-Aided Diagnosis
  • CAD has the original purpose of suppressing oversight of lesions.
  • CAD shows the area of the lesion to the doctor. Even if CAD is launched for the purpose of suppressing lesion oversight, CAD may be used in a way that exceeds lesion oversight suppression, and there is a possibility that the diagnosis will be biased.
  • the grid pattern described in Patent Document 1 is used when recognizing the position and size of a structure, and the visibility of the CAD detection result may be lowered depending on the mode of the grid pattern.
  • the grid illustrated in FIG. 5A of Patent Document 2 is a small region obtained by dividing the preview image into a 10 ⁇ 10 matrix.
  • the small area is a unit for calculating the feature amount and is not related to the display of the CAD detection result.
  • the grid illustrated in FIG. 4 of Patent Document 3 is a unit of processing when extracting a region of interest, and is not related to the display of CAD detection results.
  • Patent Document 4 does not describe or suggest the display of CAD detection results.
  • the present invention has been made in view of such circumstances, and provides an image processing apparatus, an image display system, an image processing method, and a program capable of displaying a detection result without impairing the reliability of detection of a feature region.
  • the purpose is.
  • the image processing apparatus is an image processing apparatus including one or more processors, in which the processor acquires a medical image obtained by photographing a subject, detects a characteristic region from the medical image, and detects a characteristic region.
  • a display unit cell having a size of two or more integral multiples of the pixels constituting the medical image, and a display unit cell having a size exceeding the size of the processing unit in the detection of the feature area is arranged as a medical image.
  • This is an image processing device that generates a display signal in which a display frame having one or more display unit lattices corresponding to the size of the feature area is superimposed and displayed on the feature area at a position corresponding to the position of the feature area. ..
  • the feature region detected from the medical image has a size that is an integral multiple of two or more of the pixels constituting the medical image, and the size of the processing unit of the medical image.
  • Characteristic areas may include lung nodules, fractures, bleeding and cerebral infarction.
  • the feature area may include lesions. Multiple feature regions can be detected from a single medical image.
  • the processor generates a display signal for displaying the outline of the display frame by using an aspect different from the outline of the display unit cell.
  • the display frame can be conspicuous on the screen on which the medical image is displayed.
  • the processor generates a display signal for displaying the outline of the display frame outside the outline of the display unit cell which is the edge in the feature area.
  • the display frame can be made to stand out with respect to the display grid.
  • the processor generates a display signal that hides the display unit cell.
  • the display frame can be made conspicuous.
  • the processor generates a mask image corresponding to the feature area and generates a display signal representing the mask image.
  • a mask image is used together with the display frame. This can improve the visibility of the feature area.
  • the processor sets the size of the display unit cell according to the type of the feature area.
  • a display frame corresponding to the type of the feature area can be displayed.
  • the processor uses the center of gravity of the medical image and the center of gravity of the display grid to align the medical image and the display grid.
  • the center of gravity of the medical image and the center of gravity of the display grid can be aligned with the medical image to be used and the display grid.
  • the processor uses the center of gravity of the subject and the center of gravity of the display grid to align the medical image and the display grid.
  • the center of gravity of the subject and the center of gravity of the display grid can be aligned with the medical image to be used and the display grid.
  • the processor sets a display grid in which two-dimensional display unit grids are arranged in a two-dimensional manner.
  • the visibility of the feature region can be improved in a two-dimensional medical image such as a tomographic image.
  • the processor sets a display grid in which three-dimensional display unit grids are arranged in a three-dimensional manner.
  • the visibility of the feature region can be improved in a three-dimensional medical image.
  • the processor detects the feature area as a polygonal shape.
  • the display frame can be superimposed and displayed on the feature area of the polygonal shape.
  • the image display system includes an image processing device including one or more processors, and a display that receives a display image signal transmitted from the image processing device and displays an image represented by the display image signal.
  • a processor acquires a medical image obtained by photographing a subject, detects a feature region from the medical image, and determines the size of two or more integral multiples of the pixels constituting the medical image.
  • a display unit cell having a display unit cell and having a size exceeding the size of the processing unit in the detection of the feature area is set in the medical image, and the feature area is set at a position corresponding to the position of the feature area.
  • the display is an image display system that superimposes a display frame on a medical image to generate a display signal that superimposes and displays a display frame having one or more display unit lattices corresponding to the size of.
  • the image processing method acquires a medical image obtained by photographing a subject, detects a characteristic region from the medical image, and has a size of two or more integral multiples of the pixels constituting the medical image.
  • a display grid in which display unit grids that are display unit grids and have a size exceeding the size of the processing unit in the detection of the feature region are arranged in the medical image is set in the medical image, and the feature region is set at a position corresponding to the position of the feature region.
  • the program according to the present disclosure has a function of acquiring a medical image obtained by photographing a subject, a function of detecting a feature region from the medical image, and a size of two or more integral multiples of the pixels constituting the medical image.
  • the feature region detected from the medical image has a size that is an integral multiple of two or more of the pixels constituting the medical image and has a size that exceeds the size of the processing unit of the medical image.
  • a display frame having one or more display unit arrays is superimposed, whereby the detection result can be displayed without impairing the reliability of detection of the feature region.
  • FIG. 1 is a functional block diagram of a medical image display system according to an embodiment.
  • FIG. 2 is a flowchart showing the procedure of the medical image processing method according to the embodiment.
  • FIG. 3 is a schematic view of a display grid set on a medical image.
  • FIG. 4 is an explanatory diagram of an embodiment in which the medical image and the display grid are aligned using the center of gravity of the subject.
  • FIG. 5 is an explanatory diagram of an example of the correspondence between the center of gravity of the three-dimensional image and the center of gravity of the tomographic image.
  • FIG. 6 is an explanatory diagram of another example of the correspondence between the center of gravity of the three-dimensional image and the center of gravity of the tomographic image.
  • FIG. 1 is a functional block diagram of a medical image display system according to an embodiment.
  • FIG. 2 is a flowchart showing the procedure of the medical image processing method according to the embodiment.
  • FIG. 3 is a schematic view of a display grid set on a medical image.
  • FIG. 7 is an explanatory diagram showing an example of a display grid setting screen.
  • FIG. 8 is a schematic view of a display frame superimposed on a medical image.
  • FIG. 9 is an explanatory diagram of a modified example of the display frame.
  • FIG. 10 is an explanatory diagram of the action and effect of the embodiment.
  • FIG. 1 is a functional block diagram of a medical image display system according to an embodiment.
  • the medical image display system 10 includes a medical image processing device 12, a medical image storage device 18, and a medical image viewer device 20.
  • the medical image processing device 12 is a terminal device used by a user in hospitals, examination laboratories, and the like.
  • the medical image processing device 12 may apply a computer.
  • the medical image processing device 12 includes a processor 14 and a memory 16.
  • the memory 16 includes a program memory in which a program including an instruction to be executed by the processor 14 is stored.
  • the memory 16 may include a data memory in which various types of data are stored.
  • the medical image processing device 12 executes a program read from the memory 16 by the processor 14, and has a medical image acquisition function, a feature area detection function, a display grid setting function, an alignment function, a display frame setting function, a display image signal generation function, and a display image signal generation function. Realize various functions including display image signal transmission function.
  • the term image may include the meaning of an image signal representing an image and image data representing an image.
  • the term generation can be interpreted as synonymous with terms such as production and production.
  • the term signal transmission may include the meaning of the output of a signal from the source of the signal.
  • the processor 14 described in the embodiment is an example of one or more processors.
  • the medical image acquisition function is a function of acquiring a medical image to be processed from a medical image storage device 18 or the like. Acquisition of a medical image may include conversion of the medical image and generation of a new medical image. For example, when a two-dimensional tomographic image is generated using raw data acquired from a CT imaging device 28 or the like, it can be included in the concept of acquiring a two-dimensional tomographic image.
  • the term tomographic image may include the concept of a cross-sectional image.
  • the feature area may include areas treated as features in medical images, such as lung nodules, fractures, subarachnoid hemorrhage and cerebral infarction. Multiple feature regions may be detected in one medical image. A known method can be applied to the extraction of the feature region.
  • the feature area detection function can generate a mask image of the feature area.
  • a known method can be applied to the generation of the mask image.
  • the processing unit for detecting the feature region pixels constituting the medical image may be applied, or a region including a plurality of pixels may be applied.
  • the medical image is shown as a tomographic image 100 in FIG. 3 and the like.
  • the feature region is illustrated in FIG. 3 and the like using reference numeral 102.
  • the display grid is a grid applied when defining a display frame to be superimposed and displayed on the feature area.
  • the display grid has a structure in which a plurality of display unit grids are arranged in a two-dimensional or three-dimensional manner. That is, a two-dimensional display grid can be applied to a two-dimensional image.
  • a three-dimensional display grid can be applied to a three-dimensional image.
  • the display grid setting function includes setting the number of display unit grids in each dimension and setting the size of the display unit grids.
  • the size of the display unit cell is a positive integer multiple of the size of the pixels constituting the medical image, and a size exceeding the size of the processing unit for detecting the feature area is applied.
  • the display unit lattice is two or more pixels.
  • the area of the display unit grid is applied to the size of the display unit grid.
  • the volume of the display unit grid is applied to the size of the display unit grid.
  • the alignment function is a function for aligning the subject and the display grid in the medical image.
  • An example of alignment is an embodiment in which the position of the center of gravity of the subject and the position of the center of gravity of the display grid are aligned.
  • the display frame is a frame that surrounds the feature area and is superimposed on the medical image. Enclosing the feature area here may mean that the feature area is included inside the display frame, or the display frame may intersect with the outer edge of the feature area.
  • a two-dimensional shape is applied to the display frame. Further, in the case of a three-dimensional display grid, a three-dimensional shape is applied to the display frame.
  • the display image signal generation function is a function of generating a display image signal representing a display image to be displayed using the display 22.
  • the display image signal includes a display image signal representing a medical image and a display image signal representing a display frame.
  • the display image signal may include a display image signal representing a feature area such as a mask image and a display image signal representing a display grid.
  • the display image signal transmission function is a function of transmitting a display image signal representing an image to be displayed using the display 22 to the medical image viewer device 20.
  • the display 22 displays a medical image or the like based on the displayed image signal.
  • the display image signal described in the embodiment is an example of the display signal.
  • the medical image storage device 18 stores medical images to which incidental information specified by the DICOM standard is added.
  • the medical image may be raw data acquired by using a modality such as a CT imaging device 28 and an MRI imaging device 30 for photographing a subject, or may be volume data generated from the raw data.
  • the medical image storage device 18 may apply a large-capacity storage device.
  • DICOM is an abbreviation for Digital Imaging and Communication in Medicine.
  • the medical image viewer device 20 is used when the user observes a medical image.
  • the medical image viewer device 20 includes a display 22 and an input device 24.
  • the display 22 displays an image represented by a display image signal acquired from the medical image processing device 12.
  • the display 22 can display a medical image processed by the medical image processing device 12 and a medical image stored in the medical image storage device 18 based on a command of the medical image processing device 12.
  • the input device 24 transmits an input signal according to the user's operation to the medical image processing device 12.
  • the input device 24 may apply operating members such as a keyboard, mouse and joystick.
  • a touch panel type display 22 may be applied to integrally configure the display 22 and the input device 24.
  • the medical image display system 10 is communicably connected to a modality such as a CT imaging device 28 via a network 26.
  • a LAN Local Area Network
  • the network 26 may apply a premises LAN in a hospital or the like.
  • the network 26 may include an external network such as a hospital.
  • Modality may include PET devices, ultrasonic diagnostic devices, CR devices, and the like.
  • PET is an abbreviation for Positron Emission Tomography.
  • CR is an abbreviation for Computed Radiography.
  • FIG. 2 is a flowchart showing the procedure of the medical image processing method according to the embodiment.
  • the processor 14 acquires the medical image to be processed from the medical image storage device 18 and the like.
  • the medical image may be acquired by acquiring data in a format that can be processed by the processor 14, or by applying an aspect of acquiring data in an arbitrary format and converting it into data in a format that can be processed by the processor 14. good.
  • the process proceeds to the feature region detection step S12.
  • the processor 14 automatically detects the feature area from the acquired medical image. After the feature area detection step S12, the process proceeds to the display grid setting step S14. In the feature region detection step S12, the processor 14 may detect a feature region based on the designated feature type.
  • a medical image in which the feature region is automatically detected may be acquired.
  • the processor 14 instead of the feature region detection step S12, acquires information on the feature region incidental to the medical image.
  • the processor 14 sets the display grid for the medical image.
  • the user can set the number of display unit grids and the size of the display unit grids in each dimension by using the input device 24 shown in FIG.
  • the order of the feature area detection step S12 and the display grid setting step S14 may be exchanged, or both may be performed in parallel. After the display grid setting step S14, the process proceeds to the alignment step S16.
  • the processor 14 aligns the subject and the display grid in the medical image.
  • the center of gravity of the medical image and the center of gravity of the display grid are aligned can be applied.
  • the position of the center of gravity in a two-dimensional medical image such as a tomographic image can be defined using a two-dimensional Cartesian coordinate system.
  • the position of the center of gravity in a three-dimensional medical image can be defined using a three-dimensional Cartesian coordinate system.
  • the processor 14 sets the display frame according to the size and position of the feature area detected in the feature area detection step S12.
  • the processor 14 specifies one or more display unit grids including the feature area, and sets the contour in the aggregate of the specified one or more display unit grids as the display frame.
  • the processor 14 can set a display frame for each feature area. Further, the processor 14 may set one display frame for one feature area. That is, the processor 14 may set one or more display frames for each of the plurality of feature areas. In the tomographic image, there may be a case where two or more feature regions that are separated and visually recognized are the same feature region.
  • the processor 14 can set one display frame for a plurality of feature areas having the same source. For example, when the type of the characteristic region is bleeding, one display frame can be set for the characteristic region corresponding to a plurality of bleedings having the same source of bleeding. After the display frame setting step S18, the process proceeds to the display image signal generation step S20.
  • the processor 14 In the display image signal generation step S20, the processor 14 generates a display image signal representing the display image to be displayed on the display 22 shown in FIG. That is, the processor 14 generates the display image signal of the medical image and the display image signal of the display frame. The processor 14 may generate the display image signal of the display grid and the display image signal of the display unit grid. After the display image signal generation step S20, the process proceeds to the display image signal transmission step S22.
  • the processor 14 transmits the display image signal generated in the display image signal generation step S20 to the medical image viewer device 20. After the display image signal transmission step S22, the processor 14 ends the procedure of the image processing method.
  • the medical image viewer device 20 uses the display 22 to display a display image on which a display frame surrounding the feature area is superimposed on the medical image.
  • the medical image viewer device 20 may use the display 22 to superimpose and display the mask image and the display grid of the feature region on the medical image.
  • FIG. 3 is a schematic view of a display grid set on a medical image.
  • the figure shows a tomographic image 100 of the brain taken by using a CT imaging device 28 as a medical image, and a tomographic image 100 in which subarachnoid hemorrhage is detected as a characteristic region 102.
  • the mask image 103 which is the detection result of the feature region 102, is superimposed and displayed.
  • a polygonal shape can be applied to the feature area 102. That is, the planar shape of the contour of the feature region 102 in which the representative points of the pixels forming the edge of the feature region 102 are connected by using a line segment is a polygonal shape. The center of gravity of the pixel can be applied to the representative point of the pixel. Image processing such as smoothing may be performed on the contour of the feature region 102, the contour of the feature region 102 may be formed by using at least one of a curve and a line segment, and the feature region 102 may have an arbitrary shape.
  • the processor 14 shown in FIG. 1 is a display grid 110 having the same size as the tomographic image 100 with respect to the tomographic image 100 shown in FIG. 3, has a number of divisions of 5 ⁇ 5, and has 25 display unit grids 112.
  • the display grid 110 is set.
  • FIG. 3 illustrates a two-dimensional display grid 110 in which two-dimensional display unit grids 112 are arranged in a two-dimensional manner with respect to a tomographic image 100 which is a two-dimensional medical image.
  • a cell is an example of a two-dimensional display unit cell 112.
  • the number of divisions of the display grid 110 may be finer than 5x5 such as 7x7 and 9x9, or coarser than 5x5 such as 3x3.
  • the number of divisions of the display grid 110 may be 2 ⁇ 2 or more.
  • the number of divisions of the display grid 110 does not have to be 1, such as 3 ⁇ 4 and 9 ⁇ 16.
  • the display grid 110 may use any of the four corners as a reference for alignment with the tomographic image 100.
  • the upper left end position 111 is used as a reference for alignment.
  • the processor 14 shown in FIG. 1 can superimpose the upper left end position 101 of the tomographic image 100 and the upper left end position 111 of the display grid 110 to align the tomographic image 100 and the display grid 110.
  • the display grid 110 may have a shape that surrounds the entire subject, and the display grid 110 does not have to surround the entire tomographic image 100.
  • FIG. 4 is an explanatory diagram of an embodiment in which the medical image and the display grid are aligned using the center of gravity of the subject region.
  • the processor 14 shown in FIG. 1 extracts the subject region 104 from the tomographic image 100, calculates the center of gravity 106 of the subject region 104, superimposes the center of gravity 114 of the display grid 110 on the center of gravity 106 of the subject region 104, and displays the image. Alignment between the grid 110 and the tomographic image 100 can be performed.
  • FIG. 5 is an explanatory diagram showing the correspondence between the center of gravity of the three-dimensional image and the center of gravity of the tomographic image.
  • the thickness of the tomographic image 100A and the like is simplified and illustrated.
  • the voxels constituting the three-dimensional image 120 can be set as the three-dimensional display unit lattice 123.
  • the three-dimensional display grid 121 is configured by arranging the display unit grids 123 in a three-dimensional manner. The same applies to the three-dimensional image 120 shown in FIG.
  • the three-dimensional image 120 corresponding to the tomographic image 100 may be generated using raw data, or may be generated using the tomographic image 100A to the tomographic image 100E. The same applies to the tomographic image 100A to the tomographic image 100E shown in FIG.
  • FIG. 5 shows a tomographic image 100A, a tomographic image 100B, a tomographic image 100C, a tomographic image 100D, and a tomographic image 100E corresponding to the three-dimensional image 120.
  • the tomographic image 100A to the tomographic image 100E may be collectively referred to as the tomographic image 100.
  • the center of gravity 124 of the subject 122 of the three-dimensional image 120 is projected, and the center of gravity 106 is defined.
  • the positions of the respective centers of gravity 106 are the same. That is, the alignment of the display grid 110 is collectively performed for each of the tomographic image 100A to the tomographic image 100E.
  • Reference numeral 126 indicates a line passing through the center of gravity 124 in the three-dimensional image 120.
  • Reference numeral 108 is a line passing through each center of gravity 106 from the tomographic image 100A to the tomographic image 100E.
  • the line 108 is orthogonal to each of the tomographic image 100A to the tomographic image 100E.
  • FIG. 6 is an explanatory diagram of another example of the correspondence between the center of gravity of the three-dimensional image and the center of gravity of the tomographic image.
  • the center of gravity 106A is defined based on the subject area 104A.
  • each of the tomographic image 100B to the tomographic image 100E is based on the subject area 104B, the subject area 104C, the subject area 104D, and the subject area 104E, respectively, based on the respective center of gravity 106B, center of gravity 106C, center of gravity 106D, and center of gravity 106E. Is stipulated.
  • Each of the tomographic image 100A to the tomographic image 100E shown in FIG. 6 is individually aligned with the display grid 110.
  • FIG. 7 is an explanatory diagram showing an example of a display grid setting screen.
  • the setting screen 200 shown in FIG. 1 is displayed using the display 22 shown in FIG.
  • the user can see the setting screen 200 displayed by using the display 22 and operate the input device 24 to set the parameters of the display grid.
  • the setting screen 200 includes a medical image display area 202 and a parameter display area 204.
  • a medical image is displayed in the medical image display area 202.
  • FIG. 7 shows a tomographic image 100 of the brain shown in FIG. 3 and the like as a medical image.
  • the center of gravity 106 of the tomographic image 100 and the center of gravity 124 of the display grid 110 shown in FIG. 4 and the like are not shown.
  • the parameter display area 204 includes a reference display area 206, a division number display area 208, and a feature area display area 210.
  • the parameter display area 204 may include a button for switching between display and non-display of information to be displayed in the medical image display area 202.
  • the reference display area 206 the reference for alignment between the tomographic image 100 and the display grid 110 is displayed.
  • the reference display area 206 can display information input by the user using the input device 24 shown in FIG.
  • the processor 14 may apply the criteria input by the user to perform the alignment of the tomographic image 100 and the display grid 110.
  • the reference display area 206 displays the predetermined alignment reference.
  • the user may change the pre-defined alignment criteria using the input device 24.
  • the number of divisions display area 208 displays the number of divisions of the display grid 110.
  • FIG. 7 shows the number of divisions in the two-dimensional display grid 110.
  • the division number display area 208 can display information input by the user using the input device 24 shown in FIG.
  • the processor 14 may set the display grid 110 using the number of divisions input by the user.
  • the processor 14 sets the display grid 110 using the value of the number of divisions specified in advance
  • the value of the number of divisions specified in advance is displayed in the number of divisions display area 208.
  • the user can change the predetermined number of divisions by using the input device 24.
  • the feature area display area 210 displays the type of the feature area 102.
  • the processor 14 displays the type of the feature area 102 to be detected in the feature area display area 210.
  • the processor 14 may set the number of divisions of the display grid 110 according to the type of the feature area 102. In other words, the processor 14 can set the size of the display unit cell 112 according to the type of the feature area 102.
  • the processor 14 can set a reference for alignment between the tomographic image 100 and the display grid 110 according to the type of the feature area 102, the number of divisions of the display grid 110, and the like.
  • the reference display area 206, the number of divisions display area 208, and the feature area display area 210 may apply an embodiment in which a pull-down menu is applied to select an arbitrary option from a plurality of predetermined options.
  • the alignment of the three-dimensional image 120 and the display grid 121 shown in FIGS. 5 and 6 can be performed in the same manner as the alignment of the two-dimensional tomographic image 100 and the two-dimensional display grid 110.
  • FIG. 8 is a schematic view of a display frame superimposed on a medical image.
  • the display frame 116 is superimposed on the tomographic image 100 shown in the figure.
  • the display frame 116 represents an outline in a set of a plurality of display unit lattices 112 including a feature area 102.
  • the display frame 116 may apply the contours of all the display unit lattices 112 including the feature area 102.
  • the lines constituting the display frame 116 may be applied with any thickness and any color.
  • the lines forming the display frame 116 may be different from the lines forming the display grid 110 and the lines forming the display unit grid 112.
  • Hatching may be applied to the inside of the display frame 116.
  • a pattern such as dot hatching may be applied, or a fill of an arbitrary color may be applied.
  • a fill such as semi-transparency that allows the tomographic image 100 to pass through is preferable.
  • the line representing the contour of the display grid 110 and the line representing the contour of the display unit grid 112 may be hidden.
  • a line representing the contour of the display unit grid 112 inside the display frame 116 is displayed, and a line representing the contour of the display unit grid 112 inside the display frame 116 is displayed. May be hidden. Further, when the display frame 116 is superimposed on the tomographic image 100, the mask image 103 may be hidden.
  • the processor 14 may have a function of switching between display and non-display of the mask image 103, the outline of the display grid 110, the display unit grid 112, and the like.
  • the processor 14 may switch between displaying and hiding the mask image 103 and the like based on the input of the user using the input device 24.
  • the processor 14 may use the display 22 to display a screen for switching between display and non-display of the mask image 103 and the like.
  • the three-dimensional display frame in the three-dimensional image 120 shown in FIGS. 5 and 6 can be set in the same manner as the two-dimensional display frame 116. It should be noted that the illustration of the three-dimensional display frame superimposed on the three-dimensional image 120 is omitted.
  • FIG. 9 is an explanatory diagram of a modified example of the display frame.
  • the contour of the display frame 116A shown in FIG. 9 is located outside the contour of the set of display unit lattices 112 constituting the display frame 116A. Thereby, the deterioration of the visibility of the feature region 102 can be suppressed. Note that the feature area 102 is not shown in FIG.
  • FIG. 10 is an explanatory diagram of the action and effect of the embodiment.
  • the tomographic image 300A to which the bounding box 304 that collectively surrounds the plurality of characteristic regions 302 is applied to the tomographic image 300 showing the brain as the subject shown in FIG. 10 has the characteristic region at any position inside the bounding box 304. It is difficult to know if 302 exists.
  • the tomographic image 300B on which the mask image 306 corresponding to the feature region 302 is superimposed it is difficult to comprehensively emphasize the plurality of feature regions 302, and there is a concern that the feature region 302 as small as several pixels may be overlooked. ..
  • the medical image display system 10 sets the display grid 110 on the medical image such as the tomographic image 100 as shown in FIG.
  • display grid 110 display unit grids 112 that exceed the size of the processing unit of the feature area 102 are arranged.
  • the tomographic image 100 is a display frame 116 surrounding the feature area 102, and a display frame 116 using one or more display unit lattices 112 is superimposed and displayed. Thereby, the detection result of the feature area 102 can be displayed without impairing the reliability of the detection of the feature area 102.
  • a mode different from the lines forming the display grid 110 and the lines forming the display unit grid 112 is applied to the display frame 116.
  • the thickness, color, and line type of the lines constituting the display unit grid 112 are different from those of the lines constituting the display grid 110. This makes it possible to make the display frame 116 stand out more than the display grid 110 and the display unit grid 112.
  • the mask image 103 is superimposed on the tomographic image 100.
  • the display frame 116 and the mask image 103 can be used together, and the visibility of the feature area 102 can be improved.
  • the size of the display unit cell is set according to the type of the feature area. As a result, the display frame 116 corresponding to the type of the feature area 102 can be displayed.
  • the center of gravity 106 of the tomographic image 100 and the center of gravity 114 of the display grid 110 are applied to the alignment of the tomographic image 100 and the display grid 110. As a result, accurate alignment between the tomographic image 100 and the display grid 110 can be performed.
  • a three-dimensional display grid 121 and a three-dimensional display frame can be set for the three-dimensional image 120. Thereby, the detection result of the feature region can be displayed without impairing the reliability of the detection of the feature region in the three-dimensional image 120.
  • any shape can be applied to the feature region 102.
  • the display frame 116 can be superimposed on the feature area 102 having an arbitrary shape.
  • the hardware-like structure of the processing unit that executes the processing of the medical image display system 10 and the medical image processing device 12 described in the above embodiment is various processors.
  • Various processors include a CPU (Central Processing Unit), a PLD (Programmable Logic Device), an ASIC (Application Specific Integrated Circuit), and the like.
  • the CPU is a general-purpose processor that executes programs and functions as various processing units.
  • the PLD is a processor whose circuit configuration can be changed after manufacturing.
  • An example of PLD is FPGA (Field Programmable Gate Array).
  • An ASIC is a dedicated electric circuit having a circuit configuration specially designed to perform a specific process.
  • One processing unit may be composed of one of these various processors, or may be composed of two or more processors of the same type or different types.
  • one processing unit may be configured by using a plurality of FPGAs and the like.
  • One processing unit may be configured by combining one or more FPGAs and one or more CPUs.
  • a plurality of processing units may be configured by using one processor.
  • one processor is configured by combining one or more CPUs and software, and one processor functions as a plurality of processing units.
  • Such a form is represented by a computer such as a client terminal device and a server device.
  • An example is a mode in which a processor that realizes the functions of the entire system including a plurality of processing units by using one IC chip is used.
  • a processor that realizes the functions of the entire system including a plurality of processing units by using one IC chip is used.
  • Such a form is typified by a system on chip (System On Chip) and the like.
  • IC is an abbreviation for Integrated Circuit.
  • the system-on-chip may be described as SoC by using the abbreviation of System On Chip.
  • the various processing units are configured by using one or more of the above-mentioned various processors as a hardware structure.
  • the hardware structure of various processors is, more specifically, an electric circuit (circuitry) in which circuit elements such as semiconductor elements are combined.
  • a program can be configured to realize various functions of the medical image display system 10 and the medical image processing device 12 and each step of the image processing method described in the present specification on a computer.
  • the computer is made to realize the processing corresponding to the medical image acquisition function, the feature area detection function, the display grid setting function, the alignment function, the display frame setting function, the display image signal generation function, and the display image signal transmission function shown in FIG.
  • the program can be configured.
  • the constituent requirements can be appropriately changed, added, or deleted without departing from the gist of the present invention.
  • the present invention is not limited to the embodiments described above, and many modifications can be made by a person having ordinary knowledge in the art within the technical idea of the present invention.
  • the embodiments, modifications, and applications may be combined as appropriate.
  • Medical image display system 12 Medical image processing device 14 Processor 16 Memory 18 Medical image storage device 20 Medical image viewer device 22 Display 24 Input device 26 Network 28 CT imaging device 30 MRI imaging device 100 Fault image 100A Fault image 100B Fault image 100C Fault Image 100D Tomographic image 100E Tomographic image 102 Feature area 103 Mask image 104 Subject area 104A Subject area 104B Subject area 104C Subject area 104D Subject area 104E Subject area 106 Center of gravity 106A Center of gravity 106B Center of gravity 106C Center of gravity 106D Center of gravity 106E Center of gravity 108 Line 110 Display grid 112 Display unit grid 114 Center of gravity 116 Display frame 116A Display frame 120 Three-dimensional image 121 Display grid 122 Subject 123 Display unit grid 124 Center of gravity 126 Line 200 Setting screen 202 Medical image display area 204 Parameter display area 206 Reference display area 208 Division number display area 210 Feature area display area 300 Tomographic image 300A Tomographic image 300B Tomographic image 300C Tomographic image 302 Feature area 304 Bound

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Provided are an image processing device, an image display system, an image processing method, and program which can display a detection result without impairing the reliability of detection of a feature area. The present invention: acquires a medical image (100) obtained by imaging a subject; detects a feature area (102) from the medical image; sets, in a medical image, a display lattice (110) in which display unit lattices (112), each having a size that is two or more integer multiples of pixels forming the medical image and a size greater than a processing unit in the detection of the feature area, are arrayed; and displays a display frame (116), which has one or more display unit lattices corresponding to the size of the feature area, in superposition with the feature area at a position corresponding to the position of the feature area.

Description

画像処理装置、画像表示システム、画像処理方法及びプログラムImage processing equipment, image display system, image processing method and program
 本発明は画像処理装置、画像表示システム、画像処理方法及びプログラムに関する。 The present invention relates to an image processing device, an image display system, an image processing method and a program.
 画像から対象物を自動検出する技術は、広く検討がされている。例えば、医用分野ではCT画像から肺結節、骨折、くも膜下出血及び脳梗塞などの病変を自動検出する技術開発が進められている。一般に、自動検出の結果の表示として、バウンディングボックス及びマスク画像等の重畳表示が適用される。なお、CTはComputed Tomographyの省略語である。 The technology for automatically detecting an object from an image is being widely studied. For example, in the medical field, technological development is underway to automatically detect lesions such as lung nodules, bone fractures, subarachnoid hemorrhage, and cerebral infarction from CT images. Generally, a superimposed display such as a bounding box and a mask image is applied as a display of the result of automatic detection. CT is an abbreviation for Computed Tomography.
 特許文献1は、医用画像を解析し、解析結果に基づき診断支援情報を生成し、表示装置を用いて診断支援情報を表示させる医用画像処理システムが記載されている。同文献に記載のシステムは、診断支援情報の参照に適した診断支援用画像を生成する。 Patent Document 1 describes a medical image processing system that analyzes a medical image, generates diagnostic support information based on the analysis result, and displays the diagnostic support information using a display device. The system described in the document produces diagnostic support images suitable for reference to diagnostic support information.
 同システムに適用される診断支援用画像は、スケール及び等間隔のグリッドパターンが重畳される。これにより、診断支援用画像における構造物の位置及び大きさ等の認識をし易くする。 The diagnostic support image applied to the system is superposed with scale and evenly spaced grid patterns. This makes it easier to recognize the position and size of the structure in the diagnostic support image.
 特許文献2は、患者の特定部位を被写体として放射線を照射し、被写体の静止画像を生成する医用画像撮影システムが記載されている。同文献に記載のシステムは、医用画像に縮小処理が施され、プレビュー画像を生成する。同システムは、プレビュー画像の照射野を複数の小領域に分割し、各小領域の信号値から特徴量を抽出する。 Patent Document 2 describes a medical imaging system that irradiates a specific part of a patient as a subject and generates a still image of the subject. The system described in the document performs a reduction process on a medical image to generate a preview image. The system divides the irradiation field of the preview image into a plurality of small areas, and extracts the feature amount from the signal value of each small area.
 特許文献3は、被検体の超音波画像を生成する超音波診断装置が記載されている。同文献に記載の装置は、Bモード断層像に関心領域のカラードプラ画像を重畳させ、表示部を用いて表示させる。同装置は、指定される画素の画素値を基準として、関心領域に含まれる画素であるか否かを判断する。 Patent Document 3 describes an ultrasonic diagnostic apparatus that generates an ultrasonic image of a subject. The apparatus described in the same document superimposes a color Doppler image of a region of interest on a B-mode tomographic image and displays it using a display unit. The apparatus determines whether or not the pixel is included in the region of interest based on the pixel value of the designated pixel.
 特許文献4は、画像撮影装置を用いて撮影されるCT画像を読み取り、医療診断用の各種の画像を生成し、画面を用いて生成される画像を表示させる画像表示装置が記載されている。同文献は、CT画像から得られるボクセルデータについて開示をしている。 Patent Document 4 describes an image display device that reads a CT image taken by using an image capturing device, generates various images for medical diagnosis, and displays the generated images using a screen. The document discloses voxel data obtained from CT images.
特開2005-103055号公報Japanese Unexamined Patent Publication No. 2005-103555 特開2013-102851号公報Japanese Unexamined Patent Publication No. 2013-102851 特開2007-190172号公報JP-A-2007-190172 特開2008-100107号公報Japanese Unexamined Patent Publication No. 2008-100107
 しかしながら、バウンディングボックスの重畳表示は、どこが検出結果であるかが分かりづらい。バウンディングボックスは孤立する領域ごとに表示させ得るが、複数のバウンディングボックスを一画面に表示させる場合、画面が見づらくなり得る。 However, it is difficult to know where the detection result is in the superimposed display of the bounding box. The bounding box can be displayed for each isolated area, but when displaying a plurality of bounding boxes on one screen, the screen can be difficult to see.
 マスク画像の重畳表示は、病変の領域がどの範囲までであるかの判断が医師ごとに異なり得る。医師の判断とCAD(computer-Aided Diagnosis)の判断とが異なる場合、CADの信頼性が問題となり得る。 In the superimposed display of the mask image, the judgment of the extent of the lesion area may differ from doctor to doctor. When the judgment of the doctor and the judgment of CAD (computer-Aided Diagnosis) are different, the reliability of CAD can be a problem.
 CADは病変の見逃し抑制を本来の目的としている。一方、CADは医師に対して病変の領域を示してしまう。病変の見逃し抑制を目的としてCADを上市したとしても、CADが病変の見逃し抑制を超える使われ方をされ、診断に偏った見方が入る可能性がある。 CAD has the original purpose of suppressing oversight of lesions. On the other hand, CAD shows the area of the lesion to the doctor. Even if CAD is launched for the purpose of suppressing lesion oversight, CAD may be used in a way that exceeds lesion oversight suppression, and there is a possibility that the diagnosis will be biased.
 特許文献1に記載のグリッドパターンは、構造物の位置及び大きさを認識する際に使用されるものであり、グリッドパターンの態様次第で、CADの検出結果の視認性を低下させ得る。 The grid pattern described in Patent Document 1 is used when recognizing the position and size of a structure, and the visibility of the CAD detection result may be lowered depending on the mode of the grid pattern.
 特許文献2の図5Aに図示される格子は、プレビュー画像を10×10のマトリクス状に分割した小領域である。小領域は特徴量を算出する単位であって、CADの検出結果の表示に関連するものではない。 The grid illustrated in FIG. 5A of Patent Document 2 is a small region obtained by dividing the preview image into a 10 × 10 matrix. The small area is a unit for calculating the feature amount and is not related to the display of the CAD detection result.
 特許文献3の図4に図示される格子は、関心領域を抽出する際の処理の単位であって、CADの検出結果の表示に関連するものではない。 The grid illustrated in FIG. 4 of Patent Document 3 is a unit of processing when extracting a region of interest, and is not related to the display of CAD detection results.
 特許文献4には、CADの検出結果の表示に関する記載又は示唆はない。 Patent Document 4 does not describe or suggest the display of CAD detection results.
 本発明はこのような事情に鑑みてなされたもので、特徴領域の検出の信頼性を損なわずに、検出結果を表示し得る、画像処理装置、画像表示システム、画像処理方法及びプログラムを提供することを目的とする。 The present invention has been made in view of such circumstances, and provides an image processing apparatus, an image display system, an image processing method, and a program capable of displaying a detection result without impairing the reliability of detection of a feature region. The purpose is.
 上記目的を達成するために、次の発明態様を提供する。 In order to achieve the above object, the following aspects of the invention are provided.
 本開示に係る画像処理装置は、一以上のプロセッサを備えた画像処理装置であって、プロセッサは、被検体を撮影して得られた医用画像を取得し、医用画像から特徴領域を検出し、医用画像を構成する画素の2以上の整数倍の大きさを有する表示単位格子であり、特徴領域の検出における処理単位の大きさを超える大きさを有する表示単位格子を並べた表示格子を医用画像に設定し、特徴領域の位置に対応する位置に、特徴領域の大きさに対応する一以上の表示単位格子を有する表示枠を、特徴領域に重畳表示させる表示信号を生成する画像処理装置である。 The image processing apparatus according to the present disclosure is an image processing apparatus including one or more processors, in which the processor acquires a medical image obtained by photographing a subject, detects a characteristic region from the medical image, and detects a characteristic region. A display unit cell having a size of two or more integral multiples of the pixels constituting the medical image, and a display unit cell having a size exceeding the size of the processing unit in the detection of the feature area is arranged as a medical image. This is an image processing device that generates a display signal in which a display frame having one or more display unit lattices corresponding to the size of the feature area is superimposed and displayed on the feature area at a position corresponding to the position of the feature area. ..
 本開示に係る画像処理装置によれば、医用画像から検出される特徴領域に対して、医用画像を構成する画素の2以上の整数倍の大きさを有し、医用画像の処理単位の大きさを超える大きさを有する、一以上の表示単位格子を有する表示枠を重畳させる、これにより、特徴領域の検出の信頼性を損なわずに、検出結果を表示し得る。 According to the image processing apparatus according to the present disclosure, the feature region detected from the medical image has a size that is an integral multiple of two or more of the pixels constituting the medical image, and the size of the processing unit of the medical image. By superimposing display frames having one or more display unit arrays having a size exceeding the above, the detection result can be displayed without impairing the reliability of detection of the feature region.
 特徴領域は、肺結節、骨折、出血及び脳梗塞等を含み得る。特徴領域は病変を含み得る。一の医用画像から複数の特徴領域を検出し得る。 Characteristic areas may include lung nodules, fractures, bleeding and cerebral infarction. The feature area may include lesions. Multiple feature regions can be detected from a single medical image.
 他の態様に係る画像処理装置において、プロセッサは、表示単位格子の輪郭と異なる態様を用いて、表示枠の輪郭を表示させる表示信号を生成する。 In the image processing apparatus according to the other aspect, the processor generates a display signal for displaying the outline of the display frame by using an aspect different from the outline of the display unit cell.
 かかる態様によれば、医用画像が表示される画面において、表示枠を目立たせ得る。 According to this aspect, the display frame can be conspicuous on the screen on which the medical image is displayed.
 他の態様に係る画像処理装置において、プロセッサは、特徴領域における縁となる表示単位格子の輪郭の外側に、表示枠の輪郭を表示させる表示信号を生成する。 In the image processing apparatus according to the other aspect, the processor generates a display signal for displaying the outline of the display frame outside the outline of the display unit cell which is the edge in the feature area.
 かかる態様によれば、表示格子に対して表示枠を目立たせ得る。 According to this aspect, the display frame can be made to stand out with respect to the display grid.
 他の態様に係る画像処理装置において、プロセッサは、表示単位格子を非表示とする表示信号を生成する。 In the image processing apparatus according to another aspect, the processor generates a display signal that hides the display unit cell.
 かかる態様によれば、表示枠を目立たせ得る。 According to this aspect, the display frame can be made conspicuous.
 他の態様に係る画像処理装置において、プロセッサは、特徴領域に対応するマスク画像を生成し、マスク画像を表す表示信号を生成する。 In the image processing apparatus according to the other aspect, the processor generates a mask image corresponding to the feature area and generates a display signal representing the mask image.
 かかる態様によれば、表示枠に対してマスク画像が併用される。これにより、特徴領域の視認性が向上し得る。 According to this aspect, a mask image is used together with the display frame. This can improve the visibility of the feature area.
 他の態様に係る画像処理装置において、プロセッサは、特徴領域の種類に応じた表示単位格子の大きさを設定する。 In the image processing apparatus according to another aspect, the processor sets the size of the display unit cell according to the type of the feature area.
 かかる態様によれば、特徴領域の種類に応じた表示枠を表示し得る。 According to this aspect, a display frame corresponding to the type of the feature area can be displayed.
 他の態様に係る画像処理装置において、プロセッサは、医用画像の重心と表示格子の重心と用いて、医用画像と表示格子との位置を合わせる。 In the image processing apparatus according to another aspect, the processor uses the center of gravity of the medical image and the center of gravity of the display grid to align the medical image and the display grid.
 かかる態様によれば、医用画像の重心と表示格子の重心と用いる医用画像と表示格子との位置合わせを実施し得る。 According to such an embodiment, the center of gravity of the medical image and the center of gravity of the display grid can be aligned with the medical image to be used and the display grid.
 他の態様に係る画像処理装置において、プロセッサは、被検体の重心と表示格子の重心と用いて、医用画像と表示格子との位置を合わせる。 In the image processing apparatus according to another aspect, the processor uses the center of gravity of the subject and the center of gravity of the display grid to align the medical image and the display grid.
 かかる態様によれば、被検体の重心と表示格子の重心と用いる医用画像と表示格子との位置合わせを実施し得る。 According to such an embodiment, the center of gravity of the subject and the center of gravity of the display grid can be aligned with the medical image to be used and the display grid.
 他の態様に係る画像処理装置において、プロセッサは、二次元の表示単位格子を二次元状に並べた表示格子を設定する。 In the image processing apparatus according to another aspect, the processor sets a display grid in which two-dimensional display unit grids are arranged in a two-dimensional manner.
 かかる態様によれば、断層画像等の二次元の医用画像において、特徴領域の視認性が向上し得る。 According to this aspect, the visibility of the feature region can be improved in a two-dimensional medical image such as a tomographic image.
 他の態様に係る画像処理装置において、プロセッサは、三次元の表示単位格子を三次元状に並べた表示格子を設定する。 In the image processing apparatus according to another aspect, the processor sets a display grid in which three-dimensional display unit grids are arranged in a three-dimensional manner.
 かかる態様によれば、三次元の医用画像において、特徴領域の視認性が向上し得る。 According to this aspect, the visibility of the feature region can be improved in a three-dimensional medical image.
 他の態様に係る画像処理装置において、プロセッサは、特徴領域を多角形形状として検出する。 In the image processing apparatus according to another aspect, the processor detects the feature area as a polygonal shape.
 かかる態様によれば多角形形状の特徴領域に対して、表示枠の重畳表示を実施し得る。 According to this aspect, the display frame can be superimposed and displayed on the feature area of the polygonal shape.
 本開示に係る画像表示システムは、一以上のプロセッサを備えた画像処理装置と、画像処理装置から送信される表示画像信号を受信し、表示画像信号が表す画像を表示するディスプレイと、を備えた画像表示システムであって、プロセッサは、被検体を撮影して得られた医用画像を取得し、医用画像から特徴領域を検出し、医用画像を構成する画素の2以上の整数倍の大きさを有する表示単位格子であり、特徴領域の検出における処理単位の大きさを超える大きさを有する表示単位格子を並べた表示格子を医用画像に設定し、特徴領域の位置に対応する位置に、特徴領域の大きさに対応する一以上の表示単位格子を有する表示枠を、特徴領域に重畳表示させる表示信号を生成し、ディスプレイは、医用画像に表示枠を重畳表示させる画像表示システムである。 The image display system according to the present disclosure includes an image processing device including one or more processors, and a display that receives a display image signal transmitted from the image processing device and displays an image represented by the display image signal. In an image display system, a processor acquires a medical image obtained by photographing a subject, detects a feature region from the medical image, and determines the size of two or more integral multiples of the pixels constituting the medical image. A display unit cell having a display unit cell and having a size exceeding the size of the processing unit in the detection of the feature area is set in the medical image, and the feature area is set at a position corresponding to the position of the feature area. The display is an image display system that superimposes a display frame on a medical image to generate a display signal that superimposes and displays a display frame having one or more display unit lattices corresponding to the size of.
 本開示に係る画像処理方法は、被検体を撮影して得られた医用画像を取得し、医用画像から特徴領域を検出し、医用画像を構成する画素の2以上の整数倍の大きさを有する表示単位格子であり、特徴領域の検出における処理単位の大きさを超える大きさを有する表示単位格子を並べた表示格子を医用画像に設定し、特徴領域の位置に対応する位置に、特徴領域の大きさに対応する一以上の表示単位格子を有する表示枠を、特徴領域に重畳表示させる表示信号を生成する画像処理方法である。 The image processing method according to the present disclosure acquires a medical image obtained by photographing a subject, detects a characteristic region from the medical image, and has a size of two or more integral multiples of the pixels constituting the medical image. A display grid in which display unit grids that are display unit grids and have a size exceeding the size of the processing unit in the detection of the feature region are arranged in the medical image is set in the medical image, and the feature region is set at a position corresponding to the position of the feature region. This is an image processing method for generating a display signal in which a display frame having one or more display unit arrays corresponding to a size is superimposed and displayed on a feature area.
 本開示に係るプログラムは、コンピュータに、被検体を撮影して得られた医用画像を取得する機能、医用画像から特徴領域を検出する機能、医用画像を構成する画素の2以上の整数倍の大きさを有する表示単位格子であり、特徴領域の検出における処理単位の大きさを超える大きさを有する表示単位格子を並べた表示格子を医用画像に設定する機能及び特徴領域の位置に対応する位置に、特徴領域の大きさに対応する一以上の表示単位格子を有する表示枠を、特徴領域に重畳表示させる表示信号を生成する機能を実現させるプログラムである。 The program according to the present disclosure has a function of acquiring a medical image obtained by photographing a subject, a function of detecting a feature region from the medical image, and a size of two or more integral multiples of the pixels constituting the medical image. A function to set a display grid in which display unit grids having a size exceeding the size of the processing unit in the detection of the feature area are arranged in the medical image and a position corresponding to the position of the feature area. , A program that realizes a function of generating a display signal in which a display frame having one or more display unit grids corresponding to the size of a feature area is superimposed and displayed on the feature area.
 本発明によれば、医用画像から検出される特徴領域に対して、医用画像を構成する画素の2以上の整数倍の大きさを有し、医用画像の処理単位のサイズを超えるサイズを有する、一以上の表示単位格子を有する表示枠を重畳させる、これにより、特徴領域の検出の信頼性を損なわずに、検出結果を表示し得る。 According to the present invention, the feature region detected from the medical image has a size that is an integral multiple of two or more of the pixels constituting the medical image and has a size that exceeds the size of the processing unit of the medical image. A display frame having one or more display unit arrays is superimposed, whereby the detection result can be displayed without impairing the reliability of detection of the feature region.
図1は実施形態に係る医用画像表示システムの機能ブロック図である。FIG. 1 is a functional block diagram of a medical image display system according to an embodiment. 図2は実施形態に係る医用画像処理方法の手順を示すフローチャートである。FIG. 2 is a flowchart showing the procedure of the medical image processing method according to the embodiment. 図3は医用画像に設定される表示格子の模式図である。FIG. 3 is a schematic view of a display grid set on a medical image. 図4は被検体の重心を用いて医用画像と表示格子との位置合わせを実施する態様の説明図である。FIG. 4 is an explanatory diagram of an embodiment in which the medical image and the display grid are aligned using the center of gravity of the subject. 図5は三次元画像の重心と断層画像の重心との対応関係の一例の説明図である。FIG. 5 is an explanatory diagram of an example of the correspondence between the center of gravity of the three-dimensional image and the center of gravity of the tomographic image. 図6は三次元画像の重心と断層画像の重心との対応関係の他の例の説明図である。FIG. 6 is an explanatory diagram of another example of the correspondence between the center of gravity of the three-dimensional image and the center of gravity of the tomographic image. 図7は表示格子の設定画面の一例を示す説明図である。FIG. 7 is an explanatory diagram showing an example of a display grid setting screen. 図8は医用画像に重畳表示される表示枠の模式図である。FIG. 8 is a schematic view of a display frame superimposed on a medical image. 図9は表示枠の変形例の説明図である。FIG. 9 is an explanatory diagram of a modified example of the display frame. 図10は実施形態の作用効果の説明図である。FIG. 10 is an explanatory diagram of the action and effect of the embodiment.
 以下、添付図面に従って本発明の好ましい実施の形態について詳説する。本明細書では、同一の構成要素には同一の参照符号を付して、重複する説明は適宜省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification, the same components are designated by the same reference numerals, and duplicate description will be omitted as appropriate.
 [医用画像表示システムの構成例]
 〔医用画像表示システムの全体構成〕
 図1は実施形態に係る医用画像表示システムの機能ブロック図である。医用画像表示システム10は、医用画像処理装置12、医用画像保管装置18及び医用画像ビューア装置20を備える。
[Medical image display system configuration example]
[Overall configuration of medical image display system]
FIG. 1 is a functional block diagram of a medical image display system according to an embodiment. The medical image display system 10 includes a medical image processing device 12, a medical image storage device 18, and a medical image viewer device 20.
 医用画像処理装置12は、病院及び検査ラボ等において、ユーザが使用する端末装置である。医用画像処理装置12はコンピュータを適用し得る。医用画像処理装置12は、プロセッサ14及びメモリ16を備える。 The medical image processing device 12 is a terminal device used by a user in hospitals, examination laboratories, and the like. The medical image processing device 12 may apply a computer. The medical image processing device 12 includes a processor 14 and a memory 16.
 メモリ16は、プロセッサ14に実行させる命令を含むプログラムが記憶されるプログラムメモリが含まれる。メモリ16は、各種のデータが記憶されるデータメモリを含み得る。 The memory 16 includes a program memory in which a program including an instruction to be executed by the processor 14 is stored. The memory 16 may include a data memory in which various types of data are stored.
 医用画像処理装置12は、プロセッサ14がメモリ16から読み出したプログラムを実行し、医用画像取得機能、特徴領域検出機能、表示格子設定機能、位置合わせ機能、表示枠設定機能、表示画像信号生成機能及び表示画像信号送信機能を含む各種機能を実現する。 The medical image processing device 12 executes a program read from the memory 16 by the processor 14, and has a medical image acquisition function, a feature area detection function, a display grid setting function, an alignment function, a display frame setting function, a display image signal generation function, and a display image signal generation function. Realize various functions including display image signal transmission function.
 ここで、画像という用語は、画像を表す画像信号及び画像を表す画像データの意味を含み得る。また、生成という用語は作成及び生産等の用語を同義として解釈し得る。更に、信号の送信という用語は、信号の出力源からの信号の出力の意味を含み得る。なお、実施形態に記載のプロセッサ14は、一以上のプロセッサの一例である。 Here, the term image may include the meaning of an image signal representing an image and image data representing an image. In addition, the term generation can be interpreted as synonymous with terms such as production and production. Further, the term signal transmission may include the meaning of the output of a signal from the source of the signal. The processor 14 described in the embodiment is an example of one or more processors.
 医用画像取得機能は、医用画像保管装置18等から処理対象の医用画像を取得する機能である。医用画像の取得は、医用画像の変換及び新たな医用画像の生成が含まれ得る。例えば、CT撮影装置28等から取得したローデータを用いて二次元断層画像を生成する場合は、二次元断層画像の取得の概念に含まれ得る。なお、断層画像という用語は、断面画像の概念を含み得る。 The medical image acquisition function is a function of acquiring a medical image to be processed from a medical image storage device 18 or the like. Acquisition of a medical image may include conversion of the medical image and generation of a new medical image. For example, when a two-dimensional tomographic image is generated using raw data acquired from a CT imaging device 28 or the like, it can be included in the concept of acquiring a two-dimensional tomographic image. The term tomographic image may include the concept of a cross-sectional image.
 特徴領域は、肺結節、骨折、くも膜下出血及び脳梗塞など、医用画像における特徴として取り扱われる領域が含まれ得る。一つの医用画像において複数の特徴領域が検出されてもよい。特徴領域の抽出は、公知の手法を適用し得る。 The feature area may include areas treated as features in medical images, such as lung nodules, fractures, subarachnoid hemorrhage and cerebral infarction. Multiple feature regions may be detected in one medical image. A known method can be applied to the extraction of the feature region.
 特徴領域検出機能は、特徴領域のマスク画像を生成し得る。マスク画像の生成は公知の手法を適用し得る。特徴領域検出の処理単位は、医用画像を構成する画素を適用してもよいし、複数の画素を含む領域を適用してもよい。なお、医用画像は図3等に断層画像100として図示する。特徴領域は符号102を用いて図3等に図示する。 The feature area detection function can generate a mask image of the feature area. A known method can be applied to the generation of the mask image. As the processing unit for detecting the feature region, pixels constituting the medical image may be applied, or a region including a plurality of pixels may be applied. The medical image is shown as a tomographic image 100 in FIG. 3 and the like. The feature region is illustrated in FIG. 3 and the like using reference numeral 102.
 表示格子は、特徴領域に重畳表示させる表示枠を規定する際に適用される格子である。表示格子は、複数の表示単位格子が、二次元状又は三次元状に並べられる構造を有する。すなわち、二次元状の表示格子を二次元画像に適用し得る。三次元状の表示格子を三次元画像に適用し得る。 The display grid is a grid applied when defining a display frame to be superimposed and displayed on the feature area. The display grid has a structure in which a plurality of display unit grids are arranged in a two-dimensional or three-dimensional manner. That is, a two-dimensional display grid can be applied to a two-dimensional image. A three-dimensional display grid can be applied to a three-dimensional image.
 表示格子設定機能は、各次元における表示単位格子の数の設定及び表示単位格子の大きさの設定が含まれる。表示単位格子の大きさは、医用画像を構成する画素の大きさの正の整数倍であり、かつ、特徴領域検出の処理単位の大きさを超える大きさが適用される。 The display grid setting function includes setting the number of display unit grids in each dimension and setting the size of the display unit grids. The size of the display unit cell is a positive integer multiple of the size of the pixels constituting the medical image, and a size exceeding the size of the processing unit for detecting the feature area is applied.
 例えば、特徴領域検出の処理単位が一画素の場合、表示単位格子は二画素以上とされる。二次元状の表示格子の場合、表示単位格子の大きさは表示単位格子の面積が適用される。三次元状の表示格子の場合、表示単位格子の大きさは表示単位格子の体積が適用される。 For example, when the processing unit for feature area detection is one pixel, the display unit lattice is two or more pixels. In the case of a two-dimensional display grid, the area of the display unit grid is applied to the size of the display unit grid. In the case of a three-dimensional display grid, the volume of the display unit grid is applied to the size of the display unit grid.
 位置合わせ機能は、医用画像における被検体と表示格子との位置合わせを実施する機能である。位置合わせの例として、被検体の重心の位置と表示格子の重心の位置とを合わせる態様が挙げられる。 The alignment function is a function for aligning the subject and the display grid in the medical image. An example of alignment is an embodiment in which the position of the center of gravity of the subject and the position of the center of gravity of the display grid are aligned.
 表示枠は、特徴領域を囲む枠であり、医用画像に重畳表示される。ここでいう特徴領域を囲むとは、表示枠の内部に特徴領域が内包されていてもよいし、表示枠が特徴領域の外縁と交差していてもよい。 The display frame is a frame that surrounds the feature area and is superimposed on the medical image. Enclosing the feature area here may mean that the feature area is included inside the display frame, or the display frame may intersect with the outer edge of the feature area.
 二次元状の表示格子の場合、表示枠は二次元形状が適用される。また、三次元状の表示格子の場合、表示枠は三次元形状が適用される。 In the case of a two-dimensional display grid, a two-dimensional shape is applied to the display frame. Further, in the case of a three-dimensional display grid, a three-dimensional shape is applied to the display frame.
 表示画像信号生成機能は、ディスプレイ22を用いて表示させる表示画像を表す表示画像信号を生成する機能である。表示画像信号は、医用画像を表す表示画像信号及び表示枠を表す表示画像信号が含まれる。表示画像信号は、マスク画像等の特徴領域を表す表示画像信号及び表示格子を表す表示画像信号が含まれ得る。 The display image signal generation function is a function of generating a display image signal representing a display image to be displayed using the display 22. The display image signal includes a display image signal representing a medical image and a display image signal representing a display frame. The display image signal may include a display image signal representing a feature area such as a mask image and a display image signal representing a display grid.
 表示画像信号送信機能は、ディスプレイ22を用いて表示させる画像を表す表示画像信号を医用画像ビューア装置20へ送信する機能である。ディスプレイ22は表示画像信号に基づき医用画像等を表示する。なお、実施形態に記載の表示画像信号は表示信号の一例である。 The display image signal transmission function is a function of transmitting a display image signal representing an image to be displayed using the display 22 to the medical image viewer device 20. The display 22 displays a medical image or the like based on the displayed image signal. The display image signal described in the embodiment is an example of the display signal.
 医用画像保管装置18は、DICOM規格で規定される付帯情報が付加された医用画像が保管される。医用画像は、被検体を撮影するCT撮影装置28及びMRI撮影装置30等のモダリティを用いて取得されるローデータでもよいし、ローデータから生成されるボリュームデータでもよい。医用画像保管装置18は、大容量ストレージ装置を適用し得る。なお、DICOMは、Digital Imaging and Communication in Medicineの省略語である。 The medical image storage device 18 stores medical images to which incidental information specified by the DICOM standard is added. The medical image may be raw data acquired by using a modality such as a CT imaging device 28 and an MRI imaging device 30 for photographing a subject, or may be volume data generated from the raw data. The medical image storage device 18 may apply a large-capacity storage device. DICOM is an abbreviation for Digital Imaging and Communication in Medicine.
 医用画像ビューア装置20は、ユーザが医用画像を観察する際に使用される。医用画像ビューア装置20は、ディスプレイ22及び入力装置24を備える。ディスプレイ22は、医用画像処理装置12から取得した表示画像信号が表す画像を表示する。ディスプレイ22は、医用画像処理装置12の指令に基づき、医用画像処理装置12において処理が施される医用画像及び医用画像保管装置18に保管される医用画像等を表示し得る。 The medical image viewer device 20 is used when the user observes a medical image. The medical image viewer device 20 includes a display 22 and an input device 24. The display 22 displays an image represented by a display image signal acquired from the medical image processing device 12. The display 22 can display a medical image processed by the medical image processing device 12 and a medical image stored in the medical image storage device 18 based on a command of the medical image processing device 12.
 入力装置24は、ユーザの操作に応じた入力信号を医用画像処理装置12へ送信する。入力装置24は、キーボード、マウス及びジョイスティック等の操作部材を適用し得る。タッチパネル方式のディスプレイ22を適用して、ディスプレイ22と入力装置24とを一体構成としてもよい。 The input device 24 transmits an input signal according to the user's operation to the medical image processing device 12. The input device 24 may apply operating members such as a keyboard, mouse and joystick. A touch panel type display 22 may be applied to integrally configure the display 22 and the input device 24.
 医用画像表示システム10は、ネットワーク26を経由して、CT撮影装置28等のモダリティと通信可能に接続される。ネットワーク26は、LAN(Local Area Network)を適用し得る。ネットワーク26は病院等における構内LANを適用し得る。ネットワーク26は、病院等の外部のネットワークが含まれていてもよい。 The medical image display system 10 is communicably connected to a modality such as a CT imaging device 28 via a network 26. A LAN (Local Area Network) can be applied to the network 26. The network 26 may apply a premises LAN in a hospital or the like. The network 26 may include an external network such as a hospital.
 モダリティは、PET装置、超音波診断装置及びCR装置等を含み得る。なお、PETはPositron Emission Tomographyの省略語である。CRはComputed Radiographyの省略語である。 Modality may include PET devices, ultrasonic diagnostic devices, CR devices, and the like. PET is an abbreviation for Positron Emission Tomography. CR is an abbreviation for Computed Radiography.
 〔医用画像処理方法の手順〕
 図2は実施形態に係る医用画像処理方法の手順を示すフローチャートである。医用画像取得工程S10ではプロセッサ14は医用画像保管装置18等から処理対象の医用画像を取得する。
[Procedure of medical image processing method]
FIG. 2 is a flowchart showing the procedure of the medical image processing method according to the embodiment. In the medical image acquisition step S10, the processor 14 acquires the medical image to be processed from the medical image storage device 18 and the like.
 医用画像の取得は、プロセッサ14において処理可能な形式のデータを取得してもよいし、任意の形式のデータを取得し、プロセッサ14において処理可能な形式のデータへ変換する態様を適用してもよい。医用画像取得工程S10の後に特徴領域検出工程S12へ進む。 The medical image may be acquired by acquiring data in a format that can be processed by the processor 14, or by applying an aspect of acquiring data in an arbitrary format and converting it into data in a format that can be processed by the processor 14. good. After the medical image acquisition step S10, the process proceeds to the feature region detection step S12.
 特徴領域検出工程S12では、プロセッサ14は取得した医用画像から特徴領域の自動検出を実施する。特徴領域検出工程S12の後に表示格子設定工程S14へ進む。特徴領域検出工程S12においてプロセッサ14は、指定される特徴の種類に基づく特徴領域の検出をしてもよい。 In the feature area detection step S12, the processor 14 automatically detects the feature area from the acquired medical image. After the feature area detection step S12, the process proceeds to the display grid setting step S14. In the feature region detection step S12, the processor 14 may detect a feature region based on the designated feature type.
 医用画像取得工程S10において、特徴領域の自動検出が実施された医用画像を取得してもよい。かかる態様では、特徴領域検出工程S12に代わり、プロセッサ14は医用画像に付帯する特徴領域の情報を取得する。 In the medical image acquisition step S10, a medical image in which the feature region is automatically detected may be acquired. In such an embodiment, instead of the feature region detection step S12, the processor 14 acquires information on the feature region incidental to the medical image.
 表示格子設定工程S14では、プロセッサ14は医用画像に対して表示格子を設定する。表示格子設定工程S14において、図1に示す入力装置24を用いて、ユーザは各次元における表示単位格子の数及び表示単位格子の大きさを設定し得る。 In the display grid setting step S14, the processor 14 sets the display grid for the medical image. In the display grid setting step S14, the user can set the number of display unit grids and the size of the display unit grids in each dimension by using the input device 24 shown in FIG.
 特徴領域検出工程S12と表示格子設定工程S14とは、順序が入れ替えられてもよいし、両者が並行して実施されてもよい。表示格子設定工程S14の後に位置合わせ工程S16へ進む。 The order of the feature area detection step S12 and the display grid setting step S14 may be exchanged, or both may be performed in parallel. After the display grid setting step S14, the process proceeds to the alignment step S16.
 位置合わせ工程S16では、プロセッサ14は医用画像における被検体と表示格子との位置合わせを実施する。医用画像における被検体と表示格子との位置合わせは、医用画像の重心と表示格子の重心とを合わせる態様を適用し得る。 In the alignment step S16, the processor 14 aligns the subject and the display grid in the medical image. For the alignment of the subject and the display grid in the medical image, an embodiment in which the center of gravity of the medical image and the center of gravity of the display grid are aligned can be applied.
 断層画像等の二次元の医用画像における重心の位置は、二次元直交座標系を用いて規定し得る。三次元の医用画像における重心の位置は、三次元直交座標系を用いて規定し得る。位置合わせ工程S16の後に表示枠設定工程S18へ進む。 The position of the center of gravity in a two-dimensional medical image such as a tomographic image can be defined using a two-dimensional Cartesian coordinate system. The position of the center of gravity in a three-dimensional medical image can be defined using a three-dimensional Cartesian coordinate system. After the alignment step S16, the process proceeds to the display frame setting step S18.
 表示枠設定工程S18では、プロセッサ14は特徴領域検出工程S12において検出される特徴領域の大きさ及び位置に応じた表示枠を設定する。表示枠設定工程S18では、プロセッサ14は特徴領域が含まれる一以上の表示単位格子を特定し、特定された一以上の表示単位格子の集合体における輪郭を表示枠として設定する。 In the display frame setting step S18, the processor 14 sets the display frame according to the size and position of the feature area detected in the feature area detection step S12. In the display frame setting step S18, the processor 14 specifies one or more display unit grids including the feature area, and sets the contour in the aggregate of the specified one or more display unit grids as the display frame.
 複数の特徴領域が検出される場合、プロセッサ14は特徴領域ごとに表示枠を設定し得る。また、プロセッサ14は一つの特徴領域に対して一つの表示枠を設定し得る。すなわち、プロセッサ14は複数の特徴領域のそれぞれについて、一つ以上の表示枠を設定し得る。なお、断層画像では、分離して視認される二以上の特徴領域が同一の特徴領域の場合があり得る。 When a plurality of feature areas are detected, the processor 14 can set a display frame for each feature area. Further, the processor 14 may set one display frame for one feature area. That is, the processor 14 may set one or more display frames for each of the plurality of feature areas. In the tomographic image, there may be a case where two or more feature regions that are separated and visually recognized are the same feature region.
 一方、プロセッサ14は、発生源が同じ複数の特徴領域について、一つの表示枠を設定し得る。例えば、特徴領域の種類が出血の場合、出血の発生源が同じ複数の出血に対応する特徴領域に対して、一つの表示枠を設定し得る。表示枠設定工程S18の後に表示画像信号生成工程S20へ進む。 On the other hand, the processor 14 can set one display frame for a plurality of feature areas having the same source. For example, when the type of the characteristic region is bleeding, one display frame can be set for the characteristic region corresponding to a plurality of bleedings having the same source of bleeding. After the display frame setting step S18, the process proceeds to the display image signal generation step S20.
 表示画像信号生成工程S20では、プロセッサ14は図1に示すディスプレイ22に表示させる表示画像を表す表示画像信号を生成する。すなわち、プロセッサ14は医用画像の表示画像信号及び表示枠の表示画像信号を生成する。プロセッサ14は、表示格子の表示画像信号及び表示単位格子の表示画像信号を生成してもよい。表示画像信号生成工程S20の後に表示画像信号送信工程S22へ進む。 In the display image signal generation step S20, the processor 14 generates a display image signal representing the display image to be displayed on the display 22 shown in FIG. That is, the processor 14 generates the display image signal of the medical image and the display image signal of the display frame. The processor 14 may generate the display image signal of the display grid and the display image signal of the display unit grid. After the display image signal generation step S20, the process proceeds to the display image signal transmission step S22.
 表示画像信号送信工程S22では、プロセッサ14は表示画像信号生成工程S20において生成される表示画像信号を医用画像ビューア装置20へ送信する。表示画像信号送信工程S22の後にプロセッサ14は画像処理方法の手順を終了させる。 In the display image signal transmission step S22, the processor 14 transmits the display image signal generated in the display image signal generation step S20 to the medical image viewer device 20. After the display image signal transmission step S22, the processor 14 ends the procedure of the image processing method.
 医用画像ビューア装置20は受信した表示画像信号に基づき、ディスプレイ22を用いて、医用画像に対して特徴領域を囲む表示枠が重畳される表示画像を表示させる。医用画像ビューア装置20は、ディスプレイ22を用いて、特徴領域のマスク画像及び表示格子を医用画像に重畳表示させてもよい。 Based on the received display image signal, the medical image viewer device 20 uses the display 22 to display a display image on which a display frame surrounding the feature area is superimposed on the medical image. The medical image viewer device 20 may use the display 22 to superimpose and display the mask image and the display grid of the feature region on the medical image.
 [表示格子及び表示枠の具体例]
 〔表示格子の設定〕
 図3は医用画像に設定される表示格子の模式図である。同図には医用画像として、CT撮影装置28を用いて撮影された脳の断層画像100であり、特徴領域102としてくも膜下出血が検出された断層画像100を示す。断層画像100は、特徴領域102の検出結果であるマスク画像103が重畳表示される。
[Specific examples of display grid and display frame]
[Display grid settings]
FIG. 3 is a schematic view of a display grid set on a medical image. The figure shows a tomographic image 100 of the brain taken by using a CT imaging device 28 as a medical image, and a tomographic image 100 in which subarachnoid hemorrhage is detected as a characteristic region 102. On the tomographic image 100, the mask image 103, which is the detection result of the feature region 102, is superimposed and displayed.
 特徴領域102は多角形形状を適用し得る。すなわち、特徴領域102の縁を構成する画素の代表点を、線分を用いて結んだ特徴領域102の輪郭の平面形状は多角形形状となる。画素の代表点は画素の重心を適用し得る。特徴領域102の輪郭に対してスムージング等の画像処理を施し、曲線及び線分の少なくともいずれかを用いて特徴領域102の輪郭を構成し、特徴領域102を任意形状としてもよい。 A polygonal shape can be applied to the feature area 102. That is, the planar shape of the contour of the feature region 102 in which the representative points of the pixels forming the edge of the feature region 102 are connected by using a line segment is a polygonal shape. The center of gravity of the pixel can be applied to the representative point of the pixel. Image processing such as smoothing may be performed on the contour of the feature region 102, the contour of the feature region 102 may be formed by using at least one of a curve and a line segment, and the feature region 102 may have an arbitrary shape.
 図1に示すプロセッサ14は、図3に示す断層画像100に対して、断層画像100と同じサイズの表示格子110であり、5×5の分割数を有し、表示単位格子112の数が25である表示格子110を設定する。図3には二次元の医用画像である断層画像100に対して、二次元の表示単位格子112が二次元状に並べられる二次元の表示格子110を図示する。二次元の表示単位格子112の例としてセルが挙げられる。 The processor 14 shown in FIG. 1 is a display grid 110 having the same size as the tomographic image 100 with respect to the tomographic image 100 shown in FIG. 3, has a number of divisions of 5 × 5, and has 25 display unit grids 112. The display grid 110 is set. FIG. 3 illustrates a two-dimensional display grid 110 in which two-dimensional display unit grids 112 are arranged in a two-dimensional manner with respect to a tomographic image 100 which is a two-dimensional medical image. A cell is an example of a two-dimensional display unit cell 112.
 表示格子110の分割数は、7×7及び9×9など、5×5よりも細かくしてもよいし、3×3など、5×5よりも粗くしてもよい。表示格子110の分割数は2×2以上であればよい。表示格子110の分割数は、3×4及び9×16など、縦横比が1でなくてもよい。 The number of divisions of the display grid 110 may be finer than 5x5 such as 7x7 and 9x9, or coarser than 5x5 such as 3x3. The number of divisions of the display grid 110 may be 2 × 2 or more. The number of divisions of the display grid 110 does not have to be 1, such as 3 × 4 and 9 × 16.
 〔表示格子の位置合わせ〕
 表示格子110は、断層画像100との位置合わせの基準を四隅のいずれかとし得る。図3に示す表示格子110は左上端位置111が位置合わせの基準とされる。図1に示すプロセッサ14は、断層画像100の左上端位置101と表示格子110の左上端位置111と重ねて、断層画像100と表示格子110との位置合わせを実施し得る。表示格子110は被検体の全体を囲む形状であればよく、表示格子110は断層画像100の全体を囲むものでなくてもよい。
[Alignment of display grid]
The display grid 110 may use any of the four corners as a reference for alignment with the tomographic image 100. In the display grid 110 shown in FIG. 3, the upper left end position 111 is used as a reference for alignment. The processor 14 shown in FIG. 1 can superimpose the upper left end position 101 of the tomographic image 100 and the upper left end position 111 of the display grid 110 to align the tomographic image 100 and the display grid 110. The display grid 110 may have a shape that surrounds the entire subject, and the display grid 110 does not have to surround the entire tomographic image 100.
 図4は被検体領域の重心を用いて医用画像と表示格子との位置合わせを実施する態様の説明図である。図1に示すプロセッサ14は、断層画像100から被検体領域104を抽出し、被検体領域104の重心106を算出し、表示格子110の重心114を被検体領域104の重心106へ重ねて、表示格子110と断層画像100との位置合わせを実施し得る。 FIG. 4 is an explanatory diagram of an embodiment in which the medical image and the display grid are aligned using the center of gravity of the subject region. The processor 14 shown in FIG. 1 extracts the subject region 104 from the tomographic image 100, calculates the center of gravity 106 of the subject region 104, superimposes the center of gravity 114 of the display grid 110 on the center of gravity 106 of the subject region 104, and displays the image. Alignment between the grid 110 and the tomographic image 100 can be performed.
 図5は三次元画像の重心と断層画像の重心との対応関係を示す説明図である。なお、図5では、断層画像100A等の厚みを簡略化して図示する。図5に示す三次元画像120に対して、三次元画像120を構成するボクセルを三次元状の表示単位格子123として設定し得る。三次元状の表示格子121は表示単位格子123が三次元状に並べられて構成される。図6に示す三次元画像120も同様である。 FIG. 5 is an explanatory diagram showing the correspondence between the center of gravity of the three-dimensional image and the center of gravity of the tomographic image. In FIG. 5, the thickness of the tomographic image 100A and the like is simplified and illustrated. For the three-dimensional image 120 shown in FIG. 5, the voxels constituting the three-dimensional image 120 can be set as the three-dimensional display unit lattice 123. The three-dimensional display grid 121 is configured by arranging the display unit grids 123 in a three-dimensional manner. The same applies to the three-dimensional image 120 shown in FIG.
 断層画像100に対応する三次元画像120は、ローデータを用いて生成されてもよいし、断層画像100Aから断層画像100Eまでを用いて生成されてもよい。図6に示す断層画像100Aから断層画像100Eついても同様である。 The three-dimensional image 120 corresponding to the tomographic image 100 may be generated using raw data, or may be generated using the tomographic image 100A to the tomographic image 100E. The same applies to the tomographic image 100A to the tomographic image 100E shown in FIG.
 図5には三次元画像120に対応する断層画像100A、断層画像100B、断層画像100C、断層画像100D及び断層画像100Eを示す。なお、以下の説明において、断層画像100Aから断層画像100Eまでを総称して、断層画像100と記載することがある。 FIG. 5 shows a tomographic image 100A, a tomographic image 100B, a tomographic image 100C, a tomographic image 100D, and a tomographic image 100E corresponding to the three-dimensional image 120. In the following description, the tomographic image 100A to the tomographic image 100E may be collectively referred to as the tomographic image 100.
 断層画像100Aから断層画像100Eまでのそれぞれは、三次元画像120の被検体122における重心124が投影され、重心106が規定される。断層画像100Aから断層画像100Eまでのそれぞれの位置を合わせて重ねる場合、それぞれの重心106の位置は一致する。すなわち、断層画像100Aから断層画像100Eまでのそれぞれは、一括して表示格子110の位置合わせが実施される。 For each of the tomographic image 100A to the tomographic image 100E, the center of gravity 124 of the subject 122 of the three-dimensional image 120 is projected, and the center of gravity 106 is defined. When the respective positions from the tomographic image 100A to the tomographic image 100E are aligned and overlapped, the positions of the respective centers of gravity 106 are the same. That is, the alignment of the display grid 110 is collectively performed for each of the tomographic image 100A to the tomographic image 100E.
 符号126は、三次元画像120における重心124を通る線を示す。符号108は、断層画像100Aから断層画像100Eまでのそれぞれの重心106を通る線である。線108は、断層画像100Aから断層画像100Eまでのそれぞれと直交する。 Reference numeral 126 indicates a line passing through the center of gravity 124 in the three-dimensional image 120. Reference numeral 108 is a line passing through each center of gravity 106 from the tomographic image 100A to the tomographic image 100E. The line 108 is orthogonal to each of the tomographic image 100A to the tomographic image 100E.
 図6は三次元画像の重心と断層画像の重心との対応関係の他の例の説明図である。図6に示す断層画像100Aは、被検体領域104Aに基づき重心106Aが規定される。同様に、断層画像100Bから断層画像100Eまでのそれぞれは、被検体領域104B、被検体領域104C、被検体領域104D及び被検体領域104Eに基づき、それぞれの重心106B、重心106C、重心106D及び重心106Eが規定される。 FIG. 6 is an explanatory diagram of another example of the correspondence between the center of gravity of the three-dimensional image and the center of gravity of the tomographic image. In the tomographic image 100A shown in FIG. 6, the center of gravity 106A is defined based on the subject area 104A. Similarly, each of the tomographic image 100B to the tomographic image 100E is based on the subject area 104B, the subject area 104C, the subject area 104D, and the subject area 104E, respectively, based on the respective center of gravity 106B, center of gravity 106C, center of gravity 106D, and center of gravity 106E. Is stipulated.
 図6に示す断層画像100Aから断層画像100Eまでのそれぞれは、個別に表示格子110の位置合わせが実施される。 Each of the tomographic image 100A to the tomographic image 100E shown in FIG. 6 is individually aligned with the display grid 110.
 〔表示格子の設定〕
 図7は表示格子の設定画面の一例を示す説明図である。同図に示す設定画面200は図1に示すディスプレイ22を用いて表示される。ユーザは、ディスプレイ22を用いて表示される設定画面200を見て、入力装置24を操作して、表示格子のパラメータを設定し得る。
[Display grid settings]
FIG. 7 is an explanatory diagram showing an example of a display grid setting screen. The setting screen 200 shown in FIG. 1 is displayed using the display 22 shown in FIG. The user can see the setting screen 200 displayed by using the display 22 and operate the input device 24 to set the parameters of the display grid.
 設定画面200は、医用画像表示領域202及びパラメータ表示領域204が含まれる。医用画像表示領域202は医用画像が表示される。図7には医用画像として、図3等に示す脳の断層画像100を示す。なお、図7では、図4等に示す断層画像100の重心106及び表示格子110の重心124の図示を省略する。 The setting screen 200 includes a medical image display area 202 and a parameter display area 204. A medical image is displayed in the medical image display area 202. FIG. 7 shows a tomographic image 100 of the brain shown in FIG. 3 and the like as a medical image. In FIG. 7, the center of gravity 106 of the tomographic image 100 and the center of gravity 124 of the display grid 110 shown in FIG. 4 and the like are not shown.
 パラメータ表示領域204は、基準表示領域206、分割数表示領域208及び特徴領域表示領域210が含まれる。パラメータ表示領域204は、医用画像表示領域202に表示させる情報の表示と非表示とを切り替えるボタン等を含み得る。 The parameter display area 204 includes a reference display area 206, a division number display area 208, and a feature area display area 210. The parameter display area 204 may include a button for switching between display and non-display of information to be displayed in the medical image display area 202.
 基準表示領域206は、断層画像100と表示格子110との位置合わせの基準が表示される。基準表示領域206は、図1に示す入力装置24を用いてユーザが入力する情報を表示し得る。プロセッサ14は、ユーザが入力した基準を適用して、断層画像100と表示格子110との位置合わせを実施し得る。 In the reference display area 206, the reference for alignment between the tomographic image 100 and the display grid 110 is displayed. The reference display area 206 can display information input by the user using the input device 24 shown in FIG. The processor 14 may apply the criteria input by the user to perform the alignment of the tomographic image 100 and the display grid 110.
 予め規定される位置合わせの基準を用いて、プロセッサ14が断層画像100と表示格子110との位置合わせを実施した場合、基準表示領域206は予め規定される位置合わせの基準が表示される。ユーザは、入力装置24を用いて予め規定される位置合わせの基準を変更し得る。 When the processor 14 aligns the tomographic image 100 with the display grid 110 using the predetermined alignment reference, the reference display area 206 displays the predetermined alignment reference. The user may change the pre-defined alignment criteria using the input device 24.
 分割数表示領域208は、表示格子110の分割数が表示される。図7には二次元状の表示格子110における分割数を図示する。分割数表示領域208は、図1に示す入力装置24を用いてユーザが入力する情報を表示し得る。プロセッサ14は、ユーザが入力した分割数を用いて表示格子110を設定し得る。 The number of divisions display area 208 displays the number of divisions of the display grid 110. FIG. 7 shows the number of divisions in the two-dimensional display grid 110. The division number display area 208 can display information input by the user using the input device 24 shown in FIG. The processor 14 may set the display grid 110 using the number of divisions input by the user.
 予め規定される分割数の値を用いて、プロセッサ14が表示格子110を設定する場合、分割数表示領域208は、予め規定される分割数の値が表示される。ユーザは、入力装置24を用いて予め規定される分割数を変更し得る。 When the processor 14 sets the display grid 110 using the value of the number of divisions specified in advance, the value of the number of divisions specified in advance is displayed in the number of divisions display area 208. The user can change the predetermined number of divisions by using the input device 24.
 特徴領域表示領域210は、特徴領域102の種類が表示される。プロセッサ14は、検出する特徴領域102の種類を特徴領域表示領域210へ表示させる。プロセッサ14は、特徴領域102の種類に応じて、表示格子110の分割数を設定し得る。換言すると、プロセッサ14は特徴領域102の種類に応じて、表示単位格子112の大きさを設定し得る。 The feature area display area 210 displays the type of the feature area 102. The processor 14 displays the type of the feature area 102 to be detected in the feature area display area 210. The processor 14 may set the number of divisions of the display grid 110 according to the type of the feature area 102. In other words, the processor 14 can set the size of the display unit cell 112 according to the type of the feature area 102.
 プロセッサ14は、特徴領域102の種類及び表示格子110の分割数等に応じて、断層画像100と表示格子110との位置合わせの基準を設定し得る。基準表示領域206、分割数表示領域208及び特徴領域表示領域210は、プルダウンメニューを適用して、予め規定される複数の選択肢から任意の選択肢を選択する態様を適用し得る。 The processor 14 can set a reference for alignment between the tomographic image 100 and the display grid 110 according to the type of the feature area 102, the number of divisions of the display grid 110, and the like. The reference display area 206, the number of divisions display area 208, and the feature area display area 210 may apply an embodiment in which a pull-down menu is applied to select an arbitrary option from a plurality of predetermined options.
 図5及び図6に示す三次元画像120と表示格子121との位置合わせは、二次元状の断層画像100と二次元状の表示格子110との位置合わせと同様に実施し得る。 The alignment of the three-dimensional image 120 and the display grid 121 shown in FIGS. 5 and 6 can be performed in the same manner as the alignment of the two-dimensional tomographic image 100 and the two-dimensional display grid 110.
 〔表示枠の生成〕
 図8は医用画像に重畳表示される表示枠の模式図である。同図に示す断層画像100は、表示枠116が重畳される。表示枠116は、特徴領域102を含む複数の表示単位格子112の集合における輪郭を表す。
[Generate display frame]
FIG. 8 is a schematic view of a display frame superimposed on a medical image. The display frame 116 is superimposed on the tomographic image 100 shown in the figure. The display frame 116 represents an outline in a set of a plurality of display unit lattices 112 including a feature area 102.
 表示枠116は、特徴領域102を含むすべての表示単位格子112の輪郭を適用してもよい。表示枠116を構成する線は、任意の太さ及び任意の色を適用し得る。表示枠116を構成する線は、表示格子110を構成する線及び表示単位格子112を構成する線と異なる態様を適用し得る。 The display frame 116 may apply the contours of all the display unit lattices 112 including the feature area 102. The lines constituting the display frame 116 may be applied with any thickness and any color. The lines forming the display frame 116 may be different from the lines forming the display grid 110 and the lines forming the display unit grid 112.
 表示枠116の内部は、ハッチングを適用してもよい。表示枠116の内部に適用されるハッチングは、ドットハッチング等のパターンを適用してもよいし、任意の色の塗りつぶしを適用してもよい。表示枠116の内部に適用されるハッチングとして塗りつぶしが適用される場合、断層画像100を透過させる半透過等の塗りつぶしが好ましい。 Hatching may be applied to the inside of the display frame 116. As the hatching applied to the inside of the display frame 116, a pattern such as dot hatching may be applied, or a fill of an arbitrary color may be applied. When a fill is applied as a hatch applied to the inside of the display frame 116, a fill such as semi-transparency that allows the tomographic image 100 to pass through is preferable.
 断層画像100に対して表示枠116を重畳させる場合、表示格子110の輪郭を表す線及び表示単位格子112の輪郭を表す線を非表示としてもよい。また、断層画像100に対して表示枠116を重畳させる場合、表示枠116の内部における表示単位格子112の輪郭を表す線を表示させ、表示枠116の内部における表示単位格子112の輪郭を表す線を非表示としてもよい。更に、断層画像100に対して表示枠116を重畳させる場合、マスク画像103を非表示としてもよい。 When the display frame 116 is superimposed on the tomographic image 100, the line representing the contour of the display grid 110 and the line representing the contour of the display unit grid 112 may be hidden. When the display frame 116 is superimposed on the tomographic image 100, a line representing the contour of the display unit grid 112 inside the display frame 116 is displayed, and a line representing the contour of the display unit grid 112 inside the display frame 116 is displayed. May be hidden. Further, when the display frame 116 is superimposed on the tomographic image 100, the mask image 103 may be hidden.
 プロセッサ14は、マスク画像103、表示格子110の輪郭及び表示単位格子112等の表示と非表示とを切り替える機能を具備してもよい。プロセッサ14は、入力装置24を用いるユーザの入力に基づき、マスク画像103等の表示と非表示との切り替えを実施してもよい。プロセッサ14は、ディスプレイ22を用いてマスク画像103等の表示と非表示との切替画面を表示してもよい。 The processor 14 may have a function of switching between display and non-display of the mask image 103, the outline of the display grid 110, the display unit grid 112, and the like. The processor 14 may switch between displaying and hiding the mask image 103 and the like based on the input of the user using the input device 24. The processor 14 may use the display 22 to display a screen for switching between display and non-display of the mask image 103 and the like.
 図5及び図6に示す三次元画像120における三次元状の表示枠は、二次元状の表示枠116同様に設定し得る。なお、三次元画像120に重畳される三次元状の表示枠の図示を省略する。 The three-dimensional display frame in the three-dimensional image 120 shown in FIGS. 5 and 6 can be set in the same manner as the two-dimensional display frame 116. It should be noted that the illustration of the three-dimensional display frame superimposed on the three-dimensional image 120 is omitted.
 [表示枠の変形例]
 図9は表示枠の変形例の説明図である。図9に示す表示枠116Aの輪郭は、表示枠116Aを構成する表示単位格子112の集合の輪郭よりも外側に位置する。これにより、特徴領域102の視認性の低下を抑制し得る。なお、図9では特徴領域102の図示を省略する。
[Transformation example of display frame]
FIG. 9 is an explanatory diagram of a modified example of the display frame. The contour of the display frame 116A shown in FIG. 9 is located outside the contour of the set of display unit lattices 112 constituting the display frame 116A. Thereby, the deterioration of the visibility of the feature region 102 can be suppressed. Note that the feature area 102 is not shown in FIG.
 [実施形態に係る画像処理装置、画像表示システム及び画像処理方法の作用効果]
 実施形態に係る画像処理装置、画像表示システム及び画像処理方法は、以下の作用効果を得ることが可能である。
[Operations and effects of the image processing apparatus, image display system, and image processing method according to the embodiment]
The image processing apparatus, the image display system, and the image processing method according to the embodiment can obtain the following effects.
 〔1〕
 図10は実施形態の作用効果の説明図である。図10に示す脳を被検体とする断層画像300に対して、複数の特徴領域302を一括して囲むバウンディングボックス304が適用される断層画像300Aは、バウンディングボックス304の内部のどの位置に特徴領域302が存在しているかを把握することが困難である。
[1]
FIG. 10 is an explanatory diagram of the action and effect of the embodiment. The tomographic image 300A to which the bounding box 304 that collectively surrounds the plurality of characteristic regions 302 is applied to the tomographic image 300 showing the brain as the subject shown in FIG. 10 has the characteristic region at any position inside the bounding box 304. It is difficult to know if 302 exists.
 また、特徴領域302に対応するマスク画像306を重畳させる断層画像300Bは、複数の特徴領域302を包括的に強調させることが困難であり、数画素程度の小さい特徴領域302に対する見逃しが懸念される。 Further, in the tomographic image 300B on which the mask image 306 corresponding to the feature region 302 is superimposed, it is difficult to comprehensively emphasize the plurality of feature regions 302, and there is a concern that the feature region 302 as small as several pixels may be overlooked. ..
 更に、孤立する特徴領域302ごとに複数のバウンディングボックス304が適用される断層画像300Cは全体として特徴領域302の把握が困難であり、かつ、各特徴領域302の把握が困難である。更にまた、出血の発生源が一か所である場合、一つのバウンディングボックス304を用いて表示して欲しいという要望がある。 Further, in the tomographic image 300C to which a plurality of bounding boxes 304 are applied for each isolated feature region 302, it is difficult to grasp the feature region 302 as a whole, and it is difficult to grasp each feature region 302. Furthermore, when there is only one source of bleeding, there is a request that one bounding box 304 be used for display.
 これに対して、本実施形態に係る医用画像表示システム10は、図8に示すように断層画像100等の医用画像に表示格子110を設定する。表示格子110は特徴領域102の処理単位の大きさを超える表示単位格子112が並べられる。断層画像100は特徴領域102を囲む表示枠116であり、一以上の表示単位格子112を用いる表示枠116が重畳表示される。これにより、特徴領域102の検出の信頼性を損なわずに、特徴領域102の検出結果を表示し得る。 On the other hand, the medical image display system 10 according to the present embodiment sets the display grid 110 on the medical image such as the tomographic image 100 as shown in FIG. In the display grid 110, display unit grids 112 that exceed the size of the processing unit of the feature area 102 are arranged. The tomographic image 100 is a display frame 116 surrounding the feature area 102, and a display frame 116 using one or more display unit lattices 112 is superimposed and displayed. Thereby, the detection result of the feature area 102 can be displayed without impairing the reliability of the detection of the feature area 102.
 また、複数の特徴領域102に対して一つの表示枠116が適用される態様では、出血の発生源が一か所である場合、一つのバウンディングボックスを用いて表示して欲しいという要望を満足させ得る。 Further, in the embodiment in which one display frame 116 is applied to the plurality of feature areas 102, when there is only one source of bleeding, the request for display using one bounding box is satisfied. obtain.
 〔2〕
 表示枠116は、表示格子110を構成する線及び表示単位格子112を構成する線と異なる態様が適用される。例えば、表示格子110を構成する線に対して、表示単位格子112を構成する線の太さ、色及び線の種類を異ならせる。これにより、表示格子110及び表示単位格子112よりも表示枠116を目立たせることが可能となる。
[2]
A mode different from the lines forming the display grid 110 and the lines forming the display unit grid 112 is applied to the display frame 116. For example, the thickness, color, and line type of the lines constituting the display unit grid 112 are different from those of the lines constituting the display grid 110. This makes it possible to make the display frame 116 stand out more than the display grid 110 and the display unit grid 112.
 〔3〕
 表示枠116が重畳される断層画像100は、表示単位格子112が非表示とされる。これにより、表示枠116を目立たせることが可能となる。
[3]
In the tomographic image 100 on which the display frame 116 is superimposed, the display unit lattice 112 is hidden. This makes it possible to make the display frame 116 stand out.
 〔4〕
 断層画像100はマスク画像103が重畳される。これにより、表示枠116とマスク画像103が併用され、特徴領域102の視認性が向上し得る。
[4]
The mask image 103 is superimposed on the tomographic image 100. As a result, the display frame 116 and the mask image 103 can be used together, and the visibility of the feature area 102 can be improved.
 〔5〕
 特徴領域の種類に応じた表示単位格子の大きさが設定される。これにより、特徴領域102の種類に応じた表示枠116を表示し得る。
[5]
The size of the display unit cell is set according to the type of the feature area. As a result, the display frame 116 corresponding to the type of the feature area 102 can be displayed.
 〔6〕
 断層画像100と表示格子110との位置合わせは、断層画像100の重心106及び表示格子110の重心114が適用される。これにより、断層画像100と表示格子110と正確な位置合わせを実施し得る。
[6]
The center of gravity 106 of the tomographic image 100 and the center of gravity 114 of the display grid 110 are applied to the alignment of the tomographic image 100 and the display grid 110. As a result, accurate alignment between the tomographic image 100 and the display grid 110 can be performed.
 〔7〕
 三次元画像120に対して、三次元状の表示格子121及び三次元状の表示枠を設定し得る。これにより、三次元画像120における特徴領域の検出の信頼性を損なわずに、特徴領域の検出結果を表示し得る。
[7]
A three-dimensional display grid 121 and a three-dimensional display frame can be set for the three-dimensional image 120. Thereby, the detection result of the feature region can be displayed without impairing the reliability of the detection of the feature region in the three-dimensional image 120.
 〔8〕
 特徴領域102は任意形状を適用し得る。これにより、任意形状の特徴領域102に対して、表示枠116を重畳し得る。
[8]
Any shape can be applied to the feature region 102. As a result, the display frame 116 can be superimposed on the feature area 102 having an arbitrary shape.
 [各処理部及び制御部のハードウェア構成]
 上記実施形態で説明した医用画像表示システム10及び医用画像処理装置12の処理を実行する処理部のハードウェア的な構造は、各種のプロセッサである。各種のプロセッサには、CPU(Central Processing Unit)、PLD(Programmable Logic Device)及びASIC(Application Specific Integrated Circuit)等が含まれる。
[Hardware configuration of each processing unit and control unit]
The hardware-like structure of the processing unit that executes the processing of the medical image display system 10 and the medical image processing device 12 described in the above embodiment is various processors. Various processors include a CPU (Central Processing Unit), a PLD (Programmable Logic Device), an ASIC (Application Specific Integrated Circuit), and the like.
 CPUは、プログラムを実行して各種の処理部として機能する汎用的なプロセッサである。PLDは、製造後に回路構成を変更可能なプロセッサである。PLDの例として、FPGA(Field Programmable Gate Array)が挙げられる。ASICは、特定の処理を実行させるために専用に設計された回路構成を有する専用電気回路である。 The CPU is a general-purpose processor that executes programs and functions as various processing units. The PLD is a processor whose circuit configuration can be changed after manufacturing. An example of PLD is FPGA (Field Programmable Gate Array). An ASIC is a dedicated electric circuit having a circuit configuration specially designed to perform a specific process.
 一つの処理部は、これら各種のプロセッサのうちの一つで構成されていてもよいし、同種又は異種の2つ以上のプロセッサで構成されてもよい。例えば、一つの処理部は、複数のFPGA等を用いて構成されてもよい。一つの処理部は、一つ以上のFPGA及び一つ以上のCPUを組み合わせて構成されてもよい。 One processing unit may be composed of one of these various processors, or may be composed of two or more processors of the same type or different types. For example, one processing unit may be configured by using a plurality of FPGAs and the like. One processing unit may be configured by combining one or more FPGAs and one or more CPUs.
 また、一つのプロセッサを用いて複数の処理部を構成してもよい。一つのプロセッサを用いて複数の処理部を構成する例として、一つ以上のCPUとソフトウェアとを組み合わせて一つのプロセッサを構成し、一つプロセッサが複数の処理部として機能する形態がある。かかる形態は、クライアント端末装置及びサーバ装置等のコンピュータに代表される。 Further, a plurality of processing units may be configured by using one processor. As an example of configuring a plurality of processing units using one processor, there is a form in which one processor is configured by combining one or more CPUs and software, and one processor functions as a plurality of processing units. Such a form is represented by a computer such as a client terminal device and a server device.
 他の構成例として。複数の処理部を含むシステム全体の機能を一つのICチップを用いて実現するプロセッサを使用する形態が挙げられる。かかる形態は、システムオンチップ(System On Chip)などに代表される。なお、ICはIntegrated Circuitの省略語である。また、システムオンチップは、System On Chipの省略語を用いてSoCと記載される場合がある。 As another configuration example. An example is a mode in which a processor that realizes the functions of the entire system including a plurality of processing units by using one IC chip is used. Such a form is typified by a system on chip (System On Chip) and the like. IC is an abbreviation for Integrated Circuit. Further, the system-on-chip may be described as SoC by using the abbreviation of System On Chip.
 このように、各種の処理部は、ハードウェア的な構造として、上記した各種のプロセッサを一つ以上用いて構成される。更に、各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)である。 As described above, the various processing units are configured by using one or more of the above-mentioned various processors as a hardware structure. Further, the hardware structure of various processors is, more specifically, an electric circuit (circuitry) in which circuit elements such as semiconductor elements are combined.
 [プログラムへの適用例]
 本明細書に記載した医用画像表示システム10及び医用画像処理装置12の各種機能及び画像処理方法の各工程を、コンピュータに実現させるプログラムを構成し得る。例えば、図1に示す医用画像取得機能、特徴領域検出機能、表示格子設定機能、位置合わせ機能、表示枠設定機能、表示画像信号生成機能及び表示画像信号送信機能に対応する処理をコンピュータに実現させるプログラムを構成し得る。
[Example of application to programs]
A program can be configured to realize various functions of the medical image display system 10 and the medical image processing device 12 and each step of the image processing method described in the present specification on a computer. For example, the computer is made to realize the processing corresponding to the medical image acquisition function, the feature area detection function, the display grid setting function, the alignment function, the display frame setting function, the display image signal generation function, and the display image signal transmission function shown in FIG. The program can be configured.
 以上説明した本発明の実施形態は、本発明の趣旨を逸脱しない範囲で、適宜構成要件を変更、追加、削除することが可能である。本発明は以上説明した実施形態に限定されるものではなく、本発明の技術的思想内で当該分野の通常の知識を有する者により、多くの変形が可能である。また、実施形態、変形例及び応用例は適宜組み合わせて実施してもよい。 In the embodiment of the present invention described above, the constituent requirements can be appropriately changed, added, or deleted without departing from the gist of the present invention. The present invention is not limited to the embodiments described above, and many modifications can be made by a person having ordinary knowledge in the art within the technical idea of the present invention. In addition, the embodiments, modifications, and applications may be combined as appropriate.
10 医用画像表示システム
12 医用画像処理装置
14 プロセッサ
16 メモリ
18 医用画像保管装置
20 医用画像ビューア装置
22 ディスプレイ
24 入力装置
26 ネットワーク
28 CT撮影装置
30 MRI撮影装置
100 断層画像
100A 断層画像
100B 断層画像
100C 断層画像
100D 断層画像
100E 断層画像
102 特徴領域
103 マスク画像
104 被検体領域
104A 被検体領域
104B 被検体領域
104C 被検体領域
104D 被検体領域
104E 被検体領域
106 重心
106A 重心
106B 重心
106C 重心
106D 重心
106E 重心
108 線
110 表示格子
112 表示単位格子
114 重心
116 表示枠
116A 表示枠
120 三次元画像
121 表示格子
122 被検体
123 表示単位格子
124 重心
126 線
200 設定画面
202 医用画像表示領域
204 パラメータ表示領域
206 基準表示領域
208 分割数表示領域
210 特徴領域表示領域
300 断層画像
300A 断層画像
300B 断層画像
300C 断層画像
302 特徴領域
304 バウンディングボックス
306 マスク画像
S10からS24 画像処理方法の各工程
10 Medical image display system 12 Medical image processing device 14 Processor 16 Memory 18 Medical image storage device 20 Medical image viewer device 22 Display 24 Input device 26 Network 28 CT imaging device 30 MRI imaging device 100 Fault image 100A Fault image 100B Fault image 100C Fault Image 100D Tomographic image 100E Tomographic image 102 Feature area 103 Mask image 104 Subject area 104A Subject area 104B Subject area 104C Subject area 104D Subject area 104E Subject area 106 Center of gravity 106A Center of gravity 106B Center of gravity 106C Center of gravity 106D Center of gravity 106E Center of gravity 108 Line 110 Display grid 112 Display unit grid 114 Center of gravity 116 Display frame 116A Display frame 120 Three-dimensional image 121 Display grid 122 Subject 123 Display unit grid 124 Center of gravity 126 Line 200 Setting screen 202 Medical image display area 204 Parameter display area 206 Reference display area 208 Division number display area 210 Feature area display area 300 Tomographic image 300A Tomographic image 300B Tomographic image 300C Tomographic image 302 Feature area 304 Bounding box 306 Mask images S10 to S24 Each step of the image processing method

Claims (15)

  1.  一以上のプロセッサを備えた画像処理装置であって、
     前記プロセッサは、
     被検体を撮影して得られた医用画像を取得し、
     前記医用画像から特徴領域を検出し、
     前記医用画像を構成する画素の2以上の整数倍の大きさを有する表示単位格子であり、前記特徴領域の検出における処理単位の大きさを超える大きさを有する表示単位格子を並べた表示格子を前記医用画像に設定し、
     前記特徴領域の位置に対応する位置に、前記特徴領域の大きさに対応する一以上の前記表示単位格子を有する表示枠を、前記特徴領域に重畳表示させる表示信号を生成する画像処理装置。
    An image processor with one or more processors
    The processor
    Obtain a medical image obtained by photographing the subject,
    The feature area is detected from the medical image,
    A display grid in which display unit grids having a size of two or more integral multiples of the pixels constituting the medical image and having a size exceeding the size of the processing unit in the detection of the feature region are arranged. Set to the medical image,
    An image processing device that generates a display signal that superimposes and displays a display frame having one or more display unit lattices corresponding to the size of the feature area on the feature area at a position corresponding to the position of the feature area.
  2.  前記プロセッサは、
     前記表示単位格子の輪郭と異なる態様を用いて、前記表示枠の輪郭を表示させる前記表示信号を生成する請求項1に記載の画像処理装置。
    The processor
    The image processing apparatus according to claim 1, wherein the display signal for displaying the contour of the display frame is generated by using an aspect different from the contour of the display unit cell.
  3.  前記プロセッサは、
     前記特徴領域における縁となる前記表示単位格子の輪郭の外側に、前記表示枠の輪郭を表示させる前記表示信号を生成する請求項2に記載の画像処理装置。
    The processor
    The image processing apparatus according to claim 2, wherein the display signal for displaying the contour of the display frame is generated outside the contour of the display unit lattice which is an edge in the feature region.
  4.  前記プロセッサは、
     前記表示単位格子を非表示とする前記表示信号を生成する請求項2又は3に記載の画像処理装置。
    The processor
    The image processing apparatus according to claim 2 or 3, which generates the display signal that hides the display unit cell.
  5.  前記プロセッサは、
     前記特徴領域に対応するマスク画像を生成し、
     前記マスク画像を表す前記表示信号を生成する請求項1から4のいずれか一項に記載の画像処理装置。
    The processor
    A mask image corresponding to the feature area is generated, and the mask image is generated.
    The image processing apparatus according to any one of claims 1 to 4, which generates the display signal representing the mask image.
  6.  前記プロセッサは、
     前記特徴領域の種類に応じた前記表示単位格子の大きさを設定する請求項1から5のいずれか一項に記載の画像処理装置。
    The processor
    The image processing apparatus according to any one of claims 1 to 5, which sets the size of the display unit cell according to the type of the feature region.
  7.  前記プロセッサは、
     前記医用画像の重心と前記表示格子の重心と用いて、前記医用画像と前記表示格子との位置を合わせる請求項1から6のいずれか一項に記載の画像処理装置。
    The processor
    The image processing apparatus according to any one of claims 1 to 6, wherein the center of gravity of the medical image and the center of gravity of the display grid are used to align the positions of the medical image and the display grid.
  8.  前記プロセッサは、
     前記被検体の重心と前記表示格子の重心と用いて、前記医用画像と前記表示格子との位置を合わせる請求項1から7のいずれか一項に記載の画像処理装置。
    The processor
    The image processing apparatus according to any one of claims 1 to 7, wherein the center of gravity of the subject and the center of gravity of the display grid are used to align the positions of the medical image and the display grid.
  9.  前記プロセッサは、
     二次元の前記表示単位格子を二次元状に並べた前記表示格子を設定する請求項1から8のいずれか一項に記載の画像処理装置。
    The processor
    The image processing apparatus according to any one of claims 1 to 8, wherein the display grid in which the two-dimensional display unit grids are arranged in a two-dimensional manner is set.
  10.  前記プロセッサは、
     三次元の前記表示単位格子を三次元状に並べた前記表示格子を設定する請求項1から8のいずれか一項に記載の画像処理装置。
    The processor
    The image processing apparatus according to any one of claims 1 to 8, wherein the display grid is set by arranging the three-dimensional display unit grids in a three-dimensional manner.
  11.  前記プロセッサは、
     前記特徴領域を多角形形状として検出する請求項1から10のいずれか一項に記載の画像処理装置。
    The processor
    The image processing apparatus according to any one of claims 1 to 10, wherein the feature region is detected as a polygonal shape.
  12.  一以上のプロセッサを備えた画像処理装置と、
     前記画像処理装置から送信される表示画像信号を受信し、前記表示画像信号が表す画像を表示するディスプレイと、
     を備えた画像表示システムであって、
     前記プロセッサは、
     被検体を撮影して得られた医用画像を取得し、
     前記医用画像から特徴領域を検出し、
     前記医用画像を構成する画素の2以上の整数倍の大きさを有する表示単位格子であり、前記特徴領域の検出における処理単位の大きさを超える大きさを有する表示単位格子を並べた表示格子を前記医用画像に設定し、
     前記特徴領域の位置に対応する位置に、前記特徴領域の大きさに対応する一以上の前記表示単位格子を有する表示枠を、前記特徴領域に重畳表示させる表示信号を生成し、
     前記ディスプレイは、前記医用画像に前記表示枠を重畳表示させる画像表示システム。
    An image processor with one or more processors and
    A display that receives a display image signal transmitted from the image processing device and displays an image represented by the display image signal.
    It is an image display system equipped with
    The processor
    Obtain a medical image obtained by photographing the subject,
    The feature area is detected from the medical image,
    A display grid in which display unit grids having a size of two or more integral multiples of the pixels constituting the medical image and having a size exceeding the size of the processing unit in the detection of the feature region are arranged. Set to the medical image,
    A display signal is generated to superimpose and display a display frame having one or more display unit lattices corresponding to the size of the feature area on the feature area at a position corresponding to the position of the feature area.
    The display is an image display system that superimposes the display frame on the medical image.
  13.  被検体を撮影して得られた医用画像を取得し、
     前記医用画像から特徴領域を検出し、
     前記医用画像を構成する画素の2以上の整数倍の大きさを有する表示単位格子であり、前記特徴領域の検出における処理単位の大きさを超える大きさを有する表示単位格子を並べた表示格子を前記医用画像に設定し、
     前記特徴領域の位置に対応する位置に、前記特徴領域の大きさに対応する一以上の前記表示単位格子を有する表示枠を、前記特徴領域に重畳表示させる表示信号を生成する画像処理方法。
    Obtain a medical image obtained by photographing the subject,
    The feature area is detected from the medical image,
    A display grid in which display unit grids having a size of two or more integral multiples of the pixels constituting the medical image and having a size exceeding the size of the processing unit in the detection of the feature region are arranged. Set to the medical image,
    An image processing method for generating a display signal in which a display frame having one or more display unit lattices corresponding to the size of the feature area is superimposed and displayed on the feature area at a position corresponding to the position of the feature area.
  14.  コンピュータに、
     被検体を撮影して得られた医用画像を取得する機能、
     前記医用画像から特徴領域を検出する機能、
     前記医用画像を構成する画素の2以上の整数倍の大きさを有する表示単位格子であり、前記特徴領域の検出における処理単位の大きさを超える大きさを有する表示単位格子を並べた表示格子を前記医用画像に設定する機能及び
     前記特徴領域の位置に対応する位置に、前記特徴領域の大きさに対応する一以上の前記表示単位格子を有する表示枠を、前記特徴領域に重畳表示させる表示信号を生成する機能を実現させるプログラム。
    On the computer
    A function to acquire a medical image obtained by taking a picture of a subject,
    A function to detect a feature area from the medical image,
    A display grid in which display unit grids having a size of two or more integral multiples of the pixels constituting the medical image and having a size exceeding the size of the processing unit in the detection of the feature region are arranged. A display signal that superimposes and displays a display frame having one or more display unit grids corresponding to the size of the feature area on the feature area at a position corresponding to the function set on the medical image and the position of the feature area. A program that realizes the function of generating.
  15.  非一時的かつコンピュータ読取可能な記録媒体であって、請求項14に記載のプログラムが記録された記録媒体。 A non-temporary, computer-readable recording medium on which the program according to claim 14 is recorded.
PCT/JP2021/015671 2020-04-21 2021-04-16 Image processing device, image display system, image processing method, and program WO2021215357A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022517016A JP7430249B2 (en) 2020-04-21 2021-04-16 Image processing device, image display system, image processing method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-075382 2020-04-21
JP2020075382 2020-04-21

Publications (1)

Publication Number Publication Date
WO2021215357A1 true WO2021215357A1 (en) 2021-10-28

Family

ID=78269229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015671 WO2021215357A1 (en) 2020-04-21 2021-04-16 Image processing device, image display system, image processing method, and program

Country Status (2)

Country Link
JP (1) JP7430249B2 (en)
WO (1) WO2021215357A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116912213A (en) * 2023-07-20 2023-10-20 中国人民解放军总医院第六医学中心 Medical Dicom image edge contour polygonal detection algorithm and detection system
WO2023243992A1 (en) * 2022-06-13 2023-12-21 서울대학교병원 Apparatus and method for extracting medical information

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11235336A (en) * 1997-11-26 1999-08-31 General Electric Co <Ge> Computed tomography system
JP2004073488A (en) * 2002-08-19 2004-03-11 Canon Inc Radiograph processor
JP2011120747A (en) * 2009-12-11 2011-06-23 Fujifilm Corp Image display device, method, and program
JP2017215876A (en) * 2016-06-01 2017-12-07 富士通株式会社 Similar image retrieval program, similar image retrieval method, and similar image retrieval device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3501414B2 (en) * 1994-03-17 2004-03-02 東芝医用システムエンジニアリング株式会社 Magnetic resonance diagnostic equipment
EP2117428B1 (en) * 2007-02-02 2013-01-23 Apollo Medical Imaging Technology Pty Ltd Identification and analysis of lesions in medical imaging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11235336A (en) * 1997-11-26 1999-08-31 General Electric Co <Ge> Computed tomography system
JP2004073488A (en) * 2002-08-19 2004-03-11 Canon Inc Radiograph processor
JP2011120747A (en) * 2009-12-11 2011-06-23 Fujifilm Corp Image display device, method, and program
JP2017215876A (en) * 2016-06-01 2017-12-07 富士通株式会社 Similar image retrieval program, similar image retrieval method, and similar image retrieval device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243992A1 (en) * 2022-06-13 2023-12-21 서울대학교병원 Apparatus and method for extracting medical information
CN116912213A (en) * 2023-07-20 2023-10-20 中国人民解放军总医院第六医学中心 Medical Dicom image edge contour polygonal detection algorithm and detection system
CN116912213B (en) * 2023-07-20 2024-04-19 中国人民解放军总医院第六医学中心 Medical Dicom image edge contour polygonal detection algorithm and detection system

Also Published As

Publication number Publication date
JPWO2021215357A1 (en) 2021-10-28
JP7430249B2 (en) 2024-02-09

Similar Documents

Publication Publication Date Title
JP6766045B2 (en) How to generate a synthetic mammogram from tomosynthesis data
JP5637928B2 (en) Medical image display device
JP4891577B2 (en) Medical image display device
JP2002336241A (en) Three-dimensional image display device in network environment
WO2021215357A1 (en) Image processing device, image display system, image processing method, and program
US9569820B2 (en) Method and apparatus for image correction
JP7129869B2 (en) Disease area extraction device, method and program
US20200202486A1 (en) Medical image processing apparatus, medical image processing method, and medical image processing program
KR20130018168A (en) Method and device for visualizing the registration quality of medical image data sets
US11915414B2 (en) Medical image processing apparatus, method, and program
JP6949535B2 (en) Information processing equipment, information processing system, information processing method and program
US20190236783A1 (en) Image processing apparatus, image processing method, and program
Douglas et al. Augmented reality and virtual reality: Initial successes in diagnostic radiology
US8933926B2 (en) Image processing apparatus, method, and program
JP2024038203A (en) Image processing device, image display system, and actuation method and program of image processing device
US10896501B2 (en) Rib developed image generation apparatus using a core line, method, and program
WO2022209298A1 (en) Image processing device, image processing method, and program
US12053290B2 (en) Brain atlas creation apparatus, brain atlas creation method, and brain atlas creation program
JP6645904B2 (en) Medical image display device and display program
US10796433B2 (en) Interpretation support apparatus, operation method thereof, and non-transitory computer readable medium
JP7170850B2 (en) Pseudo-angio image generator, method and program
JP7394959B2 (en) Medical image processing device, medical image processing method and program, medical image display system
US12033366B2 (en) Matching apparatus, matching method, and matching program
US20230281761A1 (en) Image processing apparatus, image processing method, and non-transitory storage medium
US20230022549A1 (en) Image processing apparatus, method and program, learning apparatus, method and program, and derivation model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792527

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792527

Country of ref document: EP

Kind code of ref document: A1