WO2021215254A1 - Ink composition for photoconversion layer formation, photoconversion layer, and color filter - Google Patents

Ink composition for photoconversion layer formation, photoconversion layer, and color filter Download PDF

Info

Publication number
WO2021215254A1
WO2021215254A1 PCT/JP2021/014845 JP2021014845W WO2021215254A1 WO 2021215254 A1 WO2021215254 A1 WO 2021215254A1 JP 2021014845 W JP2021014845 W JP 2021014845W WO 2021215254 A1 WO2021215254 A1 WO 2021215254A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink composition
group
light
mass
particles
Prior art date
Application number
PCT/JP2021/014845
Other languages
French (fr)
Japanese (ja)
Inventor
栄志 乙木
麻里子 利光
方大 小林
崇之 三木
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2021568567A priority Critical patent/JP7180795B2/en
Publication of WO2021215254A1 publication Critical patent/WO2021215254A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to an ink composition for forming a light conversion layer, a light conversion layer, and a color filter.
  • a color filter pixel portion in a display such as a liquid crystal display device uses, for example, a curable resist material containing red organic pigment particles or green organic pigment particles and an alkali-soluble resin and / or an acrylic monomer. , Has been manufactured by photolithography.
  • the method for manufacturing a color filter by the above photolithography method has a drawback that the resist material other than the pixel portion including the relatively expensive luminescent nanocrystal particles is wasted due to the characteristics of the manufacturing method.
  • Patent Document 1 in order to eliminate the waste of the resist material as described above, it has begun to be studied to form the pixel portion of the optical conversion substrate by the inkjet method.
  • the color filter pixel portion (hereinafter, also simply referred to as “pixel portion”) constituting the optical conversion layer of the color filter has further external quantum efficiency (EQE: External Quantum Efficiency) from the viewpoint of reducing power consumption and the like. Improvement is required.
  • EQE External Quantum Efficiency
  • one of the objects of the present invention is to provide an ink composition capable of forming an optical conversion layer having excellent external quantum efficiency.
  • the luminescent nanocrystals function as an antioxidant. While it is possible to suppress the deterioration of particles and improve the external quantum efficiency, phosphorous acid is generated by the hydrolysis of the antioxidant, and phosphorous acid functions as a luminescent nanocrystal particle. It has become clear that it can be hindered. As a result of further studies in view of the above study results, the present inventors have found that by using a hypophosphorous acid diester compound, a pixel portion having excellent external quantum efficiency as compared with the conventional one can be obtained. , The present invention has been completed.
  • One aspect of the present invention relates to an ink composition for forming a photoconversion layer, which comprises luminescent nanocrystal particles, a photopolymerizable compound, and a hypophosphorous acid diester compound.
  • the external quantum efficiency of the pixel portion can be improved.
  • the hypophosphorous acid diester compound has a function as an antioxidant, but is difficult to be hydrolyzed, and causes functional inhibition of luminescent nanocrystal particles due to the generation of phosphoric acid. It is presumed that this is because it is difficult.
  • hypophosphorous acid diester compound is preferably a compound represented by the following formula (II), and more preferably a compound represented by the following formula (IV).
  • X 1 represents an oxygen atom or a sulfur atom
  • R 1 represents a hydrogen atom or an organic group (however, the atom directly bonded to P is a carbon atom)
  • Ar 1 represents an aryl group. show. Two of X 1 may be the being the same or different, two Ar 1 may be the being the same or different.
  • Y represents a linking group.
  • X 2 and X 3 represent an oxygen atom or a sulfur atom, and Ar 2 and Ar 3 represent an aryl group.
  • Two X 2 may be the being the same or different, two X 3 may be the being the same or different, two Ar 2 may be the being the same or different two Ar 3 may be the being the same or different.
  • the content of the luminescent nanocrystal particles is preferably 20% by mass or more based on the total mass of the ink composition.
  • the content of the hypophosphodiester compound is preferably 0.01 to 10% by mass based on the total mass of the ink composition.
  • the photopolymerizable compound preferably contains a radical-polymerizable compound having a cyclic structure and a radical-polymerizable compound having a linear structure having 4 or more carbon atoms.
  • the ink composition on the above side preferably further contains a phenolic antioxidant.
  • the phenolic antioxidant is preferably a hindered phenolic antioxidant.
  • the ink composition on the above side preferably further contains light-scattering particles.
  • the ink composition further contains a polymer dispersant.
  • the ink composition is preferably used by an inkjet method. That is, the ink composition is preferably an inkjet ink.
  • Another aspect of the present invention includes a plurality of pixel portions and a light-shielding portion provided between the plurality of pixel portions, and the plurality of pixel portions emit light including a cured product of the ink composition on the side surface.
  • the present invention relates to an optical conversion layer having a sex pixel portion.
  • the light conversion layer on the side surface contains, as a luminescent pixel portion, luminescent nanocrystal particles that absorb light having a wavelength in the range of 420 to 480 nm and emit light having an emission peak wavelength in the range of 605 to 665 nm.
  • the light conversion layer on the side surface may further include a non-light emitting pixel portion containing light scattering particles.
  • Another aspect of the present invention relates to a color filter including the light conversion layer on the above side.
  • an ink composition capable of forming an optical conversion layer having excellent external quantum efficiency.
  • FIG. 1 is a schematic cross-sectional view of a color filter according to an embodiment of the present invention.
  • the “cured product of the ink composition” refers to a curable component in the ink composition (when the ink composition contains a solvent, the ink composition after drying) is cured (for example). It is obtained by polymerizing a photopolymerizable compound). The cured product of the dried ink composition does not have to contain a solvent.
  • the materials exemplified in the present specification may be used alone or in combination of two or more.
  • the ink composition of one embodiment contains luminescent nanocrystal particles, a photopolymerizable compound, and a hypophosphorous acid diester compound.
  • This ink composition is an ink composition for forming a light conversion layer (for example, for forming a color filter pixel portion) used for forming a light conversion layer included in a color filter or the like, and emits light to the ink composition.
  • the photopolymerizable compound can be polymerized and cured to form a light conversion layer (for example, a color filter pixel portion) including a cured product of the ink composition.
  • the optical conversion layer obtained by the above ink composition excellent external quantum efficiency can be obtained. Further, depending on the additive contained in the ink composition containing the photopolymerizable compound, the reaction of the photopolymerizable compound may proceed during storage due to the catalytic action of the additive or the like, and the viscosity may increase. However, hypophosphate diester compounds are unlikely to cause such an increase in the viscosity of the ink composition. Therefore, the ink composition tends to be excellent in viscosity stability.
  • the above ink composition can be applied as an ink used in a known and commonly used method for producing a color filter, but is preferably used as an inkjet ink composition used in an inkjet method.
  • the ink composition can form a pixel portion (light conversion layer) only by using a necessary amount at a necessary place without wastefully consuming materials such as luminescent nanocrystal particles and a solvent, which are relatively expensive. Therefore, it is preferable to appropriately prepare and use it so as to be suitable for the inkjet method rather than for the photolithography method.
  • the ink composition of the present embodiment and its constituent components will be described by taking as an example an inkjet ink composition for forming a color filter pixel portion constituting an optical conversion layer.
  • the constituents include organic ligands, photopolymerization initiators, antioxidants other than hypophosphoric acid diester compounds, and photoscattering particles. , Polymer dispersant and the like.
  • the luminescent nanocrystal particles are nano-sized crystals that absorb excitation light and emit fluorescence or phosphorescence, and for example, the maximum particle size measured by a transmission electron microscope or a scanning electron microscope is 100 nm or less. It is a crystal.
  • the luminescent nanocrystal particles can emit light (fluorescence or phosphorescence) having a wavelength different from the absorbed wavelength by absorbing light having a predetermined wavelength, for example.
  • the luminescent nanocrystal particles may be red luminescent nanocrystal particles (red luminescent nanocrystal particles) that emit light having an emission peak wavelength in the range of 605 to 665 nm (red light), and may be 500 to 560 nm. It may be green light emitting nanocrystal particles (green light emitting nanocrystal particles) that emit light having an emission peak wavelength in the range (green light), and light having an emission peak wavelength in the range of 420 to 480 nm (blue light).
  • the ink composition preferably contains at least one of these luminescent nanocrystal particles.
  • the light absorbed by the luminescent nanocrystal particles is, for example, light having a wavelength in the range of 400 nm or more and less than 500 nm (particularly, light having a wavelength in the range of 420 to 480 nm) (blue light) or light in the range of 200 nm to 400 nm. It may be light of the wavelength of (ultraviolet light).
  • the emission peak wavelength of the luminescent nanocrystal particles can be confirmed, for example, in a fluorescence spectrum or a phosphorescence spectrum measured using a spectrofluorometer.
  • the red-emitting nanocrystal particles are 665 nm or less, 663 nm or less, 660 nm or less, 658 nm or less, 655 nm or less, 653 nm or less, 651 nm or less, 650 nm or less, 647 nm or less, 645 nm or less, 643 nm or less, 640 nm or less, 637 nm or less, 635 nm or less.
  • an emission peak wavelength of 632 nm or less or 630 nm or less it is preferable to have an emission peak wavelength of 628 nm or more, 625 nm or more, 623 nm or more, 620 nm or more, 615 nm or more, 610 nm or more, 607 nm or more or 605 nm or more.
  • These upper limit values and lower limit values can be arbitrarily combined. In the same description below, the upper limit value and the lower limit value described individually can be arbitrarily combined.
  • Green luminescent nanocrystal particles have emission peak wavelengths of 560 nm or less, 557 nm or less, 555 nm or less, 550 nm or less, 547 nm or less, 545 nm or less, 543 nm or less, 540 nm or less, 537 nm or less, 535 nm or less, 532 nm or less, or 530 nm or less.
  • an emission peak wavelength at 528 nm or more, 525 nm or more, 523 nm or more, 520 nm or more, 515 nm or more, 510 nm or more, 507 nm or more, 505 nm or more, 503 nm or more, or 500 nm or more.
  • Blue luminescent nanocrystal particles have emission peak wavelengths of 480 nm or less, 477 nm or less, 475 nm or less, 470 nm or less, 467 nm or less, 465 nm or less, 463 nm or less, 460 nm or less, 457 nm or less, 455 nm or less, 452 nm or less, or 450 nm or less.
  • an emission peak wavelength at 450 nm or more, 445 nm or more, 440 nm or more, 435 nm or more, 430 nm or more, 428 nm or more, 425 nm or more, 422 nm or more, or 420 nm or more.
  • the wavelength of light (emission color) emitted by the luminescent nanocrystal particles depends on the size (for example, particle size) of the luminescent nanocrystal particles, but the luminescent nanocrystals It also depends on the energy gap of the crystal particles. Therefore, the emission color can be selected by changing the constituent material and size of the luminescent nanocrystal particles to be used.
  • the luminescent nanocrystal particles may be luminescent nanocrystal particles (luminescent semiconductor nanocrystal particles) containing a semiconductor material.
  • Examples of the luminescent semiconductor nanocrystal particles include quantum dots and quantum rods. Among these, quantum dots are preferable from the viewpoints that the emission spectrum can be easily controlled, reliability can be ensured, production cost can be reduced, and mass productivity can be improved.
  • the luminescent semiconductor nanocrystal particles may consist only of a core containing the first semiconductor material, and include a core containing the first semiconductor material and a second semiconductor material different from the first semiconductor material, as described above. It may have a shell that covers at least a portion of the core.
  • the structure of the luminescent semiconductor nanocrystal particles may be a structure consisting of only a core (core structure) or a structure consisting of a core and a shell (core / shell structure).
  • the luminescent semiconductor nanocrystal particles contain a third semiconductor material different from the first and second semiconductor materials in addition to the shell containing the second semiconductor material (first shell), and the above-mentioned core.
  • the structure of the luminescent semiconductor nanocrystal particles may be a structure (core / shell / shell structure) including a core, a first shell, and a second shell.
  • Each of the core and the shell may be a mixed crystal containing two or more kinds of semiconductor materials (for example, CdSe + CdS, CIS + ZnS, etc.).
  • the luminescent nanocrystal particles are selected as the semiconductor material from the group consisting of II-VI group semiconductors, III-V group semiconductors, I-III-VI group semiconductors, IV group semiconductors and I-II-IV-VI group semiconductors. It is preferable to contain at least one semiconductor material.
  • Specific semiconductor materials include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSte, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeD, ZnSe, HgSe, and HgSe.
  • red-emitting semiconductor nanocrystal particles examples include CdSe nanocrystal particles and nanocrystal particles having a core / shell structure, wherein the shell portion is CdS and the inner core portion is CdSe.
  • the shell part is a mixed crystal of ZnS and ZnSe and the inner core part is InP nanocrystal particles, a mixed crystal nanocrystal particle of CdSe and CdS, a mixed crystal nanocrystal particle of ZnSe and CdS, a core.
  • Nanocrystal particles with a / shell / shell structure the first shell portion is ZnSe, the second shell portion is ZnS, and the inner core portion is InP.
  • green-emitting semiconductor nanocrystal particles examples include CdSe nanocrystal particles, mixed-crystal nanocrystal particles of CdSe and ZnS, and nanocrystal particles having a core / shell structure, and the shell portion is ZnS.
  • Nanocrystal particles whose inner core is InP nanocrystals having a core / shell structure, whose shell is a mixed crystal of ZnS and ZnSe, and whose inner core is InP.
  • Nanocrystal particles with a core / shell / shell structure the first shell part is a mixed crystal of ZnS and ZnSe, the second shell part is ZnS, and the inner core part is InP. Examples include certain nanocrystal particles.
  • the blue-emitting semiconductor nanocrystal particles include, for example, ZnSe nanocrystal particles, ZnS nanocrystal particles, and nanocrystal particles having a core / shell structure, and the shell portion is ZnSe and the inner core portion.
  • the first shell portion is ZnSe
  • the second shell portion is ZnS
  • the inner core portion is InP
  • the nanocrystal particles have a core / shell / shell structure. Examples thereof include nanocrystal particles in which the first shell portion is a mixed crystal of ZnS and ZnSe, the second shell portion is ZnS, and the inner core portion is InP.
  • Semiconductor nanocrystal particles have the same chemical composition, and by changing the average particle size of the particles themselves, the color to be emitted from the particles can be changed to red or green. Further, it is preferable to use semiconductor nanocrystal particles that have as little adverse effect on the human body as possible.
  • semiconductor nanocrystal particles containing cadmium, selenium, etc. are used as luminescent nanocrystal particles
  • semiconductor nanocrystal particles containing the above elements (cadmium, selenium, etc.) as little as possible are selected and used alone, or the above elements. It is preferable to use it in combination with other luminescent nanocrystal particles so that the amount is as small as possible.
  • the shape of the luminescent nanocrystal particles is not particularly limited, and may be any geometric shape or any irregular shape.
  • the shape of the luminescent nanocrystal particles may be, for example, spherical, ellipsoidal, pyramidal, disc-shaped, branched, net-shaped, rod-shaped, or the like.
  • using particles having less directional particle shape for example, spherical or tetrahedral particles
  • the average particle size (volume average diameter) of the luminescent nanocrystal particles may be 1 nm or more, and may be 1.5 nm, from the viewpoint of easily obtaining light emission of a desired wavelength and from the viewpoint of excellent dispersibility and storage stability. It may be more than 2 nm and may be 2 nm or more. From the viewpoint that a desired emission wavelength can be easily obtained, it may be 40 nm or less, 30 nm or less, or 20 nm or less.
  • the average particle diameter (volume average diameter) of the luminescent nanocrystal particles is obtained by measuring with a transmission electron microscope or a scanning electron microscope and calculating the volume average diameter.
  • the luminescent nanocrystal particles preferably have an organic ligand on the surface thereof.
  • the surface of the luminescent nanocrystal particles may be passivated by an organic ligand.
  • the organic ligand may be coordinate-bonded to the surface of the luminescent nanocrystal particles. Details of the organic ligand will be described later.
  • the luminescent nanocrystal particles may have a polymer dispersant on the surface thereof.
  • the polymer dispersant may be bound to the surface of the luminescent nanocrystal particles by exchanging the organic ligand that binds to the surface of the luminescent nanocrystal particles with the polymer dispersant.
  • the polymer dispersant is blended with the luminescent nanocrystal particles in which the organic ligand is still coordinated. Details of the polymer dispersant will be described later.
  • the luminescent nanocrystal particles those dispersed in a colloidal form in a solvent, a photopolymerizable compound, or the like can be used.
  • the surface of the dispersed luminescent nanocrystal particles is preferably passivated by an organic ligand.
  • the solvent include cyclohexane, hexane, heptane, chloroform, toluene, octane, chlorobenzene, tetralin, diphenyl ether, propylene glycol monomethyl ether acetate, butyl carbitol acetate, or a mixture thereof.
  • luminescent nanocrystal particles examples include indium phosphide / zinc sulfide, D-dot, CuInS / ZnS from NN-Labs, and InP / ZnS from Aldrich.
  • the content of the luminescent nanocrystal particles is 20% by mass or more, 22% by mass or more, 24% by mass or more, or more than the total mass of the ink composition, from the viewpoint of further improving the external quantum efficiency of the pixel portion. It may be 26% by mass or more.
  • the content of the luminescent nanocrystal particles is preferably 80% by mass or less, and 70% by mass or less, based on the total mass of the ink composition, from the viewpoint of further improving ejection stability and external quantum efficiency of the pixel portion. , 60% by mass or less, 50% by mass or less, or 40% by mass or less.
  • the content of the luminescent nanocrystal particles is, for example, 20 to 80% by mass, 22 to 70% by mass, 24 to 60% by mass, and 24 to 50% by mass based on the total mass of the ink composition. Alternatively, it may be 26 to 40% by mass.
  • the content of the luminescent nanocrystal particles does not include the amount of the organic ligand bound to the luminescent nanocrystal particles.
  • the "total mass of the ink composition" can be rephrased as a component to be contained in the cured product of the ink composition.
  • the ink composition when the ink composition contains a solvent, it means a component other than the solvent contained in the ink composition, and the amount of the solvent is not included in the total mass of the ink composition unless otherwise specified.
  • the "total mass of the ink composition” is, for example, luminescent nanocrystal particles, an organic ligand, a photopolymerizable compound, a hypophosphorous acid diester compound, an antioxidant, a light scattering particle, and a polymer. It is the total of the dispersant.
  • the ink composition may contain two or more of red-emitting nanocrystal particles, green-emitting nanocrystal particles, and blue-emitting nanocrystal particles as the luminescent nanocrystal particles, but these are preferable. Contains only one of the particles.
  • the content of the green luminescent nanocrystal particles and the content of the blue luminescent nanocrystal particles are preferably 10 based on the total mass of the luminescent nanocrystal particles. It is 0% by mass or less, and more preferably 0% by mass.
  • the content of the red luminescent nanocrystal particles and the content of the blue luminescent nanocrystal particles are preferably 10 based on the total mass of the luminescent nanocrystal particles. It is 0% by mass or less, and more preferably 0% by mass.
  • the organic ligand exists near the surface of the luminescent nanocrystal particles and has a function of dispersing the luminescent nanocrystal particles.
  • the organic ligand is, for example, a functional group for ensuring affinity with a photopolymerizable compound, a solvent, etc. (hereinafter, also simply referred to as “affinity group”) and a functional group capable of binding to luminescent nanocrystal particles. It has (a functional group for ensuring the adsorptivity to luminescent nanocrystal particles) and exists in the vicinity of the surface of the luminescent nanocrystal particles by coordinating and bonding to the surface of the luminescent nanocrystal particles. do.
  • the affinity group may be a substituted or unsubstituted aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group may be a linear type or may have a branched structure. Further, the aliphatic hydrocarbon group may have an unsaturated bond or may not have an unsaturated bond.
  • the substituted aliphatic hydrocarbon may be a group in which some carbon atoms of the aliphatic hydrocarbon group are substituted with oxygen atoms.
  • the substituted aliphatic hydrocarbon group may contain, for example, a (poly) oxyalkylene group.
  • the "(poly) oxyalkylene group” means at least one of an oxyalkylene group and a polyoxyalkylene group in which two or more alkylene groups are linked by an ether bond.
  • Examples of the functional group that can be bonded to the luminescent nanocrystal particles include a hydroxyl group, an amino group, a carboxyl group, a thiol group, a phosphoric acid group, a phosphonic acid group, a phosphine group, a phosphine oxide group and an alkoxysilyl group.
  • organic ligand examples include TOP (trioctylphosphine), TOPO (trioctylphosphine oxide), oleic acid, phosphonic acid, linolenic acid, ricinolic acid, gluconic acid, 16-hydroxyhexadecanoic acid, 12-hydroxystearic acid, N.
  • the organic ligand may be an organic ligand represented by the following formula (1-1).
  • At least one of p and q is preferably 1 or more, and both p and q are more preferably 1 or more.
  • the organic ligand may be, for example, an organic ligand represented by the following formula (1-2).
  • a 1 represents a monovalent group containing a carboxyl group
  • a 2 represents a monovalent group containing a hydroxyl group
  • R is a hydrogen atom, a methyl group, or an ethyl group.
  • L represents a substituted or unsubstituted alkylene group
  • r represents an integer of 0 or more.
  • the number of carboxyl groups in a monovalent group containing a carboxyl group may be 2 or more, 2 or more and 4 or less, and may be 2.
  • the carbon number of the alkylene group represented by L may be, for example, 1 to 10.
  • the alkylene group represented by L may be partially substituted with a heteroatom, and may be substituted with at least one heteroatom selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom. May be good.
  • r may be, for example, an integer of 1 to 100, and may be an integer of 10 to 20.
  • the organic ligand may be an organic ligand represented by the following formula (1-2A) from the viewpoint of excellent external quantum efficiency of the pixel portion (cured product of the ink composition).
  • the organic ligand may be an organic ligand represented by the following formula (1-3).
  • n indicates an integer of 0 to 50
  • m indicates an integer of 0 to 50
  • n is preferably 0 to 20, more preferably 0 to 10.
  • m is preferably 0 to 20, more preferably 0 to 10. It is preferable that at least one of n and m is 1 or more. That is, n + m is preferably 1 or more.
  • n + m may be 10 or less.
  • Z represents a substituted or unsubstituted alkylene group.
  • the alkylene group may have, for example, 1 to 10 carbon atoms.
  • the alkylene group represented by Z may be partially substituted with a heteroatom, and may be substituted with at least one heteroatom selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom. May be good.
  • the organic ligand may be an organic ligand represented by the following formula (1-4).
  • l may be 1 to 20, may be 3 to 15, may be 5 to 10, and may be 7.
  • the content of the organic ligand in the ink composition is 10 parts by mass or more and 20 parts by mass with respect to 100 parts by mass of the luminescent nanocrystal particles from the viewpoint of dispersion stability of the luminescent nanocrystal particles and maintenance of luminescence characteristics. As mentioned above, it may be 25 parts by mass or more, 30 parts by mass or more, 35 parts by mass or more, or 40 parts by mass or more.
  • the content of the organic ligand in the ink composition is 50 parts by mass or less, 45 parts by mass or less, 40 parts by mass or less, or 40 parts by mass or less with respect to 100 parts by mass of the luminescent nanocrystal particles from the viewpoint of easily keeping the viscosity of the ink composition low. It may be 30 parts by mass or less. From these viewpoints, the content of the organic ligand may be, for example, 10 to 50 parts by mass or 10 to 15 parts by mass with respect to 100 parts by mass of the luminescent nanocrystal particles.
  • the photopolymerizable compound is a compound that polymerizes by irradiation with light (active energy rays), and is basically used together with a photopolymerization initiator.
  • the molecular weight of the photopolymerizable compound is, for example, 50 or more, and may be 100 or more or 150 or more.
  • the molecular weight of the photopolymerizable compound is, for example, 500 or less, and may be 400 or less or 300 or less. From the viewpoint of easily achieving both the viscosity of the inkjet ink and the volatility of the ink after ejection, it is preferably 50 to 500, and more preferably 100 to 400.
  • the photopolymerizable compound may be a radically polymerizable compound, a cationically polymerizable compound, or an anionically polymerizable compound.
  • the photopolymerizable compound is preferably a radically polymerizable compound.
  • the radically polymerizable compound is, for example, a compound having an ethylenically unsaturated group.
  • the ethylenically unsaturated group means a group having an ethylenically unsaturated bond (polymerizable carbon-carbon double bond).
  • the number of ethylenically unsaturated bonds (for example, the number of ethylenically unsaturated groups) in a compound having an ethylenically unsaturated group is, for example, 1 to 3.
  • Examples of the compound having an ethylenically unsaturated group include a compound having an ethylenically unsaturated group such as a vinyl group, a vinylene group, a vinylidene group, and a (meth) acryloyl group. From the viewpoint of further improving the external quantum efficiency, a compound having a (meth) acryloyl group is preferable, a monofunctional or polyfunctional (meth) acrylate is more preferable, and a monofunctional or bifunctional (meth) acrylate is further preferable. preferable.
  • a "(meth) acryloyl group” means an "acryloyl group” and a corresponding "methacryloyl group”.
  • the monofunctional (meth) accrete means a (meth) acrylate having one (meth) acryloyl group
  • the polyfunctional (meth) accrete means having two or more (meth) acryloyl groups ().
  • Meta) means acrylate.
  • Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate, 2 -Ethylhexyl diglucol (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, dodecyl (meth) acrylate, hexadecyl (meth) acrylate, octadecyl (meth) acrylate, cyclohexyl (meth) acrylate, methoxyethyl (meth) Acrylate, methoxytriethylene glycol (meth) acrylate, methoxytripropylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate,
  • polyfunctional (meth) acrylate examples include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,5-pentanediol di (meth) acrylate, and 3-methyl.
  • Di (meth) acrylate in which two hydroxyl groups of triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of trimethylolpropane are substituted with (meth) acryloyloxy groups, 4 mol in 1 mol of bisphenol A Bifunctional (meth) acrylates such as di (meth) acrylates in which the two hydroxyl groups of the diol obtained by adding the above ethylene oxide or propylene oxide are substituted with (meth) acryloyloxy groups, glycerin tri (meth) acrylates.
  • the cyclic structure may be an aromatic ring structure or a non-aromatic ring structure.
  • the number of cyclic structures may be 1 or 2 or more.
  • the number of annular structures may be 3 or less.
  • the number of carbon atoms constituting the cyclic structure is, for example, 4 or more, and may be 5 or more or 6 or more.
  • the number of carbon atoms is, for example, 20 or less, and may be 18 or less.
  • the aromatic ring structure may be, for example, a structure having an aromatic ring having 6 to 18 carbon atoms.
  • the aromatic ring having 6 to 18 carbon atoms include a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring and the like.
  • the aromatic ring structure may be a structure having an aromatic heterocycle. Examples of the aromatic heterocycle include a furan ring, a pyrrole ring, a pyran ring, a pyridine ring and the like.
  • the number of aromatic rings may be 1 or 2 or more.
  • the number of aromatic rings may be 3 or less.
  • the organic group may have a structure in which two or more aromatic rings are bonded by a single bond (for example, a biphenyl structure).
  • the non-aromatic ring structure may be, for example, a structure having an alicyclic having 5 to 20 carbon atoms.
  • the alicyclic ring having 5 to 20 carbon atoms include a cycloalkane ring such as a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring, a cycloalkene ring such as a cyclopentene ring, a cyclohexene ring, a cycloheptene ring, and a cyclooctene ring.
  • a cycloalkane ring such as a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring
  • a cycloalkene ring such as a cyclopentene
  • the alicyclic ring may be a condensed ring such as a bicycloundecane ring, a decahydronaphthalene ring, a norbornene ring, a norbornadiene ring, or an isobornyl ring.
  • the non-aromatic ring structure may be a structure having a non-aromatic heterocycle. Examples of the non-aromatic heterocycle include a tetrahydrofuran ring, a pyrrolidine ring, a tetrahydropyran ring, a piperidine ring and the like.
  • the radically polymerizable compound having a cyclic structure is preferably a monofunctional or polyfunctional (meth) acrylate having a cyclic structure, and more preferably a monofunctional (meth) acrylate having a cyclic structure.
  • phenoxyethyl (meth) acrylate, phenoxybenzyl (meth) acrylate, biphenyl (meth) acrylate, isobornyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate and the like are available. It is preferably used.
  • the content of the radically polymerizable compound having a cyclic structure is 3% by mass or more, 5% by mass or more, or 3% by mass or more, based on the total mass of the ink composition, from the viewpoint of easily suppressing the stickiness (tack) of the surface of the ink composition. It may be 10% by mass or more.
  • the content of the radically polymerizable compound having a cyclic structure is 80% by mass or less based on the total mass of the ink composition from the viewpoint that an appropriate viscosity can be easily obtained as an inkjet ink and excellent ejection properties can be easily obtained. It may be 60% by mass or less or 45% by mass or less.
  • the linear structure may have a structure in which atoms other than hydrogen atoms are connected without branching, and may have heteroatoms such as oxygen atoms in addition to carbon atoms and hydrogen atoms. That is, the linear structure is not limited to a structure in which four or more carbon atoms are linearly continuous, but is a structure in which four or more carbon atoms are linearly connected via a hetero atom such as an oxygen atom. May be good.
  • the linear structure may have unsaturated bonds, but preferably consists of only saturated bonds.
  • the number of carbon atoms constituting the linear structure is preferably 5 or more, more preferably 6 or more, and further preferably 7 or more.
  • the number of carbon atoms constituting the linear structure is preferably 25 or less, more preferably 20 or less, and further preferably 15 or less.
  • the radically polymerizable compound having a linear structure having a total carbon number of 4 or more preferably does not have a cyclic structure from the viewpoint of ejection property.
  • the linear structure may be, for example, a structure having a linear alkyl group having 4 or more carbon atoms.
  • the linear alkyl group having 4 or more carbon atoms include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group and a pentadecyl group.
  • an alkyl (meth) acrylate in which the linear alkyl group is directly bonded to the (meth) acryloyloxy group is preferably used.
  • the linear structure may be, for example, a structure having a linear alkylene group having 4 or more carbon atoms.
  • the linear alkylene group having 4 or more carbon atoms include a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group and a pentadecylene group.
  • a butylene group a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group and a pentadecylene group
  • an alkylene glycol di (meth) acrylate in which two (meth) acryloyloxy groups are bonded by the above-mentioned linear alkylene group is preferably used.
  • the linear structure may be, for example, a structure in which a linear alkyl group and one or more linear alkylene groups are bonded via an oxygen atom (a structure having an alkyl (poly) oxyalkylene group).
  • the number of linear alkylene groups may be 2 or more and 6 or less. When the number of linear alkylene groups is 2 or more, the 2 or more alkylene groups may be the same or different.
  • the number of carbon atoms of the linear alkyl group and the linear alkylene group may be 1 or more, and may be 2 or more or 3 or more.
  • the linear alkyl group and the linear alkylene group may have 4 or less carbon atoms.
  • linear alkyl group examples include the above-mentioned linear alkyl group having 4 or more carbon atoms, a methyl group, an ethyl group and a propyl group.
  • linear alkylene group examples include the above-mentioned linear alkylene group having 4 or more carbon atoms, a methylene group, an ethylene group and a propylene group.
  • an alkyl (poly) oxyalkylene (meth) acrylate in which the above-mentioned alkyl (poly) oxyalkylene group is directly bonded to the (meth) acryloyloxy group is preferably used.
  • the content of the radically polymerizable compound having a linear structure having 4 or more carbon atoms makes it easy to obtain an appropriate viscosity as an inkjet ink, and it is easy to obtain excellent ejection properties, and the ink composition is excellent in curability. From the viewpoint, it may be 1% by mass or more, 3% by mass or more, or 5% by mass or more based on the total mass of the ink composition.
  • the content of the radically polymerizable compound having a linear structure having 4 or more carbon atoms is 80 mass based on the total mass of the ink composition from the viewpoint of easily suppressing the stickiness (tack) of the surface of the ink composition. % Or less, 60% by mass or less, or 45% by mass or less.
  • the photopolymerizable compound it is preferable to use two or more kinds of radically polymerizable compounds from the viewpoint of excellent surface uniformity of the pixel portion, and the above-mentioned radically polymerizable compound having a cyclic structure and the above-mentioned number of carbon atoms are used. It is more preferable to use in combination with a radically polymerizable compound having a linear structure of 4 or more.
  • the amount of luminescent nanocrystal particles is increased in order to improve the external quantum efficiency, the uniformity of the surface of the pixel portion may decrease. Even in such a case, the photopolymerizable compound According to the combination of, there is a tendency to obtain a pixel portion having excellent surface uniformity.
  • the content M of the radical-polymerizable compound having a cyclic structure is used.
  • the mass ratio of the content M 2 of the radical polymerizable compound having a linear structure carbon number is 4 or more (M 2 / M 1), from the viewpoint of excellent surface uniformity of the pixel portion, preferably It is 0.05 to 5, more preferably 0.1 to 3, and even more preferably 0.1 to 1.
  • the photopolymerizable compound may be alkali-insoluble from the viewpoint that a highly reliable pixel portion (cured product of the ink composition) can be easily obtained.
  • the fact that the photopolymerizable compound is alkali-insoluble means that the amount of the photopolymerizable compound dissolved in 1% by mass of a potassium hydroxide aqueous solution at 25 ° C. is 30 based on the total mass of the photopolymerizable compound. It means that it is mass% or less.
  • the dissolved amount of the photopolymerizable compound is preferably 10% by mass or less, and more preferably 3% by mass or less.
  • the content of the photopolymerizable compound is determined from the viewpoint that an appropriate viscosity can be easily obtained as an inkjet ink, the viewpoint of improving the curability of the ink composition, the solvent resistance of the pixel portion (cured product of the ink composition), and the solvent resistance. From the viewpoint of improving the abrasion resistance, it may be 10% by mass or more, 15% by mass or more, or 20% by mass or more based on the total mass of the ink composition.
  • the content of the photopolymerizable compound is based on the total mass of the ink composition from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink and from the viewpoint of obtaining more excellent optical characteristics (for example, external quantum efficiency).
  • the content of the photopolymerizable compound is, for example, 10 to 60% by mass, 15 to 50% by mass, 20 to 40% by mass, or 20 to 30% by mass based on the total mass of the ink composition. It may be there.
  • Photopolymerization initiator examples of the photopolymerization initiator that can be contained in the ink composition include a photoradical polymerization initiator.
  • a photoradical polymerization initiator a molecular cleavage type or hydrogen abstraction type photoradical polymerization initiator is suitable.
  • Examples of the molecular cleavage type photoradical polymerization initiator include benzoin isobutyl ether, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and 2-benzyl-2-dimethylamino-1.
  • -(4-morpholinophenyl) -butane-1-one, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, (2,4,6-trimethylbenzoyl) ethoxyphenylphosphine oxide Etc. are preferably used.
  • molecular cleavage type photoradical polymerization initiators include 1-hydroxycyclohexylphenyl ketone, benzoin ethyl ether, benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4). -Isopropylphenyl) -2-hydroxy-2-methylpropan-1-one and 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1-one may be used in combination.
  • Examples of the hydrogen abstraction type photoradical polymerization initiator include benzophenone, 4-phenylbenzophenone, isophthalphenone, 4-benzoyl-4'-methyl-diphenylsulfide and the like.
  • a molecular cleavage type photoradical polymerization initiator and a hydrogen abstraction type photoradical polymerization initiator may be used in combination.
  • the content of the photopolymerization initiator may be 0.1 part by mass or more and 0.5 part by mass or more with respect to 100 parts by mass of the photopolymerizable compound from the viewpoint of curability of the ink composition. It may be 1 part by mass or more, 3 parts by mass or more, or 5 parts by mass or more.
  • the content of the photopolymerization initiator may be 40 parts by mass or less, and 30 parts by mass with respect to 100 parts by mass of the photopolymerizable compound, from the viewpoint of the temporal stability of the pixel portion (cured product of the ink composition). It may be 20 parts by mass or less, 10 parts by mass or less. From these viewpoints, the content of the photopolymerization initiator may be, for example, 0.1 to 40 parts by mass with respect to 100 parts by mass of the photopolymerizable compound.
  • hypophosphorous acid diester compound is a compound in which each of the two hydroxyl groups of hypophosphorous acid (hypophosphoric acid) is esterified.
  • the hypophosphorous acid diester compound has, for example, a structure represented by the following formula (I).
  • X 1 represents an oxygen atom or a sulfur atom
  • R 1 is a hydrogen atom or an organic group (however, the atom directly bonded to P (phosphorus atom) in the formula (I) is a carbon atom).
  • R 2 represents a hydrocarbon group.
  • the plurality of X 1s may be the same as or different from each other.
  • the plurality of R 2s may be the same as or different from each other.
  • X 1 is preferably an oxygen atom.
  • R 1 is preferably an organic group (however, the atom directly bonded to P is a carbon atom).
  • the organic group may be a hydrocarbon group, and may be a group having a hetero atom such as an oxygen atom, a nitrogen atom, or a phosphorus atom in addition to a carbon atom and a hydrogen atom.
  • the organic group may have a structure represented by the following formula (Ia), for example.
  • the organic group preferably has an aromatic ring.
  • the number of aromatic rings may be 1 or 2 or more.
  • the number of aromatic rings may be 3 or less.
  • the number of carbon atoms constituting the aromatic ring is, for example, 6 to 18.
  • Examples of the aromatic ring having 6 to 18 carbon atoms include a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring and the like.
  • the organic group may have a structure in which two or more aromatic rings are bonded by a single bond (for example, a biphenyl structure).
  • R 2 is preferably an aryl group. That is, the hypophosphorous acid diester compound is preferably a compound represented by the following formula (II).
  • Ar 1 represents an aryl group.
  • X 1 and R 1 are synonymous with X 1 and R 1 in formula (I), respectively.
  • Two of X 1 may be the being the same or different, two Ar 1 may be the being the same or different.
  • the hypophosphoric acid diester compound is a compound represented by the above formula (II)
  • the hypophosphoric acid diester compound and the photopolymerizable compound are in a state of being well compatible with each other, and the hypophosphoric acid diester compound is oxidized.
  • the ink composition contains the above-mentioned radically polymerizable compound having a cyclic structure.
  • the aryl group is a group generated by removing one hydrogen atom bonded to the ring of a monocyclic or polycyclic aromatic hydrocarbon, and is a group of hydrogen atoms bonded to the ring of an aromatic hydrocarbon. It has one to three alkyl groups having 1 to 3 carbon atoms as substituents on the aromatic hydrocarbon ring, such as a group partially substituted by a hydrocarbon machine or the like (for example, a dit-butylphenyl group). Group) is also included in the aryl group.
  • the number of carbon atoms in the aryl group is, for example, 6-18.
  • the aromatic ring contained in the aryl group may be a monocyclic ring or a condensed ring.
  • the aryl group may be, for example, a substituted or unsubstituted phenyl group, or may be a substituted or unsubstituted naphthyl group.
  • the aryl group may have an aromatic ring other than the aromatic ring directly bonded to X 1.
  • the aryl group may be a biphenylyl group.
  • the aryl group is particularly preferably a substituted or unsubstituted phenyl group.
  • an alkyl group having 1 to 6 carbon atoms is preferable.
  • the number of substituents is preferably 1 to 3 per aromatic nucleus.
  • the aryl group include an unsubstituted phenyl group or a monoalkylphenyl group having an alkyl group (preferably an alkyl group having 1 to 6 carbon atoms) as a substituent on the aromatic nucleus.
  • a dialkylphenyl group or a trialkylphenyl group is preferable.
  • the alkyl group having 1 to 6 carbon atoms may be linear or branched.
  • Examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group and the like.
  • Examples of the branched alkyl group include an isopropyl group, an isobutyl group, a sec-butyl group, a tert-butyl group and the like.
  • the plurality of R 3 is 1 to 3 but alkyl group, preferably 2 to four is a hydrogen atom, more preferably at least one of the plurality of R 3 is a branched alkyl group, a plurality of It is preferable that at least two of R 3 are branched alkyl groups.
  • the branched alkyl group is preferably a tert-butyl group.
  • the hypophosphorous acid diester compound preferably has a plurality of hypophosphorous acid diester structures. Specifically, the hypophosphorous acid diester compound preferably has a structure represented by the following formula (IV).
  • Y represents a linking group (wherein the atom directly bonded to P (phosphorus atom) in formula (IV) is a carbon atom).
  • X 2 and X 3 represent an oxygen atom or a sulfur atom, and Ar 2 and Ar 3 represent an aryl group.
  • Two X 2 may be the being the same or different, two X 3 may be the being the same or different, two Ar 2 may be the being the same or different two Ar 3 may be the being the same or different.
  • X 2 and X 3 are oxygen atoms.
  • the details of the aryl groups of Ar 2 and Ar 3 are the same as the details of the aryl groups of Ar 1 described above.
  • Y is preferably a divalent hydrocarbon group, more preferably a divalent hydrocarbon group having an aromatic ring.
  • the aromatic ring is preferably contained in the main chain of the linking group.
  • the linking group is preferably an arylene group. Examples of the arylene group include a phenylene group, a biphenylylene group, a naphthylene group and the like.
  • hypophosphite diester compounds include, for example, tetrakis (2,4-di-t-butyl-5-methylphenyl) -4,4'-biphenylenediphosphonite), tetrakis (2,4). -Di-t-butylphenyl) -4,4'-biphenylenediphosphonite), bis (2,4-di-t-butyl-5-methylphenyl) -biphenylphosphonite, bis (2,4-di- Examples thereof include t-butylphenyl) -biphenylphosphonite. These may be used alone or in combination of two or more.
  • the content of the hypophosphorous acid diester compound may be 0.01% by mass or more, or 0.05% by mass or more, based on the total mass of the ink composition from the viewpoint of being superior in external quantum efficiency. It may be 0.1% by mass or more.
  • the content of the hypophosphorous acid diester compound makes it possible to secure better film strength at the time of forming the coating film, and further suppresses the bleeding of the hypophosphorous acid diester compound to the surface of the pixel portion. From the viewpoint of obtaining more excellent external quantum efficiency, it may be 10% by mass or less, 5% by mass or less, or 3% by mass or less based on the total mass of the ink composition. good. From these viewpoints, the content of the hypophosphorous acid diester compound is, for example, 0.01 to 10% by mass, 0.05 to 5% by mass, or 0.1 to 3% by mass, based on the total mass of the ink composition. May be%.
  • the ink composition may contain a compound that functions as an antioxidant in addition to the above-mentioned phosphite ester compound as long as the effects of the present invention are not impaired.
  • a compound for example, it is used as a conventionally known antioxidant such as a phenol-based antioxidant, an amine-based antioxidant, a phosphorus-based antioxidant other than a hypophosphoric acid diester compound, and a sulfur-based antioxidant.
  • examples include compounds that are: Among these, it is preferable to use a phenolic antioxidant because it tends to further suppress a decrease in external quantum efficiency when used in combination with a hypophosphorous acid diester compound.
  • phenolic antioxidant examples include 2,4,6-tris (3', 5'-di-t-butyl-4'-hydroxybenzyl) mecitylene (product name: AO-330), 2,4-.
  • the phenolic antioxidant is a hindered phenolic antioxidant in which the hydrogen atom at both ortho positions of the phenol hydroxyl group is replaced with a sterically bulky group, and the hydrogen atom at one ortho position of the phenol hydroxyl group is used.
  • a semi-hindered phenolic antioxidant in which the hydrogen atom at the other ortho position is substituted with a methyl group and the hydrogen atom at one ortho position of the phenol hydroxyl group is sterically substituted with a bulky group.
  • the hydrogen atom at the ortho position of the other, which is substituted with a bulky group may be any of the unsubstituted less hindered phenolic antioxidants.
  • the sterically bulky group means a branched alkyl group or aromatic ring group other than the linear alkyl group.
  • a tertiary alkyl group such as a t-butyl group, a t-pentyl group, a t-hexyl group
  • a secondary alkyl group such as an i-propyl group, a sec-butyl group, a sec-pentyl group
  • i-butyl examples thereof include a branched primary alkyl group such as a group and an i-pentyl group; a cycloalkyl group such as a cyclohexyl group and a cyclopentyl group; and an aromatic ring group such as a phenyl group, a benzyl group and a naphthyl group.
  • the phenolic antioxidant is preferably a hindered phenolic antioxidant.
  • examples of the hindered phenolic antioxidant include 2,4,6-tris (3', 5'-di-t-butyl-4'-hydroxybenzyl) mecitylene and 2,4-bis- (n-octylthio).
  • pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) Propionate, octadecyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,6-di-t-butyl-4-nonylphenol, thiodiethylenebis [3- (3,5-di-) t-butyl-4-hydroxyphenyl) propionate], N, N-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide), etc.
  • pentaerythritol Tetrax [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate is preferably used.
  • phenolic antioxidants include Adekastab AO-20, Adekastab AO-30, Adekastab AO-40, Adekastab AO-50, Adekastab AO-60, and Adekastab AO-, which are antioxidants manufactured by ADEKA Corporation.
  • the content of the antioxidant may be 0.01% by mass or more, and 0.1% by mass or more, based on the total mass of the ink composition, from the viewpoint that the decrease in external quantum efficiency can be more easily suppressed. It may be 1% by mass or more, or 5% by mass or more.
  • the content of the antioxidant in addition to being able to secure better film strength when forming the coating film, bleeding of the antioxidant on the surface is further suppressed, and good optical characteristics are ensured. From the viewpoint of being possible, it is preferably 10% by mass or less, more preferably 7% by mass or less, still more preferably 5% by mass or less, still more preferably 3 based on the total mass of the ink composition. It is mass% or less.
  • the content of the hypophosphorous acid diester compound is not included in the above content.
  • the content of the phenolic antioxidant is preferably in the above range, and more preferably the content of the hindered phenolic antioxidant is in the above range.
  • the light-scattering particles are, for example, optically inactive inorganic fine particles.
  • the ink composition contains light-scattering particles, the light from the light source irradiated to the pixel portion can be scattered, so that excellent optical characteristics (for example, external quantum efficiency) can be obtained.
  • Examples of the material constituting the photoscattering particles include simple metals such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum and gold; silica, barium sulfate, talc, clay, kaolin, etc.
  • the light-scattering particles are more than the group consisting of titanium oxide, alumina, zirconium oxide, zinc oxide, calcium carbonate, barium sulfate, barium titanate, and silica from the viewpoint of excellent ejection stability and the effect of improving external quantum efficiency. It is preferable to contain at least one selected, and more preferably at least one selected from the group consisting of titanium oxide, zirconium oxide, zinc oxide and barium titanate.
  • the shape of the light scattering particles may be spherical, filamentous, indefinite, or the like.
  • the light-scattering particles it is possible to use particles having less directional particle shape (for example, spherical or tetrahedral particles) to improve the uniformity, fluidity and light scattering property of the ink composition. It is preferable in that it can be enhanced and excellent discharge stability can be obtained.
  • the average particle diameter (volume average diameter) of the light-scattering particles in the ink composition may be 0.05 ⁇ m (50 nm) or more from the viewpoint of excellent ejection stability and the effect of improving external quantum efficiency. , 0.2 ⁇ m (200 nm) or more, or 0.3 ⁇ m (300 nm) or more.
  • the average particle size (volume average diameter) of the light-scattering particles in the ink composition may be 1.0 ⁇ m (1000 nm) or less, or 0.6 ⁇ m (600 nm) or less, from the viewpoint of excellent ejection stability. It may be 0.4 ⁇ m (400 nm) or less.
  • the average particle diameter (volume average diameter) of the light-scattering particles in the ink composition is 0.05 to 1.0 ⁇ m, 0.05 to 0.6 ⁇ m, 0.05 to 0.4 ⁇ m, 0.2 to 1. It may be 0.0 ⁇ m, 0.2 to 0.6 ⁇ m, 0.2 to 0.4 ⁇ m, 0.3 to 1.0 ⁇ m, 0.3 to 0.6 ⁇ m, or 0.3 to 0.4 ⁇ m. From the viewpoint that such an average particle diameter (volume average diameter) can be easily obtained, the average particle diameter (volume average diameter) of the light-scattering particles used may be 0.05 ⁇ m or more, and 1.0 ⁇ m or less. You may.
  • the average particle diameter (volume average diameter) of the light-scattering particles in the ink composition is obtained by measuring with a dynamic light-scattering nanotrack particle size distribution meter and calculating the volume average diameter. ..
  • the average particle diameter (volume average diameter) of the light-scattering particles used can be obtained by measuring the particle diameter of each particle with, for example, a transmission electron microscope or a scanning electron microscope, and calculating the volume average diameter.
  • the content of light-scattering particles in the ink composition is, for example, 0.1% by mass or more, 1% by mass or more, or more, based on the total mass of the ink composition, from the viewpoint of being more excellent in the effect of improving the external quantum efficiency. It may be 2% by mass or more.
  • the content of the light-scattering particles is, for example, 60% by mass or less based on the total mass of the ink composition.
  • the content of the light-scattering particles is preferably 10% by mass or less, more preferably 7% by mass or less, still more preferably 5 from the viewpoint of excellent ejection stability and the effect of improving external quantum efficiency. It is mass% or less. From these viewpoints, the content of the light-scattering particles is preferably 0.1 to 10% by mass based on the total mass of the ink composition.
  • the mass ratio of the content of light-scattering particles to the content of luminescent nanocrystal particles is 0.05 or more from the viewpoint of excellent effect of improving external quantum efficiency. It may be 0.1 or more, 0.2 or more, or 0.5 or more.
  • the mass ratio (light scattering particles / luminescent nanocrystal particles) may be 5.0 or less from the viewpoint of excellent effect of improving external quantum efficiency and excellent continuous ejection property (ejection stability) during inkjet printing. , 2.0 or less, or 1.5 or less. From these viewpoints, the mass ratio (light scattering particles / luminescent nanocrystal particles) may be, for example, 0.05 to 5.0.
  • the polymer dispersant is a polymer compound having a weight average molecular weight of 750 or more and having a functional group having an affinity for light-scattering particles.
  • the polymer dispersant has a function of dispersing light-scattering particles.
  • the polymer dispersant is adsorbed (for example, bonded) to the light-scattering particles via a functional group having an affinity for the light-scattering particles, and the light is emitted by electrostatic repulsion and / or steric repulsion between the polymer dispersants.
  • Scatterable particles are dispersed in the ink composition.
  • the polymer dispersant is preferably bound to the surface of the light-scattering particles and adsorbed to the light-scattering particles, but is bound to the surface of the luminescent nanoparticles and adsorbed to the luminescent nanoparticles. It may be free in the ink composition.
  • Examples of the functional group having an affinity for light-scattering particles include an acidic functional group, a basic functional group and a nonionic functional group.
  • the acidic functional group has a dissociative proton and may be neutralized by a base such as an amine or a hydroxide ion, and the basic functional group is neutralized by an acid such as an organic acid or an inorganic acid. You may.
  • the acidic functional group a carboxyl group (-COOH), a sulfo group (-SO 3 H), sulfuric acid group (-OSO 3 H), a phosphonic acid group (-PO (OH) 3), phosphoric acid group (-OPO ( OH) 3 ), phosphinic acid group (-PO (OH)-), mercapto group (-SH) and the like can be mentioned.
  • Examples of the basic functional group include primary, secondary and tertiary amino groups, ammonium groups, imino groups, and nitrogen-containing heterocyclic groups such as pyridine, pyrimidine, pyrazine, imidazole, and triazole.
  • the nonionic functional group hydroxy group, an ether group, a thioether group, a sulfinyl group (-SO-), a sulfonyl group (-SO 2 -), a carbonyl group, a formyl group, an ester group, carbonic ester group, an amide group, Examples thereof include a carbamoyl group, a ureido group, a thioamide group, a thioureide group, a sulfamoyl group, a cyano group, an alkenyl group, an alkynyl group, a phosphine oxide group and a phosphine sulfide group.
  • the polymer dispersant may be a polymer of a single monomer (homopolymer) or a copolymer of a plurality of types of monomers (copolymer). Moreover, the polymer dispersant may be any of a random copolymer, a block copolymer, and a graft copolymer. When the polymer dispersant is a graft copolymer, it may be a comb-shaped graft copolymer or a star-shaped graft copolymer.
  • the polymer dispersant may be, for example, acrylic resin, polyester resin, polyurethane resin, polyamide resin, polyether, phenol resin, silicone resin, polyurea resin, amino resin, epoxy resin, polyamine such as polyethyleneimine and polyallylamine, and polyimide. It may be there.
  • polymer dispersant Commercially available products can be used as the polymer dispersant, and the commercially available products include Ajinomoto Fine-Techno Co., Ltd.'s Ajispar PB series, BYK's DISPERBYK series and BYK-series, and BASF's Efka series. Etc. can be used.
  • the ink composition may further contain components other than the above-mentioned components as long as the effects of the present invention are not impaired.
  • the ink composition may further contain, for example, a solvent.
  • a solvent examples include cyclohexane, hexane, heptane, chloroform, toluene, octane, chlorobenzene, tetralin, diphenyl ether, propylene glycol monomethyl ether acetate, butyl carbitol acetate, or a mixture thereof.
  • the photopolymerizable compound since the photopolymerizable compound also functions as a dispersion medium, it is possible to disperse light-scattering particles and luminescent nanocrystal particles without a solvent.
  • the step of removing the solvent by drying when forming the pixel portion becomes unnecessary.
  • the content of the solvent may be more than 0% by mass and 5% by mass or less based on the total mass (including the solvent) of the ink composition.
  • the viscosity of the ink composition described above may be, for example, 2 mPa ⁇ s or more, 5 mPa ⁇ s or more, or 7 mPa ⁇ s or more from the viewpoint of ejection stability during inkjet printing. good.
  • the viscosity of the ink composition may be 20 mPa ⁇ s or less, 15 mPa ⁇ s or less, or 12 mPa ⁇ s or less.
  • the viscosity of the ink composition is, for example, 2 to 20 mPa ⁇ s, 2 to 15 mPa ⁇ s, 2 to 12 mPa ⁇ s, 5 to 20 mPa ⁇ s, 5 to 15 mPa ⁇ s, 5 to 12 mPa ⁇ s, 7 to 20 mPa ⁇ s. , 7 to 15 mPa ⁇ s, or 7 to 12 mPa ⁇ s.
  • the viscosity is, for example, the viscosity at the ink temperature when performing inkjet printing, and is the viscosity measured by an E-type viscometer.
  • the ink temperature at the time of performing inkjet printing is preferably 25 to 60 ° C., more preferably 30 to 55 ° C., and even more preferably 30 to 40 ° C.
  • the ink temperature when performing inkjet printing is adjusted by the temperature of the inkjet head when performing inkjet printing.
  • the viscosity of the ink composition at the ink temperature during inkjet printing is 2 mPa ⁇ s or more, the meniscus shape of the inkjet ink at the tip of the ink ejection hole of the ejection head is stable, so that the ejection amount of the inkjet ink (for example, the ejection amount) is controlled. And control of discharge timing) becomes easy.
  • the viscosity of the ink composition at the ink temperature during inkjet printing is 20 mPa ⁇ s or less, the inkjet ink can be smoothly ejected from the ink ejection holes.
  • the surface tension of the ink composition is preferably a surface tension suitable for the inkjet method, specifically, preferably in the range of 20 to 40 mN / m, and more preferably 25 to 35 mN / m. ..
  • discharge control for example, control of discharge amount and discharge timing
  • the flight bending means that when the ink composition is ejected from the ink ejection holes, the landing position of the ink composition deviates from the target position by 30 ⁇ m or more.
  • the surface tension is 40 mN / m or less, the shape of the meniscus at the tip of the ink ejection hole is stable, so that the ejection control of the ink composition (for example, control of the ejection amount and the ejection timing) becomes easy.
  • the surface tension is 20 mN / m or more, it is possible to prevent the peripheral portion of the ink ejection hole from being contaminated with the inkjet ink, so that the occurrence of flight bending can be suppressed.
  • a pixel portion may not be landed accurately on the pixel portion forming region to be landed and the ink composition may be insufficiently filled, or a pixel portion forming region (or pixel portion) adjacent to the pixel portion forming region to be landed may be generated.
  • the ink composition does not land on the surface and the color reproducibility does not deteriorate.
  • the surface tension described in the present specification refers to the surface tension measured at 23 ° C., which is measured by the ring method (also referred to as the ring method).
  • the ink composition of the present embodiment is used as an ink composition for an inkjet method, it is preferably applied to a piezojet type inkjet recording device using a mechanical ejection mechanism using a piezoelectric element.
  • the ink composition is not instantaneously exposed to a high temperature during ejection. Therefore, alteration of the luminescent nanocrystal particles is unlikely to occur, and the expected luminescence characteristics can be more easily obtained in the pixel portion (light conversion layer).
  • the inkjet ink composition of the above-described embodiment can be used, for example, by a photolithography method in addition to the inkjet method.
  • the ink composition contains an alkali-soluble resin as a binder polymer.
  • the ink composition When the ink composition is used by the photolithography method, first, the ink composition is applied onto a substrate, and then the ink composition is dried to form a coating film.
  • the coating film thus obtained is soluble in an alkaline developer and is patterned by being treated with an alkaline developer.
  • the alkaline developer is an aqueous solution from the viewpoint of ease of waste liquid treatment of the developer
  • the coating film of the ink composition is treated with the aqueous solution.
  • the luminescent nanocrystal particles quantum dots or the like
  • the luminescent nanocrystal particles are unstable with respect to water, and the luminescence (for example, fluorescence) is impaired by water. Therefore, in this embodiment, an inkjet method that does not need to be treated with an alkaline developer (aqueous solution) is preferable.
  • the coating film of the ink composition is preferably alkali-insoluble. That is, the ink composition of the present embodiment is preferably an ink composition capable of forming an alkali-insoluble coating film.
  • Such an ink composition can be obtained by using an alkali-insoluble photopolymerizable compound as the photopolymerizable compound.
  • the coating film of the ink composition is alkali-insoluble means that the amount of the coating film of the ink composition dissolved at 25 ° C. in a 1% by mass potassium hydroxide aqueous solution is based on the total mass of the coating film of the ink composition. It means that it is 30% by mass or less.
  • the amount of the coating film of the ink composition dissolved is preferably 10% by mass or less, and more preferably 3% by mass or less.
  • the fact that the ink composition is an ink composition capable of forming an alkali-insoluble coating film means that the thickness is obtained by applying the ink composition on a substrate and then drying it at 80 ° C. for 3 minutes. It can be confirmed by measuring the above-mentioned dissolution amount of the 1 ⁇ m coating film.
  • the ink composition of the above-described embodiment includes, for example, a step of mixing the constituent components of the above-mentioned ink composition.
  • the method for producing an ink composition may further include a step of performing a dispersion treatment of the mixture of the above constituent components.
  • the method for producing the ink composition is, for example, a first step of preparing a dispersion of light-scattering particles containing light-scattering particles, and mixing the dispersion of light-scattering particles and luminescent nanocrystal particles.
  • a second step is provided.
  • the dispersion of light-scattering particles may further contain a polymer dispersant.
  • the dispersion of photoscattering particles may further contain a photopolymerizable compound and a hypophosphorous acid diester compound, and in the second step, the photopolymerizable compound and the hypophosphorous acid diester compound are further mixed. You may.
  • the light scattering particles can be sufficiently dispersed. Therefore, the optical characteristics (for example, external quantum efficiency) of the pixel portion can be improved, and an ink composition having excellent ejection stability can be easily obtained.
  • the light-scattering particles in some cases, a polymer dispersant, a photopolymerizable compound, and a hypophosphite diester compound are mixed and dispersed. May prepare a dispersion of light-scattering particles.
  • the mixing and dispersion treatment may be carried out using a dispersion device such as a bead mill, a paint conditioner, a planetary stirrer, or a jet mill. It is preferable to use a bead mill or a paint conditioner from the viewpoint that the dispersibility of the light-scattering particles is good and the average particle size of the light-scattering particles can be easily adjusted to a desired range.
  • the light-scattering particles By mixing the light-scattering particles and the polymer dispersant before mixing the luminescent nanocrystal particles and the light-scattering particles, the light-scattering particles can be more sufficiently dispersed. Therefore, excellent ejection stability and excellent external quantum efficiency can be obtained more easily.
  • the method for producing an ink composition further includes a step of preparing a dispersion of luminescent nanocrystal particles containing luminescent nanocrystal particles and a photopolymerizable compound before the second step. May be good.
  • the dispersion of the light-scattering particles and the dispersion of the luminescent nanocrystal particles are mixed.
  • the step of preparing a dispersion of luminescent nanocrystal particles luminescent nanocrystal particles, a photopolymerizable compound, and, in some cases, a hypophosphite diester compound are mixed and dispersed, so that the luminescent nanocrystals are treated.
  • Particle dispersions may be prepared.
  • the luminescent nanocrystal particles As the luminescent nanocrystal particles, luminescent nanocrystal particles having an organic ligand on the surface thereof may be used. That is, the luminescent nanocrystal particle dispersion may further contain an organic ligand.
  • the mixing and dispersion treatment may be performed using a normal stirring device such as an electromagnetic stirrer or a three-one motor, or a dispersing device such as a vortex mixer, a bead mill, a paint conditioner, a planetary stirrer, or a jet mill. From the viewpoint of not giving excessive energy to the luminescent nanocrystal particles, it is preferable to use a normal stirring device such as an electromagnetic stirrer or a three-one motor or a vortex mixer.
  • the luminescent nanocrystal particles can be sufficiently dispersed without deteriorating the performance. Therefore, the optical characteristics (for example, external quantum efficiency) of the pixel portion can be improved, and an ink composition having excellent ejection stability can be easily obtained.
  • the ink composition set of one embodiment includes the ink composition of the above-described embodiment.
  • the ink composition set may include an ink composition (non-emissive ink composition) that does not contain luminescent nanocrystal particles, in addition to the ink composition (emissive ink composition) of the above-described embodiment.
  • the non-luminescent ink composition is, for example, a curable ink composition.
  • the non-emissive ink composition may be a conventionally known ink composition, and has the same composition as the ink composition (emissive ink composition) of the above-described embodiment except that it does not contain luminescent nanocrystal particles. It may be.
  • the non-luminescent ink composition does not contain luminescent nanocrystal particles, light is incident on the pixel portion formed by the non-luminescent ink composition (the pixel portion containing the cured product of the non-luminescent ink composition). In this case, the light emitted from the pixel portion has substantially the same wavelength as the incident light. Therefore, the non-emissive ink composition is suitably used for forming pixel portions having the same color as the light from the light source. For example, when the light from the light source is light having a wavelength in the range of 420 to 480 nm (blue light), the pixel portion formed by the non-emissive ink composition can be a blue pixel portion.
  • the non-luminescent ink composition preferably contains light-scattering particles.
  • the pixel portion formed by the non-emissive ink composition can scatter the light incident on the pixel portion, whereby the pixel It is possible to reduce the difference in light intensity of the light emitted from the unit at the viewing angle.
  • FIG. 1 is a schematic cross-sectional view of the color filter of one embodiment.
  • the color filter 100 includes a base material 40 and a light conversion layer 30 provided on the base material 40.
  • the light conversion layer 30 includes a plurality of pixel units 10 and a light-shielding unit 20.
  • the optical conversion layer 30 has a first pixel unit 10a, a second pixel unit 10b, and a third pixel unit 10c as the pixel unit 10.
  • the first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c are arranged in a grid pattern so as to repeat in this order.
  • the light-shielding portion 20 is located between adjacent pixel portions, that is, between the first pixel portion 10a and the second pixel portion 10b, between the second pixel portion 10b and the third pixel portion 10c, and the third. It is provided between the pixel portion 10c of the above and the first pixel portion 10a. In other words, these adjacent pixel portions are separated from each other by the light-shielding portion 20.
  • the first pixel portion 10a and the second pixel portion 10b are luminescent pixel portions (light emitting pixel portions) containing a cured product of the ink composition of the above-described embodiment, respectively.
  • the first pixel portion 10a includes a first curing component 13a, first luminescent nanocrystal particles 11a dispersed in the first curing component 13a, and first light scattering particles 12a, respectively.
  • the second pixel portion 10b includes the second curing component 13b, the second luminescent nanocrystal particles 11b and the second light scattering particles 12b dispersed in the second curing component 13b, respectively. including.
  • the curing component is a component obtained by polymerizing a photopolymerizable compound, and includes a polymer of the photopolymerizable compound and a hypophosphorous acid diester compound.
  • the curing component contains organic components (organic ligand, polymer dispersant, unreacted polymerizable compound, etc.) contained in the ink composition. good.
  • the first curing component 13a and the second curing component 13b may be the same or different, and may be the same as or different from the first light scattering particles 12a. It may be the same as or different from the second light scattering particle 12b.
  • the first luminescent nanocrystal particles 11a are red luminescent nanocrystal particles that absorb light having a wavelength in the range of 420 to 480 nm and emit light having an emission peak wavelength in the range of 605 to 665 nm. That is, the first pixel portion 10a may be rephrased as a red pixel portion for converting blue light into red light.
  • the second luminescent nanocrystal particle 11b is a green luminescent nanocrystal particle that absorbs light having a wavelength in the range of 420 to 480 nm and emits light having an emission peak wavelength in the range of 500 to 560 nm. That is, the second pixel portion 10b may be rephrased as a green pixel portion for converting blue light into green light.
  • the content of the luminescent nanocrystal particles in the luminescent pixel portion is based on the total mass of the cured product of the luminescent ink composition from the viewpoint of being superior due to the effect of improving the external quantum efficiency and from the viewpoint of obtaining excellent emission intensity. It is preferably 20% by mass or more, and may be 22% by mass or more, 24% by mass or more, or 26% by mass or more.
  • the content of the luminescent nanocrystal particles is preferably 80% by mass or less based on the total mass of the cured product of the luminescent ink composition from the viewpoint of excellent reliability of the pixel portion and excellent luminescence intensity. It may be 70% by mass or less, 60% by mass or less, 50% by mass or less, or 40% by mass or less.
  • the content of the light scattering particles in the luminescent pixel portion is, for example, 0.1% by mass or more based on the total mass of the cured product of the luminescent ink composition from the viewpoint of being more excellent in the effect of improving the external quantum efficiency. It may be 1% by mass or more or 2% by mass or more.
  • the content of the light-scattering particles is, for example, 60% by mass or less based on the total mass of the cured product of the luminescent ink composition.
  • the content of the light-scattering particles is preferably 10% by mass or less based on the total mass of the cured product of the luminescent ink composition from the viewpoint of being excellent in the effect of improving the external quantum efficiency and the reliability of the pixel portion. It is more preferably 7% by mass or less, and further preferably 5% by mass or less.
  • the third pixel portion 10c is a non-emission pixel portion (non-emission pixel portion) containing a cured product of the non-emission ink composition described above.
  • the cured product does not contain luminescent nanocrystal particles, but contains light-scattering particles and a cured component. That is, the third pixel portion 10c includes a third curing component 13c and a third light scattering particle 12c dispersed in the third curing component 13c.
  • the third curing component 13c is, for example, a component obtained by polymerizing a polymerizable compound and contains a polymer of the polymerizable compound.
  • the third light-scattering particle 12c may be the same as or different from the first light-scattering particle 12a and the second light-scattering particle 12b.
  • the third pixel portion 10c has a transmittance of 30% or more with respect to light having a wavelength in the range of 420 to 480 nm, for example. Therefore, the third pixel portion 10c functions as a blue pixel portion when a light source that emits light having a wavelength in the range of 420 to 480 nm is used.
  • the transmittance of the third pixel unit 10c can be measured by a microspectroscopy.
  • the content of the light scattering particles in the non-emissive pixel portion is 1% by mass based on the total mass of the cured product of the non-emissive ink composition from the viewpoint that the difference in light intensity at the viewing angle can be further reduced. It may be the above, 5% by mass or more, and 10% by mass or more.
  • the content of the light-scattering particles may be 50% by mass or less, and 30% by mass or less, based on the total mass of the cured product of the non-emissive ink composition from the viewpoint of further reducing light reflection. It may be 20% by mass or less.
  • the thickness of the pixel portion may be, for example, 1 ⁇ m or more, 2 ⁇ m or more, or 3 ⁇ m or more. You may.
  • the thickness of the pixel portion may be, for example, 30 ⁇ m or less, 20 ⁇ m or less, or 15 ⁇ m or less. You may.
  • the light-shielding portion 20 is a so-called black matrix provided for the purpose of separating adjacent pixel portions to prevent color mixing and for the purpose of preventing light leakage from a light source.
  • the material constituting the light-shielding portion 20 is not particularly limited, and the curing of the resin composition in which the binder polymer contains light-shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments in addition to a metal such as chromium. Objects and the like can be used.
  • the binder polymer used here includes one or a mixture of two or more resins such as polyimide resin, acrylic resin, epoxy resin, polyacrylamide, polyvinyl alcohol, gelatin, casein, and cellulose, photosensitive resin, and O / W.
  • An emulsion-type resin composition (for example, an emulsion of a reactive silicone) or the like can be used.
  • the thickness of the light-shielding portion 20 may be, for example, 0.5 ⁇ m or more, and may be 10 ⁇ m or less.
  • the base material 40 is a transparent base material having light transmission, and is, for example, a transparent glass substrate such as quartz glass, Pyrex (registered trademark) glass, or a synthetic quartz plate, a transparent resin film, a transparent resin film for optics, or the like.
  • a flexible base material or the like can be used.
  • a glass substrate made of non-alkali glass that does not contain an alkaline component in the glass.
  • "7059 glass”, “1737 glass”, “Eagle 200” and “Eagle XG” manufactured by Corning Inc., "AN100" manufactured by Asahi Glass Co., Ltd., "OA-10G” and “OA-10G” manufactured by Nippon Electric Glass Co., Ltd. OA-11 ” is suitable. These are materials with a small coefficient of thermal expansion and are excellent in dimensional stability and workability in high-temperature heat treatment.
  • the color filter 100 provided with the above optical conversion layer 30 is preferably used when a light source that emits light having a wavelength in the range of 420 to 480 nm is used.
  • the color filter 100 can be manufactured, for example, by forming the light-shielding portion 20 on the base material 40 in a pattern and then forming the pixel portion 10 in the pixel portion-forming region partitioned by the light-shielding portion 20 on the base material 40. ..
  • the pixel portion 10 includes a step of selectively adhering an ink composition (inkjet ink) to a pixel portion forming region on the base material 40 by an inkjet method, a step of removing an organic solvent from the ink composition by drying, and after drying. It can be formed by a method including a step of irradiating the ink composition of No.
  • a luminescent pixel portion can be obtained by using the above-mentioned luminescent ink composition as the ink composition, and a non-luminescent pixel portion can be obtained by using the non-luminescent ink composition.
  • the method of forming the light-shielding portion 20 is to form a metal thin film such as chromium or a thin film of a resin composition containing light-shielding particles in a region serving as a boundary between a plurality of pixel portions on one surface side of the base material 40.
  • a method of patterning this thin film and the like can be mentioned.
  • the metal thin film can be formed by, for example, a sputtering method, a vacuum vapor deposition method, or the like, and the thin film of the resin composition containing the light-shielding particles can be formed, for example, by a method such as coating or printing. Examples of the patterning method include a photolithography method and the like.
  • Examples of the inkjet method include a bubble jet (registered trademark) method using an electrothermal converter as an energy generating element, a piezojet method using a piezoelectric element, and the like.
  • the method for drying the ink composition is preferably drying under reduced pressure (drying under reduced pressure). Drying under reduced pressure is usually carried out at 20 to 30 ° C. for 3 to 30 minutes under a pressure of 1.0 to 500 Pa from the viewpoint of controlling the composition of the ink composition.
  • a mercury lamp, a metal halide lamp, a xenon lamp, an LED or the like may be used for curing the ink composition.
  • the wavelength of the light to be irradiated may be, for example, 200 nm or more, and may be 440 nm or less.
  • the exposure amount may be, for example, 10 mJ / cm 2 or more, and may be 20000 mJ / cm 2 or less.
  • the present invention is not limited to the above embodiment.
  • the light conversion layer is a pixel portion (instead of the third pixel portion 10c or in addition to the third pixel portion 10c) containing a cured product of a luminescent ink composition containing blue luminescent nanocrystal particles (a pixel portion containing a cured product of a luminescent ink composition.
  • a blue pixel portion may be provided.
  • the light conversion layer includes a pixel portion (for example, a yellow pixel portion) containing a cured product of a luminescent ink composition containing nanocrystal particles that emit light of colors other than red, green, and blue. good. In these cases, it is preferable that each of the luminescent nanocrystal particles contained in each pixel portion of the light conversion layer has an absorption maximum wavelength in the same wavelength range.
  • At least a part of the pixel portion of the light conversion layer may contain a cured product of a composition containing a pigment other than luminescent nanocrystal particles.
  • the color filter may include an ink-repellent layer made of a material having an ink-repellent property narrower than that of the light-shielding portion on the pattern of the light-shielding portion.
  • an ink-repellent layer instead of providing an ink-repellent layer, a photocatalyst-containing layer as a wettable variable layer is formed in a solid coating shape in a region including a pixel portion forming region, and then light is applied to the photocatalyst-containing layer via a photomask. Irradiation and exposure may be performed to selectively increase the ink-friendly property of the pixel portion forming region.
  • the photocatalyst include titanium oxide and zinc oxide.
  • the color filter may include an ink receiving layer containing hydroxypropyl cellulose, polyvinyl alcohol, gelatin, etc. between the base material and the pixel portion.
  • the color filter may be provided with a protective layer on the pixel portion.
  • This protective layer flattens the color filter and prevents the components contained in the pixel portion, or the components contained in the pixel portion and the components contained in the photocatalyst-containing layer from elution into the liquid crystal layer. It is provided.
  • a material used as a known protective layer for a color filter can be used.
  • the pixel portion may be formed by a photolithography method instead of the inkjet method.
  • the ink composition is coated on the base material in layers to form the ink composition layer.
  • the ink composition layer is exposed in a pattern and then developed using a developing solution.
  • a pixel portion made of a cured product of the ink composition is formed.
  • the developing solution is usually alkaline, an alkali-soluble material is used as the material of the ink composition.
  • the inkjet method is superior to the photolithography method. This is because, in principle, the photolithography method removes about two-thirds or more of the material, and the material is wasted. Therefore, in the present embodiment, it is preferable to use an inkjet ink and form a pixel portion by an inkjet method.
  • the pixel portion of the light conversion layer of the present embodiment may further contain a pigment having substantially the same color as the luminescent color of the luminescent nanocrystal particles.
  • the pigment may be contained in the ink composition.
  • one or two types of luminescent pixel portions among the red pixel portion (R), the green pixel portion (G), and the blue pixel portion (B) in the optical conversion layer of the present embodiment are luminescent nano.
  • the pixel portion may contain a coloring material without containing crystal particles.
  • a known color material can be used.
  • a diketopyrrolopyrrole pigment and / or an anionic red organic dye is used. Can be mentioned.
  • Examples of the coloring material used for the green pixel portion (G) include at least one selected from the group consisting of a halogenated copper phthalocyanine pigment, a phthalocyanine-based green dye, a phthalocyanine-based blue dye and an azo-based yellow organic dye.
  • Examples of the coloring material used for the blue pixel portion (B) include an ⁇ -type copper phthalocyanine pigment and / or a cationic blue organic dye.
  • the amount of these coloring materials used is 1 to 5 masses based on the total mass of the pixel portion (cured product of the ink composition) from the viewpoint of preventing a decrease in transmittance when contained in the light conversion layer. It is preferably%.
  • the color filter may be provided with a normal color filter layer containing the above-mentioned color material without containing luminescent nanocrystal particles between the base material and the pixel portion of the present embodiment. That is, the color filter of the present embodiment includes a base material, a color filter layer provided on the base material that does not contain luminescent nanoparticles and contains a coloring material, and a book provided on the color filter layer. It may include a pixel portion of the embodiment.
  • ⁇ Preparation of photopolymerizable compounds The following photopolymerizable compounds were prepared. ⁇ PhEM (phenoxyethyl methacrylate, product name: light ester PO, manufactured by Kyoeisha Chemical Co., Ltd.) ⁇ LM (Lauryl Methacrylate, Product Name: Light Ester L, manufactured by Kyoeisha Chemical Co., Ltd.) -HDMI (1,6-hexanediol dimethacrylate, product name: light ester 1.6HX, manufactured by Kyoeisha Chemical Co., Ltd.) -TMPT (trimethylolpropane triacrylate, product name: Viscote # 295, manufactured by Osaka Organic Chemical Industry Co., Ltd.)
  • hypophosphorous acid diester compound As the hypophosphoric acid diester compound, the following compound 1 (hypophosphoric acid diester compound 1) and compound 2 (hypophosphoric acid diester compound 2) were prepared. Compound 1 was synthesized by the method described below. As Compound 2, GSY-P101 (manufactured by Sakai Chemical Industry Co., Ltd., product name) was used.
  • Titanium oxide product name: CR-60-2, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter (volume average diameter): 210 nm
  • a polymer dispersant azisper
  • zirconia beads disiameter: 1.25 mm
  • a paint conditioner is used. The mixture was shaken for 2 hours to disperse the mixture, and the zirconia beads were removed with a polyester mesh filter to obtain a light-scattering particle dispersion 1 (titanium oxide content: 55% by mass).
  • a light-scattering particle dispersion 2 was obtained in the same manner as above except that the LM was changed to HDM.
  • Photopolymerization initiator phenyl (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, manufactured by IGM resin, product name: Omnirad TPO
  • the content of TMPT was 8.7% by mass.
  • the content of the photopolymerization initiator was 3.0% by mass.
  • the amount was 1.0% by mass.
  • the content of the light-scattering particles was 2.8% by mass.
  • the content of the polymer dispersant was 0.2% by mass.
  • the above content is a content based on the total mass of the ink composition.
  • Example 2 An ink composition was obtained in the same manner as in Example 1 except that the hypophosphorous acid diester compound 2 was used instead of the hypophosphorous acid diester compound 1.
  • a photopolymerization initiator phenyl (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, manufactured by IGM phosphor
  • Product name: Omnirad TPO 0.15 g
  • photopolymerizable component B PhEM: LM: HD
  • Example 3 the ink composition (inkjet ink) of Example 3 was obtained.
  • Example 4 An ink composition was obtained in the same manner as in Example 3 except that the hypophosphorous acid diester compound 2 was used instead of the hypophosphorous acid diester compound 1.
  • Example 5 The amount of photopolymerizable component B was changed to 2.73 g, and as a compounding component, ADEKA STAB AO-30 (1,1,3-Tris- (2'), which is a less hindered phenolic antioxidant, was added.
  • ADEKA STAB AO-30 (1,1,3-Tris- (2')
  • An ink composition was obtained in the same manner as in Example 3 except that 0.05 g of -methyl-4'-hydroxy-5'-t-butylphenyl) -butane, manufactured by ADEKA Corporation, product name) was used. ..
  • Example 6 ADEKA STAB AO-80 (3,9-bis [2- [3- (t-butyl-4-hydroxy-5-methylphenyl) propionyloxy], which is a semi-hindered phenolic antioxidant instead of ADEKA STAB AO-30] Ink in the same manner as in Example 5 except that -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, manufactured by ADEKA Corporation, product name) was used. The composition was obtained.
  • Example 7 ADEKA STAB AO-50 (octadecyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, manufactured by ADEKA Corporation, product name), which is a hindered phenolic antioxidant instead of ADEKA STAB AO-30.
  • An ink composition was obtained in the same manner as in Example 5 except that the above was used.
  • Example 8 ADEKA STAB AO-60 (pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, manufactured by ADEKA Corporation), which is a hindered phenolic antioxidant instead of ADEKA STAB AO-30, An ink composition was obtained in the same manner as in Example 5 except that the product name) was used.
  • Example 1 The ink composition was the same as in Example 1 except that Irgafos 168 (Tris (2,4-di-t-butylphenyl) phosphite, manufactured by BASF) was used instead of the hypophosphodiester compound 1.
  • Irgafos 168 Tris (2,4-di-t-butylphenyl) phosphite, manufactured by BASF
  • Example 2 An ink composition was obtained in the same manner as in Example 1 except that triphenylphosphine (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of the hypophosphodiester compound 1.
  • the viscosity stability of the ink compositions of Examples and Comparative Examples was evaluated by the following methods.
  • the viscosity of the ink composition immediately after preparation was compared with the viscosity of the ink composition stored in a constant temperature bath at 40 ° C. for 1 week after preparation, and the rate of increase in viscosity was calculated.
  • the viscosity of the ink composition immediately after preparation was set to ⁇ 0, and the viscosity of the ink composition stored in a constant temperature bath at 40 ° C. for 1 week after preparation was set to ⁇ 1 , and the calculation was performed by the following formula.
  • Viscosity increase rate ( ⁇ 1- ⁇ 0 ) / ⁇ 0 ⁇ 100 (%)
  • the viscosity was the viscosity at 40 ° C. and was measured using an E-type viscometer.
  • the ink composition was applied onto a glass substrate in the air with a spin coater so as to have a film thickness of 15 ⁇ m.
  • the coating film is cured by irradiating the coating film with UV so that the integrated light amount becomes 10000 mJ / cm 2 with a UV irradiation device using an LED lamp having a main wavelength of 395 nm in a nitrogen atmosphere, and then in a glove box having an oxygen concentration of 1% by volume or less.
  • a layer (light conversion layer) made of a cured product of the ink composition was formed on the glass substrate by heating at 180 ° C. for 30 minutes. As a result, a sample for evaluation was obtained.
  • the surface roughness (Sa value) of the surface of the cured product was measured using Vert Scan3.0 R4300 of the rhombus system.
  • the external quantum efficiency is a value indicating how much of the light (photons) incident on the photoconversion layer is emitted to the observer side as fluorescence. Therefore, if this value is large, it indicates that the light conversion layer has excellent light emission characteristics, which is an important evaluation index.
  • EQE (%) [P1 (Red)] / E (Blue) x 100
  • E (Blue) and P1 (Red) represent the following, respectively.
  • h represents Planck's constant and c represents the speed of light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)

Abstract

Phosphorus-based antioxidants such as phosphorous acid triesters were used in past inks for photoconversion layers, but hydrolysis of the antioxidant generates phosphorous acid, and phosphorous acid can impair the function of luminescent nanocrystal particles. Therefore, there has been a demand for an ink composition capable of forming a photoconversion layer having exceptional external quantum efficiency. This ink composition is an ink composition for photoconversion layer formation, the ink composition containing luminescent nanocrystal particles, a photopolymerizable compound, and a hypophosphorous acid diester compound.

Description

光変換層形成用のインク組成物、光変換層及びカラーフィルタInk composition for forming a light conversion layer, a light conversion layer and a color filter
 本発明は、光変換層形成用のインク組成物、光変換層及びカラーフィルタに関する。 The present invention relates to an ink composition for forming a light conversion layer, a light conversion layer, and a color filter.
 従来、液晶表示装置等のディスプレイにおけるカラーフィルタ画素部は、例えば、赤色有機顔料粒子又は緑色有機顔料粒子と、アルカリ可溶性樹脂及び/又はアクリル系単量体とを含有する硬化性レジスト材料を用いて、フォトリソグラフィ法により製造されてきた。 Conventionally, a color filter pixel portion in a display such as a liquid crystal display device uses, for example, a curable resist material containing red organic pigment particles or green organic pigment particles and an alkali-soluble resin and / or an acrylic monomer. , Has been manufactured by photolithography.
 近年、ディスプレイの低消費電力化が強く求められるようになり、上記赤色有機顔料粒子又は緑色有機顔料粒子に代えて、例えば量子ドット、量子ロッド、その他の無機蛍光体粒子等の発光性ナノ結晶粒子を用いて、赤色画素、緑色画素といったカラーフィルタ画素部を形成させる方法が、活発に研究されている。 In recent years, there has been a strong demand for lower power consumption of displays, and instead of the red organic pigment particles or green organic pigment particles, for example, luminescent nanocrystal particles such as quantum dots, quantum rods, and other inorganic phosphor particles A method of forming a color filter pixel portion such as a red pixel and a green pixel using the above is being actively studied.
 ところで、上記フォトリソグラフィ法でのカラーフィルタの製造方法では、その製造方法の特徴から、比較的高価な発光性ナノ結晶粒子を含めた画素部以外のレジスト材料が無駄になるという欠点があった。このような状況下、上記のようなレジスト材料の無駄をなくすため、インクジェット法により、光変換基板画素部を形成することが検討され始めている(特許文献1)。 By the way, the method for manufacturing a color filter by the above photolithography method has a drawback that the resist material other than the pixel portion including the relatively expensive luminescent nanocrystal particles is wasted due to the characteristics of the manufacturing method. Under such circumstances, in order to eliminate the waste of the resist material as described above, it has begun to be studied to form the pixel portion of the optical conversion substrate by the inkjet method (Patent Document 1).
国際公開第2008/001693号International Publication No. 2008/001693
 カラーフィルタの光変換層を構成するカラーフィルタ画素部(以下、単に「画素部」ともいう。)には、低消費電力化等の観点から、外部量子効率(EQE:External Quantum Efficiency)の更なる向上が求められている。 The color filter pixel portion (hereinafter, also simply referred to as “pixel portion”) constituting the optical conversion layer of the color filter has further external quantum efficiency (EQE: External Quantum Efficiency) from the viewpoint of reducing power consumption and the like. Improvement is required.
 そこで、本発明の目的の一つは、優れた外部量子効率を有する光変換層を形成することができるインク組成物を提供することにある。 Therefore, one of the objects of the present invention is to provide an ink composition capable of forming an optical conversion layer having excellent external quantum efficiency.
 本発明者らの検討の結果、発光性ナノ結晶粒子を含有するインク組成物において亜リン酸トリエステル等のリン系酸化防止剤を用いる場合には、酸化防止剤としての機能により発光性ナノ結晶粒子の劣化を抑制することができ、外部量子効率を向上させる可能性がある一方で、当該酸化防止剤の加水分解により亜リン酸が発生し、亜リン酸が発光性ナノ結晶粒子の機能が阻害される可能性もあることが明らかになってきた。本発明者らは、上記検討結果に鑑み更なる検討を行った結果、次亜リン酸ジエステル化合物を用いることで、従来と比較して優れた外部量子効率を有する画素部が得られることを見出し、本発明を完成させた。 As a result of the studies by the present inventors, when a phosphorus-based antioxidant such as phosphorous acid triester is used in the ink composition containing the luminescent nanocrystal particles, the luminescent nanocrystals function as an antioxidant. While it is possible to suppress the deterioration of particles and improve the external quantum efficiency, phosphorous acid is generated by the hydrolysis of the antioxidant, and phosphorous acid functions as a luminescent nanocrystal particle. It has become clear that it can be hindered. As a result of further studies in view of the above study results, the present inventors have found that by using a hypophosphorous acid diester compound, a pixel portion having excellent external quantum efficiency as compared with the conventional one can be obtained. , The present invention has been completed.
 本発明の一側面は、光変換層形成用のインク組成物であって、発光性ナノ結晶粒子と、光重合性化合物と、次亜リン酸ジエステル化合物と、を含有するインク組成物に関する。 One aspect of the present invention relates to an ink composition for forming a photoconversion layer, which comprises luminescent nanocrystal particles, a photopolymerizable compound, and a hypophosphorous acid diester compound.
 上記側面のインク組成物によれば、画素部の外部量子効率を向上させることができる。かかる効果が得られる理由は明らかではないが、次亜リン酸ジエステル化合物は酸化防止剤としての機能を有しつつ、加水分解され難く、リン酸の発生による発光性ナノ結晶粒子の機能阻害を起こし難いためであると推察される。 According to the ink composition on the above side surface, the external quantum efficiency of the pixel portion can be improved. Although the reason why such an effect can be obtained is not clear, the hypophosphorous acid diester compound has a function as an antioxidant, but is difficult to be hydrolyzed, and causes functional inhibition of luminescent nanocrystal particles due to the generation of phosphoric acid. It is presumed that this is because it is difficult.
 上記次亜リン酸ジエステル化合物は、好ましくは下記式(II)で表される化合物であり、より好ましくは下記式(IV)で表される化合物である。 The hypophosphorous acid diester compound is preferably a compound represented by the following formula (II), and more preferably a compound represented by the following formula (IV).
Figure JPOXMLDOC01-appb-C000003

[式(II)中、Xは、酸素原子又は硫黄原子を示し、Rは水素原子又は有機基(ただし、Pに直接結合する原子は炭素原子)を示し、Arは、アリール基を示す。2つのXは互いに同一であっても異なっていてもよく、2つのArは互いに同一であっても異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000003

[In formula (II), X 1 represents an oxygen atom or a sulfur atom, R 1 represents a hydrogen atom or an organic group (however, the atom directly bonded to P is a carbon atom), and Ar 1 represents an aryl group. show. Two of X 1 may be the being the same or different, two Ar 1 may be the being the same or different. ]
Figure JPOXMLDOC01-appb-C000004

[式(IV)中、Yは連結基を示す。X及びXは、酸素原子又は硫黄原子を示し、Ar及びArは、アリール基を示す。2つのXは互いに同一であっても異なっていてもよく、2つのXは互いに同一であっても異なっていてもよく、2つのArは互いに同一であっても異なっていてもよく、2つのArは互いに同一であっても異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000004

[In formula (IV), Y represents a linking group. X 2 and X 3 represent an oxygen atom or a sulfur atom, and Ar 2 and Ar 3 represent an aryl group. Two X 2 may be the being the same or different, two X 3 may be the being the same or different, two Ar 2 may be the being the same or different two Ar 3 may be the being the same or different. ]
 上記発光性ナノ結晶粒子の含有量は、好ましくは、インク組成物の全質量を基準として、20質量%以上である。 The content of the luminescent nanocrystal particles is preferably 20% by mass or more based on the total mass of the ink composition.
 上記次亜リン酸ジエステル化合物の含有量は、好ましくは、インク組成物の全質量を基準として、0.01~10質量%である。 The content of the hypophosphodiester compound is preferably 0.01 to 10% by mass based on the total mass of the ink composition.
 上記光重合性化合物は、好ましくは、環状構造を有するラジカル重合性化合物と、炭素数が4以上である直鎖構造を有するラジカル重合性化合物と、を含む。 The photopolymerizable compound preferably contains a radical-polymerizable compound having a cyclic structure and a radical-polymerizable compound having a linear structure having 4 or more carbon atoms.
 上記側面のインク組成物は、好ましくはフェノール系酸化防止剤を更に含有する。フェノール系酸化防止剤は、好ましくはヒンダードフェノール系酸化防止剤である。 The ink composition on the above side preferably further contains a phenolic antioxidant. The phenolic antioxidant is preferably a hindered phenolic antioxidant.
 上記側面のインク組成物は、好ましくは光散乱性粒子を更に含有する。この場合、インク組成物が高分子分散剤を更に含有することが好ましい。 The ink composition on the above side preferably further contains light-scattering particles. In this case, it is preferable that the ink composition further contains a polymer dispersant.
 インク組成物は、好ましくはインクジェット方式で用いられる。すなわち、インク組成物は、好ましくはインクジェットインクである。 The ink composition is preferably used by an inkjet method. That is, the ink composition is preferably an inkjet ink.
 本発明の他の一側面は、複数の画素部と、当該複数の画素部間に設けられた遮光部と、を備え、複数の画素部が、上記側面のインク組成物の硬化物を含む発光性画素部を有する、光変換層に関する。 Another aspect of the present invention includes a plurality of pixel portions and a light-shielding portion provided between the plurality of pixel portions, and the plurality of pixel portions emit light including a cured product of the ink composition on the side surface. The present invention relates to an optical conversion layer having a sex pixel portion.
 上記側面の光変換層は、発光性画素部として、420~480nmの範囲の波長の光を吸収し605~665nmの範囲に発光ピーク波長を有する光を発する発光性ナノ結晶粒子を含有する、第1の発光性画素部と、420~480nmの範囲の波長の光を吸収し500~560nmの範囲に発光ピーク波長を有する光を発する発光性ナノ結晶粒子を含有する、第2の発光性画素部と、を備えてよい。 The light conversion layer on the side surface contains, as a luminescent pixel portion, luminescent nanocrystal particles that absorb light having a wavelength in the range of 420 to 480 nm and emit light having an emission peak wavelength in the range of 605 to 665 nm. The first luminescent pixel portion and the second luminescent pixel portion containing luminescent nanocrystal particles that absorb light having a wavelength in the range of 420 to 480 nm and emit light having an emission peak wavelength in the range of 500 to 560 nm. And may be provided.
 上記側面の光変換層は、光散乱性粒子を含有する非発光性画素部を更に備えてよい。 The light conversion layer on the side surface may further include a non-light emitting pixel portion containing light scattering particles.
 本発明の他の一側面は、上記側面の光変換層を備える、カラーフィルタに関する。 Another aspect of the present invention relates to a color filter including the light conversion layer on the above side.
 本発明によれば、優れた外部量子効率を有する光変換層を形成することができるインク組成物を提供することができる。 According to the present invention, it is possible to provide an ink composition capable of forming an optical conversion layer having excellent external quantum efficiency.
図1は、本発明の一実施形態のカラーフィルタの模式断面図である。FIG. 1 is a schematic cross-sectional view of a color filter according to an embodiment of the present invention.
 以下、本発明の実施形態について詳細に説明する。なお、本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。また、本明細書において「インク組成物の硬化物」とは、インク組成物(インク組成物が溶剤を含む場合には、乾燥後のインク組成物)中の硬化性成分を硬化させて(例えば光重合性化合物を重合させて)得られるものである。乾燥後のインク組成物の硬化物中には、溶剤が含まれなくてよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。 Hereinafter, embodiments of the present invention will be described in detail. In addition, in this specification, the numerical range indicated by using "-" indicates the range including the numerical values before and after "-" as the minimum value and the maximum value, respectively. Further, in the present specification, the “cured product of the ink composition” refers to a curable component in the ink composition (when the ink composition contains a solvent, the ink composition after drying) is cured (for example). It is obtained by polymerizing a photopolymerizable compound). The cured product of the dried ink composition does not have to contain a solvent. Unless otherwise specified, the materials exemplified in the present specification may be used alone or in combination of two or more.
<インク組成物>
 一実施形態のインク組成物は、発光性ナノ結晶粒子と、光重合性化合物と、次亜リン酸ジエステル化合物と、を含有する。このインク組成物は、カラーフィルタ等が有する光変換層を形成するために用いられる、光変換層形成用(例えばカラーフィルタ画素部の形成用)のインク組成物であり、インク組成物に光を照射することで、光重合性化合物を重合させて硬化させ、インク組成物の硬化物を備える光変換層(例えばカラーフィルタ画素部)を形成することができる。
<Ink composition>
The ink composition of one embodiment contains luminescent nanocrystal particles, a photopolymerizable compound, and a hypophosphorous acid diester compound. This ink composition is an ink composition for forming a light conversion layer (for example, for forming a color filter pixel portion) used for forming a light conversion layer included in a color filter or the like, and emits light to the ink composition. By irradiating, the photopolymerizable compound can be polymerized and cured to form a light conversion layer (for example, a color filter pixel portion) including a cured product of the ink composition.
 上記インク組成物により得られる光変換層によれば、優れた外部量子効率が得られる。また、光重合性化合物を含有するインク組成物は、含有させる添加剤によっては、当該添加剤の触媒作用等により保管中に光重合性化合物の反応が進行し、粘度が上昇してしまう場合があるが、次亜リン酸ジエステル化合物は、このようなインク組成物の粘度の上昇を起こし難い。したがって、上記インク組成物は、粘度の安定性にも優れる傾向がある。 According to the optical conversion layer obtained by the above ink composition, excellent external quantum efficiency can be obtained. Further, depending on the additive contained in the ink composition containing the photopolymerizable compound, the reaction of the photopolymerizable compound may proceed during storage due to the catalytic action of the additive or the like, and the viscosity may increase. However, hypophosphate diester compounds are unlikely to cause such an increase in the viscosity of the ink composition. Therefore, the ink composition tends to be excellent in viscosity stability.
 上記インク組成物は、公知慣用のカラーフィルタの製造方法に用いるインクとして適用が可能であるが、インクジェット法に使用されるインクジェットインク組成物として好適に用いられる。インク組成物は、比較的高額である発光性ナノ結晶粒子、溶剤等の材料を無駄に消費せずに、必要な箇所に必要な量を用いるだけで画素部(光変換層)を形成できる点で、フォトリソグラフィ方式用よりも、インクジェット方式用に適合するよう、適切に調製して用いることが好ましい。 The above ink composition can be applied as an ink used in a known and commonly used method for producing a color filter, but is preferably used as an inkjet ink composition used in an inkjet method. The ink composition can form a pixel portion (light conversion layer) only by using a necessary amount at a necessary place without wastefully consuming materials such as luminescent nanocrystal particles and a solvent, which are relatively expensive. Therefore, it is preferable to appropriately prepare and use it so as to be suitable for the inkjet method rather than for the photolithography method.
 以下では、光変換層を構成するカラーフィルタ画素部形成用のインクジェットインク組成物を例に挙げて、本実施形態のインク組成物及びその構成成分について説明する。構成成分としては、発光性ナノ結晶粒子、光重合性化合物及び次亜リン酸ジエステル化合物の他に、有機リガンド、光重合開始剤、次亜リン酸ジエステル化合物以外の酸化防止剤、光散乱性粒子、高分子分散剤等が挙げられる。 Hereinafter, the ink composition of the present embodiment and its constituent components will be described by taking as an example an inkjet ink composition for forming a color filter pixel portion constituting an optical conversion layer. In addition to luminescent nanocrystal particles, photopolymerizable compounds and hypophosphoric acid diester compounds, the constituents include organic ligands, photopolymerization initiators, antioxidants other than hypophosphoric acid diester compounds, and photoscattering particles. , Polymer dispersant and the like.
[発光性ナノ結晶粒子]
 発光性ナノ結晶粒子は、励起光を吸収して蛍光又は燐光を発光するナノサイズの結晶体であり、例えば、透過型電子顕微鏡又は走査型電子顕微鏡によって測定される最大粒子径が100nm以下である結晶体である。
[Luminous nanocrystal particles]
The luminescent nanocrystal particles are nano-sized crystals that absorb excitation light and emit fluorescence or phosphorescence, and for example, the maximum particle size measured by a transmission electron microscope or a scanning electron microscope is 100 nm or less. It is a crystal.
 発光性ナノ結晶粒子は、例えば、所定の波長の光を吸収することにより、吸収した波長とは異なる波長の光(蛍光又は燐光)を発することができる。発光性ナノ結晶粒子は、605~665nmの範囲に発光ピーク波長を有する光(赤色光)を発する、赤色発光性のナノ結晶粒子(赤色発光性ナノ結晶粒子)であってよく、500~560nmの範囲に発光ピーク波長を有する光(緑色光)を発する、緑色発光性のナノ結晶粒子(緑色発光性ナノ結晶粒子)であってよく、420~480nmの範囲に発光ピーク波長を有する光(青色光)を発する、青色発光性のナノ結晶粒子(青色発光性ナノ結晶粒子)であってもよい。インク組成物は、これらの発光性ナノ結晶粒子のうちの少なくとも1種を含むことが好ましい。また、発光性ナノ結晶粒子が吸収する光は、例えば、400nm以上500nm未満の範囲(特に、420~480nmの範囲の波長の光)の波長の光(青色光)、又は、200nm~400nmの範囲の波長の光(紫外光)であってよい。なお、発光性ナノ結晶粒子の発光ピーク波長は、例えば、分光蛍光光度計を用いて測定される蛍光スペクトル又は燐光スペクトルにおいて確認することができる。 The luminescent nanocrystal particles can emit light (fluorescence or phosphorescence) having a wavelength different from the absorbed wavelength by absorbing light having a predetermined wavelength, for example. The luminescent nanocrystal particles may be red luminescent nanocrystal particles (red luminescent nanocrystal particles) that emit light having an emission peak wavelength in the range of 605 to 665 nm (red light), and may be 500 to 560 nm. It may be green light emitting nanocrystal particles (green light emitting nanocrystal particles) that emit light having an emission peak wavelength in the range (green light), and light having an emission peak wavelength in the range of 420 to 480 nm (blue light). ) May be emitted by blue light emitting nanocrystal particles (blue light emitting nanocrystal particles). The ink composition preferably contains at least one of these luminescent nanocrystal particles. The light absorbed by the luminescent nanocrystal particles is, for example, light having a wavelength in the range of 400 nm or more and less than 500 nm (particularly, light having a wavelength in the range of 420 to 480 nm) (blue light) or light in the range of 200 nm to 400 nm. It may be light of the wavelength of (ultraviolet light). The emission peak wavelength of the luminescent nanocrystal particles can be confirmed, for example, in a fluorescence spectrum or a phosphorescence spectrum measured using a spectrofluorometer.
 赤色発光性のナノ結晶粒子は、665nm以下、663nm以下、660nm以下、658nm以下、655nm以下、653nm以下、651nm以下、650nm以下、647nm以下、645nm以下、643nm以下、640nm以下、637nm以下、635nm以下、632nm以下又は630nm以下に発光ピーク波長を有することが好ましく、628nm以上、625nm以上、623nm以上、620nm以上、615nm以上、610nm以上、607nm以上又は605nm以上に発光ピーク波長を有することが好ましい。これらの上限値及び下限値は、任意に組み合わせることができる。なお、以下の同様の記載においても、個別に記載した上限値及び下限値は任意に組み合わせ可能である。 The red-emitting nanocrystal particles are 665 nm or less, 663 nm or less, 660 nm or less, 658 nm or less, 655 nm or less, 653 nm or less, 651 nm or less, 650 nm or less, 647 nm or less, 645 nm or less, 643 nm or less, 640 nm or less, 637 nm or less, 635 nm or less. It is preferable to have an emission peak wavelength of 632 nm or less or 630 nm or less, and it is preferable to have an emission peak wavelength of 628 nm or more, 625 nm or more, 623 nm or more, 620 nm or more, 615 nm or more, 610 nm or more, 607 nm or more or 605 nm or more. These upper limit values and lower limit values can be arbitrarily combined. In the same description below, the upper limit value and the lower limit value described individually can be arbitrarily combined.
 緑色発光性のナノ結晶粒子は、560nm以下、557nm以下、555nm以下、550nm以下、547nm以下、545nm以下、543nm以下、540nm以下、537nm以下、535nm以下、532nm以下又は530nm以下に発光ピーク波長を有することが好ましく、528nm以上、525nm以上、523nm以上、520nm以上、515nm以上、510nm以上、507nm以上、505nm以上、503nm以上又は500nm以上に発光ピーク波長を有することが好ましい。 Green luminescent nanocrystal particles have emission peak wavelengths of 560 nm or less, 557 nm or less, 555 nm or less, 550 nm or less, 547 nm or less, 545 nm or less, 543 nm or less, 540 nm or less, 537 nm or less, 535 nm or less, 532 nm or less, or 530 nm or less. It is preferable to have an emission peak wavelength at 528 nm or more, 525 nm or more, 523 nm or more, 520 nm or more, 515 nm or more, 510 nm or more, 507 nm or more, 505 nm or more, 503 nm or more, or 500 nm or more.
 青色発光性のナノ結晶粒子は、480nm以下、477nm以下、475nm以下、470nm以下、467nm以下、465nm以下、463nm以下、460nm以下、457nm以下、455nm以下、452nm以下又は450nm以下に発光ピーク波長を有することが好ましく、450nm以上、445nm以上、440nm以上、435nm以上、430nm以上、428nm以上、425nm以上、422nm以上又は420nm以上に発光ピーク波長を有することが好ましい。 Blue luminescent nanocrystal particles have emission peak wavelengths of 480 nm or less, 477 nm or less, 475 nm or less, 470 nm or less, 467 nm or less, 465 nm or less, 463 nm or less, 460 nm or less, 457 nm or less, 455 nm or less, 452 nm or less, or 450 nm or less. It is preferable to have an emission peak wavelength at 450 nm or more, 445 nm or more, 440 nm or more, 435 nm or more, 430 nm or more, 428 nm or more, 425 nm or more, 422 nm or more, or 420 nm or more.
 発光性ナノ結晶粒子が発する光の波長(発光色)は、井戸型ポテンシャルモデルのシュレディンガー波動方程式の解によれば、発光性ナノ結晶粒子のサイズ(例えば粒子径)に依存するが、発光性ナノ結晶粒子が有するエネルギーギャップにも依存する。そのため、使用する発光性ナノ結晶粒子の構成材料及びサイズを変更することにより、発光色を選択することができる。 According to the solution of the Schrodinger wave equation of the well-type potential model, the wavelength of light (emission color) emitted by the luminescent nanocrystal particles depends on the size (for example, particle size) of the luminescent nanocrystal particles, but the luminescent nanocrystals It also depends on the energy gap of the crystal particles. Therefore, the emission color can be selected by changing the constituent material and size of the luminescent nanocrystal particles to be used.
 発光性ナノ結晶粒子は、半導体材料を含む発光性ナノ結晶粒子(発光性半導体ナノ結晶粒子)であってよい。発光性半導体ナノ結晶粒子としては、量子ドット、量子ロッド等が挙げられる。これらの中でも、発光スペクトルの制御が容易であり、信頼性を確保した上で、生産コストを低減し、量産性を向上させることができる観点から、量子ドットが好ましい。 The luminescent nanocrystal particles may be luminescent nanocrystal particles (luminescent semiconductor nanocrystal particles) containing a semiconductor material. Examples of the luminescent semiconductor nanocrystal particles include quantum dots and quantum rods. Among these, quantum dots are preferable from the viewpoints that the emission spectrum can be easily controlled, reliability can be ensured, production cost can be reduced, and mass productivity can be improved.
 発光性半導体ナノ結晶粒子は、第一の半導体材料を含むコアのみからなっていてよく、第一の半導体材料を含むコアと、第一の半導体材料とは異なる第二の半導体材料を含み、上記コアの少なくとも一部を被覆するシェルと、を有していてもよい。換言すれば、発光性半導体ナノ結晶粒子の構造は、コアのみからなる構造(コア構造)であってよく、コアとシェルからなる構造(コア/シェル構造)であってもよい。また、発光性半導体ナノ結晶粒子は、第二の半導体材料を含むシェル(第一のシェル)の他に、第一及び第二の半導体材料とは異なる第三の半導体材料を含み、上記コアの少なくとも一部を被覆するシェル(第二のシェル)を更に有していてもよい。換言すれば、発光性半導体ナノ結晶粒子の構造は、コアと第一のシェルと第二のシェルとからなる構造(コア/シェル/シェル構造)であってもよい。コア及びシェルのそれぞれは、2種以上の半導体材料を含む混晶(例えば、CdSe+CdS、CIS+ZnS等)であってよい。 The luminescent semiconductor nanocrystal particles may consist only of a core containing the first semiconductor material, and include a core containing the first semiconductor material and a second semiconductor material different from the first semiconductor material, as described above. It may have a shell that covers at least a portion of the core. In other words, the structure of the luminescent semiconductor nanocrystal particles may be a structure consisting of only a core (core structure) or a structure consisting of a core and a shell (core / shell structure). Further, the luminescent semiconductor nanocrystal particles contain a third semiconductor material different from the first and second semiconductor materials in addition to the shell containing the second semiconductor material (first shell), and the above-mentioned core. It may further have a shell (second shell) that covers at least a part. In other words, the structure of the luminescent semiconductor nanocrystal particles may be a structure (core / shell / shell structure) including a core, a first shell, and a second shell. Each of the core and the shell may be a mixed crystal containing two or more kinds of semiconductor materials (for example, CdSe + CdS, CIS + ZnS, etc.).
 発光性ナノ結晶粒子は、半導体材料として、II-VI族半導体、III-V族半導体、I-III-VI族半導体、IV族半導体及びI-II-IV-VI族半導体からなる群より選択される少なくとも1種の半導体材料を含むことが好ましい。 The luminescent nanocrystal particles are selected as the semiconductor material from the group consisting of II-VI group semiconductors, III-V group semiconductors, I-III-VI group semiconductors, IV group semiconductors and I-II-IV-VI group semiconductors. It is preferable to contain at least one semiconductor material.
 具体的な半導体材料としては、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、CdHgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe;GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb;SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe;Si、Ge、SiC、SiGe、AgInSe、CuGaSe、CuInS、CuGaS、CuInSe、AgInS、AgGaSe、AgGaS、C、Si及びGeが挙げられる。発光性半導体ナノ結晶粒子は、発光スペクトルの制御が容易であり、信頼性を確保した上で、生産コストを低減し、量産性を向上させることができる観点から、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、InP、InAs、InSb、GaP、GaAs、GaSb、AgInS、AgInSe、AgInTe、AgGaS、AgGaSe、AgGaTe、CuInS、CuInSe、CuInTe、CuGaS、CuGaSe、CuGaTe、Si、C、Ge及びCuZnSnSからなる群より選択される少なくとも1種を含むことが好ましい。 Specific semiconductor materials include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSte, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeD, ZnSe, HgSe, and HgSe. CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, CdHgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSeTe, CdHgSeTe, AlHgSe, HgZnSe InP, InAs, InSb, PLAP, PLGAs, PLACSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb; SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeNe SnPbSTe; Si, Ge, SiC, SiGe, AgInSe 2 , CuGaSe 2 , CuInS 2 , CuGaS 2 , CuInSe 2 , AgInS 2 , AgGaSe 2 , AgGaS 2 , C, Si and Ge. From the viewpoint that the emission spectrum of luminescent semiconductor nanocrystal particles can be easily controlled, reliability can be ensured, production cost can be reduced, and mass productivity can be improved, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, InP, InAs, InSb, GaP, GaAs, GaSb, AgInS 2, AgInSe 2, AgInTe 2, AgGaS 2, AgGaSe 2, AgGaTe 2, CuInS 2, CuInSe 2, CuInTe 2 , CuGaS 2 , CuGaSe 2 , CuGaTe 2 , Si, C, Ge and Cu 2 ZnSnS 4 preferably comprises at least one selected from the group.
 赤色発光性の半導体ナノ結晶粒子としては、例えば、CdSeのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がCdSであり内側のコア部がCdSeであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がCdSであり内側のコア部がZnSeであるナノ結晶粒子、CdSeとZnSとの混晶のナノ結晶粒子、InPのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSであり内側のコア部がInPであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSとZnSeとの混晶であり内側のコア部がInPであるナノ結晶粒子、CdSeとCdSとの混晶のナノ結晶粒子、ZnSeとCdSとの混晶のナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSeであり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSとZnSeとの混晶であり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子等が挙げられる。 Examples of the red-emitting semiconductor nanocrystal particles include CdSe nanocrystal particles and nanocrystal particles having a core / shell structure, wherein the shell portion is CdS and the inner core portion is CdSe. Nanocrystal particles having a particle, core / shell structure, the shell portion of which is CdS and the inner core portion of ZnSe, nanocrystal particles of mixed crystals of CdSe and ZnS, and nano of InP. Crystal particles, nanocrystal particles having a core / shell structure, nanocrystal particles having a shell portion of ZnS and an inner core portion of InP, and nanocrystal particles having a core / shell structure. The shell part is a mixed crystal of ZnS and ZnSe and the inner core part is InP nanocrystal particles, a mixed crystal nanocrystal particle of CdSe and CdS, a mixed crystal nanocrystal particle of ZnSe and CdS, a core. Nanocrystal particles with a / shell / shell structure, the first shell portion is ZnSe, the second shell portion is ZnS, and the inner core portion is InP. Nanocrystal particles, core / shell / Nanocrystal particles having a shell structure, the first shell portion is a mixed crystal of ZnS and ZnSe, the second shell portion is ZnS, and the inner core portion is InP. And so on.
 緑色発光性の半導体ナノ結晶粒子としては、例えば、CdSeのナノ結晶粒子、CdSeとZnSとの混晶のナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSであり内側のコア部がInPであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSとZnSeとの混晶であり内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSeであり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSとZnSeとの混晶であり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子等が挙げられる。 Examples of the green-emitting semiconductor nanocrystal particles include CdSe nanocrystal particles, mixed-crystal nanocrystal particles of CdSe and ZnS, and nanocrystal particles having a core / shell structure, and the shell portion is ZnS. Nanocrystal particles whose inner core is InP, nanocrystals having a core / shell structure, whose shell is a mixed crystal of ZnS and ZnSe, and whose inner core is InP. Crystal particles, nanocrystal particles having a core / shell / shell structure, in which the first shell portion is ZnSe, the second shell portion is ZnS, and the inner core portion is InP. , Nanocrystal particles with a core / shell / shell structure, the first shell part is a mixed crystal of ZnS and ZnSe, the second shell part is ZnS, and the inner core part is InP. Examples include certain nanocrystal particles.
 青色発光性の半導体ナノ結晶粒子としては、例えば、ZnSeのナノ結晶粒子、ZnSのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSeであり内側のコア部がZnSであるナノ結晶粒子、CdSのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSであり内側のコア部がInPであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSとZnSeとの混晶であり内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSeであり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSとZnSeとの混晶であり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子等が挙げられる。 The blue-emitting semiconductor nanocrystal particles include, for example, ZnSe nanocrystal particles, ZnS nanocrystal particles, and nanocrystal particles having a core / shell structure, and the shell portion is ZnSe and the inner core portion. Is ZnS nanocrystal particles, CdS nanocrystal particles, nanocrystal particles having a core / shell structure, and the shell portion is ZnS and the inner core portion is InP nanocrystal particles, core / shell. Nanocrystal particles having a structure, in which the shell portion is a mixed crystal of ZnS and ZnSe and the inner core portion is InP, and the nanocrystal particles have a core / shell / shell structure. The first shell portion is ZnSe, the second shell portion is ZnS, the inner core portion is InP, and the nanocrystal particles have a core / shell / shell structure. Examples thereof include nanocrystal particles in which the first shell portion is a mixed crystal of ZnS and ZnSe, the second shell portion is ZnS, and the inner core portion is InP.
 半導体ナノ結晶粒子は、同一の化学組成で、それ自体の平均粒子径を変えることにより、当該粒子から発光させるべき色を赤色にも緑色にも変えることができる。また、半導体ナノ結晶粒子は、それ自体として、人体等に対する悪影響が極力低いものを用いることが好ましい。カドミウム、セレン等を含有する半導体ナノ結晶粒子を発光性ナノ結晶粒子として用いる場合は、上記元素(カドミウム、セレン等)が極力含まれない半導体ナノ結晶粒子を選択して単独で用いるか、上記元素が極力少なくなるようにその他の発光性ナノ結晶粒子と組み合わせて用いることが好ましい。 Semiconductor nanocrystal particles have the same chemical composition, and by changing the average particle size of the particles themselves, the color to be emitted from the particles can be changed to red or green. Further, it is preferable to use semiconductor nanocrystal particles that have as little adverse effect on the human body as possible. When semiconductor nanocrystal particles containing cadmium, selenium, etc. are used as luminescent nanocrystal particles, semiconductor nanocrystal particles containing the above elements (cadmium, selenium, etc.) as little as possible are selected and used alone, or the above elements. It is preferable to use it in combination with other luminescent nanocrystal particles so that the amount is as small as possible.
 発光性ナノ結晶粒子の形状は特に限定されず、任意の幾何学的形状であってもよく、任意の不規則な形状であってもよい。発光性ナノ結晶粒子の形状は、例えば、球状、楕円体状、角錐形状、ディスク状、枝状、網状、ロッド状等であってもよい。しかしながら、発光性ナノ結晶粒子としては、粒子形状として方向性の少ない粒子(例えば、球状、正四面体状等の粒子)を用いることが、インク組成物の均一性及び流動性をより高められる点で好ましい。 The shape of the luminescent nanocrystal particles is not particularly limited, and may be any geometric shape or any irregular shape. The shape of the luminescent nanocrystal particles may be, for example, spherical, ellipsoidal, pyramidal, disc-shaped, branched, net-shaped, rod-shaped, or the like. However, as the luminescent nanocrystal particles, using particles having less directional particle shape (for example, spherical or tetrahedral particles) can further improve the uniformity and fluidity of the ink composition. Is preferable.
 発光性ナノ結晶粒子の平均粒子径(体積平均径)は、所望の波長の発光が得られやすい観点、並びに、分散性及び保存安定性に優れる観点から、1nm以上であってよく、1.5nm以上であってよく、2nm以上であってもよい。所望の発光波長が得られやすい観点から、40nm以下であってよく、30nm以下であってよく、20nm以下であってもよい。発光性ナノ結晶粒子の平均粒子径(体積平均径)は、透過型電子顕微鏡又は走査型電子顕微鏡により測定し、体積平均径を算出することにより得られる。 The average particle size (volume average diameter) of the luminescent nanocrystal particles may be 1 nm or more, and may be 1.5 nm, from the viewpoint of easily obtaining light emission of a desired wavelength and from the viewpoint of excellent dispersibility and storage stability. It may be more than 2 nm and may be 2 nm or more. From the viewpoint that a desired emission wavelength can be easily obtained, it may be 40 nm or less, 30 nm or less, or 20 nm or less. The average particle diameter (volume average diameter) of the luminescent nanocrystal particles is obtained by measuring with a transmission electron microscope or a scanning electron microscope and calculating the volume average diameter.
 発光性ナノ結晶粒子は、分散安定性の観点から、その表面に有機リガンドを有することが好ましい。例えば、発光性ナノ結晶粒子の表面は、有機リガンドによってパッシベーションされていてよい。有機リガンドは、発光性ナノ結晶粒子の表面に配位結合していてよい。有機リガンドの詳細は後述する。 From the viewpoint of dispersion stability, the luminescent nanocrystal particles preferably have an organic ligand on the surface thereof. For example, the surface of the luminescent nanocrystal particles may be passivated by an organic ligand. The organic ligand may be coordinate-bonded to the surface of the luminescent nanocrystal particles. Details of the organic ligand will be described later.
 発光性ナノ結晶粒子は、その表面に高分子分散剤を有していてもよい。例えば、発光性ナノ結晶粒子の表面に結合する有機リガンドを高分子分散剤と交換することで発光性ナノ結晶粒子の表面に高分子分散剤を結合させてよい。ただし、インクジェットインクにした際の分散安定性の観点では、有機リガンドが配位したままの発光性ナノ結晶粒子に対して高分子分散剤が配合されることが好ましい。高分子分散剤の詳細は後述する。 The luminescent nanocrystal particles may have a polymer dispersant on the surface thereof. For example, the polymer dispersant may be bound to the surface of the luminescent nanocrystal particles by exchanging the organic ligand that binds to the surface of the luminescent nanocrystal particles with the polymer dispersant. However, from the viewpoint of dispersion stability when the ink jet ink is used, it is preferable that the polymer dispersant is blended with the luminescent nanocrystal particles in which the organic ligand is still coordinated. Details of the polymer dispersant will be described later.
 発光性ナノ結晶粒子としては、溶剤、光重合性化合物等の中にコロイド形態で分散しているものを用いることができる。分散状態にある発光性ナノ結晶粒子の表面は、有機リガンドによってパッシベーションされていることが好ましい。溶剤としては、例えば、シクロヘキサン、ヘキサン、ヘプタン、クロロホルム、トルエン、オクタン、クロロベンゼン、テトラリン、ジフェニルエーテル、プロピレングリコールモノメチルエーテルアセテート、ブチルカルビトールアセテート、又はそれらの混合物が挙げられる。 As the luminescent nanocrystal particles, those dispersed in a colloidal form in a solvent, a photopolymerizable compound, or the like can be used. The surface of the dispersed luminescent nanocrystal particles is preferably passivated by an organic ligand. Examples of the solvent include cyclohexane, hexane, heptane, chloroform, toluene, octane, chlorobenzene, tetralin, diphenyl ether, propylene glycol monomethyl ether acetate, butyl carbitol acetate, or a mixture thereof.
 発光性ナノ結晶粒子としては、市販品を用いることができる。発光性ナノ結晶粒子の市販品としては、例えば、NN-ラボズ社の、インジウムリン/硫化亜鉛、D-ドット、CuInS/ZnS、アルドリッチ社の、InP/ZnS等が挙げられる。 Commercially available products can be used as the luminescent nanocrystal particles. Examples of commercially available luminescent nanocrystal particles include indium phosphide / zinc sulfide, D-dot, CuInS / ZnS from NN-Labs, and InP / ZnS from Aldrich.
 発光性ナノ結晶粒子の含有量は、画素部の外部量子効率がより向上する観点から、インク組成物の全質量を基準として、20質量%以上であり、22質量%以上、24質量%以上又は26質量%以上であってもよい。発光性ナノ結晶粒子の含有量は、吐出安定性及び画素部の外部量子効率がより向上する観点から、インク組成物の全質量を基準として、好ましくは80質量%以下であり、70質量%以下、60質量%以下、50質量%以下又は40質量%以下であってもよい。これらの観点から、発光性ナノ結晶粒子の含有量は、インク組成物の全質量を基準として、例えば、20~80質量%、22~70質量%、24~60質量%、24~50質量%又は26~40質量%であってよい。なお、上記発光性ナノ結晶粒子の含有量には、発光性ナノ結晶粒子に結合する有機リガンドの量は含まれない。また、本明細書中、「インク組成物の全質量」とは、インク組成物の硬化物に含有させるべき成分と言い換えることができる。すなわち、インク組成物が溶剤を含む場合には、インク組成物に含まれる溶剤以外の成分を意味し、特筆する場合を除き、溶剤の量はインク組成物の全質量には含まれない。「インク組成物の全質量」は、例えば、発光性ナノ結晶粒子と、有機リガンドと、光重合性化合物と、次亜リン酸ジエステル化合物と、酸化防止剤と、光散乱性粒子と、高分子分散剤と、の合計である。 The content of the luminescent nanocrystal particles is 20% by mass or more, 22% by mass or more, 24% by mass or more, or more than the total mass of the ink composition, from the viewpoint of further improving the external quantum efficiency of the pixel portion. It may be 26% by mass or more. The content of the luminescent nanocrystal particles is preferably 80% by mass or less, and 70% by mass or less, based on the total mass of the ink composition, from the viewpoint of further improving ejection stability and external quantum efficiency of the pixel portion. , 60% by mass or less, 50% by mass or less, or 40% by mass or less. From these viewpoints, the content of the luminescent nanocrystal particles is, for example, 20 to 80% by mass, 22 to 70% by mass, 24 to 60% by mass, and 24 to 50% by mass based on the total mass of the ink composition. Alternatively, it may be 26 to 40% by mass. The content of the luminescent nanocrystal particles does not include the amount of the organic ligand bound to the luminescent nanocrystal particles. Further, in the present specification, the "total mass of the ink composition" can be rephrased as a component to be contained in the cured product of the ink composition. That is, when the ink composition contains a solvent, it means a component other than the solvent contained in the ink composition, and the amount of the solvent is not included in the total mass of the ink composition unless otherwise specified. The "total mass of the ink composition" is, for example, luminescent nanocrystal particles, an organic ligand, a photopolymerizable compound, a hypophosphorous acid diester compound, an antioxidant, a light scattering particle, and a polymer. It is the total of the dispersant.
 インク組成物は、発光性ナノ結晶粒子として、赤色発光性ナノ結晶粒子、緑色発光性ナノ結晶粒子及び青色発光性ナノ結晶粒子のうちの2種以上を含んでいてもよいが、好ましくはこれらの粒子のうちの1種のみを含む。インク組成物が赤色発光性ナノ結晶粒子を含む場合、緑色発光性ナノ結晶粒子の含有量及び青色発光性ナノ結晶粒子の含有量は、発光性ナノ結晶粒子の全質量を基準として、好ましくは10質量%以下であり、より好ましくは0質量%である。インク組成物が緑色発光性ナノ結晶粒子を含む場合、赤色発光性ナノ結晶粒子の含有量及び青色発光性ナノ結晶粒子の含有量は、発光性ナノ結晶粒子の全質量を基準として、好ましくは10質量%以下であり、より好ましくは0質量%である。 The ink composition may contain two or more of red-emitting nanocrystal particles, green-emitting nanocrystal particles, and blue-emitting nanocrystal particles as the luminescent nanocrystal particles, but these are preferable. Contains only one of the particles. When the ink composition contains red luminescent nanocrystal particles, the content of the green luminescent nanocrystal particles and the content of the blue luminescent nanocrystal particles are preferably 10 based on the total mass of the luminescent nanocrystal particles. It is 0% by mass or less, and more preferably 0% by mass. When the ink composition contains green luminescent nanocrystal particles, the content of the red luminescent nanocrystal particles and the content of the blue luminescent nanocrystal particles are preferably 10 based on the total mass of the luminescent nanocrystal particles. It is 0% by mass or less, and more preferably 0% by mass.
[有機リガンド]
 有機リガンドは、発光性ナノ結晶粒子の表面近傍に存在し、発光性ナノ結晶粒子を分散させる機能を有する。有機リガンドは、例えば、光重合性化合物、溶剤等との親和性を確保するための官能基(以下、単に「親和性基」ともいう。)と、発光性ナノ結晶粒子と結合可能な官能基(発光性ナノ結晶粒子への吸着性を確保するための官能基)と、を有しており、発光性ナノ結晶粒子の表面に配位結合することにより発光性ナノ結晶粒子の表面近傍に存在する。
[Organic ligand]
The organic ligand exists near the surface of the luminescent nanocrystal particles and has a function of dispersing the luminescent nanocrystal particles. The organic ligand is, for example, a functional group for ensuring affinity with a photopolymerizable compound, a solvent, etc. (hereinafter, also simply referred to as “affinity group”) and a functional group capable of binding to luminescent nanocrystal particles. It has (a functional group for ensuring the adsorptivity to luminescent nanocrystal particles) and exists in the vicinity of the surface of the luminescent nanocrystal particles by coordinating and bonding to the surface of the luminescent nanocrystal particles. do.
 親和性基は、置換又は無置換の脂肪族炭化水素基であってよい。脂肪族炭化水素基は、直鎖型であってもよく分岐構造を有していてもよい。また、脂肪族炭化水素基は、不飽和結合を有していてもよく、不飽和結合を有していなくてもよい。置換の脂肪族炭化水素は、脂肪族炭化水素基の一部の炭素原子が酸素原子で置換された基であってもよい。置換の脂肪族炭化水素基は、例えば、(ポリ)オキシアルキレン基を含んでいてよい。ここで、「(ポリ)オキシアルキレン基」とは、オキシアルキレン基、及び、2以上のアルキレン基がエーテル結合で連結したポリオキシアルキレン基の少なくとも1種を意味する。 The affinity group may be a substituted or unsubstituted aliphatic hydrocarbon group. The aliphatic hydrocarbon group may be a linear type or may have a branched structure. Further, the aliphatic hydrocarbon group may have an unsaturated bond or may not have an unsaturated bond. The substituted aliphatic hydrocarbon may be a group in which some carbon atoms of the aliphatic hydrocarbon group are substituted with oxygen atoms. The substituted aliphatic hydrocarbon group may contain, for example, a (poly) oxyalkylene group. Here, the "(poly) oxyalkylene group" means at least one of an oxyalkylene group and a polyoxyalkylene group in which two or more alkylene groups are linked by an ether bond.
 発光性ナノ結晶粒子と結合可能な官能基としては、例えば、ヒドロキシル基、アミノ基、カルボキシル基、チオール基、リン酸基、ホスホン酸基、ホスフィン基、ホスフィンオキサイド基及びアルコキシシリル基が挙げられる。 Examples of the functional group that can be bonded to the luminescent nanocrystal particles include a hydroxyl group, an amino group, a carboxyl group, a thiol group, a phosphoric acid group, a phosphonic acid group, a phosphine group, a phosphine oxide group and an alkoxysilyl group.
 有機リガンドとしては、例えば、TOP(トリオクチルホスフィン)、TOPO(トリオクチルホスフィンオキサイド)、オレイン酸、リノール酸、リノレン酸、リシノール酸、グルコン酸、16-ヒドロキシヘキサデカン酸、12-ヒドロキシステアリン酸、N-ラウロイルサルコシン、N-オレイルサルコシン、オレイルアミン、オクチルアミン、トリオクチルアミン、ヘキサデシルアミン、オクタンチオール、ドデカンチオール、ヘキシルホスホン酸(HPA)、テトラデシルホスホン酸(TDPA)、フェニルホスホン酸、及びオクチルホスフィン酸(OPA)が挙げられる。 Examples of the organic ligand include TOP (trioctylphosphine), TOPO (trioctylphosphine oxide), oleic acid, phosphonic acid, linolenic acid, ricinolic acid, gluconic acid, 16-hydroxyhexadecanoic acid, 12-hydroxystearic acid, N. -Lauroylsarcosin, N-oleylsarcosin, oleylamine, octylamine, trioctylamine, hexadecylamine, octanethiol, dodecanethiol, hexylphosphonic acid (HPA), tetradecylphosphonic acid (TDPA), phenylphosphonic acid, and octylphosphine Acid (OPA) can be mentioned.
 一実施形態において、有機リガンドは、下記式(1-1)で表される有機リガンドであってもよい。 In one embodiment, the organic ligand may be an organic ligand represented by the following formula (1-1).
Figure JPOXMLDOC01-appb-C000005

[式(1-1)中、pは0~50の整数を示し、qは0~50の整数を示す。]
Figure JPOXMLDOC01-appb-C000005

[In equation (1-1), p indicates an integer of 0 to 50, and q indicates an integer of 0 to 50. ]
 式(1-1)で表される有機リガンドにおいて、p及びqのうち少なくとも一方が1以上であることが好ましく、p及びqの両方が1以上であることがより好ましい。 In the organic ligand represented by the formula (1-1), at least one of p and q is preferably 1 or more, and both p and q are more preferably 1 or more.
 有機リガンドは、例えば、下記式(1-2)で表される有機リガンドであってもよい。 The organic ligand may be, for example, an organic ligand represented by the following formula (1-2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1-2)中、Aは、カルボキシル基を含む1価の基を示し、Aは、ヒドロキシル基を含む1価の基を示し、Rは、水素原子、メチル基、又はエチル基を示し、Lは、置換又は無置換のアルキレン基を示し、rは0以上の整数を示す。カルボキシル基を含む1価の基におけるカルボキシル基の数は、2個以上であってよく、2個以上4個以下であってよく、2個であってよい。Lで示されるアルキレン基の炭素数は、例えば、1~10であってよい。Lで示されるアルキレン基は、炭素原子の一部がヘテロ原子で置換されていてもよく、酸素原子、硫黄原子及び窒素原子からなる群より選択される少なくとも1種のヘテロ原子で置換されていてもよい。rは、例えば、1~100の整数であってよく、10~20の整数であってもよい。 In formula (1-2), A 1 represents a monovalent group containing a carboxyl group, A 2 represents a monovalent group containing a hydroxyl group, and R is a hydrogen atom, a methyl group, or an ethyl group. , L represents a substituted or unsubstituted alkylene group, and r represents an integer of 0 or more. The number of carboxyl groups in a monovalent group containing a carboxyl group may be 2 or more, 2 or more and 4 or less, and may be 2. The carbon number of the alkylene group represented by L may be, for example, 1 to 10. The alkylene group represented by L may be partially substituted with a heteroatom, and may be substituted with at least one heteroatom selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom. May be good. r may be, for example, an integer of 1 to 100, and may be an integer of 10 to 20.
 有機リガンドは、画素部(インク組成物の硬化物)の外部量子効率に優れる観点から、下記式(1-2A)で表される有機リガンドであってもよい。 The organic ligand may be an organic ligand represented by the following formula (1-2A) from the viewpoint of excellent external quantum efficiency of the pixel portion (cured product of the ink composition).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(1-2A)中、rは上記と同義である。 In formula (1-2A), r is synonymous with the above.
 一実施形態において、有機リガンドは、下記式(1-3)で表される有機リガンドであってもよい。 In one embodiment, the organic ligand may be an organic ligand represented by the following formula (1-3).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(1-3)中、nは0~50の整数を示し、mは0~50の整数を示す。nは好ましくは0~20であり、より好ましくは0~10である。mは好ましくは0~20であり、より好ましくは0~10である。n及びmのうち少なくとも一方が1以上であることが好ましい。すなわち、n+mは1以上であることが好ましい。n+mは10以下であってよい。Zは、置換又は無置換のアルキレン基を示す。アルキレン基の炭素数は、例えば、1~10であってよい。Zで示されるアルキレン基は、炭素原子の一部がヘテロ原子で置換されていてもよく、酸素原子、硫黄原子及び窒素原子からなる群より選択される少なくとも1種のヘテロ原子で置換されていてもよい。 In equation (1-3), n indicates an integer of 0 to 50, and m indicates an integer of 0 to 50. n is preferably 0 to 20, more preferably 0 to 10. m is preferably 0 to 20, more preferably 0 to 10. It is preferable that at least one of n and m is 1 or more. That is, n + m is preferably 1 or more. n + m may be 10 or less. Z represents a substituted or unsubstituted alkylene group. The alkylene group may have, for example, 1 to 10 carbon atoms. The alkylene group represented by Z may be partially substituted with a heteroatom, and may be substituted with at least one heteroatom selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom. May be good.
 一実施形態において、有機リガンドは、下記式(1-4)で表される有機リガンドであってもよい。 In one embodiment, the organic ligand may be an organic ligand represented by the following formula (1-4).
Figure JPOXMLDOC01-appb-C000009

[式(1-4)中、lは、1~50の整数を示す。]
Figure JPOXMLDOC01-appb-C000009

[In equation (1-4), l represents an integer from 1 to 50. ]
 式(1-4)で表される有機リガンドにおいて、lは、1~20であってよく、3~15であってよく、5~10であってよく、7であってよい。 In the organic ligand represented by the formula (1-4), l may be 1 to 20, may be 3 to 15, may be 5 to 10, and may be 7.
 インク組成物における有機リガンドの含有量は、発光性ナノ結晶粒子の分散安定性の観点及び発光特性維持の観点から、発光性ナノ結晶粒子100質量部に対して、10質量部以上、20質量部以上、25質量部以上、30質量部以上、35質量部以上又は40質量部以上であってよい。インク組成物における有機リガンドの含有量は、インク組成物の粘度を低く保ちやすい観点から、発光性ナノ結晶粒子100質量部に対して、50質量部以下、45質量部以下、40質量部以下又は30質量部以下であってよい。これらの観点から、有機リガンドの含有量は、発光性ナノ結晶粒子100質量部に対して、例えば、10~50質量部であってよく、10~15質量部であってもよい。 The content of the organic ligand in the ink composition is 10 parts by mass or more and 20 parts by mass with respect to 100 parts by mass of the luminescent nanocrystal particles from the viewpoint of dispersion stability of the luminescent nanocrystal particles and maintenance of luminescence characteristics. As mentioned above, it may be 25 parts by mass or more, 30 parts by mass or more, 35 parts by mass or more, or 40 parts by mass or more. The content of the organic ligand in the ink composition is 50 parts by mass or less, 45 parts by mass or less, 40 parts by mass or less, or 40 parts by mass or less with respect to 100 parts by mass of the luminescent nanocrystal particles from the viewpoint of easily keeping the viscosity of the ink composition low. It may be 30 parts by mass or less. From these viewpoints, the content of the organic ligand may be, for example, 10 to 50 parts by mass or 10 to 15 parts by mass with respect to 100 parts by mass of the luminescent nanocrystal particles.
[光重合性化合物]
 光重合性化合物は、光(活性エネルギー線)の照射によって重合する化合物であり、基本的には光重合開始剤と共に用いられる。
[Photopolymerizable compound]
The photopolymerizable compound is a compound that polymerizes by irradiation with light (active energy rays), and is basically used together with a photopolymerization initiator.
 光重合性化合物の分子量は、例えば、50以上であり、100以上又は150以上であってもよい。光重合性化合物の分子量は、例えば、500以下であり、400以下又は300以下であってもよい。インクジェットインクとしての粘度と、吐出後のインクの揮発性を両立しやすい観点から、好ましくは50~500であり、より好ましくは100~400である。 The molecular weight of the photopolymerizable compound is, for example, 50 or more, and may be 100 or more or 150 or more. The molecular weight of the photopolymerizable compound is, for example, 500 or less, and may be 400 or less or 300 or less. From the viewpoint of easily achieving both the viscosity of the inkjet ink and the volatility of the ink after ejection, it is preferably 50 to 500, and more preferably 100 to 400.
 光重合性化合物は、ラジカル重合性化合物であってよく、カチオン重合性化合物であってよく、アニオン重合性化合物であってもよい。光重合性化合物は、好ましくはラジカル重合性化合物である。 The photopolymerizable compound may be a radically polymerizable compound, a cationically polymerizable compound, or an anionically polymerizable compound. The photopolymerizable compound is preferably a radically polymerizable compound.
 ラジカル重合性化合物は、例えば、エチレン性不飽和基を有する化合物である。本明細書において、エチレン性不飽和基とは、エチレン性不飽和結合(重合性炭素-炭素二重結合)を有する基を意味する。エチレン性不飽和基を有する化合物におけるエチレン性不飽和結合の数(例えばエチレン性不飽和基の数)は、例えば、1~3である。 The radically polymerizable compound is, for example, a compound having an ethylenically unsaturated group. As used herein, the ethylenically unsaturated group means a group having an ethylenically unsaturated bond (polymerizable carbon-carbon double bond). The number of ethylenically unsaturated bonds (for example, the number of ethylenically unsaturated groups) in a compound having an ethylenically unsaturated group is, for example, 1 to 3.
 エチレン性不飽和基を有する化合物としては、例えば、ビニル基、ビニレン基、ビニリデン基、(メタ)アクリロイル基等のエチレン性不飽和基を有する化合物が挙げられる。外部量子効率をより向上させることができる観点では、(メタ)アクリロイル基を有する化合物が好ましく、単官能又は多官能の(メタ)アクリレートがより好ましく、単官能又は二官能の(メタ)アクリレートが更に好ましい。なお、本明細書において、「(メタ)アクリロイル基」とは、「アクリロイル基」及びそれに対応する「メタクリロイル基」を意味する。「(メタ)アクリレート」との表現についても同様である。また、単官能の(メタ)アクリートとは、(メタ)アクリロイル基を1つ有する(メタ)アクリレートを意味し、多官能の(メタ)アクリートとは、(メタ)アクリロイル基を2つ以上有する(メタ)アクリレートを意味する。 Examples of the compound having an ethylenically unsaturated group include a compound having an ethylenically unsaturated group such as a vinyl group, a vinylene group, a vinylidene group, and a (meth) acryloyl group. From the viewpoint of further improving the external quantum efficiency, a compound having a (meth) acryloyl group is preferable, a monofunctional or polyfunctional (meth) acrylate is more preferable, and a monofunctional or bifunctional (meth) acrylate is further preferable. preferable. In addition, in this specification, a "(meth) acryloyl group" means an "acryloyl group" and a corresponding "methacryloyl group". The same applies to the expression "(meth) acrylate". Further, the monofunctional (meth) accrete means a (meth) acrylate having one (meth) acryloyl group, and the polyfunctional (meth) accrete means having two or more (meth) acryloyl groups (). Meta) means acrylate.
 単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-エチルヘキシルジグルコール(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、ドデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2―ヒドロキシプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニルベンジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、γ-ブチロラクトン(メタ)アクリレート、アダマンチル(メタ)アクリレート、環状トリメチロールプロパンホルマール(メタ)アクリレート、こはく酸モノ(2-アクリロイルオキシエチル)、N-[2-(アクリロイルオキシ)エチル]フタルイミド、N-[2-(アクリロイルオキシ)エチル]テトラヒドロフタルイミド等が挙げられる。 Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate, 2 -Ethylhexyl diglucol (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, dodecyl (meth) acrylate, hexadecyl (meth) acrylate, octadecyl (meth) acrylate, cyclohexyl (meth) acrylate, methoxyethyl (meth) Acrylate, methoxytriethylene glycol (meth) acrylate, methoxytripropylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, butoxyethyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene Glycol (meth) acrylate, nonylphenoxyethyl (meth) acrylate, glycidyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, ethoxyethoxyethyl (meth) acrylate, isobornyl (meth) acrylate, di Cyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, 2- Hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, benzyl (meth) acrylate, phenylbenzyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, γ-butyrolactone (meth) acrylate, adamantyl (meth) Acrylate, cyclic trimethylolpropaneformal (meth) acrylate, mono (2-acryloyloxyethyl) oxalate, N- [2- (acryloyloxy) ethyl] phthalimide, N- [2- (acryloyloxy) ethyl] tetrahydrophthalimide, etc. Can be mentioned.
 多官能(メタ)アクリレートとしては、例えば、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコ-ルヒドロキシピバリン酸エステルジアクリレ-ト、トリス(2-ヒドロキシエチル)イソシアヌレートの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、ネオペンチルグリコール1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるジオールの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、ビスフェノールA1モルに2モルのエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるジオールの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、トリメチロールプロパン1モルに3モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるトリオールの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、ビスフェノールA1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるジオールの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレートなどの二官能(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリアクリレート、トリエチルプロパンエチレンオキサイド付加トリアクリレート等の三官能(メタ)アクリレートなどが挙げられる。 Examples of the polyfunctional (meth) acrylate include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,5-pentanediol di (meth) acrylate, and 3-methyl. -1,5-Pentanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,8-octanediol di (meth) acrylate, 1,9- Nonanediol di (meth) acrylate, tricyclodecanedimethanol di (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) Two hydroxyl groups, acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentylglycol hydroxypivalic acid ester diacrylate, and tris (2-hydroxyethyl) isocyanurate ( Di (meth) acrylate substituted with a (meth) acryloyloxy group, two hydroxyl groups of a diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of neopentyl glycol are formed by a (meth) acryloyloxy group. Substituted di (meth) acrylate, di (meth) acrylate in which two hydroxyl groups of a diol obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of bisphenol A are substituted with a (meth) acryloyloxy group. Di (meth) acrylate in which two hydroxyl groups of triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of trimethylolpropane are substituted with (meth) acryloyloxy groups, 4 mol in 1 mol of bisphenol A Bifunctional (meth) acrylates such as di (meth) acrylates in which the two hydroxyl groups of the diol obtained by adding the above ethylene oxide or propylene oxide are substituted with (meth) acryloyloxy groups, glycerin tri (meth) acrylates. , Trimethylol ethanetri (meth) acrylate, trimethylolpropane triacrylate, trifunctional (meth) acrylate such as triethylpropaneethylene oxide-added triacrylate, etc. Is done.
 インク組成物の硬化物の表面のべたつき(タック)を低減する観点では、光重合性化合物として、環状構造を有するラジカル重合性化合物を用いることが好ましい。環状構造は、芳香環構造であっても非芳香環構造であってもよい。環状構造の数(芳香環及び非芳香環の数の合計)は、1であっても、2以上であってもよい。環状構造の数は3以下であってよい。環状構造を構成する炭素原子の数は、例えば、4以上であり、5以上又は6以上であってもよい。炭素原子の数は、例えば20以下であり、18以下であってもよい。 From the viewpoint of reducing the stickiness (tack) of the surface of the cured product of the ink composition, it is preferable to use a radically polymerizable compound having a cyclic structure as the photopolymerizable compound. The cyclic structure may be an aromatic ring structure or a non-aromatic ring structure. The number of cyclic structures (total number of aromatic rings and non-aromatic rings) may be 1 or 2 or more. The number of annular structures may be 3 or less. The number of carbon atoms constituting the cyclic structure is, for example, 4 or more, and may be 5 or more or 6 or more. The number of carbon atoms is, for example, 20 or less, and may be 18 or less.
 芳香環構造は、例えば、炭素数6~18の芳香環を有する構造であってよい。炭素数6~18の芳香環としては、ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環等が挙げられる。芳香環構造は、芳香族複素環を有する構造であってもよい。芳香族複素環としては、例えば、フラン環、ピロール環、ピラン環、ピリジン環等が挙げられる。芳香環の数は、1であっても、2以上であってもよい。芳香環の数は3以下であってよい。有機基は、2以上の芳香環が単結合により結合した構造(例えば、ビフェニル構造)を有していてもよい。 The aromatic ring structure may be, for example, a structure having an aromatic ring having 6 to 18 carbon atoms. Examples of the aromatic ring having 6 to 18 carbon atoms include a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring and the like. The aromatic ring structure may be a structure having an aromatic heterocycle. Examples of the aromatic heterocycle include a furan ring, a pyrrole ring, a pyran ring, a pyridine ring and the like. The number of aromatic rings may be 1 or 2 or more. The number of aromatic rings may be 3 or less. The organic group may have a structure in which two or more aromatic rings are bonded by a single bond (for example, a biphenyl structure).
 非芳香環構造は、例えば、炭素数5~20の脂環を有する構造であってよい。炭素数5~20の脂環としては、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環等のシクロアルカン環、シクロペンテン環、シクロヘキセン環、シクロヘプテン環、シクロオクテン環等のシクロアルケン環などが挙げられる。脂環は、ビシクロウンデカン環、デカヒドロナフタレン環、ノルボルネン環、ノルボルナジエン環、イソボルニル環等の縮合環であってもよい。非芳香環構造は、非芳香族複素環を有する構造であってもよい。非芳香族複素環としては、例えば、テトラヒドロフラン環、ピロリジン環、テトラヒドロピラン環、ピぺリジン環等が挙げられる。 The non-aromatic ring structure may be, for example, a structure having an alicyclic having 5 to 20 carbon atoms. Examples of the alicyclic ring having 5 to 20 carbon atoms include a cycloalkane ring such as a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring, a cycloalkene ring such as a cyclopentene ring, a cyclohexene ring, a cycloheptene ring, and a cyclooctene ring. Can be mentioned. The alicyclic ring may be a condensed ring such as a bicycloundecane ring, a decahydronaphthalene ring, a norbornene ring, a norbornadiene ring, or an isobornyl ring. The non-aromatic ring structure may be a structure having a non-aromatic heterocycle. Examples of the non-aromatic heterocycle include a tetrahydrofuran ring, a pyrrolidine ring, a tetrahydropyran ring, a piperidine ring and the like.
 環状構造を有するラジカル重合性化合物は、好ましくは、環状構造を有する単官能又は多官能(メタ)アクリレートであり、より好ましくは環状構造を有する単官能(メタ)アクリレートである。具体的には、フェノキシエチル(メタ)アクリレート、フェノキシベンジル(メタ)アクリレート、ビフェニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート等が好ましく用いられる。 The radically polymerizable compound having a cyclic structure is preferably a monofunctional or polyfunctional (meth) acrylate having a cyclic structure, and more preferably a monofunctional (meth) acrylate having a cyclic structure. Specifically, phenoxyethyl (meth) acrylate, phenoxybenzyl (meth) acrylate, biphenyl (meth) acrylate, isobornyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate and the like are available. It is preferably used.
 環状構造を有するラジカル重合性化合物の含有量は、インク組成物の表面のべたつき(タック)を抑制しやすい観点から、インク組成物の全質量を基準として、3質量%以上、5質量%以上又は10質量%以上であってよい。環状構造を有するラジカル重合性化合物の含有量は、インクジェットインクとして適正な粘度が得られやすく、優れた吐出性が得られやすい観点から、インク組成物の全質量を基準として、80質量%以下、60質量%以下又は45質量%以下であってよい。 The content of the radically polymerizable compound having a cyclic structure is 3% by mass or more, 5% by mass or more, or 3% by mass or more, based on the total mass of the ink composition, from the viewpoint of easily suppressing the stickiness (tack) of the surface of the ink composition. It may be 10% by mass or more. The content of the radically polymerizable compound having a cyclic structure is 80% by mass or less based on the total mass of the ink composition from the viewpoint that an appropriate viscosity can be easily obtained as an inkjet ink and excellent ejection properties can be easily obtained. It may be 60% by mass or less or 45% by mass or less.
 優れた吐出性が得られやすい観点では、インク組成物として、炭素数が4以上である直鎖構造を有するラジカル重合性化合物を用いることが好ましい。直鎖構造は、水素原子以外の原子が枝分かれせずに連なっている構造であればよく、炭素原子及び水素原子の他に、酸素原子等のヘテロ原子を有していてもよい。すなわち、直鎖構造は、炭素原子が直鎖状に4つ以上連続する構造に限られず、4つ以上の炭素原子が酸素原子等のヘテロ原子を介して結直鎖状に連なる構造であってもよい。直鎖構造は、不飽和結合を有していてもよいが、好ましくは飽和結合のみからなる。直鎖構造を構成する炭素原子の数は、好ましくは5以上であり、より好ましくは6以上であり、更に好ましくは7以上である。直鎖構造を構成する炭素原子の数は、好ましくは25以下であり、より好ましくは20以下であり、更に好ましくは15以下である。なお、炭素数の合計が4以上である直鎖構造を有するラジカル重合性化合物は、吐出性の観点から、環状構造を有しないことが好ましい。 From the viewpoint that excellent ejection properties can be easily obtained, it is preferable to use a radically polymerizable compound having a linear structure having 4 or more carbon atoms as the ink composition. The linear structure may have a structure in which atoms other than hydrogen atoms are connected without branching, and may have heteroatoms such as oxygen atoms in addition to carbon atoms and hydrogen atoms. That is, the linear structure is not limited to a structure in which four or more carbon atoms are linearly continuous, but is a structure in which four or more carbon atoms are linearly connected via a hetero atom such as an oxygen atom. May be good. The linear structure may have unsaturated bonds, but preferably consists of only saturated bonds. The number of carbon atoms constituting the linear structure is preferably 5 or more, more preferably 6 or more, and further preferably 7 or more. The number of carbon atoms constituting the linear structure is preferably 25 or less, more preferably 20 or less, and further preferably 15 or less. The radically polymerizable compound having a linear structure having a total carbon number of 4 or more preferably does not have a cyclic structure from the viewpoint of ejection property.
 直鎖構造は、例えば、炭素数が4以上の直鎖アルキル基を有する構造であってよい。炭素数が4以上の直鎖アルキル基としては、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等が挙げられる。このような構造を有するラジカル重合性化合物としては、(メタ)アクリロイルオキシ基に上記直鎖アルキル基が直接結合してなるアルキル(メタ)アクリレートが好ましく用いられる。 The linear structure may be, for example, a structure having a linear alkyl group having 4 or more carbon atoms. Examples of the linear alkyl group having 4 or more carbon atoms include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group and a pentadecyl group. Can be mentioned. As the radically polymerizable compound having such a structure, an alkyl (meth) acrylate in which the linear alkyl group is directly bonded to the (meth) acryloyloxy group is preferably used.
 直鎖構造は、例えば、炭素数が4以上の直鎖アルキレン基を有する構造であってよい。炭素数が4以上の直鎖アルキレン基としては、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基等が挙げられる。このような構造を有するラジカル重合性化合物としては、2つの(メタ)アクリロイルオキシ基が上記直鎖アルキレン基で結合されてなるアルキレングリコールジ(メタ)アクリレートが好ましく用いられる。 The linear structure may be, for example, a structure having a linear alkylene group having 4 or more carbon atoms. Examples of the linear alkylene group having 4 or more carbon atoms include a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group and a pentadecylene group. Can be mentioned. As the radically polymerizable compound having such a structure, an alkylene glycol di (meth) acrylate in which two (meth) acryloyloxy groups are bonded by the above-mentioned linear alkylene group is preferably used.
 直鎖構造は、例えば、直鎖アルキル基と1以上の直鎖アルキレン基が酸素原子を介して結合した構造(アルキル(ポリ)オキシアルキレン基を有する構造)であってよい。直鎖アルキレン基の数は2以上であってよく、6以下であってよい。直鎖アルキレン基の数が2以上である場合、2以上のアルキレン基は、同一であっても異なっていてもよい。直鎖アルキル基及び直鎖アルキレン基の炭素数は、1以上であればよく、2以上又は3以上であってもよい。直鎖アルキル基及び直鎖アルキレン基の炭素数は、4以下であってよい。直鎖アルキル基としては、上述した炭素数が4以上の直鎖アルキル基の他、メチル基、エチル基及びプロピル基が挙げられる。直鎖アルキレン基としては、上述した炭素数が4以上の直鎖アルキレン基の他、メチレン基、エチレン基及びプロピレン基が挙げられる。このような構造を有するラジカル重合性化合物としては、(メタ)アクリロイルオキシ基に上記アルキル(ポリ)オキシアルキレン基が直接結合してなるアルキル(ポリ)オキシアルキレン(メタ)アクリレートが好ましく用いられる。 The linear structure may be, for example, a structure in which a linear alkyl group and one or more linear alkylene groups are bonded via an oxygen atom (a structure having an alkyl (poly) oxyalkylene group). The number of linear alkylene groups may be 2 or more and 6 or less. When the number of linear alkylene groups is 2 or more, the 2 or more alkylene groups may be the same or different. The number of carbon atoms of the linear alkyl group and the linear alkylene group may be 1 or more, and may be 2 or more or 3 or more. The linear alkyl group and the linear alkylene group may have 4 or less carbon atoms. Examples of the linear alkyl group include the above-mentioned linear alkyl group having 4 or more carbon atoms, a methyl group, an ethyl group and a propyl group. Examples of the linear alkylene group include the above-mentioned linear alkylene group having 4 or more carbon atoms, a methylene group, an ethylene group and a propylene group. As the radically polymerizable compound having such a structure, an alkyl (poly) oxyalkylene (meth) acrylate in which the above-mentioned alkyl (poly) oxyalkylene group is directly bonded to the (meth) acryloyloxy group is preferably used.
 炭素数が4以上である直鎖構造を有するラジカル重合性化合物の含有量は、インクジェットインクとして適正な粘度が得られやすく、優れた吐出性が得られやすい観点及びインク組成物の硬化性に優れる観点から、インク組成物の全質量を基準として、1質量%以上、3質量%以上又は5質量%以上であってよい。炭素数が4以上である直鎖構造を有するラジカル重合性化合物の含有量は、インク組成物の表面のべたつき(タック)を抑制しやすい観点から、インク組成物の全質量を基準として、80質量%以下、60質量%以下又は45質量%以下であってよい。 The content of the radically polymerizable compound having a linear structure having 4 or more carbon atoms makes it easy to obtain an appropriate viscosity as an inkjet ink, and it is easy to obtain excellent ejection properties, and the ink composition is excellent in curability. From the viewpoint, it may be 1% by mass or more, 3% by mass or more, or 5% by mass or more based on the total mass of the ink composition. The content of the radically polymerizable compound having a linear structure having 4 or more carbon atoms is 80 mass based on the total mass of the ink composition from the viewpoint of easily suppressing the stickiness (tack) of the surface of the ink composition. % Or less, 60% by mass or less, or 45% by mass or less.
 光重合性化合物としては、画素部の表面の均一性に優れる観点から、2種以上のラジカル重合性化合物を用いることが好ましく、上述した環状構造を有するラジカル重合性化合物と、上述した炭素数が4以上である直鎖構造を有するラジカル重合性化合物と、を組み合わせて用いることがより好ましい。外部量子効率を向上させるために、発光性ナノ結晶粒子の量を増やした場合には、画素部の表面の均一性が低下することがあるが、このような場合にも、上記光重合性化合物の組み合わせによれば、表面の均一性に優れた画素部が得られる傾向がある。 As the photopolymerizable compound, it is preferable to use two or more kinds of radically polymerizable compounds from the viewpoint of excellent surface uniformity of the pixel portion, and the above-mentioned radically polymerizable compound having a cyclic structure and the above-mentioned number of carbon atoms are used. It is more preferable to use in combination with a radically polymerizable compound having a linear structure of 4 or more. When the amount of luminescent nanocrystal particles is increased in order to improve the external quantum efficiency, the uniformity of the surface of the pixel portion may decrease. Even in such a case, the photopolymerizable compound According to the combination of, there is a tendency to obtain a pixel portion having excellent surface uniformity.
 上述した環状構造を有するラジカル重合性化合物と、上述した炭素数が4以上である直鎖構造を有するラジカル重合性化合物と、を組み合わせて用いる場合、環状構造を有するラジカル重合性化合物の含有量Mに対する、炭素数が4以上である直鎖構造を有するラジカル重合性化合物の含有量Mの質量比(M/M)は、画素部の表面の均一性に優れる観点から、好ましくは0.05~5であり、より好ましくは0.1~3であり、更に好ましくは0.1~1である。 When the above-mentioned radical-polymerizable compound having a cyclic structure and the above-mentioned radical-polymerizable compound having a linear structure having 4 or more carbon atoms are used in combination, the content M of the radical-polymerizable compound having a cyclic structure is used. for 1, the mass ratio of the content M 2 of the radical polymerizable compound having a linear structure carbon number is 4 or more (M 2 / M 1), from the viewpoint of excellent surface uniformity of the pixel portion, preferably It is 0.05 to 5, more preferably 0.1 to 3, and even more preferably 0.1 to 1.
 光重合性化合物は、信頼性に優れる画素部(インク組成物の硬化物)が得られやすい観点から、アルカリ不溶性であってよい。本明細書中、光重合性化合物がアルカリ不溶性であるとは、1質量%の水酸化カリウム水溶液に対する25℃における光重合性化合物の溶解量が、光重合性化合物の全質量を基準として、30質量%以下であることを意味する。光重合性化合物の上記溶解量は、好ましくは、10質量%以下であり、より好ましくは3質量%以下である。 The photopolymerizable compound may be alkali-insoluble from the viewpoint that a highly reliable pixel portion (cured product of the ink composition) can be easily obtained. In the present specification, the fact that the photopolymerizable compound is alkali-insoluble means that the amount of the photopolymerizable compound dissolved in 1% by mass of a potassium hydroxide aqueous solution at 25 ° C. is 30 based on the total mass of the photopolymerizable compound. It means that it is mass% or less. The dissolved amount of the photopolymerizable compound is preferably 10% by mass or less, and more preferably 3% by mass or less.
 光重合性化合物の含有量は、インクジェットインクとして適正な粘度が得られやすい観点、インク組成物の硬化性が良好となる観点、並びに、画素部(インク組成物の硬化物)の耐溶剤性及び耐磨耗性が向上する観点から、インク組成物の全質量を基準として、10質量%以上であってよく、15質量%以上であってもよく、20質量%以上であってもよい。光重合性化合物の含有量は、インクジェットインクとして適正な粘度が得られやすい観点、及び、より優れた光学特性(例えば外部量子効率)が得られる観点から、インク組成物の全質量を基準として、60質量%以下であってよく、50質量%以下であってもよく、40質量%以下であってもよく、30質量%以下であってもよく、20質量%以下であってもよい。これらの観点から、光重合性化合物の含有量は、インク組成物の全質量を基準として、例えば、10~60質量%、15~50質量%、20~40質量%又は20~30質量%であってよい。 The content of the photopolymerizable compound is determined from the viewpoint that an appropriate viscosity can be easily obtained as an inkjet ink, the viewpoint of improving the curability of the ink composition, the solvent resistance of the pixel portion (cured product of the ink composition), and the solvent resistance. From the viewpoint of improving the abrasion resistance, it may be 10% by mass or more, 15% by mass or more, or 20% by mass or more based on the total mass of the ink composition. The content of the photopolymerizable compound is based on the total mass of the ink composition from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink and from the viewpoint of obtaining more excellent optical characteristics (for example, external quantum efficiency). It may be 60% by mass or less, 50% by mass or less, 40% by mass or less, 30% by mass or less, or 20% by mass or less. From these viewpoints, the content of the photopolymerizable compound is, for example, 10 to 60% by mass, 15 to 50% by mass, 20 to 40% by mass, or 20 to 30% by mass based on the total mass of the ink composition. It may be there.
[光重合開始剤]
 インク組成物に含まれ得る光重合開始剤としては、例えば光ラジカル重合開始剤が挙げられる。光ラジカル重合開始剤としては、分子開裂型又は水素引き抜き型の光ラジカル重合開始剤が好適である。
[Photopolymerization initiator]
Examples of the photopolymerization initiator that can be contained in the ink composition include a photoradical polymerization initiator. As the photoradical polymerization initiator, a molecular cleavage type or hydrogen abstraction type photoradical polymerization initiator is suitable.
 分子開裂型の光ラジカル重合開始剤としては、ベンゾインイソブチルエーテル、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド、(2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキシド等が好適に用いられる。これら以外の分子開裂型の光ラジカル重合開始剤として、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾインエチルエーテル、ベンジルジメチルケタール、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン及び2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オンを併用してもよい。 Examples of the molecular cleavage type photoradical polymerization initiator include benzoin isobutyl ether, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and 2-benzyl-2-dimethylamino-1. -(4-morpholinophenyl) -butane-1-one, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, (2,4,6-trimethylbenzoyl) ethoxyphenylphosphine oxide Etc. are preferably used. Other molecular cleavage type photoradical polymerization initiators include 1-hydroxycyclohexylphenyl ketone, benzoin ethyl ether, benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4). -Isopropylphenyl) -2-hydroxy-2-methylpropan-1-one and 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1-one may be used in combination.
 水素引き抜き型の光ラジカル重合開始剤としては、ベンゾフェノン、4-フェニルベンゾフェノン、イソフタルフェノン、4-ベンゾイル-4’-メチル-ジフェニルスルフィド等が挙げられる。分子開裂型の光ラジカル重合開始剤と水素引き抜き型の光ラジカル重合開始剤とを併用してもよい。 Examples of the hydrogen abstraction type photoradical polymerization initiator include benzophenone, 4-phenylbenzophenone, isophthalphenone, 4-benzoyl-4'-methyl-diphenylsulfide and the like. A molecular cleavage type photoradical polymerization initiator and a hydrogen abstraction type photoradical polymerization initiator may be used in combination.
 光重合開始剤の含有量は、インク組成物の硬化性の観点から、光重合性化合物100質量部に対して、0.1質量部以上であってよく、0.5質量部以上であってもよく、1質量部以上であってもよく、3質量部以上であってもよく、5質量部以上であってもよい。光重合開始剤の含有量は、画素部(インク組成物の硬化物)の経時安定性の観点から、光重合性化合物100質量部に対して、40質量部以下であってよく、30質量部以下であってもよく、20質量部以下であってもよく、10質量部以下であってもよい。これらの観点から、光重合開始剤の含有量は、光重合性化合物100質量部に対して、例えば、0.1~40質量部であってよい。 The content of the photopolymerization initiator may be 0.1 part by mass or more and 0.5 part by mass or more with respect to 100 parts by mass of the photopolymerizable compound from the viewpoint of curability of the ink composition. It may be 1 part by mass or more, 3 parts by mass or more, or 5 parts by mass or more. The content of the photopolymerization initiator may be 40 parts by mass or less, and 30 parts by mass with respect to 100 parts by mass of the photopolymerizable compound, from the viewpoint of the temporal stability of the pixel portion (cured product of the ink composition). It may be 20 parts by mass or less, 10 parts by mass or less. From these viewpoints, the content of the photopolymerization initiator may be, for example, 0.1 to 40 parts by mass with respect to 100 parts by mass of the photopolymerizable compound.
[次亜リン酸ジエステル化合物]
 次亜リン酸ジエステル化合物は、次亜リン酸(亜ホスホン酸)が有する2つの水酸基のそれぞれがエステル化されてなる化合物である。
[Hypophosphorous acid diester compound]
The hypophosphorous acid diester compound is a compound in which each of the two hydroxyl groups of hypophosphorous acid (hypophosphoric acid) is esterified.
 次亜リン酸ジエステル化合物は、例えば、下記式(I)で表される構造を有する。 The hypophosphorous acid diester compound has, for example, a structure represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000010

[式(I)中、Xは、酸素原子又は硫黄原子を示し、Rは水素原子又は有機基(ただし、式(I)中のP(リン原子)に直接結合する原子は炭素原子)を示し、Rは、炭化水素基を示す。複数のXは互いに同一であっても異なっていてもよい。複数のRは互いに同一であっても異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000010

[In the formula (I), X 1 represents an oxygen atom or a sulfur atom, and R 1 is a hydrogen atom or an organic group (however, the atom directly bonded to P (phosphorus atom) in the formula (I) is a carbon atom). , And R 2 represents a hydrocarbon group. The plurality of X 1s may be the same as or different from each other. The plurality of R 2s may be the same as or different from each other. ]
 式(I)中、Xは酸素原子であることが好ましい。 In formula (I), X 1 is preferably an oxygen atom.
 式(I)中、Rは、有機基(ただし、Pに直接結合する原子は炭素原子)であることが好ましい。有機基は、炭化水素基であってよく、炭素原子及び水素原子の他に、酸素原子、窒素原子、リン原子等のヘテロ原子を有する基であってもよい。有機基は、例えば、下記式(Ia)で表される構造であってよい。 In formula (I), R 1 is preferably an organic group (however, the atom directly bonded to P is a carbon atom). The organic group may be a hydrocarbon group, and may be a group having a hetero atom such as an oxygen atom, a nitrogen atom, or a phosphorus atom in addition to a carbon atom and a hydrogen atom. The organic group may have a structure represented by the following formula (Ia), for example.
Figure JPOXMLDOC01-appb-C000011

[式(Ia)中、*はリン原子への結合手を示す。Yは連結基(ただし、式(Ia)中のP(リン原子)に直接結合する原子は炭素原子)を示す。X1a及びR2aは、それぞれ式(I)中のX及びRと同義である。]
Figure JPOXMLDOC01-appb-C000011

[In formula (Ia), * indicates a bond to the phosphorus atom. Y represents a linking group (however, the atom directly bonded to P (phosphorus atom) in the formula (Ia) is a carbon atom). X 1a and R 2a are synonymous with X 1 and R 2 in formula (I), respectively. ]
 有機基は芳香環を有することが好ましい。芳香環の数は、1であっても、2以上であってもよい。芳香環の数は3以下であってよい。芳香環を構成する炭素原子の数は、例えば、6~18である。炭素数6~18の芳香環としては、ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環等が挙げられる。有機基は、2以上の芳香環が単結合により結合した構造(例えば、ビフェニル構造)を有していてもよい。 The organic group preferably has an aromatic ring. The number of aromatic rings may be 1 or 2 or more. The number of aromatic rings may be 3 or less. The number of carbon atoms constituting the aromatic ring is, for example, 6 to 18. Examples of the aromatic ring having 6 to 18 carbon atoms include a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring and the like. The organic group may have a structure in which two or more aromatic rings are bonded by a single bond (for example, a biphenyl structure).
 式(I)中、Rは、好ましくはアリール基である。すなわち、次亜リン酸ジエステル化合物は、下記式(II)で表される化合物であることが好ましい。 In formula (I), R 2 is preferably an aryl group. That is, the hypophosphorous acid diester compound is preferably a compound represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000012

[式(II)中、Arは、アリール基を示す。X及びRは、それぞれ式(I)中のX及びRと同義である。2つのXは互いに同一であっても異なっていてもよく、2つのArは互いに同一であっても異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000012

[In formula (II), Ar 1 represents an aryl group. X 1 and R 1 are synonymous with X 1 and R 1 in formula (I), respectively. Two of X 1 may be the being the same or different, two Ar 1 may be the being the same or different. ]
 次亜リン酸ジエステル化合物が上記式(II)で表される化合物である場合、次亜リン酸ジエステル化合物と光重合性化合物とが良好に相溶した状態となり、次亜リン酸ジエステル化合物の酸化防止剤としての機能がより発現されやすくなる観点から、インク組成物が上述した環状構造を有するラジカル重合性化合物を含むことが好ましい。 When the hypophosphoric acid diester compound is a compound represented by the above formula (II), the hypophosphoric acid diester compound and the photopolymerizable compound are in a state of being well compatible with each other, and the hypophosphoric acid diester compound is oxidized. From the viewpoint that the function as an inhibitor is more easily expressed, it is preferable that the ink composition contains the above-mentioned radically polymerizable compound having a cyclic structure.
 アリール基とは、単環式又は多環式の芳香族炭化水素の環に結合した水素原子を1つ除去することにより生成される基であり、芳香族炭化水素の環に結合した水素原子の一部が炭化水素機等により置換されている基(例えばジ-t-ブチルフェニル基等の、1つ乃至3つの炭素原子数1~6のアルキル基を芳香族炭化水素環の置換基として有する基)もアリール基に含まれる。 The aryl group is a group generated by removing one hydrogen atom bonded to the ring of a monocyclic or polycyclic aromatic hydrocarbon, and is a group of hydrogen atoms bonded to the ring of an aromatic hydrocarbon. It has one to three alkyl groups having 1 to 3 carbon atoms as substituents on the aromatic hydrocarbon ring, such as a group partially substituted by a hydrocarbon machine or the like (for example, a dit-butylphenyl group). Group) is also included in the aryl group.
 アリール基の炭素原子の数は、例えば6~18である。アリール基が有する芳香環は、単環であっても縮合環であってもよい。アリール基は、例えば、置換又は無置換のフェニル基であってよく、置換又は無置換のナフチル基であってもよい。アリール基は、Xに直接結合する芳香環以外の芳香環を有していてもよい。例えば、アリール基は、ビフェニリル基であってもよい。 The number of carbon atoms in the aryl group is, for example, 6-18. The aromatic ring contained in the aryl group may be a monocyclic ring or a condensed ring. The aryl group may be, for example, a substituted or unsubstituted phenyl group, or may be a substituted or unsubstituted naphthyl group. The aryl group may have an aromatic ring other than the aromatic ring directly bonded to X 1. For example, the aryl group may be a biphenylyl group.
 アリール基は、特に好ましくは、置換又は無置換のフェニル基である。芳香核上の置換基としては炭素原子数1~6のアルキル基が好ましい。置換基の数としては、芳香核1つあたり、1~3であることが好ましい。アリール基としては、中でも、無置換のフェニル基、又は、芳香核上にアルキル基(好ましくは炭素原子数1~6のアルキル基)を1つ乃至3つ置換基として有する、モノアルキルフェニル基、ジアルキルフェニル基、又はトリアルキルフェニル基が好ましい。ここで炭素原子数1~6のアルキル基は、直鎖状であってよく、分岐状であってもよい。直鎖状のアルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ヘキシル基等が挙げられる。分岐状のアルキル基としては、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。複数のRのうち、1~3つがアルキル基であり、2~4つが水素原子であることが好ましく、複数のRの少なくとも1つが分岐状のアルキル基であることがより好ましく、複数のRの少なくとも2つが分岐状のアルキル基であることが好ましい。分岐状のアルキル基は、好ましくはtert-ブチル基である。 The aryl group is particularly preferably a substituted or unsubstituted phenyl group. As the substituent on the aromatic nucleus, an alkyl group having 1 to 6 carbon atoms is preferable. The number of substituents is preferably 1 to 3 per aromatic nucleus. Examples of the aryl group include an unsubstituted phenyl group or a monoalkylphenyl group having an alkyl group (preferably an alkyl group having 1 to 6 carbon atoms) as a substituent on the aromatic nucleus. A dialkylphenyl group or a trialkylphenyl group is preferable. Here, the alkyl group having 1 to 6 carbon atoms may be linear or branched. Examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group and the like. Examples of the branched alkyl group include an isopropyl group, an isobutyl group, a sec-butyl group, a tert-butyl group and the like. Among the plurality of R 3, is 1 to 3 but alkyl group, preferably 2 to four is a hydrogen atom, more preferably at least one of the plurality of R 3 is a branched alkyl group, a plurality of It is preferable that at least two of R 3 are branched alkyl groups. The branched alkyl group is preferably a tert-butyl group.
 次亜リン酸ジエステル化合物は、次亜リン酸ジエステル構造を複数有することが好ましい。具体的には、次亜リン酸ジエステル化合物は、下記式(IV)で表される構造を有することが好ましい。 The hypophosphorous acid diester compound preferably has a plurality of hypophosphorous acid diester structures. Specifically, the hypophosphorous acid diester compound preferably has a structure represented by the following formula (IV).
Figure JPOXMLDOC01-appb-C000013

[式(IV)中、Yは連結基(ただし、式(IV)中のP(リン原子)に直接結合する原子は炭素原子)を示す。X及びXは、酸素原子又は硫黄原子を示し、Ar及びArは、アリール基を示す。2つのXは互いに同一であっても異なっていてもよく、2つのXは互いに同一であっても異なっていてもよく、2つのArは互いに同一であっても異なっていてもよく、2つのArは互いに同一であっても異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000013

[In formula (IV), Y represents a linking group (wherein the atom directly bonded to P (phosphorus atom) in formula (IV) is a carbon atom). X 2 and X 3 represent an oxygen atom or a sulfur atom, and Ar 2 and Ar 3 represent an aryl group. Two X 2 may be the being the same or different, two X 3 may be the being the same or different, two Ar 2 may be the being the same or different two Ar 3 may be the being the same or different. ]
 X及びXは、酸素原子であることが好ましい。Ar及びArのアリール基の詳細(好ましい態様を含む)は、上述したArのアリール基の詳細と同じである。 It is preferable that X 2 and X 3 are oxygen atoms. The details of the aryl groups of Ar 2 and Ar 3 (including preferred embodiments) are the same as the details of the aryl groups of Ar 1 described above.
 式(IV)中、Yは、好ましくは二価の炭化水素基であり、より好ましくは芳香環を有する二価の炭化水素基である。芳香環は連結基の主鎖に含まれることが好ましい。このような観点から、連結基は、アリーレン基であることが好ましい。アリーレン基としては、フェニレン基、ビフェニリレン基、ナフチレン基等が挙げられる。 In formula (IV), Y is preferably a divalent hydrocarbon group, more preferably a divalent hydrocarbon group having an aromatic ring. The aromatic ring is preferably contained in the main chain of the linking group. From this point of view, the linking group is preferably an arylene group. Examples of the arylene group include a phenylene group, a biphenylylene group, a naphthylene group and the like.
 好適な次亜リン酸ジエステル化合物の具体例としては、例えば、テトラキス(2,4-ジ-t-ブチル-5-メチルフェニル)-4,4’-ビフェニレンジホスホナイト)、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト)、ビス(2,4-ジ-t-ブチル-5-メチルフェニル)-ビフェニルホスホナイト、ビス(2,4-ジ-t-ブチルフェニル)-ビフェニルホスホナイト等が挙げられる。これらは単独で、又は、2種以上を組み合わせて使用してよい。 Specific examples of suitable hypophosphite diester compounds include, for example, tetrakis (2,4-di-t-butyl-5-methylphenyl) -4,4'-biphenylenediphosphonite), tetrakis (2,4). -Di-t-butylphenyl) -4,4'-biphenylenediphosphonite), bis (2,4-di-t-butyl-5-methylphenyl) -biphenylphosphonite, bis (2,4-di- Examples thereof include t-butylphenyl) -biphenylphosphonite. These may be used alone or in combination of two or more.
 次亜リン酸ジエステル化合物の含有量は、外部量子効率により優れる観点から、インク組成物の全質量を基準として、0.01質量%以上であってよく、0.05質量%以上であってもよく、0.1質量%以上であってもよい。次亜リン酸ジエステル化合物の含有量は、塗膜形成時に、より良好な膜強度の確保が可能となることに加え、次亜リン酸ジエステル化合物の画素部表面へのブリードがより抑制され、かつ、より優れた外部量子効率が得られる観点から、インク組成物の全質量を基準として、10質量%以下であってよく、5質量%以下であってもよく、3質量%以下であってもよい。これらの観点から、次亜リン酸ジエステル化合物の含有量は、インク組成物の全質量を基準として、例えば、0.01~10質量%、0.05~5質量%又は0.1~3質量%であってよい。 The content of the hypophosphorous acid diester compound may be 0.01% by mass or more, or 0.05% by mass or more, based on the total mass of the ink composition from the viewpoint of being superior in external quantum efficiency. It may be 0.1% by mass or more. The content of the hypophosphorous acid diester compound makes it possible to secure better film strength at the time of forming the coating film, and further suppresses the bleeding of the hypophosphorous acid diester compound to the surface of the pixel portion. From the viewpoint of obtaining more excellent external quantum efficiency, it may be 10% by mass or less, 5% by mass or less, or 3% by mass or less based on the total mass of the ink composition. good. From these viewpoints, the content of the hypophosphorous acid diester compound is, for example, 0.01 to 10% by mass, 0.05 to 5% by mass, or 0.1 to 3% by mass, based on the total mass of the ink composition. May be%.
[酸化防止剤]
 インク組成物は、本発明の効果を阻害しない限り、上述した亜リン酸エステル化合物以外に酸化防止剤として機能する化合物を含有してよい。このような化合物としては、例えば、フェノール系酸化防止剤、アミン系酸化防止剤、次亜リン酸ジエステル化合物以外のリン系酸化防止剤、イオウ系酸化防止剤等の従来公知の酸化防止剤として用いられる化合物が挙げられる。これらの中でも、次亜リン酸ジエステル化合物と組み合わせて用いることで外部量子効率の低下をより一層抑制できる傾向があることから、フェノール系酸化防止剤を用いることが好ましい。
[Antioxidant]
The ink composition may contain a compound that functions as an antioxidant in addition to the above-mentioned phosphite ester compound as long as the effects of the present invention are not impaired. As such a compound, for example, it is used as a conventionally known antioxidant such as a phenol-based antioxidant, an amine-based antioxidant, a phosphorus-based antioxidant other than a hypophosphoric acid diester compound, and a sulfur-based antioxidant. Examples include compounds that are: Among these, it is preferable to use a phenolic antioxidant because it tends to further suppress a decrease in external quantum efficiency when used in combination with a hypophosphorous acid diester compound.
 フェノール系酸化防止剤としては、例えば、2,4,6-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)メシチレン(製品名:AO-330)、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン(製品名:Irganox565)、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(製品名:AO-60)、オクタデシル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(製品名:AO-50)、2,6-ジ-t-ブチル-4-ノニルフェノール、チオジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2’-メチレンビス-(6-(1-メチルシクロヘキシル)-p-クレゾール)、N,N-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナムアミド)(製品名:Irganox1098)、2,5-ジ-t-ブチルヒドロキノン、2,5-ジ-t-アミル-ヒドロキノン、2,4-ジメチル-6-(1-メチルシクロヘキシル)-フェノール、6-t-ブチル-o-クレゾール、6-t-ブチル-2,4-キシレノール、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、2,4-ビス(オクチルチオメチル)-o-クレゾール(製品名:Irganox1520)、2,4-ビス(ドデシルチオメチル)-o-クレゾール、エチレンビス(オキシエチレン)ビス[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]、3,9-ビス[2-〔3-(t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン(製品名:AO-80)、トリエチレングリコールビス[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート(製品名:Irganox245)、2-t-アミルフェノール、2-t-ブチルフェノール、2,4-ジ-t-ブチルフェノール、1,1,3-トリス-(2’-メチル-4’-ヒドロキシ-5’-t-ブチルフェニル)-ブタン(製品名:AO-30)、4,4’-ブチリデン-ビス-(2-t-ブチル-5-メチルフェノール)等を挙げることができる。 Examples of the phenolic antioxidant include 2,4,6-tris (3', 5'-di-t-butyl-4'-hydroxybenzyl) mecitylene (product name: AO-330), 2,4-. Bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine (product name: Irganox565), pentaerythritol tetrakis [3- (3,5) -Di-t-butyl-4-hydroxyphenyl) propionate (product name: AO-60), octadecyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (product name: AO-50) , 2,6-di-t-butyl-4-nonylphenol, thiodiethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2'-methylenebis- (6- (1-Methylcyclohexyl) -p-cresol), N, N-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide) (product name: Irganox1098), 2,5- Di-t-butylhydroquinone, 2,5-di-t-amyl-hydroquinone, 2,4-dimethyl-6- (1-methylcyclohexyl) -phenol, 6-t-butyl-o-cresol, 6-t- Butyl-2,4-xylenol, 2,4-dimethyl-6- (1-methylpentadecyl) phenol, 2,4-bis (octylthiomethyl) -o-cresol (product name: Irganox1520), 2,4- Bis (dodecylthiomethyl) -o-cresol, ethylene bis (oxyethylene) bis [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate], 3,9-bis [2- [3 -(T-Butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane (product name: AO- 80), Triethylene glycol bis [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate (product name: Irganox245), 2-t-amylphenol, 2-t-butylphenol, 2,4 -Di-t-butylphenol, 1,1,3-tris- (2'-methyl-4'-hydroxy-5'-t-butylphenyl) -butane (product name: AO-30), 4,4'- Butylidene-bis- (2-t-butyl-5-methylphenol), etc. be able to.
 フェノール系酸化防止剤は、フェノール水酸基の両方のオルト位にある水素原子が立体的に嵩高い基で置換されているヒンダードフェノール系酸化防止剤、フェノール水酸基の一方のオルト位にある水素原子が立体的に嵩高い基で置換されており、もう一方のオルト位の水素原子がメチル基で置換されているセミヒンダードフェノール系酸化防止剤及びフェノール水酸基の一方のオルト位にある水素原子が立体的に嵩高い基で置換されており、もう一方のオルト位の水素原子は置換されていないレスヒンダードフェノール系酸化防止剤のいずれであってもよい。立体的に嵩高い基とは、直鎖状アルキル基以外の枝分かれしたアルキル基又は芳香環基のことを意味する。具体的には、t-ブチル基、t-ペンチル基、t-ヘキシル基等の3級アルキル基;i-プロピル基、sec-ブチル基、sec-ペンチル基等の2級アルキル基;i-ブチル基、i-ペンチル基等の分枝1級アルキル基;シクロヘキシル基、シクロペンチル基等のシクロアルキル基;及びフェニル基、ベンジル基、ナフチル基等の芳香環基が挙げられる。 The phenolic antioxidant is a hindered phenolic antioxidant in which the hydrogen atom at both ortho positions of the phenol hydroxyl group is replaced with a sterically bulky group, and the hydrogen atom at one ortho position of the phenol hydroxyl group is used. A semi-hindered phenolic antioxidant in which the hydrogen atom at the other ortho position is substituted with a methyl group and the hydrogen atom at one ortho position of the phenol hydroxyl group is sterically substituted with a bulky group. The hydrogen atom at the ortho position of the other, which is substituted with a bulky group, may be any of the unsubstituted less hindered phenolic antioxidants. The sterically bulky group means a branched alkyl group or aromatic ring group other than the linear alkyl group. Specifically, a tertiary alkyl group such as a t-butyl group, a t-pentyl group, a t-hexyl group; a secondary alkyl group such as an i-propyl group, a sec-butyl group, a sec-pentyl group; i-butyl Examples thereof include a branched primary alkyl group such as a group and an i-pentyl group; a cycloalkyl group such as a cyclohexyl group and a cyclopentyl group; and an aromatic ring group such as a phenyl group, a benzyl group and a naphthyl group.
 フェノール系酸化防止剤は、好ましくはヒンダードフェノール系酸化防止剤である。ヒンダードフェノール系酸化防止剤としては、例えば、2,4,6-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)メシチレン、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、オクタデシル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,6-ジ-t-ブチル-4-ノニルフェノール、チオジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナムアミド)等が挙げられ、これらの中でも、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートが好ましく用いられる。 The phenolic antioxidant is preferably a hindered phenolic antioxidant. Examples of the hindered phenolic antioxidant include 2,4,6-tris (3', 5'-di-t-butyl-4'-hydroxybenzyl) mecitylene and 2,4-bis- (n-octylthio). ) -6- (4-Hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) Propionate, octadecyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,6-di-t-butyl-4-nonylphenol, thiodiethylenebis [3- (3,5-di-) t-butyl-4-hydroxyphenyl) propionate], N, N-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide), etc. Among these, pentaerythritol Tetrax [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate is preferably used.
 フェノール系酸化防止剤の市販品としては、株式会社ADEKA製の酸化防止剤である、アデカスタブAO-20、アデカスタブAO-30、アデカスタブAO-40、アデカスタブAO-50、アデカスタブAO-60、アデカスタブAO-60G、アデカスタブAO-70、アデカスタブAO-80、アデカスタブAO-330等、BASF社製の酸化防止剤である、Irganox1010、Irganox1010FF、Irganox1035、Irganox1035FF(W&C)、Irganox1076、Irganox1076FD、Irganox1098、Irganox1135、Irganox1330、Irganox1520L、Irganox245、Irganox245FF、Irganox259、Irganox3114等、住友化学株式会社製の酸化防止剤である、SUMILIZER GP、SUMILIZER GS(F)、SUMILIZER GM(F)、SUMILIZER GA-80、SUMILIZER MDP-S、SUMILIZER WX-R、SUMILIZER WX-RC等などが挙げられる。 Commercially available phenolic antioxidants include Adekastab AO-20, Adekastab AO-30, Adekastab AO-40, Adekastab AO-50, Adekastab AO-60, and Adekastab AO-, which are antioxidants manufactured by ADEKA Corporation. 60G, Adekastab AO-70, Adekastab AO-80, Adekastab AO-330, etc., which are antioxidants manufactured by BASF, Irganox1010, Irganox1010FF, Irganox1035, Irganox1035FF (W & C), Irganox1035FF (W & C), Irganox1035FF (W & C), Irganox1035FF (W & C), Irganox1035FF (W & C) , Irganox245, Irganox245FF, Irganox259, Irganox3114, etc., which are antioxidants manufactured by Sumitomo Chemical Co., Ltd., SUMILIZER GP, SUMILIZER GS (F), SUMILIZER GM (F), SUMILIZER GM (F), Examples include R, SUMILIZER WX-RC, and the like.
 酸化防止剤の含有量は、外部量子効率の低下がより抑制されやすくなる観点から、インク組成物の全質量を基準として、0.01質量%以上であってよく、0.1質量%以上であってもよく、1質量%以上であってもよく、5質量%以上であってもよい。酸化防止剤の含有量は、塗布膜形成時に、より良好な膜強度の確保が可能となることに加え、酸化防止剤の表面へのブリードがより抑制され、かつ、良好な光学特性の確保が可能となる観点から、インク組成物の全質量を基準として、好ましくは10質量%以下であり、より好ましくは7質量%以下であり、更に好ましくは5質量%以下であり、更により好ましくは3質量%以下である。なお、上記含有量には、次亜リン酸ジエステル化合物の含有量は含めない。本実施形態では、フェノール系酸化防止剤の含有量が上記範囲であることが好ましく、ヒンダードフェノール系酸化防止剤の含有量が上記範囲であることがより好ましい。 The content of the antioxidant may be 0.01% by mass or more, and 0.1% by mass or more, based on the total mass of the ink composition, from the viewpoint that the decrease in external quantum efficiency can be more easily suppressed. It may be 1% by mass or more, or 5% by mass or more. Regarding the content of the antioxidant, in addition to being able to secure better film strength when forming the coating film, bleeding of the antioxidant on the surface is further suppressed, and good optical characteristics are ensured. From the viewpoint of being possible, it is preferably 10% by mass or less, more preferably 7% by mass or less, still more preferably 5% by mass or less, still more preferably 3 based on the total mass of the ink composition. It is mass% or less. The content of the hypophosphorous acid diester compound is not included in the above content. In the present embodiment, the content of the phenolic antioxidant is preferably in the above range, and more preferably the content of the hindered phenolic antioxidant is in the above range.
[光散乱性粒子]
 光散乱性粒子は、例えば、光学的に不活性な無機微粒子である。インク組成物が光散乱性粒子を含有する場合、画素部に照射された光源からの光を散乱させることができるため、優れた光学特性(例えば外部量子効率)を得ることができる。
[Light scattering particles]
The light-scattering particles are, for example, optically inactive inorganic fine particles. When the ink composition contains light-scattering particles, the light from the light source irradiated to the pixel portion can be scattered, so that excellent optical characteristics (for example, external quantum efficiency) can be obtained.
 光散乱性粒子を構成する材料としては、例えば、タングステン、ジルコニウム、チタン、白金、ビスマス、ロジウム、パラジウム、銀、スズ、プラチナ、金等の単体金属;シリカ、硫酸バリウム、タルク、クレー、カオリン、アルミナホワイト、酸化チタン、酸化マグネシウム、酸化バリウム、酸化アルミニウム、酸化ビスマス、酸化ジルコニウム、酸化亜鉛等の金属酸化物;炭酸マグネシウム、炭酸バリウム、次炭酸ビスマス、炭酸カルシウム等の金属炭酸塩;水酸化アルミニウム等の金属水酸化物;ジルコン酸バリウム、ジルコン酸カルシウム、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウム等の複合酸化物、次硝酸ビスマス等の金属塩などが挙げられる。光散乱性粒子は、吐出安定性に優れる観点及び外部量子効率の向上効果により優れる観点から、酸化チタン、アルミナ、酸化ジルコニウム、酸化亜鉛、炭酸カルシウム、硫酸バリウム、チタン酸バリウム及びシリカからなる群より選択される少なくとも1種を含むことが好ましく、酸化チタン、酸化ジルコニウム、酸化亜鉛及びチタン酸バリウムからなる群より選択される少なくとも1種を含むことがより好ましい。 Examples of the material constituting the photoscattering particles include simple metals such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum and gold; silica, barium sulfate, talc, clay, kaolin, etc. Alumina white, titanium oxide, magnesium oxide, barium oxide, aluminum oxide, bismuth oxide, zirconium oxide, zinc oxide and other metal oxides; magnesium carbonate, barium carbonate, bismuth carbonate, calcium carbonate and other metal carbonates; aluminum hydroxide Metal hydroxides such as: barium zirconate, calcium zirconate, calcium titanate, barium titanate, strontium titanate and other composite oxides, bismuth subnitrate and other metal salts and the like. The light-scattering particles are more than the group consisting of titanium oxide, alumina, zirconium oxide, zinc oxide, calcium carbonate, barium sulfate, barium titanate, and silica from the viewpoint of excellent ejection stability and the effect of improving external quantum efficiency. It is preferable to contain at least one selected, and more preferably at least one selected from the group consisting of titanium oxide, zirconium oxide, zinc oxide and barium titanate.
 光散乱性粒子の形状は、球状、フィラメント状、不定形状等であってよい。しかしながら、光散乱性粒子としては、粒子形状として方向性の少ない粒子(例えば、球状、正四面体状等の粒子)を用いることが、インク組成物の均一性、流動性及び光散乱性をより高めることができ、優れた吐出安定性を得ることができる点で好ましい。 The shape of the light scattering particles may be spherical, filamentous, indefinite, or the like. However, as the light-scattering particles, it is possible to use particles having less directional particle shape (for example, spherical or tetrahedral particles) to improve the uniformity, fluidity and light scattering property of the ink composition. It is preferable in that it can be enhanced and excellent discharge stability can be obtained.
 インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、吐出安定性に優れる観点及び外部量子効率の向上効果により優れる観点から、0.05μm(50nm)以上であってよく、0.2μm(200nm)以上であってもよく、0.3μm(300nm)以上であってもよい。インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、吐出安定性に優れる観点から、1.0μm(1000nm)以下であってもよく、0.6μm(600nm)以下であってもよく、0.4μm(400nm)以下であってもよい。インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、0.05~1.0μm、0.05~0.6μm、0.05~0.4μm、0.2~1.0μm、0.2~0.6μm、0.2~0.4μm、0.3~1.0μm、0.3~0.6μm、又は0.3~0.4μmであってもよい。このような平均粒子径(体積平均径)が得られやすい観点から、使用する光散乱性粒子の平均粒子径(体積平均径)は、0.05μm以上であってよく、1.0μm以下であってもよい。本明細書中、インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、動的光散乱式ナノトラック粒度分布計により測定し、体積平均径を算出することにより得られる。また、使用する光散乱性粒子の平均粒子径(体積平均径)は、例えば透過型電子顕微鏡又は走査型電子顕微鏡により各粒子の粒子径を測定し、体積平均径を算出することにより得られる。 The average particle diameter (volume average diameter) of the light-scattering particles in the ink composition may be 0.05 μm (50 nm) or more from the viewpoint of excellent ejection stability and the effect of improving external quantum efficiency. , 0.2 μm (200 nm) or more, or 0.3 μm (300 nm) or more. The average particle size (volume average diameter) of the light-scattering particles in the ink composition may be 1.0 μm (1000 nm) or less, or 0.6 μm (600 nm) or less, from the viewpoint of excellent ejection stability. It may be 0.4 μm (400 nm) or less. The average particle diameter (volume average diameter) of the light-scattering particles in the ink composition is 0.05 to 1.0 μm, 0.05 to 0.6 μm, 0.05 to 0.4 μm, 0.2 to 1. It may be 0.0 μm, 0.2 to 0.6 μm, 0.2 to 0.4 μm, 0.3 to 1.0 μm, 0.3 to 0.6 μm, or 0.3 to 0.4 μm. From the viewpoint that such an average particle diameter (volume average diameter) can be easily obtained, the average particle diameter (volume average diameter) of the light-scattering particles used may be 0.05 μm or more, and 1.0 μm or less. You may. In the present specification, the average particle diameter (volume average diameter) of the light-scattering particles in the ink composition is obtained by measuring with a dynamic light-scattering nanotrack particle size distribution meter and calculating the volume average diameter. .. The average particle diameter (volume average diameter) of the light-scattering particles used can be obtained by measuring the particle diameter of each particle with, for example, a transmission electron microscope or a scanning electron microscope, and calculating the volume average diameter.
 インク組成物における光散乱性粒子の含有量は、外部量子効率の向上効果により優れる観点から、インク組成物の全質量を基準として、例えば、0.1質量%以上であり、1質量%以上又は2質量%以上であってもよい。光散乱性粒子の含有量は、インク組成物の全質量を基準として、例えば、60質量%以下である。光散乱性粒子の含有量は、吐出安定性に優れる観点及び外部量子効率の向上効果により優れる観点から、好ましくは10質量%以下であり、より好ましくは7質量%以下であり、更に好ましくは5質量%以下である。これらの観点から、光散乱性粒子の含有量は、インク組成物の全質量を基準として、好ましくは0.1~10質量%である。 The content of light-scattering particles in the ink composition is, for example, 0.1% by mass or more, 1% by mass or more, or more, based on the total mass of the ink composition, from the viewpoint of being more excellent in the effect of improving the external quantum efficiency. It may be 2% by mass or more. The content of the light-scattering particles is, for example, 60% by mass or less based on the total mass of the ink composition. The content of the light-scattering particles is preferably 10% by mass or less, more preferably 7% by mass or less, still more preferably 5 from the viewpoint of excellent ejection stability and the effect of improving external quantum efficiency. It is mass% or less. From these viewpoints, the content of the light-scattering particles is preferably 0.1 to 10% by mass based on the total mass of the ink composition.
 発光性ナノ結晶粒子の含有量に対する光散乱性粒子の含有量の質量比(光散乱性粒子/発光性ナノ結晶粒子)は、外部量子効率の向上効果に優れる観点から、0.05以上であってよく、0.1以上であってもよく、0.2以上であってもよく、0.5以上であってもよい。質量比(光散乱性粒子/発光性ナノ結晶粒子)は、外部量子効率の向上効果により優れ、インクジェット印刷時の連続吐出性(吐出安定性)に優れる観点から、5.0以下であってよく、2.0以下であってもよく、1.5以下であってもよい。これらの観点から、質量比(光散乱性粒子/発光性ナノ結晶粒子)は、例えば、0.05~5.0であってよい。 The mass ratio of the content of light-scattering particles to the content of luminescent nanocrystal particles (light-scattering particles / luminescent nanocrystal particles) is 0.05 or more from the viewpoint of excellent effect of improving external quantum efficiency. It may be 0.1 or more, 0.2 or more, or 0.5 or more. The mass ratio (light scattering particles / luminescent nanocrystal particles) may be 5.0 or less from the viewpoint of excellent effect of improving external quantum efficiency and excellent continuous ejection property (ejection stability) during inkjet printing. , 2.0 or less, or 1.5 or less. From these viewpoints, the mass ratio (light scattering particles / luminescent nanocrystal particles) may be, for example, 0.05 to 5.0.
[高分子分散剤]
 高分子分散剤は、750以上の重量平均分子量を有し、かつ、光散乱性粒子に対し親和性を有する官能基を有する高分子化合物である。高分子分散剤は、光散乱性粒子を分散させる機能を有する。高分子分散剤は、光散乱性粒子に対し親和性を有する官能基を介して光散乱性粒子に吸着(例えば結合)し、高分子分散剤同士の静電反発及び/又は立体反発により、光散乱性粒子をインク組成物中に分散させる。高分子分散剤は、光散乱性粒子の表面と結合して光散乱性粒子に吸着していることが好ましいが、発光性ナノ結晶粒子の表面に結合して発光性ナノ粒子に吸着していてもよく、インク組成物中に遊離していてもよい。
[Polymer dispersant]
The polymer dispersant is a polymer compound having a weight average molecular weight of 750 or more and having a functional group having an affinity for light-scattering particles. The polymer dispersant has a function of dispersing light-scattering particles. The polymer dispersant is adsorbed (for example, bonded) to the light-scattering particles via a functional group having an affinity for the light-scattering particles, and the light is emitted by electrostatic repulsion and / or steric repulsion between the polymer dispersants. Scatterable particles are dispersed in the ink composition. The polymer dispersant is preferably bound to the surface of the light-scattering particles and adsorbed to the light-scattering particles, but is bound to the surface of the luminescent nanoparticles and adsorbed to the luminescent nanoparticles. It may be free in the ink composition.
 光散乱性粒子に対し親和性を有する官能基としては、酸性官能基、塩基性官能基及び非イオン性官能基が挙げられる。酸性官能基は解離性のプロトンを有しており、アミン、水酸化物イオン等の塩基により中和されていてもよく、塩基性官能基は有機酸、無機酸等の酸により中和されていてもよい。 Examples of the functional group having an affinity for light-scattering particles include an acidic functional group, a basic functional group and a nonionic functional group. The acidic functional group has a dissociative proton and may be neutralized by a base such as an amine or a hydroxide ion, and the basic functional group is neutralized by an acid such as an organic acid or an inorganic acid. You may.
 酸性官能基としては、カルボキシル基(-COOH)、スルホ基(-SOH)、硫酸基(-OSOH)、ホスホン酸基(-PO(OH))、リン酸基(-OPO(OH))、ホスフィン酸基(-PO(OH)-)、メルカプト基(-SH)等が挙げられる。 The acidic functional group, a carboxyl group (-COOH), a sulfo group (-SO 3 H), sulfuric acid group (-OSO 3 H), a phosphonic acid group (-PO (OH) 3), phosphoric acid group (-OPO ( OH) 3 ), phosphinic acid group (-PO (OH)-), mercapto group (-SH) and the like can be mentioned.
 塩基性官能基としては、一級、二級及び三級アミノ基、アンモニウム基、イミノ基、並びに、ピリジン、ピリミジン、ピラジン、イミダゾール、トリアゾール等の含窒素ヘテロ環基等が挙げられる。 Examples of the basic functional group include primary, secondary and tertiary amino groups, ammonium groups, imino groups, and nitrogen-containing heterocyclic groups such as pyridine, pyrimidine, pyrazine, imidazole, and triazole.
 非イオン性官能基としては、ヒドロキシ基、エーテル基、チオエーテル基、スルフィニル基(-SO-)、スルホニル基(-SO-)、カルボニル基、ホルミル基、エステル基、炭酸エステル基、アミド基、カルバモイル基、ウレイド基、チオアミド基、チオウレイド基、スルファモイル基、シアノ基、アルケニル基、アルキニル基、ホスフィンオキサイド基、ホスフィンスルフィド基が挙げられる。 The nonionic functional group, hydroxy group, an ether group, a thioether group, a sulfinyl group (-SO-), a sulfonyl group (-SO 2 -), a carbonyl group, a formyl group, an ester group, carbonic ester group, an amide group, Examples thereof include a carbamoyl group, a ureido group, a thioamide group, a thioureide group, a sulfamoyl group, a cyano group, an alkenyl group, an alkynyl group, a phosphine oxide group and a phosphine sulfide group.
 高分子分散剤は、単一のモノマーの重合体(ホモポリマー)であってよく、複数種のモノマーの共重合体(コポリマー)であってもよい。また、高分子分散剤は、ランダム共重合体、ブロック共重合体又はグラフト共重合体のいずれであってもよい。また、高分子分散剤がグラフト共重合体である場合、くし形のグラフト共重合体であってよく、星形のグラフト共重合体であってもよい。高分子分散剤は、例えば、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエーテル、フェノール樹脂、シリコーン樹脂、ポリウレア樹脂、アミノ樹脂、エポキシ樹脂、ポリエチレンイミン及びポリアリルアミン等のポリアミン、ポリイミドなどであってよい。 The polymer dispersant may be a polymer of a single monomer (homopolymer) or a copolymer of a plurality of types of monomers (copolymer). Moreover, the polymer dispersant may be any of a random copolymer, a block copolymer, and a graft copolymer. When the polymer dispersant is a graft copolymer, it may be a comb-shaped graft copolymer or a star-shaped graft copolymer. The polymer dispersant may be, for example, acrylic resin, polyester resin, polyurethane resin, polyamide resin, polyether, phenol resin, silicone resin, polyurea resin, amino resin, epoxy resin, polyamine such as polyethyleneimine and polyallylamine, and polyimide. It may be there.
 高分子分散剤として、市販品を使用することも可能であり、市販品としては、味の素ファインテクノ株式会社製のアジスパーPBシリーズ、BYK社製のDISPERBYKシリーズ並びにBYK-シリーズ、BASF社製のEfkaシリーズ等を使用することができる。 Commercially available products can be used as the polymer dispersant, and the commercially available products include Ajinomoto Fine-Techno Co., Ltd.'s Ajispar PB series, BYK's DISPERBYK series and BYK-series, and BASF's Efka series. Etc. can be used.
[その他の成分]
 インク組成物は、本発明の効果を阻害しない範囲で、上述した成分以外の成分を更に含有していてもよい。
[Other ingredients]
The ink composition may further contain components other than the above-mentioned components as long as the effects of the present invention are not impaired.
 インク組成物は、例えば溶剤を更に含有していてよい。溶剤としては、例えば、シクロヘキサン、ヘキサン、ヘプタン、クロロホルム、トルエン、オクタン、クロロベンゼン、テトラリン、ジフェニルエーテル、プロピレングリコールモノメチルエーテルアセテート、ブチルカルビトールアセテート、又はそれらの混合物などが挙げられる。ただし、本実施形態のインク組成物では光重合性化合物が分散媒としても機能するため、無溶剤で光散乱性粒子及び発光性ナノ結晶粒子を分散させることが可能である。この場合、画素部を形成する際に溶剤を乾燥により除去する工程が不要となる利点を有する。インク組成物が溶剤を含む場合、溶剤の含有量は、インク組成物の全質量(溶剤を含む)を基準として、0質量%超5質量%以下であってよい。 The ink composition may further contain, for example, a solvent. Examples of the solvent include cyclohexane, hexane, heptane, chloroform, toluene, octane, chlorobenzene, tetralin, diphenyl ether, propylene glycol monomethyl ether acetate, butyl carbitol acetate, or a mixture thereof. However, in the ink composition of the present embodiment, since the photopolymerizable compound also functions as a dispersion medium, it is possible to disperse light-scattering particles and luminescent nanocrystal particles without a solvent. In this case, there is an advantage that the step of removing the solvent by drying when forming the pixel portion becomes unnecessary. When the ink composition contains a solvent, the content of the solvent may be more than 0% by mass and 5% by mass or less based on the total mass (including the solvent) of the ink composition.
 以上説明したインク組成物の粘度は、例えば、インクジェット印刷時の吐出安定性の観点から、2mPa・s以上であってよく、5mPa・s以上であってもよく、7mPa・s以上であってもよい。インク組成物の粘度は、20mPa・s以下であってよく、15mPa・s以下であってもよく、12mPa・s以下であってもよい。インク組成物の粘度は、例えば、2~20mPa・s、2~15mPa・s、2~12mPa・s、5~20mPa・s、5~15mPa・s、5~12mPa・s、7~20mPa・s、7~15mPa・s、又は7~12mPa・sであってもよい。なお、上記粘度は、例えば、インクジェット印刷を実施する際のインク温度における粘度であり、E型粘度計によって測定される粘度である。インクジェット印刷を実施する際のインク温度は25~60℃が好ましく、30~55℃がより好ましく、30~40℃が更に好ましい。インクジェット印刷を実施する際のインク温度は、インクジェット印刷をする際のインクジェットヘッド温度によって調整される。 The viscosity of the ink composition described above may be, for example, 2 mPa · s or more, 5 mPa · s or more, or 7 mPa · s or more from the viewpoint of ejection stability during inkjet printing. good. The viscosity of the ink composition may be 20 mPa · s or less, 15 mPa · s or less, or 12 mPa · s or less. The viscosity of the ink composition is, for example, 2 to 20 mPa · s, 2 to 15 mPa · s, 2 to 12 mPa · s, 5 to 20 mPa · s, 5 to 15 mPa · s, 5 to 12 mPa · s, 7 to 20 mPa · s. , 7 to 15 mPa · s, or 7 to 12 mPa · s. The viscosity is, for example, the viscosity at the ink temperature when performing inkjet printing, and is the viscosity measured by an E-type viscometer. The ink temperature at the time of performing inkjet printing is preferably 25 to 60 ° C., more preferably 30 to 55 ° C., and even more preferably 30 to 40 ° C. The ink temperature when performing inkjet printing is adjusted by the temperature of the inkjet head when performing inkjet printing.
 インク組成物のインクジェット印刷時のインク温度における粘度が2mPa・s以上である場合、吐出ヘッドのインク吐出孔の先端におけるインクジェットインクのメニスカス形状が安定するため、インクジェットインクの吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易となる。一方、インク組成物のインクジェット印刷時のインク温度における粘度が20mPa・s以下である場合、インク吐出孔からインクジェットインクを円滑に吐出させることができる。 When the viscosity of the ink composition at the ink temperature during inkjet printing is 2 mPa · s or more, the meniscus shape of the inkjet ink at the tip of the ink ejection hole of the ejection head is stable, so that the ejection amount of the inkjet ink (for example, the ejection amount) is controlled. And control of discharge timing) becomes easy. On the other hand, when the viscosity of the ink composition at the ink temperature during inkjet printing is 20 mPa · s or less, the inkjet ink can be smoothly ejected from the ink ejection holes.
 インク組成物の表面張力は、インクジェット方式に適した表面張力であることが好ましく、具体的には、20~40mN/mの範囲であることが好ましく、25~35mN/mであることがより好ましい。表面張力を当該範囲とすることで吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易になると共に、飛行曲がりの発生を抑制することができる。なお、飛行曲がりとは、インク組成物をインク吐出孔から吐出させたとき、インク組成物の着弾位置が目標位置に対して30μm以上のずれを生じることをいう。表面張力が40mN/m以下である場合、インク吐出孔の先端におけるメニスカス形状が安定するため、インク組成物の吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易となる。一方、表面張力が20mN/m以上である場合、インク吐出孔周辺部がインクジェットインクで汚染することが防げるため、飛行曲がりの発生を抑制できる。すなわち、着弾すべき画素部形成領域に正確に着弾されずにインク組成物の充填が不充分な画素部が生じたり、着弾すべき画素部形成領域に隣接する画素部形成領域(又は画素部)にインク組成物が着弾し、色再現性が低下したりすることがない。なお、本明細書記載の表面張力は、23℃で測定された表面張力をいい、リング法(輪環法ともいう)で測定されたものをいう。 The surface tension of the ink composition is preferably a surface tension suitable for the inkjet method, specifically, preferably in the range of 20 to 40 mN / m, and more preferably 25 to 35 mN / m. .. By setting the surface tension within this range, discharge control (for example, control of discharge amount and discharge timing) can be facilitated, and the occurrence of flight bending can be suppressed. The flight bending means that when the ink composition is ejected from the ink ejection holes, the landing position of the ink composition deviates from the target position by 30 μm or more. When the surface tension is 40 mN / m or less, the shape of the meniscus at the tip of the ink ejection hole is stable, so that the ejection control of the ink composition (for example, control of the ejection amount and the ejection timing) becomes easy. On the other hand, when the surface tension is 20 mN / m or more, it is possible to prevent the peripheral portion of the ink ejection hole from being contaminated with the inkjet ink, so that the occurrence of flight bending can be suppressed. That is, a pixel portion may not be landed accurately on the pixel portion forming region to be landed and the ink composition may be insufficiently filled, or a pixel portion forming region (or pixel portion) adjacent to the pixel portion forming region to be landed may be generated. The ink composition does not land on the surface and the color reproducibility does not deteriorate. The surface tension described in the present specification refers to the surface tension measured at 23 ° C., which is measured by the ring method (also referred to as the ring method).
 本実施形態のインク組成物をインクジェット方式用のインク組成物として用いる場合には、圧電素子を用いた機械的吐出機構による、ピエゾジェット方式のインクジェット記録装置に適用することが好ましい。ピエゾジェット方式では、吐出に当たり、インク組成物が瞬間的に高温に晒されることがない。そのため、発光性ナノ結晶粒子の変質が起こり難く、画素部(光変換層)において、期待した通りの発光特性がより容易に得られやすい。 When the ink composition of the present embodiment is used as an ink composition for an inkjet method, it is preferably applied to a piezojet type inkjet recording device using a mechanical ejection mechanism using a piezoelectric element. In the piezo jet method, the ink composition is not instantaneously exposed to a high temperature during ejection. Therefore, alteration of the luminescent nanocrystal particles is unlikely to occur, and the expected luminescence characteristics can be more easily obtained in the pixel portion (light conversion layer).
 以上、インクジェットインク組成物の一実施形態について説明したが、上述した実施形態のインクジェットインク組成物は、インクジェット方式の他に、例えば、フォトリソグラフィ方式で用いることもできる。この場合、インク組成物は、バインダーポリマーとしてアルカリ可溶性樹脂を含有する。 Although one embodiment of the inkjet ink composition has been described above, the inkjet ink composition of the above-described embodiment can be used, for example, by a photolithography method in addition to the inkjet method. In this case, the ink composition contains an alkali-soluble resin as a binder polymer.
 インク組成物をフォトリソグラフィ方式で用いる場合、まず、インク組成物を基材上に塗布し、さらにインク組成物を乾燥させて塗布膜を形成する。このようにして得られる塗布膜は、アルカリ現像液に可溶性であり、アルカリ現像液で処理されることでパターニングされる。この際、アルカリ現像液は、現像液の廃液処理の容易さ等の観点から、水溶液であることが大半を占めるため、インク組成物の塗布膜は水溶液で処理されることとなる。一方、発光性ナノ結晶粒子(量子ドット等)を用いたインク組成物の場合、発光性ナノ結晶粒子が水に対して不安定であり、発光性(例えば蛍光性)が水分により損なわれる。このため本実施形態においては、アルカリ現像液(水溶液)で処理する必要のない、インクジェット方式が好ましい。 When the ink composition is used by the photolithography method, first, the ink composition is applied onto a substrate, and then the ink composition is dried to form a coating film. The coating film thus obtained is soluble in an alkaline developer and is patterned by being treated with an alkaline developer. At this time, since most of the alkaline developer is an aqueous solution from the viewpoint of ease of waste liquid treatment of the developer, the coating film of the ink composition is treated with the aqueous solution. On the other hand, in the case of an ink composition using luminescent nanocrystal particles (quantum dots or the like), the luminescent nanocrystal particles are unstable with respect to water, and the luminescence (for example, fluorescence) is impaired by water. Therefore, in this embodiment, an inkjet method that does not need to be treated with an alkaline developer (aqueous solution) is preferable.
 また、インク組成物の塗布膜に対してアルカリ現像液による処理を行わない場合でも、インク組成物がアルカリ可溶性である場合、インク組成物の塗布膜が大気中の水分を吸収しやすくなるため、時間が経過するにつれて発光性ナノ結晶粒子(量子ドット等)の発光性(例えば蛍光性)が損なわれてゆく。この観点から、本実施形態においては、インク組成物の塗布膜はアルカリ不溶性であることが好ましい。すなわち、本実施形態のインク組成物は、アルカリ不溶性の塗布膜を形成可能なインク組成物であることが好ましい。このようなインク組成物は、光重合性化合物として、アルカリ不溶性の光重合性化合物を用いることにより得ることができる。インク組成物の塗布膜がアルカリ不溶性であるとは、1質量%の水酸化カリウム水溶液に対する25℃におけるインク組成物の塗布膜の溶解量が、インク組成物の塗布膜の全質量を基準として、30質量%以下であることを意味する。インク組成物の塗布膜の上記溶解量は、好ましくは、10質量%以下であり、より好ましくは3質量%以下である。なお、インク組成物がアルカリ不溶性の塗布膜を形成可能なインク組成物であることは、インク組成物を基材上に塗布した後、80℃、3分の条件で乾燥して得られる厚さ1μmの塗布膜の、上記溶解量を測定することにより確認できる。 Further, even when the coating film of the ink composition is not treated with an alkaline developer, if the ink composition is alkali-soluble, the coating film of the ink composition easily absorbs moisture in the atmosphere. As time passes, the luminescence (for example, fluorescence) of luminescent nanocrystal particles (quantum dots, etc.) is impaired. From this point of view, in the present embodiment, the coating film of the ink composition is preferably alkali-insoluble. That is, the ink composition of the present embodiment is preferably an ink composition capable of forming an alkali-insoluble coating film. Such an ink composition can be obtained by using an alkali-insoluble photopolymerizable compound as the photopolymerizable compound. The fact that the coating film of the ink composition is alkali-insoluble means that the amount of the coating film of the ink composition dissolved at 25 ° C. in a 1% by mass potassium hydroxide aqueous solution is based on the total mass of the coating film of the ink composition. It means that it is 30% by mass or less. The amount of the coating film of the ink composition dissolved is preferably 10% by mass or less, and more preferably 3% by mass or less. The fact that the ink composition is an ink composition capable of forming an alkali-insoluble coating film means that the thickness is obtained by applying the ink composition on a substrate and then drying it at 80 ° C. for 3 minutes. It can be confirmed by measuring the above-mentioned dissolution amount of the 1 μm coating film.
<インク組成物の製造方法>
 上述した実施形態のインク組成物は、例えば、上述したインク組成物の構成成分を混合する工程を備える。インク組成物の製造方法は、上記構成成分の混合物の分散処理を行う工程を更に備えてよい。
<Manufacturing method of ink composition>
The ink composition of the above-described embodiment includes, for example, a step of mixing the constituent components of the above-mentioned ink composition. The method for producing an ink composition may further include a step of performing a dispersion treatment of the mixture of the above constituent components.
 インク組成物の製造方法は、例えば、光散乱性粒子を含有する、光散乱性粒子の分散体を用意する第1の工程と、光散乱性粒子の分散体及び発光性ナノ結晶粒子を混合する第2の工程と、を備える。光散乱性粒子の分散体は、高分子分散剤を更に含んでいてよい。この方法では、光散乱性粒子の分散体が光重合性化合物及び次亜リン酸ジエステル化合物を更に含有してよく、第2の工程において、光重合性化合物及び次亜リン酸ジエステル化合物を更に混合してもよい。上記方法によれば、光散乱性粒子を充分に分散させることができる。そのため、画素部の光学特性(例えば外部量子効率)を向上させることができると共に、吐出安定性に優れるインク組成物を容易に得ることができる。 The method for producing the ink composition is, for example, a first step of preparing a dispersion of light-scattering particles containing light-scattering particles, and mixing the dispersion of light-scattering particles and luminescent nanocrystal particles. A second step is provided. The dispersion of light-scattering particles may further contain a polymer dispersant. In this method, the dispersion of photoscattering particles may further contain a photopolymerizable compound and a hypophosphorous acid diester compound, and in the second step, the photopolymerizable compound and the hypophosphorous acid diester compound are further mixed. You may. According to the above method, the light scattering particles can be sufficiently dispersed. Therefore, the optical characteristics (for example, external quantum efficiency) of the pixel portion can be improved, and an ink composition having excellent ejection stability can be easily obtained.
 光散乱性粒子の分散体を用意する工程では、光散乱性粒子と、場合により、高分子分散剤と、光重合性化合物と、次亜リン酸ジエステル化合物とを混合し、分散処理を行うことにより光散乱性粒子の分散体を調製してよい。混合及び分散処理は、ビーズミル、ペイントコンディショナー、遊星攪拌機、ジェットミル等の分散装置を用いて行ってよい。光散乱性粒子の分散性が良好となり、光散乱性粒子の平均粒子径を所望の範囲に調整しやすい観点から、ビーズミル又はペイントコンディショナーを用いることが好ましい。発光性ナノ結晶粒子と光散乱性粒子とを混合する前に光散乱性粒子と高分子分散剤とを混合することにより、光散乱性粒子をより充分に分散させることができる。そのため、優れた吐出安定性及び優れた外部量子効率をより一層容易に得ることができる。 In the step of preparing a dispersion of light-scattering particles, the light-scattering particles, in some cases, a polymer dispersant, a photopolymerizable compound, and a hypophosphite diester compound are mixed and dispersed. May prepare a dispersion of light-scattering particles. The mixing and dispersion treatment may be carried out using a dispersion device such as a bead mill, a paint conditioner, a planetary stirrer, or a jet mill. It is preferable to use a bead mill or a paint conditioner from the viewpoint that the dispersibility of the light-scattering particles is good and the average particle size of the light-scattering particles can be easily adjusted to a desired range. By mixing the light-scattering particles and the polymer dispersant before mixing the luminescent nanocrystal particles and the light-scattering particles, the light-scattering particles can be more sufficiently dispersed. Therefore, excellent ejection stability and excellent external quantum efficiency can be obtained more easily.
 インク組成物の製造方法は、第2の工程の前に、発光性ナノ結晶粒子と、光重合性化合物と、を含有する、発光性ナノ結晶粒子の分散体を用意する工程を更に備えていてもよい。この場合、第2の工程では、光散乱性粒子の分散体と、発光性ナノ結晶粒子の分散体と、を混合する。発光性ナノ結晶粒子の分散体を用意する工程では、発光性ナノ結晶粒子と、光重合性化合物と、場合により次亜リン酸ジエステル化合物とを混合し、分散処理を行うことにより発光性ナノ結晶粒子分散体を調製してよい。発光性ナノ結晶粒子としては、その表面に有機リガンドを有する発光性ナノ結晶粒子を用いてよい。すなわち、発光性ナノ結晶粒子分散体は、有機リガンドを更に含んでいてもよい。混合及び分散処理は、電磁式スターラー、スリーワンモーター等の通常の攪拌装置や、ボルテックスミキサー、ビーズミル、ペイントコンディショナー、遊星攪拌機、ジェットミル等の分散装置を用いて行ってよい。発光性ナノ結晶粒子に過度のエネルギーを与えすぎない観点から、電磁式スターラー、スリーワンモーター等の通常の攪拌装置又はボルテックスミキサーを用いることが好ましい。この方法によれば、発光性ナノ結晶粒子の性能を落とさず、充分に分散させることができる。そのため、画素部の光学特性(例えば外部量子効率)を向上させることができると共に、吐出安定性に優れるインク組成物を容易に得ることができる。 The method for producing an ink composition further includes a step of preparing a dispersion of luminescent nanocrystal particles containing luminescent nanocrystal particles and a photopolymerizable compound before the second step. May be good. In this case, in the second step, the dispersion of the light-scattering particles and the dispersion of the luminescent nanocrystal particles are mixed. In the step of preparing a dispersion of luminescent nanocrystal particles, luminescent nanocrystal particles, a photopolymerizable compound, and, in some cases, a hypophosphite diester compound are mixed and dispersed, so that the luminescent nanocrystals are treated. Particle dispersions may be prepared. As the luminescent nanocrystal particles, luminescent nanocrystal particles having an organic ligand on the surface thereof may be used. That is, the luminescent nanocrystal particle dispersion may further contain an organic ligand. The mixing and dispersion treatment may be performed using a normal stirring device such as an electromagnetic stirrer or a three-one motor, or a dispersing device such as a vortex mixer, a bead mill, a paint conditioner, a planetary stirrer, or a jet mill. From the viewpoint of not giving excessive energy to the luminescent nanocrystal particles, it is preferable to use a normal stirring device such as an electromagnetic stirrer or a three-one motor or a vortex mixer. According to this method, the luminescent nanocrystal particles can be sufficiently dispersed without deteriorating the performance. Therefore, the optical characteristics (for example, external quantum efficiency) of the pixel portion can be improved, and an ink composition having excellent ejection stability can be easily obtained.
<インク組成物セット>
 一実施形態のインク組成物セットは、上述した実施形態のインク組成物を備える。インク組成物セットは、上述した実施形態のインク組成物(発光性インク組成物)に加えて、発光性ナノ結晶粒子を含有しないインク組成物(非発光性インク組成物)を備えていてよい。非発光性インク組成物は、例えば、硬化性のインク組成物である。非発光性インク組成物は、従来公知のインク組成物であってよく、発光性ナノ結晶粒子を含まないこと以外は、上述した実施形態のインク組成物(発光性インク組成物)と同様の組成であってもよい。
<Ink composition set>
The ink composition set of one embodiment includes the ink composition of the above-described embodiment. The ink composition set may include an ink composition (non-emissive ink composition) that does not contain luminescent nanocrystal particles, in addition to the ink composition (emissive ink composition) of the above-described embodiment. The non-luminescent ink composition is, for example, a curable ink composition. The non-emissive ink composition may be a conventionally known ink composition, and has the same composition as the ink composition (emissive ink composition) of the above-described embodiment except that it does not contain luminescent nanocrystal particles. It may be.
 非発光性インク組成物は、発光性ナノ結晶粒子を含有しないため、非発光性インク組成物により形成される画素部(非発光性インク組成物の硬化物を含む画素部)に光を入射させた場合に画素部から出射する光は、入射光と略同一の波長を有する。したがって、非発光性インク組成物は、光源からの光と同色の画素部を形成するために好適に用いられる。例えば、光源からの光が420~480nmの範囲の波長を有する光(青色光)である場合、非発光性インク組成物により形成される画素部は青色画素部となり得る。 Since the non-luminescent ink composition does not contain luminescent nanocrystal particles, light is incident on the pixel portion formed by the non-luminescent ink composition (the pixel portion containing the cured product of the non-luminescent ink composition). In this case, the light emitted from the pixel portion has substantially the same wavelength as the incident light. Therefore, the non-emissive ink composition is suitably used for forming pixel portions having the same color as the light from the light source. For example, when the light from the light source is light having a wavelength in the range of 420 to 480 nm (blue light), the pixel portion formed by the non-emissive ink composition can be a blue pixel portion.
 非発光性インク組成物は、好ましくは光散乱性粒子を含有する。非発光性インク組成物が光散乱性粒子を含有する場合、当該非発光性インク組成物により形成される画素部によれば、画素部に入射した光を散乱させることができ、これにより、画素部からの出射光の、視野角における光強度差を低減することができる。 The non-luminescent ink composition preferably contains light-scattering particles. When the non-emissive ink composition contains light-scattering particles, the pixel portion formed by the non-emissive ink composition can scatter the light incident on the pixel portion, whereby the pixel It is possible to reduce the difference in light intensity of the light emitted from the unit at the viewing angle.
<光変換層及びカラーフィルタ>
 以下、上述した実施形態のインク組成物セットを用いて得られる光変換層及びカラーフィルタの詳細について、図面を参照しつつ説明する。なお、以下の説明において、同一又は相当要素には同一符号を用い、重複する説明は省略する。
<Optical conversion layer and color filter>
Hereinafter, details of the light conversion layer and the color filter obtained by using the ink composition set of the above-described embodiment will be described with reference to the drawings. In the following description, the same reference numerals will be used for the same or equivalent elements, and duplicate description will be omitted.
 図1は、一実施形態のカラーフィルタの模式断面図である。図1に示すように、カラーフィルタ100は、基材40と、基材40上に設けられた光変換層30と、を備える。光変換層30は、複数の画素部10と、遮光部20と、を備えている。 FIG. 1 is a schematic cross-sectional view of the color filter of one embodiment. As shown in FIG. 1, the color filter 100 includes a base material 40 and a light conversion layer 30 provided on the base material 40. The light conversion layer 30 includes a plurality of pixel units 10 and a light-shielding unit 20.
 光変換層30は、画素部10として、第1の画素部10aと、第2の画素部10bと、第3の画素部10cとを有している。第1の画素部10aと、第2の画素部10bと、第3の画素部10cとは、この順に繰り返すように格子状に配列されている。遮光部20は、隣り合う画素部の間、すなわち、第1の画素部10aと第2の画素部10bとの間、第2の画素部10bと第3の画素部10cとの間、第3の画素部10cと第1の画素部10aとの間に設けられている。言い換えれば、これらの隣り合う画素部同士は、遮光部20によって離間されている。 The optical conversion layer 30 has a first pixel unit 10a, a second pixel unit 10b, and a third pixel unit 10c as the pixel unit 10. The first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c are arranged in a grid pattern so as to repeat in this order. The light-shielding portion 20 is located between adjacent pixel portions, that is, between the first pixel portion 10a and the second pixel portion 10b, between the second pixel portion 10b and the third pixel portion 10c, and the third. It is provided between the pixel portion 10c of the above and the first pixel portion 10a. In other words, these adjacent pixel portions are separated from each other by the light-shielding portion 20.
 第1の画素部10a及び第2の画素部10bは、それぞれ上述した実施形態のインク組成物の硬化物を含む発光性の画素部(発光性画素部)である。第1の画素部10aは、第1の硬化成分13aと、第1の硬化成分13a中にそれぞれ分散された第1の発光性ナノ結晶粒子11a及び第1の光散乱性粒子12aとを含む。同様に、第2の画素部10bは、第2の硬化成分13bと、第2の硬化成分13b中にそれぞれ分散された第2の発光性ナノ結晶粒子11b及び第2の光散乱性粒子12bとを含む。硬化成分は、光重合性化合物の重合によって得られる成分であり、光重合性化合物の重合体及び次亜リン酸ジエステル化合物を含む。硬化成分には、上記重合体及び次亜リン酸ジエステル化合物の他、インク組成物に含まれていた有機成分(有機リガンド、高分子分散剤、未反応の重合性化合物等)が含まれていてよい。第1の画素部10a及び第2の画素部10bにおいて、第1の硬化成分13aと第2の硬化成分13bとは同一であっても異なっていてもよく、第1の光散乱性粒子12aと第2の光散乱性粒子12bとは同一であっても異なっていてもよい。 The first pixel portion 10a and the second pixel portion 10b are luminescent pixel portions (light emitting pixel portions) containing a cured product of the ink composition of the above-described embodiment, respectively. The first pixel portion 10a includes a first curing component 13a, first luminescent nanocrystal particles 11a dispersed in the first curing component 13a, and first light scattering particles 12a, respectively. Similarly, the second pixel portion 10b includes the second curing component 13b, the second luminescent nanocrystal particles 11b and the second light scattering particles 12b dispersed in the second curing component 13b, respectively. including. The curing component is a component obtained by polymerizing a photopolymerizable compound, and includes a polymer of the photopolymerizable compound and a hypophosphorous acid diester compound. In addition to the above polymer and hypophosphorous acid diester compound, the curing component contains organic components (organic ligand, polymer dispersant, unreacted polymerizable compound, etc.) contained in the ink composition. good. In the first pixel portion 10a and the second pixel portion 10b, the first curing component 13a and the second curing component 13b may be the same or different, and may be the same as or different from the first light scattering particles 12a. It may be the same as or different from the second light scattering particle 12b.
 第1の発光性ナノ結晶粒子11aは、420~480nmの範囲の波長の光を吸収し605~665nmの範囲に発光ピーク波長を有する光を発する、赤色発光性のナノ結晶粒子である。すなわち、第1の画素部10aは、青色光を赤色光に変換するための赤色画素部と言い換えてよい。また、第2の発光性ナノ結晶粒子11bは、420~480nmの範囲の波長の光を吸収し500~560nmの範囲に発光ピーク波長を有する光を発する、緑色発光性のナノ結晶粒子である。すなわち、第2の画素部10bは、青色光を緑色光に変換するための緑色画素部と言い換えてよい。 The first luminescent nanocrystal particles 11a are red luminescent nanocrystal particles that absorb light having a wavelength in the range of 420 to 480 nm and emit light having an emission peak wavelength in the range of 605 to 665 nm. That is, the first pixel portion 10a may be rephrased as a red pixel portion for converting blue light into red light. The second luminescent nanocrystal particle 11b is a green luminescent nanocrystal particle that absorbs light having a wavelength in the range of 420 to 480 nm and emits light having an emission peak wavelength in the range of 500 to 560 nm. That is, the second pixel portion 10b may be rephrased as a green pixel portion for converting blue light into green light.
 発光性画素部における発光性ナノ結晶粒子の含有量は、外部量子効率の向上効果により優れる観点及び優れた発光強度が得られる観点から、発光性インク組成物の硬化物の全質量を基準として、好ましくは20質量%以上であり、22質量%以上、24質量%以上又は26質量%以上であってもよい。発光性ナノ結晶粒子の含有量は、画素部の信頼性に優れる観点及び優れた発光強度が得られる観点から、発光性インク組成物の硬化物の全質量を基準として、好ましくは80質量%以下であり、70質量%以下、60質量%以下、50質量%以下又は40質量%以下であってもよい。 The content of the luminescent nanocrystal particles in the luminescent pixel portion is based on the total mass of the cured product of the luminescent ink composition from the viewpoint of being superior due to the effect of improving the external quantum efficiency and from the viewpoint of obtaining excellent emission intensity. It is preferably 20% by mass or more, and may be 22% by mass or more, 24% by mass or more, or 26% by mass or more. The content of the luminescent nanocrystal particles is preferably 80% by mass or less based on the total mass of the cured product of the luminescent ink composition from the viewpoint of excellent reliability of the pixel portion and excellent luminescence intensity. It may be 70% by mass or less, 60% by mass or less, 50% by mass or less, or 40% by mass or less.
 発光性画素部における光散乱性粒子の含有量は、外部量子効率の向上効果により優れる観点から、発光性インク組成物の硬化物の全質量を基準として、例えば、0.1質量%以上であり、1質量%以上又は2質量%以上であってもよい。光散乱性粒子の含有量は、発光性インク組成物の硬化物の全質量を基準として、例えば、60質量%以下である。光散乱性粒子の含有量は、外部量子効率の向上効果により優れる観点及び画素部の信頼性に優れる観点から、発光性インク組成物の硬化物の全質量を基準として、好ましくは10質量%以下であり、より好ましくは7質量%以下であり、更に好ましくは5質量%以下である。 The content of the light scattering particles in the luminescent pixel portion is, for example, 0.1% by mass or more based on the total mass of the cured product of the luminescent ink composition from the viewpoint of being more excellent in the effect of improving the external quantum efficiency. It may be 1% by mass or more or 2% by mass or more. The content of the light-scattering particles is, for example, 60% by mass or less based on the total mass of the cured product of the luminescent ink composition. The content of the light-scattering particles is preferably 10% by mass or less based on the total mass of the cured product of the luminescent ink composition from the viewpoint of being excellent in the effect of improving the external quantum efficiency and the reliability of the pixel portion. It is more preferably 7% by mass or less, and further preferably 5% by mass or less.
 第3の画素部10cは、上述した非発光性インク組成物の硬化物を含む非発光性の画素部(非発光性画素部)である。硬化物は、発光性ナノ結晶粒子を含有せず、光散乱性粒子と、硬化成分とを含有する。すなわち、第3の画素部10cは、第3の硬化成分13cと、第3の硬化成分13c中に分散された第3の光散乱性粒子12cとを含む。第3の硬化成分13cは、例えば、重合性化合物の重合によって得られる成分であり、重合性化合物の重合体を含む。第3の光散乱性粒子12cは、第1の光散乱性粒子12a及び第2の光散乱性粒子12bと同一であっても異なっていてもよい。 The third pixel portion 10c is a non-emission pixel portion (non-emission pixel portion) containing a cured product of the non-emission ink composition described above. The cured product does not contain luminescent nanocrystal particles, but contains light-scattering particles and a cured component. That is, the third pixel portion 10c includes a third curing component 13c and a third light scattering particle 12c dispersed in the third curing component 13c. The third curing component 13c is, for example, a component obtained by polymerizing a polymerizable compound and contains a polymer of the polymerizable compound. The third light-scattering particle 12c may be the same as or different from the first light-scattering particle 12a and the second light-scattering particle 12b.
 第3の画素部10cは、例えば、420~480nmの範囲の波長の光に対し30%以上の透過率を有する。そのため、第3の画素部10cは、420~480nmの範囲の波長の光を発する光源を用いる場合に、青色画素部として機能する。なお、第3の画素部10cの透過率は、顕微分光装置により測定することができる。 The third pixel portion 10c has a transmittance of 30% or more with respect to light having a wavelength in the range of 420 to 480 nm, for example. Therefore, the third pixel portion 10c functions as a blue pixel portion when a light source that emits light having a wavelength in the range of 420 to 480 nm is used. The transmittance of the third pixel unit 10c can be measured by a microspectroscopy.
 非発光性画素部における光散乱性粒子の含有量は、視野角における光強度差をより低減することができる観点から、非発光性インク組成物の硬化物の全質量を基準として、1質量%以上であってよく、5質量%以上であってもよく、10質量%以上であってもよい。光散乱性粒子の含有量は、光反射をより低減することができる観点から、非発光性インク組成物の硬化物の全質量を基準として、50質量%以下であってよく、30質量%以下であってもよく、20質量%以下であってもよい。 The content of the light scattering particles in the non-emissive pixel portion is 1% by mass based on the total mass of the cured product of the non-emissive ink composition from the viewpoint that the difference in light intensity at the viewing angle can be further reduced. It may be the above, 5% by mass or more, and 10% by mass or more. The content of the light-scattering particles may be 50% by mass or less, and 30% by mass or less, based on the total mass of the cured product of the non-emissive ink composition from the viewpoint of further reducing light reflection. It may be 20% by mass or less.
 画素部(第1の画素部10a、第2の画素部10b及び第3の画素部10c)の厚さは、例えば、1μm以上であってよく、2μm以上であってもよく、3μm以上であってもよい。画素部(第1の画素部10a、第2の画素部10b及び第3の画素部10c)の厚さは、例えば、30μm以下であってよく、20μm以下であってもよく、15μm以下であってもよい。 The thickness of the pixel portion (first pixel portion 10a, second pixel portion 10b, and third pixel portion 10c) may be, for example, 1 μm or more, 2 μm or more, or 3 μm or more. You may. The thickness of the pixel portion (first pixel portion 10a, second pixel portion 10b, and third pixel portion 10c) may be, for example, 30 μm or less, 20 μm or less, or 15 μm or less. You may.
 遮光部20は、隣り合う画素部を離間して混色を防ぐ目的及び光源からの光の漏れを防ぐ目的で設けられる、いわゆるブラックマトリックスである。遮光部20を構成する材料は、特に限定されず、クロム等の金属の他、バインダーポリマーにカーボン微粒子、金属酸化物、無機顔料、有機顔料等の遮光性粒子を含有させた樹脂組成物の硬化物等を用いることができる。ここで用いられるバインダーポリマーとしては、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂、ポリアクリルアミド、ポリビニルアルコール、ゼラチン、カゼイン、セルロース等の樹脂を1種又は2種以上混合したもの、感光性樹脂、O/Wエマルジョン型の樹脂組成物(例えば、反応性シリコーンをエマルジョン化したもの)などを用いることができる。遮光部20の厚さは、例えば、0.5μm以上であってよく、10μm以下であってよい。 The light-shielding portion 20 is a so-called black matrix provided for the purpose of separating adjacent pixel portions to prevent color mixing and for the purpose of preventing light leakage from a light source. The material constituting the light-shielding portion 20 is not particularly limited, and the curing of the resin composition in which the binder polymer contains light-shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments in addition to a metal such as chromium. Objects and the like can be used. The binder polymer used here includes one or a mixture of two or more resins such as polyimide resin, acrylic resin, epoxy resin, polyacrylamide, polyvinyl alcohol, gelatin, casein, and cellulose, photosensitive resin, and O / W. An emulsion-type resin composition (for example, an emulsion of a reactive silicone) or the like can be used. The thickness of the light-shielding portion 20 may be, for example, 0.5 μm or more, and may be 10 μm or less.
 基材40は、光透過性を有する透明基材であり、例えば、石英ガラス、パイレックス(登録商標)ガラス、合成石英板等の透明なガラス基板、透明樹脂フィルム、光学用樹脂フィルム等の透明なフレキシブル基材などを用いることができる。これらの中でも、ガラス中にアルカリ成分を含まない無アルカリガラスからなるガラス基板を用いることが好ましい。具体的には、コーニング社製の「7059ガラス」、「1737ガラス」、「イーグル200」及び「イーグルXG」、旭硝子社製の「AN100」、日本電気硝子社製の「OA-10G」及び「OA-11」が好適である。これらは、熱膨脹率の小さい素材であり寸法安定性及び高温加熱処理における作業性に優れる。 The base material 40 is a transparent base material having light transmission, and is, for example, a transparent glass substrate such as quartz glass, Pyrex (registered trademark) glass, or a synthetic quartz plate, a transparent resin film, a transparent resin film for optics, or the like. A flexible base material or the like can be used. Among these, it is preferable to use a glass substrate made of non-alkali glass that does not contain an alkaline component in the glass. Specifically, "7059 glass", "1737 glass", "Eagle 200" and "Eagle XG" manufactured by Corning Inc., "AN100" manufactured by Asahi Glass Co., Ltd., "OA-10G" and "OA-10G" manufactured by Nippon Electric Glass Co., Ltd. OA-11 ”is suitable. These are materials with a small coefficient of thermal expansion and are excellent in dimensional stability and workability in high-temperature heat treatment.
 以上の光変換層30を備えるカラーフィルタ100は、420~480nmの範囲の波長の光を発する光源を用いる場合に好適に用いられる。 The color filter 100 provided with the above optical conversion layer 30 is preferably used when a light source that emits light having a wavelength in the range of 420 to 480 nm is used.
 カラーフィルタ100は、例えば、基材40上に遮光部20をパターン状に形成した後、基材40上の遮光部20によって区画された画素部形成領域に画素部10を形成することにより製造できる。画素部10は、インク組成物(インクジェットインク)をインクジェット方式により基材40上の画素部形成領域に選択的に付着させる工程と、乾燥によりインク組成物から有機溶剤を除去する工程と、乾燥後のインク組成物に対して活性エネルギー線(例えば紫外線)を照射し、インク組成物を硬化させて発光性画素部を得る工程と、を備える方法により形成することができる。インク組成物として上述した発光性インク組成物を用いることで発光性画素部が得られ、非発光性インク組成物を用いることで非発光性画素部が得られる。 The color filter 100 can be manufactured, for example, by forming the light-shielding portion 20 on the base material 40 in a pattern and then forming the pixel portion 10 in the pixel portion-forming region partitioned by the light-shielding portion 20 on the base material 40. .. The pixel portion 10 includes a step of selectively adhering an ink composition (inkjet ink) to a pixel portion forming region on the base material 40 by an inkjet method, a step of removing an organic solvent from the ink composition by drying, and after drying. It can be formed by a method including a step of irradiating the ink composition of No. 1 with an active energy ray (for example, ultraviolet rays) and curing the ink composition to obtain a light emitting pixel portion. A luminescent pixel portion can be obtained by using the above-mentioned luminescent ink composition as the ink composition, and a non-luminescent pixel portion can be obtained by using the non-luminescent ink composition.
 遮光部20を形成させる方法は、基材40の一面側の複数の画素部間の境界となる領域に、クロム等の金属薄膜、又は、遮光性粒子を含有させた樹脂組成物の薄膜を形成し、この薄膜をパターニングする方法等が挙げられる。金属薄膜は、例えば、スパッタリング法、真空蒸着法等により形成することができ、遮光性粒子を含有させた樹脂組成物の薄膜は、例えば、塗布、印刷等の方法により形成することができる。パターニングを行う方法としては、フォトリソグラフィ法等が挙げられる。 The method of forming the light-shielding portion 20 is to form a metal thin film such as chromium or a thin film of a resin composition containing light-shielding particles in a region serving as a boundary between a plurality of pixel portions on one surface side of the base material 40. However, a method of patterning this thin film and the like can be mentioned. The metal thin film can be formed by, for example, a sputtering method, a vacuum vapor deposition method, or the like, and the thin film of the resin composition containing the light-shielding particles can be formed, for example, by a method such as coating or printing. Examples of the patterning method include a photolithography method and the like.
 インクジェット方式としては、エネルギー発生素子として電気熱変換体を用いたバブルジェット(登録商標)方式、或いは圧電素子を用いたピエゾジェット方式等が挙げられる。 Examples of the inkjet method include a bubble jet (registered trademark) method using an electrothermal converter as an energy generating element, a piezojet method using a piezoelectric element, and the like.
 インク組成物の乾燥では、有機溶剤の少なくとも一部が除去されればよく、有機溶剤の全てが除去されることが好ましい。インク組成物の乾燥方法は、減圧による乾燥(減圧乾燥)であることが好ましい。減圧乾燥は、通常、インク組成物の組成を制御する観点から、1.0~500Paの圧力下、20~30℃で3~30分間行う。 In the drying of the ink composition, it is sufficient that at least a part of the organic solvent is removed, and it is preferable that all of the organic solvent is removed. The method for drying the ink composition is preferably drying under reduced pressure (drying under reduced pressure). Drying under reduced pressure is usually carried out at 20 to 30 ° C. for 3 to 30 minutes under a pressure of 1.0 to 500 Pa from the viewpoint of controlling the composition of the ink composition.
 インク組成物の硬化は、例えば、水銀ランプ、メタルハライドランプ、キセノンランプ、LED等を用いてよい。照射する光の波長は、例えば、200nm以上であってよく、440nm以下であってよい。露光量は、例えば、10mJ/cm以上であってよく、20000mJ/cm以下であってよい。 For curing the ink composition, for example, a mercury lamp, a metal halide lamp, a xenon lamp, an LED or the like may be used. The wavelength of the light to be irradiated may be, for example, 200 nm or more, and may be 440 nm or less. The exposure amount may be, for example, 10 mJ / cm 2 or more, and may be 20000 mJ / cm 2 or less.
 以上、カラーフィルタ及び光変換層、並びにこれらの製造方法の一実施形態について説明したが、本発明は上記実施形態に限定されない。 Although the color filter, the optical conversion layer, and one embodiment of these manufacturing methods have been described above, the present invention is not limited to the above embodiment.
 例えば、光変換層は、第3の画素部10cに代えて又は第3の画素部10cに加えて、青色発光性のナノ結晶粒子を含有する発光性インク組成物の硬化物を含む画素部(青色画素部)を備えていてもよい。また、光変換層は、赤、緑、青以外の他の色の光を発するナノ結晶粒子を含有する発光性インク組成物の硬化物を含む画素部(例えば黄色画素部)を備えていてもよい。これらの場合、光変換層の各画素部に含有される発光性ナノ結晶粒子のそれぞれは、同一の波長域に吸収極大波長を有することが好ましい。 For example, the light conversion layer is a pixel portion (instead of the third pixel portion 10c or in addition to the third pixel portion 10c) containing a cured product of a luminescent ink composition containing blue luminescent nanocrystal particles (a pixel portion containing a cured product of a luminescent ink composition. A blue pixel portion) may be provided. Further, even if the light conversion layer includes a pixel portion (for example, a yellow pixel portion) containing a cured product of a luminescent ink composition containing nanocrystal particles that emit light of colors other than red, green, and blue. good. In these cases, it is preferable that each of the luminescent nanocrystal particles contained in each pixel portion of the light conversion layer has an absorption maximum wavelength in the same wavelength range.
 また、光変換層の画素部の少なくとも一部は、発光性ナノ結晶粒子以外の顔料を含有する組成物の硬化物を含むものであってもよい。 Further, at least a part of the pixel portion of the light conversion layer may contain a cured product of a composition containing a pigment other than luminescent nanocrystal particles.
 また、カラーフィルタは、遮光部のパターン上に、遮光部よりも幅の狭い撥インク性を持つ材料からなる撥インク層を備えていてもよい。また、撥インク層を設けるのではなく、画素部形成領域を含む領域に、濡れ性可変層としての光触媒含有層をベタ塗り状に形成した後、当該光触媒含有層にフォトマスクを介して光を照射して露光を行い、画素部形成領域の親インク性を選択的に増大させてもよい。光触媒としては、酸化チタン、酸化亜鉛等が挙げられる。 Further, the color filter may include an ink-repellent layer made of a material having an ink-repellent property narrower than that of the light-shielding portion on the pattern of the light-shielding portion. Further, instead of providing an ink-repellent layer, a photocatalyst-containing layer as a wettable variable layer is formed in a solid coating shape in a region including a pixel portion forming region, and then light is applied to the photocatalyst-containing layer via a photomask. Irradiation and exposure may be performed to selectively increase the ink-friendly property of the pixel portion forming region. Examples of the photocatalyst include titanium oxide and zinc oxide.
 また、カラーフィルタは、基材と画素部との間に、ヒドロキシプロピルセルロース、ポリビニルアルコール、ゼラチン等を含むインク受容層を備えていてもよい。 Further, the color filter may include an ink receiving layer containing hydroxypropyl cellulose, polyvinyl alcohol, gelatin, etc. between the base material and the pixel portion.
 また、カラーフィルタは、画素部上に保護層を備えていてもよい。この保護層は、カラーフィルタを平坦化すると共に、画素部に含有される成分、又は、画素部に含有される成分及び光触媒含有層に含有される成分の液晶層への溶出を防止するために設けられるものである。保護層を構成する材料は、公知のカラーフィルタ用保護層として使用されているものを使用できる。 Further, the color filter may be provided with a protective layer on the pixel portion. This protective layer flattens the color filter and prevents the components contained in the pixel portion, or the components contained in the pixel portion and the components contained in the photocatalyst-containing layer from elution into the liquid crystal layer. It is provided. As the material constituting the protective layer, a material used as a known protective layer for a color filter can be used.
 また、カラーフィルタ及び光変換層の製造では、インクジェット方式ではなく、フォトリソグラフィ方式で画素部を形成してもよい。この場合、まず、基材にインク組成物を層状に塗工し、インク組成物層を形成する。次いで、インク組成物層をパターン状に露光した後、現像液を用いて現像する。このようにして、インク組成物の硬化物からなる画素部が形成される。現像液は、通常アルカリ性であるため、インク組成物の材料としてはアルカリ可溶性の材料が用いられる。ただし、材料の使用効率の観点では、インクジェット方式がフォトリソグラフィ方式よりも優れている。これはフォトリソグラフィ方式では、その原理上、材料のほぼ2/3以上を除去することとなり、材料が無駄になるからである。このため、本実施形態では、インクジェットインクを用い、インクジェット方式により画素部を形成することが好ましい。 Further, in the manufacture of the color filter and the optical conversion layer, the pixel portion may be formed by a photolithography method instead of the inkjet method. In this case, first, the ink composition is coated on the base material in layers to form the ink composition layer. Next, the ink composition layer is exposed in a pattern and then developed using a developing solution. In this way, a pixel portion made of a cured product of the ink composition is formed. Since the developing solution is usually alkaline, an alkali-soluble material is used as the material of the ink composition. However, in terms of material usage efficiency, the inkjet method is superior to the photolithography method. This is because, in principle, the photolithography method removes about two-thirds or more of the material, and the material is wasted. Therefore, in the present embodiment, it is preferable to use an inkjet ink and form a pixel portion by an inkjet method.
 また、本実施形態の光変換層の画素部には、上記した発光性ナノ結晶粒子に加えて、発光性ナノ結晶粒子の発光色と概ね同色の顔料を更に含有させてもよい。顔料を画素部に含有させるため、インク組成物に顔料を含有させてもよい。 Further, in addition to the above-mentioned luminescent nanocrystal particles, the pixel portion of the light conversion layer of the present embodiment may further contain a pigment having substantially the same color as the luminescent color of the luminescent nanocrystal particles. In order to contain the pigment in the pixel portion, the pigment may be contained in the ink composition.
 また、本実施形態の光変換層中の赤色画素部(R)、緑色画素部(G)、及び青色画素部(B)のうち、1種又は2種の発光性画素部を、発光性ナノ結晶粒子を含有させずに色材を含有させた画素部としてもよい。ここで使用し得る色材としては、公知の色材を使用することができ、例えば、赤色画素部(R)に用いる色材としては、ジケトピロロピロール顔料及び/又はアニオン性赤色有機染料が挙げられる。緑色画素部(G)に用いる色材としては、ハロゲン化銅フタロシアニン顔料、フタロシアニン系緑色染料、フタロシアニン系青色染料とアゾ系黄色有機染料との混合物からなる群から選ばれる少なくとも1種が挙げられる。青色画素部(B)に用いる色材としては、ε型銅フタロシアニン顔料及び/又はカチオン性青色有機染料が挙げられる。これらの色材の使用量は、光変換層に含有させる場合には、透過率の低下を防止できる観点から、画素部(インク組成物の硬化物)の全質量を基準として、1~5質量%であることが好ましい。 Further, one or two types of luminescent pixel portions among the red pixel portion (R), the green pixel portion (G), and the blue pixel portion (B) in the optical conversion layer of the present embodiment are luminescent nano. The pixel portion may contain a coloring material without containing crystal particles. As the color material that can be used here, a known color material can be used. For example, as the color material used for the red pixel portion (R), a diketopyrrolopyrrole pigment and / or an anionic red organic dye is used. Can be mentioned. Examples of the coloring material used for the green pixel portion (G) include at least one selected from the group consisting of a halogenated copper phthalocyanine pigment, a phthalocyanine-based green dye, a phthalocyanine-based blue dye and an azo-based yellow organic dye. Examples of the coloring material used for the blue pixel portion (B) include an ε-type copper phthalocyanine pigment and / or a cationic blue organic dye. The amount of these coloring materials used is 1 to 5 masses based on the total mass of the pixel portion (cured product of the ink composition) from the viewpoint of preventing a decrease in transmittance when contained in the light conversion layer. It is preferably%.
 また、カラーフィルタは、基材と本実施形態の画素部との間に、発光性ナノ結晶粒子を含まず、上記色材を含む通常のカラーフィルタ層を備えてもよい。すなわち、本実施形態のカラーフィルタは、基材と、基材上に設けられた、発光性ナノ粒子を含まず、色材を含むカラーフィルタ層と、当該カラーフィルタ層上に設けられた、本実施形態の画素部と、を備えるものであってよい。 Further, the color filter may be provided with a normal color filter layer containing the above-mentioned color material without containing luminescent nanocrystal particles between the base material and the pixel portion of the present embodiment. That is, the color filter of the present embodiment includes a base material, a color filter layer provided on the base material that does not contain luminescent nanoparticles and contains a coloring material, and a book provided on the color filter layer. It may include a pixel portion of the embodiment.
 以下、実施例により本発明を具体的に説明する。ただし、本発明は下記の実施例のみに限定されるものではない。なお、実施例で用いた材料は全て、アルゴンガスを導入して溶存酸素をアルゴンガスに置換したものを用いた。酸化チタンについては、混合前に、1mmHgの減圧下、4時間、175℃で加熱し、アルゴンガス雰囲気下で放冷したものを用いた。実施例で用いた液状の材料は、混合前にあらかじめ、モレキュラーシーブス3Aで48時間以上脱水して用いた。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the following examples. All the materials used in the examples were those in which argon gas was introduced and the dissolved oxygen was replaced with argon gas. As for titanium oxide, one which was heated at 175 ° C. for 4 hours under a reduced pressure of 1 mmHg and allowed to cool in an argon gas atmosphere was used before mixing. The liquid material used in the examples was dehydrated with Molecular Sieves 3A for 48 hours or more in advance before mixing.
<光重合性化合物の用意>
 以下に示す光重合性化合物を用意した。
・PhEM(フェノキシエチルメタクリレート、製品名:ライトエステルPO、共栄社化学株式会社製)
・LM(ラウリルメタクリレート、製品名:ライトエステルL、共栄社化学株式会社製)
・HDM(1,6-ヘキサンジオールジメタクリレート、製品名:ライトエステル1.6HX、共栄社化学株式会社製)
・TMPT(トリメチロールプロパントリアクリレート、製品名:ビスコート#295、大阪有機化学工業株式会社製)
<Preparation of photopolymerizable compounds>
The following photopolymerizable compounds were prepared.
・ PhEM (phenoxyethyl methacrylate, product name: light ester PO, manufactured by Kyoeisha Chemical Co., Ltd.)
・ LM (Lauryl Methacrylate, Product Name: Light Ester L, manufactured by Kyoeisha Chemical Co., Ltd.)
-HDMI (1,6-hexanediol dimethacrylate, product name: light ester 1.6HX, manufactured by Kyoeisha Chemical Co., Ltd.)
-TMPT (trimethylolpropane triacrylate, product name: Viscote # 295, manufactured by Osaka Organic Chemical Industry Co., Ltd.)
<次亜リン酸ジエステル化合物の用意>
 次亜リン酸ジエステル化合物として、以下に示す化合物1(次亜リン酸ジエステル化合物1)及び化合物2(次亜リン酸ジエステル化合物2)を用意した。化合物1は、以下に記載する方法で合成した。化合物2は、GSY-P101(境化学工業株式会社製、製品名)を使用した。
<Preparation of hypophosphorous acid diester compound>
As the hypophosphoric acid diester compound, the following compound 1 (hypophosphoric acid diester compound 1) and compound 2 (hypophosphoric acid diester compound 2) were prepared. Compound 1 was synthesized by the method described below. As Compound 2, GSY-P101 (manufactured by Sakai Chemical Industry Co., Ltd., product name) was used.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[化合物1の合成]
 10gのビフェニル、53.4gの三塩化リン、21.6gの無水塩化アルミニウムを500mLのフラスコに入れ、6時間還流下で反応させた。未反応の三塩化リン蒸気を除去し、24.8gの塩化ホスホリルと70mLのトルエンを加え、80℃で1時間反応させることで下記に示す中間体1を得た。
[Synthesis of Compound 1]
10 g of biphenyl, 53.4 g of phosphorus trichloride, and 21.6 g of anhydrous aluminum chloride were placed in a 500 mL flask and reacted under reflux for 6 hours. The unreacted phosphorus trichloride vapor was removed, 24.8 g of phosphoryl chloride and 70 mL of toluene were added, and the mixture was reacted at 80 ° C. for 1 hour to obtain Intermediate 1 shown below.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 次いで、中間体1を含有するトルエン溶液を90℃で加熱下、54.8gの4-ジーtert-ブチルフェノールと、2.2gのトリエチルアミン、トルエン50mLの混合溶液を30分かけて滴下し、その後120分攪拌した。反応終了後、直ちに濾過、冷却することで生成物を結晶化させ、遠心分離回収後、メタノールにて洗浄することで化合物1を得た。 Then, under heating of a toluene solution containing Intermediate 1 at 90 ° C., a mixed solution of 54.8 g of 4-di tert-butylphenol, 2.2 g of triethylamine and 50 mL of toluene was added dropwise over 30 minutes, and then 120. Stir for minutes. Immediately after completion of the reaction, the product was crystallized by filtration and cooling, and after centrifugation and recovery, washing with methanol gave compound 1.
<有機リガンド付きQD粒子(QD粉体)の用意>
[有機リガンド1の合成]
 ポリエチレングリコール|average Mn350|(Sigma-Aldrich社製)をフラスコに投入した後、窒素ガス環境にて攪拌しながら、そこにポリエチレングリコール|average Mn350|と等モル量の無水コハク酸(Sigma-Aldrich社製)を添加した。フラスコの内温を80℃に昇温し、8時間攪拌することにより、淡い黄色の粘稠な油状物として下記式(A)で表される有機リガンド1を得た。
<Preparation of QD particles (QD powder) with organic ligand>
[Synthesis of Organic Ligand 1]
After putting polyethylene glycol | average Mn350 | (manufactured by Sigma-Aldrich) into a flask, while stirring in a nitrogen gas environment, there is an equal amount of polyethylene glycol | average Mn350 | and succinic anhydride (Sigma-Aldrich). Made) was added. The internal temperature of the flask was raised to 80 ° C. and stirred for 8 hours to obtain an organic ligand 1 represented by the following formula (A) as a pale yellow viscous oil.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[リガンド交換によるQD粉体の作製]
 Nanosys社製のInPナノ結晶分散体(InP QD in Heptane Red InP QD、QD粒子(発光性ナノ結晶粒子)濃度30%、有機リガンド:オレイン酸)に対して、2.0倍量のPGMEAと、QD粒子の量(有機リガンドの量は含まない)に対し40質量%相当分の有機リガンド1と、を添加し、80℃にて1時間攪拌することにより、リガンド交換を実施した。この溶液に対して、4倍量のヘプタンを添加することにより、QD粒子を凝集させ、遠心分離にて沈殿させた後、上澄みの傾瀉によってQD粒子を分離しした。得られたQD粒子を真空乾燥機にて乾燥させ、QD粉体1(QD粒子/有機リガンド=75質量%/25質量%)を得た。
[Preparation of QD powder by ligand exchange]
InP nanocrystal dispersion (InP QD in Heptane Red InP QD, QD particle (luminescent nanocrystal particle) concentration 30%, organic ligand: oleic acid) manufactured by Nanosys, 2.0 times the amount of PGMEA. Ligand exchange was carried out by adding 40% by mass of organic ligand 1 and stirring at 80 ° C. for 1 hour with respect to the amount of QD particles (excluding the amount of organic ligand). QD particles were aggregated by adding 4 times the amount of heptane to this solution, precipitated by centrifugation, and then separated by tilting the supernatant. The obtained QD particles were dried in a vacuum dryer to obtain QD powder 1 (QD particles / organic ligand = 75% by mass / 25% by mass).
<光散乱性粒子分散体の用意>
 アルゴンガスで満たした容器内で、酸化チタン(製品名:CR-60-2、石原産業株式会社製、平均粒子径(体積平均径):210nm)を5.23gと、高分子分散剤(アジスパーPB-821、味の素ファインテクノ株式会社製)を0.27gと、LMを4.5gと、を混合した後、得られた混合物にジルコニアビーズ(直径:1.25mm)を加え、ペイントコンディショナーを用いて2時間振とうさせることで混合物を分散処理し、ポリエステルメッシュフィルターにてジルコニアビーズを除去することで光散乱性粒子分散体1(酸化チタン含有量:55質量%)を得た。
<Preparation of light-scattering particle dispersion>
Titanium oxide (product name: CR-60-2, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter (volume average diameter): 210 nm) was 5.23 g in a container filled with argon gas, and a polymer dispersant (azisper). After mixing 0.27 g of PB-821 (manufactured by Ajinomoto Fine Techno Co., Ltd.) and 4.5 g of LM, zirconia beads (diameter: 1.25 mm) are added to the obtained mixture, and a paint conditioner is used. The mixture was shaken for 2 hours to disperse the mixture, and the zirconia beads were removed with a polyester mesh filter to obtain a light-scattering particle dispersion 1 (titanium oxide content: 55% by mass).
 LMを、HDMに変更した以外は、上記と同様にして、光散散乱性粒子分散体2を得た。 A light-scattering particle dispersion 2 was obtained in the same manner as above except that the LM was changed to HDM.
<インク組成物の調製>
(実施例1)
 真空乾燥機により乾燥させたNanosys社製のInPナノ結晶分散体(QD粒子/有機リガンド=75質量%/25質量%)を1.75gと、光散乱性粒子分散体1を0.27gと、光重合開始剤(フェニル(2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、IGM resin社製、製品名:Omnirad TPO)を0.15gと、光重合性成分A(LM:TMPT=84:16(質量比))を2.78gと、次亜リン酸ジエステル化合物1を0.05gとを配合し、アルゴンガスで満たした容器内で均一に混合した後、グローブボックス内で、混合物を孔径5μmのフィルターでろ過した。さらに、アルゴンガスを得られた濾過物を入れた容器内に導入し、容器内をアルゴンガスで飽和させた。次いで、減圧してアルゴンガスを除去することにより、実施例1のインク組成物(インクジェットインク)を得た。発光性ナノ結晶粒子の含有量(有機リガンドの量は含まない)は、26.3質量%であった。LMの含有量は、49.3質量%であった。TMPTの含有量は、8.7質量%であった。光重合開始剤の含有量は、3.0質量%であった。次亜リン酸ジエステル化合物1の含有量は、1.0質量%であった。光散乱性粒子の含有量は、2.8質量%であった。高分子分散剤の含有量は、0.2質量%であった。なお、上記含有量はインク組成物の全質量を基準とする含有量である。
<Preparation of ink composition>
(Example 1)
1.75 g of InP nanocrystal dispersion (QD particles / organic ligand = 75% by mass / 25% by mass) manufactured by Nanosys, which was dried by a vacuum dryer, and 0.27 g of light-scattering particle dispersion 1. Photopolymerization initiator (phenyl (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, manufactured by IGM resin, product name: Omnirad TPO)) and 0.15 g of the photopolymerizable component A (LM: TMPT = 84). : 16 (mass ratio)) (2.78 g) and hypophosphite diester compound 1 (0.05 g) were mixed and mixed uniformly in a container filled with argon gas, and then the mixture was mixed in a glove box. The mixture was filtered through a filter having a pore size of 5 μm. Further, the mixture was introduced into a container containing a filtrate obtained by obtaining argon gas, and the inside of the container was saturated with argon gas. Then, the pressure was reduced to remove the argon gas. The ink composition (inkjet ink) of Example 1 was obtained. The content of luminescent nanocrystal particles (excluding the amount of organic ligand) was 26.3% by mass. The content of LM was 49. The content of TMPT was 8.7% by mass. The content of the photopolymerization initiator was 3.0% by mass. The amount was 1.0% by mass. The content of the light-scattering particles was 2.8% by mass. The content of the polymer dispersant was 0.2% by mass. The above content is a content based on the total mass of the ink composition.
(実施例2)
 次亜リン酸ジエステル化合物1に代えて次亜リン酸ジエステル化合物2を用いたこと以外は、実施例1と同様にしてインク組成物を得た。
(Example 2)
An ink composition was obtained in the same manner as in Example 1 except that the hypophosphorous acid diester compound 2 was used instead of the hypophosphorous acid diester compound 1.
(実施例3)
 QD粉体1を1.75gと、光散乱性粒子分散体2を0.27gと、光重合開始剤(フェニル(2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、IGM resin社製、製品名:Omnirad TPO)を0.15gと、光重合性成分B(PhEM:LM:HDM=47:21:32(質量比))を2.78gと、次亜リン酸ジエステル化合物1を0.05gとを配合し、アルゴンガスで満たした容器内で均一に混合した後、グローブボックス内で、混合物を孔径5μmのフィルターでろ過した。さらに、アルゴンガスを得られた濾過物を入れた容器内に導入し、容器内をアルゴンガスで飽和させた。次いで、減圧してアルゴンガスを除去することにより、実施例3のインク組成物(インクジェットインク)を得た。
(Example 3)
1.75 g of QD powder 1, 0.27 g of light-scattering particle dispersion 2, and a photopolymerization initiator (phenyl (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, manufactured by IGM phosphor), Product name: Omnirad TPO) 0.15 g, photopolymerizable component B (PhEM: LM: HDM = 47: 21: 32 (mass ratio)) 2.78 g, hypophosphoric acid diester compound 1 0. After blending with 05 g and uniformly mixing in a container filled with argon gas, the mixture was filtered through a filter having a pore size of 5 μm in a glove box. Further, in a container containing a filter containing argon gas. The inside of the container was saturated with argon gas. Then, the pressure was reduced to remove the argon gas, whereby the ink composition (inkjet ink) of Example 3 was obtained.
(実施例4)
 次亜リン酸ジエステル化合物1に代えて次亜リン酸ジエステル化合物2を用いたこと以外は、実施例3と同様にしてインク組成物を得た。
(Example 4)
An ink composition was obtained in the same manner as in Example 3 except that the hypophosphorous acid diester compound 2 was used instead of the hypophosphorous acid diester compound 1.
(実施例5)
 光重合性成分Bの配合量を2.73gに変更したこと、及び、配合成分として、さらにレスヒンダードフェノール系酸化防止剤であるアデカスタブAO-30(1,1,3-トリス-(2’-メチル-4’-ヒドロキシ-5’-t-ブチルフェニル)-ブタン、株式会社ADEKA製、製品名)を0.05g使用したこと以外は、実施例3と同様にしてインク組成物を得た。
(Example 5)
The amount of photopolymerizable component B was changed to 2.73 g, and as a compounding component, ADEKA STAB AO-30 (1,1,3-Tris- (2'), which is a less hindered phenolic antioxidant, was added. An ink composition was obtained in the same manner as in Example 3 except that 0.05 g of -methyl-4'-hydroxy-5'-t-butylphenyl) -butane, manufactured by ADEKA Corporation, product name) was used. ..
(実施例6)
 アデカスタブAO-30に代えてセミヒンダードフェノール系酸化防止剤であるアデカスタブAO-80(3,9-ビス[2-〔3-(t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、株式会社ADEKA製、製品名)を用いたこと以外は、実施例5と同様にしてインク組成物を得た。
(Example 6)
ADEKA STAB AO-80 (3,9-bis [2- [3- (t-butyl-4-hydroxy-5-methylphenyl) propionyloxy], which is a semi-hindered phenolic antioxidant instead of ADEKA STAB AO-30] Ink in the same manner as in Example 5 except that -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, manufactured by ADEKA Corporation, product name) was used. The composition was obtained.
(実施例7)
 アデカスタブAO-30に代えてヒンダードフェノール系酸化防止剤であるアデカスタブAO-50(オクタデシル 3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、株式会社ADEKA製、製品名)を用いたこと以外は、実施例5と同様にしてインク組成物を得た。
(Example 7)
ADEKA STAB AO-50 (octadecyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, manufactured by ADEKA Corporation, product name), which is a hindered phenolic antioxidant instead of ADEKA STAB AO-30. An ink composition was obtained in the same manner as in Example 5 except that the above was used.
(実施例8)
 アデカスタブAO-30に代えてヒンダードフェノール系酸化防止剤であるアデカスタブAO-60(ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、株式会社ADEKA製、製品名)を用いたこと以外は、実施例5と同様にしてインク組成物を得た。
(Example 8)
ADEKA STAB AO-60 (pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, manufactured by ADEKA Corporation), which is a hindered phenolic antioxidant instead of ADEKA STAB AO-30, An ink composition was obtained in the same manner as in Example 5 except that the product name) was used.
(比較例1)
 次亜リン酸ジエステル化合物1に代えてIrgafos 168(トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、BASF社製)を用いたこと以外は、実施例1と同様にしてインク組成物を得た。
(Comparative Example 1)
The ink composition was the same as in Example 1 except that Irgafos 168 (Tris (2,4-di-t-butylphenyl) phosphite, manufactured by BASF) was used instead of the hypophosphodiester compound 1. Got
(比較例2)
 次亜リン酸ジエステル化合物1に代えてトリフェニルホスフィン(東京化成工業株式会社製)を用いたこと以外は、実施例1と同様にしてインク組成物を得た。
(Comparative Example 2)
An ink composition was obtained in the same manner as in Example 1 except that triphenylphosphine (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of the hypophosphodiester compound 1.
<インク物性評価>
 実施例及び比較例のインク組成物の粘度の安定性を以下の方法で評価した。
 調製直後のインク組成物の粘度と、調製後に40℃の恒温槽に1週間保管したインク組成物の粘度を比較し、粘度の上昇率を算出した。具体的には、調製直後のインク組成物の粘度をηとし、調製後に40℃の恒温槽に1週間保管したインク組成物の粘度をηとして以下の式で算出した。
粘度上昇率=(η1―η)/η×100(%)
 なお、粘度は、40℃における粘度であり、E型粘度計を用いて測定した。
<Ink physical characteristic evaluation>
The viscosity stability of the ink compositions of Examples and Comparative Examples was evaluated by the following methods.
The viscosity of the ink composition immediately after preparation was compared with the viscosity of the ink composition stored in a constant temperature bath at 40 ° C. for 1 week after preparation, and the rate of increase in viscosity was calculated. Specifically, the viscosity of the ink composition immediately after preparation was set to η 0, and the viscosity of the ink composition stored in a constant temperature bath at 40 ° C. for 1 week after preparation was set to η 1 , and the calculation was performed by the following formula.
Viscosity increase rate = (η 1- η 0 ) / η 0 × 100 (%)
The viscosity was the viscosity at 40 ° C. and was measured using an E-type viscometer.
<塗膜物性評価>
 インク組成物を、ガラス基板上に、膜厚が15μmとなるように、スピンコーターにて大気中で塗布した。塗布膜を窒素雰囲気下、主波長395nmのLEDランプを用いたUV照射装置で積算光量10000mJ/cmになるようにUVを照射して硬化させた後、酸素濃度1体積%以下のグローブボックス中にて30分間、180℃にて加熱して、ガラス基板上にインク組成物の硬化物からなる層(光変換層)を形成した。これにより、評価用試料を得た。
<Evaluation of physical properties of coating film>
The ink composition was applied onto a glass substrate in the air with a spin coater so as to have a film thickness of 15 μm. The coating film is cured by irradiating the coating film with UV so that the integrated light amount becomes 10000 mJ / cm 2 with a UV irradiation device using an LED lamp having a main wavelength of 395 nm in a nitrogen atmosphere, and then in a glove box having an oxygen concentration of 1% by volume or less. A layer (light conversion layer) made of a cured product of the ink composition was formed on the glass substrate by heating at 180 ° C. for 30 minutes. As a result, a sample for evaluation was obtained.
(表面均一性評価)
 菱化システムのVert Scan3.0 R4300を用いて硬化物表面の表面粗さ(Sa値)を測定した。
(Evaluation of surface uniformity)
The surface roughness (Sa value) of the surface of the cured product was measured using Vert Scan3.0 R4300 of the rhombus system.
(外部量子効率(EQE)の評価>
 面発光光源としてシーシーエス株式会社製の青色LED(ピーク発光波長:450nm)を用いた。測定装置は、大塚電子株式会社製の放射分光光度計(製品名「MCPD-9800」)に積分球を接続し、青色LEDの上側に積分球を設置した。青色LEDと積分球との間に、作製した評価用試料を挿入し、青色LEDを点灯させて観測されるスペクトル、各波長における照度を測定した。
(Evaluation of external quantum efficiency (EQE)>
A blue LED (peak emission wavelength: 450 nm) manufactured by CCS Inc. was used as the surface emission light source. As the measuring device, an integrating sphere was connected to a radiation spectrophotometer (product name "MCPD-9800") manufactured by Otsuka Electronics Co., Ltd., and the integrating sphere was installed above the blue LED. The prepared evaluation sample was inserted between the blue LED and the integrating sphere, and the spectrum observed by turning on the blue LED and the illuminance at each wavelength were measured.
 上記の測定装置で測定されるスペクトル及び照度より、以下のようにして外部量子効率を求めた。外部量子効率は、光変換層に入射した光(光子)のうち、どの程度の割合で蛍光として観測者側に放射されるかを示す値である。従って、この値が大きければ光変換層が発光特性に優れていることを示しており、重要な評価指標である。
EQE(%)=[P1(Red)]/E(Blue)×100 
From the spectrum and illuminance measured by the above measuring device, the external quantum efficiency was obtained as follows. The external quantum efficiency is a value indicating how much of the light (photons) incident on the photoconversion layer is emitted to the observer side as fluorescence. Therefore, if this value is large, it indicates that the light conversion layer has excellent light emission characteristics, which is an important evaluation index.
EQE (%) = [P1 (Red)] / E (Blue) x 100
 ここで、E(Blue)及びP1(Red)はそれぞれ以下を表す。
E(Blue):380~490nmの波長域における「照度×波長÷hc」の合計値を表す。
P1(Red):590~780nmの波長域における「照度×波長÷hc」の合計値を表す。
 これらは観測した光子数に相当する値である。なお、hは、プランク定数、cは光速を表す。
Here, E (Blue) and P1 (Red) represent the following, respectively.
E (Blue): Represents the total value of "illuminance x wavelength ÷ hc" in the wavelength range of 380 to 490 nm.
P1 (Red): Represents the total value of "illuminance x wavelength ÷ hc" in the wavelength range of 590 to 780 nm.
These are the values corresponding to the observed number of photons. In addition, h represents Planck's constant and c represents the speed of light.
Figure JPOXMLDOC01-appb-T000017

(注)上記表1に示す各成分の含有量(単位:質量%)は、インク組成物の全質量を基準とする。
Figure JPOXMLDOC01-appb-T000017

(Note) The content (unit: mass%) of each component shown in Table 1 above is based on the total mass of the ink composition.
 10…画素部、10a…第1の画素部、10b…第2の画素部、10c…第3の画素部、11a…第1の発光性ナノ結晶粒子、11b…第2の発光性ナノ結晶粒子、12a…第1の光散乱性粒子、12b…第2の光散乱性粒子、12c…第3の光散乱性粒子、20…遮光部、30…光変換層、40…基材、100…カラーフィルタ。

 
10 ... Pixel part, 10a ... First pixel part, 10b ... Second pixel part, 10c ... Third pixel part, 11a ... First luminescent nanocrystal particles, 11b ... Second luminescent nanocrystal particles , 12a ... 1st light-scattering particles, 12b ... 2nd light-scattering particles, 12c ... 3rd light-scattering particles, 20 ... light-shielding part, 30 ... light conversion layer, 40 ... base material, 100 ... color filter.

Claims (15)

  1.  光変換層形成用のインク組成物であって、
     発光性ナノ結晶粒子と、光重合性化合物と、次亜リン酸ジエステル化合物と、を含有するインク組成物。
    An ink composition for forming a light conversion layer.
    An ink composition containing luminescent nanocrystal particles, a photopolymerizable compound, and a hypophosphorous acid diester compound.
  2.  前記次亜リン酸ジエステル化合物が、下記式(II)で表される化合物である、請求項1に記載のインク組成物。
    Figure JPOXMLDOC01-appb-C000001

    [式(II)中、Xは、酸素原子又は硫黄原子を示し、Rは水素原子又は有機基(ただし、Pに直接結合する原子は炭素原子)を示し、Arは、アリール基を示す。2つのXは互いに同一であっても異なっていてもよく、2つのArは互いに同一であっても異なっていてもよい。]
    The ink composition according to claim 1, wherein the hypophosphorous acid diester compound is a compound represented by the following formula (II).
    Figure JPOXMLDOC01-appb-C000001

    [In formula (II), X 1 represents an oxygen atom or a sulfur atom, R 1 represents a hydrogen atom or an organic group (however, the atom directly bonded to P is a carbon atom), and Ar 1 represents an aryl group. show. Two of X 1 may be the being the same or different, two Ar 1 may be the being the same or different. ]
  3.  前記次亜リン酸ジエステル化合物が、下記式(IV)で表される化合物である、請求項1又は2に記載のインク組成物。
    Figure JPOXMLDOC01-appb-C000002

    [式(IV)中、Yは連結基を示す。X及びXは、酸素原子又は硫黄原子を示し、Ar及びArは、アリール基を示す。2つのXは互いに同一であっても異なっていてもよく、2つのXは互いに同一であっても異なっていてもよく、2つのArは互いに同一であっても異なっていてもよく、2つのArは互いに同一であっても異なっていてもよい。]
    The ink composition according to claim 1 or 2, wherein the hypophosphorous acid diester compound is a compound represented by the following formula (IV).
    Figure JPOXMLDOC01-appb-C000002

    [In formula (IV), Y represents a linking group. X 2 and X 3 represent an oxygen atom or a sulfur atom, and Ar 2 and Ar 3 represent an aryl group. Two X 2 may be the being the same or different, two X 3 may be the being the same or different, two Ar 2 may be the being the same or different two Ar 3 may be the being the same or different. ]
  4.  前記発光性ナノ結晶粒子の含有量が、前記インク組成物の全質量を基準として、20質量%以上である、請求項1~3のいずれか一項に記載のインク組成物。 The ink composition according to any one of claims 1 to 3, wherein the content of the luminescent nanocrystal particles is 20% by mass or more based on the total mass of the ink composition.
  5.  前記次亜リン酸ジエステル化合物の含有量が0.01~10質量%である、請求項1~4のいずれか一項に記載のインク組成物。 The ink composition according to any one of claims 1 to 4, wherein the content of the hypophosphorous acid diester compound is 0.01 to 10% by mass.
  6.  前記光重合性化合物が、環状構造を有するラジカル重合性化合物と、炭素数が4以上である直鎖構造を有するラジカル重合性化合物と、を含む、請求項1~5のいずれか一項に記載のインク組成物。 The method according to any one of claims 1 to 5, wherein the photopolymerizable compound includes a radical-polymerizable compound having a cyclic structure and a radical-polymerizable compound having a linear structure having 4 or more carbon atoms. Ink composition.
  7.  フェノール系酸化防止剤を更に含有する、請求項1~6のいずれか一項に記載のインク組成物。 The ink composition according to any one of claims 1 to 6, further containing a phenolic antioxidant.
  8.  前記フェノール系酸化防止剤がヒンダードフェノール系酸化防止剤である、請求項7に記載のインク組成物。 The ink composition according to claim 7, wherein the phenolic antioxidant is a hindered phenolic antioxidant.
  9.  光散乱性粒子を更に含有する、請求項1~8のいずれか一項に記載のインク組成物。 The ink composition according to any one of claims 1 to 8, further containing light-scattering particles.
  10.  高分子分散剤を更に含有する、請求項9に記載のインク組成物。 The ink composition according to claim 9, further containing a polymer dispersant.
  11.  インクジェット方式で用いられる、請求項1~10のいずれか一項に記載のインク組成物。 The ink composition according to any one of claims 1 to 10, which is used in an inkjet method.
  12.  複数の画素部と、当該複数の画素部間に設けられた遮光部と、を備え、
     前記複数の画素部は、請求項1~11のいずれか一項に記載のインク組成物の硬化物を含む発光性画素部を有する、光変換層。
    A plurality of pixel portions and a light-shielding portion provided between the plurality of pixel portions are provided.
    The plurality of pixel portions are light conversion layers having a light emitting pixel portion containing a cured product of the ink composition according to any one of claims 1 to 11.
  13.  前記発光性画素部として、
     420~480nmの範囲の波長の光を吸収し605~665nmの範囲に発光ピーク波長を有する光を発する発光性ナノ結晶粒子を含有する、第1の発光性画素部と、
     420~480nmの範囲の波長の光を吸収し500~560nmの範囲に発光ピーク波長を有する光を発する発光性ナノ結晶粒子を含有する、第2の発光性画素部と、
     を備える、請求項12に記載の光変換層。
    As the luminescent pixel portion,
    A first luminescent pixel portion containing luminescent nanocrystal particles that absorb light having a wavelength in the range of 420 to 480 nm and emit light having an emission peak wavelength in the range of 605 to 665 nm.
    A second luminescent pixel portion containing luminescent nanocrystal particles that absorb light having a wavelength in the range of 420 to 480 nm and emit light having an emission peak wavelength in the range of 500 to 560 nm.
    The optical conversion layer according to claim 12.
  14.  光散乱性粒子を含有する非発光性画素部を更に備える、請求項12又は13に記載の光変換層。 The light conversion layer according to claim 12 or 13, further comprising a non-light emitting pixel portion containing light scattering particles.
  15.  請求項12~14のいずれか一項に記載の光変換層を備える、カラーフィルタ。 A color filter comprising the optical conversion layer according to any one of claims 12 to 14.
PCT/JP2021/014845 2020-04-24 2021-04-08 Ink composition for photoconversion layer formation, photoconversion layer, and color filter WO2021215254A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021568567A JP7180795B2 (en) 2020-04-24 2021-04-08 Ink composition for forming light conversion layer, light conversion layer and color filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020077471 2020-04-24
JP2020-077471 2020-04-24

Publications (1)

Publication Number Publication Date
WO2021215254A1 true WO2021215254A1 (en) 2021-10-28

Family

ID=78270724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014845 WO2021215254A1 (en) 2020-04-24 2021-04-08 Ink composition for photoconversion layer formation, photoconversion layer, and color filter

Country Status (3)

Country Link
JP (1) JP7180795B2 (en)
TW (1) TW202140693A (en)
WO (1) WO2021215254A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230327A1 (en) * 2021-04-28 2022-11-03 住友化学株式会社 Cured film and display device
WO2022230326A1 (en) * 2021-04-28 2022-11-03 住友化学株式会社 Cured film and display device
WO2023157561A1 (en) * 2022-02-21 2023-08-24 住友化学株式会社 Curable composition, curable film, and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052720A1 (en) * 2014-10-03 2016-04-07 コニカミノルタ株式会社 Vanadium oxide-containing particles each having core-shell structure
JP2016081055A (en) * 2014-10-14 2016-05-16 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Photosensitive resin composition
JP2019086743A (en) * 2017-11-10 2019-06-06 Dic株式会社 Inkjet ink for color filters, light conversion layer, and color filter
JP2019174804A (en) * 2018-03-26 2019-10-10 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Light-converting resin composition, light-converting laminated substrate, and image display device using the same
JP2020508497A (en) * 2017-03-31 2020-03-19 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Blue photosensitive resin composition, color filter and image display device manufactured using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052720A1 (en) * 2014-10-03 2016-04-07 コニカミノルタ株式会社 Vanadium oxide-containing particles each having core-shell structure
JP2016081055A (en) * 2014-10-14 2016-05-16 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Photosensitive resin composition
JP2020508497A (en) * 2017-03-31 2020-03-19 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Blue photosensitive resin composition, color filter and image display device manufactured using the same
JP2019086743A (en) * 2017-11-10 2019-06-06 Dic株式会社 Inkjet ink for color filters, light conversion layer, and color filter
JP2019174804A (en) * 2018-03-26 2019-10-10 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Light-converting resin composition, light-converting laminated substrate, and image display device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230327A1 (en) * 2021-04-28 2022-11-03 住友化学株式会社 Cured film and display device
WO2022230326A1 (en) * 2021-04-28 2022-11-03 住友化学株式会社 Cured film and display device
WO2023157561A1 (en) * 2022-02-21 2023-08-24 住友化学株式会社 Curable composition, curable film, and display device

Also Published As

Publication number Publication date
JP7180795B2 (en) 2022-11-30
JPWO2021215254A1 (en) 2021-10-28
TW202140693A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
JP6973500B2 (en) Ink composition and its manufacturing method, as well as optical conversion layer and color filter
WO2021215254A1 (en) Ink composition for photoconversion layer formation, photoconversion layer, and color filter
TWI817951B (en) Ink composition and manufacturing method thereof, light conversion layer and color filter
JP6904503B1 (en) Inkjet ink composition for forming a light conversion layer, a light conversion layer and a color filter
JP7326839B2 (en) Ink composition, light conversion layer and color filter
JP6838691B2 (en) Ink composition, light conversion layer, and color filter
JP7024383B2 (en) Ink composition, light conversion layer and color filter
JP7040072B2 (en) Ink composition, light conversion layer and color filter
JP7024336B2 (en) Ink composition, light conversion layer and color filter
JP7087797B2 (en) Ink composition, light conversion layer and color filter
JP7087775B2 (en) Ink composition, light conversion layer and color filter
JP7331452B2 (en) Curable ink composition, light conversion layer and color filter
KR20240011666A (en) Ink composition, light conversion layer, color filter, and light conversion film
JP7238445B2 (en) Ink composition, light conversion layer, color filter, and method for forming luminescent pixel portion
JP7020014B2 (en) Ink composition, light conversion layer and color filter
JP7243073B2 (en) Ink composition and cured product thereof, light conversion layer, and color filter
TWI839429B (en) Ink composition, light conversion layer and color filter
WO2022138185A1 (en) White ink composition, cured article, light scattering layer and color filter
WO2021246181A1 (en) Method for printing ink composition for formation of light conversion layer, method for forming light conversion layer and cleaning liquid
JP2022044970A (en) Ink composition, cured material, light conversion layer, and color filter
JP2024049408A (en) Ink-jet ink composition for color filters, cured product, light conversion layer, and color filter
JP2023036307A (en) Light-emitting nanoparticle composite, ink composition, optical conversion layer, and color filter
JP2021017481A (en) Ink composition and method for producing the same, photoconversion layer, and color filter
JP2023036187A (en) Light-emitting nanoparticle composite, ink composition, optical conversion layer, and color filter
JP2021024946A (en) Ink composition, photoconversion layer, photoconversion member, and backlight unit

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021568567

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21793332

Country of ref document: EP

Kind code of ref document: A1