WO2021215208A1 - Weld structure - Google Patents

Weld structure Download PDF

Info

Publication number
WO2021215208A1
WO2021215208A1 PCT/JP2021/013802 JP2021013802W WO2021215208A1 WO 2021215208 A1 WO2021215208 A1 WO 2021215208A1 JP 2021013802 W JP2021013802 W JP 2021013802W WO 2021215208 A1 WO2021215208 A1 WO 2021215208A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
groove
welded
welded portion
stress
Prior art date
Application number
PCT/JP2021/013802
Other languages
French (fr)
Japanese (ja)
Inventor
博 青山
剛志 井上
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2022516921A priority Critical patent/JP7375175B2/en
Publication of WO2021215208A1 publication Critical patent/WO2021215208A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts

Definitions

  • the present invention relates to a welded structure, and more particularly to a welded structure suitable for welding metal plates to each other.
  • the structure in which steel plates are fixed to each other by welding is widely used in general machines.
  • An example is a hydraulic excavator.
  • the hydraulic excavator has a working arm composed of components such as a boom and an arm.
  • an elastic member such as a hydraulic cylinder is attached to the working arm via a rotating shaft that is free to rotate (rotatably).
  • the boom or arm which is a working arm, often has a welded structure of a box-shaped steel plate.
  • the rotating shaft to which the hydraulic cylinder is attached is supported by a bearing member called a boss provided on the side plate constituting the boom or arm. This boss is often fixed to the side plate by welding.
  • the boss fixed to the side plate receives loads in various directions from the hydraulic cylinder via the rotating shaft. Therefore, various stresses are generated in the welded portion where the side plates and the upper and lower plates of the boom or arm are joined, depending on the movement of the boom or arm, their load conditions, and the like. In particular, due to the out-of-plane deformation of the side plate, bending deformation occurs in the welded portion with the upper and lower plates.
  • the side plates and upper and lower plates are often manufactured with a plate thickness of about 10 mm to 30 mm in order to increase the rigidity of the boom and arm.
  • the corners of the end faces of the side plates that abut against the upper and lower plates are notched, which are called grooves, and the weld metals are laminated over a plurality of layers to fix them to each other.
  • the welded portion between the side plate and the upper and lower plates there is a portion along the end face called a non-welded portion that is not partially welded.
  • Patent Document 1 The technique described in Patent Document 1 is to reduce the stress concentration rate by performing a hole having a certain curvature at the tip of a non-welded portion generated when welding metal plates orthogonal to each other. Further, by press-fitting a pin into the hole, compressive residual stress is applied to the inner surface of the hole, and cracks are less likely to occur.
  • Patent Document 2 is a structure in which a metal rib is welded to the back surface of a metal deck plate, and a groove is formed in the vicinity of the welded portion of the deck plate, and the groove portion is formed when bending deformation acts on the deck plate.
  • a metal rib is welded to the back surface of a metal deck plate, and a groove is formed in the vicinity of the welded portion of the deck plate, and the groove portion is formed when bending deformation acts on the deck plate.
  • Patent Documents 1 and 2 has the following problems.
  • Patent Document 2 has an effect of improving fatigue life in that by forming a groove on the surface of the deck plate, the deck plate can be positively deformed in this groove and the deformation of the welded portion in the vicinity can be reduced. Can be expected.
  • the plate thickness of the grooved portion is smaller than that of the deck plate without the groove, the tensile strength, bending strength, and rigidity of the groove portion are reduced, and the original portion without the groove is originally formed. The mechanical characteristics of the designed plate thickness cannot be utilized.
  • an object of the present invention is to reduce the stress or strain of a welded portion in which a non-welded portion is present, and to improve the fatigue life of the welded portion while maintaining strength and rigidity. To provide the structure. Issues, configurations and effects other than the above will be clarified by the following embodiments.
  • one of the typical welded structures of the present invention is a welded structure in which the end face of one plate is in contact with the surface of the other plate and fillet welding is performed to fix the two plates.
  • a groove is formed in the direction along the non-welded portion from the side surface on the opposite side.
  • the plate material with a groove and the other plate material are elastically deformed in a direction in which the opening of the groove opens and closes.
  • the bending stress of the welded portion including the non-welded portion generated at the boundary with and is relaxed, and the fatigue life of the welded portion including the non-welded portion is extended. Therefore, the durability and reliability of the welded structure are improved. Issues, configurations and effects other than those described above will be clarified by the following description of the embodiments.
  • FIG. 1 is a side view showing an overall configuration showing a first embodiment of the welded structure of the present invention.
  • FIG. 2 is a view at the time of deformation in the first embodiment of the welded structure of the present invention.
  • FIG. 3 is a characteristic diagram showing the relationship between the value obtained by dividing the groove length in the first embodiment of the welded structure of the present invention by the plate thickness of the vertical plate and the stress at the tip of the non-welded portion.
  • FIG. 4 is a characteristic diagram showing the relationship between the value obtained by dividing the distance from the non-welded surface of the groove by the plate thickness of the vertical plate and the stress at the tip of the non-welded portion in the first embodiment of the welded structure of the present invention. be.
  • FIG. 5 is a diagram showing an example of deformation when the groove is close to the end face in the welded structure of the present invention.
  • FIG. 6 is a characteristic diagram showing the relationship between the value obtained by dividing the width of the groove opening in the first embodiment of the welded structure of the present invention by the plate thickness of the vertical plate and the stress at the tip of the non-welded portion.
  • FIG. 7 is a side view showing an overall configuration for explaining the distance from the bottom of the groove to the surface of the weld metal in the first embodiment of the welded structure of the present invention.
  • FIG. 8 is a side view showing an example of a hydraulic excavator in the first application example of the welded structure of the present invention.
  • FIG. 9 is a cross-sectional view showing an example of a boom of a hydraulic excavator in a first application example of the welded structure of the present invention, and is a diagram showing a first deformed state.
  • FIG. 10 is a cross-sectional view showing an example of a boom of a hydraulic excavator in a first application example of the welded structure of the present invention, and is a diagram showing a second deformed state.
  • FIG. 11 is a side view showing an example of a dump truck in a second application example of the welded structure of the present invention.
  • FIG. 12 is a perspective view showing an example of a chassis frame of a dump truck in a second application example of the welded structure of the present invention.
  • FIG. 13 is a cross-sectional view showing an example of a chassis frame of a dump truck in a second application example of the welded structure of the present invention.
  • FIG. 14 is a plan view showing an example of a railroad bogie frame in a third application example of the welded structure of the present invention.
  • FIG. 15 is a cross-sectional view showing an example of a railroad bogie frame in a third application example of the welded structure of the present invention.
  • FIG. 16 is a side view showing an overall configuration showing a second embodiment of the welded structure of the present invention.
  • FIG. 17 is a side view showing an overall configuration showing a third embodiment of the welded structure of the present invention.
  • FIG. 1 is a side view showing an overall configuration showing a welded structure according to the first embodiment of the present invention.
  • FIG. 2 is a view when the welded structure of FIG. 1 is deformed.
  • FIG. 1 two steel plates of the vertical plate 1 and the horizontal plate 3 are assembled so as to be orthogonal to each other.
  • the vertical plate 1 is arranged with the longitudinal direction as the vertical direction
  • the horizontal plate 3 is arranged with the longitudinal direction as the horizontal direction.
  • the end surface 2 on the lower side (horizontal plate 3 side) of the vertical plate 1 is parallel to the upper surface (vertical plate 1 side) surface of the horizontal plate 3, and the end surface 2 of the vertical plate 1 abuts on the upper surface of the horizontal plate 3.
  • the vicinity of the corner where the vertical plate 1 and the horizontal plate 3 meet is welded.
  • the side to be welded is a corner portion on the opposite side to the groove 10 described later.
  • a thickened portion called a groove 4 is processed at the lower corner portion of the vertical plate 1 on the welding side.
  • a plurality of layers of the weld metal 5 are piled up so as to fill the groove 4, and the vertical plate 1 and the horizontal plate 3 are joined.
  • the weld metal 5 is formed with dimensions having a vertical leg length 6 and a horizontal leg length 7.
  • the vertical leg length 6 is often constructed with a plate thickness D1 or more of the vertical plate 1.
  • the region where the weld metal 5 sandwiched between the end face 2 and the horizontal plate 3 does not reach is the non-welded portion 8, and the boundary with the weld metal 5 on the non-welded portion 8 side is the tip 9 of the non-welded portion.
  • the shape of the tip 9 of the non-welded portion often has a radius of curvature of several tens of microns and exhibits a crack shape.
  • the contraction force of the weld metal 5 causes a tensile force on the surface of the groove 4 and the horizontal plate 3 in contact with the weld metal 5. Occurs. This is called welding residual stress and often causes a decrease in the strength of the welded portion.
  • the groove 10 parallel to the end surface 2 of the vertical plate 1 is processed on the back surface 12 on the opposite side of the surface 11 on which the groove 4 is processed.
  • the groove 10 is formed from the back surface 12 on the opposite side where the weld metal 5 is present, with a predetermined length (length in the depth direction) D2 in the direction along the non-welded portion 8.
  • FIG. 2 shows a deformation diagram when a load from right to left in the figure (arrow in FIG. 2) is applied to the vertical plate 1.
  • stress in the tensile direction is generated on the surface 11 on which the groove 4 of the vertical plate 1 is machined, and stress in the compression direction is generated on the back surface 12.
  • Compressive stress is often generated at the tip 9 of the non-welded portion, but due to the welding residual stress after welding, tensile stress close to the yield point of the materials constituting the vertical plate 1 and the horizontal plate 3 is generated at this portion. doing. Therefore, when the bending deformation of the vertical plate 1 is repeated, the stress is repeated in the tensile stress field at the tip 9 of the non-welded portion. Then, fatigue cracks are likely to occur due to the extremely large stress concentration at the tip 9 of the non-welded portion.
  • the opening of the groove 10 of the present invention is deformed so as to close, so that the deformation (strain) of the tip 9 of the non-welded portion is compared with the case where the groove 10 is not provided. It becomes smaller. As a result, the life until the occurrence of fatigue cracks can be extended, and the rate of crack growth can be reduced.
  • the value obtained by dividing the length D2 of the groove 10 by the plate thickness D1 of the vertical plate 1 is around 0.25, and the nominal stress due to bending deformation of the vertical plate 1 with respect to the stress width near the tip 9 of the non-welded portion.
  • the value divided by the width indicates the minimum value.
  • the stress width which is the absolute value of stress
  • the length D2 of the groove 10 is set to 20% to 30% of the plate thickness D1 of the vertical plate 1, so that the stress width of the non-welded portion tip 9 can be minimized, and as a result, the stress width can be minimized.
  • the life until the occurrence of fatigue cracks can be extended, and the rate of crack growth can be reduced.
  • FIG. 4 shows the value obtained by dividing the distance D3 from the end surface 2 of the groove 10 by the plate thickness D1 of the vertical plate 1 (horizontal axis) and the stress width near the tip 9 of the non-welded portion as the nominal stress width due to bending deformation of the vertical plate 1. It is a characteristic diagram which showed the relationship of the value (vertical axis) divided by. Further, FIG. 5 is a diagram showing an example of deformation when the groove is close to the end face.
  • the value obtained by dividing the distance D3 from the end surface 2 of the groove 10 by the plate thickness D1 of the vertical plate 1 is around 0.3, and the bending deformation of the vertical plate 1 with respect to the stress width near the tip 9 of the non-welded portion.
  • the value divided by the nominal stress width according to is the minimum.
  • the groove 10 is greatly separated from the end surface 2, the effect of deformation of the opening of the groove 10 becomes small. Therefore, as shown in FIG. 4, when the value on the horizontal axis becomes larger than a predetermined value, the stress width in the vicinity of the tip 9 of the non-welded portion becomes equal when there is no groove 10.
  • the stress width of the non-welded portion tip 9 can be minimized by setting the distance D3 from the end surface 2 of the groove 10 to 20% to 40% of the plate thickness D1 of the vertical plate 1. As a result, the life until the occurrence of fatigue cracks can be extended, and the rate of crack growth can be reduced.
  • FIG. 6 shows the relationship between the value obtained by dividing the width D4 of the opening of the groove 10 in the opening direction by the plate thickness D1 of the vertical plate 1 (horizontal axis) and the stress width (vertical axis) near the tip 9 of the non-welded portion. It is a characteristic diagram.
  • the value obtained by dividing the width (width of the groove in the longitudinal direction of the vertical plate 1) D4 of the groove 10 by the plate thickness D1 of the vertical plate 1 is around 0.1, and near the tip 9 of the non-welded portion.
  • the stress width is the minimum. If the width of the opening of the groove 10 is too small, the opening / closing deformation of the groove 10 becomes small, and the deformation of the groove 10 becomes negligible with respect to the bending deformation of the vertical plate 1, so that the tip of the non-welded portion The stress reduction effect in the vicinity of 9 becomes small. On the other hand, if the width of the opening of the groove 10 is large, the rigidity of the bending deformation of the vertical plate 1 becomes too small, and the stress in the vicinity of the tip 9 of the non-welded portion becomes large.
  • the stress width of the non-welded portion tip 9 can be minimized by setting the width D4 of the opening of the groove 10 in the range of 5% to 15% of the plate thickness D1 of the vertical plate 1. As a result, the life until the occurrence of fatigue cracks can be extended, and the rate of crack growth can be reduced.
  • FIG. 7 is a side view showing an overall configuration for explaining a distance E from the bottom 15 of the groove to the surface of the weld metal 5 in the first embodiment of the welded structure of the present invention.
  • the distance E from the bottom portion 15 of the groove 10 to the surface of the weld metal 5 is the distance E from the bottom portion 15 to the surface 11 when a line parallel to the end surface 2 is extended from the bottom portion 15 which is the innermost portion of the groove 10. It is the distance to the position of the surface of the weld metal 5 on the side.
  • the distance E increases at the position where the weld metal 5 exists as compared with the position where the weld metal 5 does not exist, and prevents a decrease in strength.
  • the distance E is a position where the plate thickness D1 or more of the vertical plate 1 is obtained.
  • the plate thickness of the portion where the groove 10 is present is smaller than the plate thickness of the portion where the groove 10 is not present. Is a concern.
  • the plate thickness of the portion where the groove 10 exists is equal to or greater than the plate thickness D1 of the vertical plate 1, the tensile strength does not decrease.
  • the bottom portion 15 of the groove 10 is formed in an arc shape having a radius of curvature of half the height of the opening of the groove 10. As a result, the occurrence of cracks at the bottom 15 of the groove 10 can be prevented as much as possible.
  • the stress width of the non-welded portion tip 9 can be minimized due to the presence of the groove 10, and as a result, the life until the occurrence of fatigue cracks can be extended and the crack growth rate can be reduced. Further, it also has an effect of not causing a decrease in strength even when a tensile load is applied to the vertical plate 1.
  • FIG. 8 is a side view showing an example of a hydraulic excavator in the first application example of the welded structure of the present invention, and shows an example of excavation in the hydraulic excavator.
  • 9 and 10 are cross-sectional views showing an example of the boom of the hydraulic excavator in the first application example of the welded structure of the present invention, and are cross-sectional views taken along the line AA'of FIG.
  • FIG. 9 shows the first deformed state
  • FIG. 10 shows the second deformed state.
  • the hydraulic excavator 16 includes a self-propelled crawler-type lower traveling body 17 and an upper swivel body 19 rotatably mounted on the lower traveling body 17 via a swivel bearing device 18. ..
  • a work front 20 is attached to the front end of the upper swing body 19 so as to be able to move up and down (rotate).
  • the work front 20 is an articulated work device for performing excavation work and the like, and the boom 21 and the arm 22 constituting the work arm and the bucket 23 as a work tool (attachment) attached to the tip of the work arm. It is composed of and.
  • the boom 21 is rotated by a pair of boom cylinders 24.
  • FIG. 9 is a cross-sectional view of the boom 21 of the hydraulic excavator 16 cut at the position AA'plane (FIG. 8) of the boom center boss 28, showing the deformed state of the boom 21 when a pushing load is applied to the bucket 23. It is a figure which shows.
  • FIG. 10 is a cross-sectional view of the boom 21 of the hydraulic excavator 16 cut at the position AA'plane (FIG. 8) of the boom center boss 28, and shows the deformed state of the boom 21 when a pull load is applied to the bucket 23. It is a figure.
  • the boom 21 and arm 22 have a box-shaped structure having a rectangular cross section.
  • the box-shaped structure comprises a side plate 25 which is a pair of plate members facing each other at intervals in the width direction of the hydraulic excavator 16, an upper plate 26 which is a plate member arranged on the upper end side of both side plates 25, and both side plates 25. It includes a lower plate 27 which is a plate member arranged on the lower end side.
  • a box-shaped structure is formed by joining the upper plate 26 and both side plates 25, and the lower plate 27 and both side plates 25 by welding, respectively.
  • a groove 32 is machined inside the both side plates 25. Further, on the outside of the both side plates 25, a groove is machined at the welding position with the upper plate 26 and the lower plate 27 at the time of welding. Then, when joining the upper plate 26 and the lower plate 27 and the both side plates 25, welding is performed from the outside of the upper plate 26 and the lower plate 27 at the groove portion. At that time, a non-welded portion 31 is formed inside the box-shaped structure between the both side plates 25 and the upper plate 26 and the lower plate 27.
  • the non-welded portion 31, the groove 32, and the tip 33 of the non-welded portion in FIGS. 9 and 10 correspond to the non-welded portion 8, the groove 10, and the tip 9 of the non-welded portion in FIG.
  • the side plates 25 of FIGS. 9 and 10 correspond to the vertical plate 1 of FIG. 1, and the upper plate 26 and the lower plate 27 of FIG. 13 correspond to the horizontal plate 3 of FIG.
  • the load from the boom cylinder 24 shown in FIG. 8 acts on the boss 28 of the boom 21 of the hydraulic excavator 16 shown in FIGS. 9 and 10 via the connecting pin inserted into the pin insertion hole 29. Due to this load, as shown in FIGS. 9 and 10, the upper plate 26, the lower plate 27, and the side plate 25 of the boom 21 are bent and deformed in the out-of-plane direction (the direction toward the outer surface side or the direction toward the inner surface side of the structure). Occurs.
  • the groove 32 reduces the stress (strain) of the tip 33 of the non-welded portion by deforming the opening, and as a result, until the occurrence of fatigue cracks.
  • the life can be extended and the crack growth rate can be reduced. Therefore, the strength reliability of the hydraulic excavator can be improved.
  • FIG. 11 is a side view showing an example of a dump truck in a second application example of the welded structure of the present invention, and shows an example of a large dump truck that transports minerals, earth and sand, etc. mined in a mine.
  • FIG. 12 is a perspective view showing an example of a chassis frame of a dump truck in a second application example of the welded structure of the present invention.
  • FIG. 13 is a cross-sectional view showing an example of the chassis frame of the dump truck in the second application example of the welded structure of the present invention, and shows a cross-sectional view of the base frame in the chassis frame.
  • the dump truck 34 is a large-sized transport vehicle, and is composed of a vehicle body 35 having a sturdy frame structure and a loading platform 36 mounted on the vehicle body 35 so as to be tilted (undulating).
  • the vehicle body 35 includes a frame 39, a building 37, a cab 38, and the like.
  • the frame 39 is a frame constituting the chassis of the vehicle body 35, and the frame 39 is formed as a strong support structure (can manufacturing structure by welding) extending in the front-rear direction.
  • the frame 39 is composed of a base frame 40 extending in the front-rear direction and an upper cross beam 41 arranged in an intermediate portion of the base frame 40 in the front-rear direction.
  • the base frame 40 is provided with a plurality of seats 42 that receive the load from the tires. Then, a complicated load due to the traveling terrain acts on the base frame 40.
  • FIG. 13 is a cross-sectional structure view of the base frame 40 cut along the B portion plane in FIG.
  • the cross section is a rectangular box-shaped structure.
  • the box-shaped structure includes a side plate 43 which is a pair of plate members facing each other at intervals in the width direction of the dump truck 34, an upper plate 44 which is a plate member arranged on the upper end side of both side plates 43, and both side plates 43. It is provided with a lower plate 45 which is a plate member arranged on the lower end side.
  • a box-shaped structure is formed by joining the both side plates 43 and the upper plate 44, and the both side plates 43 and the lower plate 45 by welding, respectively.
  • a groove 47 is machined inside the side plate 43. Further, a groove is machined on the side plate 43 at an outer welding position at the time of welding.
  • the upper plate 44 and the lower plate 45 are welded to the side plate 43, they are welded from the outside of the side plate 43 using the groove portion.
  • a non-welded portion 46 is formed inside the box-shaped structure between the both side plates 43 and the upper plate 44 and the lower plate 45.
  • the non-welded portion 46, the groove 47, and the tip 48 of the non-welded portion in FIG. 13 correspond to the non-welded portion 8, the groove 10, and the tip 9 of the non-welded portion in FIG.
  • the side plate 43 of FIG. 13 corresponds to the vertical plate 1 of FIG. 1
  • the upper plate 44 and the lower plate 45 of FIG. 13 correspond to the horizontal plate 3 of FIG.
  • the groove 47 reduces the stress (strain) of the tip 48 of the non-welded portion by deforming the opening thereof, and as a result, until fatigue cracks occur. Can extend the life of the and also reduce the rate of crack growth. Therefore, the strength reliability of the dump truck can be improved.
  • FIG. 14 is a plan view showing an example of a railroad bogie frame in a third application example of the welded structure of the present invention.
  • FIG. 15 is a cross-sectional view showing an example of a railroad bogie frame in a third application example of the welded structure of the present invention.
  • the bogie frame 49 is provided with a pair of side beams 50 separated along the vehicle traveling direction and a pair of cross beams 51 provided along the sleeper direction and connecting the side beams 50 to each other.
  • the air spring receiving seat 52 on which the air spring that elastically supports the vehicle body is placed is provided on the carriage frame 49 so as to be connected to both ends of the cross beam 51 in the sleeper direction and the central portion of the side beam 50 in the vehicle traveling direction. ..
  • FIG. 15 is a cross-sectional structural view of the side beam 50 cut at the CC'plane in FIG.
  • the cross-sectional shape is a rectangular box-shaped structure.
  • the box-shaped structure includes a side plate 53 which is a pair of plate members facing each other in the width direction in the traveling direction of the vehicle, an upper plate 54 which is a plate member arranged on the upper end side of both side plates 53, and both side plates 53. It is provided with a lower plate 55 which is a plate member arranged on the lower end side of the above.
  • a box-shaped structure is formed by joining the both side plates 53 and the upper plate 54, and the both side plates 53 and the lower plate 55 by welding, respectively.
  • a groove 57 is machined inside the upper plate 54 and the lower plate 55. Grooves are machined at the outer welding positions on the upper plate 54 and the lower plate 55 at the time of welding.
  • a non-welded portion 56 is formed inside the box-shaped structure between the upper plate 54 and the lower plate 55 and the both side plates 53.
  • the non-welded portion 56, the groove 57, and the tip 58 of the non-welded portion in FIG. 15 correspond to the non-welded portion 8, the groove 10, and the tip 9 of the non-welded portion in FIG.
  • the upper plate 54 and the lower plate 55 in FIG. 15 correspond to the vertical plate 1 in FIG. 1
  • the side plate 53 in FIG. 15 corresponds to the horizontal plate 3 in FIG.
  • the opening thereof is deformed to reduce the stress (strain) of the tip 58 of the non-welded portion, resulting in fatigue.
  • the life until the occurrence of cracks can be extended, and the rate of crack growth can be reduced. Therefore, it is possible to improve the strength reliability of the bogie frame of the railway vehicle.
  • FIG. 16 is a side view showing an overall configuration showing a welded structure according to a second embodiment of the present invention.
  • the points different from those in the first embodiment are mainly described, the same parts are designated by the same reference numerals, and the same description is omitted unless otherwise specified.
  • the vertical plate 1'in FIG. 16 basically corresponds to the vertical plate 1 of the first embodiment, but the vertical plate 1'is formed with a groove 13 instead of the groove 10. Then, as shown in FIG. 16, the groove 13 is formed from the back surface 12 side as a groove having a predetermined opening width F including the non-welded portion 8 between the vertical plate 1'and the horizontal plate 3. ..
  • the groove 13 is formed by, for example, machining.
  • the bottom portion 14, which is the innermost portion of the groove 13, is machined on an arc having a radius of curvature of the width F of the opening of the groove.
  • the bottom portion 14 of the groove 13 serves as a boundary with the weld metal 5 and also serves as a non-welded portion tip 9.
  • the length of the non-welded portion 8 can be controlled in advance to a dimension that does not vary by machining or the like, the stress width generated at the tip 9 of the non-welded portion can be predicted by numerical calculation such as the finite element method. It becomes. Further, since the tip 9 of the non-welded portion has an arc shape having a constant curvature, stress concentration can be reduced, and as this effect, the life until the occurrence of fatigue cracks is extended and the crack growth rate is reduced. can.
  • FIG. 17 is a side view showing an overall configuration showing a third embodiment of the welded structure of the present invention.
  • the points different from those in the first embodiment are mainly described, the same parts are designated by the same reference numerals, and the same description is omitted unless otherwise specified.
  • the vertical plate 1 ′′ is not perpendicular to the horizontal plate 3 but is welded with an inclination of a constant angle ⁇ from the vertical.
  • the direction of inclination is opposite to the surface on which the groove 4 is machined (the surface on the weld metal 5 side).
  • the lower end surface 2 is parallel to the upper side of the horizontal plate 3.
  • a groove 10' is formed on the upper portion of the non-welded portion 8 and on the side surface on the side where the weld metal 5 is not exposed on the surface.
  • the groove 10'does not necessarily have to be parallel to the end surface 2 on the non-welded portion 8 side.
  • the groove 10' is tilted by a certain angle ⁇ with the opening side of the groove 10'lower than the parallel surface of the end surface 2.
  • the groove 10 ′′ is machined at an appropriate angle during machining of the vertical plate 1 ′′ before welding.
  • the groove 4 can be clearly observed at the time of welding, and the groove 4 can be easily accessed by the welding torch, and the production efficiency is improved. Then, even when bending deformation acts on the vertical plate 1'', the groove 10'is elastically deformed, so that the stress width of the tip 9 of the non-welded portion can be reduced and the fatigue life of the welded structure can be improved. ..
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • boom cylinder 25, 43, 53 ... side plate, 26, 44, 54 ... upper plate, 27, 45, 55 ... lower plate, 28 ... boss, 29 ... pin insertion hole, 34 ... dump truck, 35 ... car body, 36 ... loading platform, 37 ... building, 38 ... cab, 39 ... frame , 40 ... base frame, 41 ... upper cross beam, 42 ... seat, 49 ... trolley frame, 50 ... side beam, 51 ... cross beam, 52 ... air spring seat, D1 ... plate thickness, D2 ... groove length, D3 ... Distance, D4 ... width, E ... distance, F ... width, ⁇ ... constant angle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

Provided is a weld structure that reduces stress or strain of a weld in which a non-welded section exists, and that can improve the fatigue life of the weld while maintaining strength and rigidity. In this weld structure, two plates (1, 3) are secured to each other by fillet welding in which an end face of one of the plates (1) abuts against a surface of the other of the plates (3), wherein: there exists a non-welded section (8), which is a portion not welded, found between the end face of the one plate (1) and the surface of the other plate (3); and a groove (10) is formed in the one plate (1), the groove extending along the non-welded section (8), from a side face (12) that is on the side opposite from where the weld metal (5) of the fillet weld is present.

Description

溶接構造Welded structure
 本発明は、溶接構造に関し、特に、金属板同士の溶接に好適な溶接構造に関する。 The present invention relates to a welded structure, and more particularly to a welded structure suitable for welding metal plates to each other.
 鋼板同士を溶接によって互いに固定する構造は、一般機械において広く使われている。その一例として、油圧ショベルが挙げられる。油圧ショベルはブームやアーム等の構成部品で構成された作業腕を備えている。作業腕を動作させるために、油圧シリンダ等の伸縮部材が回転自由(回転自在)な回転軸を介して作業腕に取り付けられている。このとき作業腕であるブームやアームは、箱形状をした鋼板の溶接構造である場合が多い。油圧シリンダが取り付けられる回転軸は、ブームやアームを構成する側板に設けたボスと呼ばれる軸受部材によって支持される。このボスは、溶接によって側板に固定される場合が多い。 The structure in which steel plates are fixed to each other by welding is widely used in general machines. An example is a hydraulic excavator. The hydraulic excavator has a working arm composed of components such as a boom and an arm. In order to operate the working arm, an elastic member such as a hydraulic cylinder is attached to the working arm via a rotating shaft that is free to rotate (rotatably). At this time, the boom or arm, which is a working arm, often has a welded structure of a box-shaped steel plate. The rotating shaft to which the hydraulic cylinder is attached is supported by a bearing member called a boss provided on the side plate constituting the boom or arm. This boss is often fixed to the side plate by welding.
 側板に固定されるボスには、回転軸を介して油圧シリンダから様々な方向の負荷を受ける。そのため、ブームやアームにおける側板と上下板とを接合した溶接部には、ブームやアームの動き、それらの負荷状況等に合わせて様々な応力が生じる。特に側板の面外変形によって、上下板との溶接部には曲げ変形が発生する。側板や上下板はブームやアームの剛性を高めるために、板厚が10mmから30mm程度で製作される場合が多い。溶接の際には、上下板に突き合わせる側板の端面の角部に開先と呼ぶ切り欠き加工を施し、溶接金属を複数層に亘って積層することで互いに固定する。この際、側板と上下板との溶接部には、一部溶け込んでいない不溶着部と呼ばれる端面に沿った部位が存在する。 The boss fixed to the side plate receives loads in various directions from the hydraulic cylinder via the rotating shaft. Therefore, various stresses are generated in the welded portion where the side plates and the upper and lower plates of the boom or arm are joined, depending on the movement of the boom or arm, their load conditions, and the like. In particular, due to the out-of-plane deformation of the side plate, bending deformation occurs in the welded portion with the upper and lower plates. The side plates and upper and lower plates are often manufactured with a plate thickness of about 10 mm to 30 mm in order to increase the rigidity of the boom and arm. At the time of welding, the corners of the end faces of the side plates that abut against the upper and lower plates are notched, which are called grooves, and the weld metals are laminated over a plurality of layers to fix them to each other. At this time, in the welded portion between the side plate and the upper and lower plates, there is a portion along the end face called a non-welded portion that is not partially welded.
 この溶接部に曲げ変形が作用した場合、不溶着部と溶接金属の境界に生じる非常に高い応力集中によって、疲労き裂が発生する場合がある。そして、この不溶着部は箱形状をした構造の内側にあり、外部からは容易には観察できないため、製品の長期信頼性の確保において問題となりやすい。そして、溶接不溶着部先端に生じる応力を低減する方法として、特許文献1、2に記載のものが知られている。 When bending deformation acts on this welded part, fatigue cracks may occur due to the extremely high stress concentration that occurs at the boundary between the non-welded part and the weld metal. Since this non-welded portion is inside the box-shaped structure and cannot be easily observed from the outside, it tends to be a problem in ensuring the long-term reliability of the product. As a method for reducing the stress generated at the tip of the weld non-welded portion, those described in Patent Documents 1 and 2 are known.
 特許文献1に記載の技術は、互いに直交する金属板同士を溶接する際に生じる不溶着部の先端に一定の曲率を有した穴加工を施し、応力集中率を小さくするものである。また、その穴にピンを圧入することで、穴内面に圧縮残留応力を付与し、き裂発生を生じにくくするものである。 The technique described in Patent Document 1 is to reduce the stress concentration rate by performing a hole having a certain curvature at the tip of a non-welded portion generated when welding metal plates orthogonal to each other. Further, by press-fitting a pin into the hole, compressive residual stress is applied to the inner surface of the hole, and cracks are less likely to occur.
 特許文献2に記載の技術は、金属製のデッキプレートの裏面に金属製のリブを溶接する構造において、デッキプレートの溶接部近傍に溝加工を施し、デッキプレートに曲げ変形が作用した際に溝部を積極的に変形させることで、溶接部の応力を低減するものである。 The technique described in Patent Document 2 is a structure in which a metal rib is welded to the back surface of a metal deck plate, and a groove is formed in the vicinity of the welded portion of the deck plate, and the groove portion is formed when bending deformation acts on the deck plate. By positively deforming the welded portion, the stress of the welded portion is reduced.
特開2006-142367号公報Japanese Unexamined Patent Publication No. 2006-142637 特開2016-205024号公報Japanese Unexamined Patent Publication No. 2016-205024
 しかし、特許文献1、2に記載の従来技術には、次のような課題がある。 However, the prior art described in Patent Documents 1 and 2 has the following problems.
 特許文献1に記載の技術のように、溶接不溶着部先端に一定の曲率を有する穴を加工することで、この部位に生じる応力を低下させることができる。さらに、穴にピンを圧入して圧縮残留応力を付与することで、より一層の疲労き裂発生寿命および進展寿命を延ばすことができる。しかし、不溶着部先端への穴加工やピン圧入は、当該部位が外部からアクセス可能な場合においてのみ作業が可能であり、箱形状をした閉空間の内側に存在する不溶着部に対しては作業ができない。 By processing a hole having a certain curvature at the tip of the weld non-welded portion as in the technique described in Patent Document 1, the stress generated in this portion can be reduced. Further, by press-fitting a pin into the hole to apply compressive residual stress, the fatigue crack generation life and the extension life can be further extended. However, hole drilling and pin press-fitting to the tip of the non-welded part can be performed only when the part is accessible from the outside, and for the non-welded part existing inside the box-shaped closed space. I can't work.
 特許文献2に記載の技術は、デッキプレートの表面に溝加工を施すことで、デッキプレートをこの溝部で積極的に変形させ、近傍の溶接部の変形を小さくできるという点において疲労寿命向上の効果が期待できる。しかし、溝加工した部位の板厚は、溝の存在しないデッキプレートの板厚よりも減少しているため、溝部の引張強度や曲げ強度、剛性が低下してしまい、溝の存在しない部位の本来設計した板厚の機械的特性が生かせない。 The technique described in Patent Document 2 has an effect of improving fatigue life in that by forming a groove on the surface of the deck plate, the deck plate can be positively deformed in this groove and the deformation of the welded portion in the vicinity can be reduced. Can be expected. However, since the plate thickness of the grooved portion is smaller than that of the deck plate without the groove, the tensile strength, bending strength, and rigidity of the groove portion are reduced, and the original portion without the groove is originally formed. The mechanical characteristics of the designed plate thickness cannot be utilized.
 本発明は、上記の課題に鑑みて、その目的は、不溶着部の存在する溶接部の応力をあるいはひずみを低減させ、強度や剛性を保ちつつ溶接部の疲労寿命を向上させることができる溶接構造を提供することである。
 上記以外の課題、構成及び効果は、以下の実施形態により明らかにされる。
In view of the above problems, an object of the present invention is to reduce the stress or strain of a welded portion in which a non-welded portion is present, and to improve the fatigue life of the welded portion while maintaining strength and rigidity. To provide the structure.
Issues, configurations and effects other than the above will be clarified by the following embodiments.
 上記目的を達成するため、代表的な本発明の溶接構造の一つは、一方の板材の端面が他方の板材の表面に当接して隅肉溶接することによって二枚の板材を固定する溶接構造であって、前記一方の板材の端面と前記他方の板材の表面の間の一部に溶接されていない不溶着部が存在し、前記一方の板材には前記隅肉溶接の溶接金属が存在する側の反対側の側面から前記不溶着部に沿った方向に溝が形成されていることを特徴とする。 In order to achieve the above object, one of the typical welded structures of the present invention is a welded structure in which the end face of one plate is in contact with the surface of the other plate and fillet welding is performed to fix the two plates. There is an unwelded non-welded portion between the end face of the one plate material and the surface of the other plate material, and the weld metal for fillet welding is present in the one plate material. A groove is formed in the direction along the non-welded portion from the side surface on the opposite side.
 本発明によれば、溝の加工された板材に面外方向の曲げ変形が作用した場合、溝の開口部が開閉する方向に弾性変形することで、溝の加工された板材ともう一方の板材との境界に生じる不溶着部を含む溶接部の曲げ応力が緩和され、不溶着部を含む溶接部の疲労寿命が長くなる。したがって、溶接構造の耐久性及び信頼性が向上する。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, when an out-of-plane bending deformation acts on a plate material with a groove, the plate material with a groove and the other plate material are elastically deformed in a direction in which the opening of the groove opens and closes. The bending stress of the welded portion including the non-welded portion generated at the boundary with and is relaxed, and the fatigue life of the welded portion including the non-welded portion is extended. Therefore, the durability and reliability of the welded structure are improved.
Issues, configurations and effects other than those described above will be clarified by the following description of the embodiments.
図1は、本発明の溶接構造の第1の実施形態を示す全体構成を示す側面図である。FIG. 1 is a side view showing an overall configuration showing a first embodiment of the welded structure of the present invention. 図2は、本発明の溶接構造の第1の実施形態における変形時の図である。FIG. 2 is a view at the time of deformation in the first embodiment of the welded structure of the present invention. 図3は、本発明の溶接構造の第1の実施形態における溝長さを縦板の板厚で除した値と不溶着部先端の応力との関係を示した特性図である。FIG. 3 is a characteristic diagram showing the relationship between the value obtained by dividing the groove length in the first embodiment of the welded structure of the present invention by the plate thickness of the vertical plate and the stress at the tip of the non-welded portion. 図4は、本発明の溶接構造の第1の実施形態における溝の不溶着面からの距離を縦板の板厚で除した値と不溶着部先端の応力との関係を示した特性図である。FIG. 4 is a characteristic diagram showing the relationship between the value obtained by dividing the distance from the non-welded surface of the groove by the plate thickness of the vertical plate and the stress at the tip of the non-welded portion in the first embodiment of the welded structure of the present invention. be. 図5は、本発明の溶接構造において溝が端面に近い場合の変形時の例を示す図である。FIG. 5 is a diagram showing an example of deformation when the groove is close to the end face in the welded structure of the present invention. 図6は、本発明の溶接構造の第1の実施形態における溝の開口部の幅を縦板の板厚で除した値と不溶着部先端の応力との関係を示した特性図である。FIG. 6 is a characteristic diagram showing the relationship between the value obtained by dividing the width of the groove opening in the first embodiment of the welded structure of the present invention by the plate thickness of the vertical plate and the stress at the tip of the non-welded portion. 図7は、本発明の溶接構造の第1の実施形態における溝の底部から溶接金属の表面までの距離を説明するための全体構成を示す側面図である。FIG. 7 is a side view showing an overall configuration for explaining the distance from the bottom of the groove to the surface of the weld metal in the first embodiment of the welded structure of the present invention. 図8は、本発明の溶接構造の第1の適用例における油圧ショベルの一例を示す側面図である。FIG. 8 is a side view showing an example of a hydraulic excavator in the first application example of the welded structure of the present invention. 図9は、本発明の溶接構造の第1の適用例における油圧ショベルのブームの一例を示す断面図であって、第1の変形状態を示す図である。FIG. 9 is a cross-sectional view showing an example of a boom of a hydraulic excavator in a first application example of the welded structure of the present invention, and is a diagram showing a first deformed state. 図10は、本発明の溶接構造の第1の適用例における油圧ショベルのブームの一例を示す断面図であって、第2の変形状態を示す図である。FIG. 10 is a cross-sectional view showing an example of a boom of a hydraulic excavator in a first application example of the welded structure of the present invention, and is a diagram showing a second deformed state. 図11は、本発明の溶接構造の第2の適用例におけるダンプトラックの一例を示す側面図である。FIG. 11 is a side view showing an example of a dump truck in a second application example of the welded structure of the present invention. 図12は、本発明の溶接構造の第2の適用例におけるダンプトラックのシャシーフレームの一例を示す斜視図である。FIG. 12 is a perspective view showing an example of a chassis frame of a dump truck in a second application example of the welded structure of the present invention. 図13は、本発明の溶接構造の第2の適用例におけるダンプトラックのシャシーフレームの一例を示す断面図である。FIG. 13 is a cross-sectional view showing an example of a chassis frame of a dump truck in a second application example of the welded structure of the present invention. 図14は、本発明の溶接構造の第3の適用例における鉄道用台車枠の一例を示す平面図である。FIG. 14 is a plan view showing an example of a railroad bogie frame in a third application example of the welded structure of the present invention. 図15は、本発明の溶接構造の第3の適用例における鉄道用台車枠の一例を示す断面図である。FIG. 15 is a cross-sectional view showing an example of a railroad bogie frame in a third application example of the welded structure of the present invention. 図16は、本発明の溶接構造の第2の実施形態を示す全体構成を示す側面図である。FIG. 16 is a side view showing an overall configuration showing a second embodiment of the welded structure of the present invention. 図17は、本発明の溶接構造の第3の実施形態を示す全体構成を示す側面図である。FIG. 17 is a side view showing an overall configuration showing a third embodiment of the welded structure of the present invention.
 以下、本発明の溶接構造の実施形態について図面を用いて説明する。 Hereinafter, embodiments of the welded structure of the present invention will be described with reference to the drawings.
[第1の実施形態]
(全体構成)
 本発明の溶接構造の第1の実施形態の全体構成について図を用いて説明する。図1は本発明の第1の実施形態の溶接構造を示す全体構成を示す側面図である。図2は図1の溶接構造の変形時の図である。
[First Embodiment]
(overall structure)
The overall configuration of the first embodiment of the welded structure of the present invention will be described with reference to the drawings. FIG. 1 is a side view showing an overall configuration showing a welded structure according to the first embodiment of the present invention. FIG. 2 is a view when the welded structure of FIG. 1 is deformed.
 図1において、縦板1と横板3の鋼板二枚が互いに直交するように組まれている。縦板1は長手方向を縦方向として、横板3は長手方向を横方向として配置される。縦板1の下側(横板3側)の端面2は横板3の上側(縦板1側)表面に平行であり、縦板1の端面2は横板3の上側表面と当接する。これらの板同士を接合するため、縦板1と横板3が接する角部付近を溶接する。このとき溶接する側は後述する溝10と反対側の角部である。縦板1と横板3を強固に溶接するために、縦板1の溶接する側の下部角部には開先4と呼ばれる減厚部が加工される。溶接金属5は開先4を埋めるように複数層盛られ、縦板1と横板3を接合する。そして、溶接金属5は縦脚長6と横脚長7を有する寸法で形成される。一般的に縦脚長6は縦板1の板厚D1以上で施工される場合が多い。 In FIG. 1, two steel plates of the vertical plate 1 and the horizontal plate 3 are assembled so as to be orthogonal to each other. The vertical plate 1 is arranged with the longitudinal direction as the vertical direction, and the horizontal plate 3 is arranged with the longitudinal direction as the horizontal direction. The end surface 2 on the lower side (horizontal plate 3 side) of the vertical plate 1 is parallel to the upper surface (vertical plate 1 side) surface of the horizontal plate 3, and the end surface 2 of the vertical plate 1 abuts on the upper surface of the horizontal plate 3. In order to join these plates together, the vicinity of the corner where the vertical plate 1 and the horizontal plate 3 meet is welded. At this time, the side to be welded is a corner portion on the opposite side to the groove 10 described later. In order to firmly weld the vertical plate 1 and the horizontal plate 3, a thickened portion called a groove 4 is processed at the lower corner portion of the vertical plate 1 on the welding side. A plurality of layers of the weld metal 5 are piled up so as to fill the groove 4, and the vertical plate 1 and the horizontal plate 3 are joined. The weld metal 5 is formed with dimensions having a vertical leg length 6 and a horizontal leg length 7. Generally, the vertical leg length 6 is often constructed with a plate thickness D1 or more of the vertical plate 1.
 端面2と横板3で挟まれる溶接金属5が達していない領域は不溶着部8となり、不溶着部8側の溶接金属5との境界は不溶着部先端9となる。不溶着部先端9の形状はその曲率半径が数十ミクロンメートルとなる場合が多く、き裂状を呈する。 The region where the weld metal 5 sandwiched between the end face 2 and the horizontal plate 3 does not reach is the non-welded portion 8, and the boundary with the weld metal 5 on the non-welded portion 8 side is the tip 9 of the non-welded portion. The shape of the tip 9 of the non-welded portion often has a radius of curvature of several tens of microns and exhibits a crack shape.
 溶接金属5は高温で積層されるため、その冷却過程において体積収縮する。縦板1と横板3が溶接時の保持冶具などによって位置を固定された場合、溶接金属5の収縮力によって、溶接金属5が接している開先4の表面と横板3には引張力が発生する。これを溶接残留応力と呼び、しばしば溶接部の強度低下の原因となる。 Since the weld metal 5 is laminated at a high temperature, the volume shrinks in the cooling process. When the vertical plate 1 and the horizontal plate 3 are fixed in position by a holding jig or the like during welding, the contraction force of the weld metal 5 causes a tensile force on the surface of the groove 4 and the horizontal plate 3 in contact with the weld metal 5. Occurs. This is called welding residual stress and often causes a decrease in the strength of the welded portion.
 第1の実施形態において、縦板1の端面2に平行な溝10が、開先4が加工された面11の反対側の裏面12に加工されている。溝10は溶接金属5が存在する反対側の裏面12から、不溶着部8に沿った方向に所定長さ(深さ方向の長さ)D2で形成されている。 In the first embodiment, the groove 10 parallel to the end surface 2 of the vertical plate 1 is processed on the back surface 12 on the opposite side of the surface 11 on which the groove 4 is processed. The groove 10 is formed from the back surface 12 on the opposite side where the weld metal 5 is present, with a predetermined length (length in the depth direction) D2 in the direction along the non-welded portion 8.
 図2に、縦板1に図中右から左方向の荷重(図2の矢印)が作用した場合の変形図を示す。この場合、縦板1の開先4が加工された面11には引張方向の応力が、そして裏面12には圧縮方向の応力が発生する。不溶着部先端9にも圧縮応力が発生することが多いが、溶接後の溶接残留応力によってこの部位には縦板1や横板3を構成している材料の降伏点に近い引張応力が発生している。このため、縦板1の曲げ変形が繰り返された場合、不溶着部先端9においては、引張応力場の中での応力の繰返しとなる。そして、不溶着部先端9の極めて大きい応力集中により、疲労き裂が発生しやすい。 FIG. 2 shows a deformation diagram when a load from right to left in the figure (arrow in FIG. 2) is applied to the vertical plate 1. In this case, stress in the tensile direction is generated on the surface 11 on which the groove 4 of the vertical plate 1 is machined, and stress in the compression direction is generated on the back surface 12. Compressive stress is often generated at the tip 9 of the non-welded portion, but due to the welding residual stress after welding, tensile stress close to the yield point of the materials constituting the vertical plate 1 and the horizontal plate 3 is generated at this portion. doing. Therefore, when the bending deformation of the vertical plate 1 is repeated, the stress is repeated in the tensile stress field at the tip 9 of the non-welded portion. Then, fatigue cracks are likely to occur due to the extremely large stress concentration at the tip 9 of the non-welded portion.
 しかし、縦板1が曲げ変形をした際に、本発明の溝10の開口部が閉口するように変形するため、不溶着部先端9の変形(ひずみ)は、溝10がない場合に比べて小さくなる。その結果、疲労き裂の発生までの寿命を長くし、加えてき裂進展速度を小さくできる。 However, when the vertical plate 1 is bent and deformed, the opening of the groove 10 of the present invention is deformed so as to close, so that the deformation (strain) of the tip 9 of the non-welded portion is compared with the case where the groove 10 is not provided. It becomes smaller. As a result, the life until the occurrence of fatigue cracks can be extended, and the rate of crack growth can be reduced.
 (溝の長さ)
 第1の実施形態における溝の長さの例について図を用いて説明する。図3は溝10の長さD2を縦板1の板厚D1で除した値(横軸)と、不溶着部先端9近傍の応力幅を縦板1の曲げ変形による公称応力幅で除した値(縦軸)の関係を示した特性図である。
(Groove length)
An example of the groove length in the first embodiment will be described with reference to the drawings. In FIG. 3, the value obtained by dividing the length D2 of the groove 10 by the plate thickness D1 of the vertical plate 1 (horizontal axis) and the stress width near the tip 9 of the non-welded portion are divided by the nominal stress width due to bending deformation of the vertical plate 1. It is a characteristic diagram which showed the relationship of values (vertical axis).
 図3において、溝10の長さD2を縦板1の板厚D1で除した値が0.25付近で、不溶着部先端9近傍の応力幅に対して縦板1の曲げ変形による公称応力幅で除した値が、最小値を示している。溝10の長さが短い場合、図2の矢印の方向に荷重が作用することで、不溶着部先端9には引張応力が発生する。そして、溝10の長さが長くなるに従い、その引張応力の絶対値は減少する。一方、溝10の長さが長すぎる場合、不溶着部先端9には圧縮応力が発生する。したがって、応力の絶対値である応力幅としてはかえって増加してしまう。本実施形態において、溝10の長さD2は、縦板1の板厚D1の20%から30%とすることで、不溶着部先端9の応力幅は最小とすることができ、その結果、疲労き裂の発生までの寿命を長くし、加えてき裂進展速度を小さくできる。 In FIG. 3, the value obtained by dividing the length D2 of the groove 10 by the plate thickness D1 of the vertical plate 1 is around 0.25, and the nominal stress due to bending deformation of the vertical plate 1 with respect to the stress width near the tip 9 of the non-welded portion. The value divided by the width indicates the minimum value. When the length of the groove 10 is short, a load acts in the direction of the arrow in FIG. 2, and a tensile stress is generated at the tip 9 of the non-welded portion. Then, as the length of the groove 10 becomes longer, the absolute value of the tensile stress decreases. On the other hand, if the length of the groove 10 is too long, compressive stress is generated at the tip 9 of the non-welded portion. Therefore, the stress width, which is the absolute value of stress, increases on the contrary. In the present embodiment, the length D2 of the groove 10 is set to 20% to 30% of the plate thickness D1 of the vertical plate 1, so that the stress width of the non-welded portion tip 9 can be minimized, and as a result, the stress width can be minimized. The life until the occurrence of fatigue cracks can be extended, and the rate of crack growth can be reduced.
 (溝の端面からの距離)
 第1の実施形態における溝の端面からの距離の例について図を用いて説明する。図4は溝10の端面2からの距離D3を縦板1の板厚D1で除した値(横軸)と、不溶着部先端9近傍の応力幅を縦板1の曲げ変形による公称応力幅で除した値(縦軸)の関係を示した特性図である。また、図5は溝が端面に近い場合の変形時の例を示す図である。
(Distance from the end face of the groove)
An example of the distance from the end face of the groove in the first embodiment will be described with reference to the drawings. FIG. 4 shows the value obtained by dividing the distance D3 from the end surface 2 of the groove 10 by the plate thickness D1 of the vertical plate 1 (horizontal axis) and the stress width near the tip 9 of the non-welded portion as the nominal stress width due to bending deformation of the vertical plate 1. It is a characteristic diagram which showed the relationship of the value (vertical axis) divided by. Further, FIG. 5 is a diagram showing an example of deformation when the groove is close to the end face.
 図4において、溝10の端面2からの距離D3を縦板1の板厚D1で除した値が0.3付近で、不溶着部先端9近傍の応力幅に対して縦板1の曲げ変形による公称応力幅で除した値が、最小となっている。溝10が端面2に近いと、溝10の開口部直下の部材が図5のように変形し、端面2と横板3の接触面積が小さくなってしまう。そのため、図4で示されるように横軸の値が小さくなると、不溶着部先端9近傍の応力幅が増加する。また、溝10が端面2から大きく離れると、溝10の開口部の変形の効果が小さくなってしまう。このため、図4で示されるように横軸の値が所定以上大きくなると、不溶着部先端9近傍の応力幅は、溝10がない場合に等しくなっていってしまう。 In FIG. 4, the value obtained by dividing the distance D3 from the end surface 2 of the groove 10 by the plate thickness D1 of the vertical plate 1 is around 0.3, and the bending deformation of the vertical plate 1 with respect to the stress width near the tip 9 of the non-welded portion. The value divided by the nominal stress width according to is the minimum. When the groove 10 is close to the end surface 2, the member immediately below the opening of the groove 10 is deformed as shown in FIG. 5, and the contact area between the end surface 2 and the horizontal plate 3 becomes small. Therefore, as the value on the horizontal axis becomes smaller as shown in FIG. 4, the stress width in the vicinity of the tip 9 of the non-welded portion increases. Further, if the groove 10 is greatly separated from the end surface 2, the effect of deformation of the opening of the groove 10 becomes small. Therefore, as shown in FIG. 4, when the value on the horizontal axis becomes larger than a predetermined value, the stress width in the vicinity of the tip 9 of the non-welded portion becomes equal when there is no groove 10.
 本実施形態において、溝10の端面2からの距離D3を縦板1の板厚D1の20%から40%とすることで、不溶着部先端9の応力幅は最小とすることができ、その結果、疲労き裂の発生までの寿命を長くし、加えてき裂進展速度を小さくできる。 In the present embodiment, the stress width of the non-welded portion tip 9 can be minimized by setting the distance D3 from the end surface 2 of the groove 10 to 20% to 40% of the plate thickness D1 of the vertical plate 1. As a result, the life until the occurrence of fatigue cracks can be extended, and the rate of crack growth can be reduced.
 (溝の開口の幅)
 第1の実施形態における溝の開口の幅の例について図を用いて説明する。図6は溝10の開口部の開口方向の幅D4を縦板1の板厚D1で除した値(横軸)と、不溶着部先端9近傍の応力幅(縦軸)の関係を示した特性図である。
(Width of groove opening)
An example of the width of the groove opening in the first embodiment will be described with reference to the drawings. FIG. 6 shows the relationship between the value obtained by dividing the width D4 of the opening of the groove 10 in the opening direction by the plate thickness D1 of the vertical plate 1 (horizontal axis) and the stress width (vertical axis) near the tip 9 of the non-welded portion. It is a characteristic diagram.
 図6において、溝10の開口部の幅(縦板1の長手方向の溝の幅)D4を縦板1の板厚D1で除した値が0.1付近で、不溶着部先端9近傍の応力幅が最小となっている。溝10の開口部の幅が小さすぎると、溝10の開閉変形が小さくなり、縦板1の曲げ変形に対して、溝10部の変形が無視できるほど小さくなってしまうため、不溶着部先端9近傍の応力低減効果は小さくなる。一方、溝10の開口部の幅が大きいと、縦板1の曲げ変形の剛性が小さくなりすぎ、返って不溶着部先端9近傍の応力が大きくなってしまう。 In FIG. 6, the value obtained by dividing the width (width of the groove in the longitudinal direction of the vertical plate 1) D4 of the groove 10 by the plate thickness D1 of the vertical plate 1 is around 0.1, and near the tip 9 of the non-welded portion. The stress width is the minimum. If the width of the opening of the groove 10 is too small, the opening / closing deformation of the groove 10 becomes small, and the deformation of the groove 10 becomes negligible with respect to the bending deformation of the vertical plate 1, so that the tip of the non-welded portion The stress reduction effect in the vicinity of 9 becomes small. On the other hand, if the width of the opening of the groove 10 is large, the rigidity of the bending deformation of the vertical plate 1 becomes too small, and the stress in the vicinity of the tip 9 of the non-welded portion becomes large.
 本実施形態において、溝10の開口部の幅D4を縦板1の板厚D1の5%から15%の範囲とすることで、不溶着部先端9の応力幅は最小とすることができ、その結果、疲労き裂の発生までの寿命を長くし、加えてき裂進展速度を小さくできる。 In the present embodiment, the stress width of the non-welded portion tip 9 can be minimized by setting the width D4 of the opening of the groove 10 in the range of 5% to 15% of the plate thickness D1 of the vertical plate 1. As a result, the life until the occurrence of fatigue cracks can be extended, and the rate of crack growth can be reduced.
 (溝の底部から溶接金属の表面までの距離)
 第1の実施形態における溝の底部から溶接金属の表面までの距離について図を用いて説明する。図7は本発明の溶接構造の第1の実施形態における溝の底部15から溶接金属5の表面までの距離Eを説明するための全体構成を示す側面図である。
(Distance from the bottom of the groove to the surface of the weld metal)
The distance from the bottom of the groove to the surface of the weld metal in the first embodiment will be described with reference to the drawings. FIG. 7 is a side view showing an overall configuration for explaining a distance E from the bottom 15 of the groove to the surface of the weld metal 5 in the first embodiment of the welded structure of the present invention.
 図7において、溝10の底部15から溶接金属5の表面までの距離Eは、溝10の最奥部である底部15から端面2に平行な線をのばした場合の、底部15から面11側の溶接金属5の表面の位置までの距離である。距離Eは、溶接金属5が存在する位置では、溶接金属5が存在しない位置よりも増加し強度の低下を防止する。図7は、距離Eは縦板1の板厚D1以上となる位置となっている。 In FIG. 7, the distance E from the bottom portion 15 of the groove 10 to the surface of the weld metal 5 is the distance E from the bottom portion 15 to the surface 11 when a line parallel to the end surface 2 is extended from the bottom portion 15 which is the innermost portion of the groove 10. It is the distance to the position of the surface of the weld metal 5 on the side. The distance E increases at the position where the weld metal 5 exists as compared with the position where the weld metal 5 does not exist, and prevents a decrease in strength. In FIG. 7, the distance E is a position where the plate thickness D1 or more of the vertical plate 1 is obtained.
 縦板1に引張荷重が作用した場合、溝10が存在している部位の板厚が、溝10の無い部位の板厚に比べて小さいため、溝10が存在している部位で引張破断することが懸念される。本実施形態では、溝10が存在している部位の板厚が、縦板1の板厚D1と同等それ以上となっているため、引張強度の低下は生じない。さらに溝10の底部15は溝10の開口部の高さの半分を曲率半径とする円弧状で形成されている。これにより溝10の底部15でのき裂発生も極力防ぐことができる。 When a tensile load is applied to the vertical plate 1, the plate thickness of the portion where the groove 10 is present is smaller than the plate thickness of the portion where the groove 10 is not present. Is a concern. In the present embodiment, since the plate thickness of the portion where the groove 10 exists is equal to or greater than the plate thickness D1 of the vertical plate 1, the tensile strength does not decrease. Further, the bottom portion 15 of the groove 10 is formed in an arc shape having a radius of curvature of half the height of the opening of the groove 10. As a result, the occurrence of cracks at the bottom 15 of the groove 10 can be prevented as much as possible.
 本実施形態において、溝10の存在により不溶着部先端9の応力幅は最小とすることができ、その結果、疲労き裂の発生までの寿命を長くし、加えてき裂進展速度を小さくできる。さらに、縦板1に引張荷重が作用した場合でも、強度低下を引き起こさない効果も有する。 In the present embodiment, the stress width of the non-welded portion tip 9 can be minimized due to the presence of the groove 10, and as a result, the life until the occurrence of fatigue cracks can be extended and the crack growth rate can be reduced. Further, it also has an effect of not causing a decrease in strength even when a tensile load is applied to the vertical plate 1.
 (第1の適用例)
 本発明の溶接構造の第1の適用例について図を用いて説明する。図8は本発明の溶接構造の第1の適用例における油圧ショベルの一例を示す側面図であり、油圧ショベルにおける掘削時の一例を示している。図9および図10は、本発明の溶接構造の第1の適用例における油圧ショベルのブームの一例を示す断面図であって、図8のA-A’面での断面図である。図9は第1の変形状態を示し、図10は第2の変形状態を示す。
(First application example)
A first application example of the welded structure of the present invention will be described with reference to the drawings. FIG. 8 is a side view showing an example of a hydraulic excavator in the first application example of the welded structure of the present invention, and shows an example of excavation in the hydraulic excavator. 9 and 10 are cross-sectional views showing an example of the boom of the hydraulic excavator in the first application example of the welded structure of the present invention, and are cross-sectional views taken along the line AA'of FIG. FIG. 9 shows the first deformed state, and FIG. 10 shows the second deformed state.
 図8において、油圧ショベル16は、自走可能なクローラ式の下部走行体17と、下部走行体17上に旋回軸受装置18を介して旋回自在に搭載された上部旋回体19とを備えている。上部旋回体19の前端部には、作業フロント20が俯仰動(回動)可能に取り付けられている。 In FIG. 8, the hydraulic excavator 16 includes a self-propelled crawler-type lower traveling body 17 and an upper swivel body 19 rotatably mounted on the lower traveling body 17 via a swivel bearing device 18. .. A work front 20 is attached to the front end of the upper swing body 19 so as to be able to move up and down (rotate).
 作業フロント20は、掘削作業等を行うための多関節型の作業装置であり、作業腕を構成するブーム21およびアーム22と、作業腕の先端に取り付けられた作業具(アタッチメント)としてのバケット23とで構成されている。 The work front 20 is an articulated work device for performing excavation work and the like, and the boom 21 and the arm 22 constituting the work arm and the bucket 23 as a work tool (attachment) attached to the tip of the work arm. It is composed of and.
 ブーム21は、一対のブームシリンダ24によって回動される。 The boom 21 is rotated by a pair of boom cylinders 24.
 図9は、油圧ショベル16のブーム21をブームセンターボス28の位置A-A’面(図8)で切断した横断面図であり、バケット23に対して押し荷重時におけるブーム21の変形状態を示す図である。図10は油圧ショベル16のブーム21をブームセンターボス28の位置A-A’面(図8)で切断した横断面図であり、バケット23に対して引き荷重時におけるブーム21の変形状態を示す図である。 FIG. 9 is a cross-sectional view of the boom 21 of the hydraulic excavator 16 cut at the position AA'plane (FIG. 8) of the boom center boss 28, showing the deformed state of the boom 21 when a pushing load is applied to the bucket 23. It is a figure which shows. FIG. 10 is a cross-sectional view of the boom 21 of the hydraulic excavator 16 cut at the position AA'plane (FIG. 8) of the boom center boss 28, and shows the deformed state of the boom 21 when a pull load is applied to the bucket 23. It is a figure.
 ブーム21およびアーム22は断面が矩形状の箱型構造体となっている。箱型構造体は、油圧ショベル16の幅方向において間隔をもって対向した一対の板部材である側板25と、両側板25の上端側に配置される板部材である上板26と、両側板25の下端側に配置される板部材である下板27とを備えている。ここで、上板26と両側板25、下板27と両側板25をそれぞれ溶接により接合することで箱型構造体が形成される。 The boom 21 and arm 22 have a box-shaped structure having a rectangular cross section. The box-shaped structure comprises a side plate 25 which is a pair of plate members facing each other at intervals in the width direction of the hydraulic excavator 16, an upper plate 26 which is a plate member arranged on the upper end side of both side plates 25, and both side plates 25. It includes a lower plate 27 which is a plate member arranged on the lower end side. Here, a box-shaped structure is formed by joining the upper plate 26 and both side plates 25, and the lower plate 27 and both side plates 25 by welding, respectively.
 本適用例において、両側板25の内側には溝32が加工されている。また、両側板25の外側には、上板26および下板27との溶接位置に開先が溶接時に加工される。そして、上板26および下板27と両側板25を接合する際は、上板26および下板27の外側から開先部で溶接される。その際、箱型構造体の内側には両側板25と上板26および下板27との間に不溶着部31が形成される。なお、図9、10の不溶着部31、溝32、不溶着部先端33は、図1の不溶着部8、溝10、不溶着部先端9に相当する。また、図9、10の側板25は図1の縦板1に相当し、図13の上板26および下板27は図1の横板3に相当する。 In this application example, a groove 32 is machined inside the both side plates 25. Further, on the outside of the both side plates 25, a groove is machined at the welding position with the upper plate 26 and the lower plate 27 at the time of welding. Then, when joining the upper plate 26 and the lower plate 27 and the both side plates 25, welding is performed from the outside of the upper plate 26 and the lower plate 27 at the groove portion. At that time, a non-welded portion 31 is formed inside the box-shaped structure between the both side plates 25 and the upper plate 26 and the lower plate 27. The non-welded portion 31, the groove 32, and the tip 33 of the non-welded portion in FIGS. 9 and 10 correspond to the non-welded portion 8, the groove 10, and the tip 9 of the non-welded portion in FIG. Further, the side plates 25 of FIGS. 9 and 10 correspond to the vertical plate 1 of FIG. 1, and the upper plate 26 and the lower plate 27 of FIG. 13 correspond to the horizontal plate 3 of FIG.
 図9および図10に示す油圧ショベル16のブーム21のボス28には、ピン挿入孔29に挿入された連結ピンを介して図8に示すブームシリンダ24からの荷重が作用する。この荷重によって、図9および図10に示すように、ブーム21の上板26と下板27と側板25には、面外方向(構造体の外面側の方向又は内面側の方向)に曲げ変形が生じる。 The load from the boom cylinder 24 shown in FIG. 8 acts on the boss 28 of the boom 21 of the hydraulic excavator 16 shown in FIGS. 9 and 10 via the connecting pin inserted into the pin insertion hole 29. Due to this load, as shown in FIGS. 9 and 10, the upper plate 26, the lower plate 27, and the side plate 25 of the boom 21 are bent and deformed in the out-of-plane direction (the direction toward the outer surface side or the direction toward the inner surface side of the structure). Occurs.
 溝32は、側板25が面外方向に曲げ変形を生じた場合、開口部が変形することで、不溶着部先端33の応力(ひずみ)を小さくし、その結果、疲労き裂の発生までの寿命を長くし、加えてき裂進展速度を小さくできる。したがって、油圧ショベルの強度信頼性を向上させることができる。 When the side plate 25 is bent and deformed in the out-of-plane direction, the groove 32 reduces the stress (strain) of the tip 33 of the non-welded portion by deforming the opening, and as a result, until the occurrence of fatigue cracks. The life can be extended and the crack growth rate can be reduced. Therefore, the strength reliability of the hydraulic excavator can be improved.
 (第2の適用例)
 本発明の溶接構造の第2の適用例について図を用いて説明する。図11は、本発明の溶接構造の第2の適用例におけるダンプトラックの一例を示す側面図であり、鉱山で採掘した鉱物や土砂等を運搬する大型のダンプトラックの例を示している。図12は、本発明の溶接構造の第2の適用例におけるダンプトラックのシャシーフレームの一例を示す斜視図である。図13は、本発明の溶接構造の第2の適用例におけるダンプトラックのシャシーフレームの一例を示す断面図であり、シャシーフレームにおけるベースフレームの断面図を示している。
(Second application example)
A second application example of the welded structure of the present invention will be described with reference to the drawings. FIG. 11 is a side view showing an example of a dump truck in a second application example of the welded structure of the present invention, and shows an example of a large dump truck that transports minerals, earth and sand, etc. mined in a mine. FIG. 12 is a perspective view showing an example of a chassis frame of a dump truck in a second application example of the welded structure of the present invention. FIG. 13 is a cross-sectional view showing an example of the chassis frame of the dump truck in the second application example of the welded structure of the present invention, and shows a cross-sectional view of the base frame in the chassis frame.
 図11においてダンプトラック34は大型の運搬車両であり、頑丈なフレーム構造をなす車体35と、この車体35上に傾動(起伏)可能に搭載された荷台36とにより全体が構成されている。そして、車体35は、フレーム39、建屋37、キャブ38等を含んで構成されている。 In FIG. 11, the dump truck 34 is a large-sized transport vehicle, and is composed of a vehicle body 35 having a sturdy frame structure and a loading platform 36 mounted on the vehicle body 35 so as to be tilted (undulating). The vehicle body 35 includes a frame 39, a building 37, a cab 38, and the like.
 図12においてフレーム39は車体35のシャシーを構成するフレームで、このフレーム39は、前後方向に延びる強固な支持構造体(溶接による製缶構造体)として形成されている。そして、フレーム39は、前後方向に延びるベースフレーム40と、このベースフレーム40の前後方向の中間部に配置された上部横梁41とにより構成されている。 In FIG. 12, the frame 39 is a frame constituting the chassis of the vehicle body 35, and the frame 39 is formed as a strong support structure (can manufacturing structure by welding) extending in the front-rear direction. The frame 39 is composed of a base frame 40 extending in the front-rear direction and an upper cross beam 41 arranged in an intermediate portion of the base frame 40 in the front-rear direction.
 ここで、ベースフレーム40には、タイヤからの荷重を受ける座42が複数個所設けられている。そして、走行中の地形による複雑な荷重がベースフレーム40に作用する。 Here, the base frame 40 is provided with a plurality of seats 42 that receive the load from the tires. Then, a complicated load due to the traveling terrain acts on the base frame 40.
 図13はベースフレーム40の図12におけるB部平面で切断される断面構造図である。断面は矩形状の箱型構造体となっている。箱型構造体は、ダンプトラック34の幅方向において間隔をもって対向した一対の板部材である側板43と、両側板43の上端側に配置される板部材である上板44と、両側板43の下端側に配置される板部材である下板45とを備えている。ここで、両側板43と上板44、両側板43と下板45とを溶接によりそれぞれ接合することで箱型構造体が形成される。 FIG. 13 is a cross-sectional structure view of the base frame 40 cut along the B portion plane in FIG. The cross section is a rectangular box-shaped structure. The box-shaped structure includes a side plate 43 which is a pair of plate members facing each other at intervals in the width direction of the dump truck 34, an upper plate 44 which is a plate member arranged on the upper end side of both side plates 43, and both side plates 43. It is provided with a lower plate 45 which is a plate member arranged on the lower end side. Here, a box-shaped structure is formed by joining the both side plates 43 and the upper plate 44, and the both side plates 43 and the lower plate 45 by welding, respectively.
 本適用例において、側板43の内側には溝47が加工されている。また、側板43には外側の溶接位置に開先が溶接時に加工される。上板44および下板45を側板43と溶接する際は、側板43の外側から開先部を用いて溶接される。その際、箱型構造体の内側には両側板43と上板44および下板45との間に不溶着部46が形成される。なお、図13の不溶着部46、溝47、不溶着部先端48は、図1の不溶着部8、溝10、不溶着部先端9に相当する。また、図13の側板43は図1の縦板1に相当し、図13の上板44および下板45は図1の横板3に相当する。 In this application example, a groove 47 is machined inside the side plate 43. Further, a groove is machined on the side plate 43 at an outer welding position at the time of welding. When the upper plate 44 and the lower plate 45 are welded to the side plate 43, they are welded from the outside of the side plate 43 using the groove portion. At that time, a non-welded portion 46 is formed inside the box-shaped structure between the both side plates 43 and the upper plate 44 and the lower plate 45. The non-welded portion 46, the groove 47, and the tip 48 of the non-welded portion in FIG. 13 correspond to the non-welded portion 8, the groove 10, and the tip 9 of the non-welded portion in FIG. Further, the side plate 43 of FIG. 13 corresponds to the vertical plate 1 of FIG. 1, and the upper plate 44 and the lower plate 45 of FIG. 13 correspond to the horizontal plate 3 of FIG.
 溝47は、側板43が面外方向に曲げ変形を生じた場合、その開口部が変形することで、不溶着部先端48の応力(ひずみ)を小さくし、その結果、疲労き裂の発生までの寿命を長くし、加えておよびき裂進展速度を小さくできる。したがって、ダンプトラックの強度信頼性を向上させることができる。 When the side plate 43 is bent and deformed in the out-of-plane direction, the groove 47 reduces the stress (strain) of the tip 48 of the non-welded portion by deforming the opening thereof, and as a result, until fatigue cracks occur. Can extend the life of the and also reduce the rate of crack growth. Therefore, the strength reliability of the dump truck can be improved.
 (第3の適用例)
 本発明の溶接構造の第3の適用例について図を用いて説明する。図14は本発明の溶接構造の第3の適用例における鉄道用台車枠の一例を示す平面図である。図15は本発明の溶接構造の第3の適用例における鉄道用台車枠の一例を示す断面図である。
(Third application example)
A third application example of the welded structure of the present invention will be described with reference to the drawings. FIG. 14 is a plan view showing an example of a railroad bogie frame in a third application example of the welded structure of the present invention. FIG. 15 is a cross-sectional view showing an example of a railroad bogie frame in a third application example of the welded structure of the present invention.
 図14において、台車枠49は、車両進行方向に沿って隔置される一対の側梁50と、枕木方向に沿って備えられるとともに、側梁50同士を連結するように備えられる一対の横梁51を有する。車体を弾性支持する空気ばねが載置される空気ばね受座52は、横梁51の枕木方向の両端部と側梁50の車両進行方向の中央部とに接続するように台車枠49に備えられる。 In FIG. 14, the bogie frame 49 is provided with a pair of side beams 50 separated along the vehicle traveling direction and a pair of cross beams 51 provided along the sleeper direction and connecting the side beams 50 to each other. Has. The air spring receiving seat 52 on which the air spring that elastically supports the vehicle body is placed is provided on the carriage frame 49 so as to be connected to both ends of the cross beam 51 in the sleeper direction and the central portion of the side beam 50 in the vehicle traveling direction. ..
 図15は図14におけるC-C’面で切断した側梁50の断面構造図である。断面の形状は矩形状の箱型構造体となっている。箱型構造体は、車両の進行方向の幅方向において間隔をもって対向した一対の板部材である側板53と、両側板53の上端側に配置される板部材である上板54と、両側板53の下端側に配置される板部材である下板55とを備えている。ここで、両側板53と上板54、両側板53と下板55とを溶接によりそれぞれ接合することで箱型構造体が形成されている。 FIG. 15 is a cross-sectional structural view of the side beam 50 cut at the CC'plane in FIG. The cross-sectional shape is a rectangular box-shaped structure. The box-shaped structure includes a side plate 53 which is a pair of plate members facing each other in the width direction in the traveling direction of the vehicle, an upper plate 54 which is a plate member arranged on the upper end side of both side plates 53, and both side plates 53. It is provided with a lower plate 55 which is a plate member arranged on the lower end side of the above. Here, a box-shaped structure is formed by joining the both side plates 53 and the upper plate 54, and the both side plates 53 and the lower plate 55 by welding, respectively.
 本適用例において、上板54と下板55の内側には溝57が加工されている。上板54と下板55には外側の溶接位置に開先が溶接時に加工される。側板53を上板54および下板55と溶接する際は、側板53に対して外側から開先部を用いて溶接される。その際、箱型構造体の内側には上板54および下板55と両側板53との間に不溶着部56が形成される。なお、図15の不溶着部56、溝57、不溶着部先端58は、図1の不溶着部8、溝10、不溶着部先端9に相当する。また、図15の上板54および下板55は図1の縦板1に相当し、図15の側板53は図1の横板3に相当する。 In this application example, a groove 57 is machined inside the upper plate 54 and the lower plate 55. Grooves are machined at the outer welding positions on the upper plate 54 and the lower plate 55 at the time of welding. When the side plate 53 is welded to the upper plate 54 and the lower plate 55, it is welded to the side plate 53 from the outside using a groove portion. At that time, a non-welded portion 56 is formed inside the box-shaped structure between the upper plate 54 and the lower plate 55 and the both side plates 53. The non-welded portion 56, the groove 57, and the tip 58 of the non-welded portion in FIG. 15 correspond to the non-welded portion 8, the groove 10, and the tip 9 of the non-welded portion in FIG. Further, the upper plate 54 and the lower plate 55 in FIG. 15 correspond to the vertical plate 1 in FIG. 1, and the side plate 53 in FIG. 15 corresponds to the horizontal plate 3 in FIG.
 溝57は上板54および下板55が面外方向に曲げ変形を生じた場合、その開口部が変形することで、不溶着部先端58の応力(ひずみ)を小さくし、その結果、疲労き裂の発生までの寿命を長くし、加えてき裂進展速度を小さくできる。したがって、鉄道車両の台車枠の強度信頼性を向上させることができる。 When the upper plate 54 and the lower plate 55 are bent and deformed in the out-of-plane direction of the groove 57, the opening thereof is deformed to reduce the stress (strain) of the tip 58 of the non-welded portion, resulting in fatigue. The life until the occurrence of cracks can be extended, and the rate of crack growth can be reduced. Therefore, it is possible to improve the strength reliability of the bogie frame of the railway vehicle.
[第2の実施形態]
 本発明の溶接構造の第2の実施形態について図を用いて説明する。図16は本発明の第2の実施形態に係る溶接構造を示す全体構成を示す側面図である。第2の実施形態では、第1の実施形態と異なる点について主に説明し、同一の箇所には同一の符号を付してあり、特に説明がない部分は同じ説明を省略している。
[Second Embodiment]
A second embodiment of the welded structure of the present invention will be described with reference to the drawings. FIG. 16 is a side view showing an overall configuration showing a welded structure according to a second embodiment of the present invention. In the second embodiment, the points different from those in the first embodiment are mainly described, the same parts are designated by the same reference numerals, and the same description is omitted unless otherwise specified.
 図16の縦板1’は第1の実施形態の縦板1に基本的に相当するが、縦板1’には、溝10の代りに溝13が形成されている。そして、溝13は、図16に示すように、縦板1’と横板3の間の不溶着部8を含む形で所定の開口の幅Fを有する溝として裏面12側から形成されている。溝13は、例えば機械加工などによって形成される。溝13の最奥部である底部14は溝の開口の幅Fの曲率半径を持つ円弧上に加工されている。溝13の底部14は、溶接金属5との境界になり、不溶着部先端9を兼ねた構造となっている。 The vertical plate 1'in FIG. 16 basically corresponds to the vertical plate 1 of the first embodiment, but the vertical plate 1'is formed with a groove 13 instead of the groove 10. Then, as shown in FIG. 16, the groove 13 is formed from the back surface 12 side as a groove having a predetermined opening width F including the non-welded portion 8 between the vertical plate 1'and the horizontal plate 3. .. The groove 13 is formed by, for example, machining. The bottom portion 14, which is the innermost portion of the groove 13, is machined on an arc having a radius of curvature of the width F of the opening of the groove. The bottom portion 14 of the groove 13 serves as a boundary with the weld metal 5 and also serves as a non-welded portion tip 9.
 本実施形態によれば、不溶着部8の長さがあらかじめ機械加工などによってばらつきのない寸法に制御できるため、不溶着部先端9に発生する応力幅が有限要素法などの数値計算によって予測可能となる。また、不溶着部先端9が一定の曲率を有する円弧状となっているため、応力集中を小さくでき、この効果として、疲労き裂の発生までの寿命を長くし、加えてき裂進展速度を小さくできる。 According to this embodiment, since the length of the non-welded portion 8 can be controlled in advance to a dimension that does not vary by machining or the like, the stress width generated at the tip 9 of the non-welded portion can be predicted by numerical calculation such as the finite element method. It becomes. Further, since the tip 9 of the non-welded portion has an arc shape having a constant curvature, stress concentration can be reduced, and as this effect, the life until the occurrence of fatigue cracks is extended and the crack growth rate is reduced. can.
[第3の実施形態]
 本発明の溶接構造の第3の実施形態について図を用いて説明する。図17は本発明の溶接構造の第3の実施形態を示す全体構成を示す側面図である。第3の実施形態では、第1の実施形態と異なる点について主に説明し、同一の箇所には同一の符号を付してあり、特に説明がない部分は同じ説明を省略している。
[Third Embodiment]
A third embodiment of the welded structure of the present invention will be described with reference to the drawings. FIG. 17 is a side view showing an overall configuration showing a third embodiment of the welded structure of the present invention. In the third embodiment, the points different from those in the first embodiment are mainly described, the same parts are designated by the same reference numerals, and the same description is omitted unless otherwise specified.
 本実施形態において、縦板1’’は、第1の実施形態の縦板1とは異なり、横板3に対し垂直ではなく、垂直よりも一定角度θの傾きをもって溶接されている。傾く方向は開先4が加工された面(溶接金属5側の面)と反対側である。また下側端面2は、横板3の上側に平行である。そして、不溶着部8の上部で、かつ溶接金属5が表面に露出していない側の側面に、溝10’が形成されている。溝10’は必ずしも、不溶着部8側の端面2に平行でなくてもよい。図16では、端面2の平行面よりも溝10’の開口側を下側にして一定角度θだけ傾いている。溝10’は、縦板1’’の溶接前の機械加工時に適正な角度をもって加工される。 In the present embodiment, unlike the vertical plate 1 of the first embodiment, the vertical plate 1 ″ is not perpendicular to the horizontal plate 3 but is welded with an inclination of a constant angle θ from the vertical. The direction of inclination is opposite to the surface on which the groove 4 is machined (the surface on the weld metal 5 side). The lower end surface 2 is parallel to the upper side of the horizontal plate 3. A groove 10'is formed on the upper portion of the non-welded portion 8 and on the side surface on the side where the weld metal 5 is not exposed on the surface. The groove 10'does not necessarily have to be parallel to the end surface 2 on the non-welded portion 8 side. In FIG. 16, the groove 10'is tilted by a certain angle θ with the opening side of the groove 10'lower than the parallel surface of the end surface 2. The groove 10 ″ is machined at an appropriate angle during machining of the vertical plate 1 ″ before welding.
 本実施形態によれば、縦板1’’が横板3に対して傾いているため、溶接時に開先4をはっきりと観察でき、溶接トーチで容易にアクセスでき、生産効率が向上する。そして、縦板1’’に曲げ変形が作用した場合も、溝10’が弾性変形することで、不溶着部先端9の応力幅を低減して、溶接構造の疲労寿命を向上させることができる。 According to this embodiment, since the vertical plate 1 ″ is tilted with respect to the horizontal plate 3, the groove 4 can be clearly observed at the time of welding, and the groove 4 can be easily accessed by the welding torch, and the production efficiency is improved. Then, even when bending deformation acts on the vertical plate 1'', the groove 10'is elastically deformed, so that the stress width of the tip 9 of the non-welded portion can be reduced and the fatigue life of the welded structure can be improved. ..
 なお、本発明は上記した各実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace other configurations with respect to a part of the configurations of each embodiment.
 1、1’、1’’…縦板、 2…端面、 3…横板、 4…開先、 5…溶接金属、6…縦脚長、 7…横脚長、 8、31、46、56…不溶着部、 9、33、48、58…不溶着部先端、 10、10’、13、32、47、57…溝、 11…面、 12…裏面、 14、15…底部、16…油圧ショベル、17…下部走行体、18…旋回軸受装置、 19…上部旋回体、 20…作業フロント、 21…ブーム、 22…アーム、 23…バケット、 24…ブームシリンダ、 25、43、53…側板、 26、44、54…上板、 27、45、55…下板、 28…ボス、 29…ピン挿入孔、 34…ダンプトラック、 35…車体、 36…荷台、 37…建屋、 38…キャブ、 39…フレーム、 40…ベースフレーム、 41…上部横梁、 42…座、 49…台車枠、 50…側梁、 51…横梁、 52…空気ばね受座、 D1…板厚、 D2…溝の長さ、 D3…距離、 D4…幅、 E…距離、 F…幅、 θ…一定角度 1, 1', 1'' ... Vertical plate, 2 ... End face, 3 ... Horizontal plate, 4 ... Groove, 5 ... Welded metal, 6 ... Vertical leg length, 7 ... Horizontal leg length, 8, 31, 46, 56 ... No Welded part, 9, 33, 48, 58 ... Non-welded part tip, 10, 10', 13, 32, 47, 57 ... Groove, 11 ... Face, 12 ... Back side, 14, 15 ... Bottom, 16 ... Hydraulic excavator, 17 ... lower traveling body, 18 ... swivel bearing device, 19 ... upper swivel body, 20 ... work front, 21 ... boom, 22 ... arm, 23 ... bucket, 24 ... boom cylinder, 25, 43, 53 ... side plate, 26, 44, 54 ... upper plate, 27, 45, 55 ... lower plate, 28 ... boss, 29 ... pin insertion hole, 34 ... dump truck, 35 ... car body, 36 ... loading platform, 37 ... building, 38 ... cab, 39 ... frame , 40 ... base frame, 41 ... upper cross beam, 42 ... seat, 49 ... trolley frame, 50 ... side beam, 51 ... cross beam, 52 ... air spring seat, D1 ... plate thickness, D2 ... groove length, D3 ... Distance, D4 ... width, E ... distance, F ... width, θ ... constant angle

Claims (6)

  1.  一方の板材の端面が他方の板材の表面に当接して隅肉溶接することによって二枚の板材を固定する溶接構造であって、前記一方の板材の端面と前記他方の板材の表面の間の一部に溶接されていない不溶着部が存在し、前記一方の板材には前記隅肉溶接の溶接金属が存在する側の反対側の側面から前記不溶着部に沿った方向に溝が形成されていることを特徴とする溶接構造。 It is a welding structure in which the end surface of one plate material is in contact with the surface of the other plate material and fillet welding is performed to fix the two plate materials, and is between the end surface of the one plate material and the surface of the other plate material. There is a non-welded portion that is not welded in part, and a groove is formed in the one plate material in the direction along the non-welded portion from the side surface opposite to the side where the weld metal for fillet welding is present. Welded structure characterized by being
  2.  請求項1に記載の溶接構造において、
     前記溝の長さが、前記一方の板材の板厚の20%から30%となっていることを特徴とする溶接構造。
    In the welded structure according to claim 1,
    A welded structure characterized in that the length of the groove is 20% to 30% of the plate thickness of the one plate material.
  3.  請求項1に記載の溶接構造において、
     前記不溶着部から前記溝までの距離が、前記一方の板材の板厚の20%から40%となっていることを特徴とする溶接構造。
    In the welded structure according to claim 1,
    A welded structure characterized in that the distance from the non-welded portion to the groove is 20% to 40% of the plate thickness of the one plate material.
  4.  請求項1に記載の溶接構造において、
     前記溝の幅が、前記一方の板材の板厚の5%から15%となっていることを特徴とする溶接構造。
    In the welded structure according to claim 1,
    A welded structure characterized in that the width of the groove is 5% to 15% of the plate thickness of the one plate material.
  5.  請求項1に記載の溶接構造において、
     前記溝の底部から前記溶接金属の表面までの距離は、前記一方の板材の板厚以上となっていることを特徴とする溶接構造。
    In the welded structure according to claim 1,
    A welded structure characterized in that the distance from the bottom of the groove to the surface of the weld metal is equal to or greater than the plate thickness of one of the plate materials.
  6.  請求項1に記載の溶接構造において、
     前記溝は、前記不溶着部を含む形で一定の幅を有して形成され、前記溝の底部は前記隅肉溶接の溶接金属との境界部であり、前記底部の形状が円弧状に形成されていることを特徴とする溶接構造。
    In the welded structure according to claim 1,
    The groove is formed with a certain width including the non-welded portion, the bottom portion of the groove is a boundary portion with the weld metal of the fillet weld, and the shape of the bottom portion is formed in an arc shape. A welded structure characterized by being made.
PCT/JP2021/013802 2020-04-21 2021-03-31 Weld structure WO2021215208A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022516921A JP7375175B2 (en) 2020-04-21 2021-03-31 welded structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020075176 2020-04-21
JP2020-075176 2020-04-21

Publications (1)

Publication Number Publication Date
WO2021215208A1 true WO2021215208A1 (en) 2021-10-28

Family

ID=78270603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013802 WO2021215208A1 (en) 2020-04-21 2021-03-31 Weld structure

Country Status (2)

Country Link
JP (1) JP7375175B2 (en)
WO (1) WO2021215208A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593660U (en) * 1992-05-19 1993-12-21 住友建機株式会社 Welding structure of oil tank in construction machinery
JP2000199240A (en) * 1998-12-28 2000-07-18 Yutani Heavy Ind Ltd Boom structure of hydraulic excavator
WO2012114532A1 (en) * 2011-02-23 2012-08-30 新日本製鐵株式会社 Manufacturing method for welded joint and welded joint
JP2016073985A (en) * 2014-10-03 2016-05-12 新日鐵住金株式会社 Welded structure member capable of reducing stress concentration
JP2018030169A (en) * 2016-08-18 2018-03-01 新日鐵住金株式会社 Weld joint

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3416885B2 (en) 1999-10-01 2003-06-16 綿半テクノス株式会社 Welding method and joint structure between steel beam and steel column
JP2006281246A (en) 2005-03-31 2006-10-19 Matsuo Kogyosho:Kk Groove structure of fillet welding
JP6451476B2 (en) 2015-04-24 2019-01-16 新日鐵住金株式会社 Steel deck
JP2017014823A (en) 2015-07-02 2017-01-19 ショーボンド建設株式会社 Expansion joint
JP6647980B2 (en) 2016-07-15 2020-02-14 日立建機株式会社 Hydraulic excavator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593660U (en) * 1992-05-19 1993-12-21 住友建機株式会社 Welding structure of oil tank in construction machinery
JP2000199240A (en) * 1998-12-28 2000-07-18 Yutani Heavy Ind Ltd Boom structure of hydraulic excavator
WO2012114532A1 (en) * 2011-02-23 2012-08-30 新日本製鐵株式会社 Manufacturing method for welded joint and welded joint
JP2016073985A (en) * 2014-10-03 2016-05-12 新日鐵住金株式会社 Welded structure member capable of reducing stress concentration
JP2018030169A (en) * 2016-08-18 2018-03-01 新日鐵住金株式会社 Weld joint

Also Published As

Publication number Publication date
JP7375175B2 (en) 2023-11-07
JPWO2021215208A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
JP4568161B2 (en) Tailored blank welded structural members
US9376783B2 (en) Boom for linkage assembly of machine with fork reinforcement plate
US9662746B2 (en) Linkage assembly for implement system of machine
US8631580B2 (en) Lift arm assembly
WO2021215208A1 (en) Weld structure
US11253956B2 (en) Structure having stress protected groove weld and structural members forming the same
US20180029851A1 (en) Linkage assembly for machine
US20180304413A1 (en) Structure Having Stress Protected Groove Weld and Structural Members Forming the Same
CN104309689A (en) Mining dump vehicle frame
US11299002B2 (en) Center link for articulated truck suspension mounts
US10723253B2 (en) Front tower for machine
US9650756B2 (en) Stick for linkage assembly of machine
CN203920902U (en) Carriage of mining self-unloading vehicle
JP3567366B2 (en) Work arm structure of work machine
CN105460078A (en) Frame rear tail base of electric transmission mining dump vehicle
US20220290398A1 (en) Linkage for arm assembly with reduced weld fatigue
CN216231545U (en) Front axle structure of mining dump truck
US9981584B2 (en) Method of reinforcing a seatback frame of a seat assembly
CN218400340U (en) Dumper lifting seat and dumper
JP6532166B2 (en) Dump truck
US11370491B2 (en) Chassis system
JP6922753B2 (en) Welded joint structure and welded joint method
CN103523085A (en) Mining dump truck gantry beam and mining dump truck frame
JP2017070977A (en) Welded joint, welded structure, construction machine and welding method
WO2014054063A1 (en) Body structure for dump truck

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022516921

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792027

Country of ref document: EP

Kind code of ref document: A1