WO2021215172A1 - Coating material composition - Google Patents

Coating material composition Download PDF

Info

Publication number
WO2021215172A1
WO2021215172A1 PCT/JP2021/011757 JP2021011757W WO2021215172A1 WO 2021215172 A1 WO2021215172 A1 WO 2021215172A1 JP 2021011757 W JP2021011757 W JP 2021011757W WO 2021215172 A1 WO2021215172 A1 WO 2021215172A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
coating
fine particles
inorganic fine
coating film
Prior art date
Application number
PCT/JP2021/011757
Other languages
French (fr)
Japanese (ja)
Inventor
勝彦 杉本
智之 石河
琢也 白石
みずほ 富樫
Original Assignee
日本ペイント・オートモーティブコーティングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント・オートモーティブコーティングス株式会社 filed Critical 日本ペイント・オートモーティブコーティングス株式会社
Publication of WO2021215172A1 publication Critical patent/WO2021215172A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/06Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/47Levelling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic

Definitions

  • the present invention relates to a coating composition, particularly a coating composition in which the surface free energy of a cured coating film is controlled.
  • Patent Document 1 discloses a coating composition containing inorganic fine particles such as a film-forming resin and silica and controlling the surface tension of the inorganic particles.
  • the inorganic particles are treated with a so-called coupling agent to reduce the surface tension thereof.
  • the surface tension becomes (film without inorganic particles)> (film with inorganic particles), and it is said that the scratch resistance of the coating film is improved. Therefore, the coating composition of Patent Document 1 seems to provide a coating film having good scratch resistance.
  • the wettability of the coating film surface is lowered, and the so-called recoat adhesion is greatly lowered. Recoating is to repair a coating film defect by covering the defective portion with another coating film when a defect is present in the coating film, with or without polishing the defective portion.
  • the recoating adhesion also referred to as recoating property
  • topcoat paints for example, clear paints
  • An object of the present invention is to provide a coating composition containing inorganic fine particles and having high recoat adhesion.
  • a coating composition containing a hydroxyl group-containing resin, a curing agent, and inorganic fine particles A coating composition in which the surface free energy of a film coated and cured with the coating composition is higher than the surface free energy of a film coated and cured by removing only inorganic fine particles from the coating composition.
  • [2] [1] The difference obtained by subtracting (the surface free energy of the film cured by removing only the inorganic fine particles) from (the surface free energy of the film cured by blending the inorganic fine particles) is 0 to 0.5. Paint composition.
  • the inorganic fine particles are selected from the group consisting of silica, alumina, alumina silicate alkali, borosilicate glass, quartz, nepheline syenite, zircon, baddeluite, eudialite and mixtures thereof.
  • the coating composition according to the above. [5] The coating composition according to [4], wherein the silica is selected from crystalline silica, amorphous silica, molten silica, precipitated silica and a mixture thereof. [6] The coating composition according to [1], wherein the inorganic fine particles are contained in an amount of 0.01 to 10% by weight based on the solid content in the coating composition.
  • the present invention controls the performance of the cured film by surface free energy. Specifically, (the surface free energy of the film containing the inorganic fine particles) ⁇ (the surface free energy of the film containing the inorganic fine particles). As a result, the recoat adhesion is improved and the scratch resistance is also improved. Since the coating composition of the present invention has high recoat adhesion, it is useful as a coating composition for forming a coating film on the uppermost layer. Usually, a clear coating film is present on the uppermost layer. Therefore, the coating composition of the present invention is particularly useful as a clear coating composition. The coating composition of the present invention also has high adhesion to car washing at high pressure.
  • the surface free energy of the cured coating film can be controlled by, for example, a surface conditioner.
  • the coating composition of the present invention contains a hydroxyl group-containing resin, a curing agent, and inorganic fine particles.
  • the hydroxyl group-containing resin is not particularly limited as long as it is a polymer containing a hydroxyl group, and examples thereof include a hydroxyl group-containing acrylic resin, a hydroxyl group-containing polyester resin, a hydroxyl group-containing alkyd resin, and a hydroxyl group-containing silicone resin. Of these, a hydroxyl group-containing acrylic resin or a hydroxyl group-containing polyester resin is preferable because it is easy to design and synthesize.
  • Hydroxyl group-containing acrylic resin examples include those obtained by copolymerizing a hydroxyl group-containing ethylenically unsaturated monomer and another ethylenically unsaturated monomer.
  • the number average molecular weight (Mn) of the hydroxyl group-containing acrylic resin is preferably 1000 to 10000, and more preferably 1100 to 8000. When the number average molecular weight is in the above range, the coating workability is improved, and the mixed layer with the base coating film (hereinafter, may be referred to as an intermediate coating film) is easily suppressed.
  • the number average molecular weight of the hydroxyl group-containing acrylic resin is particularly preferably 1200 to 7000.
  • the hydroxyl value of the hydroxyl group-containing acrylic resin is preferably 50 to 280 mgKOH / g, more preferably 70 to 260 mgKOH / g.
  • the acid value of the hydroxyl group-containing acrylic resin is preferably 0 to 32 mgKOH / g, more preferably 2 to 20 mgKOH / g.
  • the blending ratio of each monomer is based on the total amount of the ethylenically unsaturated monomers, and the hydroxyl group-containing ethylenically unsaturated monomer is used. It is preferably 5 to 60% by mass (more preferably 8 to 50% by mass), and the other ethylenically unsaturated monomer is preferably 95 to 40% by mass (more preferably 92 to 50% by mass).
  • the content of the hydroxyl group-containing ethylenically unsaturated monomer is in the above range, the hydroxyl group-containing acrylic resin can be stably produced, and the water resistance of the obtained coating film can be easily improved.
  • hydroxyl group-containing ethylenically unsaturated monomer examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, allyl alcohol, methacryl alcohol, and the like.
  • lactones ⁇ -propiolaclone, dimethylpropiolactone, butyl lactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -caprilolactone, crotolactone, ⁇ -valerolactone, ⁇ - Caprolactone, etc.
  • additives such as.
  • the other ethylenically unsaturated monomer is not particularly limited, and examples thereof include an ethylenically unsaturated monomer having a carboxyl group.
  • a (meth) acrylic acid derivative for example, acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, acrylic acid dimer, ⁇ -hydro- ⁇ - ((1)) obtained by adding ⁇ -caprolactone to acrylic acid.
  • unsaturated dibasic acids their half esters, half amides and half thioesters (eg, maleic acid).
  • ethylenically unsaturated monomers other than those having a carboxyl group include (meth) acrylate ester monomers (eg, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl acrylate, t).
  • a hydroxyl group-containing acrylic resin suitable for the present invention By copolymerizing the above-mentioned hydroxyl group-containing ethylenically unsaturated monomer with another ethylenically unsaturated monomer, a hydroxyl group-containing acrylic resin suitable for the present invention can be obtained.
  • the polymerization method is not particularly limited, and ordinary methods described in publicly known documents such as solution radical polymerization can be used. For example, a method of stirring a suitable radical polymerization initiator and a monomer mixed solution while dropping them into a suitable solvent over 2 to 10 hours at a polymerization temperature of 60 to 160 ° C. can be mentioned.
  • the radical polymerization initiator that can be used here is not particularly limited as long as it is usually used for polymerization, and is an azo compound (for example, dimethyl-2,2'-azobisisobutyrate) or a peroxide (for example, dimethyl-2,2'-azobisisobutyrate).
  • azo compound for example, dimethyl-2,2'-azobisisobutyrate
  • peroxide for example, dimethyl-2,2'-azobisisobutyrate
  • t-Butylperoxy-2-ethylhexanoate t-Butylperoxy-2-ethylhexanoate
  • the amount of such initiator is generally 0.1-10% by weight, preferably 0.5-8% by weight, based on the total amount of unsaturated monomers.
  • the solvent that can be used here is not particularly limited as long as it does not adversely affect the reaction, and examples thereof include alcohols, ketones, and hydrocarbon solvents (for example, propylene glycol monomethyl ether acetate and xylene).
  • examples thereof include alcohols, ketones, and hydrocarbon solvents (for example, propylene glycol monomethyl ether acetate and xylene).
  • mercaptans such as lauryl mercaptan
  • chain transfer agents such as ⁇ -methylstyrene dimer can be used as needed to regulate the molecular weight.
  • a hydroxyl group-containing polyester resin examples include those obtained by polycondensing a polyvalent carboxylic acid and / or an acid anhydride and a polyhydric alcohol.
  • a polymer obtained by adding a lactone compound to a low molecular weight polyhydric alcohol can also be used.
  • the number average molecular weight (Mn) of the hydroxyl group-containing polyester resin is preferably 1000 to 4500. When the number average molecular weight is in the above range, sufficient curability can be easily obtained, and the smoothness of the obtained coating film is improved, so that a good appearance can be easily obtained. Further, it is easy to suppress an excessive increase in viscosity at the time of coating.
  • the hydroxyl value of the hydroxyl group-containing polyester resin is preferably 70 to 300 mgKOH / g. When the hydroxyl value is in the above range, the decrease in elasticity is suppressed, the chipping resistance is likely to be improved, and the curability is also likely to be improved.
  • the acid value of the hydroxyl group-containing polyester resin is preferably 5 to 20 mgKOH / g. When the acid value is in the above range, water resistance and curability are likely to be improved.
  • the compounding ratio of each component is 1.105 to 2 in terms of the molar ratio of hydroxyl group to carboxylic acid group and / or acid anhydride group. Is preferable.
  • Mn number average molecular weight of the obtained hydroxyl group-containing polyester resin becomes excessively large, and the decrease in the crosslink density is suppressed. Therefore, the curability is likely to be improved. Furthermore, the water resistance is likely to increase.
  • the polyvalent carboxylic acid and / or acid anhydride is not particularly limited, and for example, phthalic acid, isophthalic acid, phthalic anhydride, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydrophthalic anhydride, Methyltetrahydrophthalic acid, methyltetrahydrohydrophthalic acid, hymic anhydride, trimellitic acid, trimellitic anhydride, pyromellitic acid, pyromellitic anhydride, terephthalic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, adipine
  • Examples thereof include acids, azelaic acid, sebacic acid, succinic acid, succinic anhydride, dodecenyl succinic acid, dodecenyl succinic anhydride and the like. It should be noted that such a polyvalent carboxylic acid
  • the polyhydric alcohol is not particularly limited, and for example, ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, neopentyl glycol, 1,2-butanediol, 1,3-butanediol, and the like.
  • monocarboxylic acid, hydroxycarboxylic acid, lactones and the like may be contained as reaction components other than the above-mentioned polyvalent carboxylic acid and / or acid anhydride and polyhydric alcohol component.
  • lactones can be ring-opened and added to the polyester chain of a polyvalent carboxylic acid and a polyhydric alcohol to form a graft chain.
  • lactones examples include ⁇ -propiolaclone, dimethylpropiolactone, butyllactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -caprolactone, crotolactone, ⁇ -valerolactone, and ⁇ -.
  • Caprolactone and the like can be mentioned, and ⁇ -caprolactone is most preferable.
  • the hydroxyl group-containing polyester resin can be obtained by adding a lactone compound to a low molecular weight polyhydric alcohol.
  • the low-molecular-weight polyhydric alcohol is not particularly limited, and for example, one having at least three hydroxyl groups in one molecule is preferable, and trimethylolpropane, trimethylolethane, 1,2,4-butanetriol, ditrimethylolpropane, and penta Examples thereof include erythritol, dipentaerythritol, and glycerin.
  • the lactone compound is not particularly limited as long as it is a lactone compound capable of causing a ring-opening addition reaction with the low molecular weight polyhydric alcohol compound.
  • the lactone compound preferably has 4 to 7 carbon atoms.
  • ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -butyrolactone and the like can be mentioned. This may be used alone or in combination of two or more. Among these, ⁇ -caprolactone and ⁇ -valerolactone are more preferable, and ⁇ -caprolactone is further preferable from the viewpoint of reactivity and the like.
  • the hydroxyl group-containing resin is a weight percent based on the total solid content weight of the coating composition, and is present in the coating composition in an amount of 20 to 90% by weight, preferably 40 to 80% by weight.
  • curing agent examples include aminoplast resin and isocyanate resin.
  • the aminoplast resin and the isocyanate resin may be used alone or in combination.
  • the aminoplast resin include formaldehyde condensates of nitrogen-containing compounds such as urea, thiourea, melamine, and benzoguanamine, and lower alkyl ethers (alkyl groups having 1 to 4 carbon atoms) of the condensates.
  • the isocyanate resin examples include 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), and a mixture thereof (TDI), diphenylmethane-4,4'.
  • -Diisocyanate (4,4'-MDI), diphenylmethane-2,4'-diisocyanate (2,4'-MDI), and mixtures thereof (MDI), naphthalene-1,5-diisocyanate (NDI), 3,3'-Dimethyl-4,4'-biphenylenediocyanate (TODI), xylylene diisocyanate (XDI), dicyclohexylmethane diisocyanate (hydrogenated HDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), hydride xylylene diisocyanate (HXDI) and the like.
  • MDI naphthalene-1,5-diisocyanate
  • TODI 3,3'-Dimethyl-4,4'-biphenylenediocyanate
  • XDI xylylene diisocyanate
  • the isocyanate resin can also be used as a block body.
  • the blocked isocyanate resin is not particularly limited as long as it is used as a curing agent for paints.
  • Blocked isocyanate is an isocyanate resin blocked with a blocking agent.
  • Typical isocyanate resins include aliphatic isocyanates such as trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate (HDI), and trimethylhexamethylene diisocyanate, 1,3-cyclopentane diisocyanate, and 1,4-cyclohexane.
  • Diisocyanate aliphatic cyclic isocyanate such as 1,2-cyclohexane diisocyanate, aromatic isocyanate such as xylylene diisocyanate (XDI), 2,4-tolylene diisocyanate (TDI), 2,6-tolylene diisocyanate, isophorone diisocyanate (isophorone diisocyanate) IPDI), alicyclic isocyanates such as norbornandiisocyanate methyl, multimers and mixtures such as burettes and nurates thereof.
  • XDI xylylene diisocyanate
  • TDI 2,4-tolylene diisocyanate
  • IPDI isophorone diisocyanate
  • alicyclic isocyanates such as norbornandiisocyanate methyl, multimers and mixtures such as burettes and nurates thereof.
  • Blocking agents that block the isocyanate resin include monohydric alkyl (or aromatic) alcohols such as n-butanol, n-hexyl alcohol, 2-ethylhexanol, lauryl alcohol, phenolcarbinol, and methylphenylcarbinol; ethylene.
  • Cellosolves such as glycol monohexyl ether and ethylene glycol mono2-ethylhexyl ether; polyether-type both-terminal diols such as polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol phenol; ethylene glycol, propylene glycol and 1,4-butane.
  • Polyester-type double-ended polyols obtained from diols such as diols and dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, suberic acid, and sebacic acid; phenols such as para-t-butylphenol and cresol; dimethyl ketooxime , Oxims such as methyl ethyl keto oxime, methyl isobutyl keto oxime, methyl amilketo oxime, cyclohexanone oxime; and lactams typified by ⁇ -caprolactam and ⁇ -butyrolactam are preferably used.
  • diols such as diols and dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, suberic acid, and sebacic acid
  • phenols such as para-t-butylphenol and cresol
  • dimethyl ketooxime Oxims such as methyl ethyl keto oxi
  • the curing agent is generally present in an amount of up to 50 weight percent.
  • the weight% is based on the total solid content weight of the coating composition.
  • the coating composition of the present invention contains inorganic fine particles.
  • the inorganic fine particles are not particularly limited, but are a group consisting of silica, alumina, alumina alkali silicate, borosilicate glass, quartz, nepheline syenite, zircon, baddeluite, eudialite and a mixture thereof. At least one selected from.
  • silica include crystalline silica, amorphous silica, fused silica, precipitated silica or a mixture thereof.
  • These inorganic fine particles have an average particle size of 2 to 500 nm. When the average particle size is in the above range, dispersion stability, scratch resistance, and finished appearance are likely to be improved.
  • the average particle size of the inorganic fine particles is preferably 5 to 200 nm, more preferably 5 to 100 nm.
  • the particle size can be determined according to any method known in the art, for example by a conventional particle size analyzer. Specifically, laser scattering techniques can be used if the average particle size is greater than 1 micron, and TEM can be used for average particle sizes less than 1 micron.
  • Inorganic fine particles are contained in the coating composition of the present invention in an amount of, for example, 0.01 to 10% by weight based on the solid content thereof.
  • the blending amount of the inorganic fine particles is preferably 0.1 to 5% by weight, more preferably 1 to 5% by weight.
  • the surface free energy of the cured coating film obtained by the coating composition of the present invention is higher than the surface free energy of the coating film cured except for the inorganic fine particles.
  • the surface free energy corresponds to the surface tension of a liquid and is the energy of the molecules of the solid surface itself.
  • the unit of surface tension is "mN / m” and the unit of surface free energy is "mJ / m 2 ", but both values are considered to be equal.
  • the difference between these surface free energies is not particularly limited. (Surface free energy of the coating film cured by blending inorganic fine particles)-(Surface free energy of the coating film cured by excluding the inorganic fine particles) is, for example, 0 to 0.5, and 0.1 to 0.1.
  • the "surface free energy" is calculated according to the following formula by determining the contact angle of the mixed solution of water and methylene iodide on the coated surface.
  • the measuring method and calculation formula are based on the description of SOUHENG WU, J. Poly. Sci., PARTC. 34 19 (1971).
  • gamma 12 represents the interfacial tension between the material 1 and material 2
  • gamma i represents the surface tension of the substance i
  • ⁇ i d represents the dispersion component of the ⁇ i
  • ⁇ i p is Represents a polar component.
  • the surface free energy of the cured film formed by the coating composition of the present invention can be controlled by the components blended in the coating composition. Its ingredients are not limited. In the examples of the present invention, the surface free energy was adjusted by changing the type of the surface conditioner. This is because the surface free energy can be adjusted relatively easily. However, the surface free energy is not controlled only by the amount and type of surface conditioner. For example, the surface free energy can be controlled by the type of inorganic fine particles, the type of hydroxyl group-containing resin of the coating material to be blended, and the like.
  • the surface conditioner controls the surface tension and works as an antifoaming agent, a leveling agent, and an armpit preventive agent.
  • surface conditioners There are many types of surface conditioners, and examples thereof include acrylic, vinyl, silicone, and fluorine compounds.
  • the above surface conditioners can be used alone or in combination of two or more as appropriate.
  • the present invention is characterized in that the surface free energy of the cured film containing the inorganic fine particles is higher than the surface free energy of the cured film obtained by removing only the inorganic fine particles.
  • the function required of the surface conditioner is to orient the surface of the cured film and increase the surface free energy. In order to orient the surface, the solubility parameter of the surface conditioner needs to be lower than that of the resin or additive constituting the cured film.
  • the chemical structure of the surface conditioner is not particularly limited as long as it has a function of increasing the surface free energy. Examples of the surface conditioner include polyester-based and silicone-based compounds.
  • surface conditioners include, for example, BYK series (silicone type, acrylic type) manufactured by Big Chemie, Tego series (silicone type, acrylic type) manufactured by Evonic, and Polyflow series (acrylic type) manufactured by Kyoeisha Chemical Co., Ltd. ), DYNOADD series (polyester type) manufactured by DYNEA, silicone-based surface conditioner manufactured by Toray Dow Corning, and the like.
  • the surface tension of the surface conditioner is preferably 26 mN / m or more, more preferably 28 to 30 mN / m.
  • the surface tension can be measured by the platinum ring method using a dynometer (manufactured by Big Gardner, Germany).
  • the coating composition of the present invention preferably contains a solvent, particularly an organic solvent, in order to reduce the viscosity of the coating material during coating.
  • Organic solvents include, for example, alcohols, ketones, aromatic hydrocarbons, glycol ethers, esters or mixtures thereof.
  • the organic solvent is present in an amount of 5-80% by weight, especially 30-50% by weight, based on the total weight of the paint composition.
  • the coating composition may be a water-based coating, in which case a mixture of water and an organic solvent is included as the solvent.
  • the coating composition of the present invention contains additives (eg, plasticizers, antioxidants, light stabilizers, UV absorbers, viscosity control agents, organic co-solvents, surfactants and catalysts) that are added to the coating composition in a general amount. ) Can be included. All such additives known in the art can be used without compatibility issues.
  • additives eg, plasticizers, antioxidants, light stabilizers, UV absorbers, viscosity control agents, organic co-solvents, surfactants and catalysts
  • the coating composition of the present invention may be a coating material in one pack (package) depending on the intended use, or may be blended in two packs (package) divided into a coating material and a curing agent. Upon painting, the coating composition may be diluted.
  • the solid content of the coating composition is determined by Ford Cup No. 2 at 20 ° C. in consideration of the influence of the organic solvent on the environment. When diluted with 4 to a viscosity of 20 to 50 seconds, it is preferably 50% by mass or more.
  • the coating composition of the present invention is coated by any conventional method (eg, brushing, dipping, flow coating, roll coating, conventional and electrostatic spray). Spray technology is most often used.
  • the thickness of the obtained dry coating film can be in the range of 10 to 70 ⁇ m, preferably 30 to 60 ⁇ m.
  • the coating composition of the present invention is usually used as a clear coating material for forming the uppermost layer of a coating film, specifically, a clear coating film.
  • a coating called an undercoat
  • a coating containing a colorant called an intermediate coating or a base coating
  • a coating called a clear coating that gives depth to a shade are applied. This is done to form a multi-layer coating.
  • the coating composition of the present invention is used as a clear coating material forming the uppermost layer, the recoat adhesion, which is the effect of the coating composition of the present invention, is more likely to be exhibited.
  • paint film defects inevitably occur due to the presence of dust and dirt, defects caused by paint during painting, defects caused by painting machines, etc.
  • Various repair methods are examined depending on the state of the defect and the time of occurrence. Generally, after polishing the defective portion, intermediate coating and clear coating are performed again so as to cover the polished portion. Of course, there are various repair methods, such as a method without polishing and a method in which only clear painting is performed without painting from the intermediate coating. Regardless of which method is used, another coating film is formed by applying another coating film on the already formed top layer coating film (specifically, a clear coating film).
  • the coating composition of the present invention is excellent in recoat adhesion (multi-layer coating film repairability) to another coating film formed at the time of repairing coating film defects.
  • the method for forming a multi-layer coating film is to apply a base coating composition on a base material to form a base coating film layer, and then apply the above clear coating composition on the base coating film to form a clear coating film layer. Form.
  • a multi-layer coating film including a base coating film layer and a clear coating film layer is formed on the base material.
  • a water-based brilliant coating material for automobiles (automobile body, parts, etc.) can be preferably used as the base coating composition.
  • the base material is not particularly limited, and metals such as iron, aluminum, magnesium, copper, tin, zinc or alloys thereof and molded products thereof; inorganic materials such as glass, cement and concrete; polyethylene resin, Resins such as polypropylene resin, ethylene-vinyl acetate resin, polyamide resin, acrylic resin, vinylidene chloride resin, polycarbonate resin, polyurethane resin, epoxy resin, polyester resin, polystyrene resin, ABS resin, various plastic materials such as FRP, and their plastic materials. Molded products or foams; natural or synthetic materials such as wood and fiber materials (paper, cloth, etc.) can be mentioned.
  • metals such as iron, aluminum, magnesium, copper, tin, zinc or alloys thereof and molded products thereof
  • inorganic materials such as glass, cement and concrete
  • polyethylene resin Resins such as polypropylene resin, ethylene-vinyl acetate resin, polyamide resin, acrylic resin, vinylidene chloride resin, polycarbonate resin, polyurethane resin,
  • the base material preferably has a curved surface, such as an automobile body and parts (automobile body, door, etc.) such as a passenger car, a truck, a motorcycle, and a bus.
  • a curved surface such as an automobile body and parts (automobile body, door, etc.) such as a passenger car, a truck, a motorcycle, and a bus.
  • specific examples of the plastic molded product include automobile parts such as spoilers, bumpers, mirror covers, grills, and doorknobs.
  • these plastic molded products are preferably those washed with trichloroethane by steam or with a neutral detergent.
  • a primer coating may be applied to enable electrostatic coating.
  • the base material is an automobile body or its parts
  • the conductive base material is previously degreased or chemical-treated (chemical conversion treatment with phosphate, chromate, etc.).
  • a base coating such as electrodeposition coating or intermediate coating to the base material.
  • Electrodeposition coating is performed for the purpose of forming an electrodeposition coating film on a conductive base material such as a steel plate to impart rust resistance.
  • the electrodeposition coating composition capable of forming such an electrodeposition coating film is not particularly limited, and cationic electrodeposition coating compositions and anion-type electrodeposition coating compositions well known to those skilled in the art can be used. Both can be used. Of these, from the viewpoint of rust prevention, a cationic electrodeposition coating composition is preferable, and an epoxy-based cationic electrodeposition coating composition is particularly preferable.
  • the base material is an automobile body or a steel plate
  • pretreatments such as degreasing, washing with water, forming a chemical conversion film, washing with water, washing with pure water, and drying by a conventionally known method before forming an electrodeposition coating film.
  • the electrodeposition coating film forming method an appropriate method may be arbitrarily selected from conventionally known methods.
  • the conditions for forming the electrodeposition coating film, the conditions for baking and curing, the thickness of the electrodeposition coating film, and the like may be appropriately determined according to the base material, the type of the electrodeposition coating composition to be used, and the like.
  • an intermediate coating layer is formed on the base material or electrodeposition coating, and the performance such as base hiding property, chipping resistance, and adhesion to the top coating (clear coating) layer is achieved. It is done for the purpose of improvement.
  • the intermediate coating film layer also functions as a base for smoothing the surface of the obtained multi-layer coating film and forming a coating film having a good appearance.
  • the intermediate coating film layer further serves as a binder between the electrodeposition coating film layer and the top coating film layer.
  • the intermediate coating film layer is required to have weather resistance against deterioration due to ultraviolet rays and water reaching through the top coating film.
  • the intermediate coating composition capable of forming the intermediate coating layer is not particularly limited, and in addition to solvent-based coatings well known to those skilled in the art, water-based coatings, powder coatings, high-solid coatings, etc. Can also be applied. Specifically, epoxy ester / melamine resin, alkyd / melamine resin or oil-free polyester / melamine resin paint, intermediate coating paint combining acrylic resin and / or polyester resin with amino resin and / or isocyanate curing agent. Etc., can be appropriately selected and used from conventionally known intermediate coating paints.
  • an appropriate method may be arbitrarily selected from the conventionally known methods.
  • a gray-based intermediate coating composition containing carbon black and titanium dioxide as the main pigments, a set gray that matches the brightness and hue with the topcoat coating layer, and a so-called color intermediate coating composition that combines various coloring pigments. Things can be used.
  • These color intermediate coating composition can develop a composite color of the intermediate coating layer and the top coating layer, and can further enhance the design.
  • a flat pigment such as aluminum powder or mica powder may be added to these intermediate coating compositions.
  • the intermediate coating composition may contain additives which can be usually added to the coating material, such as a surface conditioner, an antioxidant, an antifoaming agent and the like.
  • the dry film thickness of the intermediate coating film layer is preferably 10 to 100 ⁇ m, more preferably 20 to 40 ⁇ m.
  • Production Example 1 Production of hydroxyl group-containing acrylic resin
  • a reaction vessel equipped with a thermometer, a stirring blade, a nitrogen introduction tube, a cooling condenser and a dropping funnel 448 parts of propylene glycol monomethyl ether acetate was added and heated to 120 ° C. under a nitrogen atmosphere. ..
  • the calculated Tg was 5.3 ° C.
  • the solid content acid value was 2 mgKOH / g
  • the hydroxyl value was 140 mgKOH / g
  • the number average molecular weight (Mn) was 4600
  • the weight average molecular weight (Mw) was 11300 in terms of standard polystyrene obtained by using GPC.
  • An acrylic resin A having a resin solid content of 62.5% was obtained.
  • Acryester SL manufactured by Mitsubishi Rayon Co., Ltd.
  • having a mixing ratio (mass basis) of lauryl methacrylate / tridecylic methacrylate of 4/6 was used.
  • Example 1 Preparation of Clear Paint Composition a1 In a 1 L metal container, 60.0 parts of the hydroxyl group-containing acrylic resin of Production Example 1 in terms of resin solid content and Dismodule N-3300 (isocyanurate compound manufactured by Sumika Cobestrourethane) were placed.
  • DYNOADD F-1 surface conditioner manufactured by DYNEA AS: surface tension 28.6 mN / m
  • NANOBYK-3652 inorganic fine particles manufactured by Big Chemie: particle size 40 nm
  • chinubin 384 ultraviolet absorber manufactured by Ciba Geigy
  • chinubin 123 light stabilizer manufactured by Ciba Geigy
  • methyl amylketone 57.0 parts and DBE manufactured by Shoei Chemical Co., Ltd.
  • coating film A1 (coating film using clear paint a1)
  • the phosphoric acid-treated steel sheet was coated with a cationic electrodeposition paint "Power Top U-50" (trade name) manufactured by Nippon Paint Automotive Coatings Co., Ltd. so that the dry film thickness was 25 ⁇ m.
  • the paint was cured by heating to obtain a test plate.
  • This test plate was coated with a water-based paint "Aqualex AR-800” (trade name) manufactured by Nippon Paint Automotive Coatings Co., Ltd. so that the dry film thickness was 20 ⁇ m.
  • a water-based paint "Aqualex AR-2000” (trade name) manufactured by Nippon Paint Automotive Coatings Co., Ltd.
  • test coating plate A1 was coated with a black color so that the dry film thickness was 10 ⁇ m, and dried at 80 ° C. for 5 minutes. On it, the clear coating composition a1 was applied wet-on-wet so that the dry film thickness was 40 ⁇ m. Subsequently, it was baked and dried at 140 ° C. for 30 minutes to prepare a test coating plate A1.
  • coating film A2 (coating film using clear paint a2)
  • the phosphoric acid-treated steel sheet was coated with a cationic electrodeposition paint "Power Top U-50" (trade name) manufactured by Nippon Paint Automotive Coatings Co., Ltd. so that the dry film thickness was 25 ⁇ m.
  • the paint was cured by heating to obtain a test plate.
  • This test plate was coated with a water-based paint "Aqualex AR-800” (trade name) manufactured by Nippon Paint Automotive Coatings Co., Ltd. so that the dry film thickness was 20 ⁇ m.
  • a water-based paint "Aqualex AR-2000” (trade name) manufactured by Nippon Paint Automotive Coatings Co., Ltd.
  • test coating plate A-2 was coated with a black color so that the dry film thickness was 10 ⁇ m, and dried at 80 ° C. for 5 minutes. On it, the clear coating composition a2 was applied wet-on-wet so that the dry film thickness was 40 ⁇ m. Subsequently, it was baked and dried at 140 ° C. for 30 minutes to prepare a test coating plate A-2.
  • Example 2 to 3 and Comparative Examples 1 to 3 The two-component clear coating compositions b1 to f2 were used in the same manner as in Example 1 except that the inorganic fine particles and the surface conditioners shown in the following table (Table 1) were used in the amounts shown in the table. The mixture was prepared, and coating films B1 to F2 were further prepared.
  • the inorganic fine particles and surface conditioners are as follows: NANOBYK-3652: Inorganic fine particles manufactured by Big Chemie Japan Co., Ltd .: Particle size 40 nm. SO-C4: Inorganic fine particles manufactured by Admatex: particle size 1,000 nm.
  • DYNOADD F-1 Surface conditioner (polyester type) manufactured by DYNEA AS, surface tension 28.6 mN / m.
  • DOWN CORNING TORAY L-7604 Toray Dow Corning surface conditioner (silicone type), surface tension 28.5 mN / m.
  • DOWN CORNING TORAY 8637 Toray Dow Corning surface conditioner (silicone type), surface tension 25.0 mN / m.
  • BYK-337 Surface conditioner (silicone type) manufactured by Big Chemie Japan, surface tension 23.3 mN / m.
  • BYK-306 Surface conditioner (silicone type) manufactured by Big Chemie Japan, surface tension 23.4 mN / m.
  • the surface free energy was calculated by determining the contact angle of the mixed solution of water and methylene iodide on the coating film surface and according to the above formula.
  • Table 2 shows the surface free energies of the coating films A1 to F2 and the ⁇ surface free energy (1 to 2 of the formed coating film, for example, coating film A1-coating film A2).
  • the measuring method and calculation formula are based on the description of SOUHENG WU, J. Poly. Sci., PARTC. 34 19 (1971)).
  • the scratch resistance (scratch resistance) of the obtained coating film was evaluated by Daiei Kagaku Seiki Seisakusho Co., Ltd.
  • a flat surface wear tester was used.
  • Felt and wear paper (281Q manufactured by 3M, WETORDRY PRODUCTION POLISHING PAPER 9 ⁇ GRADE) were fixed to the tip of this jig in the order of the jig tip, felt, and wear paper.
  • a load was applied to the surface of the worn paper fixed to the jig so that a load of 900 g was applied, and the surface of the coating film obtained at a speed of 40 reciprocations per minute with a stroke length of 10 cm was abraded 10 times.
  • the gloss at an angle of 20 ° with respect to the coating film surface of the tested part and the untested part was measured with a microtrigloss (gloss measuring device manufactured by Big Chemie).
  • the scratch resistance was evaluated by using the percentage of the quotient of the untested part with respect to the tested part as the gloss retention rate by the wear test. The results are shown in Table 3.
  • Very good scratch resistance
  • Good scratch resistance
  • Gloss retention rate is 70% or more and less than 80%.
  • the clear paint composition (paint composition a1, paint composition b1, paint composition c1, paint composition d1, paint composition e1 or paint composition f1) is wet-on-wet and has a dry film thickness. It was applied so as to be 40 ⁇ m. Subsequently, it was baked and dried at 140 ° C. for 30 minutes to prepare a recoated coating film.
  • a coating composition containing inorganic fine particles and having high recoat adhesion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The purpose of the present invention is to provide a coating material composition containing inorganic fine particles and having high recoat adhesion. The present invention is a coating material composition containing a hydroxyl group-containing resin, a curing agent, and inorganic fine particles, wherein the surface free energy of a film which is coated with the coating material composition and cured is higher than the surface free energy of a film which is coated with the coating material composition excluding only the inorganic fine particles and cured.

Description

塗料組成物Paint composition
 本発明は、塗料組成物、特に硬化塗膜の表面自由エネルギーを制御した塗料組成物に関する。 The present invention relates to a coating composition, particularly a coating composition in which the surface free energy of a cured coating film is controlled.
 塗料組成物にナノシリカ粒子などの無機微粒子を配合することにより、塗料や塗膜の性能を向上させることが行なわれている。特開2009-62548号公報(特許文献1)には、フィルム形成性樹脂およびシリカなどの無機微粒子を含み、無機粒子の表面張力を制御したコーティング組成物が開示されている。 The performance of paints and coating films has been improved by blending inorganic fine particles such as nanosilica particles with the paint composition. Japanese Unexamined Patent Publication No. 2009-62548 (Patent Document 1) discloses a coating composition containing inorganic fine particles such as a film-forming resin and silica and controlling the surface tension of the inorganic particles.
 この特許文献1のコーティング組成物において、無機粒子は、いわゆるカップリング剤で処理されて、その表面張力が低下されている。これにより、表面張力が(無機粒子の無いフィルム)>(無機粒子の有るフィルム)の関係になり、塗膜の擦り傷性が向上するとされる。そのため、特許文献1のコーティング組成物は、良好な擦り傷性を有する塗膜を提供するようである。しかし、このようなコーティング組成物を用いると、塗膜表面の濡れ性が低下して、いわゆるリコート密着性が大きく低下する。リコートとは、塗膜に欠陥が存在する場合に、その欠陥部分を研磨して、または研磨せずに、別の塗膜で覆って塗膜欠陥を補修することである。リコートの際、元の塗膜が、新たに形成される塗膜との密着性に優れる場合、リコート密着性(リコート性ともいう。)が良いという。 In the coating composition of Patent Document 1, the inorganic particles are treated with a so-called coupling agent to reduce the surface tension thereof. As a result, the surface tension becomes (film without inorganic particles)> (film with inorganic particles), and it is said that the scratch resistance of the coating film is improved. Therefore, the coating composition of Patent Document 1 seems to provide a coating film having good scratch resistance. However, when such a coating composition is used, the wettability of the coating film surface is lowered, and the so-called recoat adhesion is greatly lowered. Recoating is to repair a coating film defect by covering the defective portion with another coating film when a defect is present in the coating film, with or without polishing the defective portion. When the original coating film has excellent adhesion to a newly formed coating film at the time of recoating, it is said that the recoating adhesion (also referred to as recoating property) is good.
 自動車塗装において、リコートは少なからず行われることがある。そのため、リコート密着性は、特に上塗り塗料(例えば、クリヤー塗料)の性能の一つとして必要である。 In automobile painting, recoating may be performed in no small measure. Therefore, recoat adhesion is particularly necessary as one of the performances of topcoat paints (for example, clear paints).
特開2009-62548号公報Japanese Unexamined Patent Publication No. 2009-62548
 本発明は、無機微粒子を含み、かつ、リコート密着性が高い塗料組成物を提供することを目的とする。 An object of the present invention is to provide a coating composition containing inorganic fine particles and having high recoat adhesion.
 即ち、本発明は以下の態様を提供する:
 [1]
 水酸基含有樹脂、硬化剤および無機微粒子を含有する塗料組成物であって、
 前記塗料組成物を塗布し硬化させたフィルムの表面自由エネルギーが、前記塗料組成物から無機微粒子のみを除いて塗布し硬化させたフィルムの表面自由エネルギーよりも高い、塗料組成物。
 [2]
 (無機微粒子を配合して硬化させたフィルムの表面自由エネルギー)から(無機微粒子だけを除いて硬化させたフィルムの表面自由エネルギー)を引いた差が0~0.5である、[1]記載の塗料組成物。
 [3]
 前記無機微粒子が平均粒子径2~500nmである、[1]記載の塗料組成物。
 [4]
 前記無機微粒子が、シリカ、アルミナ、ケイ酸アルミナアルカリ、ホウケイ酸ガラス、石英、霞石閃長岩、ジルコン、バデリューアイト(buddeluyite)、ユージアル石(eudialyte)およびそれらの混合物からなる群から選択される、[1]記載の塗料組成物。
 [5]
 前記シリカが、結晶性シリカ、無定形シリカ、溶融シリカ、沈殿シリカおよびそれらの混合物から選択される、[4]記載の塗料組成物。
 [6]
 前記無機微粒子が、塗料組成物中の固形分に対して0.01~10重量%の量で含まれる、[1]記載の塗料組成物。
 [7]
 前記硬化剤が、アミノプラスト樹脂またはイソシアネート樹脂の少なくとも1種から選択される、[1]記載の塗料組成物。
 [8]
 前記塗料組成物が、1パックに配合されている、[1]記載の塗料組成物。
 [9]
 前記塗料組成物が、2パックに分けて配合されている、[1]記載の塗料組成物。
That is, the present invention provides the following aspects:
[1]
A coating composition containing a hydroxyl group-containing resin, a curing agent, and inorganic fine particles.
A coating composition in which the surface free energy of a film coated and cured with the coating composition is higher than the surface free energy of a film coated and cured by removing only inorganic fine particles from the coating composition.
[2]
[1] The difference obtained by subtracting (the surface free energy of the film cured by removing only the inorganic fine particles) from (the surface free energy of the film cured by blending the inorganic fine particles) is 0 to 0.5. Paint composition.
[3]
The coating composition according to [1], wherein the inorganic fine particles have an average particle diameter of 2 to 500 nm.
[4]
The inorganic fine particles are selected from the group consisting of silica, alumina, alumina silicate alkali, borosilicate glass, quartz, nepheline syenite, zircon, baddeluite, eudialite and mixtures thereof. 1] The coating composition according to the above.
[5]
The coating composition according to [4], wherein the silica is selected from crystalline silica, amorphous silica, molten silica, precipitated silica and a mixture thereof.
[6]
The coating composition according to [1], wherein the inorganic fine particles are contained in an amount of 0.01 to 10% by weight based on the solid content in the coating composition.
[7]
The coating composition according to [1], wherein the curing agent is selected from at least one of an aminoplast resin and an isocyanate resin.
[8]
The coating composition according to [1], wherein the coating composition is blended in one pack.
[9]
The paint composition according to [1], wherein the paint composition is blended in two packs.
 本発明は、硬化したフィルムの性能を表面自由エネルギーにより制御する。具体的には、(無機微粒子を含まないフィルムの表面自由エネルギー)<(無機微粒子を含むフィルムの表面自由エネルギー)とする。これにより、リコート密着性が良好になると共に、擦り傷性も向上する。本発明の塗料組成物は高いリコート密着性を有しているので、最上層の塗膜を形成する塗料組成物として有用である。通常、最上層には、クリヤー塗膜が存在する。そのため、本発明の塗料組成物は、特にクリヤー塗料組成物として有用である。本発明の塗料組成物は、高圧での洗車に対する密着性も高い。 The present invention controls the performance of the cured film by surface free energy. Specifically, (the surface free energy of the film containing the inorganic fine particles) <(the surface free energy of the film containing the inorganic fine particles). As a result, the recoat adhesion is improved and the scratch resistance is also improved. Since the coating composition of the present invention has high recoat adhesion, it is useful as a coating composition for forming a coating film on the uppermost layer. Usually, a clear coating film is present on the uppermost layer. Therefore, the coating composition of the present invention is particularly useful as a clear coating composition. The coating composition of the present invention also has high adhesion to car washing at high pressure.
 硬化塗膜の表面自由エネルギーは、例えば、表面調整剤によって制御することができる。 The surface free energy of the cured coating film can be controlled by, for example, a surface conditioner.
<塗料組成物>
水酸基含有樹脂
 本発明の塗料組成物は、水酸基含有樹脂、硬化剤および無機微粒子を含有する。水酸基含有樹脂は、水酸基を含有する重合体であれば特に限定されず、例えば、水酸基含有アクリル樹脂、水酸基含有ポリエステル樹脂、水酸基含有アルキド樹脂、水酸基含有シリコーン樹脂等が例示される。なかでも、設計および合成が容易である点で、水酸基含有アクリル樹脂または水酸基含有ポリエステル樹脂が好適である。
<Paint composition>
Hydroxy Group-Containing Resin The coating composition of the present invention contains a hydroxyl group-containing resin, a curing agent, and inorganic fine particles. The hydroxyl group-containing resin is not particularly limited as long as it is a polymer containing a hydroxyl group, and examples thereof include a hydroxyl group-containing acrylic resin, a hydroxyl group-containing polyester resin, a hydroxyl group-containing alkyd resin, and a hydroxyl group-containing silicone resin. Of these, a hydroxyl group-containing acrylic resin or a hydroxyl group-containing polyester resin is preferable because it is easy to design and synthesize.
水酸基含有アクリル樹脂
 本発明に好適な水酸基含有アクリル樹脂としては、水酸基含有エチレン性不飽和モノマーとその他のエチレン性不飽和モノマーとを共重合させて得られるものが挙げられる。水酸基含有アクリル樹脂の数平均分子量(Mn)は、1000~10000が好ましく、1100~8000が更に好ましい。数平均分子量が上記の範囲であると、塗装作業性が向上するとともに、ベース塗膜(以下、中塗り塗膜と称する場合がある。)との混層が抑制され易い。さらに、数平均分子量が上記の範囲であると、粘度調整し易くなるため、塗料に不揮発分を多く配合することができる。塗膜外観の観点から、水酸基含有アクリル樹脂の数平均分子量は、1200~7000が特に好ましい。水酸基含有アクリル樹脂の水酸基価は、50~280mgKOH/gが好ましく、70~260mgKOH/gが更に好ましい。水酸基価が上記の範囲であると、得られる塗膜の耐水性とともに硬化性が向上し易い。同様の観点から、水酸基含有アクリル樹脂の酸価は、0~32mgKOH/gが好ましく、2~20mgKOH/gが更に好ましい。
Hydroxyl group-containing acrylic resin Examples of the hydroxyl group-containing acrylic resin suitable for the present invention include those obtained by copolymerizing a hydroxyl group-containing ethylenically unsaturated monomer and another ethylenically unsaturated monomer. The number average molecular weight (Mn) of the hydroxyl group-containing acrylic resin is preferably 1000 to 10000, and more preferably 1100 to 8000. When the number average molecular weight is in the above range, the coating workability is improved, and the mixed layer with the base coating film (hereinafter, may be referred to as an intermediate coating film) is easily suppressed. Further, when the number average molecular weight is in the above range, the viscosity can be easily adjusted, so that a large amount of non-volatile components can be blended in the coating material. From the viewpoint of the appearance of the coating film, the number average molecular weight of the hydroxyl group-containing acrylic resin is particularly preferably 1200 to 7000. The hydroxyl value of the hydroxyl group-containing acrylic resin is preferably 50 to 280 mgKOH / g, more preferably 70 to 260 mgKOH / g. When the hydroxyl value is in the above range, the water resistance of the obtained coating film and the curability are likely to be improved. From the same viewpoint, the acid value of the hydroxyl group-containing acrylic resin is preferably 0 to 32 mgKOH / g, more preferably 2 to 20 mgKOH / g.
 水酸基含有エチレン性不飽和モノマーと、その他のエチレン性不飽和モノマーととの共重合において、各モノマーの配合割合は、エチレン性不飽和モノマーの総量を基準にして、水酸基含有エチレン性不飽和モノマーが5~60質量%(より好ましくは8~50質量%)であり、その他のエチレン性不飽和モノマーが95~40質量%(より好ましくは92~50質量%)であることが好ましい。上記水酸基含有エチレン性不飽和モノマーの含有量が上記の範囲であると、水酸基含有アクリル樹脂を安定して製造できるとともに、得られる塗膜の耐水性が向上し易い。 In the copolymerization of the hydroxyl group-containing ethylenically unsaturated monomer and other ethylenically unsaturated monomers, the blending ratio of each monomer is based on the total amount of the ethylenically unsaturated monomers, and the hydroxyl group-containing ethylenically unsaturated monomer is used. It is preferably 5 to 60% by mass (more preferably 8 to 50% by mass), and the other ethylenically unsaturated monomer is preferably 95 to 40% by mass (more preferably 92 to 50% by mass). When the content of the hydroxyl group-containing ethylenically unsaturated monomer is in the above range, the hydroxyl group-containing acrylic resin can be stably produced, and the water resistance of the obtained coating film can be easily improved.
 上記水酸基含有エチレン性不飽和モノマーとしては、具体的には、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、アリルアルコール、メタクリルアルコール、並びに、これらと、ラクトン類(β-プロピオラクロン、ジメチルプロピオラクトン、ブチルラクトン、γ-バレロラクトン、ε-カプロラクトン、γ-カプロラクトン、γ-カプリロラクトン、クロトラクトン、δ-バレロラクトン、δ-カプロラクトン等)と、の付加物等が挙げられる。得られる塗膜の耐擦り傷性をより向上させるという観点から、上記水酸基含有エチレン性不飽和モノマーの少なくとも一部として「-(CH)n-」で表される構造を有するものを用いることが好ましい。なかでも、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレートとε-カプロラクトンとの付加物を用いることが特に好ましい。このような水酸基含有エチレン性不飽和モノマーは、単独でも、2種以上を混合して用いることもできる。 Specific examples of the hydroxyl group-containing ethylenically unsaturated monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, allyl alcohol, methacryl alcohol, and the like. , These and lactones (β-propiolaclone, dimethylpropiolactone, butyl lactone, γ-valerolactone, ε-caprolactone, γ-caprolactone, γ-caprilolactone, crotolactone, δ-valerolactone, δ- Caprolactone, etc.) and additives such as. From the viewpoint of further improving the scratch resistance of the obtained coating film, it is possible to use one having a structure represented by "-(CH 2) n-" as at least a part of the hydroxyl group-containing ethylenically unsaturated monomer. preferable. Of these, it is particularly preferable to use an adduct of 4-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate and ε-caprolactone. Such a hydroxyl group-containing ethylenically unsaturated monomer may be used alone or in combination of two or more.
 上記その他のエチレン性不飽和モノマーとしては、特に限定されるものではないが、カルボキシル基を有するエチレン性不飽和モノマーを挙げることができる。その例として、(メタ)アクリル酸誘導体(例えば、アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、アクリル酸二量体、アクリル酸にε-カプロラクトンを付加させたα-ハイドロ-ω-((1-オキソ-2-プロペニル)オキシ)ポリ(オキシ(1-オキソ-1,6-ヘキサンジイル))等)、並びに、不飽和二塩基酸、そのハーフエステル、ハーフアミド及びハーフチオエステル(例えば、マレイン酸、フマル酸、イタコン酸、そのハーフエステル、ハーフアミド及びハーフチオエステル等)が挙げられる。カルボキシル基を有するもの以外のエチレン性不飽和モノマーの例としては、(メタ)アクリレートエステルモノマー(例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチルアクリレート、t-ブチルアクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリルメタアクリレート、フェニルアクリレート、イソボルニル(メタ)アクリレート、シクロヘキシルメタクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、ジヒドロジシクロペンタジエニル(メタ)アクリレート等);重合性芳香族化合物(例えば、スチレン、α-メチルスチレン、ビニルケトン、t-ブチルスチレン、パラクロロスチレン、ビニルナフタレン等);重合性ニトリル(例えば、アクリロニトリル、メタクリロニトリル等);α-オレフィン(例えば、エチレン、プロピレン等);ビニルエステル(例えば、酢酸ビニル、プロピオン酸ビニル等);ジエン(例えば、ブタジエン、イソプレン等);必要によりイソシアネート基含有モノマー等を挙げることができる。なお、このようなその他のエチレン性不飽和モノマーは、単独でも、2種以上を混合して用いることもできる。 The other ethylenically unsaturated monomer is not particularly limited, and examples thereof include an ethylenically unsaturated monomer having a carboxyl group. As an example, a (meth) acrylic acid derivative (for example, acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, acrylic acid dimer, α-hydro-ω- ((1)) obtained by adding ε-caprolactone to acrylic acid. -Oxo-2-propenyl) oxy) poly (oxy (1-oxo-1,6-hexanediyl)), etc.), and unsaturated dibasic acids, their half esters, half amides and half thioesters (eg, maleic acid). , Fumaric acid, itaconic acid, its half ester, half amide, half thioester, etc.). Examples of ethylenically unsaturated monomers other than those having a carboxyl group include (meth) acrylate ester monomers (eg, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl acrylate, t). -Butyl acrylate, 2-ethylhexyl (meth) acrylate, lauryl methacrylate, phenyl acrylate, isobornyl (meth) acrylate, cyclohexyl methacrylate, t-butylcyclohexyl (meth) acrylate, dicyclopentadienyl (meth) acrylate, dihydrodicyclo Pentazienyl (meth) acrylate, etc.); Polymerizable aromatic compounds (eg, styrene, α-methylstyrene, vinylketone, t-butylstyrene, parachlorostyrene, vinylnaphthalene, etc.); Lonitrile, etc.); α-olefin (eg, ethylene, propylene, etc.); Vinyl ester (eg, vinyl acetate, vinyl propionate, etc.); Diene (eg, butadiene, isoprene, etc.); be able to. It should be noted that such other ethylenically unsaturated monomers may be used alone or in combination of two or more.
 上記の水酸基含有エチレン性不飽和モノマーとその他のエチレン性不飽和モノマーとを共重合させることにより、本発明に好適な水酸基含有アクリル樹脂を得ることができる。重合方法は特に制限されず、溶液ラジカル重合のような公知文献等に記載されている通常の方法を用いることができる。例えば、重合温度60~160℃で2~10時間かけて、適当なラジカル重合開始剤とモノマー混合溶液とを適当な溶媒中へ滴下しながら撹拌する方法が挙げられる。ここで用いうるラジカル重合開始剤は、通常重合に際して使用するものであれば特に限定されず、アゾ系化合物(例えば、ジメチル-2,2´-アゾビスイソブチレート)、過酸化物(例えば、t-ブチルパーオキシ-2-エチルヘキサノエート)等が挙げられる。このような開始剤の量は、不飽和モノマーの総量に対して一般に0.1~10質量%であり、好ましくは0.5~8質量%である。また、ここで用いうる溶媒は、反応に悪影響を与えないものであれば特に限定されず、例えば、アルコール、ケトン、炭化水素系溶媒(例えば、プロピレングリコールモノメチルエーテルアセテート、キシレン)等が挙げられる。更に、分子量を調節するために、ラウリルメルカプタンのようなメルカプタンや、α-メチルスチレンダイマーのような連鎖移動剤を必要に応じて用いることができる。 By copolymerizing the above-mentioned hydroxyl group-containing ethylenically unsaturated monomer with another ethylenically unsaturated monomer, a hydroxyl group-containing acrylic resin suitable for the present invention can be obtained. The polymerization method is not particularly limited, and ordinary methods described in publicly known documents such as solution radical polymerization can be used. For example, a method of stirring a suitable radical polymerization initiator and a monomer mixed solution while dropping them into a suitable solvent over 2 to 10 hours at a polymerization temperature of 60 to 160 ° C. can be mentioned. The radical polymerization initiator that can be used here is not particularly limited as long as it is usually used for polymerization, and is an azo compound (for example, dimethyl-2,2'-azobisisobutyrate) or a peroxide (for example, dimethyl-2,2'-azobisisobutyrate). t-Butylperoxy-2-ethylhexanoate) and the like. The amount of such initiator is generally 0.1-10% by weight, preferably 0.5-8% by weight, based on the total amount of unsaturated monomers. The solvent that can be used here is not particularly limited as long as it does not adversely affect the reaction, and examples thereof include alcohols, ketones, and hydrocarbon solvents (for example, propylene glycol monomethyl ether acetate and xylene). In addition, mercaptans such as lauryl mercaptan and chain transfer agents such as α-methylstyrene dimer can be used as needed to regulate the molecular weight.
水酸基含有ポリエステル樹脂
 本発明に好適な水酸基含有ポリエステル樹脂としては、多価カルボン酸及び/又は酸無水物と多価アルコールとを重縮合させて得られるものが挙げられる。低分子多価アルコールに、ラクトン化合物を付加することにより得られる重合体を使用することもできる。水酸基含有ポリエステル樹脂の数平均分子量(Mn)は、1000~4500が好ましい。数平均分子量が上記の範囲であると、十分な硬化性が得られ易くなるとともに、得られる塗膜の平滑性が向上して、良好な外観が得られ易くなる。さらに、塗着時の粘度の過度な上昇が抑制され易い。水酸基含有ポリエステル樹脂の水酸基価は、70~300mgKOH/gが好ましい。水酸基価が上記の範囲であると、弾性の低下が抑制されて、耐チッピング性が高まり易くなるとともに、硬化性も向上し易い。水酸基含有ポリエステル樹脂の酸価は、5~20mgKOH/gであることが好ましい。酸価が上記の範囲であると、耐水性および硬化性が向上し易い。
A hydroxyl group-containing polyester resin Examples of the hydroxyl group-containing polyester resin suitable for the present invention include those obtained by polycondensing a polyvalent carboxylic acid and / or an acid anhydride and a polyhydric alcohol. A polymer obtained by adding a lactone compound to a low molecular weight polyhydric alcohol can also be used. The number average molecular weight (Mn) of the hydroxyl group-containing polyester resin is preferably 1000 to 4500. When the number average molecular weight is in the above range, sufficient curability can be easily obtained, and the smoothness of the obtained coating film is improved, so that a good appearance can be easily obtained. Further, it is easy to suppress an excessive increase in viscosity at the time of coating. The hydroxyl value of the hydroxyl group-containing polyester resin is preferably 70 to 300 mgKOH / g. When the hydroxyl value is in the above range, the decrease in elasticity is suppressed, the chipping resistance is likely to be improved, and the curability is also likely to be improved. The acid value of the hydroxyl group-containing polyester resin is preferably 5 to 20 mgKOH / g. When the acid value is in the above range, water resistance and curability are likely to be improved.
 多価カルボン酸及び/又は酸無水物と多価アルコールとの重縮合において、各成分の配合割合は、水酸基とカルボン酸基及び/又は酸無水物基とのモル比で、1.105~2であることが好ましい。水酸基の割合が上記の範囲であると、得られる水酸基含有ポリエステル樹脂の数平均分子量(Mn)が過度に大きくなることが抑制されて、架橋密度の低下が抑制される。よって、硬化性が向上し易い。さらに、耐水性も高まり易い。 In the polycondensation of polyvalent carboxylic acid and / or acid anhydride and polyhydric alcohol, the compounding ratio of each component is 1.105 to 2 in terms of the molar ratio of hydroxyl group to carboxylic acid group and / or acid anhydride group. Is preferable. When the ratio of the hydroxyl groups is in the above range, it is suppressed that the number average molecular weight (Mn) of the obtained hydroxyl group-containing polyester resin becomes excessively large, and the decrease in the crosslink density is suppressed. Therefore, the curability is likely to be improved. Furthermore, the water resistance is likely to increase.
 上記多価カルボン酸及び/又は酸無水物としては、特に限定されず、例えば、フタル酸、イソフタル酸、無水フタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロフタル酸、メチルテトラヒドロ無水フタル酸、無水ハイミック酸、トリメリット酸、無水トリメリット酸、ピロメリット酸、無水ピロメリット酸、テレフタル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、アジピン酸、アゼライン酸、セバシン酸、コハク酸、無水コハク酸、ドデセニルコハク酸、ドデセニル無水コハク酸等が挙げられる。なお、このような多価カルボン酸及び/又は酸無水物は、単独でも、2種以上を混合して用いることもできる。 The polyvalent carboxylic acid and / or acid anhydride is not particularly limited, and for example, phthalic acid, isophthalic acid, phthalic anhydride, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydrophthalic anhydride, Methyltetrahydrophthalic acid, methyltetrahydrohydrophthalic acid, hymic anhydride, trimellitic acid, trimellitic anhydride, pyromellitic acid, pyromellitic anhydride, terephthalic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, adipine Examples thereof include acids, azelaic acid, sebacic acid, succinic acid, succinic anhydride, dodecenyl succinic acid, dodecenyl succinic anhydride and the like. It should be noted that such a polyvalent carboxylic acid and / or acid anhydride may be used alone or in combination of two or more.
 上記多価アルコールとしては、特に限定されず、例えば、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ネオペンチルグリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジオール、2,2-ジメチル-3-ヒドロキシプロピル-2,2-ジメチル-3-ヒドロキシプロピオネート、2,2,4-トリメチル-1,3-ペンタンジオール、ポリテトラメチレンエーテルグリコール、ポリカプロラクトンポリオール、グリセリン、ソルビトール、アンニトール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ヘキサントリオール、ペンタエリスリトール、ジペンタエリスリトール等が挙げられる。なお、このような多価アルコールは、単独でも、2種以上を混合して用いることもできる。 The polyhydric alcohol is not particularly limited, and for example, ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, neopentyl glycol, 1,2-butanediol, 1,3-butanediol, and the like. 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanediol, 2,2-dimethyl-3-hydroxypropyl-2,2- Dimethyl-3-hydroxypropionate, 2,2,4-trimethyl-1,3-pentanediol, polytetramethylene ether glycol, polycaprolactone polyol, glycerin, sorbitol, annitol, trimethylolethane, trimethylolpropane, trimethylol Butane, hexanetriol, pentaerythritol, dipentaerythritol and the like can be mentioned. It should be noted that such a polyhydric alcohol may be used alone or in combination of two or more.
 水酸基含有ポリエステル樹脂を得る際、上記多価カルボン酸及び/又は酸無水物と多価アルコール成分以外の他の反応成分として、モノカルボン酸、ヒドロキシカルボン酸、ラクトン類等を含んでいてもよい。このようなラクトン類は、多価カルボン酸及び多価アルコールのポリエステル鎖へ開環付加してグラフト鎖を形成し得る。ラクトン類としては、例えば、β-プロピオラクロン、ジメチルプロピオラクトン、ブチルラクトン、γ-バレロラクトン、ε-カプロラクトン、γ-カプロラクトン、γ-カプリロラクトン、クロトラクトン、δ-バレロラクトン、δ-カプロラクトン等が挙げられ、なかでもε-カプロラクトンが最も好ましい。 When obtaining a hydroxyl group-containing polyester resin, monocarboxylic acid, hydroxycarboxylic acid, lactones and the like may be contained as reaction components other than the above-mentioned polyvalent carboxylic acid and / or acid anhydride and polyhydric alcohol component. Such lactones can be ring-opened and added to the polyester chain of a polyvalent carboxylic acid and a polyhydric alcohol to form a graft chain. Examples of lactones include β-propiolaclone, dimethylpropiolactone, butyllactone, γ-valerolactone, ε-caprolactone, γ-caprolactone, γ-caprolactone, crotolactone, δ-valerolactone, and δ-. Caprolactone and the like can be mentioned, and ε-caprolactone is most preferable.
 水酸基含有ポリエステル樹脂は、低分子多価アルコールにラクトン化合物を付加することにより得られる。低分子多価アルコールとしては特に限定されず、例えば1分子中に少なくとも3個の水酸基を有するものが好ましく、トリメチロールプロパン、トリメチロールエタン、1,2,4-ブタントリオール、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、グリセリン等が挙げられる。上記ラクトン化合物は、上記低分子多価アルコール化合物に対して開環付加反応を生じることができるラクトン化合物であれば、特に限定されない。上記開環付加反応を起こし易いことから、上記ラクトン化合物の炭素数は4~7個であることが好ましい。例えば、ε―カプロラクトン、γ―カプロラクトン、γ―バレロラクトン、δ―バレロラクトン、γ―ブチロラクトン等を挙げることができる。これは、単独で用いても良く、2種類以上を併用しても良い。これらのなかでも、ε―カプロラクトン及びδ―バレロラクトンがより好ましく、反応性などの点からε―カプロラクトンが更に好ましい。 The hydroxyl group-containing polyester resin can be obtained by adding a lactone compound to a low molecular weight polyhydric alcohol. The low-molecular-weight polyhydric alcohol is not particularly limited, and for example, one having at least three hydroxyl groups in one molecule is preferable, and trimethylolpropane, trimethylolethane, 1,2,4-butanetriol, ditrimethylolpropane, and penta Examples thereof include erythritol, dipentaerythritol, and glycerin. The lactone compound is not particularly limited as long as it is a lactone compound capable of causing a ring-opening addition reaction with the low molecular weight polyhydric alcohol compound. Since the ring-opening addition reaction is likely to occur, the lactone compound preferably has 4 to 7 carbon atoms. For example, ε-caprolactone, γ-caprolactone, γ-valerolactone, δ-valerolactone, γ-butyrolactone and the like can be mentioned. This may be used alone or in combination of two or more. Among these, ε-caprolactone and δ-valerolactone are more preferable, and ε-caprolactone is further preferable from the viewpoint of reactivity and the like.
 水酸基含有樹脂は、塗料組成物の合計固形分重量を基礎にする重量パーセントで、塗料組成物中に20~90重量%、好ましくは40~80重量%で存在する。 The hydroxyl group-containing resin is a weight percent based on the total solid content weight of the coating composition, and is present in the coating composition in an amount of 20 to 90% by weight, preferably 40 to 80% by weight.
硬化剤
 硬化剤としては、例えば、アミノプラスト樹脂またはイソシアネート樹脂が挙げられる。アミノプラスト樹脂とイソシアネート樹脂とは、それぞれ単独で用いてもよいし、併用してもよい。アミノプラスト樹脂としては、尿素、チオ尿素、メラミン、ベンゾグアナミン等の含窒素化合物のホルムアルデヒド縮合物や、該縮合物の低級アルキルエーテル(アルキル基の炭素数は1ないし4)などが挙げられる。イソシアネート樹脂としては、例えば、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、及びその混合物(TDI)、ジフェニルメタン-4,4’-ジイソシアネート(4,4’-MDI)、ジフェニルメタン-2,4’-ジイソシアネート(2,4’-MDI)、及びその混合物(MDI)、ナフタレン-1,5-ジイソシアネート(NDI)、3,3’-ジメチル-4,4’-ビフェニレンジイソシアネート(TODI)、キシリレンジイソシアネート(XDI)、ジシクロへキシルメタン・ジイソシアネート(水素化HDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、水素化キシリレンジイソシアネート(HXDI)等を挙げることができる。さらに、これらのビューレット体、ヌレート体などの多量体および混合物を用いることができる。イソシアネート樹脂は、ブロック体としても使用できる。ブロックイソシアネート樹脂は、塗料の硬化剤として用いられる限り、特に限定されない。ブロックイソシアネートは、イソシアネート樹脂をブロック剤でブロックしたものである。代表的なイソシアネート樹脂としては、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、トリメチルヘキサメチレンジイソシアネートなどの脂肪族イソシアネート、1,3-シクロペンタンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,2-シクロヘキサンジイソシアネートなどの脂肪族環式イソシアネート、キシリレンジイソシアネート(XDI)、2,4-トリレンジイソシアネート(TDI)、2,6-トリレンジイソシアネートなどの芳香族イソシアネート、イソホロンジイソシアネート(IPDI)、ノルボルナンジイソシアネートメチルなどの脂環族イソシアネート、これらのビューレット体、ヌレート体などの多量体および混合物が挙げられる。
Curing agent Examples of the curing agent include aminoplast resin and isocyanate resin. The aminoplast resin and the isocyanate resin may be used alone or in combination. Examples of the aminoplast resin include formaldehyde condensates of nitrogen-containing compounds such as urea, thiourea, melamine, and benzoguanamine, and lower alkyl ethers (alkyl groups having 1 to 4 carbon atoms) of the condensates. Examples of the isocyanate resin include 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), and a mixture thereof (TDI), diphenylmethane-4,4'. -Diisocyanate (4,4'-MDI), diphenylmethane-2,4'-diisocyanate (2,4'-MDI), and mixtures thereof (MDI), naphthalene-1,5-diisocyanate (NDI), 3,3'-Dimethyl-4,4'-biphenylenediocyanate (TODI), xylylene diisocyanate (XDI), dicyclohexylmethane diisocyanate (hydrogenated HDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), hydride xylylene diisocyanate (HXDI) and the like. Furthermore, multimers and mixtures such as these burettes and nurates can be used. The isocyanate resin can also be used as a block body. The blocked isocyanate resin is not particularly limited as long as it is used as a curing agent for paints. Blocked isocyanate is an isocyanate resin blocked with a blocking agent. Typical isocyanate resins include aliphatic isocyanates such as trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate (HDI), and trimethylhexamethylene diisocyanate, 1,3-cyclopentane diisocyanate, and 1,4-cyclohexane. Diisocyanate, aliphatic cyclic isocyanate such as 1,2-cyclohexane diisocyanate, aromatic isocyanate such as xylylene diisocyanate (XDI), 2,4-tolylene diisocyanate (TDI), 2,6-tolylene diisocyanate, isophorone diisocyanate (isophorone diisocyanate) IPDI), alicyclic isocyanates such as norbornandiisocyanate methyl, multimers and mixtures such as burettes and nurates thereof.
 イソシアネート樹脂をブロックするブロック剤としては、n-ブタノール、n-ヘキシルアルコール、2-エチルヘキサノール、ラウリルアルコール、フェノールカルビノール、メチルフェニルカルビノールなどの一価のアルキル(または芳香族)アルコール類;エチレングリコールモノヘキシルエーテル、エチレングリコールモノ2-エチルヘキシルエーテルなどのセロソルブ類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールフェノールなどのポリエーテル型両末端ジオール類;エチレングリコール、プロピレングリコール、1,4-ブタンジオールなどのジオール類と、シュウ酸、コハク酸、アジピン酸、スベリン酸、セバシン酸などのジカルボン酸類から得られるポリエステル型両末端ポリオール類;パラ-t-ブチルフェノール、クレゾールなどのフェノール類;ジメチルケトオキシム、メチルエチルケトオキシム、メチルイソブチルケトオキシム、メチルアミルケトオキシム、シクロヘキサノンオキシムなどのオキシム類;およびε-カプロラクタム、γ-ブチロラクタムに代表されるラクタム類が好ましく用いられる。 Blocking agents that block the isocyanate resin include monohydric alkyl (or aromatic) alcohols such as n-butanol, n-hexyl alcohol, 2-ethylhexanol, lauryl alcohol, phenolcarbinol, and methylphenylcarbinol; ethylene. Cellosolves such as glycol monohexyl ether and ethylene glycol mono2-ethylhexyl ether; polyether-type both-terminal diols such as polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol phenol; ethylene glycol, propylene glycol and 1,4-butane. Polyester-type double-ended polyols obtained from diols such as diols and dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, suberic acid, and sebacic acid; phenols such as para-t-butylphenol and cresol; dimethyl ketooxime , Oxims such as methyl ethyl keto oxime, methyl isobutyl keto oxime, methyl amilketo oxime, cyclohexanone oxime; and lactams typified by ε-caprolactam and γ-butyrolactam are preferably used.
 硬化剤は、一般に、50重量パーセントまでの量で存在する。重量%は、塗料組成物の合計固形分重量を基準にする。 The curing agent is generally present in an amount of up to 50 weight percent. The weight% is based on the total solid content weight of the coating composition.
無機微粒子
 本発明の塗料組成物は、無機微粒子を含有する。無機微粒子の例は、特に制限されないが、シリカ、アルミナ、ケイ酸アルミナアルカリ、ホウケイ酸ガラス、石英、霞石閃長岩、ジルコン、バデリューアイト(buddeluyite)、ユージアル石(eudialyte)およびそれらの混合物よりなる群から選択される少なくとも1種である。シリカとしては、結晶性シリカ、無定形シリカ、溶融シリカ、沈降シリカまたはこれらの混合物が挙げられる。これらの無機微粒子は、平均粒子径2~500nmを有する。平均粒子径が上記の範囲であると、分散安定性、擦り傷性、仕上がり外観が向上し易い。無機微粒子の平均粒子径は、好ましくは5~200nmであり、よりこの好ましくは5~100nmである。粒子サイズは、当該分野において公知の任意の方法に従って、例えば従来の粒子サイズ分析器によって、決定され得る。具体的には、平均粒子サイズが1ミクロンより大きい場合、レーザー散乱技術が使用され得、そして1ミクロン未満の平均粒子サイズについては、TEMが使用され得る。
Inorganic Fine Particles The coating composition of the present invention contains inorganic fine particles. Examples of the inorganic fine particles are not particularly limited, but are a group consisting of silica, alumina, alumina alkali silicate, borosilicate glass, quartz, nepheline syenite, zircon, baddeluite, eudialite and a mixture thereof. At least one selected from. Examples of silica include crystalline silica, amorphous silica, fused silica, precipitated silica or a mixture thereof. These inorganic fine particles have an average particle size of 2 to 500 nm. When the average particle size is in the above range, dispersion stability, scratch resistance, and finished appearance are likely to be improved. The average particle size of the inorganic fine particles is preferably 5 to 200 nm, more preferably 5 to 100 nm. The particle size can be determined according to any method known in the art, for example by a conventional particle size analyzer. Specifically, laser scattering techniques can be used if the average particle size is greater than 1 micron, and TEM can be used for average particle sizes less than 1 micron.
 無機微粒子は、本発明の塗料組成物中に、その固形分を基準として、例えば0.01~10重量%含まれる。無機微粒子の含有量が上記の範囲であると、無機微粒子を配合する利点が十分に発揮される一方で、塗料や塗膜に不具合を与えない。無機微粒子の配合量は、好ましくは0.1~5重量%、より好ましくは1~5重量%である。 Inorganic fine particles are contained in the coating composition of the present invention in an amount of, for example, 0.01 to 10% by weight based on the solid content thereof. When the content of the inorganic fine particles is in the above range, the advantage of blending the inorganic fine particles is fully exhibited, but the paint or the coating film is not damaged. The blending amount of the inorganic fine particles is preferably 0.1 to 5% by weight, more preferably 1 to 5% by weight.
表面自由エネルギー
 本発明の塗料組成物により得られる硬化塗膜の表面自由エネルギーは、無機微粒子を除いで硬化させた塗膜の表面自由エネルギーより高い。表面自由エネルギーは、液体での表面張力に相当し、固体の表面自体がもつ分子のエネルギーである。表面張力の単位は「mN/m」であり、表面自由エネルギーの単位は「mJ/m」であるが、両者の値は等しいと考えられている。これらの表面自由エネルギーの差は、特に限定するものではない。(無機微粒子を配合して硬化させた塗膜の表面自由エネルギー)-(無機微粒子を除いて硬化させた塗膜の表面自由エネルギー)は、例えば、0~0.5であり、0.1~0.4程度である。本発明において、「表面自由エネルギー」は、水とヨウ化メチレンとの混合液の被覆表面での接触角を求め、下記の計算式に従って、算出される。
 測定方法および計算式は、SOUHENG WU,J.Poly.Sci.,PARTC.34 19(1971)の記載に基づいている。
Figure JPOXMLDOC01-appb-M000001

(上記計算式中、γ12は物質1と物質2との間の界面張力を表し、γは物質iの表面張力を表し、γ はγの分散成分を表し、γ は極性成分を表す。)
Surface free energy The surface free energy of the cured coating film obtained by the coating composition of the present invention is higher than the surface free energy of the coating film cured except for the inorganic fine particles. The surface free energy corresponds to the surface tension of a liquid and is the energy of the molecules of the solid surface itself. The unit of surface tension is "mN / m" and the unit of surface free energy is "mJ / m 2 ", but both values are considered to be equal. The difference between these surface free energies is not particularly limited. (Surface free energy of the coating film cured by blending inorganic fine particles)-(Surface free energy of the coating film cured by excluding the inorganic fine particles) is, for example, 0 to 0.5, and 0.1 to 0.1. It is about 0.4. In the present invention, the "surface free energy" is calculated according to the following formula by determining the contact angle of the mixed solution of water and methylene iodide on the coated surface.
The measuring method and calculation formula are based on the description of SOUHENG WU, J. Poly. Sci., PARTC. 34 19 (1971).
Figure JPOXMLDOC01-appb-M000001

(In the above formula, gamma 12 represents the interfacial tension between the material 1 and material 2, gamma i represents the surface tension of the substance i, γ i d represents the dispersion component of the γ i, γ i p is Represents a polar component.)
 本発明の塗料組成物で形成された硬化フィルムの表面自由エネルギーは、塗料組成物中に配合させている成分により制御され得る。その成分は、限定されない。本発明の実施例では、表面調整剤の種類を変更することで、表面自由エネルギーを調整した。比較的容易に表面自由エネルギーの調整ができるためである。しかしながら、表面自由エネルギーは、表面調整剤の量や種類によってのみ制御されるものではない。例えば、無機微粒子の種類や、配合する塗料の水酸基含有樹脂の種類等によっても、表面自由エネルギーを制御することができる。 The surface free energy of the cured film formed by the coating composition of the present invention can be controlled by the components blended in the coating composition. Its ingredients are not limited. In the examples of the present invention, the surface free energy was adjusted by changing the type of the surface conditioner. This is because the surface free energy can be adjusted relatively easily. However, the surface free energy is not controlled only by the amount and type of surface conditioner. For example, the surface free energy can be controlled by the type of inorganic fine particles, the type of hydroxyl group-containing resin of the coating material to be blended, and the like.
 表面調整剤は、名前の通り、表面張力を制御するものであって、消泡剤、レベリング剤、ワキ防止剤として働く。表面調整剤としては、多くの種類が存在するが、例えば、アクリル系、ビニル系、シリコーン系、フッ素系の化合物が挙げられる。上記表面調整剤は、それぞれ単独で、又は2種以上を適宜組み合わせて使用することができる。 As the name suggests, the surface conditioner controls the surface tension and works as an antifoaming agent, a leveling agent, and an armpit preventive agent. There are many types of surface conditioners, and examples thereof include acrylic, vinyl, silicone, and fluorine compounds. The above surface conditioners can be used alone or in combination of two or more as appropriate.
 本発明は、無機微粒子を含む硬化フィルムの表面自由エネルギーが、無機微粒子のみを除いて得られる硬化フィルムの表面自由エネルギーよりも高いことを特徴としている。表面調整剤に求められる機能としては、硬化フィルム表面に配向して表面自由エネルギーを上げることである。表面に配向させるためには、表面調整剤の溶解性パラメータが、硬化フィルムを構成する樹脂や添加剤よりも低いことが必要である。表面自由エネルギーを上げる機能を有する限り、表面調整剤の化学構造は特に限定されない。表面調整剤としては、例えば、ポリエステル系、シリコーン系の化合物が挙げられる。表面調整剤の市販品としては、例えば、ビックケミー社製のBYKシリーズ(シリコーン系、アクリル系)、エヴォニック社製のTegoシリーズ(シリコーン系、アクリル系)、共栄社化学社製のポリフローシリーズ(アクリル系)、DYNEA社製のDYNOADDシリーズ(ポリエステル系)、東レ・ダウコーニング社製のシリコーン系表面調整剤等が挙げられる。 The present invention is characterized in that the surface free energy of the cured film containing the inorganic fine particles is higher than the surface free energy of the cured film obtained by removing only the inorganic fine particles. The function required of the surface conditioner is to orient the surface of the cured film and increase the surface free energy. In order to orient the surface, the solubility parameter of the surface conditioner needs to be lower than that of the resin or additive constituting the cured film. The chemical structure of the surface conditioner is not particularly limited as long as it has a function of increasing the surface free energy. Examples of the surface conditioner include polyester-based and silicone-based compounds. Commercially available surface conditioners include, for example, BYK series (silicone type, acrylic type) manufactured by Big Chemie, Tego series (silicone type, acrylic type) manufactured by Evonic, and Polyflow series (acrylic type) manufactured by Kyoeisha Chemical Co., Ltd. ), DYNOADD series (polyester type) manufactured by DYNEA, silicone-based surface conditioner manufactured by Toray Dow Corning, and the like.
 表面調整剤の表面張力は、好ましくは26mN/m以上、より好ましくは28~30mN/mである。表面張力は、ダイノメーター(ドイツ・ビックガードナー社製)を用いて、白金リング法により測定できる。 The surface tension of the surface conditioner is preferably 26 mN / m or more, more preferably 28 to 30 mN / m. The surface tension can be measured by the platinum ring method using a dynometer (manufactured by Big Gardner, Germany).
その他の成分
 本発明の塗料組成物は、塗装時に塗料の粘度を下げるために、溶媒、特に有機溶媒を好ましく含有する。有機溶媒は、例えば、アルコール、ケトン、芳香族炭化水素、グリコールエーテル、エステルまたはそれらの混合物を含む。溶剤型の塗料では、有機溶媒は、塗料組成物の合計重量に基づいて、5~80重量%、特に30~50重量%の量で存在している。塗料組成物は、水性塗料であってよく、その場合、溶媒として水および有機溶媒の混合物を含む。
Other Ingredients The coating composition of the present invention preferably contains a solvent, particularly an organic solvent, in order to reduce the viscosity of the coating material during coating. Organic solvents include, for example, alcohols, ketones, aromatic hydrocarbons, glycol ethers, esters or mixtures thereof. In solvent-based paints, the organic solvent is present in an amount of 5-80% by weight, especially 30-50% by weight, based on the total weight of the paint composition. The coating composition may be a water-based coating, in which case a mixture of water and an organic solvent is included as the solvent.
 本発明の塗料組成物は、塗料組成物に通量添加される添加剤(例えば、可塑剤、抗酸化剤、光安定剤、UV吸収剤、粘性制御剤、有機共溶媒、界面活性剤および触媒)を含み得る。そのような全ての当該分野で公知の添加剤を、適合性の問題なしに使用し得る。 The coating composition of the present invention contains additives (eg, plasticizers, antioxidants, light stabilizers, UV absorbers, viscosity control agents, organic co-solvents, surfactants and catalysts) that are added to the coating composition in a general amount. ) Can be included. All such additives known in the art can be used without compatibility issues.
 本発明の塗料組成物は、使用用途に応じて、1パック(パッケージ)の塗料にしてもよく、また、塗料と硬化剤とに分けた2パック(パッケージ)に配合してもよい。塗装する際、塗料組成物は希釈されてもよい。塗料組成物の固形分は、有機溶剤が環境に与える影響を考慮すると、20℃におけるフォードカップNo.4で20~50秒の粘度となるように希釈した時に、50質量%以上であることが好ましい。 The coating composition of the present invention may be a coating material in one pack (package) depending on the intended use, or may be blended in two packs (package) divided into a coating material and a curing agent. Upon painting, the coating composition may be diluted. The solid content of the coating composition is determined by Ford Cup No. 2 at 20 ° C. in consideration of the influence of the organic solvent on the environment. When diluted with 4 to a viscosity of 20 to 50 seconds, it is preferably 50% by mass or more.
 本発明の塗料組成物は、任意の従来の方法(例えば、ブラッシング、ディッピング、フローコーティング、ロールコーティング、従来および静電スプレー)で塗装される。スプレー技術は、最も頻繁に使用される。得られる乾燥塗膜の厚さは、10~70μm、好ましくは30~60μmの範囲であり得る。 The coating composition of the present invention is coated by any conventional method (eg, brushing, dipping, flow coating, roll coating, conventional and electrostatic spray). Spray technology is most often used. The thickness of the obtained dry coating film can be in the range of 10 to 70 μm, preferably 30 to 60 μm.
 本発明の塗料組成物は、通常、塗膜の最上層、具体的にはクリヤー塗膜を形成するためのクリヤー塗料として使用される。通常、自動車等やその他の物品の塗装では、下塗りと呼ばれる塗装、中塗りまたはベース塗料と呼ばれる着色剤を含有する塗料の塗装、および、その上にクリヤー塗膜と呼ばれる色合いに深みを与える塗装が行なわれて、複層塗膜が形成される。本発明の塗料組成物を最上層を形成するクリヤー塗料として用いると、本発明の塗料組成物の効果であるリコート密着性がより発揮され易い。 The coating composition of the present invention is usually used as a clear coating material for forming the uppermost layer of a coating film, specifically, a clear coating film. Usually, in the painting of automobiles and other articles, a coating called an undercoat, a coating containing a colorant called an intermediate coating or a base coating, and a coating called a clear coating that gives depth to a shade are applied. This is done to form a multi-layer coating. When the coating composition of the present invention is used as a clear coating material forming the uppermost layer, the recoat adhesion, which is the effect of the coating composition of the present invention, is more likely to be exhibited.
 既に述べたように、塗料を塗装する時に、ゴミやほこりの存在や、塗装時に起こる塗料による不具合、塗装機による不具合等により、塗膜欠陥はどうしても発生する。欠陥の状態や、発生時期により、種々の補修方法が検討される。一般的には、欠陥部分を研磨した後、研磨部分を覆い隠すように、再度中塗り塗装およびクリヤー塗装が行なわれる。もちろん、その補修方法はいろいろであって、研磨しない方法もあれば、中塗りから塗装をしないで、クリヤー塗装だけを行う方法等もある。いずれの方法を用いる場合であっても、既に形成された最上層塗膜(具体的にはクリヤー塗膜)の上に別の塗料を塗装することによって、別の塗膜が形成される。本発明の塗料組成物は、塗膜欠陥の補修時に形成される別の塗膜に対するリコート密着性(複層塗膜補修性)が優れている。 As already mentioned, when painting paint, paint film defects inevitably occur due to the presence of dust and dirt, defects caused by paint during painting, defects caused by painting machines, etc. Various repair methods are examined depending on the state of the defect and the time of occurrence. Generally, after polishing the defective portion, intermediate coating and clear coating are performed again so as to cover the polished portion. Of course, there are various repair methods, such as a method without polishing and a method in which only clear painting is performed without painting from the intermediate coating. Regardless of which method is used, another coating film is formed by applying another coating film on the already formed top layer coating film (specifically, a clear coating film). The coating composition of the present invention is excellent in recoat adhesion (multi-layer coating film repairability) to another coating film formed at the time of repairing coating film defects.
 以下、一般的な複層塗膜の形成方法を簡単に記載するが、これらに限定されるものではない。 Hereinafter, a general method for forming a multi-layer coating film will be briefly described, but the method is not limited thereto.
<複層塗膜形成方法>
 複層塗膜の形成方法は、基材上に、ベース塗料組成物を塗布してベース塗膜層を形成し、さらにその上に、上記のクリヤー塗料組成物を塗布してクリヤー塗膜層を形成する。これにより、基材上に、ベース塗膜層とクリヤー塗膜層とを含む複層塗膜が形成される。また、ベース塗料組成物として、自動車(自動車車体、部品等)用の水性光輝性塗料を好適に使用することができる。
<Multi-layer coating film forming method>
The method for forming a multi-layer coating film is to apply a base coating composition on a base material to form a base coating film layer, and then apply the above clear coating composition on the base coating film to form a clear coating film layer. Form. As a result, a multi-layer coating film including a base coating film layer and a clear coating film layer is formed on the base material. Further, as the base coating composition, a water-based brilliant coating material for automobiles (automobile body, parts, etc.) can be preferably used.
 基材としては、特に限定されるものでなく、鉄、アルミニウム、マグネシウム、銅、スズ、亜鉛またはこれらの合金等の金属類およびその成形品;ガラス、セメント、コンクリート等の無機材料;ポリエチレン樹脂、ポリプロピレン樹脂、エチレン-酢酸ビニル樹脂、ポリアミド樹脂、アクリル樹脂、塩化ビニリデン樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリエステル樹脂、ポリスチレン樹脂、ABS樹脂等の樹脂類や各種のFRP等のプラスチック材料およびその成形品または発泡体;木材、繊維材料(紙、布等)等の天然または合成材料等が挙げられる。基材は、例えば、乗用車、トラック、オートバイ、バス等の自動車車体および部品(自動車のボディ、ドアなど)のように、曲面を有しているものであることが好ましい。また、プラスチック成形品としては、具体的には、スポイラー、バンパー、ミラーカバー、グリル、ドアノブ等の自動車部品等を挙げることができる。さらに、これらのプラスチック成形品は、トリクロロエタンで蒸気洗浄または中性洗剤で洗浄されたものが好ましい。また、さらに、静電塗装を可能にするためのプライマー塗装が施されていてもよい。 The base material is not particularly limited, and metals such as iron, aluminum, magnesium, copper, tin, zinc or alloys thereof and molded products thereof; inorganic materials such as glass, cement and concrete; polyethylene resin, Resins such as polypropylene resin, ethylene-vinyl acetate resin, polyamide resin, acrylic resin, vinylidene chloride resin, polycarbonate resin, polyurethane resin, epoxy resin, polyester resin, polystyrene resin, ABS resin, various plastic materials such as FRP, and their plastic materials. Molded products or foams; natural or synthetic materials such as wood and fiber materials (paper, cloth, etc.) can be mentioned. The base material preferably has a curved surface, such as an automobile body and parts (automobile body, door, etc.) such as a passenger car, a truck, a motorcycle, and a bus. Specific examples of the plastic molded product include automobile parts such as spoilers, bumpers, mirror covers, grills, and doorknobs. Further, these plastic molded products are preferably those washed with trichloroethane by steam or with a neutral detergent. Further, a primer coating may be applied to enable electrostatic coating.
 複層塗膜の形成する際、基材が自動車車体およびその部品などの場合には、導電性の基材を予め脱脂処理や化成処理(リン酸塩、クロム酸塩等による化成処理)した後、基材に電着塗装、中塗り塗装などの下地塗装を施しておくことが好ましい。 When forming a multi-layer coating film, if the base material is an automobile body or its parts, the conductive base material is previously degreased or chemical-treated (chemical conversion treatment with phosphate, chromate, etc.). , It is preferable to apply a base coating such as electrodeposition coating or intermediate coating to the base material.
 電着塗装は、鋼板などの導電性の基材に電着塗膜を形成して防錆性を付与することを目的として行われる。このような電着塗膜を形成することのできる電着塗料組成物としては、特に限定はなく、当業者によく知られているカチオン型電着塗料組成物およびアニオン型電着塗料組成物をいずれも使用することができる。なかでも、防錆性の観点から、カチオン型電着塗料組成物が好ましく、エポキシ系のカチオン型電着塗料組成物が特に好ましい。 Electrodeposition coating is performed for the purpose of forming an electrodeposition coating film on a conductive base material such as a steel plate to impart rust resistance. The electrodeposition coating composition capable of forming such an electrodeposition coating film is not particularly limited, and cationic electrodeposition coating compositions and anion-type electrodeposition coating compositions well known to those skilled in the art can be used. Both can be used. Of these, from the viewpoint of rust prevention, a cationic electrodeposition coating composition is preferable, and an epoxy-based cationic electrodeposition coating composition is particularly preferable.
 基材が自動車車体または鋼板である場合、電着塗膜形成前に、脱脂、水洗、化成皮膜形成、水洗、純水洗、乾燥までの前処理を、従来公知の方法で行うことが好ましい。電着塗膜形成方法は、従来公知の方法の中から、適当な方法を任意に選択すればよい。電着塗膜形成条件、焼き付け硬化条件、電着塗膜の厚さ等に関しても、基材や使用する電着塗料組成物の種類等に応じて、適宜決定すればよい。 When the base material is an automobile body or a steel plate, it is preferable to perform pretreatments such as degreasing, washing with water, forming a chemical conversion film, washing with water, washing with pure water, and drying by a conventionally known method before forming an electrodeposition coating film. As the electrodeposition coating film forming method, an appropriate method may be arbitrarily selected from conventionally known methods. The conditions for forming the electrodeposition coating film, the conditions for baking and curing, the thickness of the electrodeposition coating film, and the like may be appropriately determined according to the base material, the type of the electrodeposition coating composition to be used, and the like.
 中塗り塗装は、基材または電着塗膜の上に中塗り塗膜層を形成して、下地隠蔽性、耐チッピング性、上塗り塗膜(クリヤー塗膜)層との密着性などの性能の向上を目的として行われる。また、中塗り塗膜層は、得られる複層塗膜の表面を平滑にし、外観の良好な塗膜とするための下地としても機能する。中塗り塗膜層は、さらに、電着塗膜層と上塗り塗膜層との間のバインダーとなる。中塗り塗膜層には、上塗り塗膜を通じて到達する紫外線や水による劣化に対する耐候性が要求される。中塗り塗膜層を形成することのできる中塗り塗料組成物としては、特に制限はなく、当業者によく知られている溶剤型塗料のほか、水性塗料、粉体塗料またはハイソリッド型塗料等も適用できる。具体的には、エポキシエステル/メラミン系樹脂、アルキッド/メラミン系樹脂またはオイルフリーポリエステル/メラミン系樹脂塗料、アクリル樹脂および/またはポリエステル樹脂とアミノ樹脂および/またはイソシアネート硬化剤とを組み合わせた中塗り塗料等、従来公知の中塗り塗料の中から適宜選択して用いることができる。 In the intermediate coating, an intermediate coating layer is formed on the base material or electrodeposition coating, and the performance such as base hiding property, chipping resistance, and adhesion to the top coating (clear coating) layer is achieved. It is done for the purpose of improvement. In addition, the intermediate coating film layer also functions as a base for smoothing the surface of the obtained multi-layer coating film and forming a coating film having a good appearance. The intermediate coating film layer further serves as a binder between the electrodeposition coating film layer and the top coating film layer. The intermediate coating film layer is required to have weather resistance against deterioration due to ultraviolet rays and water reaching through the top coating film. The intermediate coating composition capable of forming the intermediate coating layer is not particularly limited, and in addition to solvent-based coatings well known to those skilled in the art, water-based coatings, powder coatings, high-solid coatings, etc. Can also be applied. Specifically, epoxy ester / melamine resin, alkyd / melamine resin or oil-free polyester / melamine resin paint, intermediate coating paint combining acrylic resin and / or polyester resin with amino resin and / or isocyanate curing agent. Etc., can be appropriately selected and used from conventionally known intermediate coating paints.
 中塗り塗膜層の形成方法に関しては、従来公知の方法の中から適当な方法を任意に選択すればよい。カーボンブラックと二酸化チタンとを主要顔料としたグレー系中塗り塗料組成物や、上塗り塗膜層との明度および色相を合わせたセットグレーや、各種の着色顔料を組み合わせた、いわゆるカラー中塗り塗料組成物を用いることができる。これらのカラー中塗り塗料組成物は、中塗り塗膜層と上塗り塗膜層との複合色を発現させ、意匠性をさらに高めることができる。また、これらの中塗り塗料組成物に、アルミニウム粉、マイカ粉等の扁平顔料を添加してもよい。さらに、中塗り塗料組成物には、塗料に通常添加することのできる添加剤、例えば、表面調整剤、酸化防止剤、消泡剤等を配合してもよい。中塗り塗膜層の乾燥膜厚は、10~100μmが好ましく、より好ましくは20~40μmである。 Regarding the method for forming the intermediate coating film layer, an appropriate method may be arbitrarily selected from the conventionally known methods. A gray-based intermediate coating composition containing carbon black and titanium dioxide as the main pigments, a set gray that matches the brightness and hue with the topcoat coating layer, and a so-called color intermediate coating composition that combines various coloring pigments. Things can be used. These color intermediate coating composition can develop a composite color of the intermediate coating layer and the top coating layer, and can further enhance the design. Further, a flat pigment such as aluminum powder or mica powder may be added to these intermediate coating compositions. Further, the intermediate coating composition may contain additives which can be usually added to the coating material, such as a surface conditioner, an antioxidant, an antifoaming agent and the like. The dry film thickness of the intermediate coating film layer is preferably 10 to 100 μm, more preferably 20 to 40 μm.
 本発明を実施例により更に詳細に説明する。実施例において、特に指示しない限りは、部や%は重量(質量)に基づく。本発明はこれら実施例に限定されるものと解してはならない。 The present invention will be described in more detail by way of examples. In the examples, parts and% are based on weight (mass) unless otherwise specified. The present invention should not be construed as being limited to these examples.
製造例1 水酸基含有アクリル樹脂の製造
 温度計、撹拌羽根、窒素導入管、冷却コンデンサー及び滴下ロートを備えた反応容器に、プロピレングリコールモノメチルエーテルアセテート448部を加え、窒素雰囲気下120℃に加温した。その容器に、滴下ロートを用いてプロピレングリコールモノメチルエーテルアセテート100部、tert-ブチルパーオキシ2-エチルヘキサノエート105部、並びに、モノマー配合としてスチレン200部、アクリル酸-n-ブチル67部、メタクリル酸アルキル100部、メタクリル酸イソボロニル270部、アクリル酸-4-ヒドロキシブチル360部及びメタクリル酸3部からなるモノマー混合液を3時間かけて等速滴下した。その後120℃で0.5時間保持し、後滴下溶液として50部のプロピレングリコールモノメチルエーテルアセテートに溶解したtert-ブチルパーオキシ2-エチルヘキサノエート10部を30分で等速滴下した。更に、120℃で1時間加温を続けた。
Production Example 1 Production of hydroxyl group-containing acrylic resin To a reaction vessel equipped with a thermometer, a stirring blade, a nitrogen introduction tube, a cooling condenser and a dropping funnel, 448 parts of propylene glycol monomethyl ether acetate was added and heated to 120 ° C. under a nitrogen atmosphere. .. In the container, 100 parts of propylene glycol monomethyl ether acetate, 105 parts of tert-butylperoxy2-ethylhexanoate, and 200 parts of styrene, 67 parts of acrylic acid-n-butyl, and methacrylic acid as a monomer combination using a dropping funnel. A monomer mixed solution consisting of 100 parts of alkyl acid, 270 parts of isobolonyl methacrylate, 360 parts of -4-hydroxybutyl acrylate and 3 parts of methacrylic acid was added dropwise at a constant velocity over 3 hours. Then, the mixture was kept at 120 ° C. for 0.5 hours, and 10 parts of tert-butylperoxy2-ethylhexanoate dissolved in 50 parts of propylene glycol monomethyl ether acetate was added dropwise at a constant velocity in 30 minutes as a post-drop solution. Further, heating was continued at 120 ° C. for 1 hour.
 その結果、計算Tg5.3℃、固形分酸価2mgKOH/g、水酸基価140mgKOH/g、GPCを用いて得られた標準ポリスチレン換算で数平均分子量(Mn)4600、重量平均分子量(Mw)11300、樹脂固形分は62.5%のアクリル樹脂Aを得た。なお、メタクリル酸アルキルとしては、メタクリル酸ラウリル/メタクリル酸トリデシルの混合比(質量基準)が4/6であるアクリエステルSL(三菱レイヨン社製)を用いた。 As a result, the calculated Tg was 5.3 ° C., the solid content acid value was 2 mgKOH / g, the hydroxyl value was 140 mgKOH / g, the number average molecular weight (Mn) was 4600, and the weight average molecular weight (Mw) was 11300 in terms of standard polystyrene obtained by using GPC. An acrylic resin A having a resin solid content of 62.5% was obtained. As the alkyl methacrylate, Acryester SL (manufactured by Mitsubishi Rayon Co., Ltd.) having a mixing ratio (mass basis) of lauryl methacrylate / tridecylic methacrylate of 4/6 was used.
実施例1
 クリヤー塗料組成物a1の調製
 1Lの金属製容器に、製造例1の水酸基含有アクリル樹脂を樹脂固形分で60.0部、ディスモジュールN-3300(住化コベストロウレタン社製イソシアヌレート化合物)を固形分で40.0部、DYNOADD F-1(DYNEA AS社製表面調整剤:表面張力28.6mN/m)を固形分で1部、NANOBYK-3652(ビックケミー社製無機微粒子:粒径40nm)2.0部、チヌビン384(チバガイギー社製紫外線吸収剤)2.0部、チヌビン123(チバガイギー社製光安定剤)1.0部、メチルアミルケトン57.0部およびDBE(昭栄ケミカル社製)22.0部を順次添加し、ディスパーにて十分撹拌し、2液型クリヤー塗料組成物a1を得た。
Example 1
Preparation of Clear Paint Composition a1 In a 1 L metal container, 60.0 parts of the hydroxyl group-containing acrylic resin of Production Example 1 in terms of resin solid content and Dismodule N-3300 (isocyanurate compound manufactured by Sumika Cobestrourethane) were placed. 40.0 parts of solid content, DYNOADD F-1 (surface conditioner manufactured by DYNEA AS: surface tension 28.6 mN / m), 1 part of solid content, NANOBYK-3652 (inorganic fine particles manufactured by Big Chemie: particle size 40 nm) 2.0 parts, chinubin 384 (ultraviolet absorber manufactured by Ciba Geigy) 2.0 parts, chinubin 123 (light stabilizer manufactured by Ciba Geigy) 1.0 part, methyl amylketone 57.0 parts and DBE (manufactured by Shoei Chemical Co., Ltd.) 22.0 parts were sequentially added and sufficiently stirred with a disper to obtain a two-component clear coating composition a1.
クリヤー塗料組成物a2の調製
 1Lの金属製容器に、製造例1の水酸基含有アクリル樹脂を樹脂固形分で60.0部、ディスモジュールN-3300(住化コベストロウレタン社製イソシアヌレート化合物)を固形分で40.0部、DYNOADD F-1(DYNEA AS社製表面調整剤:表面張力28.6mN/m)を固形分で1部、チヌビン384(チバガイギー社製紫外線吸収剤)2.0部、チヌビン123(チバガイギー社製光安定剤)1.0部、メチルアミルケトン57.0部およびDBE(昭栄ケミカル社製)22.0部を順次添加し、ディスパーにて十分撹拌し、2液型クリヤー塗料組成物a2を得た。
Preparation of Clear Paint Composition a2 In a 1 L metal container, 60.0 parts of the hydroxyl group-containing acrylic resin of Production Example 1 in terms of resin solid content and Dismodule N-3300 (isocyanurate compound manufactured by Sumika Cobestro Urethane Co., Ltd.) were placed. 40.0 parts of solid content, 1 part of DYNOADD F-1 (surface conditioner manufactured by DYNEA AS: surface tension 28.6 mN / m), 2.0 parts of tinubin 384 (ultraviolet absorber manufactured by Ciba Geigy) , Tinubin 123 (light stabilizer manufactured by Ciba Geigy Co., Ltd.), 57.0 parts of methylamylketone and 22.0 parts of DBE (manufactured by Shoei Chemical Co., Ltd.) were added in sequence, and the mixture was sufficiently stirred with a disper to form a two-component type. A clear paint composition a2 was obtained.
塗膜A1の作成(クリヤー塗料a1を使用する塗膜)
 リン酸処理鋼板に、日本ペイント・オートモーティブコーティングス社製カチオン電着塗料「パワートップU-50」(商品名)を、乾燥膜厚が25μmになるように塗装した。次いで、加熱により塗料を硬化させて、試験板を得た。この試験板に、日本ペイント・オートモーティブコーティングス社製水性塗料「アクアレックスAR-800」(商品名)を、乾燥膜厚が20μmになるように塗装した。次いで日本ペイント・オートモーティブコーティングス社製水性塗料「アクアレックスAR-2000」(商品名)ブラック色を、乾燥膜厚が10μmになるように塗装し、80℃で5分間乾燥を行った。その上に、ウェットオンウェットで上記クリヤー塗料組成物a1を、乾燥膜厚が40μmになるように塗布した。続いて、140℃で30分間焼付け乾燥を行い、試験塗板A1を作製した。
Creation of coating film A1 (coating film using clear paint a1)
The phosphoric acid-treated steel sheet was coated with a cationic electrodeposition paint "Power Top U-50" (trade name) manufactured by Nippon Paint Automotive Coatings Co., Ltd. so that the dry film thickness was 25 μm. Then, the paint was cured by heating to obtain a test plate. This test plate was coated with a water-based paint "Aqualex AR-800" (trade name) manufactured by Nippon Paint Automotive Coatings Co., Ltd. so that the dry film thickness was 20 μm. Next, a water-based paint "Aqualex AR-2000" (trade name) manufactured by Nippon Paint Automotive Coatings Co., Ltd. was coated with a black color so that the dry film thickness was 10 μm, and dried at 80 ° C. for 5 minutes. On it, the clear coating composition a1 was applied wet-on-wet so that the dry film thickness was 40 μm. Subsequently, it was baked and dried at 140 ° C. for 30 minutes to prepare a test coating plate A1.
塗膜A2の作成(クリヤー塗料a2を使用する塗膜)
 リン酸処理鋼板に日本ペイント・オートモーティブコーティングス社製カチオン電着塗料「パワートップU-50」(商品名)を乾燥膜厚が25μmになるように塗装した。次いで、加熱により塗料を硬化させて、試験板を得た。この試験板に、日本ペイント・オートモーティブコーティングス社製水性塗料「アクアレックスAR-800」(商品名)を、乾燥膜厚が20μmになるように塗装した。次いで、日本ペイント・オートモーティブコーティングス社製水性塗料「アクアレックスAR-2000」(商品名)ブラック色を、乾燥膜厚が10μmになるように塗装し、80℃で5分間乾燥を行った。その上に、ウェットオンウェットで上記クリヤー塗料組成物a2を、乾燥膜厚が40μmになるように塗布した。続いて、140℃で30分間焼付け乾燥を行い、試験塗板A-2を作製した。
Creation of coating film A2 (coating film using clear paint a2)
The phosphoric acid-treated steel sheet was coated with a cationic electrodeposition paint "Power Top U-50" (trade name) manufactured by Nippon Paint Automotive Coatings Co., Ltd. so that the dry film thickness was 25 μm. Then, the paint was cured by heating to obtain a test plate. This test plate was coated with a water-based paint "Aqualex AR-800" (trade name) manufactured by Nippon Paint Automotive Coatings Co., Ltd. so that the dry film thickness was 20 μm. Next, a water-based paint "Aqualex AR-2000" (trade name) manufactured by Nippon Paint Automotive Coatings Co., Ltd. was coated with a black color so that the dry film thickness was 10 μm, and dried at 80 ° C. for 5 minutes. On it, the clear coating composition a2 was applied wet-on-wet so that the dry film thickness was 40 μm. Subsequently, it was baked and dried at 140 ° C. for 30 minutes to prepare a test coating plate A-2.
実施例2~3および比較例1~3
 無機微粒子および表面調整剤として、下記表(表1)に示されたものを表に示した量で用いたこと以外は、実施例1と同様にして2液型クリヤー塗料組成物b1~f2を調製し、さらに塗膜B1~F2を作製した。
Examples 2 to 3 and Comparative Examples 1 to 3
The two-component clear coating compositions b1 to f2 were used in the same manner as in Example 1 except that the inorganic fine particles and the surface conditioners shown in the following table (Table 1) were used in the amounts shown in the table. The mixture was prepared, and coating films B1 to F2 were further prepared.
Figure JPOXMLDOC01-appb-T000002
 表1中、無機微粒子および表面調整剤は以下の通りである:
 NANOBYK-3652:ビックケミー・ジャパン社製無機微粒子:粒径40nm。
 SO-C4:アドマテックス社製無機微粒子:粒径1,000nm。
 DYNOADD F-1:DYNEA AS社製表面調整剤(ポリエステル系)、表面張力28.6mN/m。
 DOW CORNING TORAY L-7604:東レ・ダウコーニング社製表面調整剤(シリコーン系)、表面張力28.5mN/m。
 DOW CORNING TORAY 8637:東レ・ダウコーニング社製表面調整剤(シリコーン系)、表面張力25.0mN/m。
 BYK-337:ビックケミー・ジャパン社製表面調整剤(シリコーン系)、表面張力23.3mN/m。
 BYK-306:ビックケミー・ジャパン社製表面調整剤(シリコーン系)、表面張力23.4mN/m。
Figure JPOXMLDOC01-appb-T000002
In Table 1, the inorganic fine particles and surface conditioners are as follows:
NANOBYK-3652: Inorganic fine particles manufactured by Big Chemie Japan Co., Ltd .: Particle size 40 nm.
SO-C4: Inorganic fine particles manufactured by Admatex: particle size 1,000 nm.
DYNOADD F-1: Surface conditioner (polyester type) manufactured by DYNEA AS, surface tension 28.6 mN / m.
DOWN CORNING TORAY L-7604: Toray Dow Corning surface conditioner (silicone type), surface tension 28.5 mN / m.
DOWN CORNING TORAY 8637: Toray Dow Corning surface conditioner (silicone type), surface tension 25.0 mN / m.
BYK-337: Surface conditioner (silicone type) manufactured by Big Chemie Japan, surface tension 23.3 mN / m.
BYK-306: Surface conditioner (silicone type) manufactured by Big Chemie Japan, surface tension 23.4 mN / m.
<表面調整剤の表面張力測定方法>
 ダイノメーター(ドイツ・ビックガードナー社製)を用いて、白金リング法により測定した。
<Method of measuring surface tension of surface conditioner>
It was measured by the platinum ring method using a dynometer (manufactured by Big Gardner, Germany).
 上記実施例および比較例で調製したクリヤー塗料組成物を用いて、下記評価を行った。評価結果を下記表(表2および表3)に示す。 The following evaluation was performed using the clear paint composition prepared in the above Examples and Comparative Examples. The evaluation results are shown in the following tables (Tables 2 and 3).
<表面自由エネルギーの測定方法>
 表面自由エネルギーは、水とヨウ化メチレンとの混合液の塗膜表面での接触角を求め、上記の計算式に従って、算出した。塗膜A1~F2の表面自由エネルギー、および、Δ表面自由エネルギー(形成した塗膜の1から2を引いたもの、例えば塗膜A1-塗膜A2)を表2に記載した。
 測定方法および計算式は、SOUHENG WU,J.Poly.Sci.,PARTC.34 19(1971))の記載に基づいている。
<Measurement method of surface free energy>
The surface free energy was calculated by determining the contact angle of the mixed solution of water and methylene iodide on the coating film surface and according to the above formula. Table 2 shows the surface free energies of the coating films A1 to F2 and the Δ surface free energy (1 to 2 of the formed coating film, for example, coating film A1-coating film A2).
The measuring method and calculation formula are based on the description of SOUHENG WU, J. Poly. Sci., PARTC. 34 19 (1971)).
<擦り傷性>
 得られた塗膜(塗膜A1、塗膜B1、塗膜C1、塗膜D1、塗膜E1および塗膜F1)の耐傷付性(耐擦り傷性)の評価には、大栄科学精器製作所社製 平面摩耗試験機を用いた。この平面摩耗試験機に、治具先端が摩耗する物体の表面に対して水平である直径16mmの金属製円柱型治具を取り付けた。この治具の先端に、フェルトおよび摩耗紙(3M社製 281Q、WETORDRY PRODUCTION POLISHING PAPER 9μGRADE)を、治具先端、フェルト、摩耗紙の順で固定した。治具に固定した摩耗紙表面に、900gの荷重が加わるように荷重を加え、10cmのストローク長さで1分間に40往復する速度で得られた塗膜の表面を10往復摩耗した。
<Scratch property>
The scratch resistance (scratch resistance) of the obtained coating film (coating film A1, coating film B1, coating film C1, coating film D1, coating film E1 and coating film F1) was evaluated by Daiei Kagaku Seiki Seisakusho Co., Ltd. A flat surface wear tester was used. A metal cylindrical jig having a diameter of 16 mm, which is horizontal to the surface of an object whose jig tip is worn, was attached to this flat surface wear tester. Felt and wear paper (281Q manufactured by 3M, WETORDRY PRODUCTION POLISHING PAPER 9 μGRADE) were fixed to the tip of this jig in the order of the jig tip, felt, and wear paper. A load was applied to the surface of the worn paper fixed to the jig so that a load of 900 g was applied, and the surface of the coating film obtained at a speed of 40 reciprocations per minute with a stroke length of 10 cm was abraded 10 times.
 試験部位および未試験部位の、塗膜表面に対して20°の角度の光沢を、マイクロトリグロス(ビックケミー社製光沢測定器)で測定した。試験部位に対する未試験部位の商の百分率を、摩耗試験による光沢保持率として、耐擦り傷性を評価した。結果を表3に示す。
 ◎(耐擦り傷性が非常に良好):光沢保持率が80%以上。
 ○(耐擦り傷性が良好):光沢保持率が70%以上、且つ80%未満。
 △(耐擦り傷性が概ね良好):光沢保持率が60%以上、且つ70%未満。
 ×(耐擦り傷性が弱い):光沢保持率が60%未満。
The gloss at an angle of 20 ° with respect to the coating film surface of the tested part and the untested part was measured with a microtrigloss (gloss measuring device manufactured by Big Chemie). The scratch resistance was evaluated by using the percentage of the quotient of the untested part with respect to the tested part as the gloss retention rate by the wear test. The results are shown in Table 3.
◎ (Very good scratch resistance): Gloss retention rate is 80% or more.
◯ (Good scratch resistance): Gloss retention rate is 70% or more and less than 80%.
Δ (generally good scratch resistance): Gloss retention rate is 60% or more and less than 70%.
X (weak scratch resistance): Gloss retention rate is less than 60%.
<リコート密着性>
 リン酸処理鋼板に、日本ペイント・オートモーティブコーティングス社製カチオン電着塗料「パワートップU-50」(商品名)を、乾燥膜厚が25μmになるように塗装した。次いで、加熱により塗料を硬化させて、試験板を得た。得られた試験板に、日本ペイント・オートモーティブコーティングス社製水性塗料「アクアレックスAR-800」(商品名)を、乾燥膜厚が20μmになるように塗装した。次いで日本ペイント・オートモーティブコーティングス社製水性塗料「アクアレックスAR-2000」(商品名)ブラック色を、乾燥膜厚が10μmになるように塗装し、80℃で5分間乾燥を行った。その上に、ウェットオンウェットで上記クリヤー塗料組成物を、乾燥膜厚が40μmになるように塗布した。続いて、150℃で60分間焼付け乾燥を行い、ファーストコート塗膜を作製した。得られたファーストコート塗膜の上に、日本ペイント・オートモーティブコーティングス社製水性塗料「アクアレックスAR-800」(商品名)を、乾燥膜厚が20μmになるように塗装した。次いで、日本ペイント・オートモーティブコーティングス社製水性塗料「アクアレックスAR-2000」(商品名)ブラック色を、乾燥膜厚が10μmになるように塗装し、80℃で5分間乾燥を行った。その上に、ウェットオンウェットで上記クリヤー塗料組成物(塗料組成物a1、塗料組成物b1、塗料組成物c1、塗料組成物d1、塗料組成物e1または塗料組成物f1)を、乾燥膜厚が40μmになるように塗布した。続いて、140℃で30分間焼付け乾燥を行い、リコート塗膜を作製した。
<Recoat adhesion>
The phosphoric acid-treated steel sheet was coated with a cationic electrodeposition paint "Power Top U-50" (trade name) manufactured by Nippon Paint Automotive Coatings Co., Ltd. so that the dry film thickness was 25 μm. Then, the paint was cured by heating to obtain a test plate. The obtained test plate was coated with a water-based paint "Aqualex AR-800" (trade name) manufactured by Nippon Paint Automotive Coatings Co., Ltd. so that the dry film thickness was 20 μm. Next, a water-based paint "Aqualex AR-2000" (trade name) manufactured by Nippon Paint Automotive Coatings Co., Ltd. was coated with a black color so that the dry film thickness was 10 μm, and dried at 80 ° C. for 5 minutes. On it, the clear coating composition was applied wet-on-wet so that the dry film thickness was 40 μm. Subsequently, it was baked and dried at 150 ° C. for 60 minutes to prepare a first coat coating film. On the obtained first coat coating film, a water-based paint "Aqualex AR-800" (trade name) manufactured by Nippon Paint Automotive Coatings Co., Ltd. was applied so that the dry film thickness was 20 μm. Next, a water-based paint "Aqualex AR-2000" (trade name) manufactured by Nippon Paint Automotive Coatings Co., Ltd. was coated with a black color so that the dry film thickness was 10 μm, and dried at 80 ° C. for 5 minutes. On top of that, the clear paint composition (paint composition a1, paint composition b1, paint composition c1, paint composition d1, paint composition e1 or paint composition f1) is wet-on-wet and has a dry film thickness. It was applied so as to be 40 μm. Subsequently, it was baked and dried at 140 ° C. for 30 minutes to prepare a recoated coating film.
 カッター(NTカッター(商品名)S型、A型又はその相当品)の切り刃を、得られたリコート塗膜の塗膜面に対して約30度に保持して、素地に達するように切込みを入れて、2mm四方の碁盤目を形成した。その上に粘着テープ(ニチバン社製セロテープ(登録商標))を、気泡が残らないように指先で均一に圧着させた。直ちに粘着テープの一端を持ち、塗面に対して垂直に急激に引っ張って試験片から剥がした。このときの[剥がれたマス目の数]/[碁盤目のマス目の数=100]を目視で測定して、下記の基準にてリコート密着性を評価した。結果を表3に示す。
 ○:0/100
 △:1/100~25/100
 ×:26/100~100/100
Hold the cutting edge of the cutter (NT cutter (trade name) S type, A type or its equivalent) at about 30 degrees with respect to the coating film surface of the obtained recoat coating film, and cut so that it reaches the substrate. Was put in to form a 2 mm square grid. An adhesive tape (cellotape manufactured by Nichiban Co., Ltd. (registered trademark)) was uniformly pressure-bonded on the adhesive tape with the fingertips so that no air bubbles remained. Immediately, he held one end of the adhesive tape and pulled it sharply perpendicular to the coated surface to peel it off from the test piece. At this time, [the number of peeled squares] / [the number of grids = 100] was visually measured, and the recoat adhesion was evaluated according to the following criteria. The results are shown in Table 3.
◯: 0/100
Δ: 1/100 to 25/100
X: 26/100 to 100/100
<高圧洗車密着性>
 得られた試験片(耐擦り傷性の試験に用いられた塗膜A1、塗膜B1、塗膜C1、塗膜D1、塗膜E1および塗膜F1)の無塗装部と塗膜との境界に対して、高さ100mmから、直径3mmのノズルより23℃の水を、圧力80kg/cmで噴射して塗膜の状態を観察した。塗膜に変化のないものを○、塗膜に僅かに変化のあるものを△、塗膜が剥離したものを×として評価した。結果を表3に示す。
<High-pressure car wash adhesion>
At the boundary between the unpainted portion and the coating film of the obtained test piece (coating film A1, coating film B1, coating film C1, coating film D1, coating film E1 and coating film F1 used in the scratch resistance test). On the other hand, from a height of 100 mm, water at 23 ° C. was sprayed from a nozzle having a diameter of 3 mm at a pressure of 80 kg / cm 2 , and the state of the coating film was observed. Those with no change in the coating film were evaluated as ◯, those with a slight change in the coating film were evaluated as Δ, and those with the coating film peeled off were evaluated as x. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記実施例および比較例から明らかなように、表2で測定した表面自由エネルギーの差(塗膜X1-X2)が正の場合、実施例1~3にみられるようにリコート密着性および高圧洗車密着性が高く、本発明の効果がみられる。実施例3で擦り傷性が低下しているのは、塗料c1で使用している無機微粒子の粒径が1,000nmと大きいからである。比較例では、全て表面自由エネルギーの差が負であり、本発明の要件を満足せず、リコート密着性および高圧洗車密着性が悪くなっている。
As is clear from the above Examples and Comparative Examples, when the difference in surface free energy (coating film X1-X2) measured in Table 2 is positive, the recoat adhesion and high-pressure car wash are as seen in Examples 1 to 3. The adhesion is high, and the effect of the present invention can be seen. The scratch resistance is reduced in Example 3 because the particle size of the inorganic fine particles used in the paint c1 is as large as 1,000 nm. In the comparative examples, the difference in surface free energy is negative, the requirements of the present invention are not satisfied, and the recoat adhesion and the high-pressure car wash adhesion are deteriorated.
 本発明によれば、無機微粒子を含み、かつ、リコート密着性が高い塗料組成物が提供される。 According to the present invention, there is provided a coating composition containing inorganic fine particles and having high recoat adhesion.
 本願は、2020年4月20日付けで日本国にて出願された特願2020-074829に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。 The present application claims priority based on Japanese Patent Application No. 2020-074829 filed in Japan on April 20, 2020, the entire contents of which are incorporated herein by reference.

Claims (9)

  1.  水酸基含有樹脂、硬化剤および無機微粒子を含有する塗料組成物であって、
     前記塗料組成物を塗布し硬化させたフィルムの表面自由エネルギーが、前記塗料組成物から無機微粒子のみを除いて塗布し硬化させたフィルムの表面自由エネルギーよりも高い、塗料組成物。
    A coating composition containing a hydroxyl group-containing resin, a curing agent, and inorganic fine particles.
    A coating composition in which the surface free energy of a film coated and cured with the coating composition is higher than the surface free energy of a film coated and cured by removing only inorganic fine particles from the coating composition.
  2.  (無機微粒子を配合して硬化させたフィルムの表面自由エネルギー)から(無機微粒子だけを除いて硬化させたフィルムの表面自由エネルギー)を引いた差が0~0.5である、請求項1記載の塗料組成物。 The difference according to claim 1, wherein the difference obtained by subtracting (the surface free energy of the film cured by removing only the inorganic fine particles) from (the surface free energy of the film cured by blending the inorganic fine particles) is 0 to 0.5. Paint composition.
  3.  前記無機微粒子が平均粒子径2~500nmを有する、請求項1記載の塗料組成物。 The coating composition according to claim 1, wherein the inorganic fine particles have an average particle diameter of 2 to 500 nm.
  4.  前記無機微粒子が、シリカ、アルミナ、ケイ酸アルミナアルカリ、ホウケイ酸ガラス、石英、霞石閃長岩、ジルコン、バデリューアイト、ユージアル石およびそれらの混合物からなる群から選択される、請求項1記載の塗料組成物。 The coating composition according to claim 1, wherein the inorganic fine particles are selected from the group consisting of silica, alumina, alumina silicate alkali, borosilicate glass, quartz, nepheline syenite, zircon, badelieuite, eugenic stone and a mixture thereof. thing.
  5.  前記シリカが、結晶性シリカ、無定形シリカ、溶融シリカ、沈殿シリカおよびそれらの混合物から選択される、請求項4記載の塗料組成物。 The coating composition according to claim 4, wherein the silica is selected from crystalline silica, amorphous silica, molten silica, precipitated silica and a mixture thereof.
  6.  前記無機微粒子が、塗料組成物中の固形分に対して0.01~10重量%の量で含まれる、請求項1記載の塗料組成物。 The coating composition according to claim 1, wherein the inorganic fine particles are contained in an amount of 0.01 to 10% by weight with respect to the solid content in the coating composition.
  7.  前記硬化剤が、アミノプラスト樹脂またはイソシアネート樹脂の少なくとも1種から選択される、請求項1記載の塗料組成物。 The coating composition according to claim 1, wherein the curing agent is selected from at least one of an aminoplast resin and an isocyanate resin.
  8.  前記塗料組成物が、1パックに配合されている、請求項1記載の塗料組成物。 The paint composition according to claim 1, wherein the paint composition is blended in one pack.
  9.  前記塗料組成物が、2パックに分けて配合されている、請求項1記載の塗料組成物。 The paint composition according to claim 1, wherein the paint composition is blended in two packs.
PCT/JP2021/011757 2020-04-20 2021-03-22 Coating material composition WO2021215172A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020074829A JP2021172688A (en) 2020-04-20 2020-04-20 Coating composition
JP2020-074829 2020-04-20

Publications (1)

Publication Number Publication Date
WO2021215172A1 true WO2021215172A1 (en) 2021-10-28

Family

ID=78269248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011757 WO2021215172A1 (en) 2020-04-20 2021-03-22 Coating material composition

Country Status (2)

Country Link
JP (1) JP2021172688A (en)
WO (1) WO2021215172A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030190434A1 (en) * 2002-04-05 2003-10-09 Byers Alicia D. Process for applying automotive quality effect coatings to metal substrates
US20090221748A1 (en) * 2008-02-29 2009-09-03 Ppg Industries Ohio, Inc. Coating compositions comprising a polymer containing an oligomeric macromonomer
WO2016089199A1 (en) * 2014-12-02 2016-06-09 Becker Industrial Coatings (M) Sdn. Bhd. Rapid stratifying compositions
WO2017111112A1 (en) * 2015-12-25 2017-06-29 関西ペイント株式会社 Multilayer coating film forming method
CN110499084A (en) * 2019-09-30 2019-11-26 立邦工业涂料(上海)有限公司 A kind of water soluble acrylic acid amino-stoving varnish and preparation method thereof
US20200325289A1 (en) * 2019-04-15 2020-10-15 Ppg Industries Ohio, Inc. Curable film-forming compositions containing rheology modifiers comprising non-aqueous dispersions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030190434A1 (en) * 2002-04-05 2003-10-09 Byers Alicia D. Process for applying automotive quality effect coatings to metal substrates
US20090221748A1 (en) * 2008-02-29 2009-09-03 Ppg Industries Ohio, Inc. Coating compositions comprising a polymer containing an oligomeric macromonomer
WO2016089199A1 (en) * 2014-12-02 2016-06-09 Becker Industrial Coatings (M) Sdn. Bhd. Rapid stratifying compositions
WO2017111112A1 (en) * 2015-12-25 2017-06-29 関西ペイント株式会社 Multilayer coating film forming method
US20200325289A1 (en) * 2019-04-15 2020-10-15 Ppg Industries Ohio, Inc. Curable film-forming compositions containing rheology modifiers comprising non-aqueous dispersions
CN110499084A (en) * 2019-09-30 2019-11-26 立邦工业涂料(上海)有限公司 A kind of water soluble acrylic acid amino-stoving varnish and preparation method thereof

Also Published As

Publication number Publication date
JP2021172688A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
JP6587404B2 (en) Formation method of multilayer coating film
JP3931348B2 (en) Thermosetting composition, paint finishing method and coated article
JP5547398B2 (en) Paint composition
JP2017165955A (en) High solid content coating composition
JP2009173731A (en) Primer, and method for coating using the same
JP5615704B2 (en) Coating composition and coating film forming method using the same
KR101294443B1 (en) Coating composition
JPH05309324A (en) Coated steel sheet having excellent scratch resistance and chip resistance
JP2005042001A (en) Coating composition, method for forming coated film, and coated article
US20070196661A1 (en) Methods for reducing the time to produce a mar and/or scratch resistant coating on a substrate
JP2006008936A (en) Clear coating composition for automobile, and method for forming multi-layered coating film by using the same
WO2021215172A1 (en) Coating material composition
JP2005139336A (en) Two-pack type coating composition, method for finishing coating and coated article
JP5362308B2 (en) Multi-layer coating formation method
JP3801347B2 (en) Paint finishing method and painted article
KR101540078B1 (en) Dual curable paint composition coated on the chrome surface and coating method using thereof
WO2009110441A1 (en) Thermosetting coating resin composition
KR101435969B1 (en) Non-sanding primier-surfacer paint composition for reparing automobiles and method of repairing automobile using the same
KR102583106B1 (en) Clear coat composition
JP2005126649A (en) Thermosetting coating composition
JPH09131567A (en) Coating method of aluminum foil
JP7254012B2 (en) Exterior parts for automobiles and method for manufacturing exterior parts for automobiles
JPH11199826A (en) Hot setting coating material composition and formation of top coated film
JP2010285549A (en) Coating composition, coating finishing method, and coated article
KR101163463B1 (en) Water soluble Clear paint for Vacuum Ion Plating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792595

Country of ref document: EP

Kind code of ref document: A1