WO2021215041A1 - Power amplifier module and communication device - Google Patents

Power amplifier module and communication device Download PDF

Info

Publication number
WO2021215041A1
WO2021215041A1 PCT/JP2020/045528 JP2020045528W WO2021215041A1 WO 2021215041 A1 WO2021215041 A1 WO 2021215041A1 JP 2020045528 W JP2020045528 W JP 2020045528W WO 2021215041 A1 WO2021215041 A1 WO 2021215041A1
Authority
WO
WIPO (PCT)
Prior art keywords
power amplifier
inductor
circuit
amplifier module
switch
Prior art date
Application number
PCT/JP2020/045528
Other languages
French (fr)
Japanese (ja)
Inventor
崇央 豊村
佑二 竹松
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021215041A1 publication Critical patent/WO2021215041A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/03Constructional details, e.g. casings, housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits

Definitions

  • the present invention generally relates to a power amplifier module and a communication device, and more particularly to a power amplifier module and a communication device including a circuit for performing impedance matching.
  • Patent Document 1 a high frequency module including a circuit for impedance matching is known (see Patent Document 1).
  • Patent Document 1 an output terminal of a power amplifier (power amplifier) and a transmission output matching circuit (output matching circuit) that performs impedance matching are connected. Further, the transmission output matching circuit is connected to the transmission filter. As a result, the transmission output matching circuit performs impedance matching between the power amplifier and the transmission filter.
  • a module having at least an output matching circuit and a power amplifier.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a power amplifier module and a communication device that can be miniaturized.
  • the power amplifier module includes a mounting board, a power amplifier, and an attenuation circuit for attenuating the harmonics of the signal output from the power amplifier.
  • the attenuation circuit includes a plurality of inductors that are inner-layered on the mounting board and connected to the output terminals of the power amplifier. The plurality of inductors are arranged so as to overlap each other when viewed in a plan view from the thickness direction of the mounting substrate.
  • the communication device includes the power amplifier module and a signal processing circuit for processing a high frequency signal passing through the power amplifier module.
  • miniaturization can be achieved.
  • FIG. 1 is a circuit diagram illustrating a configuration of a high frequency module and a communication device including a power amplifier module according to an embodiment.
  • FIG. 2 is a circuit diagram illustrating the configuration of the power amplifier module of the same.
  • FIG. 3 is a perspective view of the power amplifier module of the above.
  • FIG. 4 is a cross-sectional view of X1-X1 of FIG. 3 in which a part of the power amplifier module of the same is seen through.
  • FIG. 5 is a perspective view of a part of the power amplifier module of the same as above.
  • FIG. 6 is a cross-sectional view showing a part of the power amplifier module according to the first modification.
  • FIGS. 1 to 6 referred to in the following embodiments and the like are schematic views, and the ratio of the size and the thickness of each component in the figure does not necessarily reflect the actual dimensional ratio. Not necessarily.
  • the high frequency module 1 includes a power amplifier module 100, and is used, for example, in a communication device 500 compatible with multimode / multiband.
  • the communication device 500 is, for example, a mobile phone (for example, a smartphone), but is not limited to this, and may be, for example, a wearable terminal (for example, a smart watch) or the like.
  • the high frequency module 1 is a module capable of supporting, for example, a 4G (4th generation mobile communication) standard, a 5G (5th generation mobile communication) standard, and the like.
  • the 4G standard is, for example, a 3GPP LTE (LTE: Long Term Evolution) standard.
  • the 5G standard is, for example, 5G NR (New Radio).
  • the high frequency module 1 is a module capable of supporting carrier aggregation and dual connectivity.
  • the high frequency module 1 is configured to, for example, amplify the transmission signal (high frequency signal) input from the signal processing circuit 3 and output it to the antenna 4. Further, the high frequency module 1 is configured to amplify the received signal (high frequency signal) input from the antenna 4 and output it to the signal processing circuit 3.
  • the signal processing circuit 3 is not a component of the high frequency module 1, but a component of the communication device 500 including the high frequency module 1.
  • the high frequency module 1 according to the embodiment is controlled by, for example, a signal processing circuit 3 included in the communication device 500.
  • the communication device 500 includes a high frequency module 1 and a signal processing circuit 3.
  • the communication device 500 further includes an antenna 4.
  • the signal processing circuit 3 processes a signal received via the antenna 4 (received signal) and a signal transmitted via the antenna 4 (transmitted signal).
  • the high-frequency module 1 includes a mounting board 200, an antenna terminal T1, an antenna switch 10, a matching circuit 20, a filter group 30, and a first switch 40.
  • a second switch 50, an output matching circuit 60, an input matching circuit 70, a power amplifier 80, and a low noise amplifier 90 are provided.
  • the power amplifier module 100 includes a first switch 40, an output matching circuit 60, and a power amplifier 80.
  • the high frequency module 1 includes a mounting board 200, an antenna terminal T1, an antenna switch 10, a matching circuit 20, a filter group 30, a power amplifier module 100, an input matching circuit 70, and a low noise amplifier 90. Be prepared.
  • the high frequency module 1 further includes a plurality of external connection terminals 210 (see FIG. 4).
  • the antenna terminal T1 is electrically connected to the antenna 4.
  • the antenna switch 10 is a switch capable of selecting a signal path of at least one communication band among the signal paths of a plurality of communication bands as a signal path connected to the antenna 4.
  • the antenna switch 10 has a common terminal 11 and a plurality of (four in the illustrated example) selection terminals 12 to 15.
  • the common terminal 11 is electrically connected to the antenna terminal T1.
  • the selection terminal 12 is electrically connected to the filter 31 included in the filter group 30.
  • the selection terminal 13 is electrically connected to the filter 32 included in the filter group 30.
  • the selection terminal 14 is electrically connected to the filter 33 included in the filter group 30.
  • the selection terminal 15 is electrically connected to the filter 34 included in the filter group 30.
  • the antenna switch 10 is a switch capable of selecting at least one of a plurality of selection terminals 12 to 15 as a connection destination of the common terminal 11. That is, the antenna switch 10 is a switch capable of selectively connecting the filter 31, the filter 32, the filter 33, the filter 34, and the antenna 4.
  • the antenna switch 10 is controlled by, for example, the signal processing circuit 3.
  • the antenna switch 10 electrically connects at least one of the selection terminal 12, the selection terminal 13, and the selection terminal 14 and the common terminal 11 according to the control signal from the RF signal processing circuit 5 of the signal processing circuit 3.
  • the matching circuit 20 has, for example, a plurality of (four in the illustrated example) chip inductors 21 to 24 (see FIG. 1).
  • Each of the chip inductors 21 to 24 is a circuit element that performs impedance matching between the antenna switch 10 and the filter group 30.
  • One end of each of the chip inductors 21 to 24 is connected to a path connecting the antenna switch 10 and the filters 31 to 34 of the filter group 30, and the other end is connected to a reference terminal (ground).
  • the chip inductors 21 to 24 may be connected in series to the path instead of being connected between the path and the ground.
  • the matching circuit 20 is not limited to the chip inductors 21 to 24, and may be a capacitor or a circuit in which an inductor and a capacitor are combined.
  • the filter group 30 has a plurality of filters 31 to 34 (see FIG. 1).
  • the plurality of filters 31 to 34 are, for example, elastic wave filters, and each of the plurality of series arm resonators and the plurality of parallel arm resonators is composed of elastic wave resonators.
  • the surface acoustic wave filter is, for example, a SAW (Surface Acoustic Wave) filter that utilizes surface acoustic waves.
  • Filters 31-34 are duplexers.
  • the filter 31 includes a filter 31a and a filter 31b.
  • the filter 32 includes a filter 32a and a filter 32b.
  • the filter 33 includes a filter 33a and a filter 33b.
  • the filter 34 includes a filter 34a and a filter 34b.
  • the filters 31a, 32a, 33a, 34a are transmission filters for passing a transmission signal.
  • the filters 31b, 32b, 33b, 34b are reception filters for passing a reception signal.
  • the filter 31a passes the transmission signal of the Band 71 in the 4G standard, for example.
  • the filter 32a passes, for example, the transmission signal of Band 13 in the 4G standard.
  • the filter 33a passes, for example, the transmission signal of Band 20 in the 4G standard.
  • the filter 34a passes, for example, a Band 8 transmission signal in the 4G standard.
  • the filter 31b passes the received signal of the Band 71 in the 4G standard, for example.
  • the filter 32b passes the received signal of Band 13 in the 4G standard, for example.
  • the filter 33b passes the received signal of the Band 20 in the 4G standard, for example.
  • the filter 34b passes the received signal of Band 8 in the 4G standard, for example.
  • Each of the filters 31 to 34 is connected one-to-one to a plurality of selection terminals of the antenna switch 10.
  • Each of the filters 31 to 34 is electrically connected one-to-one to a plurality of (three in the illustrated example) selection terminals 43a to 43d of the band changeover switch 41 of the first switch 40.
  • the filter 31a is electrically connected to the selection terminal 43a
  • the filter 32a is electrically connected to the selection terminal 43b
  • the filter 33a is electrically connected to the selection terminal 43c
  • the filter 34a is electrically connected to the selection terminal 43d.
  • Each of the filters 31 to 34 is connected one-to-one to a plurality of (four in the illustrated example) selection terminals 52a to 52d of the second switch 50.
  • the filter 31b is electrically connected to the selection terminal 52a
  • the filter 32b is electrically connected to the selection terminal 52b
  • the filter 33b is electrically connected to the selection terminal 52c
  • the filter 34b is electrically connected to the selection terminal 52d.
  • the second switch 50 has a common terminal 51 and a plurality of (four in the illustrated example) selection terminals 52a to 52d.
  • the second switch 50 is a switch that switches the connection state between the common terminal 51 and the selection terminals 52a to 52d.
  • the common terminal 51 is electrically connected to the low noise amplifier 90. Specifically, the common terminal 51 is connected to the low noise amplifier 90 via the input matching circuit 70.
  • the plurality of selection terminals 52a to 52d are connected one-to-one to the plurality of filters 31 to 34. In the present embodiment, the selection terminal 52a is connected to the filter 31b, the selection terminal 52b is connected to the filter 32b, the selection terminal 52c is connected to the filter 33b, and the selection terminal 52d is connected to the filter 34b.
  • the second switch 50 electrically connects any one of the selection terminals 52a to 52d and the common terminal 51 according to the control signal from the RF signal processing circuit 5 of the signal processing circuit 3.
  • the input matching circuit 70 is a circuit element that performs impedance matching between the second switch 50 and the low noise amplifier 90.
  • the low noise amplifier 90 amplifies the signal (received signal) received by the antenna 4.
  • the input terminal 91 of the low noise amplifier 90 is electrically connected to the input matching circuit 70.
  • the output terminal 92 of the low noise amplifier 90 is connected to the signal processing circuit 3.
  • the low noise amplifier 90 amplifies a signal (received signal) that has passed through any of the filters 31b to 34b and the input matching circuit 70.
  • the low noise amplifier 90 outputs the amplified received signal to the signal processing circuit 3.
  • the power amplifier module 100 includes a first switch 40, an output matching circuit 60, and a power amplifier 80 (see FIG. 1).
  • the first switch 40 is, for example, a switch IC (Integrated Circuit). As shown in FIG. 1, the first switch 40 includes a band changeover switch 41, a first changeover switch 45, and a second changeover switch 46.
  • the band changeover switch 41 is a switch for switching the band used for signal transmission. As shown in FIG. 1, the band changeover switch 41 has a common terminal 42 and a plurality of (four in the illustrated example) selection terminals 43a to 43d.
  • the common terminal 42 is electrically connected to the output matching circuit 60.
  • the selection terminal 43a is electrically connected to the filter 31a.
  • the selection terminal 43b is electrically connected to the filter 32a.
  • the selection terminal 43c is electrically connected to the filter 33a.
  • the selection terminal 43d is electrically connected to the filter 34a.
  • the band changeover switch 41 is a switch that can select at least one of a plurality of selection terminals 43a to 43d as a connection destination of the common terminal 42. That is, the band changeover switch 41 is a switch capable of selectively connecting the filter 31, the filter 32, the filter 33, the filter 34, and the output matching circuit 60.
  • the band changeover switch 41 is controlled by, for example, the signal processing circuit 3.
  • the band changeover switch 41 electrically connects at least one of the selection terminals 43a to 43d and the common terminal 42 according to the control signal from the RF signal processing circuit 5 of the signal processing circuit 3.
  • the first changeover switch 45 is provided between the second inductor 613 (see FIG. 2), which will be described later, and the ground.
  • the first changeover switch 45 includes a first terminal 451 and a second terminal 452.
  • the first terminal 451 is electrically connected to the second inductor 613.
  • the second terminal 452 is electrically connected to the ground.
  • the first changeover switch 45 is controlled by, for example, the signal processing circuit 3.
  • the first changeover switch 45 electrically connects or disconnects the first terminal 451 and the second terminal 452 according to the control signal from the RF signal processing circuit 5 of the signal processing circuit 3.
  • the second changeover switch 46 is provided between the third inductor 614 (see FIG. 2), which will be described later, and the ground.
  • the second changeover switch 46 includes a first terminal 461 and a second terminal 462.
  • the first terminal 461 is electrically connected to the third inductor 614.
  • the second terminal 462 is electrically connected to the ground.
  • the second changeover switch 46 is controlled by, for example, the signal processing circuit 3.
  • the second changeover switch 46 electrically connects or disconnects the first terminal 461 and the second terminal 462 according to the control signal from the RF signal processing circuit 5 of the signal processing circuit 3.
  • the output matching circuit 60 is a circuit element that matches the impedance between the power amplifier 80 and the external circuit (here, the band changeover switch 41) connected to the output side of the output matching circuit 60.
  • the detailed configuration of the output matching circuit 60 will be described later.
  • the power amplifier 80 amplifies the signal (transmitted signal) transmitted from the antenna 4.
  • the input terminal 82 of the power amplifier 80 is connected to the signal processing circuit 3.
  • the output terminal 81 of the power amplifier 80 is connected to the output matching circuit 60.
  • the power amplifier 80 amplifies the signal output from the signal processing circuit 3.
  • the power amplifier 80 outputs the amplified transmission signal to the band changeover switch 41 via the output matching circuit 60.
  • the output matching circuit 60 includes a first attenuation circuit 61, a second attenuation circuit 62, a third attenuation circuit 63, and a fourth attenuation circuit 64.
  • the first attenuation circuit 61 is a circuit that attenuates harmonics that are double waves of the transmission signal. As shown in FIG. 2, the first attenuation circuit 61 includes a capacitor 611, a first inductor 612, a second inductor 613, a third inductor 614, and a fourth inductor 615.
  • the fourth inductor 615 is inserted in series with the path R60 (see FIG. 3) connecting the power amplifier 80 and the first switch 40 in the power amplifier module. Specifically, the first end of the fourth inductor 615 is electrically connected to the output terminal 81 of the power amplifier 80. The second end of the fourth inductor 615 is electrically connected to the second attenuation circuit 62.
  • the capacitor 611 is provided between the second end of the fourth inductor 615 and the ground. Specifically, the first end of the capacitor 611 is electrically connected to the second end of the fourth inductor 615. The second end of the capacitor 611 is electrically connected to the first end of each of the first inductor 612, the second inductor 613, and the third inductor 614.
  • the first inductor 612 is provided between the second end of the capacitor 611 and the ground. Specifically, the first end of the first inductor 612 is electrically connected to the second end of the capacitor 611. The second end of the first inductor 612 is electrically connected to ground.
  • the second inductor 613 is provided between the second end of the capacitor 611 and the ground. Specifically, the first end of the second inductor 613 is electrically connected to the second end of the capacitor 611. The second end of the second inductor 613 is electrically connected to the first terminal 451 of the first changeover switch 45. The second inductor 613 is connected to the ground by connecting between the first terminal 451 of the first changeover switch 45 and the second terminal 452 of the first changeover switch 45.
  • the third inductor 614 is provided between the second end of the capacitor 611 and the ground. Specifically, the first end of the third inductor 614 is electrically connected to the second end of the capacitor 611. The second end of the third inductor 614 is electrically connected to the first terminal 461 of the second changeover switch 46. The third inductor 614 is connected to the ground by being connected between the first terminal 461 of the second changeover switch 46 and the second terminal 462 of the second changeover switch 46.
  • the first inductor 612, the second inductor 613, and the third inductor 614 are electrically connected to the fourth inductor 615. That is, the first inductor 612, the second inductor 613, and the third inductor 614 are electrically connected to the output terminal 81 of the power amplifier 80.
  • the inductance value of the first inductor 612 is smaller than the inductance value of the second inductor 613 and the inductance value of the third inductor 614.
  • the inductance value of the second inductor 613 is larger than the inductance value of the first inductor 612 and the inductance value of the third inductor 614. That is, among the first inductor 612, the second inductor 613, and the third inductor 614, the inductance value of the first inductor 612 is the smallest, then the inductance value of the third inductor 614 is the smallest, and the inductance value of the second inductor 613 is. The largest. That is, the inequality "inductance value of the first inductor 612 ⁇ inductance value of the third inductor 614 ⁇ inductance value of the second inductor 613" is established.
  • the inductor connected to the ground is selected from the first inductor 612, the second inductor 613, and the third inductor 614. NS. That is, the inductance value of the inductor connected to the ground can be changed by switching the open state and the closed state of the first changeover switch 45 and the second changeover switch 46, respectively.
  • the structure related to the arrangement of the first inductor 612, the second inductor 613, and the third inductor 614 will be described later.
  • the second attenuation circuit 62 is a circuit that attenuates harmonics that are the third harmonic of the transmitted signal.
  • the second attenuation circuit 62 has an inductor 621 and a capacitor 622, as shown in FIG.
  • the inductor 621 is inserted in series with the path R60 (see FIG. 3). Specifically, the first end of the inductor 621 is electrically connected to the second end of the fourth inductor 615 of the first attenuation circuit 61. The second end of the inductor 621 is electrically connected to the third attenuation circuit 63.
  • the capacitor 622 is provided between the second end of the inductor 621 and the ground. Specifically, the first end of the capacitor 622 is electrically connected to the second end of the inductor 621. The second end of capacitor 622 is electrically connected to ground.
  • the third attenuation circuit 63 is a circuit that passes a signal on the higher frequency side than the predetermined frequency band (first frequency band). That is, the third attenuation circuit 63 is a circuit that attenuates a signal on the frequency side lower than the first frequency band. As shown in FIG. 2, the third attenuation circuit 63 includes a capacitor 631 and an inductor 632.
  • Capacitor 631 is inserted in series with path R60 (see FIG. 3). Specifically, the first end of the capacitor 631 is electrically connected to the second end of the inductor 621 of the second attenuation circuit 62. The second end of the capacitor 631 is electrically connected to the fourth attenuation circuit 64.
  • the inductor 632 is provided between the second end of the capacitor 631 and the ground. Specifically, the first end of the inductor 632 is electrically connected to the second end of the capacitor 631. The second end of the inductor 632 is electrically connected to ground.
  • the fourth attenuation circuit 64 is a circuit that passes a signal on the lower frequency side than the predetermined frequency band (second frequency band). That is, the fourth attenuation circuit 64 is a circuit that attenuates a signal on the higher frequency side than the second frequency band. As shown in FIG. 2, the fourth attenuation circuit 64 has an inductor 641 and a capacitor 642.
  • the inductor 641 is inserted in series with the path R60 (see FIG. 3). Specifically, the first end of the inductor 641 is electrically connected to the second end of the capacitor 631 of the third attenuation circuit 63. The second end of the inductor 641 is electrically connected to the band changeover switch 41 of the first switch 40.
  • the capacitor 642 is provided between the second end of the inductor 641 and the ground. Specifically, the first end of the capacitor 642 is electrically connected to the second end of the inductor 641. The second end of capacitor 642 is electrically connected to ground.
  • the mounting board 200 has a first main surface 201 and a second main surface 202 facing each other in the thickness direction D1.
  • a power amplifier 80, a capacitor 611, a capacitor 622, a capacitor 631, and the like are arranged on the first main surface 201.
  • the first switch 40 is arranged on the second main surface 202.
  • the mounting board 200 is, for example, a printed wiring board, an LTCC (Low Temperature Co-fired Ceramics), an HTCC (High Temperature Co-fired Ceramics), or a resin board.
  • the mounting substrate 200 is, for example, a multilayer substrate including a plurality of dielectric layers and a plurality of conductive layers.
  • the plurality of dielectric layers and the plurality of conductive layers are laminated in the thickness direction D1 of the mounting substrate 200.
  • the plurality of conductive layers are formed in a predetermined pattern determined for each layer.
  • Each of the plurality of conductive layers includes one or a plurality of conductor portions in one plane orthogonal to the thickness direction D1 of the mounting substrate 200.
  • the material of each conductive layer is, for example, copper.
  • the plurality of conductive layers include a ground layer. In the power amplifier module 100, a plurality of ground terminals and a ground layer are electrically connected via a via conductor or the like included in the mounting substrate 200.
  • the mounting board 200 is not limited to the printed wiring board and the LTCC board, but may be a wiring structure.
  • the wiring structure is, for example, a multi-layer structure.
  • the multilayer structure includes at least one insulating layer and at least one conductive layer.
  • the insulating layer is formed in a predetermined pattern. When there are a plurality of insulating layers, the plurality of insulating layers are formed in a predetermined pattern determined for each layer.
  • the conductive layer is formed in a predetermined pattern different from the predetermined pattern of the insulating layer. When there are a plurality of conductive layers, the plurality of conductive layers are formed in a predetermined pattern determined for each layer.
  • the conductive layer may include one or more rewiring sections.
  • the first surface is the first main surface 201 of the mounting board 200
  • the second surface is the second main surface 202 of the mounting board 200.
  • the wiring structure may be, for example, an interposer.
  • the interposer may be an interposer using a silicon substrate, or may be a substrate composed of multiple layers.
  • the power amplifier module 100 has a plurality of external connection terminals 210.
  • the plurality of external connection terminals 210 connect the power amplifier module 100 to the mother board on which the signal processing circuit 3 and the like are mounted.
  • the plurality of external connection terminals 210 are columnar (for example, columnar) electrodes arranged (provided) on the second main surface 202 of the mounting substrate 200.
  • the material of the plurality of external connection terminals 210 is, for example, a metal (for example, copper, copper alloy, etc.).
  • One of the plurality of external connection terminals 210 is electrically connected to the antenna terminal T1.
  • the power amplifier module 100 has a first resin layer 230 on the first main surface 201 of the mounting board 200, which covers the power amplifier 80, the capacitor 611, the capacitor 622, the capacitor 631, and the like mounted on the first main surface 201. Further prepare.
  • the power amplifier module 100 further includes a second resin layer 240 on the second main surface 202 of the mounting board 200, which covers the first switch 40 and the like mounted on the second main surface 202.
  • the material of the second resin layer 240 may be the same material as the material of the first resin layer 230, or may be a different material. In FIG. 3, the first resin layer 230 is omitted.
  • the mounting board 200 has a polygonal shape in a plan view from the thickness direction D1.
  • the mounting substrate 200 has a rectangular shape in a plan view from the thickness direction D1.
  • the mounting board 200 includes a plurality of via conductors 220 and a plurality of wiring conductors 221.
  • the plurality of via conductors 220 include via conductors 613c, 614c, 661.
  • the plurality of wiring conductors 221 include wiring conductors 612a, 613a, 613b, 614a, 614b, 660.
  • the plurality of wiring conductors 221 are included in any one of the plurality of conductive layers.
  • the power amplifier module 100 of the present embodiment when the power amplifier module 100 (mounting board 200) is viewed in a plan view from the thickness direction D1 of the mounting board 200, as shown in FIGS. 3 to 5, the first inductor 612 And the second inductor 613 are arranged so as to overlap each other. At this time, of the first inductor 612 and the second inductor 613, the second inductor 613 is arranged on the second main surface side with respect to the first inductor 612.
  • the winding direction of these inductors is the same with the thickness direction D1 as the winding axis.
  • the first inductor 612 is formed of the wiring conductor 612a.
  • the wiring conductor 612a is formed along the clockwise direction D10 with the connection portion with the capacitor 611 (corresponding to the first end of the first inductor 612) as the starting point and the axis along the thickness direction D1 as the rotation axis. (See FIGS. 3 and 5). That is, the wiring conductor 612a, which is the first inductor 612, is formed with the winding direction as the clockwise direction D10.
  • the tip of the wiring conductor 612a (corresponding to the second end of the first inductor) is connected to the wiring conductor 660 (ground wiring) included in the ground layer.
  • the second inductor 613 is formed of a wiring conductor 613a, a wiring conductor 613b, and a via conductor 613c.
  • the wiring conductor 613a is formed along the clockwise direction D10 with the connection portion with the capacitor 611 (corresponding to the first end of the second inductor 613) as the starting point and the axis along the thickness direction D1 as the rotation axis. (See FIGS. 3 and 5). That is, the wiring conductor 613a, which is a part of the second inductor 613, is formed with the winding direction as the clockwise direction D10.
  • the wiring conductor 613b is connected to the tip of the wiring conductor 613a via a via conductor 613c.
  • the wiring conductor 613b is formed along the clockwise direction D10 with the connection portion with the via conductor 613c as the starting point and the axis along the thickness direction D1 as the rotation axis (see FIGS. 3 and 5).
  • the tip of the wiring conductor 613b (corresponding to the second end of the second inductor 613) is electrically connected to the first changeover switch 45.
  • the first inductor 612 and the second inductor 613 are formed so that the winding directions are the same.
  • the first switch The second inductor 613 is arranged so as to overlap the first changeover switch 45 of 40 (see FIG. 4).
  • the second inductor 613 may be arranged so as to overlap the first changeover switch 45 when the entire second inductor 613 is viewed in a plan view from the thickness direction D1 of the mounting substrate 200. That is, the second inductor 613 may be arranged so that at least a part of the second inductor 613 overlaps with the first switch 40 when viewed in a plan view from the thickness direction D1 of the mounting substrate 200.
  • the power amplifier module 100 (mounting board 200) is viewed in a plan view from the thickness direction D1 of the mounting board 200. If so, it is arranged so as not to overlap with the power amplifier 80.
  • the third inductor 614 is formed of wiring conductors 614a and 614b and via conductors 614c.
  • the wiring conductor 614a is formed along the counterclockwise direction D11 with the connection portion with the capacitor 611 (corresponding to the first end of the third inductor 614) as the starting point and the axis along the thickness direction D1 as the rotation axis. (See FIGS. 3 and 5). That is, the wiring conductor 614a, which is a part of the third inductor 614, is formed with the winding direction as the counterclockwise direction D11.
  • the wiring conductor 614b is connected to the tip of the wiring conductor 614a via a via conductor 614c.
  • the wiring conductor 614b is formed along the counterclockwise direction D11 with the connection portion with the via conductor 614c as the starting point and the axis along the thickness direction D1 as the rotation axis (see FIGS. 3 and 5).
  • the tip of the wiring conductor 614b (corresponding to the second end of the third inductor 614) is electrically connected to the second changeover switch 46.
  • the communication device 500 includes a high frequency module 1 including a power amplifier module 100, an antenna 4, and a signal processing circuit 3.
  • the communication device 500 transmits / receives signals via the antenna 4.
  • the signal processing circuit 3 processes the signal passing through the high frequency module 1. Specifically, the signal processing circuit 3 processes a high-frequency signal (transmission signal) that passes through the power amplifier module 100. Further, the signal processing circuit 3 processes a high frequency signal (received signal) passing through the input matching circuit 70 and the low noise amplifier 90.
  • the signal processing circuit 3 includes, for example, an RF signal processing circuit 5 and a baseband signal processing circuit 6.
  • the baseband signal processing circuit 6 is, for example, a BBIC (Baseband Integrated Circuit), and is electrically connected to the RF signal processing circuit 5.
  • the baseband signal processing circuit 6 generates an I-phase signal and a Q-phase signal from the baseband signal.
  • the baseband signal processing circuit 6 performs IQ modulation processing by synthesizing an I-phase signal and a Q-phase signal, and outputs a transmission signal.
  • the transmission signal is generated as a modulation signal obtained by amplitude-modulating a carrier signal having a predetermined frequency with a period longer than the period of the carrier signal.
  • the RF signal processing circuit 5 is, for example, an RFIC (Radio Frequency Integrated Circuit), and is provided between the high frequency module 1 and the baseband signal processing circuit 6.
  • the RF signal processing circuit 5 has a function of performing signal processing on the transmission signal from the baseband signal processing circuit 6 and a function of performing signal processing on the received signal received by the antenna 4.
  • the RF signal processing circuit 5 is a multi-band compatible processing circuit, and can generate and amplify transmission signals of a plurality of communication bands.
  • the baseband signal processing circuit 6 is not an indispensable component.
  • the power amplifier module 100 of the above embodiment is an attenuation circuit (first) for attenuating the harmonics of the mounting board 200, the power amplifier 80, and the signal output from the power amplifier 80.
  • the attenuation circuit includes a plurality of inductors (first inductor 612, second inductor 613) that are inner-layered on the mounting board 200 and connected to the output terminal 81 of the power amplifier 80.
  • the plurality of inductors are arranged so as to overlap each other when viewed in a plan view from the thickness direction D1 of the mounting substrate 200.
  • the layout area of the power amplifier module 100 can be reduced. Therefore, the power amplifier module 100 can be miniaturized.
  • At least one inductor (for example, the second inductor 613) among the plurality of inductors is connected to the switch (first changeover switch 45).
  • the inductance component can be adjusted by using a switch. For example, when the switch is turned on, an inductance component is generated in the second inductor 613, and the overall inductance component can be made to appear small by the inductance component generated in the first inductor 612.
  • the power amplifier module 100 includes a second inductor 613 connected to the first changeover switch 45 and a third inductor 614 connected to the second changeover switch 46.
  • the first pattern is a pattern in which both the first changeover switch 45 and the second changeover switch 46 are in the off state.
  • the second pattern is a pattern in which the first changeover switch 45 is in the on state and the second changeover switch 46 is in the off state.
  • the third pattern is a pattern in which the first changeover switch 45 is in the off state and the second changeover switch 46 is in the on state.
  • the fourth pattern is a pattern in which both the first changeover switch 45 and the second changeover switch 46 are in the ON state. In each pattern, the generated inductance component is different.
  • an inductance component is generated only in the first inductor 612 having the smallest inductance value. For example, in this case, good communication can be realized by using the filter 31a.
  • an inductance component is generated in the first inductor 612 and the second inductor 613. For example, in this case, good communication can be realized by using the filter 32a.
  • an inductance component is generated in the first inductor 612 and the third inductor 614. For example, in this case, good communication can be realized by using the filter 33a.
  • an inductance component is generated in the first inductor 612, the second inductor 613, and the third inductor 614. For example, in this case, good communication can be realized by using the filter 34a.
  • the winding direction is the same for the first inductor 612 and the second inductor 613. According to this configuration, the inductance component of the second inductor 613 can be made to appear longer.
  • the attenuation circuit is included in the output matching circuit 60. Therefore, the output matching circuit 60 can be miniaturized.
  • the power amplifier module 100 As shown in FIG. 4, the first switch 40 and the like mounted on the second main surface 202 are covered on the second main surface 202 side of the mounting board 200. A second resin layer 240 is provided. Further, the power amplifier module 100 includes a plurality of external connection terminals 210 formed in a columnar shape, and is connected to the mother board by the plurality of external connection terminals 210.
  • the second resin layer 240 is omitted on the second main surface 202 side of the mounting substrate 200, and the mother is formed by a plurality of external connection terminals 215 formed in a spherical shape. It may be connected to a board.
  • Each of the plurality of external connection terminals 215 is, for example, a ball bump formed in a spherical shape.
  • the material of the ball bump is, for example, gold, copper, solder or the like.
  • One of the plurality of external connection terminals 215, the external connection terminal 215, is electrically connected to the antenna terminal T1.
  • the power amplifier module 100 may include a plurality of external connection terminals 210 and a plurality of external connection terminals 215.
  • one of the plurality of external connection terminals 210 may be electrically connected to the antenna terminal T1
  • one of the plurality of external connection terminals 215, the external connection terminal 215, may be the antenna terminal T1. May be electrically connected to.
  • the power amplifier module 100 is configured to include a mounting board 200 in which components are arranged on both the first main surface 201 and the second main surface 202 facing each other in the thickness direction D1. Not limited to.
  • the mounting board 200 a single-sided mounting board on which components are mounted on one of the first main surface 201 and the second main surface 202, for example, the first main surface 201 may be used.
  • the power amplifier module 100 is configured to include the third inductor 614, but is not limited to this configuration.
  • the third inductor 614 is not an essential component. That is, the power amplifier module 100 may be configured not to include the third inductor 614.
  • the first inductor 612 of the power amplifier module 100 is connected to the ground without a switch, but is not limited to this configuration.
  • the first inductor 612 may be connected to the ground via a switch.
  • each of the three or more inductors When viewed in a plan view from the thickness direction D1 of the mounting board 200, three or more inductors may be arranged so as to overlap each other. In this case, each of the three or more inductors is connected between the capacitor 611 and ground. Each of the three or more inductors is connected to ground with or without a switch.
  • the first attenuation circuit 61 has a configuration including the first inductor 612 and the second inductor 613, but the configuration is not limited to this.
  • the second attenuation circuit 62 may include a first inductor 612 and a second inductor 613. Further, at least one of the third attenuation circuit 63 and the fourth attenuation circuit 64 may include the first inductor 612 and the second inductor 613.
  • Both the first attenuation circuit 61 and the second attenuation circuit 62 may include the first inductor 612 and the second inductor 613.
  • at least two of the first attenuation circuit 61, the second attenuation circuit 62, the third attenuation circuit 63, and the fourth attenuation circuit 64 may include the first inductor 612 and the second inductor 613. ..
  • the band changeover switch 41, the first changeover switch 45, and the second changeover switch 46 are configured as one chip, but the configuration is not limited to this. It is not essential that the band changeover switch 41, the first changeover switch 45, and the second changeover switch 46 are integrated into one chip.
  • the band changeover switch 41, the first changeover switch 45, and the second changeover switch 46 may be individually arranged (mounted) on the second main surface 202. Alternatively, two components of the band changeover switch 41, the first changeover switch 45, and the second changeover switch 46 may be integrated into one chip.
  • the power amplifier module (100) of the first aspect is an attenuation that attenuates the harmonics of the signals output from the mounting board (200), the power amplifier (80), and the power amplifier (80).
  • a circuit for example, a first attenuation circuit 61 is provided.
  • the attenuation circuit includes a plurality of inductors (first inductor 612, second inductor 613) which are inner-layered on the mounting board (200) and connected to the output terminal (81) of the power amplifier (80).
  • the plurality of inductors are arranged so as to overlap each other when viewed in a plan view from the thickness direction (D1) of the mounting substrate (200).
  • the layout area of the power amplifier module (100) (mounting board 200) can be reduced. Therefore, the power amplifier module (100) can be miniaturized.
  • the winding directions of the plurality of inductors are the same with the thickness direction (D1) as the winding axis.
  • the power amplifier module (100) of the third aspect includes an output matching circuit (60) including an attenuation circuit in the first or second aspect.
  • the output matching circuit (60) matches the impedance between the power amplifier (80) and the external circuit (for example, the band changeover switch 41) connected to the output side of the output matching circuit (60).
  • the output matching circuit (60) can be downsized.
  • the power amplifier module (100) of the fourth aspect further includes a switch circuit (first switch 40) in any one of the first to third aspects.
  • the switch circuit includes a switch (for example, a first changeover switch 45) connected to one of a plurality of inductors.
  • the inductance component can be adjusted by using a switch. For example, when the switch is turned on, an inductance component is generated in the inductor connected to the switch, and the total inductance component can be reduced by the inductance components generated in other inductors.
  • the mounting substrate (200) has a first main surface (201) and a second main surface (202) facing each other.
  • the power amplifier (80) is provided on the first main surface (201), and the switch circuit is provided on the second main surface (202).
  • the switch circuit is provided on the second main surface (202).
  • the path length between the above one inductor and the switch can be shortened.
  • the switch circuit further includes a changeover switch (for example, a band changeover switch 41) for switching the frequency band used for communication.
  • a changeover switch for example, a band changeover switch 41
  • the one inductor is arranged closest to the second main surface (202) among the plurality of inductors.
  • the path length between the above one inductor and the switch can be shortened.
  • the plurality of inductors when viewed in a plan view from the thickness direction (D1) of the mounting substrate (200), the plurality of inductors have power. It is arranged so as not to overlap with the amplifier (80).
  • the communication device (500) of the ninth aspect is a signal processing circuit (3) that processes a high frequency signal passing through the power amplifier module (100) of any one of the first to eighth aspects and the power amplifier module (100). And.
  • the power amplifier module (100) can be miniaturized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

Provided are a power amplifier module and a communication device having reduced size. A power amplifier module (100) comprises a mounting substrate (200), a power amplifier (80), and an attenuating circuit (such as a first attenuating circuit 61) for attenuating harmonics of a signal output from the power amplifier (80). The attenuating circuit comprises a plurality of inductors (a first inductor 612, a second inductor 613) which are stacked inside the mounting substrate (200) and are connected to an output terminal (81) of the power amplifier (80). The plurality of inductors are disposed so as to overlap when the mounting substrate (200) is viewed in plan from a thickness direction (D1).

Description

パワーアンプモジュール及び通信装置Power amplifier module and communication device
 本発明は、一般にパワーアンプモジュール及び通信装置に関し、より詳細にはインピーダンス整合を行う回路を備えるパワーアンプモジュール及び通信装置に関する。 The present invention generally relates to a power amplifier module and a communication device, and more particularly to a power amplifier module and a communication device including a circuit for performing impedance matching.
 従来、インピーダンス整合を行う回路を備える高周波モジュールが知られている(特許文献1参照)。 Conventionally, a high frequency module including a circuit for impedance matching is known (see Patent Document 1).
 特許文献1では、電力増幅器(パワーアンプ)の出力端子と、インピーダンス整合を行う送信出力整合回路(出力整合回路)とが、接続されている。また、送信出力整合回路は、送信フィルタに接続されている。これにより、送信出力整合回路は、電力増幅器と送信フィルタとのインピーダンス整合をとる。 In Patent Document 1, an output terminal of a power amplifier (power amplifier) and a transmission output matching circuit (output matching circuit) that performs impedance matching are connected. Further, the transmission output matching circuit is connected to the transmission filter. As a result, the transmission output matching circuit performs impedance matching between the power amplifier and the transmission filter.
特開2020-27975号公報Japanese Unexamined Patent Publication No. 2020-27775
 ところで、少なくとも出力整合回路とパワーアンプとを有するモジュール(パワーアンプモジュール)の小型化が望まれている。 By the way, it is desired to reduce the size of a module (power amplifier module) having at least an output matching circuit and a power amplifier.
 本発明は上記課題に鑑みてなされ、小型化を図ることができるパワーアンプモジュール及び通信装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a power amplifier module and a communication device that can be miniaturized.
 本発明の一態様に係るパワーアンプモジュールは、実装基板と、パワーアンプと、前記パワーアンプから出力された信号の高調波を減衰させる減衰用回路と、を備える。前記減衰用回路は、前記実装基板に内層され、前記パワーアンプの出力端子に接続される複数のインダクタを含む。前記複数のインダクタは、前記実装基板の厚さ方向から平面視した場合に重なるように配置されている。 The power amplifier module according to one aspect of the present invention includes a mounting board, a power amplifier, and an attenuation circuit for attenuating the harmonics of the signal output from the power amplifier. The attenuation circuit includes a plurality of inductors that are inner-layered on the mounting board and connected to the output terminals of the power amplifier. The plurality of inductors are arranged so as to overlap each other when viewed in a plan view from the thickness direction of the mounting substrate.
 本発明の一態様に係る通信装置は、前記パワーアンプモジュールと、前記パワーアンプモジュールを通る高周波信号を処理する信号処理回路と、を備える。 The communication device according to one aspect of the present invention includes the power amplifier module and a signal processing circuit for processing a high frequency signal passing through the power amplifier module.
 本発明によると、小型化を図ることができる。 According to the present invention, miniaturization can be achieved.
図1は、一実施形態に係るパワーアンプモジュールを備える高周波モジュール及び通信装置の構成を説明する回路図である。FIG. 1 is a circuit diagram illustrating a configuration of a high frequency module and a communication device including a power amplifier module according to an embodiment. 図2は、同上のパワーアンプモジュールの構成を説明する回路図である。FIG. 2 is a circuit diagram illustrating the configuration of the power amplifier module of the same. 図3は、同上のパワーアンプモジュールを透視した平面図である。FIG. 3 is a perspective view of the power amplifier module of the above. 図4は、同上のパワーアンプモジュールを一部透視した、図3のX1-X1の断面図である。FIG. 4 is a cross-sectional view of X1-X1 of FIG. 3 in which a part of the power amplifier module of the same is seen through. 図5は、同上のパワーアンプモジュールの一部を透視した斜視図である。FIG. 5 is a perspective view of a part of the power amplifier module of the same as above. 図6は、変形例1に係るパワーアンプモジュールを一部透視した断面図である。FIG. 6 is a cross-sectional view showing a part of the power amplifier module according to the first modification.
 以下の実施形態等において参照する図1~図6は、いずれも模式的な図であり、図中の各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。 FIGS. 1 to 6 referred to in the following embodiments and the like are schematic views, and the ratio of the size and the thickness of each component in the figure does not necessarily reflect the actual dimensional ratio. Not necessarily.
 (実施形態)
 以下、本実施形態に係る高周波モジュール1、パワーアンプモジュール100及び通信装置500について、図1~図5を用いて説明する。
(Embodiment)
Hereinafter, the high frequency module 1, the power amplifier module 100, and the communication device 500 according to the present embodiment will be described with reference to FIGS. 1 to 5.
 (1)概要
 本実施形態に係る高周波モジュール1は、パワーアンプモジュール100を備え、例えば、マルチモード/マルチバンド対応の通信装置500に用いられる。通信装置500は、例えば、携帯電話(例えば、スマートフォン)であるが、これに限らず、例えば、ウェアラブル端末(例えば、スマートウォッチ)等であってもよい。高周波モジュール1は、例えば、4G(第4世代移動通信)規格、5G(第5世代移動通信)規格等に対応可能なモジュールである。4G規格は、例えば、3GPP LTE(LTE:Long Term Evolution)規格である。5G規格は、例えば、5G NR(New Radio)である。高周波モジュール1は、キャリアアグリゲーション(Carrier Aggregation)及びデュアルコネクティビティ(Dual connectivity)に対応可能なモジュールである。
(1) Outline The high frequency module 1 according to the present embodiment includes a power amplifier module 100, and is used, for example, in a communication device 500 compatible with multimode / multiband. The communication device 500 is, for example, a mobile phone (for example, a smartphone), but is not limited to this, and may be, for example, a wearable terminal (for example, a smart watch) or the like. The high frequency module 1 is a module capable of supporting, for example, a 4G (4th generation mobile communication) standard, a 5G (5th generation mobile communication) standard, and the like. The 4G standard is, for example, a 3GPP LTE (LTE: Long Term Evolution) standard. The 5G standard is, for example, 5G NR (New Radio). The high frequency module 1 is a module capable of supporting carrier aggregation and dual connectivity.
 高周波モジュール1は、例えば、信号処理回路3から入力された送信信号(高周波信号)を増幅してアンテナ4に出力するように構成されている。また、高周波モジュール1は、アンテナ4から入力された受信信号(高周波信号)を増幅して信号処理回路3に出力するように構成されている。信号処理回路3は、高周波モジュール1の構成要素ではなく、高周波モジュール1を備える通信装置500の構成要素である。実施形態に係る高周波モジュール1は、例えば、通信装置500が備える信号処理回路3によって制御される。通信装置500は、高周波モジュール1と、信号処理回路3と、を備える。通信装置500は、アンテナ4を更に備える。信号処理回路3は、アンテナ4を介して受信した信号(受信信号)、及びアンテナ4を介して送信する信号(送信信号)を処理する。 The high frequency module 1 is configured to, for example, amplify the transmission signal (high frequency signal) input from the signal processing circuit 3 and output it to the antenna 4. Further, the high frequency module 1 is configured to amplify the received signal (high frequency signal) input from the antenna 4 and output it to the signal processing circuit 3. The signal processing circuit 3 is not a component of the high frequency module 1, but a component of the communication device 500 including the high frequency module 1. The high frequency module 1 according to the embodiment is controlled by, for example, a signal processing circuit 3 included in the communication device 500. The communication device 500 includes a high frequency module 1 and a signal processing circuit 3. The communication device 500 further includes an antenna 4. The signal processing circuit 3 processes a signal received via the antenna 4 (received signal) and a signal transmitted via the antenna 4 (transmitted signal).
 (2)高周波モジュールの各構成要素
 以下、本実施形態に係る高周波モジュール1の各構成要素について、図面を参照して説明する。
(2) Each component of the high frequency module Hereinafter, each component of the high frequency module 1 according to the present embodiment will be described with reference to the drawings.
 本実施形態に係る高周波モジュール1は、図1及び図4に示すように、実装基板200と、アンテナ端子T1と、アンテナスイッチ10と、整合回路20と、フィルタ群30と、第1スイッチ40と、第2スイッチ50と、出力整合回路60と、入力整合回路70と、パワーアンプ80と、ローノイズアンプ90と、を備える。ここで、パワーアンプモジュール100は、第1スイッチ40と、出力整合回路60と、パワーアンプ80と、を含む。要するに、高周波モジュール1は、実装基板200と、アンテナ端子T1と、アンテナスイッチ10と、整合回路20と、フィルタ群30と、パワーアンプモジュール100と、入力整合回路70と、ローノイズアンプ90と、を備える。高周波モジュール1は、複数の外部接続端子210を、更に備える(図4参照)。 As shown in FIGS. 1 and 4, the high-frequency module 1 according to the present embodiment includes a mounting board 200, an antenna terminal T1, an antenna switch 10, a matching circuit 20, a filter group 30, and a first switch 40. A second switch 50, an output matching circuit 60, an input matching circuit 70, a power amplifier 80, and a low noise amplifier 90 are provided. Here, the power amplifier module 100 includes a first switch 40, an output matching circuit 60, and a power amplifier 80. In short, the high frequency module 1 includes a mounting board 200, an antenna terminal T1, an antenna switch 10, a matching circuit 20, a filter group 30, a power amplifier module 100, an input matching circuit 70, and a low noise amplifier 90. Be prepared. The high frequency module 1 further includes a plurality of external connection terminals 210 (see FIG. 4).
 アンテナ端子T1は、図1に示すように、アンテナ4に電気的に接続されている。 As shown in FIG. 1, the antenna terminal T1 is electrically connected to the antenna 4.
 アンテナスイッチ10は、アンテナ4に接続される信号経路として、複数の通信バンドの信号経路のうち少なくとも1つの通信バンドの信号経路を選択可能なスイッチである。アンテナスイッチ10は、図1に示すように、共通端子11と、複数(図示例では4つ)の選択端子12~15と、を有する。共通端子11は、アンテナ端子T1と電気的に接続されている。選択端子12は、フィルタ群30に含まれるフィルタ31に電気的に接続されている。選択端子13は、フィルタ群30に含まれるフィルタ32に電気的に接続されている。選択端子14は、フィルタ群30に含まれるフィルタ33に電気的に接続されている。選択端子15は、フィルタ群30に含まれるフィルタ34に電気的に接続されている。 The antenna switch 10 is a switch capable of selecting a signal path of at least one communication band among the signal paths of a plurality of communication bands as a signal path connected to the antenna 4. As shown in FIG. 1, the antenna switch 10 has a common terminal 11 and a plurality of (four in the illustrated example) selection terminals 12 to 15. The common terminal 11 is electrically connected to the antenna terminal T1. The selection terminal 12 is electrically connected to the filter 31 included in the filter group 30. The selection terminal 13 is electrically connected to the filter 32 included in the filter group 30. The selection terminal 14 is electrically connected to the filter 33 included in the filter group 30. The selection terminal 15 is electrically connected to the filter 34 included in the filter group 30.
 アンテナスイッチ10は、複数の選択端子12~15の少なくとも1つを共通端子11の接続先として選択可能なスイッチである。つまり、アンテナスイッチ10は、フィルタ31、フィルタ32、フィルタ33及びフィルタ34とアンテナ4とを選択的に接続可能なスイッチである。 The antenna switch 10 is a switch capable of selecting at least one of a plurality of selection terminals 12 to 15 as a connection destination of the common terminal 11. That is, the antenna switch 10 is a switch capable of selectively connecting the filter 31, the filter 32, the filter 33, the filter 34, and the antenna 4.
 アンテナスイッチ10は、例えば、信号処理回路3によって制御される。アンテナスイッチ10は、信号処理回路3のRF信号処理回路5からの制御信号にしたがって、選択端子12、選択端子13及び選択端子14のうち少なくとも1つと共通端子11と、を電気的に接続する。 The antenna switch 10 is controlled by, for example, the signal processing circuit 3. The antenna switch 10 electrically connects at least one of the selection terminal 12, the selection terminal 13, and the selection terminal 14 and the common terminal 11 according to the control signal from the RF signal processing circuit 5 of the signal processing circuit 3.
 整合回路20は、例えば、複数(図示例では4つ)のチップインダクタ21~24を有する(図1参照)。チップインダクタ21~24のそれぞれは、アンテナスイッチ10とフィルタ群30とのインピーダンス整合を取る回路素子である。チップインダクタ21~24のそれぞれは、一端がアンテナスイッチ10とフィルタ群30のフィルタ31~34とを接続する経路に接続され、他端が基準端子(グランド)に接続されている。なお、整合回路20では、チップインダクタ21~24が、上記経路とグランドとの間に接続されている替わりに、上記経路に直列接続されていてもよい。さらに、整合回路20は、チップインダクタ21~24に限らず、キャパシタ、又はインダクタとキャパシタとを組み合わせた回路であってもよい。 The matching circuit 20 has, for example, a plurality of (four in the illustrated example) chip inductors 21 to 24 (see FIG. 1). Each of the chip inductors 21 to 24 is a circuit element that performs impedance matching between the antenna switch 10 and the filter group 30. One end of each of the chip inductors 21 to 24 is connected to a path connecting the antenna switch 10 and the filters 31 to 34 of the filter group 30, and the other end is connected to a reference terminal (ground). In the matching circuit 20, the chip inductors 21 to 24 may be connected in series to the path instead of being connected between the path and the ground. Further, the matching circuit 20 is not limited to the chip inductors 21 to 24, and may be a capacitor or a circuit in which an inductor and a capacitor are combined.
 フィルタ群30は、複数のフィルタ31~34を有する(図1参照)。複数のフィルタ31~34は、例えば、弾性波フィルタであり、複数の直列腕共振子及び複数の並列腕共振子の各々が弾性波共振子により構成されている。弾性波フィルタは、例えば、弾性表面波を利用するSAW(Surface Acoustic Wave)フィルタである。フィルタ31~34は、デュプレクサである。例えば、フィルタ31は、フィルタ31a及びフィルタ31bを含む。フィルタ32は、フィルタ32a及びフィルタ32bを含む。フィルタ33は、フィルタ33a及びフィルタ33bを含む。フィルタ34は、フィルタ34a及びフィルタ34bを含む。フィルタ31a,32a,33a,34aは、送信信号を通過させる送信用のフィルタである。フィルタ31b,32b,33b,34bは、受信信号を通過させる受信用のフィルタである。フィルタ31aは、例えば4G規格でのBand71の送信信号を通過させる。フィルタ32aは、例えば4G規格でのBand13の送信信号を通過させる。フィルタ33aは、例えば4G規格でのBand20の送信信号を通過させる。フィルタ34aは、例えば4G規格でのBand8の送信信号を通過させる。フィルタ31bは、例えば4G規格でのBand71の受信信号を通過させる。フィルタ32bは、例えば4G規格でのBand13の受信信号を通過させる。フィルタ33bは、例えば4G規格でのBand20の受信信号を通過させる。フィルタ34bは、例えば4G規格でのBand8の受信信号を通過させる。 The filter group 30 has a plurality of filters 31 to 34 (see FIG. 1). The plurality of filters 31 to 34 are, for example, elastic wave filters, and each of the plurality of series arm resonators and the plurality of parallel arm resonators is composed of elastic wave resonators. The surface acoustic wave filter is, for example, a SAW (Surface Acoustic Wave) filter that utilizes surface acoustic waves. Filters 31-34 are duplexers. For example, the filter 31 includes a filter 31a and a filter 31b. The filter 32 includes a filter 32a and a filter 32b. The filter 33 includes a filter 33a and a filter 33b. The filter 34 includes a filter 34a and a filter 34b. The filters 31a, 32a, 33a, 34a are transmission filters for passing a transmission signal. The filters 31b, 32b, 33b, 34b are reception filters for passing a reception signal. The filter 31a passes the transmission signal of the Band 71 in the 4G standard, for example. The filter 32a passes, for example, the transmission signal of Band 13 in the 4G standard. The filter 33a passes, for example, the transmission signal of Band 20 in the 4G standard. The filter 34a passes, for example, a Band 8 transmission signal in the 4G standard. The filter 31b passes the received signal of the Band 71 in the 4G standard, for example. The filter 32b passes the received signal of Band 13 in the 4G standard, for example. The filter 33b passes the received signal of the Band 20 in the 4G standard, for example. The filter 34b passes the received signal of Band 8 in the 4G standard, for example.
 フィルタ31~34のそれぞれは、アンテナスイッチ10の複数の選択端子に一対一に接続されている。フィルタ31~34のそれぞれは、第1スイッチ40のバンド切替スイッチ41の複数(図示例では3つ)の選択端子43a~43dに一対一に電気的に接続されている。具体的には、フィルタ31aは選択端子43aに、フィルタ32aは選択端子43bに、フィルタ33aは選択端子43cに、フィルタ34aは選択端子43dに、それぞれ電気的に接続されている。 Each of the filters 31 to 34 is connected one-to-one to a plurality of selection terminals of the antenna switch 10. Each of the filters 31 to 34 is electrically connected one-to-one to a plurality of (three in the illustrated example) selection terminals 43a to 43d of the band changeover switch 41 of the first switch 40. Specifically, the filter 31a is electrically connected to the selection terminal 43a, the filter 32a is electrically connected to the selection terminal 43b, the filter 33a is electrically connected to the selection terminal 43c, and the filter 34a is electrically connected to the selection terminal 43d.
 フィルタ31~34のそれぞれは、第2スイッチ50の複数(図示例では4つ)の選択端子52a~52dに一対一に接続されている。具体的には、フィルタ31bは選択端子52aに、フィルタ32bは選択端子52bに、フィルタ33bは選択端子52cに、フィルタ34bは選択端子52dに、それぞれ電気的に接続されている。 Each of the filters 31 to 34 is connected one-to-one to a plurality of (four in the illustrated example) selection terminals 52a to 52d of the second switch 50. Specifically, the filter 31b is electrically connected to the selection terminal 52a, the filter 32b is electrically connected to the selection terminal 52b, the filter 33b is electrically connected to the selection terminal 52c, and the filter 34b is electrically connected to the selection terminal 52d.
 第2スイッチ50は、共通端子51と、複数(図示例では、4つ)の選択端子52a~52dと、を有する。第2スイッチ50は、共通端子51と選択端子52a~52dとの接続状態を切り替えるスイッチである。共通端子51は、ローノイズアンプ90と電気的に接続されている。具体的には、共通端子51は、入力整合回路70を介して、ローノイズアンプ90と接続されている。複数の選択端子52a~52dは、複数のフィルタ31~34に一対一に接続されている。本実施形態では、選択端子52aはフィルタ31bに、選択端子52bはフィルタ32bに、選択端子52cはフィルタ33bに、選択端子52dはフィルタ34bに、それぞれ接続されている。第2スイッチ50は、信号処理回路3のRF信号処理回路5からの制御信号にしたがって、選択端子52a~52dのいずれか1つと共通端子51と、を電気的に接続する。 The second switch 50 has a common terminal 51 and a plurality of (four in the illustrated example) selection terminals 52a to 52d. The second switch 50 is a switch that switches the connection state between the common terminal 51 and the selection terminals 52a to 52d. The common terminal 51 is electrically connected to the low noise amplifier 90. Specifically, the common terminal 51 is connected to the low noise amplifier 90 via the input matching circuit 70. The plurality of selection terminals 52a to 52d are connected one-to-one to the plurality of filters 31 to 34. In the present embodiment, the selection terminal 52a is connected to the filter 31b, the selection terminal 52b is connected to the filter 32b, the selection terminal 52c is connected to the filter 33b, and the selection terminal 52d is connected to the filter 34b. The second switch 50 electrically connects any one of the selection terminals 52a to 52d and the common terminal 51 according to the control signal from the RF signal processing circuit 5 of the signal processing circuit 3.
 入力整合回路70は、第2スイッチ50とローノイズアンプ90とのインピーダンス整合を取る回路素子である。 The input matching circuit 70 is a circuit element that performs impedance matching between the second switch 50 and the low noise amplifier 90.
 ローノイズアンプ90は、アンテナ4が受信した信号(受信信号)を増幅する。ローノイズアンプ90の入力端子91は、入力整合回路70に電気的に接続されている。ローノイズアンプ90の出力端子92は、信号処理回路3に接続されている。ローノイズアンプ90は、フィルタ31b~34bのいずれかのフィルタ及び入力整合回路70を通過した信号(受信信号)を増幅する。ローノイズアンプ90は、増幅した受信信号を信号処理回路3に出力する。 The low noise amplifier 90 amplifies the signal (received signal) received by the antenna 4. The input terminal 91 of the low noise amplifier 90 is electrically connected to the input matching circuit 70. The output terminal 92 of the low noise amplifier 90 is connected to the signal processing circuit 3. The low noise amplifier 90 amplifies a signal (received signal) that has passed through any of the filters 31b to 34b and the input matching circuit 70. The low noise amplifier 90 outputs the amplified received signal to the signal processing circuit 3.
 以下、パワーアンプモジュール100の構成について説明する。 Hereinafter, the configuration of the power amplifier module 100 will be described.
 パワーアンプモジュール100は、上述したように、第1スイッチ40と、出力整合回路60と、パワーアンプ80と、を含む(図1参照)。 As described above, the power amplifier module 100 includes a first switch 40, an output matching circuit 60, and a power amplifier 80 (see FIG. 1).
 第1スイッチ40は、例えばスイッチIC(Integrated Circuit)である。第1スイッチ40は、図1に示すように、バンド切替スイッチ41と、第1切替スイッチ45と、第2切替スイッチ46と、を含んでいる。 The first switch 40 is, for example, a switch IC (Integrated Circuit). As shown in FIG. 1, the first switch 40 includes a band changeover switch 41, a first changeover switch 45, and a second changeover switch 46.
 バンド切替スイッチ41は、信号の送信に用いるバンドを切り替えるためのスイッチである。バンド切替スイッチ41は、図1に示すように、共通端子42と、複数(図示例では4つ)の選択端子43a~43dと、を有する。共通端子42は、出力整合回路60と電気的に接続されている。選択端子43aは、フィルタ31aに電気的に接続されている。選択端子43bは、フィルタ32aに電気的に接続されている。選択端子43cは、フィルタ33aに電気的に接続されている。選択端子43dは、フィルタ34aに電気的に接続されている。 The band changeover switch 41 is a switch for switching the band used for signal transmission. As shown in FIG. 1, the band changeover switch 41 has a common terminal 42 and a plurality of (four in the illustrated example) selection terminals 43a to 43d. The common terminal 42 is electrically connected to the output matching circuit 60. The selection terminal 43a is electrically connected to the filter 31a. The selection terminal 43b is electrically connected to the filter 32a. The selection terminal 43c is electrically connected to the filter 33a. The selection terminal 43d is electrically connected to the filter 34a.
 バンド切替スイッチ41は、複数の選択端子43a~43dの少なくとも1つを共通端子42の接続先として選択可能なスイッチである。つまり、バンド切替スイッチ41は、フィルタ31、フィルタ32、フィルタ33及びフィルタ34と出力整合回路60とを選択的に接続可能なスイッチである。 The band changeover switch 41 is a switch that can select at least one of a plurality of selection terminals 43a to 43d as a connection destination of the common terminal 42. That is, the band changeover switch 41 is a switch capable of selectively connecting the filter 31, the filter 32, the filter 33, the filter 34, and the output matching circuit 60.
 バンド切替スイッチ41は、例えば、信号処理回路3によって制御される。バンド切替スイッチ41は、信号処理回路3のRF信号処理回路5からの制御信号にしたがって、選択端子43a~43dのうち少なくとも1つと共通端子42と、を電気的に接続する。 The band changeover switch 41 is controlled by, for example, the signal processing circuit 3. The band changeover switch 41 electrically connects at least one of the selection terminals 43a to 43d and the common terminal 42 according to the control signal from the RF signal processing circuit 5 of the signal processing circuit 3.
 第1切替スイッチ45は、後述する第2インダクタ613(図2参照)とグランドとの間に設けられている。第1切替スイッチ45は、第1端子451と第2端子452とを含んでいる。第1端子451は、第2インダクタ613に電気的に接続されている。第2端子452は、グランドに電気的に接続されている。第1切替スイッチ45は、例えば、信号処理回路3によって制御される。第1切替スイッチ45は、信号処理回路3のRF信号処理回路5からの制御信号にしたがって、第1端子451と第2端子452との間を電気的に接続したり、非接続にしたりする。 The first changeover switch 45 is provided between the second inductor 613 (see FIG. 2), which will be described later, and the ground. The first changeover switch 45 includes a first terminal 451 and a second terminal 452. The first terminal 451 is electrically connected to the second inductor 613. The second terminal 452 is electrically connected to the ground. The first changeover switch 45 is controlled by, for example, the signal processing circuit 3. The first changeover switch 45 electrically connects or disconnects the first terminal 451 and the second terminal 452 according to the control signal from the RF signal processing circuit 5 of the signal processing circuit 3.
 第2切替スイッチ46は、後述する第3インダクタ614(図2参照)とグランドとの間に設けられている。第2切替スイッチ46は、第1端子461と第2端子462とを含んでいる。第1端子461は、第3インダクタ614に電気的に接続されている。第2端子462は、グランドに電気的に接続されている。第2切替スイッチ46は、例えば、信号処理回路3によって制御される。第2切替スイッチ46は、信号処理回路3のRF信号処理回路5からの制御信号にしたがって、第1端子461と第2端子462との間を電気的に接続したり、非接続にしたりする。 The second changeover switch 46 is provided between the third inductor 614 (see FIG. 2), which will be described later, and the ground. The second changeover switch 46 includes a first terminal 461 and a second terminal 462. The first terminal 461 is electrically connected to the third inductor 614. The second terminal 462 is electrically connected to the ground. The second changeover switch 46 is controlled by, for example, the signal processing circuit 3. The second changeover switch 46 electrically connects or disconnects the first terminal 461 and the second terminal 462 according to the control signal from the RF signal processing circuit 5 of the signal processing circuit 3.
 出力整合回路60は、パワーアンプ80と、出力整合回路60の出力側と接続されている外部回路(ここでは、バンド切替スイッチ41)との間のインピーダンスを整合させる回路素子である。なお、出力整合回路60の詳細な構成については、後述する。 The output matching circuit 60 is a circuit element that matches the impedance between the power amplifier 80 and the external circuit (here, the band changeover switch 41) connected to the output side of the output matching circuit 60. The detailed configuration of the output matching circuit 60 will be described later.
 パワーアンプ80は、アンテナ4から送信する信号(送信信号)を増幅する。パワーアンプ80の入力端子82は、信号処理回路3に接続されている。パワーアンプ80の出力端子81は、出力整合回路60に接続されている。パワーアンプ80は、信号処理回路3から出力された信号を増幅する。パワーアンプ80は、増幅した送信信号を、出力整合回路60を介してバンド切替スイッチ41に出力する。 The power amplifier 80 amplifies the signal (transmitted signal) transmitted from the antenna 4. The input terminal 82 of the power amplifier 80 is connected to the signal processing circuit 3. The output terminal 81 of the power amplifier 80 is connected to the output matching circuit 60. The power amplifier 80 amplifies the signal output from the signal processing circuit 3. The power amplifier 80 outputs the amplified transmission signal to the band changeover switch 41 via the output matching circuit 60.
 出力整合回路60は、図2に示すように、第1減衰用回路61、第2減衰用回路62、第3減衰用回路63及び第4減衰用回路64を含む。 As shown in FIG. 2, the output matching circuit 60 includes a first attenuation circuit 61, a second attenuation circuit 62, a third attenuation circuit 63, and a fourth attenuation circuit 64.
 第1減衰用回路61は、送信信号の2倍波である高調波を減衰させる回路である。第1減衰用回路61は、図2に示すように、キャパシタ611、第1インダクタ612、第2インダクタ613、第3インダクタ614及び第4インダクタ615を有している。 The first attenuation circuit 61 is a circuit that attenuates harmonics that are double waves of the transmission signal. As shown in FIG. 2, the first attenuation circuit 61 includes a capacitor 611, a first inductor 612, a second inductor 613, a third inductor 614, and a fourth inductor 615.
 第4インダクタ615は、パワーアンプモジュールにおけるパワーアンプ80と第1スイッチ40との間を接続する経路R60(図3参照)に直列に挿入されている。具体的には、第4インダクタ615の第1端はパワーアンプ80の出力端子81と電気的に接続されている。第4インダクタ615の第2端は第2減衰用回路62と電気的に接続されている。 The fourth inductor 615 is inserted in series with the path R60 (see FIG. 3) connecting the power amplifier 80 and the first switch 40 in the power amplifier module. Specifically, the first end of the fourth inductor 615 is electrically connected to the output terminal 81 of the power amplifier 80. The second end of the fourth inductor 615 is electrically connected to the second attenuation circuit 62.
 キャパシタ611は、第4インダクタ615の第2端とグランドとの間に設けられている。具体的には、キャパシタ611の第1端は、第4インダクタ615の第2端と電気的に接続されている。キャパシタ611の第2端は、第1インダクタ612、第2インダクタ613及び第3インダクタ614のそれぞれの第1端と電気的に接続されている。 The capacitor 611 is provided between the second end of the fourth inductor 615 and the ground. Specifically, the first end of the capacitor 611 is electrically connected to the second end of the fourth inductor 615. The second end of the capacitor 611 is electrically connected to the first end of each of the first inductor 612, the second inductor 613, and the third inductor 614.
 第1インダクタ612は、キャパシタ611の第2端とグランドとの間に設けられている。具体的には、第1インダクタ612の第1端は、キャパシタ611の第2端と電気的に接続されている。第1インダクタ612の第2端は、グランドに電気的に接続されている。 The first inductor 612 is provided between the second end of the capacitor 611 and the ground. Specifically, the first end of the first inductor 612 is electrically connected to the second end of the capacitor 611. The second end of the first inductor 612 is electrically connected to ground.
 第2インダクタ613は、キャパシタ611の第2端とグランドとの間に設けられている。具体的には、第2インダクタ613の第1端は、キャパシタ611の第2端と電気的に接続されている。第2インダクタ613の第2端は、第1切替スイッチ45の第1端子451に電気的に接続されている。第2インダクタ613は、第1切替スイッチ45の第1端子451と第1切替スイッチ45の第2端子452との間が接続されることで、グランドに接続される。 The second inductor 613 is provided between the second end of the capacitor 611 and the ground. Specifically, the first end of the second inductor 613 is electrically connected to the second end of the capacitor 611. The second end of the second inductor 613 is electrically connected to the first terminal 451 of the first changeover switch 45. The second inductor 613 is connected to the ground by connecting between the first terminal 451 of the first changeover switch 45 and the second terminal 452 of the first changeover switch 45.
 第3インダクタ614は、キャパシタ611の第2端とグランドとの間に設けられている。具体的には、第3インダクタ614の第1端は、キャパシタ611の第2端と電気的に接続されている。第3インダクタ614の第2端は、第2切替スイッチ46の第1端子461に電気的に接続されている。第3インダクタ614は、第2切替スイッチ46の第1端子461と第2切替スイッチ46の第2端子462との間が接続されることで、グランドに接続される。 The third inductor 614 is provided between the second end of the capacitor 611 and the ground. Specifically, the first end of the third inductor 614 is electrically connected to the second end of the capacitor 611. The second end of the third inductor 614 is electrically connected to the first terminal 461 of the second changeover switch 46. The third inductor 614 is connected to the ground by being connected between the first terminal 461 of the second changeover switch 46 and the second terminal 462 of the second changeover switch 46.
 第1インダクタ612、第2インダクタ613及び第3インダクタ614は、第4インダクタ615と電気的に接続されている。すなわち、第1インダクタ612、第2インダクタ613及び第3インダクタ614は、パワーアンプ80の出力端子81と電気的に接続されている。 The first inductor 612, the second inductor 613, and the third inductor 614 are electrically connected to the fourth inductor 615. That is, the first inductor 612, the second inductor 613, and the third inductor 614 are electrically connected to the output terminal 81 of the power amplifier 80.
 ここで、第1インダクタ612のインダクタンス値は、第2インダクタ613のインダクタンス値及び第3インダクタ614のインダクタンス値よりも小さい。第2インダクタ613のインダクタンス値は、第1インダクタ612のインダクタンス値及び第3インダクタ614のインダクタンス値よりも大きい。つまり、第1インダクタ612、第2インダクタ613及び第3インダクタ614のうち、第1インダクタ612のインダクタンス値が最も小さく、次に第3インダクタ614のインダクタンス値が小さく、第2インダクタ613のインダクタンス値が最も大きい。すなわち、不等式“第1インダクタ612のインダクタンス値<第3インダクタ614のインダクタンス値<第2インダクタ613のインダクタンス値”が成立している。 Here, the inductance value of the first inductor 612 is smaller than the inductance value of the second inductor 613 and the inductance value of the third inductor 614. The inductance value of the second inductor 613 is larger than the inductance value of the first inductor 612 and the inductance value of the third inductor 614. That is, among the first inductor 612, the second inductor 613, and the third inductor 614, the inductance value of the first inductor 612 is the smallest, then the inductance value of the third inductor 614 is the smallest, and the inductance value of the second inductor 613 is. The largest. That is, the inequality "inductance value of the first inductor 612 <inductance value of the third inductor 614 <inductance value of the second inductor 613" is established.
 第1切替スイッチ45及び第2切替スイッチ46のそれぞれの開状態、閉状態が切り替えられることで、第1インダクタ612、第2インダクタ613及び第3インダクタ614のうちグランドに接続されるインダクタが選択される。すなわち、第1切替スイッチ45及び第2切替スイッチ46のそれぞれの開状態、閉状態が切り替えられることで、グランドに接続されるインダクタのインダクタンス値を変更することが可能になる。 By switching the open state and closed state of the first changeover switch 45 and the second changeover switch 46, the inductor connected to the ground is selected from the first inductor 612, the second inductor 613, and the third inductor 614. NS. That is, the inductance value of the inductor connected to the ground can be changed by switching the open state and the closed state of the first changeover switch 45 and the second changeover switch 46, respectively.
 なお、第1インダクタ612、第2インダクタ613及び第3インダクタ614の配置に係る構造については、後述する。 The structure related to the arrangement of the first inductor 612, the second inductor 613, and the third inductor 614 will be described later.
 第2減衰用回路62は、送信信号の3倍波である高調波を減衰させる回路である。第2減衰用回路62は、図2に示すように、インダクタ621及びキャパシタ622を有している。 The second attenuation circuit 62 is a circuit that attenuates harmonics that are the third harmonic of the transmitted signal. The second attenuation circuit 62 has an inductor 621 and a capacitor 622, as shown in FIG.
 インダクタ621は、経路R60(図3参照)に直列に挿入されている。具体的には、インダクタ621の第1端は、第1減衰用回路61の第4インダクタ615の第2端と電気的に接続されている。インダクタ621の第2端は第3減衰用回路63と電気的に接続されている。キャパシタ622は、インダクタ621の第2端とグランドとの間に設けられている。具体的には、キャパシタ622の第1端は、インダクタ621の第2端と電気的に接続されている。キャパシタ622の第2端は、グランドに電気的に接続されている。 The inductor 621 is inserted in series with the path R60 (see FIG. 3). Specifically, the first end of the inductor 621 is electrically connected to the second end of the fourth inductor 615 of the first attenuation circuit 61. The second end of the inductor 621 is electrically connected to the third attenuation circuit 63. The capacitor 622 is provided between the second end of the inductor 621 and the ground. Specifically, the first end of the capacitor 622 is electrically connected to the second end of the inductor 621. The second end of capacitor 622 is electrically connected to ground.
 第3減衰用回路63は、所定の周波数帯域(第1周波数帯域)よりも高周波数側の信号を通過させる回路である。すなわち、第3減衰用回路63は、第1周波数帯域よりも低周波数側の信号を減衰させる回路である。第3減衰用回路63は、図2に示すように、キャパシタ631及びインダクタ632を有している。 The third attenuation circuit 63 is a circuit that passes a signal on the higher frequency side than the predetermined frequency band (first frequency band). That is, the third attenuation circuit 63 is a circuit that attenuates a signal on the frequency side lower than the first frequency band. As shown in FIG. 2, the third attenuation circuit 63 includes a capacitor 631 and an inductor 632.
 キャパシタ631は、経路R60(図3参照)に直列に挿入されている。具体的には、キャパシタ631の第1端は、第2減衰用回路62のインダクタ621の第2端と電気的に接続されている。キャパシタ631の第2端は第4減衰用回路64と電気的に接続されている。インダクタ632は、キャパシタ631の第2端とグランドとの間に設けられている。具体的には、インダクタ632の第1端は、キャパシタ631の第2端と電気的に接続されている。インダクタ632の第2端は、グランドに電気的に接続されている。 Capacitor 631 is inserted in series with path R60 (see FIG. 3). Specifically, the first end of the capacitor 631 is electrically connected to the second end of the inductor 621 of the second attenuation circuit 62. The second end of the capacitor 631 is electrically connected to the fourth attenuation circuit 64. The inductor 632 is provided between the second end of the capacitor 631 and the ground. Specifically, the first end of the inductor 632 is electrically connected to the second end of the capacitor 631. The second end of the inductor 632 is electrically connected to ground.
 第4減衰用回路64は、所定の周波数帯域(第2周波数帯域)よりも低周波数側の信号を通過させる回路である。すなわち、第4減衰用回路64は、第2周波数帯域よりも高周波数側の信号を減衰させる回路である。第4減衰用回路64は、図2に示すように、インダクタ641及びキャパシタ642を有している。 The fourth attenuation circuit 64 is a circuit that passes a signal on the lower frequency side than the predetermined frequency band (second frequency band). That is, the fourth attenuation circuit 64 is a circuit that attenuates a signal on the higher frequency side than the second frequency band. As shown in FIG. 2, the fourth attenuation circuit 64 has an inductor 641 and a capacitor 642.
 インダクタ641は、経路R60(図3参照)に直列に挿入されている。具体的には、インダクタ641の第1端は、第3減衰用回路63のキャパシタ631の第2端と電気的に接続されている。インダクタ641の第2端は、第1スイッチ40のバンド切替スイッチ41と電気的に接続されている。キャパシタ642は、インダクタ641の第2端とグランドとの間に設けられている。具体的には、キャパシタ642の第1端は、インダクタ641の第2端と電気的に接続されている。キャパシタ642の第2端は、グランドに電気的に接続されている。 The inductor 641 is inserted in series with the path R60 (see FIG. 3). Specifically, the first end of the inductor 641 is electrically connected to the second end of the capacitor 631 of the third attenuation circuit 63. The second end of the inductor 641 is electrically connected to the band changeover switch 41 of the first switch 40. The capacitor 642 is provided between the second end of the inductor 641 and the ground. Specifically, the first end of the capacitor 642 is electrically connected to the second end of the inductor 641. The second end of capacitor 642 is electrically connected to ground.
 次に、パワーアンプモジュール100の構造について説明する。 Next, the structure of the power amplifier module 100 will be described.
 実装基板200は、図4に示すように、厚さ方向D1において互いに対向する第1主面201と第2主面202と、を有する。第1主面201には、パワーアンプ80、キャパシタ611、キャパシタ622、及びキャパシタ631等が配置されている。第2主面202には、第1スイッチ40が配置されている。 As shown in FIG. 4, the mounting board 200 has a first main surface 201 and a second main surface 202 facing each other in the thickness direction D1. A power amplifier 80, a capacitor 611, a capacitor 622, a capacitor 631, and the like are arranged on the first main surface 201. The first switch 40 is arranged on the second main surface 202.
 実装基板200は、例えば、プリント配線板、LTCC(Low Temperature Co-fired Ceramics)、HTCC(High Temperature Co-fired Ceramics)、樹脂基板である。ここにおいて、実装基板200は、例えば、複数の誘電体層及び複数の導電層を含む多層基板である。複数の誘電体層及び複数の導電層は、実装基板200の厚さ方向D1において積層されている。複数の導電層は、層ごとに定められた所定パターンに形成されている。複数の導電層の各々は、実装基板200の厚さ方向D1に直交する一平面内において1つ又は複数の導体部を含む。各導電層の材料は、例えば、銅である。複数の導電層は、グランド層を含む。パワーアンプモジュール100では、複数のグランド端子とグランド層とが、実装基板200の有するビア導体等を介して電気的に接続されている。 The mounting board 200 is, for example, a printed wiring board, an LTCC (Low Temperature Co-fired Ceramics), an HTCC (High Temperature Co-fired Ceramics), or a resin board. Here, the mounting substrate 200 is, for example, a multilayer substrate including a plurality of dielectric layers and a plurality of conductive layers. The plurality of dielectric layers and the plurality of conductive layers are laminated in the thickness direction D1 of the mounting substrate 200. The plurality of conductive layers are formed in a predetermined pattern determined for each layer. Each of the plurality of conductive layers includes one or a plurality of conductor portions in one plane orthogonal to the thickness direction D1 of the mounting substrate 200. The material of each conductive layer is, for example, copper. The plurality of conductive layers include a ground layer. In the power amplifier module 100, a plurality of ground terminals and a ground layer are electrically connected via a via conductor or the like included in the mounting substrate 200.
 実装基板200は、プリント配線板、LTCC基板に限らず、配線構造体であってもよい。配線構造体は、例えば、多層構造体である。多層構造体は、少なくとも1つの絶縁層と、少なくとも1つの導電層とを含む。絶縁層は、所定パターンに形成されている。絶縁層が複数の場合は、複数の絶縁層は、層ごとに定められた所定パターンに形成されている。導電層は、絶縁層の所定パターンとは異なる所定パターンに形成されている。導電層が複数の場合は、複数の導電層は、層ごとに定められた所定パターンに形成されている。導電層は、1つ又は複数の再配線部を含んでもよい。配線構造体では、多層構造体の厚さ方向において互いに対向する2つの面のうち第1面が実装基板200の第1主面201あり、第2面が実装基板200の第2主面202である。配線構造体は、例えば、インタポーザであってもよい。インタポーザは、シリコン基板を用いたインタポーザであってもよいし、多層で構成された基板であってもよい。 The mounting board 200 is not limited to the printed wiring board and the LTCC board, but may be a wiring structure. The wiring structure is, for example, a multi-layer structure. The multilayer structure includes at least one insulating layer and at least one conductive layer. The insulating layer is formed in a predetermined pattern. When there are a plurality of insulating layers, the plurality of insulating layers are formed in a predetermined pattern determined for each layer. The conductive layer is formed in a predetermined pattern different from the predetermined pattern of the insulating layer. When there are a plurality of conductive layers, the plurality of conductive layers are formed in a predetermined pattern determined for each layer. The conductive layer may include one or more rewiring sections. In the wiring structure, of the two surfaces facing each other in the thickness direction of the multilayer structure, the first surface is the first main surface 201 of the mounting board 200, and the second surface is the second main surface 202 of the mounting board 200. be. The wiring structure may be, for example, an interposer. The interposer may be an interposer using a silicon substrate, or may be a substrate composed of multiple layers.
 パワーアンプモジュール100は、複数の外部接続端子210を有している。複数の外部接続端子210は、パワーアンプモジュール100を、信号処理回路3等が実装されているマザー基板に接続する。複数の外部接続端子210は、実装基板200の第2主面202上に配置された(設けられた)柱状(例えば、円柱状)の電極である。複数の外部接続端子210の材料は、例えば、金属(例えば、銅、銅合金等)である。複数の外部接続端子210のうち1つの外部接続端子210は、アンテナ端子T1に電気的に接続されている。 The power amplifier module 100 has a plurality of external connection terminals 210. The plurality of external connection terminals 210 connect the power amplifier module 100 to the mother board on which the signal processing circuit 3 and the like are mounted. The plurality of external connection terminals 210 are columnar (for example, columnar) electrodes arranged (provided) on the second main surface 202 of the mounting substrate 200. The material of the plurality of external connection terminals 210 is, for example, a metal (for example, copper, copper alloy, etc.). One of the plurality of external connection terminals 210 is electrically connected to the antenna terminal T1.
 パワーアンプモジュール100は、実装基板200の第1主面201において、第1主面201に実装されているパワーアンプ80、キャパシタ611、キャパシタ622、及びキャパシタ631等を覆う第1樹脂層230を、更に備える。パワーアンプモジュール100は、実装基板200の第2主面202において、第2主面202に実装されている第1スイッチ40等を覆う第2樹脂層240を、更に備える。第2樹脂層240の材料は、第1樹脂層230の材料と同じ材料であってもよいし、異なる材料であってもよい。なお、図3では、第1樹脂層230を省略している。 The power amplifier module 100 has a first resin layer 230 on the first main surface 201 of the mounting board 200, which covers the power amplifier 80, the capacitor 611, the capacitor 622, the capacitor 631, and the like mounted on the first main surface 201. Further prepare. The power amplifier module 100 further includes a second resin layer 240 on the second main surface 202 of the mounting board 200, which covers the first switch 40 and the like mounted on the second main surface 202. The material of the second resin layer 240 may be the same material as the material of the first resin layer 230, or may be a different material. In FIG. 3, the first resin layer 230 is omitted.
 実装基板200は、厚さ方向D1からの平面視で、多角形状である。例えば、実装基板200は、厚さ方向D1からの平面視で、四角形状である。実装基板200は、図4に示すように、複数のビア導体220及び複数の配線導体221を含む。複数のビア導体220は、ビア導体613c,614c,661を含む。複数の配線導体221は、配線導体612a,613a,613b,614a,614b,660を含む。複数の配線導体221は、複数の導電層のうちいずれかの導電層に含まれている。複数のビア導体220複数の配線導体221のうち、厚さ方向D1から平面視した場合に、パワーアンプ80と重なる位置に存在する1つ以上のビア導体220と1つ以上の配線導体221とは、パワーアンプ80に対する放熱経路R80を形成している。 The mounting board 200 has a polygonal shape in a plan view from the thickness direction D1. For example, the mounting substrate 200 has a rectangular shape in a plan view from the thickness direction D1. As shown in FIG. 4, the mounting board 200 includes a plurality of via conductors 220 and a plurality of wiring conductors 221. The plurality of via conductors 220 include via conductors 613c, 614c, 661. The plurality of wiring conductors 221 include wiring conductors 612a, 613a, 613b, 614a, 614b, 660. The plurality of wiring conductors 221 are included in any one of the plurality of conductive layers. A plurality of via conductors 220 Of a plurality of wiring conductors 221s, one or more via conductors 220 and one or more wiring conductors 221 existing at positions overlapping with the power amplifier 80 when viewed in a plan view from the thickness direction D1. , A heat dissipation path R80 for the power amplifier 80 is formed.
 本実施形態のパワーアンプモジュール100では、パワーアンプモジュール100(の実装基板200)を実装基板200の厚さ方向D1から平面視した場合に、図3~図5に示すように、第1インダクタ612と第2インダクタ613とは重なるように配置されている。このとき、第1インダクタ612と第2インダクタ613とのうち、第2インダクタ613は、第1インダクタ612よりも第2主面側に配置されている。 In the power amplifier module 100 of the present embodiment, when the power amplifier module 100 (mounting board 200) is viewed in a plan view from the thickness direction D1 of the mounting board 200, as shown in FIGS. 3 to 5, the first inductor 612 And the second inductor 613 are arranged so as to overlap each other. At this time, of the first inductor 612 and the second inductor 613, the second inductor 613 is arranged on the second main surface side with respect to the first inductor 612.
 また、第1インダクタ612と第2インダクタ613とにおいて、これらインダクタの巻き方向は、厚さ方向D1を巻回軸として、同一方向である。 Further, in the first inductor 612 and the second inductor 613, the winding direction of these inductors is the same with the thickness direction D1 as the winding axis.
 本実施形態では、第1インダクタ612は、配線導体612aで形成されている。配線導体612aは、キャパシタ611との接続部位(第1インダクタ612の第1端の相当)を始点、厚さ方向D1に沿った軸を回転軸として、右回り方向D10に沿って形成されている(図3、図5参照)。すなわち、第1インダクタ612である配線導体612aは、巻き方向を右回り方向D10として形成されている。配線導体612aの先端(第1インダクタの第2端に相当)は、グランド層に含まれる配線導体660(グランド配線)に接続されている。 In the present embodiment, the first inductor 612 is formed of the wiring conductor 612a. The wiring conductor 612a is formed along the clockwise direction D10 with the connection portion with the capacitor 611 (corresponding to the first end of the first inductor 612) as the starting point and the axis along the thickness direction D1 as the rotation axis. (See FIGS. 3 and 5). That is, the wiring conductor 612a, which is the first inductor 612, is formed with the winding direction as the clockwise direction D10. The tip of the wiring conductor 612a (corresponding to the second end of the first inductor) is connected to the wiring conductor 660 (ground wiring) included in the ground layer.
 第2インダクタ613は、配線導体613a,配線導体613b及びビア導体613cで形成されている。配線導体613aは、キャパシタ611との接続部位(第2インダクタ613の第1端の相当)を始点、厚さ方向D1に沿った軸を回転軸として、右回り方向D10に沿って形成されている(図3、図5参照)。すなわち、第2インダクタ613の一部である配線導体613aは、巻き方向を右回り方向D10として形成されている。配線導体613bは、配線導体613aの先端とビア導体613cを介して接続されている。配線導体613bは、ビア導体613cとの接続部位を始点、厚さ方向D1に沿った軸を回転軸として、右回り方向D10に沿って形成されている(図3、図5参照)。配線導体613bの先端(第2インダクタ613の第2端に相当)は、第1切替スイッチ45に電気的に接続されている。 The second inductor 613 is formed of a wiring conductor 613a, a wiring conductor 613b, and a via conductor 613c. The wiring conductor 613a is formed along the clockwise direction D10 with the connection portion with the capacitor 611 (corresponding to the first end of the second inductor 613) as the starting point and the axis along the thickness direction D1 as the rotation axis. (See FIGS. 3 and 5). That is, the wiring conductor 613a, which is a part of the second inductor 613, is formed with the winding direction as the clockwise direction D10. The wiring conductor 613b is connected to the tip of the wiring conductor 613a via a via conductor 613c. The wiring conductor 613b is formed along the clockwise direction D10 with the connection portion with the via conductor 613c as the starting point and the axis along the thickness direction D1 as the rotation axis (see FIGS. 3 and 5). The tip of the wiring conductor 613b (corresponding to the second end of the second inductor 613) is electrically connected to the first changeover switch 45.
 したがって、上述したように、第1インダクタ612と第2インダクタ613とは、巻き方向を同一方向として形成されている。 Therefore, as described above, the first inductor 612 and the second inductor 613 are formed so that the winding directions are the same.
 第1切替スイッチ45と電気的に接続されている第2インダクタ613の一部が、パワーアンプモジュール100(の実装基板200)を実装基板200の厚さ方向D1から平面視した場合、第1スイッチ40の第1切替スイッチ45と重なるように、第2インダクタ613は配置されている(図4参照)。なお、第2インダクタ613の全体が、実装基板200の厚さ方向D1から平面視した場合、第1切替スイッチ45と重なるように、第2インダクタ613は配置されてもよい。すなわち、第2インダクタ613の少なくとも一部が、実装基板200の厚さ方向D1から平面視した場合、第1スイッチ40と重なるように、第2インダクタ613は配置されてもよい。 When a part of the second inductor 613 electrically connected to the first changeover switch 45 views the power amplifier module 100 (mounting board 200) from the thickness direction D1 of the mounting board 200, the first switch The second inductor 613 is arranged so as to overlap the first changeover switch 45 of 40 (see FIG. 4). The second inductor 613 may be arranged so as to overlap the first changeover switch 45 when the entire second inductor 613 is viewed in a plan view from the thickness direction D1 of the mounting substrate 200. That is, the second inductor 613 may be arranged so that at least a part of the second inductor 613 overlaps with the first switch 40 when viewed in a plan view from the thickness direction D1 of the mounting substrate 200.
 さらに、図3及び図4に示すように、第1インダクタ612、第2インダクタ613及び第3インダクタ614は、パワーアンプモジュール100(の実装基板200)を実装基板200の厚さ方向D1から平面視した場合、パワーアンプ80と重ならないように、配置されている。 Further, as shown in FIGS. 3 and 4, in the first inductor 612, the second inductor 613, and the third inductor 614, the power amplifier module 100 (mounting board 200) is viewed in a plan view from the thickness direction D1 of the mounting board 200. If so, it is arranged so as not to overlap with the power amplifier 80.
 第3インダクタ614は、配線導体614a,614b及びビア導体614cで形成されている。配線導体614aは、キャパシタ611との接続部位(第3インダクタ614の第1端の相当)を始点、厚さ方向D1に沿った軸を回転軸として、左回り方向D11に沿って形成されている(図3、図5参照)。すなわち、第3インダクタ614の一部である配線導体614aは、巻き方向を左回り方向D11として形成されている。配線導体614bは、配線導体614aの先端とビア導体614cを介して接続されている。配線導体614bは、ビア導体614cとの接続部位を始点、厚さ方向D1に沿った軸を回転軸として、左回り方向D11に沿って形成されている(図3、図5参照)。配線導体614bの先端(第3インダクタ614の第2端に相当)は、第2切替スイッチ46に電気的に接続されている。 The third inductor 614 is formed of wiring conductors 614a and 614b and via conductors 614c. The wiring conductor 614a is formed along the counterclockwise direction D11 with the connection portion with the capacitor 611 (corresponding to the first end of the third inductor 614) as the starting point and the axis along the thickness direction D1 as the rotation axis. (See FIGS. 3 and 5). That is, the wiring conductor 614a, which is a part of the third inductor 614, is formed with the winding direction as the counterclockwise direction D11. The wiring conductor 614b is connected to the tip of the wiring conductor 614a via a via conductor 614c. The wiring conductor 614b is formed along the counterclockwise direction D11 with the connection portion with the via conductor 614c as the starting point and the axis along the thickness direction D1 as the rotation axis (see FIGS. 3 and 5). The tip of the wiring conductor 614b (corresponding to the second end of the third inductor 614) is electrically connected to the second changeover switch 46.
 (3)通信装置
 本実施形態に係る通信装置500は、図1に示すように、パワーアンプモジュール100を含む高周波モジュール1と、アンテナ4と、信号処理回路3と、を備える。通信装置500は、アンテナ4を介して信号の送受信を行う。
(3) Communication Device As shown in FIG. 1, the communication device 500 according to the present embodiment includes a high frequency module 1 including a power amplifier module 100, an antenna 4, and a signal processing circuit 3. The communication device 500 transmits / receives signals via the antenna 4.
 信号処理回路3は、高周波モジュール1を通る信号を処理する。具体的には、信号処理回路3は、パワーアンプモジュール100を通る高周波信号(送信信号)を処理する。さらに、信号処理回路3は、入力整合回路70及びローノイズアンプ90を通る高周波信号(受信信号)を処理する。信号処理回路3は、例えば、RF信号処理回路5と、ベースバンド信号処理回路6と、を含む。 The signal processing circuit 3 processes the signal passing through the high frequency module 1. Specifically, the signal processing circuit 3 processes a high-frequency signal (transmission signal) that passes through the power amplifier module 100. Further, the signal processing circuit 3 processes a high frequency signal (received signal) passing through the input matching circuit 70 and the low noise amplifier 90. The signal processing circuit 3 includes, for example, an RF signal processing circuit 5 and a baseband signal processing circuit 6.
 ベースバンド信号処理回路6は、図1に示すように、例えばBBIC(Baseband Integrated Circuit)であり、RF信号処理回路5に電気的に接続されている。ベースバンド信号処理回路6は、ベースバンド信号からI相信号及びQ相信号を生成する。ベースバンド信号処理回路6は、I相信号とQ相信号とを合成することでIQ変調処理を行って、送信信号を出力する。この際、送信信号は、所定周波数の搬送波信号を、当該搬送波信号の周期よりも長い周期で振幅変調した変調信号として生成される。 As shown in FIG. 1, the baseband signal processing circuit 6 is, for example, a BBIC (Baseband Integrated Circuit), and is electrically connected to the RF signal processing circuit 5. The baseband signal processing circuit 6 generates an I-phase signal and a Q-phase signal from the baseband signal. The baseband signal processing circuit 6 performs IQ modulation processing by synthesizing an I-phase signal and a Q-phase signal, and outputs a transmission signal. At this time, the transmission signal is generated as a modulation signal obtained by amplitude-modulating a carrier signal having a predetermined frequency with a period longer than the period of the carrier signal.
 RF信号処理回路5は、図1に示すように、例えばRFIC(Radio Frequency Integrated Circuit)であり、高周波モジュール1とベースバンド信号処理回路6との間に設けられている。RF信号処理回路5は、ベースバンド信号処理回路6からの送信信号に対して信号処理を行う機能と、アンテナ4で受信された受信信号に対して信号処理を行う機能とを有する。RF信号処理回路5は、マルチバンド対応の処理回路であり、複数の通信バンドの送信信号を生成して増幅することが可能である。 As shown in FIG. 1, the RF signal processing circuit 5 is, for example, an RFIC (Radio Frequency Integrated Circuit), and is provided between the high frequency module 1 and the baseband signal processing circuit 6. The RF signal processing circuit 5 has a function of performing signal processing on the transmission signal from the baseband signal processing circuit 6 and a function of performing signal processing on the received signal received by the antenna 4. The RF signal processing circuit 5 is a multi-band compatible processing circuit, and can generate and amplify transmission signals of a plurality of communication bands.
 なお、通信装置500では、ベースバンド信号処理回路6は必須の構成要素ではない。 In the communication device 500, the baseband signal processing circuit 6 is not an indispensable component.
 (4)利点
 以上説明したように、上記実施形態のパワーアンプモジュール100は、実装基板200と、パワーアンプ80と、パワーアンプ80から出力された信号の高調波を減衰させる減衰用回路(第1減衰用回路61)と、を備える。減衰用回路は、実装基板200に内層され、パワーアンプ80の出力端子81に接続される複数のインダクタ(第1インダクタ612、第2インダクタ613)を含む。複数のインダクタは、実装基板200の厚さ方向D1から平面視した場合に重なるように配置されている。
(4) Advantages As described above, the power amplifier module 100 of the above embodiment is an attenuation circuit (first) for attenuating the harmonics of the mounting board 200, the power amplifier 80, and the signal output from the power amplifier 80. Attenuation circuit 61) and. The attenuation circuit includes a plurality of inductors (first inductor 612, second inductor 613) that are inner-layered on the mounting board 200 and connected to the output terminal 81 of the power amplifier 80. The plurality of inductors are arranged so as to overlap each other when viewed in a plan view from the thickness direction D1 of the mounting substrate 200.
 この構成によると、複数のインダクタを、厚さ方向D1に積層する(重ねる)ので、パワーアンプモジュール100(の実装基板200)のレイアウト面積を小さくすることができる。したがって、パワーアンプモジュール100の小型化を図ることができる。 According to this configuration, since a plurality of inductors are stacked (stacked) in the thickness direction D1, the layout area of the power amplifier module 100 (mounting board 200) can be reduced. Therefore, the power amplifier module 100 can be miniaturized.
 また、パワーアンプモジュール100では、複数のインダクタのうち少なくとも1つのインダクタ(例えば、第2インダクタ613)は、スイッチ(第1切替スイッチ45)と接続されている。 Further, in the power amplifier module 100, at least one inductor (for example, the second inductor 613) among the plurality of inductors is connected to the switch (first changeover switch 45).
 この構成によると、スイッチを用いることで、インダクタンス成分の調整を行うことができる。例えば、スイッチをオンにした場合、第2インダクタ613にインダクタンス成分が発生し、第1インダクタ612で発生するインダクタンス成分とで、全体のインダクタンス成分を小さく見せることができる。 According to this configuration, the inductance component can be adjusted by using a switch. For example, when the switch is turned on, an inductance component is generated in the second inductor 613, and the overall inductance component can be made to appear small by the inductance component generated in the first inductor 612.
 例えば、実施形態1では、パワーアンプモジュール100は、第1切替スイッチ45と接続された第2インダクタ613と、第2切替スイッチ46と接続された第3インダクタ614と、を備えている。このとき、第1切替スイッチ45と第2切替スイッチ46とのそれぞれのオン、オフ状態の組み合わせパターンとして4パターン存在する。第1のパターンは、第1切替スイッチ45及び第2切替スイッチ46の双方はオフ状態であるパターンである。第2のパターンは、第1切替スイッチ45はオン状態で、第2切替スイッチ46はオフ状態であるパターンである。第3のパターンは、第1切替スイッチ45はオフ状態で、第2切替スイッチ46はオン状態であるパターンである。第4のパターンは、第1切替スイッチ45及び第2切替スイッチ46の双方はオン状態であるパターンである。各パターンにおいて、発生するインダクタンス成分は異なる。 For example, in the first embodiment, the power amplifier module 100 includes a second inductor 613 connected to the first changeover switch 45 and a third inductor 614 connected to the second changeover switch 46. At this time, there are four patterns as combination patterns of the first changeover switch 45 and the second changeover switch 46 in the on and off states, respectively. The first pattern is a pattern in which both the first changeover switch 45 and the second changeover switch 46 are in the off state. The second pattern is a pattern in which the first changeover switch 45 is in the on state and the second changeover switch 46 is in the off state. The third pattern is a pattern in which the first changeover switch 45 is in the off state and the second changeover switch 46 is in the on state. The fourth pattern is a pattern in which both the first changeover switch 45 and the second changeover switch 46 are in the ON state. In each pattern, the generated inductance component is different.
 第1パターンでは、インダクタンス値が最も小さい第1インダクタ612のみにインダクタンス成分が発生する。例えば、この場合、フィルタ31aを使用することで、良好な通信を実現することができる。第2パターンでは、第1インダクタ612及び第2インダクタ613にインダクタンス成分が発生する。例えば、この場合、フィルタ32aを使用することで、良好な通信を実現することができる。第3パターンでは、第1インダクタ612及び第3インダクタ614にインダクタンス成分が発生する。例えば、この場合、フィルタ33aを使用することで、良好な通信を実現することができる。第4パターンでは、第1インダクタ612、第2インダクタ613及び第3インダクタ614にインダクタンス成分が発生する。例えば、この場合、フィルタ34aを使用することで、良好な通信を実現することができる。 In the first pattern, an inductance component is generated only in the first inductor 612 having the smallest inductance value. For example, in this case, good communication can be realized by using the filter 31a. In the second pattern, an inductance component is generated in the first inductor 612 and the second inductor 613. For example, in this case, good communication can be realized by using the filter 32a. In the third pattern, an inductance component is generated in the first inductor 612 and the third inductor 614. For example, in this case, good communication can be realized by using the filter 33a. In the fourth pattern, an inductance component is generated in the first inductor 612, the second inductor 613, and the third inductor 614. For example, in this case, good communication can be realized by using the filter 34a.
 また、上記実施形態では、第1インダクタ612と第2インダクタ613とにおいて、巻き方向は同一としている。この構成によると、第2インダクタ613のインダクタンス成分を長く見せることができる。 Further, in the above embodiment, the winding direction is the same for the first inductor 612 and the second inductor 613. According to this configuration, the inductance component of the second inductor 613 can be made to appear longer.
 また、上記実施形態では、減衰用回路は、出力整合回路60に含まれている。そのため、出力整合回路60の小型化を図ることができる。 Further, in the above embodiment, the attenuation circuit is included in the output matching circuit 60. Therefore, the output matching circuit 60 can be miniaturized.
 (5)変形例
 以下に、変形例について列記する。なお、以下に説明する変形例は、上記実施形態と適宜組み合わせて適用可能である。
(5) Modified Examples The modified examples are listed below. The modifications described below can be applied in combination with the above embodiments as appropriate.
 (5.1)変形例1
 上記実施形態に係るパワーアンプモジュール100では、図4に示すように、実装基板200の第2主面202側において、第2主面202上に実装されている第1スイッチ40等を覆うように第2樹脂層240が設けられている。また、パワーアンプモジュール100は、円柱状に形成されている複数の外部接続端子210を備えており、これら複数の外部接続端子210によりマザー基板に接続されている。
(5.1) Modification 1
In the power amplifier module 100 according to the above embodiment, as shown in FIG. 4, the first switch 40 and the like mounted on the second main surface 202 are covered on the second main surface 202 side of the mounting board 200. A second resin layer 240 is provided. Further, the power amplifier module 100 includes a plurality of external connection terminals 210 formed in a columnar shape, and is connected to the mother board by the plurality of external connection terminals 210.
 これに対して、図6に示すように、実装基板200の第2主面202側において第2樹脂層240が省略されており、かつ、球状に形成されている複数の外部接続端子215によりマザー基板に接続されていてもよい。 On the other hand, as shown in FIG. 6, the second resin layer 240 is omitted on the second main surface 202 side of the mounting substrate 200, and the mother is formed by a plurality of external connection terminals 215 formed in a spherical shape. It may be connected to a board.
 複数の外部接続端子215の各々は、例えば、球状に形成されているボールバンプである。ボールバンプの材料は、例えば、金、銅、はんだ等である。複数の外部接続端子215のうち1つの外部接続端子215は、アンテナ端子T1に電気的に接続されている。 Each of the plurality of external connection terminals 215 is, for example, a ball bump formed in a spherical shape. The material of the ball bump is, for example, gold, copper, solder or the like. One of the plurality of external connection terminals 215, the external connection terminal 215, is electrically connected to the antenna terminal T1.
 また、パワーアンプモジュール100は、複数の外部接続端子210及び複数の外部接続端子215を備えてもよい。この場合、複数の外部接続端子210のうち1つの外部接続端子210がアンテナ端子T1と電気的に接続されてもよいし、複数の外部接続端子215のうち1つの外部接続端子215がアンテナ端子T1と電気的に接続されてもよい。 Further, the power amplifier module 100 may include a plurality of external connection terminals 210 and a plurality of external connection terminals 215. In this case, one of the plurality of external connection terminals 210 may be electrically connected to the antenna terminal T1, and one of the plurality of external connection terminals 215, the external connection terminal 215, may be the antenna terminal T1. May be electrically connected to.
 (5.2)変形例2
 上記実施形態では、パワーアンプモジュール100は、厚さ方向D1において互いに対向する第1主面201及び第2主面202の双方に部品が配置される実装基板200を備える構成としたが、この構成に限定されない。
(5.2) Modification 2
In the above embodiment, the power amplifier module 100 is configured to include a mounting board 200 in which components are arranged on both the first main surface 201 and the second main surface 202 facing each other in the thickness direction D1. Not limited to.
 実装基板200の代わりに、第1主面201及び第2主面202のうち一方の主面、例えば第1主面201に部品が実装される片面実装可能な実装基板が用いられてもよい。 Instead of the mounting board 200, a single-sided mounting board on which components are mounted on one of the first main surface 201 and the second main surface 202, for example, the first main surface 201 may be used.
 (5.3)変形例3
 上記実施形態では、パワーアンプモジュール100は、第3インダクタ614を備える構成としたが、この構成に限定されない。
(5.3) Modification 3
In the above embodiment, the power amplifier module 100 is configured to include the third inductor 614, but is not limited to this configuration.
 第3インダクタ614は、必須の構成要素ではない。すなわち、パワーアンプモジュール100は、第3インダクタ614を備えていない構成であってもよい。 The third inductor 614 is not an essential component. That is, the power amplifier module 100 may be configured not to include the third inductor 614.
 (5.4)変形例4
 上記実施形態では、パワーアンプモジュール100の第1インダクタ612は、スイッチを介さずにグランドに接続されている構成としたが、この構成に限定されない。
(5.4) Modification 4
In the above embodiment, the first inductor 612 of the power amplifier module 100 is connected to the ground without a switch, but is not limited to this configuration.
 第1インダクタ612は、スイッチを介してグランドに接続されてもよい。 The first inductor 612 may be connected to the ground via a switch.
 (5.5)変形例5
 上記実施形態では、実装基板200を厚さ方向D1から平面視した場合に、第1インダクタ612と第2インダクタ613との2つのインダクタが重なるように配置されている構成としたが、この構成に限定されない。
(5.5) Modification 5
In the above embodiment, when the mounting substrate 200 is viewed in a plan view from the thickness direction D1, the two inductors of the first inductor 612 and the second inductor 613 are arranged so as to overlap each other. Not limited.
 実装基板200の厚さ方向D1から平面視した場合に、3つ以上のインダクタが重なるように配置されてもよい。この場合、3つ以上のインダクタの各々は、キャパシタ611とグランドとの間に接続されている。3つ以上のインダクタの各々は、スイッチを介して、又はスイッチを介さずに、グランドに接続されている。 When viewed in a plan view from the thickness direction D1 of the mounting board 200, three or more inductors may be arranged so as to overlap each other. In this case, each of the three or more inductors is connected between the capacitor 611 and ground. Each of the three or more inductors is connected to ground with or without a switch.
 (5.6)変形例6
 上記実施形態では、第1減衰用回路61が、第1インダクタ612及び第2インダクタ613を含む構成としたが、この構成に限定されない。
(5.6) Modification 6
In the above embodiment, the first attenuation circuit 61 has a configuration including the first inductor 612 and the second inductor 613, but the configuration is not limited to this.
 第2減衰用回路62が、第1インダクタ612及び第2インダクタ613を含んでもよい。また、第3減衰用回路63及び第4減衰用回路64の少なくとも一方は、第1インダクタ612及び第2インダクタ613を含んでもよい。 The second attenuation circuit 62 may include a first inductor 612 and a second inductor 613. Further, at least one of the third attenuation circuit 63 and the fourth attenuation circuit 64 may include the first inductor 612 and the second inductor 613.
 第1減衰用回路61及び第2減衰用回路62の双方が、第1インダクタ612及び第2インダクタ613を含んでもよい。または、第1減衰用回路61、第2減衰用回路62、第3減衰用回路63及び第4減衰用回路64のうち少なくとも2つの回路が、第1インダクタ612及び第2インダクタ613を含んでもよい。 Both the first attenuation circuit 61 and the second attenuation circuit 62 may include the first inductor 612 and the second inductor 613. Alternatively, at least two of the first attenuation circuit 61, the second attenuation circuit 62, the third attenuation circuit 63, and the fourth attenuation circuit 64 may include the first inductor 612 and the second inductor 613. ..
 (5.7)変形例7
 上記実施形態では、バンド切替スイッチ41、第1切替スイッチ45及び第2切替スイッチ46は、1チップ化されている構成としたが、この構成に限定されない。バンド切替スイッチ41、第1切替スイッチ45及び第2切替スイッチ46は、1チップ化されることは必須ではない。バンド切替スイッチ41、第1切替スイッチ45及び第2切替スイッチ46は、それぞれ個別に第2主面202に配置(実装)されてもよい。または、バンド切替スイッチ41、第1切替スイッチ45及び第2切替スイッチ46のうち2つの構成要素が1チップ化されてもよい。
(5.7) Modification 7
In the above embodiment, the band changeover switch 41, the first changeover switch 45, and the second changeover switch 46 are configured as one chip, but the configuration is not limited to this. It is not essential that the band changeover switch 41, the first changeover switch 45, and the second changeover switch 46 are integrated into one chip. The band changeover switch 41, the first changeover switch 45, and the second changeover switch 46 may be individually arranged (mounted) on the second main surface 202. Alternatively, two components of the band changeover switch 41, the first changeover switch 45, and the second changeover switch 46 may be integrated into one chip.
 (まとめ)
 以上説明したように、第1の態様のパワーアンプモジュール(100)は、実装基板(200)と、パワーアンプ(80)と、パワーアンプ(80)から出力された信号の高調波を減衰させる減衰用回路(例えば、第1減衰用回路61)と、を備える。減衰用回路は、実装基板(200)に内層され、パワーアンプ(80)の出力端子(81)に接続される複数のインダクタ(第1インダクタ612、第2インダクタ613)を含む。複数のインダクタは、実装基板(200)の厚さ方向(D1)から平面視した場合に重なるように配置されている。
(summary)
As described above, the power amplifier module (100) of the first aspect is an attenuation that attenuates the harmonics of the signals output from the mounting board (200), the power amplifier (80), and the power amplifier (80). A circuit (for example, a first attenuation circuit 61) is provided. The attenuation circuit includes a plurality of inductors (first inductor 612, second inductor 613) which are inner-layered on the mounting board (200) and connected to the output terminal (81) of the power amplifier (80). The plurality of inductors are arranged so as to overlap each other when viewed in a plan view from the thickness direction (D1) of the mounting substrate (200).
 この構成によると、複数のインダクタを、厚さ方向(D1)に積層する(重ねる)ので、パワーアンプモジュール(100)(の実装基板200)のレイアウト面積を小さくすることができる。したがって、パワーアンプモジュール(100)の小型化を図ることができる。 According to this configuration, since a plurality of inductors are stacked (stacked) in the thickness direction (D1), the layout area of the power amplifier module (100) (mounting board 200) can be reduced. Therefore, the power amplifier module (100) can be miniaturized.
 第2の態様のパワーアンプモジュール(100)では、第1の態様において、複数のインダクタの巻き方向は、厚さ方向(D1)を巻回軸として、同一方向である。 In the power amplifier module (100) of the second aspect, in the first aspect, the winding directions of the plurality of inductors are the same with the thickness direction (D1) as the winding axis.
 この構成によると、複数のインダクタのうち下層に存在するインダクタのインダクタンス成分を長く見せることができる。 According to this configuration, it is possible to make the inductance component of the inductor existing in the lower layer of the plurality of inductors look longer.
 第3の態様のパワーアンプモジュール(100)は、第1又は第2の態様において、減衰用回路を含む出力整合回路(60)を、備える。出力整合回路(60)は、パワーアンプ(80)と、出力整合回路(60)の出力側と接続されている外部回路(例えば、バンド切替スイッチ41)との間のインピーダンスを整合させる。 The power amplifier module (100) of the third aspect includes an output matching circuit (60) including an attenuation circuit in the first or second aspect. The output matching circuit (60) matches the impedance between the power amplifier (80) and the external circuit (for example, the band changeover switch 41) connected to the output side of the output matching circuit (60).
 この構成によると、出力整合回路(60)の小型化を図ることができる。 According to this configuration, the output matching circuit (60) can be downsized.
 第4の態様のパワーアンプモジュール(100)は、第1~第3のいずれかの態様において、スイッチ回路(第1スイッチ40)を、更に備える。スイッチ回路は、複数のインダクタのうち1つのインダクタに接続されたスイッチ(例えば、第1切替スイッチ45)を含む。 The power amplifier module (100) of the fourth aspect further includes a switch circuit (first switch 40) in any one of the first to third aspects. The switch circuit includes a switch (for example, a first changeover switch 45) connected to one of a plurality of inductors.
 この構成によると、スイッチを用いることで、インダクタンス成分の調整を行うことができる。例えば、スイッチをオンにした場合、スイッチと接続されたインダクタにインダクタンス成分が発生し、他のインダクタで発生するインダクタンス成分とで、全体のインダクタンス成分を小さくすることができる。 According to this configuration, the inductance component can be adjusted by using a switch. For example, when the switch is turned on, an inductance component is generated in the inductor connected to the switch, and the total inductance component can be reduced by the inductance components generated in other inductors.
 第5の態様のパワーアンプモジュール(100)では、第4の態様において、実装基板(200)は、互いに対向する第1主面(201)及び第2主面(202)を有している。パワーアンプ(80)は第1主面(201)に設けられ、スイッチ回路は第2主面(202)に設けられている。実装基板(200)の厚さ方向(D1)から平面視した場合に、上記1つのインダクタの少なくとも一部は、スイッチ回路と重なるように配置されている。 In the power amplifier module (100) of the fifth aspect, in the fourth aspect, the mounting substrate (200) has a first main surface (201) and a second main surface (202) facing each other. The power amplifier (80) is provided on the first main surface (201), and the switch circuit is provided on the second main surface (202). When viewed in a plan view from the thickness direction (D1) of the mounting substrate (200), at least a part of the above-mentioned one inductor is arranged so as to overlap the switch circuit.
 この構成によると、上記1つのインダクタと、スイッチとの間の経路長を短くすることができる。 According to this configuration, the path length between the above one inductor and the switch can be shortened.
 第6の態様のパワーアンプモジュール(100)では、第5の態様において、スイッチ回路は、通信に用いる周波数帯域を切り替える切替スイッチ(例えば、バンド切替スイッチ41)を、さらに含む。 In the power amplifier module (100) of the sixth aspect, in the fifth aspect, the switch circuit further includes a changeover switch (for example, a band changeover switch 41) for switching the frequency band used for communication.
 この構成によると、通信に使用する周波数帯域を切り替えるとともに、インダクタンス成分の調整を行うことができる。すなわち、使用する周波数帯域に適したインダクタンス成分を得ることができる。 According to this configuration, it is possible to switch the frequency band used for communication and adjust the inductance component. That is, it is possible to obtain an inductance component suitable for the frequency band to be used.
 第7の態様のパワーアンプモジュール(100)では、第5又は第6の態様において、上記1つのインダクタは、複数のインダクタのうち、第2主面(202)に最も近くに配置されている。 In the power amplifier module (100) of the seventh aspect, in the fifth or sixth aspect, the one inductor is arranged closest to the second main surface (202) among the plurality of inductors.
 この構成によると、上記1つのインダクタと、スイッチとの間の経路長を短くすることができる。 According to this configuration, the path length between the above one inductor and the switch can be shortened.
 第8の態様のパワーアンプモジュール(100)では、第1~第7のいずれかの態様において、実装基板(200)の厚さ方向(D1)から平面視した場合に、複数のインダクタは、パワーアンプ(80)と重ならないように配置されている。 In the power amplifier module (100) of the eighth aspect, in any one of the first to seventh aspects, when viewed in a plan view from the thickness direction (D1) of the mounting substrate (200), the plurality of inductors have power. It is arranged so as not to overlap with the amplifier (80).
 この構成によると、パワーアンプ(80)の配下に、放熱用の経路を容易に確保することができる。 According to this configuration, a heat dissipation path can be easily secured under the power amplifier (80).
 第9の態様の通信装置(500)は、第1~第8のいずれかの態様のパワーアンプモジュール(100)と、パワーアンプモジュール(100)を通る高周波信号を処理する信号処理回路(3)と、を備える。 The communication device (500) of the ninth aspect is a signal processing circuit (3) that processes a high frequency signal passing through the power amplifier module (100) of any one of the first to eighth aspects and the power amplifier module (100). And.
 この構成によると、パワーアンプモジュール(100)の小型化を図ることができる。 According to this configuration, the power amplifier module (100) can be miniaturized.
  1 高周波モジュール
  3 信号処理回路
  4 アンテナ
  5 RF信号処理回路
  6 ベースバンド信号処理回路
  10 アンテナスイッチ
  11,42,51 共通端子
  12,13,14,15,43a,43b,43c,43d,52a,52b,52c,52d 選択端子
  20 整合回路
  21,22,23,24 チップインダクタ
  30 フィルタ群
  31,31a,31b,32,32a,32b,33,33a,33b,34,34a,34b フィルタ
  40 第1スイッチ
  41 バンド切替スイッチ(切替スイッチ)
  45 第1切替スイッチ
  46 第2切替スイッチ
  50 第2スイッチ
  60 出力整合回路
  61 第1減衰用回路
  62 第2減衰用回路
  63 第3減衰用回路
  64 第4減衰用回路
  70 入力整合回路
  80 パワーアンプ
  81,92 出力端子
  82,91 入力端子
  90 ローノイズアンプ
  100 パワーアンプモジュール
  200 実装基板
  201 第1主面
  202 第2主面
  210,215 外部接続端子
  220,613c,614c,661 ビア導体
  221,612a,613a,613b,614a,614b,660 配線導体
  230 第1樹脂層
  240 第2樹脂層
  451,461 第1端子
  452,462 第2端子
  500 通信装置
  611,622,631,642 キャパシタ
  612 第1インダクタ
  613 第2インダクタ
  614 第3インダクタ
  615 第4インダクタ
  621,632,641 インダクタ
  D1 厚さ方向
  D10 右回り方向
  D11 左回り方向
  R60 経路
  R80 放熱経路
  T1 アンテナ端子
1 High frequency module 3 Signal processing circuit 4 Antenna 5 RF signal processing circuit 6 Baseband signal processing circuit 10 Antenna switch 11, 42, 51 Common terminals 12, 13, 14, 15, 43a, 43b, 43c, 43d, 52a, 52b, 52c, 52d selection terminal 20 Matching circuit 21, 22, 23, 24 Chip inductor 30 Filter group 31, 31a, 31b, 32, 32a, 32b, 33, 33a, 33b, 34, 34a, 34b Filter 40 1st switch 41 band Changeover switch (changeover switch)
45 1st changeover switch 46 2nd changeover switch 50 2nd switch 60 Output matching circuit 61 1st attenuation circuit 62 2nd attenuation circuit 63 3rd attenuation circuit 64 4th attenuation circuit 70 Input matching circuit 80 Power amplifier 81 , 92 Output terminal 82,91 Input terminal 90 Low noise amplifier 100 Power amplifier module 200 Mounting board 201 1st main surface 202 2nd main surface 210, 215 External connection terminals 220, 613c, 614c, 661 Via conductors 221, 612a, 613a, 613b, 614a, 614b, 660 Wiring conductor 230 1st resin layer 240 2nd resin layer 451, 461 1st terminal 452,462 2nd terminal 500 Communication device 611, 622, 631, 642 Capacitor 612 1st inductor 613 2nd inductor 614 3rd Inductor 615 4th Inductor 621, 632, 641 Inductor D1 Thickness direction D10 Right-handed direction D11 Left-handed direction R60 path R80 Heat dissipation path T1 Antenna terminal

Claims (9)

  1.  実装基板と、
     パワーアンプと、
     前記パワーアンプから出力された信号の高調波を減衰させる減衰用回路と、を備え、
     前記減衰用回路は、
     前記実装基板に内層され、前記パワーアンプの出力端子に接続される複数のインダクタを含み、
     前記複数のインダクタは、前記実装基板の厚さ方向から平面視した場合に重なるように配置されている、
     パワーアンプモジュール。
    Mounting board and
    With a power amplifier
    It is provided with an attenuation circuit for attenuating the harmonics of the signal output from the power amplifier.
    The attenuation circuit is
    It contains a plurality of inductors that are inner layered on the mounting board and connected to the output terminals of the power amplifier.
    The plurality of inductors are arranged so as to overlap each other when viewed in a plan view from the thickness direction of the mounting substrate.
    Power amplifier module.
  2.  前記複数のインダクタの巻き方向は、前記厚さ方向を巻回軸として、同一方向である、
     請求項1に記載のパワーアンプモジュール。
    The winding directions of the plurality of inductors are the same with the thickness direction as the winding axis.
    The power amplifier module according to claim 1.
  3.  前記減衰用回路を含む出力整合回路を、備え、
     前記出力整合回路は、前記パワーアンプと、前記出力整合回路の出力側と接続されている外部回路との間のインピーダンスを整合させる、
     請求項1又は2に記載のパワーアンプモジュール。
    An output matching circuit including the attenuation circuit is provided.
    The output matching circuit matches the impedance between the power amplifier and an external circuit connected to the output side of the output matching circuit.
    The power amplifier module according to claim 1 or 2.
  4.  前記複数のインダクタのうち1つのインダクタに接続されたスイッチを含むスイッチ回路を、更に備える、
     請求項1~3のいずれか一項に記載のパワーアンプモジュール。
    A switch circuit including a switch connected to one of the plurality of inductors is further provided.
    The power amplifier module according to any one of claims 1 to 3.
  5.  前記実装基板は、互いに対向する第1主面及び第2主面を有しており、
     前記パワーアンプは前記第1主面に設けられ、前記スイッチ回路は前記第2主面に設けられており、
     前記実装基板の前記厚さ方向から平面視した場合に、前記1つのインダクタの少なくとも一部は、前記スイッチ回路と重なるように配置されている、
     請求項4に記載のパワーアンプモジュール。
    The mounting board has a first main surface and a second main surface facing each other.
    The power amplifier is provided on the first main surface, and the switch circuit is provided on the second main surface.
    When viewed in a plan view from the thickness direction of the mounting board, at least a part of the one inductor is arranged so as to overlap the switch circuit.
    The power amplifier module according to claim 4.
  6.  前記スイッチ回路は、通信に用いる周波数帯域を切り替える切替スイッチを、さらに含む、
     請求項5に記載のパワーアンプモジュール。
    The switch circuit further includes a changeover switch for switching a frequency band used for communication.
    The power amplifier module according to claim 5.
  7.  前記1つのインダクタは、前記複数のインダクタのうち、前記第2主面に最も近くに配置されている、
     請求項5又は6に記載のパワーアンプモジュール。
    The one inductor is arranged closest to the second main surface among the plurality of inductors.
    The power amplifier module according to claim 5 or 6.
  8.  前記実装基板の前記厚さ方向から平面視した場合に、前記複数のインダクタは、前記パワーアンプと重ならないように配置されている、
     請求項1~7のいずれか一項に記載のパワーアンプモジュール。
    The plurality of inductors are arranged so as not to overlap with the power amplifier when viewed in a plan view from the thickness direction of the mounting board.
    The power amplifier module according to any one of claims 1 to 7.
  9.  請求項1~8のいずれか一項に記載のパワーアンプモジュールと、
     前記パワーアンプモジュールを通る高周波信号を処理する信号処理回路と、を備える、
     通信装置。
    The power amplifier module according to any one of claims 1 to 8.
    A signal processing circuit for processing a high frequency signal passing through the power amplifier module is provided.
    Communication device.
PCT/JP2020/045528 2020-04-24 2020-12-07 Power amplifier module and communication device WO2021215041A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-077818 2020-04-24
JP2020077818 2020-04-24

Publications (1)

Publication Number Publication Date
WO2021215041A1 true WO2021215041A1 (en) 2021-10-28

Family

ID=78270710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045528 WO2021215041A1 (en) 2020-04-24 2020-12-07 Power amplifier module and communication device

Country Status (1)

Country Link
WO (1) WO2021215041A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129565A (en) * 2005-11-04 2007-05-24 Alps Electric Co Ltd Low-pass filter
JP2007158748A (en) * 2005-12-06 2007-06-21 Renesas Technology Corp Rf power amplifier module
JP2008211764A (en) * 2006-12-08 2008-09-11 Renesas Technology Corp Electronic device and rf module
JP2017208729A (en) * 2016-05-19 2017-11-24 株式会社村田製作所 Power amplification module
JP2018032951A (en) * 2016-08-23 2018-03-01 株式会社村田製作所 Power Amplifier Module
JP2018064266A (en) * 2016-10-07 2018-04-19 株式会社村田製作所 High frequency filter and high frequency module
WO2019240096A1 (en) * 2018-06-11 2019-12-19 株式会社村田製作所 High-frequency module and communication device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129565A (en) * 2005-11-04 2007-05-24 Alps Electric Co Ltd Low-pass filter
JP2007158748A (en) * 2005-12-06 2007-06-21 Renesas Technology Corp Rf power amplifier module
JP2008211764A (en) * 2006-12-08 2008-09-11 Renesas Technology Corp Electronic device and rf module
JP2017208729A (en) * 2016-05-19 2017-11-24 株式会社村田製作所 Power amplification module
JP2018032951A (en) * 2016-08-23 2018-03-01 株式会社村田製作所 Power Amplifier Module
JP2018064266A (en) * 2016-10-07 2018-04-19 株式会社村田製作所 High frequency filter and high frequency module
WO2019240096A1 (en) * 2018-06-11 2019-12-19 株式会社村田製作所 High-frequency module and communication device

Similar Documents

Publication Publication Date Title
US11476226B2 (en) Radio-frequency module and communication device
JP5677499B2 (en) High frequency circuit module
US11043983B2 (en) Radio frequency module and communication device including the same
WO2020184613A1 (en) High-frequency module and communication device
US11418158B2 (en) Radio-frequency module and communication device
WO2021044691A1 (en) High frequency module and communication device
US11349507B2 (en) Radio frequency module and communication device
US11394421B2 (en) Radio frequency module and communication device
WO2021084848A1 (en) High-frequency module and communication device
JP4702622B2 (en) Switch module
WO2023112577A1 (en) High-frequency module and communication device
JP2021197590A (en) High frequency module and communication device
WO2021215041A1 (en) Power amplifier module and communication device
WO2021192429A1 (en) High-frequency module and communication device
CN215912092U (en) High-frequency module and communication device
WO2022034824A1 (en) High-frequency circuit, and communication device
JP2003152590A (en) Antenna-switching module
JP4735773B2 (en) High frequency module
WO2019160140A1 (en) Multilayer substrate, filter, multiplexer, high-frequency front-end circuit, and communication device
WO2022230708A1 (en) High-frequency circuit and communication device
WO2022131157A1 (en) High-frequency module and communication device
US20230103162A1 (en) High frequency module and communication device
WO2021131125A1 (en) High-frequency module and communication device
WO2022091852A1 (en) High-frequency module and communication device
WO2021241064A1 (en) High-frequency module and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP