WO2021213902A1 - Insert precisement integre dans un corps brut realise par fabrication additive - Google Patents

Insert precisement integre dans un corps brut realise par fabrication additive Download PDF

Info

Publication number
WO2021213902A1
WO2021213902A1 PCT/EP2021/059858 EP2021059858W WO2021213902A1 WO 2021213902 A1 WO2021213902 A1 WO 2021213902A1 EP 2021059858 W EP2021059858 W EP 2021059858W WO 2021213902 A1 WO2021213902 A1 WO 2021213902A1
Authority
WO
WIPO (PCT)
Prior art keywords
insert
female
male
metal body
conduit
Prior art date
Application number
PCT/EP2021/059858
Other languages
English (en)
Inventor
Eric Verger
Original Assignee
Vallourec Oil And Gas France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vallourec Oil And Gas France filed Critical Vallourec Oil And Gas France
Priority to MX2022013326A priority Critical patent/MX2022013326A/es
Priority to BR112022020564A priority patent/BR112022020564A2/pt
Priority to EP21718887.9A priority patent/EP4139555A1/fr
Priority to US17/996,873 priority patent/US20230147500A1/en
Publication of WO2021213902A1 publication Critical patent/WO2021213902A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/001Screw-threaded joints; Forms of screw-threads for such joints with conical threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/04Screw-threaded joints; Forms of screw-threads for such joints with additional sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L25/00Constructive types of pipe joints not provided for in groups F16L13/00 - F16L23/00 ; Details of pipe joints not otherwise provided for, e.g. electrically conducting or insulating means
    • F16L25/14Joints for pipes of different diameters or cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/02Branch units, e.g. made in one piece, welded, riveted
    • F16L41/023Y- pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • B23K9/046Built-up welding on three-dimensional surfaces on surfaces of revolution
    • B23K9/048Built-up welding on three-dimensional surfaces on surfaces of revolution on cylindrical surfaces
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/042Threaded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the invention relates to steel components or conduits in the field of oil and gas, energy or storage, for a use such as the exploitation of wells or the transport of hydrocarbons, geothermal energy or carbon capture.
  • component is meant here any element, accessory or conduit, used to drill or exploit a well and comprising at least one connection or connector or even threaded end, and intended to be assembled by a thread to another component to constitute with this another component is a threaded joint.
  • the component can be for example a tube or a tubular element of relatively great length (in particular about ten meters in length), for example a tube, or else a tubular sleeve of a few tens of centimeters in length, or else a accessory for these tubular elements (suspension device or “hanger”, section changing or “cross-over” part, safety valve, connector for a drill rod or “tool joint”, “sub”, and the like).
  • the components or conduits have threaded ends. These threaded ends are complementary allowing the connection of two male (“Pin”) and female (“Box”) tubular elements together. There is therefore a male threaded end and a female threaded end.
  • the so-called premium or semi-premium threaded ends generally have at least one abutment surface.
  • a first stop may be formed by two surfaces of two threaded ends, oriented substantially radially, configured so as to be in contact with each other after screwing the threaded ends together or during stresses from compression. Stops generally have negative angles to the main axis of the connections. Intermediate stops are also known on joints comprising at least two stages of threading.
  • a conduit may be necessary for a conduit to have a metallic body with a non-tubular or non-rectilinear shape.
  • a duct can include a non-straight portion, for example a curvature or "S" shape, or even changes in internal diameters or exterior.
  • S curvature
  • the current means to achieve this are extremely limited and non-functional.
  • the different parts of the same component are designed according to one and the same type of material (alloy or not).
  • the tubes are generally rectilinear, of rectilinear axis, the two ends of a tube being aligned and therefore having substantially collinear end axes.
  • geothermal energy or carbon capture for a tube or a duct having characteristics of different geometries, in particular by the presence of an angular deviation in said tube between the tube. 'axis of a first end and the axis of a second end.
  • This type of geometry is very useful for planning branches, elbows, contours and other connections depending on the geology during drilling or to more easily arrange a flow transport. In addition, this saves the number of tubes used and the amount of resources required.
  • Current solutions are expensive to produce and / or have unsatisfactory mechanical characteristics.
  • a first solution consists of starting from a solid metal part which is machined to obtain an angle deviation or non-coaxial terminal ends.
  • a solution has many major drawbacks; especially during the production of these parts by turning. For example, there is an unbalance during the production phase, that is to say a mass not perfectly distributed over a volume of revolution causing an imbalance, at the level of the deflected or deformed part of the tube. But also vibrations and wear during machining which strongly weaken the tube making it less reliable. There are also geometry defects, tolerances not respected and pressure drops during hydraulic flows.
  • a second solution consists in designing and producing a tube (not machined) directly with the desired geometry, for example a tube admitting in its body an elbow or an angle offset between the axis of a first end and that of a second end.
  • the drawbacks will have repercussions when machining the thread, which will be very complicated to achieve. Indeed, such a geometry will require the design of a method and devices specifically adapted. This therefore involves significant costs as well as a very low production speed associated with complex machining that cannot be envisaged industrially.
  • Document CN108278088 A describes a drill pipe made of steel and aluminum gradient composite material and its preparation process in order to develop a drill pipe that is light, high strength, high temperature resistance, wear resistance and strength. 10 corrosion.
  • Document FR 2818728 relates to tubular threaded joints composed of a male threaded element disposed at the end of a first tubular component and assembled by screwing to a female threaded element disposed at the end of a second tubular component.
  • Document WO2019 / 016254 discloses a method of manufacturing a connecting piece intended to be connected to at least one tubular component.
  • the object of the present invention is to resolve the problems of the state of the art cited, by producing the entire metallic body of a duct by additive manufacturing on at least one insert.
  • the invention therefore consists of a steel pipe (1) for drilling, operating hydrocarbon wells, transporting oil and gas, carbon capture or geothermal energy, comprising at least one male (2) or female insert. (3) and a metal body (4), said insert (2, 3) comprising at least a first thread axis, at least one sealing surface (21, 22) toric or frusto-conical, a threaded part (5) and an unthreaded part (6) connected to the metal body (4), characterized in that the metal body (4) is entirely produced by additive manufacturing.
  • the duct (1) is characterized in that the minimum and radial thickness of an insert is determined according to the equation:
  • the duct (1) is characterized in that the thickness ratio K is equal to 0.510.
  • the duct (1) is characterized in that a male (2) or female (3) insert comprises a minimum and radial thickness determined between 4 mm and 20 mm.
  • the duct (1) is characterized in that a male (2) or female (S) insert comprises a minimum and radial thickness determined between 4 and 18 mm. According to one embodiment, the duct (1) is characterized in that a male (2) or female (3) insert comprises a minimum and radial thickness determined between 4.5 and 16 mm.
  • the duct (1) is characterized in that each of the male (2) or female (B) inserts has an external diameter (OD) of between 100mm and 480mm.
  • the duct (1) is characterized in that the metallic body (4) is produced by deposit by arc-wire additive manufacturing. According to one embodiment, the duct (1) is characterized in that the metal body (4) adheres around the male (2) or female (S) insert on its unthreaded part.
  • the duct (1) is characterized in that the metallic body (4) produced by additive manufacturing comprises a material of metallic type chosen from alloyed steels, highly alloyed, cupro-nickel alloys, titanium alloys, ceramics, glass-ceramics, or copper, stellite, fero 55.
  • the duct (1) is characterized in that the metallic body (4) produced by additive manufacturing comprises a material with a Young's modulus between 110 GPa and 210 GPa, preferably between 160 GPa and 210 GPa.
  • the duct (1) is characterized in that an insert (2, S) comprises an anchoring profile (7) arranged to adhere the additive material of the metallic body (4).
  • the duct (1) is characterized in that the anchoring profile (7) comprises one or more shear surfaces (11) and / or at least one stowage extension (12).
  • the duct (1) is characterized in that it comprises at least 2 male (2) and / or female (S) inserts.
  • the duct (1) is characterized in that each of said male (2) and / or female (S) insert has respectively a first and a second thread axis A1 and A2, and in that said first and second axes A1 and A2 are non-collinear.
  • the duct (1) is characterized in that the thread axis of a first male (2) or female (S) insert has relative to the axis of a second male insert (2 ) or female (S) of the same duct (1) an angle of inclination between 0 and 75 degrees.
  • the duct (1) is characterized in that it comprises at least three male or female inserts (62, 63, 64), the inserts (62, 63, 64) respectively comprising at least a first axis thread, a second thread axis, a third thread axis, the inserts being connected by a body (4) entirely produced by additive manufacturing, said first, second and third axes of each of the male or female inserts (62, 63, 64) being non-collinear.
  • the invention also includes a method of making a duct (1) comprising:
  • a step of maintaining one or more male (2) or female (3) inserts in a determined position.
  • a step of producing the metal body (4) by additive manufacturing by wire arc comprising a deposit of material from an unthreaded portion of the insert (2, 3).
  • FIG. 1 schematically shows, in a longitudinal sectional view, a tubular threaded joint according to the state of the art.
  • FIG. 2a schematically shows, in a longitudinal sectional view, a portion of male steel conduit according to a first embodiment in which the metal body is produced entirely by additive manufacturing around an insert.
  • FIG. 2b schematically shows, in a longitudinal sectional view, a portion of female steel conduit according to a second embodiment in which the metal body is produced entirely by additive manufacturing around an insert.
  • FIG. 3 schematically shows, in a hybrid perspective view, a steel conduit comprising a female insert as well as a portion of a metallic body produced entirely by additive manufacturing.
  • FIG. 4a represents a stress concentration diagram of a threading tooth according to the invention and according to a grade scale.
  • Fig. 4b represents a diagram of a portion of an insert according to the invention.
  • FIG. 4c represents a diagram of a portion of a connection using the parameters of FIG. 4b.
  • FIG. 5 shows in a hybrid perspective view a duct according to a variant of the invention comprising two non-coaxial inserts.
  • FIG. 6 shows in a hybrid perspective view a duct according to a variant of the invention comprising three non-coaxial inserts.
  • FIG. 1 shows schematically, in a longitudinal sectional view, a tubular threaded joint of the prior art.
  • the tubular threaded joint includes a male member (22) and a female member (24) in an assembled or connected state.
  • Each element comprises a threaded part (5) and an unthreaded part (6).
  • the tubular threaded joint comprises a seal (20) formed by interfering contact of two sealing surfaces of the O-ring or frustoconical type on either side of each of said male and female elements in the assembled state.
  • Each of the portions of an element are made from one and the same type of material, that is to say in particular the threaded part, the non-threaded part and the sealing surface. There are therefore not two different types of materials for two different parts of the tube.
  • Each of the male (22) or female (24) elements is rectilinear and has an axis of revolution common to both its male end, its main tubular body and its other end (not shown).
  • FIG. 2a represents a steel conduit (1) comprising a male insert (2) and a metal body (4), said insert (2) comprising at least a first thread axis (represented by the X axis), at least a sealing surface (21) which can be toroidal or frusto-conical, a threaded part (5) and a non-threaded part (6) connected to the metal body (4).
  • the metal body (4) is entirely produced by additive manufacturing.
  • the insert (2) can advantageously comprise an anchoring profile (7) arranged to adhere the additive material of the metallic body (4).
  • an unthreaded portion (6) comprises a radial surface (6R) which may be perpendicular to the thread axis. This surface can extend radially.
  • An unthreaded portion (6) may also include an axial surface (6A) opposite to the threaded portion (5). This surface (6A) can be parallel to the thread axis. This axial surface (6A) can extend axially.
  • the non-threaded part (6) designates the surface opposite the threaded part, parallel to the thread axis. It also designates the radial surface of the insert (perpendicular to the thread axis).
  • the metal body (4) is produced by deposit by arc-wire additive manufacturing.
  • arc-wire additive manufacturing confers good structural integrity and low distortion to the additive material. It does not require complex tools and optimizes material losses as well as possible, thus lowering production costs.
  • the metal body (4) produced entirely by additive manufacturing allows ease of geometric configuration. In this way, it is possible to obtain a conduit configured according to the geometric or geological difficulty encountered during the operation of wells or the transport of hydrocarbons, geothermal energy or carbon capture.
  • a duct according to the invention has a hydraulic flow that is much smoother and easier to obtain compared to the solutions of the state of the art, in particular by the absence of unbalance during machining.
  • the material of the metallic body (4) can be different from that of the insert. It is therefore possible, when possible, to choose a material that is less expensive compared to that of the insert, thus reducing costs. It is also possible to choose materials having different properties with respect to the insert depending on the desired use.
  • the metallic body (4) produced by additive manufacturing comprises a material of metallic type chosen from alloy steels, high alloy steels, cupro-nickel alloys, titanium alloys, ceramics, glass-ceramics, or copper, stellite, fero 55.
  • the production and machining time is significantly reduced and compatible with industrial requirements.
  • the metallic body (4) can be produced by additive manufacturing using a material with a Young's modulus between 110 Gpa and 210 Gpa.
  • the body can be made of a material with a Young's modulus of 160 to 210 GPa in order to approximate that of the male insert. Indeed, at equal stress, a material having a high modulus of elasticity will undergo a lower deformation than a material having a low modulus of elasticity.
  • the elastic limits of the materials which can be between 300 Mpa and 950 Mpa an insert can comprise a material made of steel, alloy steel, inconel, a nickel base or a steel according to the 13cr or super 13Cr standards.
  • the insert must be a controlled part whose dimensions must respect tolerances.
  • the insert (2) can be machined by conventional methods with great precision.
  • the insert can be obtained separately from the body (4).
  • obtaining the insert (2) overcomes the constraints imposed by the geometry of a duct of complex shape.
  • the term tolerance is understood to mean the difference between two limit dimensions considered as conforming to the nominal dimensions fixed in advance on a plan.
  • the body (4) is obtained by additive manufacturing construction on the insert (2).
  • a complex geometric shape may be both a rectilinear and / or non-rectilinear shape over the entire length of the duct.
  • the anchoring profile (7) may include a shear surface (11) and / or a tie-down extension (12).
  • the anchoring profile (7) can also include annular corrugations, or even annular ribs.
  • the anchoring profile (7) makes it possible to increase and ensure the adhesion of the material of the additive body on the insert.
  • an anchoring profile (7) comprising one or more shear surfaces (11) allows better interpenetration between the insert and the material produced by additive manufacturing of the body.
  • an anchoring profile (7) comprising one or more tie-down extensions (12) allows better grip of the material added by additive manufacturing.
  • the Applicant has determined additional conditions binding the insert and the part added by additive manufacturing to ensure the integrity of the duct.
  • a transition zone between a material of the insert and that of the metallic body is determined according to the equation: [Math 2] s zz > 85% Ys
  • the transition zone between a metal insert (2) and the metal body (4) is conditioned by a minimum safety threshold of 85% Ys. Ys being the elastic limit of the insert material and szz corresponding to the generated constraint.
  • the transition zone is included in the insert. It is therefore possible to make a transition from the metallic material of the insert to an additive material, when at least 85% Ys is reached, without the risk of adding additional stresses.
  • the transition zone is included in the insert and corresponds to the minimum and radial wall thickness of the insert measured radially.
  • K Value of the minimum thickness ratio K corresponds to a minimum thickness ratio necessary to reach the minimum transition zone of 85% of the elastic limit Ys.
  • the transition zone is included in the insert and corresponds to the minimum wall thickness of the insert measured radially.
  • the inventors determined following several FEA-type simulations that K could be between 0.25 and 0.70 and preferably 0.510.
  • outer radius Rext is meant the average radius of the outer surface of the thread surface (T) of the connection.
  • the internal radius Ri is understood to mean the internal radius of the connection
  • bottom throat thickness of the thread Epg is meant the thickness between the bottom of the thread and the internal radius.
  • the depth of the thread Th is meant the height of a thread.
  • the main driver of the stress concentration factor Tr is understood to mean the radius which connects the side of a thread to the bottom of the thread.
  • K a minimum thickness ratio of Epg necessary to reach the transition zone with 85% of the elastic limit Ys.
  • K is a dimensionless real between two well-defined values 0.25 and 0.70. The Applicant has determined that K depends on the parameters Ri, Rext, Tw, Tr, Th.
  • FIGS. 4b and 4c All of these parameters are applicable for FIGS. 4b and 4c.
  • FIG. 4c makes it possible to illustrate the application of the parameters on a connection with several threads.
  • the inventors carried out a test with a value chosen from among the lowest of the ranges and lines of OCTG products with:
  • This equation therefore makes it possible to determine a minimum thickness of an insert while ensuring that the previous equation of ozz> 85% Ys is respected.
  • the applicant sets out below a set of dimensions and values of insert thicknesses as a function of the external diameter (called “Outside Diameter” or “OD”, see FIG. 3) of the external radius Rext, of the internal radius Ri, the bottom throat thickness of the thread Epg, the depth of the thread Th and the thickness of the thread Tw.
  • the value of the connection radius Tr (in mm) which is a stress concentration factor does not vary. A schematic representation of all of these parameters are shown in fig. 4.b.
  • a duct according to the invention can comprise an insert having an external diameter (OD) of between 4 and 18.625 inches, or approximately between 100 mm and 480 mm.
  • OD external diameter
  • a duct according to the invention can therefore comprise a male insert (2) comprising a minimum and radial thickness determined between 4 mm and 20 mm.
  • the length of the male insert (2) is between 50 mm and 300 mm.
  • the invention makes it possible to manufacture a duct by recovering used inserts and to produce the metal body (4) entirely produced by additive manufacturing around said inserts.
  • This also makes it possible to use the invention on portions of recovered tubes intended to be rehabilitated, for example portions of tubes whose ends are still functional.
  • FIG. 2b represents a steel conduit (1) comprising a female insert (3) and a metal body (4), said insert (3) comprising at least a first thread axis (represented by the X axis), at least a sealing surface (21) which can be toroidal or frusto-conical, a threaded part (5) and a non-threaded part (6) connected to the metal body (4).
  • the metal body (4) is entirely produced by additive manufacturing.
  • the insert (3) can include advantageously an anchoring profile (7) arranged to adhere the additive material of the metal body (4).
  • an unthreaded portion (6) comprises a radial surface (6R) which may be perpendicular to the thread axis. This surface can extend radially.
  • An unthreaded portion (6) may also include an axial surface (6A) opposite to the threaded portion (5). This surface (6A) can be parallel to the thread axis. This axial surface (6A) can extend axially.
  • the non-threaded part (6) designates the surface opposite the threaded part, parallel to the thread axis. It also designates the radial surface of the insert (perpendicular to the thread axis).
  • the metal body (4) is produced by deposit by arc-wire additive manufacturing.
  • arc-wire additive manufacturing confers good structural integrity and low distortion to the additive material. It does not require complex tools and optimizes material losses as well as possible, thus lowering production costs.
  • the material of the metallic body (4) can be different from that of the insert. It is therefore possible, when possible, to choose a material that is less expensive compared to that of the insert, thus reducing costs. It is also possible to choose materials having different properties with respect to the insert depending on the desired use.
  • the metallic body (4) produced by additive manufacturing comprises a material of metal type chosen from alloy steels, high alloy steels, cupro-nickel alloys, titanium alloys, ceramics, glass-ceramics, or copper, stellite, fero 55.
  • the production and machining time is significantly reduced, allowing production that is much more industrially conceivable.
  • the metallic body (4) is produced by additive manufacturing using a material with a Young's modulus between 110 Gpa and 210 Gpa.
  • the body is made by a Young modulus material of 160 to 210 Gpa in order to approximate that of the female insert. Indeed, at equal stress, a material having a high modulus of elasticity will undergo a lower deformation than a material having a low modulus of elasticity.
  • the insert is a controlled part in terms of its tolerances and its machining.
  • tolerance is understood to mean the difference between two limit dimensions considered as conforming to the nominal dimensions fixed in advance on a plan.
  • the anchoring profile (7) may include a shear surface (11) and / or a tie-down extension (12).
  • the anchoring profile (7) makes it possible to increase and ensure the adhesion of the material of the additive body on the insert.
  • an anchoring profile (7) comprising one or more shear surfaces (11) allows better interpenetration between the insert and the material produced by manufacturing the body.
  • an anchoring profile (7) comprising one or more tie-down extensions (12) allows better grip of the additive material.
  • the female insert (3) also comprises a minimum and radial thickness linked to a transition zone between the insert and the metal body.
  • the developments linked to the male insert (2) of FIG. 2a apply in a similar manner to the female insert (3).
  • a duct according to the invention can comprise an insert having an external diameter (OD) of between 4 and 18.625 inches, ie between 100 mm and 480 mm.
  • a duct according to the invention can therefore comprise a female insert (3) comprising a minimum and radial thickness determined between 4 mm and 20 mm.
  • the length of the female insert (3) is between 50 mm and 300 mm.
  • the invention makes it possible to remodel a very large number of times a duct by recovering the inserts and to remake the metal body (4) entirely produced by additive manufacturing. This also makes it possible to use the invention on portions of recovered tubes intended to be rehabilitated, for example portions of tubes whose ends are still functional.
  • FIG. 3 schematically represents, in a perspective view, a steel conduit comprising a female insert (3) as well as a portion of a metallic body (4) entirely produced by additive manufacturing.
  • the female insert (3) comprising at least a first thread axis (represented by the X axis), at least one sealing surface (21) which can be toric or frusto-conical (not shown), a threaded part ( 5) and an unthreaded part (6) connected to the metal body (4).
  • the metal body (4) is entirely produced by additive manufacturing.
  • the insert (3) can advantageously comprise an anchoring profile (7) arranged to adhere the additive material of the metallic body (4).
  • the female insert (3) comprises in particular an external diameter OD of between 4 and 18.625 inches, ie between 100 mm and 480 mm.
  • Figure 3 was produced as a representation and does not always respect a real scale.
  • FIG. 4a represents a stress concentration diagram which is applied at the level of a net base according to the invention and according to a shade scale.
  • FIG. 4b represents a diagram of a threading tooth according to the invention, a stress concentration diagram.
  • An additive material must, among other things, confer elastic deformation resistance properties close to those of the insert material. This is because a material having a high modulus of elasticity will undergo a lower deformation than a material having a low modulus of elasticity.
  • determining the minimum and radial thickness of the insert according to the equation min thickness Rext (K Epg Ri) allows us to know the threshold from which the transition between the material of the insert and that of the additive material is done safely without generating additional constraints. That is to say from 85% of elastic limit Ys of the material of the insert.
  • the additional stresses can correspond to shear stresses, to stresses generated by the additive material by direct action on the insert, or even to the equivalent Von Mises stresses, that is to say a parameter which combines the whole applied stresses and which can be compared directly to the elastic limit.
  • Figure 4b has been produced as a representation and does not always follow a real scale.
  • FIG. 5 represents, in a hybrid view in section and in perspective, a duct according to a variant of the invention comprising two non-coaxial inserts.
  • a duct according to this variant therefore comprises two inserts which can be male (2) and / or female (3).
  • a duct insert (2, 3) includes an interior space (31, 32).
  • a metal body (4) entirely produced by additive manufacturing connects the inserts (2, 3) and comprises an interior body space (33) communicating with the interior spaces (31, 32) of the inserts (2, 3).
  • Each of the male (2) or female (3) inserts can comprise a minimum and radial thickness linked to a transition zone between the insert and the metal body.
  • the developments linked to the male insert (2) of FIG. 2a as well as the developments linked to the female insert (3) of FIG. 2b apply in a similar manner to each of said male (2) or female (3) inserts. ) of Figure 5.
  • a first insert (2, 3) includes a first thread axis A1.
  • a second insert (2, 3) also includes a second thread axis A2.
  • the first and second axes A1 and A2 can be collinear.
  • the first and second axes A1 and A2 can be parallel to one another and not intersecting, admitting no point in common.
  • the first and second axes A1 and A2 may be non-parallel to each other and intersecting admitting a point in common.
  • the first and second axes A1 and A2 may be non-parallel to each other and non-secant, not admitting a point in common.
  • the last three configurations consequently admit an offset in the space of the inserts (2, 3)
  • the duct (1) then comprises an interior space bringing together the interior spaces of the inserts and the body and this interior space of the duct is not rectilinear.
  • the thread axis of a first male (2) or female (3) insert is inclined relative to the axis of a second male (2) or female (3) insert of the same duct (1). This tilt angle is between 0 and 75 degrees.
  • a duct (1) can admit male (2) or female (3) inserts with different dimensions. For example a minimum and radial thickness between 4 mm and 20 mm different for each of the inserts or else an external diameter OD of between 4 and 18.625 inches, ie approximately between 100 mm and 480 mm different for each of the inserts.
  • the conduit shown in Figure 5 comprises a first insert with an outer diameter larger than the outer diameter of the second insert. The first insert has a thickness greater than the thickness of the second insert.
  • the metal body (4) produced entirely by additive manufacturing allows ease of geometric configuration. In this way, it is possible to obtain a conduit configured according to the geometric or geological difficulty encountered during the operation of wells or the transport of hydrocarbons, geothermal energy or carbon capture.
  • a duct according to the invention has an interior space arranged for a hydraulic flow with reduced turbulence thanks to variations in smoothed sections and easier obtaining compared to the solutions of the state of the art, in particular by the no unbalance during machining.
  • FIG. 6 represents, in a hybrid view in section and in perspective, a duct according to another variant of the invention comprising three non-coaxial inserts.
  • a duct comprises three inserts which can be male and / or female (62, 63, 64).
  • a metal body (65) produced entirely by additive manufacturing is connected to each of the inserts (62, 63, 64).
  • the inserts (62, 63, 64) include interior insert spaces.
  • the metallic body (65) includes an interior body space communicating with the interior insert spaces so that all interior spaces are in communication.
  • each of the male or female inserts may include a minimum thickness linked to a transition zone between the insert and the metal body.
  • a first insert (2, 3) includes a first thread axis A1.
  • a second insert (2, 3) also includes a second thread axis A2.
  • a third insert includes a third A3 thread axis.
  • the first, second and third axes A1, A2 and A3 may be non-parallel to each other and intersecting admitting at least one point in common.
  • the first, second and third axes A1, A2 and A3 can be non-parallel to each other and non-secant not admitting any point in common.
  • the first, second and third axes A1, A2 and A3 may not all be parallel to each other but two of the three axes may be collinear.
  • the third axis is therefore not collinear with the other two axes.
  • the metal body (4) produced entirely by additive manufacturing allows ease of geometric configuration.
  • a conduit (1) according to this variant of the invention makes it possible to create a made-to-measure distribution network, with for example several outlet points and several entry points.
  • a conduit (1) according to this variant of the invention makes it possible to reduce the number of conduits or tubes necessary during an operation in the field of oil, gas, carbon capture or geothermal energy.
  • a duct according to the invention has an interior space with smooth dimensional variations, facilitating the hydraulic flow and making it easier to obtain compared to the solutions of the state of the art, in particular by the absence of unbalance at the 'machining.
  • This type of conduit does not exist on the oil services equipment market, in particular due to the difficulty of obtaining it with existing means.
  • the invention makes it possible to manufacture a duct by recovering used inserts and to produce the metal body (4) entirely produced by additive manufacturing around said inserts.
  • This also makes it possible to use the invention on portions of recovered tubes intended to be rehabilitated, for example portions of tubes whose ends are still functional.
  • FIGS. 5 and 6 are applicable for conduits comprising more than 3 male (2) or female (3) inserts.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Plasma & Fusion (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Earth Drilling (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Chemical Vapour Deposition (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Conduit (1) en acier pour le forage, l'exploitation des puits hydrocarbures, le transport de pétrole et de gaz, la captation carbone ou la géothermie, comprenant au moins un insert mâle (2) ou femelle (3) et un corps métallique (4), ledit insert (2, 3) comprenant au moins un premier axe de filetage, au moins une surface d'étanchéité (21, 22) torique ou frusto-conique, une partie filetée (5) et une partie non filetée (6) reliée au corps métallique (4), caractérisé en ce que le corps métallique (4) est entièrement réalisé par fabrication additive et en ce que ledit insert (2, 3) comprend un profil d'ancrage (7) agencé pour adhérer la matière additivée du corps métallique (4).

Description

DESCRIPTION
Titre : INSERT PRECISEMENT INTEGRE DANS UN CORPS BRUT REALISE PAR
FABRICATION ADDITIVE. L'invention concerne les composants ou conduits en acier dans le domaine pétrole et le gaz, l'énergie ou le stockage, pour une utilisation tel que l'exploitation de puits ou le transport d'hydrocarbures, la géothermie ou la capture de carbone.
On entend ici par "composant" tout élément, accessoire ou conduit, utilisé pour forer ou exploiter un puits et comprenant au moins une connexion ou connecteur ou encore extrémité filetée, et destiné à être assemblé par un filetage à un autre composant pour constituer avec cet autre composant un joint fileté. Le composant peut être par exemple un tube ou un élément tubulaire de relativement grande longueur (notamment d'environ une dizaine de mètres de longueur), par exemple un tube, ou bien un manchon tubulaire de quelques dizaines de centimètres de longueur, ou encore un accessoire de ces éléments tubulaires (dispositif de suspension ou « hanger », pièce de changement de section ou « cross-over », vanne de sécurité, connecteur pour tige de forage ou « tool joint », « sub », et analogues).
Les composants ou conduits sont dotés d'extrémités filetées. Ces extrémités filetées sont complémentaires permettant le raccordement de deux éléments tubulaires mâle (« Pin ») et femelle (« Box ») entre eux. Il y a donc une extrémité filetée mâle et une extrémité filetée femelle. Les extrémités filetées dites premium ou semi-premium comportent généralement au moins une surface de butée. Une première butée peut être formée par deux surfaces de deux extrémités filetées, orientées de façon sensiblement radiale, configurées de façon à être en contact l'une avec l'autre à l'issue du vissage des extrémités filetées entre elles ou lors de sollicitations de compression. Les butées ont généralement des angles négatifs par rapport à l'axe principal des connexions. On connaît également des butées intermédiaires sur des joints comportant au moins deux étages de filetage.
Il peut être nécessaire qu'un conduit ait un corps métallique avec une forme non tubulaire ou non rectiligne. En effet, un conduit peut comprendre une portion non droite, par exemple une forme en courbure ou en "S", ou encore des changements de diamètres intérieurs ou extérieurs. Cependant les moyens actuels pour y parvenir sont extrêmement limités et non fonctionnels.
De manière générale, pour des raisons techniques et d'usinage, les différentes parties d'un même composant, qu'il s'agisse du corps de l'élément tubulaire ou encore des extrémités filetées, sont conçues selon un seul et même type de matériau (alliage ou non).
Les tubes sont généralement rectilignes, d'axe rectiligne, les deux extrémités d'un tube étant alignées et ayant donc des axes d'extrémité substantiellement colinéaires. Il existe cependant un besoin dans l'industrie des hydrocarbures, la géothermie ou la capture de carbone d'un tube ou d'un conduit présentant des caractéristiques de géométries différentes notamment par la présence d'une déviation d'angle dans ledit tube entre l'axe d'une première extrémité et l'axe d'une deuxième extrémité. Ce type de géométrie est très utile pour prévoir des embranchements, coudes, contours et autres raccordements en fonction de la géologie lors des forages ou pour agencer plus facilement un transport de flux. Par ailleurs cela permet d'économiser le nombre de tubes exploités et la quantité de ressources nécessaires. Les solutions actuelles sont coûteuses à réaliser et/ou présentent des caractéristiques mécaniques non satisfaisantes.
Pour atteindre ce type de géométrie avec les moyens de l'état de l'art, une première solution consiste à partir d'une pièce métallique massive que l'on usine pour obtenir une déviation d'angle ou des extrémités terminales non co-axiales. Cependant une telle solution présente de nombreux inconvénients majeurs ; notamment lors de la réalisation de ces pièces par tournage. On retrouve par exemple un balourd lors de la phase de réalisation, c'est-à-dire une masse non parfaitement répartie sur un volume de révolution entraînant un déséquilibre, au niveau de la partie déviée ou déformée du tube. Mais également des vibrations et de l'usure au moment de l'usinage qui fragilisent fortement le tube le rendant moins fiable. On retrouve également des défauts de géométrie, des tolérances non respectés et des pertes de charge lors des écoulements hydrauliques. Une seconde solution consiste à concevoir et réaliser un tube (non usiné) directement avec la géométrie souhaitée, par exemple un tube admettant dans son corps un coude ou un décalage d'angle entre l'axe d'une première extrémité et celui d'une seconde extrémité. Cependant les inconvénients vont se répercuter au moment de l'usinage du filetage qui sera très compliqué à réaliser. En effet, une telle géométrie nécessitera de concevoir une méthode et des appareils spécifiquement adaptés. Cela implique donc des coûts importants ainsi qu'une très faible vitesse de production lié à un usinage complexe et non envisageable industriellement.
Le document CN108278088 A décrit une tige de forage en matériau composite à gradient d'acier et d'aluminium et son procédé de préparation afin de développer une tige de forage légère, haute résistance, haute résistance aux températures, résistance à l'usure et résistance 10 à la corrosion.
Le document FR 2818728 concerne les joints filetés tubulaires composés d'un élément fileté mâle disposé en extrémité d'un premier composant tubulaire et assemblé par vissage à un élément fileté femelle disposé en extrémité d'un second composant tubulaire. Le document WO2019/016254 divulgue un procédé de fabrication d'une pièce de 15 raccordement destinée à être raccordée sur au moins un composant tubulaire.
Les moyens actuels de l'état de l'art sont donc limités et ne permettent pas de conférer plus de flexibilité géométrique à la réalisation d'un tube sans engendrer des contraintes et des effets indésirables. Ils permettent encore moins de réaliser un tube en acier pour l'exploitation de puits ou le transport d'hydrocarbures, la géothermie ou la capture de carbone avec au moins 3 extrémités terminales.
La présente invention a pour but de résoudre les problèmes de l'état de l'art cité, en réalisant entièrement le corps métallique d'un conduit par fabrication additive sur au moins un insert.
L'invention consiste donc en un conduit (1) en acier pour le forage, l'exploitation des puits hydrocarbures, le transport de pétrole et de gaz, la captation carbone ou la géothermie, comprenant au moins un insert mâle (2) ou femelle (3) et un corps métallique (4), ledit insert (2, 3) comprenant au moins un premier axe de filetage, au moins une surface d'étanchéité (21, 22) torique ou frusto-conique, une partie filetée (5) et une partie non filetée (6) reliée au corps métallique (4), caractérisé en ce que le corps métallique (4) est entièrement réalisé par fabrication additive.
Selon un mode de réalisation, le conduit (1) est caractérisé en ce que l'épaisseur minimale et radiale d'un insert est déterminée selon l'équation :
[Math 1] min thickness = Rext — K * Epg + Ri)
Où :
Min thickness Valeur minimale de l'épaisseur d'un insert en mm Rext Valeur du rayon extérieur
Epg Valeur de l'épaisseur d'un fond de gorge d'une dent de filetage
Ri Valeur du rayon intérieur
K Valeur du ratio d'épaisseur minimal comprise entre 0,25 et 0,7.
Selon un mode de réalisation, le conduit (1) est caractérisé en ce que le ratio d'épaisseur K est égal à 0,510.
Selon un mode de réalisation, le conduit (1) est caractérisé en ce qu'un insert mâle (2) ou femelle (3) comprend une épaisseur minimale et radiale déterminée entre 4 mm et 20 mm.
Selon un mode de réalisation, le conduit (1) est caractérisé en ce qu'un insert mâle (2) ou femelle (S) comprend une épaisseur minimale et radiale déterminée entre 4 et 18 mm. Selon un mode de réalisation, le conduit (1) est caractérisé en ce qu'un insert mâle (2) ou femelle (3) comprend une épaisseur minimale et radiale déterminée entre 4,5 et 16 mm.
Selon un mode de réalisation, le conduit (1) est caractérisé en ce que chacun des inserts mâle (2) ou femelle (B) présente un diamètre externe (OD) compris entre 100mm et 480mm.
Selon un mode de réalisation, le conduit (1) est caractérisé en ce que le corps métallique (4) est réalisé par dépôt par fabrication additive arc-fil. Selon un mode de réalisation, le conduit (1) est caractérisé en ce que le corps métallique (4) s'adhère autour de l'insert mâle (2) ou femelle (S) sur sa partie non filetée.
Selon un mode de réalisation, le conduit (1) est caractérisé en ce que le corps métallique (4) réalisé par fabrication additive comprend un matériau de type métallique choisi parmi les aciers alliés, fortement alliés, alliages cupro-nickel, alliages de titane, céramiques, vitrocéramiques, ou cuivre, stellite, fero 55.
Selon un mode de réalisation, le conduit (1) est caractérisé en ce que le corps métallique (4) réalisé par fabrication additive comprend un matériau de module de Young entre 110 GPa et 210 GPa, de préférence entre 160 GPa et 210 GPa.
Selon un mode de réalisation, le conduit (1) est caractérisé en ce qu'un insert (2, S) comprend un profil d'ancrage (7) agencé pour adhérer la matière additivée du corps métallique (4).
Selon un mode de réalisation, le conduit (1) est caractérisé en ce que le profil d'ancrage (7) comprend une ou plusieurs surfaces de cisaillement (11) et/ou au moins une extension d'arrimage (12).
Selon un mode de réalisation, le conduit (1) est caractérisé en ce qu'il comprend au moins 2 inserts mâle (2) et/ou femelle (S).
Selon un mode de réalisation, le conduit (1) est caractérisé en ce que chacun desdits insert mâle (2) et/ou femelle (S) présente respectivement un premier et un second axe de filetage Al et A2, et en ce que lesdits premier et second axes Al et A2 sont non colinéaires.
Selon un mode de réalisation, le conduit (1) est caractérisé en ce que l'axe de filetage d'un premier insert mâle (2) ou femelle (S) présente par rapport à l'axe d'un second insert mâle (2) ou femelle (S) d'un même conduit (1) un angle d'inclinaison compris entre 0 et 75 degrés.
Selon un mode de réalisation, le conduit (1) est caractérisé en ce qu'il comprend au moins trois inserts mâle ou femelle (62, 63, 64), les inserts (62, 63, 64) comprenant respectivement au moins un premier axe de filetage, un deuxième axe de filetage, un troisième axe de filetage, les inserts étant reliés par un corps (4) entièrement réalisé par fabrication additive, lesdits premier, second et troisième axes de chacun des inserts mâle ou femelle (62, 63, 64) étant non colinéaires.
L'invention comprends également un procédé de réalisation d'un conduit (1) comprenant :
Une étape de maintien d'un ou plusieurs inserts mâle (2) ou femelle (3) selon une position déterminée.
Une étape de réalisation du corps métallique (4) par fabrication additive par arc fil comprenant un dépôt de matière à partir d'une portion non filetée de l'insert (2, 3).
Une étape de traitement thermique pour modifier les caractéristiques mécaniques du corps et libérer les contraintes mécaniques issues de la fabrication additive.
Une étape d'usinage dans le corps métallique (4).
D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés.
[Fig. 1] représente de façon schématique, dans une vue de coupe longitudinale, un joint fileté tubulaire selon l'état de l'art.
[Fig. 2a] représente de façon schématique, dans une vue de coupe longitudinale, une portion de conduit en acier mâle selon un premier mode de réalisation dans lequel le corps métallique est entièrement réalisé par fabrication additive autour d'un insert.
[Fig. 2b] représente de façon schématique, dans une vue de coupe longitudinale, une portion de conduit en acier femelle selon un second mode de réalisation dans lequel le corps métallique est entièrement réalisé par fabrication additive autour d'un insert.
[Fig. 3] représente de façon schématique, dans une vue hybride en perspective, un conduit en acier comprenant un insert femelle ainsi qu'une portion de corps métallique entièrement réalisé par fabrication additive. [Fig. 4a] représente un diagramme de concentration de contraintes d'une dent de filetage selon l'invention et selon une échelle de nuance. [Fig. 4b] représente un schéma d'une portion d'un insert selon l'invention.
[Fig. 4c] représente un schéma d'une portion d'une connexion reprenant les paramètres de la figure 4b.
[Fig. 5] représente selon une vue hybride en perspective un conduit selon une variante de l'invention comprenant deux inserts non co-axiaux.
[Fig. 6] représente selon une vue hybride en perspective un conduit selon une variante de l'invention comprenant trois inserts non co-axiaux.
Les dessins annexés pourront non seulement servir à compléter l'invention, mais aussi contribuer à sa définition, le cas échéant. Ils ne sont pas limitatifs quant à la portée de l'invention.
La figure 1 représente de façon schématique, dans une vue en coupe longitudinale, un joint fileté tubulaire de l'art antérieur. Le joint fileté tubulaire comprend un élément mâle (22) et un élément femelle (24) dans un état assemblé ou connecté. Chaque élément comprend une partie filetée (5) et une partie non filetée (6). Le joint fileté tubulaire comprend une étanchéité (20) formée par contact interférant de deux surfaces d'étanchéité de type torique ou frusto- conique de part et d'autre de chacun desdits éléments mâle et femelle à l'état assemblé. Chacune des portions d'un élément sont réalisées selon un seul et même type de matériau, c'est-à-dire notamment la partie filetée, la partie non filetée et la surface d'étanchéité. Il n'y a donc pas deux types de matériaux différents pour deux parties différentes du tube. Chacun des éléments mâle (22) ou femelle (24) est rectiligne et possède un axe de révolution commun à la fois à son extrémité mâle, son corps tubulaire principale et son autre extrémité (non représenté).
Pour pouvoir obtenir un conduit avec une géométrie plus complexe qu'une simple forme tubulaire droite, c'est-à-dire pour obtenir un composant présentant par exemple des extrémités terminales non co-axiales et/ou non coplanaires, il existe deux propositions de solutions à ce jour qui nécessitent dans les deux cas un type d'intervention directe sur une pièce ou sur le tube. La figure 2a représente un conduit (1) en acier comprenant un insert mâle (2) et un corps métallique (4), ledit insert (2) comprenant au moins un premier axe de filetage (représenté par l'axe X), au moins une surface d'étanchéité (21) pouvant être torique ou frusto-conique, une partie filetée (5) et une partie non filetée (6) reliée au corps métallique (4). Le corps métallique (4) est entièrement réalisé par fabrication additive. L'insert (2) peut comprendre avantageusement un profil d'ancrage (7) agencé pour adhérer la matière additivée du corps métallique (4).
Selon un aspect de l'invention, une partie non filetée (6) comprends une surface radiale (6R) qui peut être perpendiculaire à l'axe de filetage. Cette surface peut s'étendre radialement. Une partie non filetée (6) peut comprendre également une surface axiale (6A) opposé à la partie filetée (5). Cette surface (6A) peut être parallèle à l'axe de filetage. Cette surface axiale (6A) peut s'étendre axialement.
Selon un mode de réalisation, la partie non filetée (6) désigne la surface opposée à la partie filetée, parallèle à l'axe de filetage. Elle désigne également la surface radiale de l'insert (perpendiculaire à l'axe de filetage).
Selon un mode de réalisation, le corps métallique (4) est réalisé par dépôt par fabrication additive arc-fil. Avantageusement, la fabrication additive arc-fil confère une bonne intégrité structurelle et une faible distorsion au matériau additivé. Elle ne nécessite pas d'outillage complexe et optimise au mieux les pertes de matières faisant ainsi baisser les coûts de production.
Avantageusement le corps (4) métallique réalisé entièrement par fabrication additive permet une facilité de configuration géométrique. De cette manière il est possible d'obtenir un conduit configuré selon la difficulté géométrique ou géologique rencontrée lors de l'exploitation de puits ou le transport d'hydrocarbures, la géothermie ou la capture de carbone. Avantageusement, un conduit selon l'invention présente un écoulement hydraulique beaucoup plus lisse et d'obtention facilitée par rapport aux solutions de l'état de l'art, notamment par l'absence de balourd à l'usinage.
Avantageusement, le matériau du corps (4) métallique peut être différent de celui de l'insert. On peut donc, lorsque cela est possible, faire un choix de matériau moins cher par rapport à celui de l'insert réduisant ainsi les coûts. On peut également choisir des matériaux ayant des propriétés différentes par rapport à l'insert en fonction de l'exploitation souhaitée.
Avantageusement le corps métallique (4) réalisé par fabrication additive comprend un matériau de type métallique choisi parmi les aciers alliés, fortement alliés, alliages cupro- nickel, alliages de titane, céramiques, vitrocéramiques, ou cuivre, stellite, fero 55.
Avantageusement le temps de production et d'usinage est significativement réduit et compatible des exigences industrielles.
Avantageusement le corps (4) métallique peut être réalisé par fabrication additive selon un matériau de module de Young entre 110 Gpa et 210 Gpa. De préférence le corps peut être réalisé par un matériau de module Young de 160 à 210 Gpa afin de se rapprocher de celui de l'insert mâle. En effet, à contrainte égale, un matériau ayant un module d'élasticité élevé subira une déformation plus faible qu'un matériau ayant un module d'élasticité petit.
Par exemple, les limites élastiques des matériaux pouvant être compris entre 300 Mpa et 950 Mpa un insert peut comprendre un matériau en acier, en acier alliés, inconel, une base nickel ou un acier selon les standards 13cr ou super 13Cr.
L'insert doit être une pièce maîtrisée dont les dimensions doivent respecter des tolérances. L'insert (2) peut être usiné par les procédés classiques avec une grande précision. L'insert peut être obtenu séparément du corps (4). Avantageusement, l'obtention de l'insert (2) s'affranchit des contraintes imposées par la géométrie d'un conduit de forme complexe. Par tolérance, on entend la différence entre deux côtes limites considérées comme conforme aux dimensions nominales fixées au préalable sur un plan. En outre, le corps (4) est obtenu par construction de fabrication additive sur l'insert (2). Ainsi, avec un insert déjà maîtrisé, il est beaucoup plus aisé de conférer une forme géométrique complexe au conduit (1) en évitant tous les problèmes d'usinages liés à un filetage. Une forme géométrique complexe peut-être à la fois une forme rectiligne et/ou non rectiligne sur toute la longueur du conduit.
Selon un mode de réalisation, le profil d'ancrage (7) peut comprendre une surface de cisaillement (11) et/ou une extension d'arrimage (12). Le profil d'ancrage (7) peut également comprendre des ondulations annulaires, ou encore des nervures annulaires.
Avantageusement le profil d'ancrage (7) permet d'augmenter et d'assurer l'adhérence de la matière du corps additivé sur l'insert.
Avantageusement un profil d'ancrage (7) comprenant une ou plusieurs surfaces de cisaillement (11) permet une meilleure interpénétration entre l'insert et la matière réalisée par fabrication additive du corps.
Avantageusement, un profil d'ancrage (7) comprenant une ou plusieurs extensions d'arrimages (12) permet une meilleure accroche de la matière ajoutée par fabrication additive.
La demanderesse a déterminé des conditions additionnelles liant l'insert et la partie ajoutée par fabrication additive pour assurer l'intégrité du conduit. Une zone de transition entre un matériau de l'insert et celui du corps métallique est déterminée selon l'équation : [Math 2] szz > 85% Ys
Où : ozz Valeur de la contrainte générée Ys Valeur de la limite élastique d’un insert
La zone de transition entre un insert (2) métallique et le corps (4) métallique est conditionnée par un seuil minimal de sécurité de 85% Ys. Ys étant la limite élastique du matériau de l'insert et szz correspondant à la contrainte générée. La zone de transition est comprise dans l'insert. On peut donc faire une transition entre la matière métallique de l'insert à une matière additivé, lorsque l'on atteint au moins 85% Ys, sans risque d'ajouter de contraintes additionnelles. La zone de transition est comprise dans l'insert et correspond à l'épaisseur minimale et radiale de paroi de l'insert mesurée radialement.
En effet, à partir de 85% de Ys, on peut chercher des matériaux pour la matière additivé avec des limites élastiques jusqu'à 15% inférieur par rapport au matériau de l'insert. De manière surprenante, avec un choix de matériau pour la matière additivé ayant des limites élastiques jusqu'à 15% inférieur, on a moins de contraintes de cisaillement, une meilleure tenue du matériau et une meilleure adhérence.
Par exemple, un insert présentant une résistance de 125 KSI (= 862 MPA) pourra admettre un ajout de matière additivée, c'est-à-dire la matière réalisée par fabrication additivé, de 106 Ksi (= 862 MPA). Ainsi, on peut faire un choix de matériau bien moins coûteux tout en restant dans des limites acceptables. Ainsi, l'épaisseur minimale et radiale d'un insert est déterminée par l'équation :
[Math B] min thickness = Rext (K Epg + Ri)
Où :
Min thickness Valeur minimale de l’épaisseur d’un insert
Rext Valeur du rayon extérieur
Epg Valeur de l’épaisseur d’un fond de gorge d’une dent de filetage
Ri Valeur du rayon intérieur
K Valeur du ratio d’épaisseur minimal K correspond à un ratio d'épaisseur minimum nécessaire pour atteindre la zone de transition minimale de 85% de la limite élastique Ys. La zone de transition est comprise dans l'insert et correspond à l'épaisseur minimale de paroi de l'insert mesurée radialement. Les inventeurs ont déterminé à la suite de plusieurs simulations de type FEA que K pouvait être compris entre 0,25 et 0,70 et de préférence à 0,510.
Lors de la simulation plusieurs paramètres ont été pris en compte figurant notamment dans la figure 4b, à savoir le rayon extérieur Rext, le rayon intérieur Ri, l'épaisseur de fond de gorge du filetage Epg, la profondeur du filet Th, et enfin le principal moteur du facteur de concentration de stress Tr.
On entend par le rayon extérieur Rext le rayon moyen de la surface extérieur de la surface de filetage (T) de la connexion.
On entend par le rayon intérieur Ri le rayon intérieur de la connexion
On entend par l'épaisseur de fond de gorge du filetage Epg l'épaisseur entre le fond du filet et le rayon intérieur.
On entend par la profondeur du filet Th la hauteur d'un filet.
On entend par le principal moteur du facteur de concentration de stress Tr le rayon qui relie le flanc d'un filet au fond de filet.
On entend par le coefficient K un ratio d'épaisseur minimum de Epg nécessaire pour atteindre la zone de transition avec 85% de la limite élastique Ys. K est un réel sans dimension compris entre deux valeurs bien définis 0,25 et 0,70. La demanderesse a déterminé que K dépend des paramètres Ri, Rext, Tw, Tr, Th.
L'ensemble de ces paramètres sont applicables pour la figure 4b et 4c. La figure 4c permet d'illustrer sur une connexion avec plusieurs filets l'application des paramètres.
Par exemple, les inventeurs ont réalisé un test avec une valeur choisie parmi les plus faibles des gammes et lignes de produits OCTG avec :
[Math 4]
Rext = 89 mm, Ri = 79 mm, Epg = 8,5 mm, Th = 1,5 mm, Tr = 0,1 mm. Le résultat suivant est obtenu :
[Math 5] 0.510
Figure imgf000015_0001
L'épaisseur minimale et radiale d'un insert est donc déterminée par l'équation :
[Math 6] min thickness = Rext — (0,510 * Epg + Ri) K correspondant donc à 0.510 pour cette simulation.
Cette équation permet donc de déterminer une épaisseur minimale d'un insert tout en s'assurant de respecter l'équation précédente de ozz > 85% Ys.
La demanderesse expose ci-après un ensemble de dimensions et de valeurs d'épaisseurs d'inserts en fonction du diamètre externe (dit « Outside Diameter » ou « OD », voir fig. 3) du rayon extérieur Rext, du rayon intérieur Ri, de l'épaisseur de fond de gorge du filetage Epg, de la profondeur du filetage Th et de l'épaisseur du filetage Tw. La valeur du rayon de raccordement Tr (en mm) qui est un facteur de concentration de stress ne varie pas. Une représentation schématique de l'ensemble de ces paramètres sont présents fig. 4. b.
Certaines de ces dimensions sont consignées dans le tableau suivant :
[Table 1]
Figure imgf000016_0001
Par conséquent, un conduit selon l'invention peut comprendre un insert ayant un diamètre externe (OD) compris entre 4 et 18,625 pouces soit environ entre 100 mm et 480 mm.
Un conduit selon l'invention peut donc comprendre un insert mâle (2) comprenant une épaisseur minimale et radiale déterminée entre 4 mm et 20 mm. La longueur de l'insert mâle (2) est comprise entre 50 mm et 300 mm.
Avantageusement, l'invention confère la possibilité de fabriquer un conduit par récupération des inserts usagés et de réaliser le corps métallique (4) entièrement réalisé par fabrication additive autour desdits inserts. Ceci permet également d'utiliser l'invention sur des portions de tubes récupérées destinées à être réhabilitées, par exemple des portions de tubes dont les extrémités sont encore fonctionnelles.
La figure 2b représente un conduit (1) en acier comprenant un insert femelle (3) et un corps métallique (4), ledit insert (3) comprenant au moins un premier axe de filetage (représenté par l'axe X), au moins une surface d'étanchéité (21) pouvant être torique ou frusto-conique, une partie filetée (5) et une partie non filetée (6) reliée au corps métallique (4). Le corps métallique (4) est entièrement réalisé par fabrication additive. L'insert (3) peut comprendre avantageusement un profil d'ancrage (7) agencé pour adhérer la matière additivée du corps métallique (4).
Selon un aspect de l'invention, une partie non filetée (6) comprends une surface radiale (6R) qui peut être perpendiculaire à l'axe de filetage. Cette surface peut s'étendre radialement. Une partie non filetée (6) peut comprendre également une surface axiale (6A) opposé à la partie filetée (5). Cette surface (6A) peut être parallèle à l'axe de filetage. Cette surface axiale (6A) peut s'étendre axialement.
Selon un mode de réalisation, la partie non filetée (6) désigne la surface opposée à la partie filetée, parallèle à l'axe de filetage. Elle désigne également la surface radiale de l'insert (perpendiculaire à l'axe de filetage).
Selon un mode de réalisation, le corps métallique (4) est réalisé par dépôt par fabrication additive arc-fil. Avantageusement, la fabrication additive arc-fil confère une bonne intégrité structurelle et une faible distorsion au matériau additivé. Elle ne nécessite pas d'outillage complexe et optimise au mieux les pertes de matières faisant ainsi baisser les coûts de production.
Avantageusement, le matériau du corps (4) métallique peut être différent de celui de l'insert. On peut donc, lorsque cela est possible, faire un choix de matériau moins cher par rapport à celui de l'insert réduisant ainsi les coûts. On peut également choisir des matériaux ayant des propriétés différentes par rapport à l'insert en fonction de l'exploitation souhaitée. Avantageusement, le corps métallique (4) réalisé par fabrication additive comprend un matériau de type métal choisi parmi les aciers alliés, fortement alliés, alliages cupro-nickel, alliages de titane, céramiques, vitrocéramiques, ou cuivre, stellite, fero 55.
Avantageusement, le temps de production et d'usinage est significativement réduit permettant une production beaucoup plus envisageable industriellement. Avantageusement le corps (4) métallique est réalisé par fabrication additive selon un matériau de module de Young entre 110 Gpa et 210 Gpa. De préférence le corps est réalisé par un matériau de module Young de 160 à 210 Gpa afin de se rapprocher de celui de l'insert femelle. En effet, à contrainte égale, un matériau ayant un module d'élasticité élevé subira une déformation plus faible qu'un matériau ayant un module d'élasticité petit.
Avantageusement l'insert est une pièce maîtrisée au niveau de ses tolérances et de son usinage. Par tolérance, on entend la différence entre deux côtes limites considérées comme conforme aux dimensions nominales fixées au préalable sur un plan. Ainsi, avec un insert déjà maîtrisé, il est beaucoup plus aisé de conférer une forme géométrique souhaité au conduit (1) en évitant tous les problèmes d'usinages liés au filetage.
Selon un mode de réalisation, le profil d'ancrage (7) peut comprendre une surface de cisaillement (11) et/ou une extension d'arrimage (12).
Avantageusement le profil d'ancrage (7) permet d'augmenter et d'assurer l'adhérence de la matière du corps additivé sur l'insert.
Avantageusement un profil d'ancrage (7) comprenant une ou plusieurs surfaces de cisaillement (11) permet une meilleure interpénétration entre l'insert et la matière réalisée par fabrication du corps.
Avantageusement, un profil d'ancrage (7) comprenant une ou plusieurs extensions d'arrimages (12) permet une meilleure accroche de la matière additivé.
L'insert femelle (3) comprend également une épaisseur minimale et radiale liée à une zone de transition entre l'insert et le corps métallique. Les développements liés à l'insert mâle (2) de la figure 2a s'appliquent de manière analogue à l'insert femelle (3).
Par conséquent, un conduit selon l'invention peut comprendre un insert ayant un diamètre externe (OD) compris entre 4 et 18,625 pouces soit entre 100 mm et 480 mm.
Un conduit selon l'invention peut donc comprendre un insert femelle (3) comprenant une épaisseur minimale et radiale déterminée entre 4 mm et 20 mm. La longueur de l'insert femelle (3) est comprise entre 50 mm et 300 mm. Avantageusement, l'invention confère la possibilité de remodéliser un très grand nombre de fois un conduit par récupération des inserts et de refaire le corps métallique (4) entièrement réalisé par fabrication additive. Ceci permet également d'utiliser l'invention sur des portions de tubes récupérés destinés à être réhabilités, par exemple des portions de tubes dont les extrémités sont encore fonctionnelles.
La figure 3 représente de façon schématique, dans une vue en perspective, un conduit en acier comprenant un insert femelle (3) ainsi qu'une portion de corps métallique (4) entièrement réalisé par fabrication additive.
L'insert femelle (3) comprenant au moins un premier axe de filetage (représenté par l'axe X), au moins une surface d'étanchéité (21) pouvant être torique ou frusto-conique (non représenté), une partie filetée (5) et une partie non filetée (6) reliée au corps métallique (4). Le corps métallique (4) est entièrement réalisé par fabrication additive. L'insert (3) peut comprendre avantageusement un profil d'ancrage (7) agencé pour adhérer la matière additivée du corps métallique (4). L'insert femelle (3) comprend notamment un diamètre externe OD compris entre 4 et 18,625 pouces soit entre 100 mm et 480 mm.
La figure 3 a été réalisé à titre de représentation et respecte pas systématiquement une échelle réelle.
La figure 4a représente un diagramme de concentration de contraintes qui s'applique au niveau d'un fond de filet selon l'invention et selon une échelle de nuance. La figure 4b représente un schéma d'une dent de filetage selon l'invention un diagramme de concentration de contraintes.
On observe dans la figure 4a que les concentrations de contraintes sont beaucoup plus fortes au niveau du fond de gorge d'une dent de filetage (partie la plus foncée du diagramme). Au fur et à mesure que l'on s'éloigne du fond de filetage les contraintes sont moins ressenties dans l'insert. Inversement, la valeur de la contrainte générée augmente (zones plus claires à zones plus foncées) depuis le rayon intérieur Ri jusqu'à la distance Rayon intérieur + Epaisseur du fond de gorge (Ri + Epg).
Un matériau additivé doit conférer entre autres des propriétés de résistances à la déformation élastique proches de ceux du matériau de l'insert. En effet, un matériau ayant un module d'élasticité élevé subira une déformation plus faible qu'un matériau ayant un module d'élasticité petit.
Avantageusement déterminer l'épaisseur minimale et radiale de l'insert selon l'équation min thickness = Rext (K Epg Ri) nous permet de connaître le seuil à partir duquel la transition entre le matériau de l'insert et celui de la matière additivé se fait en sécurité sans générer de contraintes additionnelles. C'est-à-dire à partir de 85% de limite élastique Ys du matériau de l'insert.
Les contraintes additionnelles peuvent correspondre à des contraintes de cisaillement, à des contraintes engendrées par la matière additivé par action direct sur l'insert, ou encore aux contraintes équivalentes de Von Mises, c'est-à-dire un paramètre qui combine l'ensemble des contraintes appliqués et que l'on peut comparer directement à la limite élastique.
Où :
Min thickness Valeur minimale de l’épaisseur d’un insert
Rext Valeur du rayon extérieur
Epg Valeur de l’épaisseur d’un fond de gorge d’une dent de filetage
Ri Valeur du rayon intérieur
K Valeur du ratio d’épaisseur minimal.
La figure 4b a été réalisé à titre de représentation et respecte pas systématiquement une échelle réelle.
La figure 5 représente, selon une vue hybride en coupe et en perspective, un conduit selon une variante de l'invention comprenant deux inserts non co-axiaux. Un conduit selon cette variante comprend donc deux inserts qui peuvent être mâles (2) et/ou femelles (3).
De manière générale, un insert (2, 3) de conduit comprend un espace intérieur (31, 32).
Un corps métallique (4) entièrement réalisé par fabrication additive relie les inserts (2, 3) et comprend un espace intérieur de corps (33) communiquant avec les espaces intérieurs (31, 32) des inserts (2, 3).
Dans le cas de la figure 5 sont représentés deux inserts (3) femelles.
Chacun des inserts mâle (2) ou femelle (3) peuvent comprendre une épaisseur minimale et radiale liée à une zone de transition entre l'insert et le corps métallique. Les développements liés à l'insert mâle (2) de la figure 2a ainsi que les développements liés à l'insert femelle (3) de la figure 2b s'appliquent de manière analogue à chacun desdits inserts mâle (2) ou femelle (3) de la figure 5.
Un premier insert (2, 3) comprend un premier axe de filetage Al. Un second insert (2, 3) comprend également un second axe de filetage A2. Les premier et second axes Al et A2 peuvent être colinéaires.
Les premier et second axes Al et A2 peuvent être parallèles l'un à l'autre et non sécants n'admettant aucun point en commun.
Les premier et second axes Al et A2 peuvent être non parallèles l'un à l'autre et sécants admettant un point en commun. Les premier et second axes Al et A2 peuvent être non parallèles l'un à l'autre et non sécants n'admettant pas de point en commun.
Les trois dernières configurations admettent par conséquent un décalage dans l'espace des inserts (2, 3) Le conduit (1) comprend alors un espace intérieur réunissant les espaces intérieurs d'inserts et de corps et cet espace intérieur de conduit est non rectiligne. L'axe de filetage d'un premier insert mâle (2) ou femelle (3) est incliné par rapport à l'axe d'un second insert mâle (2) ou femelle (3) d'un même conduit (1). Cet angle d'inclinaison est compris entre 0 et 75 degrés.
Aussi, un conduit (1) peut admettre des inserts mâles (2) ou femelle (3) avec des dimensions différentes. Par exemple une épaisseur minimale et radiale comprise entre 4 mm et 20 mm différente pour chacun des inserts ou alors un diamètre externe OD compris entre 4 et 18,625 pouces soit environ entre 100 mm et 480 mm différent pour chacun des inserts. Le conduit représenté en figure 5 comprend un premier insert avec un diamètre externe plus grand que le diamètre externe du second insert. Le premier insert a une épaisseur plus grande que l'épaisseur du second insert.
Avantageusement le corps (4) métallique réalisé entièrement par fabrication additive permet une facilité de configuration géométrique. De cette manière il est possible d'obtenir un conduit configuré selon la difficulté géométrique ou géologique rencontrée lors de l'exploitation de puits ou le transport d'hydrocarbures, la géothermie ou la capture de carbone.
Avantageusement, un conduit selon l'invention présente un espace intérieur agencé pour un écoulement hydraulique avec des turbulences réduites grâce à des variations de sections lissées et d'obtention facilitée par rapport aux solutions de l'état de l'art, notamment par l'absence de balourd à l'usinage. La figure 6 représente selon une vue hybride en coupe et en perspective un conduit selon une autre variante de l'invention comprenant trois inserts non co-axiaux.
Selon un aspect de cette variante, un conduit comprend trois inserts qui peuvent être mâles et/ou femelles (62, 63, 64). Un corps métallique (65) entièrement réalisé par fabrication additive est relié à chacun des inserts (62, 63, 64). De cette manière, les inserts mâles et/ou femelles appartiennent donc au même conduit (1). Les inserts (62, 63, 64) comprennent des espaces intérieurs d'insert. Le corps métallique (65) comprend un espace intérieur de corps communiquant avec les espaces intérieurs d'insert de façon à que tous les espaces intérieurs soient en communication.
Dans le cas de la figure 6, sont représentés trois inserts femelles. Chacun des inserts mâle ou femelle peut comprendre une épaisseur minimale liée à une zone de transition entre l'insert et le corps métallique. Ainsi, les développements liés à l'insert mâle
(2) de la figure 2a ainsi que les développements liés à l'insert femelle (3) de la figure 2b s'appliquent de manière analogue à chacun desdits inserts non coaxiaux mâle (2) ou femelle
(3) de la figure 6. Par exemple les dimensions des inserts (3) de la figure 6 ne sont pas systématiquement égaux.
Un premier insert (2, 3) comprend un premier axe de filetage Al. Un second insert (2, 3) comprend également un second axe de filetage A2. Un troisième insert comprend un troisième axe de filetage A3.
Les premier, second et troisième axes Al, A2 et A3 peuvent être non parallèles l'un à l'autre et sécants admettant au moins un point en commun.
Les premier, second et troisième axes Al, A2 et A3 peuvent être non parallèles l'un à l'autre et non sécants n'admettant pas de point en commun.
Les premier, second et troisième axes Al, A2 et A3 peuvent être non tous parallèles l'un à l'autre mais deux des trois axes peuvent être colinéaires. Le troisième axe étant donc non colinéaire avec les deux autres axes.
Avantageusement le corps (4) métallique réalisé entièrement par fabrication additive permet une facilité de configuration géométrique. De cette manière il est possible d'obtenir un conduit configuré selon la difficulté géométrique ou géologique rencontrée lors de l'exploitation de puits ou le transport d'hydrocarbures, la géothermie ou la capture de carbone. Avantageusement un conduit (1) selon cette variante de l'invention permet de créer un réseau de distribution, sur mesure, avec par exemple plusieurs points de sorties et plusieurs points d'entrées.
Avantageusement un conduit (1) selon cette variante de l'invention permet de réduire le nombre de conduits ou tubes nécessaires lors d'une opération dans le domaine du pétrole, du gaz, de la capture carbone ou de la géothermie.
Avantageusement, un conduit selon l'invention présente un espace intérieur à variations de dimensions lissées, facilitant l'écoulement hydraulique et d'obtention facilitée par rapport aux solutions de l'état de l'art, notamment par l'absence de balourd à l'usinage. La demanderesse s'est aperçue que ce type de conduit n'existe pas sur le marché des équipements parapétroliers notamment par la difficulté d'obtention avec les moyens existants.
Avantageusement, l'invention confère la possibilité de fabriquer un conduit par récupération des inserts usagés et de réaliser le corps métallique (4) entièrement réalisé par fabrication additive autour desdits inserts. Ceci permet également d'utiliser l'invention sur des portions de tubes récupérées destinées à être réhabilitées, par exemple des portions de tubes dont les extrémités sont encore fonctionnelles.
De manière analogue, les développements apportés à la figure 5 et 6 sont applicables pour des conduits comprenant plus de 3 inserts mâles (2) ou femelles (3).

Claims

REVENDICATIONS
1. Conduit (1) en acier pour le forage, rexploitation des puits hydrocarbures, le transport de pétrole et de gaz, la captation carbone ou la géothermie, comprenant au moins un insert mâle
(2) ou femelle
(3) et un corps métallique
(4), ledit insert (2, 3) comprenant au moins un premier axe de filetage, au moins une surface d’étanchéité (21, 22) torique ou frusto-conique, une partie filetée
(5) et une partie non filetée
(6) reliée au corps métallique (4), caractérisé en ce que le corps métallique (4) est entièrement réalisé par fabrication additive et en ce que l’épaisseur minimale et radiale d’un insert est déterminée selon l’équation :
[Math 7] min thickness = Rext — (K * Epg + Ri)
Où :
Min thickness Valeur minimale de l’épaisseur d’un insert en mm
Rext Valeur du rayon extérieur
Epg Valeur de l’épaisseur d’un fond de gorge d’une dent de filetage
Ri Valeur du rayon intérieur
K Valeur du ratio d’épaisseur minimal comprise entre 0,25 et 0,7.
2. Conduit (1) selon la revendication 1, caractérisé en ce que le ratio d’épaisseur K est égal à 0,510.
3. Conduit (1) selon l’une quelconque des revendications précédentes, caractérisé en ce qu’un insert mâle (2) ou femelle (3) comprend une épaisseur minimale et radiale déterminée entre 4 mm et 20 mm.
4. Conduit (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que chacun des inserts mâle (2) ou femelle (3) présente un diamètre externe (OD) compris entre 100mm et 480mm.
5. Conduit (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que le corps métallique (4) est réalisé par dépôt par fabrication additive arc-fil.
6. Conduit (1) selon l’une quelconque des revendications précédentes caractérisé en ce que le corps métallique (4) s’adhère autour de l’insert mâle (2) ou femelle (3) sur sa partie non filetée. 7. Conduit (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que le corps métallique (4) réalisé par fabrication additive comprend un matériau de type métallique choisi parmi les aciers alliés, fortement alliés, alliages cupro-nickel, alliages de titane, céramiques, vitrocéramiques, ou cuivre, stellite, fero 55.
8. Conduit (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que le corps métallique (4) réalisé par fabrication additive comprend un matériau de module de Young entre 110 GPa et 210 GPa, de préférence entre 160 GPa et 210 GPa.
9. Conduit (1) selon l’une des revendications précédentes, caractérisé en ce qu’un insert (2, 3) comprend un profil d’ancrage (7) agencé pour adhérer la matière additivée du corps métallique (4).
10. Conduit (1) selon la revendication 9, caractérisé en ce que le profil d’ancrage (7) comprend une ou plusieurs surfaces de cisaillement (11) et/ou au moins une extension d’arrimage (12).
11. Conduit (1) selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comprend au moins deux inserts mâle (2) et/ou femelle (3).
12. Conduit (1) selon la revendication 11, caractérisé en ce que chacun desdits insert mâle (2) et/ou femelle (3) présente respectivement un premier et un second axe de filetage Al et A2, et en ce que lesdits premier et second axes Al et A2 sont non colinéaires.
13. Conduit (1) selon l’une des revendications 11 ou 12, caractérisé en ce que l’axe de filetage d’un premier insert mâle (2) ou femelle (3) présente par rapport à l’axe d’un second insert mâle (2) ou femelle (3) d’un même conduit (1) un angle d’inclinaison compris entre 0 et 75 degrés.
14. Conduit (1) selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comprend au moins trois inserts mâle ou femelle (62, 63, 64), les inserts (62, 63, 64) comprenant respectivement au moins un premier axe de filetage, un deuxième axe de filetage, un troisième axe de filetage, les inserts étant reliés par un corps (4) entièrement réalisé par fabrication additive, lesdits premier, second et troisième axes de chacun des inserts mâle ou femelle (62, 63, 64) étant non colinéaires.
15. Un procédé pour obtenir un conduit (1) selon l’une quelconque des revendications 1 à 14, comprenant : - une étape de maintien d’un ou plusieurs inserts mâle (2) ou femelle (3) selon une position déterminée ;
- une étape de réalisation du corps métallique (4) par fabrication additive par arc fil comprenant un dépôt de matière à partir d’une portion non filetée de l’insert (2, 3) ; - une étape de traitement thermique pour modifier les caractéristiques mécaniques du corps et libérer les contraintes mécaniques issues de la fabrication additive ;
- une étape d’usinage dans le corps métallique (4).
PCT/EP2021/059858 2020-04-22 2021-04-16 Insert precisement integre dans un corps brut realise par fabrication additive WO2021213902A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2022013326A MX2022013326A (es) 2020-04-22 2021-04-16 Inserto integrado con precision en un cuerpo bruto hecho por fabricacion aditiva.
BR112022020564A BR112022020564A2 (pt) 2020-04-22 2021-04-16 Inserto integrado de modo preciso em um corpo bruto realizado por fabricação aditiva
EP21718887.9A EP4139555A1 (fr) 2020-04-22 2021-04-16 Insert precisement integre dans un corps brut realise par fabrication additive
US17/996,873 US20230147500A1 (en) 2020-04-22 2021-04-16 Insert precision-integrated into a blank body by additive manufacturing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2004017A FR3109543B1 (fr) 2020-04-22 2020-04-22 Insert precisement integre dans un corps brut realise par fabrication additive.
FRFR2004017 2020-04-22

Publications (1)

Publication Number Publication Date
WO2021213902A1 true WO2021213902A1 (fr) 2021-10-28

Family

ID=71662054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/059858 WO2021213902A1 (fr) 2020-04-22 2021-04-16 Insert precisement integre dans un corps brut realise par fabrication additive

Country Status (7)

Country Link
US (1) US20230147500A1 (fr)
EP (1) EP4139555A1 (fr)
AR (1) AR121904A1 (fr)
BR (1) BR112022020564A2 (fr)
FR (1) FR3109543B1 (fr)
MX (1) MX2022013326A (fr)
WO (1) WO2021213902A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2818728A1 (fr) 2000-12-22 2002-06-28 Vallourec Mannesmann Oil & Gas Joint filete tubulaire avec butee renforcee
CN108278088A (zh) 2018-03-29 2018-07-13 吉林大学 一种钢铝梯度复合材料钻杆及其制备方法
WO2019016254A1 (fr) 2017-07-18 2019-01-24 Vallourec Oil And Gas France Procédé de fabrication d'une pièce de raccordement
EP3561218A1 (fr) * 2018-04-26 2019-10-30 Vallourec Oil And Gas France Dispositif de protection pour une partie de boîte de raccordement d'un tube d'acier destiné à être utilisé dans une chaîne de travail tubulaire d'hydrocarbure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2818728A1 (fr) 2000-12-22 2002-06-28 Vallourec Mannesmann Oil & Gas Joint filete tubulaire avec butee renforcee
WO2019016254A1 (fr) 2017-07-18 2019-01-24 Vallourec Oil And Gas France Procédé de fabrication d'une pièce de raccordement
CN108278088A (zh) 2018-03-29 2018-07-13 吉林大学 一种钢铝梯度复合材料钻杆及其制备方法
EP3561218A1 (fr) * 2018-04-26 2019-10-30 Vallourec Oil And Gas France Dispositif de protection pour une partie de boîte de raccordement d'un tube d'acier destiné à être utilisé dans une chaîne de travail tubulaire d'hydrocarbure

Also Published As

Publication number Publication date
AR121904A1 (es) 2022-07-20
MX2022013326A (es) 2023-03-01
BR112022020564A2 (pt) 2022-12-06
US20230147500A1 (en) 2023-05-11
FR3109543B1 (fr) 2023-12-29
EP4139555A1 (fr) 2023-03-01
FR3109543A1 (fr) 2021-10-29

Similar Documents

Publication Publication Date Title
EP1373775B1 (fr) Element filete pour joint filete tubulaire resistant a la fatigue
EP1461560B2 (fr) Joint filete tubulaire superieur comprenant au moins un element filete avec levre d extremite
EP2344802B1 (fr) Composant pour le forage et l'exploitation des puits d'hydrocarbures
FR2733570A1 (fr) Assemblage filete pour tubes
FR2969738A1 (fr) Joint filete pour le forage et l'exploitation des puits d'hydrocarbures
FR3030668A1 (fr) Joint filete
WO2011117560A2 (fr) Tube de degazage d'un turboreacteur, procede de montage d'un tel tube et turboreacteur avec un tel tube
FR3014534A1 (fr) Ensemble pour la realisation d'un joint filete pour le forage et l'exploitation des puits d'hydrocarbures et joint filete resultant
EP3555412B1 (fr) Joint fileté pour composant tubulaire
EP3994382A1 (fr) Joint filete avec epaulement realise par fabrication additive
CA2857272C (fr) Joint filete a faible couple de vissage
FR3098879A1 (fr) Joint fileté à profil hélicoïdal dissymétrique
FR2953271A1 (fr) Ensemble pour la realisation d'un joint filete, procede de vissage et de devissage d'un tel joint et utilisation d'un tel joint dans une colonne montante sous-marine
WO2019016254A1 (fr) Procédé de fabrication d'une pièce de raccordement
WO2021213902A1 (fr) Insert precisement integre dans un corps brut realise par fabrication additive
FR2957973A1 (fr) Tube de degazage d'un turboreacteur, procede de montage d'un tel tube et turboreacteur avec un tel tube
FR2863030A1 (fr) Realisation, par expansion plastique, d'un joint tubulaire etanche avec surface(s) de butee inclinee(s)
EP2795038B1 (fr) Composant tubulaire pour le forage et l'exploitation des puits d'hydrocarbures et joint filete resultant
WO2022184993A1 (fr) Elément tubulaire fileté à segment
WO2021069402A1 (fr) Joint filete avec portee d'etancheite realisee par fabrication additive
FR2904031A1 (fr) Element male, pour un composant de forage, a butee externe et butee interne adaptee au refacage sans perte de couple de resistance, et ensemble de composants de forage associe.
EP1043092A1 (fr) Procédé d'assemblage de deux pièces, pièces destinées à être assemblées grâce à ce procédé et assemblage de deux telles pièces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21718887

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022020564

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021718887

Country of ref document: EP

Effective date: 20221122

ENP Entry into the national phase

Ref document number: 112022020564

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221010