WO2021213001A1 - 车辆转向装置和车辆 - Google Patents

车辆转向装置和车辆 Download PDF

Info

Publication number
WO2021213001A1
WO2021213001A1 PCT/CN2021/077855 CN2021077855W WO2021213001A1 WO 2021213001 A1 WO2021213001 A1 WO 2021213001A1 CN 2021077855 W CN2021077855 W CN 2021077855W WO 2021213001 A1 WO2021213001 A1 WO 2021213001A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
wheel
transmission
subsystem
clutch
Prior art date
Application number
PCT/CN2021/077855
Other languages
English (en)
French (fr)
Inventor
李�杰
刘峰宇
黄鑫
任鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21792637.7A priority Critical patent/EP4140857B1/en
Publication of WO2021213001A1 publication Critical patent/WO2021213001A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D3/00Steering gears
    • B62D3/02Steering gears mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/166Means changing the transfer ratio between steering wheel and steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • B62D5/003Backup systems, e.g. for manual steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/08Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in a single plane transverse to the longitudinal centre line of the vehicle
    • B62D7/09Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in a single plane transverse to the longitudinal centre line of the vehicle characterised by means varying the ratio between the steering angles of the steered wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1509Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels with different steering modes, e.g. crab-steering, or steering specially adapted for reversing of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/163Part of the steering column replaced by flexible means, e.g. cable or belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0418Electric motor acting on road wheel carriers

Definitions

  • This application relates to the field of vehicle technology, and in particular to a vehicle steering device and a vehicle.
  • the vehicle steering device is an important part of the car chassis.
  • the vehicle steering device generally includes an upper steering system and a lower steering system.
  • the upper steering system refers to a steering control mechanism including a steering wheel.
  • the lower steering system includes the left front wheel steering subsystem and the right front wheel steering subsystem, which refers to the steering actuator of the left front wheel and the right front wheel.
  • the automatic driving system becomes more and more advanced, people are slowly freed from driving behavior, and steer-by-wire is a trend product that people are completely free from driving behavior.
  • the vehicle steering device using wire-controlled steering there is no mechanical connection between the upper steering system and the lower steering system.
  • the controller receives the steering signal of the upper steering system (such as the rotation angle of the steering wheel), and then the controller generates the steering signal according to the steering signal.
  • the steering command is sent to the lower steering system so that the lower steering system executes the steering action.
  • the present application provides a vehicle steering device and a vehicle.
  • the vehicle steering device is additionally provided with a transmission assembly between the upper steering system and the lower steering system, and connects the upper steering system, the lower steering system and the transmission assembly through a clutch.
  • the upper steering system and the lower steering system can be mechanically decoupled, and when the lower steering power fails, the upper steering system and the lower steering system can be mechanically connected, so that the upper steering system can be mechanically connected.
  • the system provides steering power.
  • the vehicle steering device and the technical solution of the vehicle may be as follows:
  • a vehicle steering device in a first aspect, includes an upper steering system, a lower steering system, a front wheel steering transmission assembly, an intermediate clutch, a left front clutch, and a right front clutch, wherein the front wheel steering transmission assembly It includes a middle transmission wheel, a left front transmission wheel, a right front transmission wheel and a first transmission belt.
  • the middle transmission wheel, the left front transmission wheel and the right front transmission wheel are connected in transmission through the first transmission belt;
  • the lower steering system includes a left The front wheel steering subsystem and the right front wheel steering subsystem;
  • the upper steering system is connected to the intermediate transmission wheel through the intermediate clutch, and the left front wheel steering subsystem is connected to the left front transmission wheel through the left front clutch Connected, the right front wheel steering subsystem is connected with the right front transmission wheel through the right front clutch.
  • the upper steering system refers to the vehicle steering control system, which can also provide steering power in some scenarios.
  • the lower steering system refers to the execution system of vehicle steering.
  • the lower steering system may include a left front wheel steering subsystem and a right front wheel steering subsystem, which are respectively used to perform the steering actions of the left front wheel and the right front wheel.
  • the lower steering system may also include a left rear wheel steering subsystem and a right rear wheel steering subsystem, which are respectively used to perform the steering actions of the left rear wheel and the right rear wheel.
  • the front-wheel steering transmission assembly includes a middle transmission wheel, a left front transmission wheel, a right front transmission wheel and a first transmission belt.
  • the middle transmission wheel, the left front transmission wheel and the right front transmission wheel are connected by the first transmission belt.
  • the front wheel steering transmission assembly is used to transmit power between the upper steering system, the left front wheel steering subsystem and the right front wheel steering subsystem. Specifically, when the left front clutch and the right front clutch are both in the engaged state, the left front wheel steering subsystem and the right front wheel steering subsystem can transmit power through the front wheel steering transmission assembly.
  • the middle clutch, the left front clutch and the right front clutch are all When in the engaged state, power can be transmitted between the upper steering system and the lower steering system.
  • the middle clutch, the left front clutch and the right front clutch are in a disengaged state, the upper steering system is mechanically decoupled from the front wheel steering transmission assembly, and the lower steering system is mechanically decoupled from the front wheel steering transmission assembly, so that the upper steering system and the lower steering system are mechanically decoupled.
  • the middle clutch, the left front clutch and the right front clutch generally refer to all connectable and detachable connecting devices, not just the conventional clutches.
  • the vehicle steering device may also include a controller for controlling the steering of the vehicle.
  • the controller may be electrically connected to the upper steering system, the left front wheel steering subsystem and the right front wheel steering subsystem, the middle clutch, the left front clutch, and the right front clutch. These components are controlled.
  • the embodiment of the application provides a vehicle steering device, the upper steering system of the vehicle steering device and the intermediate transmission wheel in the front wheel steering transmission assembly are connected by an intermediate clutch, and the left front wheel
  • the steering subsystem is connected with the left front transmission wheel through a left front clutch
  • the right front wheel steering subsystem is connected with the right front transmission wheel through a right front clutch.
  • the middle clutch, the left front clutch and the right front clutch can be controlled to be in the engaged state, and the upper steering system and the lower steering system are mechanically connected .
  • the driver can provide steering power to the lower steering system by operating the upper steering system, so that in the case of power failure of the lower steering system, the whole vehicle will not lose its steering function.
  • both the left front clutch and the right front clutch can be in an engaged state. In this way, the steering power of the steering subsystem with effective power can be transmitted to the steering subsystem with power failure through the front wheel steering transmission assembly.
  • the middle clutch, the left front clutch and the right front clutch can all be in a disengaged state.
  • the left front wheel steering subsystem and the right front wheel steering subsystem can independently control the steering of the corresponding wheels to avoid mutual interference.
  • this also enables the vehicle steering device to achieve different Ackerman angles, making the turning of the vehicle more stable, and different Ackerman angles can be used for different scenarios (that is, the steering angles of the two wheels are different).
  • the so-called Ackerman angle is designed to prevent the vehicle from sliding when turning.
  • the angle of the inner wheel (relative to the center of curvature) is slightly larger than that of the outer wheel, so that the two The angle of each wheel is one large and one small, forming an angle, thus forming the Ackerman angle.
  • This design can make the vehicle body more stable when cornering quickly.
  • the working diameter of at least one of the left front transmission wheel and the right front transmission wheel is variable.
  • the working diameter can also be referred to as the meshing diameter and the mating diameter with the transmission belt.
  • the controller can be connected with the left front driving wheel and the right front driving wheel to control the working diameter of the left front driving wheel and the right front driving wheel.
  • the transmission ratio of the left front transmission wheel and the right front transmission wheel can be changed, so that any ratio of the left front wheel and the right front wheel can be achieved.
  • the steering angle thus, realizes the function of changing the Ackerman angle.
  • the working diameter of the left front transmission wheel may be variable, or the working diameter of the right front transmission wheel may be variable, or the working diameters of both the left front transmission wheel and the right front transmission wheel may be variable.
  • the working diameter of the intermediate transmission wheel is variable.
  • the tension of the first transmission belt will change during the change of the working diameter of the front left transmission wheel and/or the front right transmission wheel, that is, the tightness of the first transmission belt will change. Therefore, in order to keep the tension of the first transmission belt within an appropriate range, the intermediate transmission wheel can also be a transmission wheel with a variable working diameter. In this way, the controller controls the left front transmission wheel and/or the right front transmission wheel. When the working diameter is changed to adjust the transmission ratio, the working diameter of the intermediate transmission wheel can be adaptively controlled to keep the tension of the first transmission belt within a proper range.
  • the lower steering system further includes a left rear wheel steering subsystem and a right rear wheel steering subsystem
  • the vehicle steering device further includes a rear wheel steering transmission assembly, a left rear clutch and a right rear clutch
  • the rear wheel steering transmission assembly includes a left rear transmission wheel, a right rear transmission wheel and a second transmission belt, and the left rear transmission wheel and the right rear transmission wheel are connected in transmission through the second transmission belt.
  • the left rear wheel steering subsystem is connected to the left rear transmission wheel through the left rear clutch
  • the right rear wheel steering subsystem is connected to the right rear transmission wheel through the right rear clutch.
  • the four-wheel vehicle steering device is more accurate in controlling the steering angle of the four wheels than the two-wheel steering drive device.
  • the left rear clutch and the right rear clutch can be controlled to be in a separate state, so that the left rear wheel steering subsystem and the right rear wheel steering subsystem are independent Control the steering of the corresponding wheel.
  • the left rear clutch and the right rear clutch can be controlled to engage, so that the steering power of the steering subsystem whose power has not failed passes through the rear wheels.
  • the steering transmission assembly is transmitted to the steering subsystem whose power has failed.
  • At least one of the left rear transmission wheel and the right rear transmission wheel has a variable working diameter.
  • the controller can be connected with the left rear driving wheel and the right rear driving wheel to control the working diameter of the left rear driving wheel and the right rear driving wheel.
  • the transmission ratio of the left rear transmission wheel and the right rear transmission wheel can be changed, so that the left and right rear wheels can be realized.
  • the steering angle of the wheel in any proportion.
  • the working diameter of the left rear transmission wheel may be variable, or the working diameter of the right rear transmission wheel may be variable, or the working diameters of both the left rear transmission wheel and the right rear transmission wheel may be variable.
  • the rear-wheel steering transmission assembly further includes an adjustment transmission wheel for adjusting the tension of the second transmission belt, the left rear transmission wheel, the right rear transmission wheel and the The adjusting transmission wheel is connected in transmission through the second transmission belt.
  • an adjusting transmission wheel may be provided in the rear-wheel steering transmission assembly to adjust the tension of the second transmission belt.
  • the working diameter of the adjusting transmission wheel is variable.
  • the adjusting transmission wheel may be a transmission wheel with a variable working diameter.
  • the working diameter of the transmission wheel can be adjusted adaptively to keep the tension of the second transmission belt within a proper range.
  • the upper steering system includes an upper steering drive motor.
  • the transmission wheel includes a first conical disc, a second conical disc, a transmission shaft, and a conical disc drive device.
  • the second conical disc is sleeved on the transmission shaft, and the conical surfaces of the first conical disc and the second conical disc are opposite to each other.
  • the conical disc drive device is used to control the distance between the first conical disc and the second conical disc to change the working diameter of the transmission wheel.
  • the transmission wheel is a middle transmission wheel, a left front transmission wheel, a right front transmission wheel, a left rear transmission wheel, a right rear transmission wheel or an adjustment transmission wheel.
  • the conical disc drive device may be a hydraulic drive device.
  • the conical disc drive device can be electrically connected with the controller on the vehicle, so that the controller controls the change of the working diameter of the transmission wheel through the conical disc drive device.
  • the first conical disc and the second conical disc are sleeved on the transmission shaft, and the conical surfaces are opposite to each other.
  • the transmission belt is arranged between the two tapered surfaces. When the two tapered surfaces are closer, the working diameter of the transmission wheel becomes larger; when the two tapered surfaces are farther apart, the working diameter of the transmission wheel becomes smaller. Therefore, the change of the working diameter of the transmission wheel can be realized by controlling the change of the distance between the first cone disc and the second cone disc.
  • the vehicle steering device further includes a controller, which is configured to, when the left front wheel steering subsystem and the right front wheel steering subsystem are in a power active state, Controlling the middle clutch, the left front clutch and the right front clutch to be in a disengaged state.
  • the controller is also used to control the left front wheel steering subsystem and the right front wheel steering subsystem to respectively perform the steering actions of the corresponding wheels.
  • the controller can be electrically connected with the left front wheel steering subsystem, the right front wheel steering subsystem, the middle clutch, the left front clutch, and the right front clutch, so that the controller can control various components.
  • the controller may be connected to the lower steering drive motors of the left front wheel steering subsystem and the right front wheel steering subsystem.
  • the left front wheel steering subsystem and the right front wheel steering subsystem are both in the active power state, and the middle clutch, the left front clutch and the right front clutch can be controlled to be in the disengaged state, so that the left front wheel steering sub
  • the system, the right front wheel steering subsystem, and the upper steering system are mechanically decoupled, so that the left front wheel steering subsystem and the right front wheel steering subsystem can perform the steering actions of the corresponding wheels respectively, avoiding the upper steering system and the left front wheel steering sub-system.
  • the system and the right front wheel steering subsystem interfere with each other.
  • a vehicle equipped with the vehicle steering device provided by the embodiments of the present application can include an automatic driving mode and a manual driving mode.
  • the upper steering system can be controlled to be in a silent state, and the steering wheel remains stationary, thereby improving the driver’s autonomy. Driving experience.
  • the steering resistance can be applied to the steering wheel through the upper steering system to simulate the real sense of the road. Because the driver’s road feeling is generated by simulation, the information that best reflects the actual driving state of the vehicle and road conditions can be extracted as a control variable of the steering wheel’s return torque, so that the steering wheel only provides useful information to the driver, thereby providing the driver with A more real sense of road.
  • the controller is also used to control when one and only one of the left front wheel steering subsystem and the right front wheel steering subsystem is in a power failure state
  • the middle clutch is in a disengaged state, and the left front clutch and the right front clutch are controlled to be in an engaged state.
  • the controller is also used to control the steering subsystem whose power has not failed to perform the steering action of the corresponding wheel, and transmit the power to the steering subsystem whose power has failed through the front-wheel steering transmission assembly, so that the power fails.
  • the steering subsystem performs the steering action of the corresponding wheel.
  • the middle clutch can be controlled to be in a disengaged state, and the left front clutch and the right front clutch are in The engaged state, so that power transmission can be completed between the left front wheel steering subsystem and the right front wheel steering subsystem.
  • the upper steering system can be controlled to be in a silent state, and the steering wheel remains stationary, thereby improving the driver's automatic driving experience.
  • the steering resistance can be applied to the steering wheel through the upper steering system to simulate the real sense of the road. Because the driver’s road feeling is generated by simulation, the information that best reflects the actual driving state of the vehicle and road conditions can be extracted as a control variable of the steering wheel’s return torque, so that the steering wheel only provides useful information to the driver, thereby providing the driver with A more real sense of road.
  • the controller is further configured to: when the left front wheel steering subsystem and the right front wheel steering subsystem are both in a power failure state, and the upper steering system in the upper steering system When the steering drive motor is in a power active state, the middle clutch, the left front clutch and the right front clutch are all controlled to be in an engaged state.
  • the controller is also used to control the upper steering drive motor in the upper steering system to transmit power to the left front wheel steering subsystem and the right front wheel steering subsystem through the front wheel steering transmission assembly to Perform the steering action of the left front wheel and the right front wheel.
  • the left front wheel steering subsystem and the right front wheel steering subsystem are both in a power failure state, and the upper steering drive motor in the upper steering system is in a power active state, which can control the middle clutch and the left front The clutch and the right front clutch are in an engaged state to complete the mechanical connection between the upper steering system and the lower steering system.
  • the steering power of the lower steering system is provided by the upper steering system. Therefore, at this time, the upper steering drive motor provides steering driving force, not Steering resistance provided when simulating road feel.
  • the controller is also used for when the left front wheel steering subsystem and the right front wheel steering subsystem are both in a power failure state, the upper steering in the upper steering system When the drive motor is in a power failure state, the middle clutch, the left front clutch and the right front clutch are all in an engaged state.
  • the left front wheel steering subsystem and the right front wheel steering subsystem are both in a power failure state, and the upper steering drive motor in the upper steering system is in a power failure state, which can control the middle clutch and the left front The clutch and the right front clutch are in an engaged state to complete the mechanical connection between the upper steering system and the lower steering system.
  • a vehicle equipped with the vehicle steering device provided in the embodiments of the present application may include two driving modes, namely, an automatic driving mode and a manual driving mode.
  • an automatic driving mode cannot be entered.
  • manual driving mode the driver manually turns the steering wheel to generate steering power. Then the steering power is respectively transmitted to the left front wheel steering subsystem and the right front wheel steering subsystem through the front wheel steering transmission assembly to perform the steering action of the left front wheel and the right front wheel.
  • the controller is also used to control changes in the working diameters of the left front transmission wheel and the right front transmission wheel, so as to change the transmission ratio of the left front transmission wheel and the right front transmission wheel , To achieve different steering angles between the left front wheel and the right front wheel.
  • the solution shown in the embodiment of the present application can change the transmission ratio of the left front transmission wheel and the right front transmission wheel by adjusting the working diameters of the left front transmission wheel and the right front transmission wheel, so that the difference between the left front wheel and the right front wheel can be realized.
  • the steering angle can change the transmission ratio of the left front transmission wheel and the right front transmission wheel by adjusting the working diameters of the left front transmission wheel and the right front transmission wheel, so that the difference between the left front wheel and the right front wheel can be realized.
  • the steering angle can change the transmission ratio of the left front transmission wheel and the right front transmission wheel by adjusting the working diameters of the left front transmission wheel and the right front transmission wheel, so that the difference between the left front wheel and the right front wheel can be realized.
  • the controller is also used to control the change of the working diameter of the intermediate transmission wheel when the working diameter of the front left transmission wheel and the front right transmission wheel change, so as to adjust the working diameter of the intermediate transmission wheel. Describe the tension of the first transmission belt.
  • the controller can also control the change of the working diameter of the middle transmission wheel when the working diameter of the front left transmission wheel and the front right transmission wheel change, so as to adjust the tension of the first transmission belt.
  • the vehicle steering device further includes a controller, the controller is used for when the left rear wheel steering subsystem and the right rear wheel steering subsystem are both in a power active state , Controlling the left rear clutch and the right rear clutch to be in a separated state.
  • the controller is also used to control the left rear wheel steering subsystem and the right rear wheel steering subsystem to respectively perform the steering actions of the corresponding wheels.
  • the controller can be electrically connected with the left rear wheel steering subsystem, the right rear wheel steering subsystem, the left rear clutch and the right rear clutch, so that the controller can control various components.
  • the controller may be respectively connected with the lower steering drive motors in the left rear wheel steering subsystem and the right rear wheel steering subsystem.
  • the left rear clutch and the right rear clutch can be controlled to be in a disengaged state, so that the left rear wheel steering sub
  • the system and the right rear wheel steering subsystem are mechanically decoupled, so that the left rear wheel steering subsystem and the right rear wheel steering subsystem can perform the steering actions of the corresponding wheels respectively, avoiding the left rear wheel steering subsystem and the right rear wheel steering subsystem Interfere with each other.
  • the controller is also used to control when one and only one of the left rear wheel steering subsystem and the right rear wheel steering subsystem is in a power failure state
  • the left rear clutch and the right rear clutch are in an engaged state.
  • the controller is also used to control the steering subsystem whose power has not failed to perform the steering action of the corresponding wheel, and transmit the power to the steering subsystem with power failure through the rear-wheel steering transmission assembly, so that the power fails
  • the steering subsystem performs the steering action of the corresponding wheel.
  • the left rear clutch and the right rear clutch can be controlled to be in an engaged state, so that , The power transmission can be completed between the left rear wheel steering subsystem and the right rear wheel steering subsystem.
  • the controller is also used to control changes in the working diameters of the left rear transmission wheel and the right rear transmission wheel, so as to change the left rear transmission wheel and the right rear transmission wheel.
  • the gear ratio of the wheels realizes the different steering angles of the left and right rear wheels.
  • the controller can also be electrically connected with the left rear transmission wheel and the right rear transmission wheel to control the working diameter of the left rear transmission wheel and the right rear transmission wheel.
  • the transmission ratio of the left rear transmission wheel and the right rear transmission wheel can be changed, thereby realizing the left and right rear wheels. Different steering angles of the rear wheels.
  • the controller is also used to control the change of the working diameter of the adjusting transmission wheel when the working diameter of the left rear transmission wheel and the right rear transmission wheel change, so as to Adjust the tension of the second transmission belt.
  • the tension of the second transmission belt will be changed during the process of changing the working diameter of the left rear transmission wheel and the right rear transmission wheel, that is, the tightness of the second transmission belt will change, which affects The power transmission between the left rear driving wheel and the right rear driving wheel. Therefore, the controller can also control the change of the working diameter of the transmission wheel when controlling the change of the working diameter of the left rear transmission wheel and the right rear transmission wheel, so as to adjust the tension of the second transmission belt.
  • the controller is also used to control the left rear clutch and the left rear clutch and the The right rear clutch is in a disengaged state.
  • the left rear wheel steering subsystem and the right rear wheel steering subsystem are both in a power failure state, because the left rear wheel steering subsystem and the right rear wheel steering subsystem are mechanically decoupled from the upper steering system Therefore, the left rear wheel steering subsystem and the right rear wheel steering subsystem do not have the function of controlling the steering of the wheels in the power failure state.
  • the four-wheel steering device becomes a two-wheel steering device, and the left rear wheel and the right rear wheel follow the steering.
  • the controller can control the left rear clutch and the right rear clutch to be in a disengaged state, so as to prevent the left rear wheel and the right rear wheel from interfering with each other when they follow the steering.
  • a vehicle in a second aspect, includes the vehicle steering device according to any one of the first aspect.
  • the embodiment of the present application provides a vehicle steering device.
  • the upper steering system of the vehicle steering device is connected to the middle transmission wheel in the front wheel steering transmission assembly through an intermediate clutch, and the left front wheel steering subsystem is connected to the left front transmission wheel. It is connected by the left front clutch, and the right front wheel steering subsystem is connected with the right front transmission wheel by the right front clutch.
  • the middle clutch, the left front clutch and the right front clutch can all be in the engaged state, and the upper steering system and the lower steering system are mechanically connected.
  • the driver can provide steering power to the lower steering system by operating the upper steering system, so that the entire vehicle will not lose its steering function in the event of a power failure of the lower steering system.
  • Fig. 1 is a schematic diagram of a vehicle steering device provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a front wheel steering transmission assembly provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of an upper steering system provided by an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a lower steering subsystem provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an Ackerman angle provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a vehicle steering device provided by an embodiment of the present application.
  • Fig. 7 is a schematic diagram of a rear-wheel steering transmission assembly provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a transmission wheel with a variable working diameter provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a vehicle steering device in a normal working mode according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a vehicle steering device in a unilateral assist mode according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a vehicle steering device in an upper assist mode according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a vehicle steering device in a mechanical steering mode according to an embodiment of the present application.
  • FIG. 13 is a flowchart of mode selection of a vehicle steering device provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of a wheel state provided by an embodiment of the present application.
  • 15 is a schematic diagram of a wheel state provided by an embodiment of the present application.
  • Figure 16 is a schematic diagram of a wheel state provided by an embodiment of the present application.
  • Figure 17 is a schematic diagram of a wheel state provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a transmission wheel with a variable working diameter provided by an embodiment of the present application.
  • 19 is a schematic structural diagram of a transmission wheel with a variable working diameter provided by an embodiment of the present application.
  • Fig. 20 is a schematic structural diagram of a transmission wheel with a variable working diameter provided by an embodiment of the present application.
  • Front wheel steering transmission assembly 31, middle transmission wheel, 32, left front transmission wheel, 33, right front transmission wheel, 34, first transmission belt, 301, first cone disc, 302, second cone disc, 303, Transmission shaft, 304, conical disc drive device, 305, first arc split body, 306, hub, 307, drive rod, 308, second arc split body, 309, strut, 310, drive device;
  • Rear wheel steering transmission assembly 71, left rear transmission wheel, 72, right rear transmission wheel, 73, second transmission belt, 74, adjustment transmission wheel;
  • the embodiments of the present application provide a vehicle steering device and a vehicle equipped with the vehicle steering device.
  • the vehicle steering device includes an upper steering system, a lower steering system, a transmission assembly and a clutch, and the upper steering system and the lower steering system are respectively connected with the transmission assembly through the clutch.
  • the clutch can be in a disengaged state, and the upper steering system and the lower steering system are mechanically decoupled, which facilitates the realization of the silence of the steering wheel in the upper steering system under the automatic driving state and improves the driving experience.
  • the clutch between the upper steering system and the transmission assembly and the clutch between the lower steering system and the transmission assembly can be in an engaged state, and the upper steering system and the lower steering system are mechanically connected by the transmission assembly Therefore, the driver can provide power to the lower steering system by operating the upper steering system to realize the steering of the vehicle.
  • the vehicle steering device includes an upper steering system 1, a lower steering system 2, a front wheel steering transmission assembly 3, an intermediate clutch 4, a left front clutch 5, and a right front clutch 6.
  • the front-wheel steering transmission assembly 3 includes a middle transmission wheel 31, a left front transmission wheel 32, a right front transmission wheel 33 and a first transmission belt 34.
  • the middle transmission wheel 31, the left front transmission wheel 32 and the right front transmission wheel 33 are connected by the first transmission belt 34.
  • the lower steering system 2 includes a left front wheel steering subsystem 21 and a right front wheel steering subsystem 22.
  • the upper steering system 1 is connected to the middle transmission wheel 31 through the middle clutch 4, the left front wheel steering subsystem 21 is connected to the left front transmission wheel 32 through the left front clutch 5, and the right front wheel steering subsystem 22 is connected to the right front transmission wheel 33 through the right front clutch 6 .
  • the upper steering system 1 refers to a control system for vehicle steering, which can also provide steering power in certain scenarios.
  • the lower steering system 2 refers to an execution system for vehicle steering.
  • the lower steering system 2 may include a left front wheel steering subsystem 21 and a right front wheel steering subsystem 22, which are used to perform the steering actions of the left front wheel and the right front wheel, respectively.
  • the lower steering system 2 may also include a left rear wheel steering subsystem 23 and a right rear wheel steering subsystem 24, which are used to perform the steering actions of the left rear wheel and the right rear wheel, respectively.
  • the front wheel steering transmission assembly 3 includes a middle transmission wheel 31, a left front transmission wheel 32, a right front transmission wheel 33 and a first transmission belt 34. As shown in FIG. 2, the middle transmission wheel 31, the left front transmission wheel 32 and the right front transmission wheel 33 pass through the first The transmission belt 34 is connected for transmission.
  • the front wheel steering transmission assembly 3 is used to transmit power between the upper steering system 1, the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22. Specifically, when the left front clutch 5 and the right front clutch 6 are both in the engaged state, the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 can transmit power through the front wheel steering transmission assembly 3.
  • the middle clutch 4, the left front clutch 5, and the right front clutch 6 generally refer to all connectable and detachable connecting devices, not just the conventional clutches.
  • the vehicle steering device may also include a controller for controlling the steering of the vehicle.
  • the controller may interact with the upper steering system 1, the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22, the middle clutch 4, the left front clutch 5 and the right front clutch 6. Electrical connection to control these components.
  • the embodiment of the present application provides a vehicle steering device, the upper steering system 1 of the vehicle steering device and the intermediate transmission wheel 31 in the front wheel steering transmission assembly 3 are connected by an intermediate clutch 4 ,
  • the left front wheel steering subsystem 21 and the left front transmission wheel 32 are connected through the left front clutch 5, and the right front wheel steering subsystem 22 and the right front transmission wheel 33 are connected through the right front clutch 6.
  • the middle clutch 4 the left front clutch 5 and the right front clutch 6 can be controlled to be in the engaged state, and the upper steering system 1 and the lower steering system 1
  • the steering system 2 is mechanically connected, and the driver can provide the steering power to the lower steering system 2 by operating the upper steering system 1, so that in the case of power failure of the lower steering system 2, the whole vehicle will not lose its steering function.
  • both the left front clutch 5 and the right front clutch 6 can be in an engaged state. In this way, the steering power of the steering subsystem with effective power can be transmitted to the steering subsystem with power failure through the front wheel steering transmission assembly 3.
  • the middle clutch 4, the left front clutch 5 and the right front clutch 6 can all be in a disengaged state.
  • the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 can independently control the steering of the corresponding wheels to avoid mutual interference.
  • this also enables the vehicle steering device to achieve different Ackerman angles, making the turning of the vehicle more stable, and different Ackerman angles can be used for different scenarios (that is, the steering angles of the two wheels are different).
  • the so-called Ackerman angle is designed to prevent the vehicle from sliding when turning.
  • the angle of the inner wheel (relative to the center of curvature) is slightly larger than that of the outer wheel, so that the two The angle of each wheel is one large and one small, forming an included angle, thus forming the Ackerman angle, as shown in Figure 5.
  • This design can make the vehicle body more stable when cornering quickly.
  • the upper steering system 1 includes an upper steering drive motor 11, a steering wheel 12, a pipe column 13 and an intermediate shaft 14.
  • the upper steering drive motor 11 is the power source of the upper steering system 1, and the upper steering drive motor 11 may be electrically connected to the controller, so that the controller can control the upper steering drive motor 11 easily.
  • the upper steering drive motor 11 can be used to provide the steering power, so that the driver can save effort in operation and avoid completely providing the steering power by manpower.
  • the upper steering drive motor 11 can also provide steering resistance for the steering wheel 12 to simulate road feeling and improve the driver's driving experience.
  • the driver operates the steering wheel 12 to rotate, and the rotation of the steering wheel 12 is transmitted to the pipe column 13, and then transmitted to the intermediate shaft 14 through the pipe column 13. If the intermediate clutch 4, the left front clutch 5 and the right front clutch 6 In the engaged state, the rotation will also be transmitted to the lower steering system 2 via the front-wheel steering transmission assembly 3. In this state, the upper steering drive motor 11 provides assistance, so that the driver's operation is more labor-saving.
  • a sensor can be provided in the upper steering system 1 to detect the rotation angle of the steering wheel 12.
  • the sensor is electrically connected to the controller, so that the controller can receive the rotation angle signal of the sensor, determine the steering angle of the wheel based on the rotation angle signal, and send the corresponding steering angle signal to the corresponding lower steering subsystem.
  • the lower steering subsystem may be the left front wheel steering subsystem 21, the right front wheel steering subsystem 22, and the left rear wheel steering subsystem. 23 and right rear steering subsystem 24:
  • the lower steering subsystem includes a lower steering drive motor 201, a gear shaft 202 and a drive rack 203.
  • the lower steering drive motor 201 is the power source of the lower steering subsystem, and the lower steering drive motor 201 can be electrically connected to the controller, so that the controller can control the lower steering subsystem.
  • the lower steering drive motor 201 may receive a rotation angle signal sent by the controller, and control the wheels to rotate at a corresponding angle based on the rotation angle signal.
  • the power of the lower steering drive motor 201 fails, the power of the lower steering subsystem fails.
  • the lower steering drive motor 201 drives the gear shaft 202 to rotate, and the gear shaft 202 meshes with the drive rack 203, then the gear shaft 202 can drive the drive rack 203 for linear motion, and the drive gear 203 is connected to the wheels. Therefore, the wheels can be driven to rotate.
  • the power from the remaining lower steering subsystem or the upper steering system 1 is transmitted to the gear shaft 202 of the lower rotor system through the front-wheel steering transmission assembly 3 or the rear-wheel steering transmission assembly 7.
  • the shaft 202 can still drive the drive rack 203 to perform linear motion.
  • the working diameter of at least one of the left front transmission wheel 32 and the right front transmission wheel 33 is variable.
  • the working diameter can also be referred to as the meshing diameter and the mating diameter with the transmission belt, as shown in Fig. 8 and Fig. 2.
  • the controller may be connected with the left front transmission wheel 32 and the right front transmission wheel 33 to control the working diameters of the left front transmission wheel 32 and the right front transmission wheel 33.
  • the transmission ratio of the left front transmission wheel 32 and the right front transmission wheel 33 can be changed, which can be achieved
  • the left front wheel and the right front wheel have an arbitrary ratio of steering angles, thereby realizing the function of changing Ackerman angles.
  • the working diameter of the left front transmission wheel 32 may be variable, and then the transmission ratio of the left front transmission wheel 32 and the right front transmission wheel 33 can be changed by changing the working diameter of the left front rotation wheel 32 at this time. It is also possible that the working diameter of the right front transmission wheel 33 is variable. At this time, the transmission ratio of the left front transmission wheel 32 and the right front transmission wheel 33 can be changed by changing the working diameter of the right front transmission wheel 33. It is also possible that the working diameters of the left front driving wheel 32 and the right front driving wheel 33 are variable. At this time, the working diameters of the left front driving wheel 32 and the right front driving wheel 33 can be adjusted to change the left front driving wheel 32 and the right front driving wheel. 33 gear ratio. For the last case, the range of achievable gear ratios is relatively large.
  • the working diameter of the intermediate transmission wheel 31 is variable.
  • the intermediate transmission wheel 31 can also be a transmission wheel with a variable working diameter.
  • the controller controls the left front transmission wheel 32 and/or When the working diameter of the right front transmission wheel 33 is changed to adjust the transmission ratio, the working diameter of the middle transmission wheel 31 can be adaptively controlled to keep the tension of the first transmission belt 34 within a proper range.
  • the working diameter of the intermediate transmission wheel 31 is fixed, and the front-wheel steering transmission assembly 3 further includes a tension wheel, and the tension wheel may be a spring type tension wheel or the like.
  • the vehicle steering device provided in the embodiment of the present application may be a two-wheel steering device or a four-wheel steering device.
  • the technical solution of the vehicle steering device may be as follows:
  • the lower steering system 2 further includes a left rear wheel steering subsystem 23 and a right rear wheel steering subsystem 24, and the vehicle steering device also includes a rear wheel steering transmission assembly 7 ,
  • the left rear clutch 8 and the right rear clutch 9, the rear wheel steering transmission assembly 7 includes a left rear transmission wheel 71, a right rear transmission wheel 72 and a second transmission belt 73.
  • the left rear transmission wheel 71 and the right rear transmission wheel 72 pass through the second transmission belt 73 transmission connection.
  • the left rear wheel steering subsystem 23 is connected to the left rear transmission wheel 71 through the left rear clutch 8
  • the right rear wheel steering subsystem 24 is connected to the right rear transmission wheel 72 through the right rear clutch 9.
  • the four-wheel vehicle steering device is more accurate in controlling the steering angle of the four wheels than the two-wheel steering drive device.
  • the left rear clutch 8 and the right rear clutch 9 can be controlled to be in a separated state, so that the left rear wheel steering subsystem 23 and the right rear The wheel steering subsystem 24 independently controls the steering of the corresponding wheels.
  • the left rear clutch 8 and the right rear clutch 9 can be controlled to be engaged, so that the steering power of the steering subsystem whose power is not disabled , Through the rear wheel steering transmission assembly 7 to the power failure steering subsystem.
  • the working diameter of at least one of the left rear transmission wheel 71 and the right rear transmission wheel 72 is variable.
  • the controller can be connected with the left rear transmission wheel 71 and the right rear transmission wheel 72 to control the working diameters of the left rear transmission wheel 71 and the right rear transmission wheel 72.
  • the transmission ratio of the left rear transmission wheel 71 and the right rear transmission wheel 72 can be changed , This can achieve any ratio of the steering angle of the left rear wheel and the right rear wheel.
  • the working diameter of the left rear transmission wheel 71 may be variable, and then the transmission ratio of the left rear transmission wheel 71 and the right rear transmission wheel 72 can be changed by changing the working diameter of the left rear transmission wheel 71. It is also possible that the working diameter of the right rear transmission wheel 72 is variable. At this time, the transmission ratio of the left rear transmission wheel 71 and the right rear transmission wheel 72 can be changed by changing the working diameter of the right rear transmission wheel 72.
  • the working diameters of the left rear transmission wheel 71 and the right rear transmission wheel 72 are variable. At this time, the working diameters of the left rear transmission wheel 71 and the right rear transmission wheel 72 can be adjusted to change the left rear transmission wheel. 71 and the transmission ratio of the right rear transmission wheel 72. For the last case, the range of achievable gear ratios is relatively large.
  • the rear-wheel steering transmission assembly 7 further includes an adjusting transmission wheel 74 for adjusting the tension of the second transmission belt 73, a left rear transmission wheel 71, and a right rear transmission wheel. 72 and the adjusting transmission wheel 74 are drivingly connected by a second transmission belt 73.
  • an adjusting transmission wheel 74 may be provided in the rear-wheel steering transmission assembly 7 to adjust the tension of the second transmission belt 73.
  • the adjusting transmission wheel 74 is a tensioning wheel, for example, it may be a spring-type tensioning wheel.
  • the working diameter of the adjusting transmission wheel 74 is variable, that is, the adjusting transmission wheel 74 is the same as the left rear transmission wheel 71 and the right rear transmission wheel 72, and both are transmission wheels with variable working diameters. .
  • the controller can adaptively control and adjust the transmission wheel 74 when controlling the working diameter of the left rear transmission wheel 71 and/or the right rear transmission wheel 72 to adjust the transmission ratio.
  • the working diameter is changed to keep the tension of the second transmission belt 73 within a proper range.
  • variable working diameter transmission wheel There may be many realization forms of the variable working diameter transmission wheel, and this application does not limit its specific realization form. Below, three specific implementations of variable working diameter transmission wheels are provided:
  • the transmission wheel for each transmission wheel, includes a first conical disc 301, a second conical disc 302, a transmission shaft 303, and a conical disc drive device 304.
  • a conical disc 301 and a second conical disc 302 are sleeved on the transmission shaft 303, and the conical surfaces of the first conical disc 301 and the second conical disc 302 are opposite.
  • the conical disc drive device 4 is used to control the distance between the first conical disc 301 and the second conical disc 302 to change the working diameter of the transmission wheel.
  • the aforementioned transmission wheels may be the middle transmission wheel 31, the left front transmission wheel 32, the right front transmission wheel 33, the left rear transmission wheel 71, the right rear transmission wheel 72 and the adjustment transmission wheel 74.
  • the conical disc drive device 4 may be a hydraulic drive device.
  • the conical disc drive device 4 can be electrically connected to a controller on the vehicle, so that the controller controls the change of the working diameter of the transmission wheel through the conical disc drive device 4.
  • the first conical disc 301 and the second conical disc 302 are sleeved on the transmission shaft 303, and the conical surfaces are opposite.
  • the transmission belt is set between the two tapered surfaces.
  • the working diameter of the transmission wheel becomes larger (the left transmission wheel in Figure 8); when the two tapered surfaces are farther apart At this time, the working diameter of the transmission wheel becomes smaller (as shown in the right transmission wheel in Figure 8). Therefore, the change of the working diameter of the transmission wheel can be realized by controlling the change of the distance between the first conical disc 301 and the second conical disc 302.
  • the movement of the second conical disc 302 can be controlled by the conical disc drive device 304 to realize the change of the distance between the two conical discs.
  • the first conical disk 301 may be a fixed disk fixed on the transmission shaft 303, and the second conical disk 302 may be a movable disk.
  • the first conical disc 301 and the second conical disc 302 may both be movable discs, which is not limited in this application.
  • the transmission wheel includes a plurality of first circular arc split bodies 305, a hub 306 and a plurality of driving rods 307.
  • a plurality of first circular arc sub-parts 305 form a transmission wheel body, one end of each driving rod 307 is connected to a first circular arc sub-part 305, and the other end is arranged in the hub 306 and can be telescoped in the hub 306.
  • the hub 306 is mounted on the rotating shaft.
  • the driving rod 307 can drive the plurality of first circular arc split bodies 305 to move away from or close to each other by telescoping in the hub 306, so as to realize the variable working diameter of the transmission wheel.
  • the working diameter of the transmission wheel gradually increases; when the plurality of first circular arc splits 305 are close to each other, the working diameter of the transmission wheel gradually decreases.
  • the working diameter of the transmission wheel is in the smallest state.
  • the driving rod 307 may be driven by hydraulic pressure or by a motor, which is not limited in this application.
  • the transmission wheel includes a plurality of second circular arc split bodies 308, a plurality of struts 309 and two driving devices 310.
  • a plurality of second arc sub-parts 308 form a transmission wheel body, one end of each brace 309 is connected with a second arc sub-body 308, and the other end is connected with the driving device 310.
  • the two driving devices 310 are arranged on both sides of the second circular arc split body 308.
  • the plurality of struts 309 can expand or retract the plurality of second arc split bodies 308 through the approach and distance between the two driving devices 310.
  • the two driving devices 310 are relatively close, the plurality of second arc split bodies 308 are stretched, and the working diameter of the transmission wheel is relatively large.
  • the distance between the two driving devices 310 becomes longer, the plurality of second arc splits 308 are retracted, and two adjacent second arc splits 308 are in contact, and the working diameter of the transmission wheel is the smallest.
  • the driving device 310 may be a hydraulic driving device or a motor driving device, which is not limited in this application.
  • each transmission wheel can adopt the same structure to realize variable working diameter, or adopt multiple different structures to realize variable working diameter, which is not limited in this application.
  • the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 are both in a state of effective power. At this time, the vehicle steering device enters the normal working mode, as shown in Figure 9:
  • the vehicle steering device further includes a controller, which is used to control the middle clutch 4 and the left front when the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 are in a power active state.
  • the clutch 5 and the right front clutch 6 are in a disengaged state.
  • the controller is also used to control the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 to respectively perform the steering actions of the corresponding wheels.
  • the controller can be electrically connected with the left front wheel steering subsystem 21, the right front wheel steering subsystem 22, the middle clutch 4, the left front clutch 5 and the right front clutch 6, so that the controller can control various components.
  • the controller may be connected to the lower steering drive motors of the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22.
  • the middle clutch 4, the left front clutch 5, and the right front clutch 6 can be controlled to be in a disengaged state, so that The left front wheel steering subsystem 21, the right front wheel steering subsystem 22, and the upper steering system 1 are mechanically decoupled, so that the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 can respectively perform the steering actions of the corresponding wheels, Avoid the upper steering system 1, the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 from interfering with each other.
  • a vehicle equipped with the vehicle steering device provided by the embodiment of the application may include two driving modes, namely, automatic driving mode and manual driving mode.
  • automatic driving mode and manual driving mode.
  • the following are the specific scenarios of automatic driving mode and manual driving mode to perform the control process of the controller. Detailed description:
  • the controller determines that the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 are in a power active state, and controls the middle clutch 4, the left front clutch 5 and the right front clutch 6 to be in a disengaged state. Then, according to the external data detected by the sensor, the steering angle of the left front wheel and the right front wheel is determined in real time, and the corresponding steering angle signal is sent to the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22.
  • the front wheel steering subsystem 21 and the right front wheel steering subsystem 22 respectively control the steering actions of the left front wheel and the right front wheel according to the received steering angle signal.
  • the upper steering system 1 can be controlled to be in a silent state, and the steering wheel 12 can be kept still, thereby improving the driver's automatic driving experience.
  • the controller determines that the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 are in a power active state, and controls the middle clutch 4, the left front clutch 5 and the right front clutch 6 to be in a disengaged state. Then, according to the steering angle signal of the steering wheel detected by the sensor, the steering angle of the left front wheel and the right front wheel is determined, and the corresponding steering angle signal is sent to the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22.
  • the front wheel steering subsystem 21 and the right front wheel steering subsystem 22 respectively control the steering actions of the left front wheel and the right front wheel according to the received steering angle signal.
  • the steering resistance can be applied to the steering wheel through the upper steering system 1 to simulate the real road feeling. Because the driver’s road feeling is generated by simulation, the information that best reflects the actual driving state of the vehicle and road conditions can be extracted as a control variable of the steering wheel’s return torque, so that the steering wheel only provides useful information to the driver, thereby providing the driver with A more real sense of road.
  • the controller is also used to control the middle clutch 4 to be in a power failure state when one and only one of the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 is in a power failure state.
  • the left front clutch 5 and the right front clutch 6 are controlled to be in an engaged state.
  • the controller is also used to control the steering subsystem whose power has not failed to perform the steering action of the corresponding wheels, and transmit the power to the steering subsystem with power failure through the front wheel steering transmission assembly 3, so that the steering subsystem with power failure executes The steering action of the corresponding wheel.
  • the middle clutch 4 can be controlled to be in the disengaged state, and the left front clutch 5
  • the front right clutch 6 is in an engaged state, so that the power transmission between the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 can be completed.
  • the controller determines that one and only one of the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 is in a power active state, and controls the middle clutch 4 to be in a disengaged state, and the left front clutch 5 and the right front The clutches 6 are all in the engaged state. Then, according to the external data detected by the sensor, the target steering angle of the wheels is determined in real time, and the corresponding steering angle signal is issued to the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 (or only the power Effective steering subsystem), the steering subsystem with effective power executes the steering action of the corresponding wheel according to the received steering angle signal. In addition, the power of the steering subsystem with effective power can be transmitted to the steering subsystem with power failure through the front-wheel steering transmission assembly 3, and the steering subsystem with power failure can perform the steering action of the corresponding wheel.
  • the upper steering system 1 can be controlled to be in a silent state, and the steering wheel remains stationary, thereby improving the driver's automatic driving experience.
  • the controller determines that there is one and only one of the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 in the power active state, and controls the middle clutch 4 to be in the disengaged state, and the left front clutch 5 and the right front The clutches 6 are all in the engaged state. Then, according to the steering wheel angle signal detected by the sensor, the steering angle of the wheels is determined, and the corresponding steering angle signal is issued to the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 (or only the effective power is issued). The steering subsystem), the steering subsystem with effective power executes the steering action of the corresponding wheel according to the received steering angle signal. In addition, the power of the steering subsystem with effective power can be transmitted to the steering subsystem with power failure through the front-wheel steering transmission assembly 3, and the steering subsystem with power failure can perform the steering action of the corresponding wheel.
  • the steering resistance can be applied to the steering wheel through the upper steering system 1 to simulate the real road feeling. Because the driver’s road feeling is generated by simulation, the information that best reflects the actual driving state of the vehicle and road conditions can be extracted as a control variable of the steering wheel’s return torque, so that the steering wheel only provides useful information to the driver, thereby providing the driver with A more real sense of road.
  • the controller is also used to control the change of the working diameter of the left front transmission wheel 32 and the right front transmission wheel 33 to change the transmission ratio of the left front transmission wheel 32 and the right front transmission wheel 33 to realize the Different steering angles of the right front wheel.
  • the controller can also be electrically connected with the left front transmission wheel 32 and the right front transmission wheel 33 to control the working diameters of the left front transmission wheel 32 and the right front transmission wheel 33.
  • the transmission ratio of the left front transmission wheel 32 and the right front transmission wheel 33 can be changed. Different steering angles of the front wheels.
  • the controller determines that one and only one of the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 is in a power active state, and controls the middle clutch 4 to be in a disengaged state, and the left front clutch 5 and the right front clutch 6 are both in the engaged state. Then, according to the external data detected by the sensor, determine the target steering angle of the left front wheel and the right front wheel in real time, and determine the steering angle of the steering subsystem whose power has not failed according to the target steering angle of the two wheels, and, the left front The target working diameter of the transmission wheel 32 and the right front transmission wheel 33.
  • the controller sends the steering angle signal to the steering subsystems that have not lost power, and sends the respective target working diameter signals to the left front transmission wheel 32 and the right front transmission wheel 33, so that the working diameters of the left front transmission wheel 32 and the right front transmission wheel 33 are Change to the respective target working diameter.
  • the steering subsystem whose power has not failed controls the corresponding wheel to rotate the corresponding steering angle according to the steering angle signal, and transmits the rotation to the steering subsystem with power failure through the front wheel steering transmission assembly 3, and makes the power failure steering sub
  • the rotation of the system and the rotation of the steering subsystem without power failure are the target ratios.
  • the steering subsystem with power failure controls the corresponding wheels to complete the rotation, and the rotation angle is the target steering angle determined by the controller.
  • the controller determines that there is one and only one of the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 in the power active state, and controls the middle clutch 4 to be in the disengaged state, and the left front clutch 5 and the right front The clutches 6 are all in the engaged state. Then, according to the steering angle signal of the steering wheel detected by the sensor, determine the steering angle of the left front wheel and the right front wheel, and determine the steering angle of the steering subsystem whose power has not failed according to the determined steering angle of the two wheels, and, the left front The target working diameter of the transmission wheel 32 and the right front transmission wheel 33.
  • the controller sends the steering angle signal to the steering subsystems that have not lost power, and sends the respective target working diameter signals to the left front transmission wheel 32 and the right front transmission wheel 33, so that the working diameters of the left front transmission wheel 32 and the right front transmission wheel 33 are Change to the respective target working diameter.
  • the steering subsystem whose power has not failed controls the corresponding wheel to rotate the corresponding steering angle according to the steering angle signal, and transmits the rotation to the steering subsystem with power failure through the front wheel steering transmission assembly 3, and makes the power failure steering sub
  • the rotation of the system and the rotation of the steering subsystem without power failure are the target ratios.
  • the steering subsystem with power failure controls the corresponding wheels to complete the rotation, and the rotation angle is the target steering angle determined by the controller.
  • the controller can also control the change of the working diameter of the intermediate transmission wheel 31 when the working diameter of the left front transmission wheel 32 and the right front transmission wheel 33 change, so as to adjust the tension of the first transmission belt 34.
  • a tensioning wheel may also be provided, which is used to adjust the tension on the first transmission belt 34, so that the intermediate transmission wheel 31 does not need to change the working diameter, and may be an ordinary fixed-diameter transmission wheel.
  • the controller is also used for when the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 are both in a power failure state, and the upper steering drive motor 11 in the upper steering system 1 is in a power failure state.
  • the middle clutch 4 When the power is active, the middle clutch 4, the left front clutch 5 and the right front clutch 6 are all in an engaged state.
  • the controller is also used to control the upper steering drive motor 11 in the upper steering system 1 to transmit power to the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 through the front wheel steering transmission assembly 3 to execute the left front wheel and The steering action of the right front wheel.
  • the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 are both in a power failure state, and the upper steering drive motor 11 in the upper steering system 1 is in a power effective state, which can be controlled
  • the middle clutch 4, the left front clutch 5 and the right front clutch 6 are in an engaged state, so that the mechanical connection between the upper steering system 1 and the lower steering system 2 is completed.
  • the controller determines that the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 are both in a power failure state, and the upper steering drive motor 11 in the upper steering system 1 is in a power effective state, and controls the middle The clutch 4, the left front clutch 5, and the right front clutch 6 are all in an engaged state. Then, according to the external data detected by the sensor, the steering angle of the wheels is determined in real time, and the steering angle of the upper steering drive motor 11 is determined based on the steering angle of the wheels, and the corresponding steering angle signal is sent to the upper steering drive motor 11. The rotation of the upper steering drive motor 11 is respectively transmitted to the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 through the front wheel steering transmission assembly 3 to realize the steering action of the left front wheel and the right front wheel.
  • the controller determines that the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 are both in a power failure state, and the upper steering drive motor 11 in the upper steering system 1 is in a power effective state, and controls the middle The clutch 4, the left front clutch 5, and the right front clutch 6 are all in an engaged state. Then, the power input by the upper steering drive motor 11 and the power output by the driver are respectively transmitted to the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 through the front wheel steering transmission assembly 3 to realize the left and right front wheels. The steering action of the front wheels.
  • the steering power of the lower steering system 2 is provided by the upper steering system 1, so at this time, the upper steering drive motor 11 provides steering Driving force instead of steering resistance provided when simulating road feel.
  • the controller is also used to control the change of the working diameter of the left front transmission wheel 32 and the right front transmission wheel 33 to change the transmission ratio of the left front transmission wheel 32 and the right front transmission wheel 33 to realize the Different steering angles of the right front wheel.
  • the transmission ratio of the left front transmission wheel 32 and the right front transmission wheel 33 can be changed. Different steering angles of the front wheels.
  • the controller determines that the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 are both in a power failure state, and the upper steering drive motor 11 in the upper steering system 1 is in a power effective state , Control the middle clutch 4, the left front clutch 5 and the right front clutch 6 to be in the engaged state. Then, according to the external data detected by the sensor, the steering angle of the left front wheel and the right front wheel is determined in real time, and the steering angle of the upper steering drive motor 11 is determined according to the steering angles of the two wheels, and the left front transmission wheel 32 and The target working diameter of the right front transmission wheel 33.
  • the controller sends a steering angle signal to the upper steering drive motor 11, and sends respective target working diameter signals to the left front transmission wheel 32 and the right front transmission wheel 33, so that the working diameters of the left front transmission wheel 32 and the right front transmission wheel 33 become The respective target working diameter.
  • the upper steering drive motor 11 rotates the corresponding angle according to the steering angle signal, and transmits the rotation to the lower steering system 2 whose power has failed through the front-wheel steering transmission assembly 3, and makes the rotation of the left front-wheel steering subsystem 21 and the right
  • the rotation of the front wheel steering subsystem 22 is the target ratio
  • the rotation of the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 control the corresponding wheels to complete the rotation
  • the rotation angle is the steering angle determined by the controller.
  • the controller determines that the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 are both in a power failure state, and the upper steering drive motor 11 in the upper steering system 1 is in a power effective state, and controls the middle The clutch 4, the left front clutch 5, and the right front clutch 6 are all in an engaged state. Then, the target working diameters of the left front transmission wheel 32 and the right front transmission wheel 33 are determined according to the steering wheel angle signal detected by the sensor. Then, the controller changes the working diameters of the left front transmission wheel 32 and the right front transmission wheel 33 to their respective target working diameters.
  • the power input by the upper steering drive motor 11 and the power output by the driver are transmitted to the lower steering system 2 whose power has failed through the front wheel steering transmission assembly 3, and the rotation of the left front wheel steering subsystem 21 is in line with that of the right front wheel.
  • the rotation of the steering subsystem 22 is the target ratio, the rotation of the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 control the corresponding wheels to complete the rotation, and the angle of rotation is the steering angle determined by the controller.
  • the controller can also control the change of the working diameter of the intermediate transmission wheel 31 when the working diameter of the left front transmission wheel 32 and the right front transmission wheel 33 change, so as to adjust the tension of the first transmission belt 34.
  • a tensioning wheel may also be provided, which is used to adjust the tension on the first transmission belt 34, so that the intermediate transmission wheel 31 does not need to change the working diameter, and may be an ordinary fixed-diameter transmission wheel.
  • the controller is also used when the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 are both in a power failure state, and the upper steering drive motor 11 in the upper steering system 1 is in power. In the disabled state, the middle clutch 4, the left front clutch 5 and the right front clutch 6 are all in an engaged state.
  • the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 are both in a power failure state, and the upper steering drive motor 11 in the upper steering system 1 is in a power failure state, which can be controlled
  • the middle clutch 4, the left front clutch 5 and the right front clutch 6 are in an engaged state, so that the mechanical connection between the upper steering system 1 and the lower steering system 2 is completed.
  • a vehicle equipped with the vehicle steering device provided in the embodiments of the present application may include two driving modes, namely, an automatic driving mode and a manual driving mode.
  • an automatic driving mode when both the upper steering system 1 and the lower steering system 2 are in a power failure state, the automatic driving mode cannot be entered.
  • the driver manually turns the steering wheel to generate steering power. Then the steering power is respectively transmitted to the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 through the front wheel steering transmission assembly 3 to perform the steering action of the left front wheel and the right front wheel.
  • the controller is also used to control the change of the working diameter of the left front transmission wheel 32 and the right front transmission wheel 33 to change the transmission ratio of the left front transmission wheel 32 and the right front transmission wheel 33 to realize the Different steering angles of the right front wheel.
  • the transmission ratio of the left front transmission wheel 32 and the right front transmission wheel 33 can be changed. Different steering angles of the front wheels.
  • the controller determines that the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 are both in a power failure state, and the upper steering drive motor 11 in the upper steering system 1 is in a power failure state , Control the middle clutch 4, the left front clutch 5 and the right front clutch 6 to be in the engaged state. Then, the steering angle of the left front wheel and the right front wheel are determined according to the steering angle signal detected by the sensor, and the target working diameters of the left front transmission wheel 32 and the right front transmission wheel 33 are determined according to the steering angles of the two wheels. Then, the controller changes the working diameters of the left front transmission wheel 32 and the right front transmission wheel 33 to their respective target working diameters.
  • the steering power of the upper steering system 1 manually generated is transmitted to the left front wheel steering subsystem 21 and the right front wheel steering subsystem 22 through the front wheel steering transmission assembly 3 to perform the steering of the left front wheel and the right front wheel.
  • Action, and the angle of rotation is the steering angle determined by the controller.
  • the controller can also control the change of the working diameter of the intermediate transmission wheel 31 when the working diameter of the left front transmission wheel 32 and the right front transmission wheel 33 change, so as to adjust the tension of the first transmission belt 34.
  • a tensioning wheel may also be provided, which is used to adjust the tension on the first transmission belt 34, so that the intermediate transmission wheel 31 does not need to change the working diameter, and may be an ordinary fixed-diameter transmission wheel.
  • a mode selection flowchart of a vehicle steering device provided by an embodiment of this application:
  • the controller determines whether there is a failure in the lower steering system, if not, it enters the normal working mode;
  • the vehicle steering device provided by the embodiment of the present application may be a two-wheel steering device or a four-wheel steering device.
  • the working process of the vehicle steering device further includes the following steps:
  • the vehicle steering device further includes a controller, which is used to control the left rear clutch 8 when the left rear wheel steering subsystem 23 and the right rear wheel steering subsystem 24 are both in a power active state.
  • the rear right clutch 9 is in a disengaged state.
  • the controller is also used to control the left rear wheel steering subsystem 23 and the right rear wheel steering subsystem 24 to respectively perform the steering actions of the corresponding wheels.
  • the controller can be electrically connected with the left rear wheel steering subsystem 23, the right rear wheel steering subsystem 24, the left rear clutch 8 and the right rear clutch 9 so that the controller can control various components.
  • the controller may be connected to the lower steering drive motors in the left rear wheel steering subsystem 23 and the right rear wheel steering subsystem 24 respectively.
  • the steering of the left front wheel and the right front wheel can be controlled according to the control methods in (1)-(4) above. Below, only the steering control of the left rear wheel and the right rear wheel is performed. illustrate:
  • the left rear clutch 8 and the right rear clutch 9 can be controlled to be in the disengaged state, so that the left rear wheel steering subsystem 23 and the right rear
  • the wheel steering subsystem 24 is mechanically decoupled, so that the left rear wheel steering subsystem 23 and the right rear wheel steering subsystem 24 can respectively perform the steering actions of the corresponding wheels, avoiding the left rear wheel steering subsystem 23 and the right rear wheel steering subsystem 24 Interfere with each other.
  • the controller determines that the left rear wheel steering subsystem 23 and the right rear wheel steering subsystem 24 are both in a power active state, and controls both the left rear clutch 8 and the right rear clutch 9 to be in a disengaged state. Then, according to the external data detected by the sensor, the steering angle of the left rear wheel and the right rear wheel is determined in real time, and the corresponding steering angle signal is sent to the left rear wheel steering subsystem 23 and the right rear wheel steering subsystem 24.
  • the rear-wheel steering subsystem 23 and the right rear-wheel steering subsystem 24 respectively control the steering actions of the left rear wheel and the right rear wheel according to the received steering angle signal.
  • the controller determines that the left rear wheel steering subsystem 23 and the right rear wheel steering subsystem 24 are in a power active state, and controls both the left rear clutch 8 and the right rear clutch 9 to be in a disengaged state. Then, according to the steering angle signal of the steering wheel detected by the sensor, the steering angle of the left rear wheel and the right rear wheel is determined, and the corresponding steering angle signal is sent to the left rear wheel steering subsystem 23 and the right rear wheel steering subsystem 24.
  • the rear-wheel steering subsystem 23 and the right rear-wheel steering subsystem 24 respectively control the steering actions of the left rear wheel and the right rear wheel according to the received steering angle signal.
  • the controller is also used to control the left rear clutch 8 when one and only one of the left rear wheel steering subsystem 23 and the right rear wheel steering subsystem 24 is in a power failure state.
  • the rear right clutch 9 is in an engaged state.
  • the controller is also used to control the steering subsystem whose power has not failed to perform the steering action of the corresponding wheel, and transmit the power to the steering subsystem with power failure through the rear-wheel steering transmission assembly 7 to perform the corresponding steering subsystem with power failure.
  • the steering action of the wheels is also used to control the steering subsystem whose power has not failed to perform the steering action of the corresponding wheel, and transmit the power to the steering subsystem with power failure through the rear-wheel steering transmission assembly 7 to perform the corresponding steering subsystem with power failure.
  • the steering action of the wheels is also used to control the steering subsystem whose power has not failed to perform the steering action of the corresponding wheel, and transmit the power to the steering subsystem with power failure through the rear-wheel steering transmission assembly 7 to perform the corresponding steering subsystem with power failure.
  • the steering action of the wheels is also used to control the steering subsystem whose power has not failed to perform the steering action of the corresponding wheel, and transmit the power to the steering subsystem with power failure through the rear-wheel steering transmission assembly 7 to perform the
  • the left rear clutch 8 and the right rear clutch 9 can be controlled to be in The engaged state, so that the power transmission between the left rear wheel steering subsystem 23 and the right rear wheel steering subsystem 24 can be completed.
  • the controller determines that one and only one of the left rear wheel steering subsystem 23 and the right rear wheel steering subsystem 24 is in a power active state, and controls both the left rear clutch 8 and the right rear clutch 9 to be engaged state. Then, according to the external data detected by the sensor, the target steering angle of the wheels is determined in real time, and the corresponding steering angle signal is sent to the left rear wheel steering subsystem 23 and the right rear wheel steering subsystem 24 (or only the power Effective steering subsystem), the steering subsystem with effective power executes the steering action of the corresponding wheel according to the received steering angle signal.
  • the power of the steering subsystem with effective power can be transmitted to the steering subsystem with power failure through the rear-wheel steering transmission assembly 7, and the steering subsystem with power failure can perform the steering action of the corresponding wheel.
  • the controller determines that there is one and only one of the left rear steering subsystem 23 and the right rear steering subsystem 24 at the steering angle of the power steering wheel, and controls both the left rear clutch 8 and the right rear clutch 9 In the engaged state. Then, according to the external data detected by the sensor, the target steering angle of the wheels is determined in real time, and the corresponding steering angle signal is sent to the left rear wheel steering subsystem 23 and the right rear wheel steering subsystem 24 (or only the power Effective steering subsystem), the steering subsystem with effective power executes the steering action of the corresponding wheel according to the received steering angle signal. In addition, the power of the steering subsystem with effective power can be transmitted to the steering subsystem with power failure through the rear-wheel steering transmission assembly 7, and the steering subsystem with power failure can perform the steering action of the corresponding wheel.
  • the controller is also used to control the change of the working diameter of the left rear transmission wheel 71 and the right rear transmission wheel 72 to change the transmission ratio of the left rear transmission wheel 71 and the right rear transmission wheel 72 to achieve
  • the left and right rear wheels have different steering angles.
  • the controller can also be electrically connected to the left rear transmission wheel 71 and the right rear transmission wheel 72 to control the working diameters of the left rear transmission wheel 71 and the right rear transmission wheel 72.
  • the transmission ratio of the left rear transmission wheel 71 and the right rear transmission wheel can be changed. Different steering angles of the wheels and the right rear wheel.
  • the automatic driving mode it is determined that one and only one of the left rear wheel steering subsystem 23 and the right rear wheel steering subsystem 24 is in a power active state, and the left rear clutch 8 and the right rear clutch 9 are both in the power active state. The state of engagement. Then, according to the external data detected by the sensor, the target steering angle of the wheels is determined in real time, and the target steering angle of the power unfailed subsystem is determined according to the target steering angles of the two wheels, as well as the left rear transmission wheel 71 and the right rear transmission The target working diameter of the wheel 72.
  • the controller sends the steering angle signal to the steering subsystems that have not lost power, and sends the respective target working diameter signals to the left rear transmission wheel 71 and the right rear transmission wheel 72, so that the left rear transmission wheel 71 and the right rear transmission wheel The working diameter of 72 becomes the respective target working diameter.
  • the steering subsystem whose power has not failed controls the corresponding wheel to rotate the corresponding steering angle according to the steering angle signal, and transmits the rotation to the steering subsystem with power failure through the rear-wheel steering transmission assembly 7, and makes the steering wheel with power failure.
  • the rotation of the system and the rotation of the steering subsystem without power failure are the target ratios.
  • the steering subsystem with power failure controls the corresponding wheels to complete the rotation, and the rotation angle is the target steering angle determined by the controller.
  • the manual driving mode it is determined that one and only one of the left rear wheel steering subsystem 23 and the right rear wheel steering subsystem 24 is in a power active state, and both the left rear clutch 8 and the right rear clutch 9 are controlled to be in an engaged state. Then, according to the steering angle of the steering wheel detected by the sensor, the target steering angle of the wheels is determined, and the target steering angle of the power-not-failed subsystem, as well as the left rear transmission wheel 71 and the right rear transmission wheel 72, are determined according to the target steering angle of the wheels. The target working diameter.
  • the controller sends the steering angle signal to the steering subsystems that have not lost power, and sends the respective target working diameter signals to the left rear transmission wheel 71 and the right rear transmission wheel 72, so that the left rear transmission wheel 71 and the right rear transmission wheel The working diameter of 72 becomes the respective target working diameter.
  • the steering subsystem whose power has not failed controls the corresponding wheel to rotate the corresponding steering angle according to the steering angle signal, and transmits the rotation to the steering subsystem with power failure through the rear-wheel steering transmission assembly 7, and makes the steering wheel with power failure.
  • the rotation of the system and the rotation of the steering subsystem without power failure are the target ratios.
  • the steering subsystem with power failure controls the corresponding wheels to complete the rotation, and the rotation angle is the target steering angle determined by the controller.
  • the controller can also control and adjust the working diameter of the transmission wheel 74 to change when the working diameter of the left rear transmission wheel 71 and the right rear transmission wheel 72 are changed, so as to adjust the tension of the second transmission belt 73.
  • the working diameter of the adjusting transmission wheel 74 may not be variable, but a tension wheel.
  • the left rear wheel steering subsystem 23 and the right rear wheel steering subsystem 24 are both in a power failure state, since the left rear wheel steering subsystem 23 and the right rear wheel steering subsystem 24 are mechanically decoupled from the upper steering system 1, the left The rear-wheel steering subsystem 23 and the right-rear-wheel steering subsystem 24 do not have the function of controlling wheel steering in the power failure state.
  • the four-wheel steering device becomes a two-wheel steering device, and the left and right rear wheels follow the steering.
  • the controller can control the left rear clutch 8 and the right rear clutch 9 to be in a disengaged state, so as to prevent the left rear wheel and the right rear wheel from interfering with each other when they follow the steering.
  • the straight driving is stable: the four-wheel independent steering can help the whole vehicle to achieve a more stable straight driving by individually correcting the small tires in a small area under abnormal conditions.
  • high-speed stability When driving at high speed, the front and rear wheels are in the same direction to achieve a more stable translational steering at high speed.
  • low-speed steering In low-speed situations, the front and rear wheels are reversed to achieve the function of reducing the turning radius.
  • in-situ steering Through this mode, the function of the whole vehicle can be directly turned in-situ.
  • the vehicle steering device provided by the embodiments of the present application has at least the following beneficial effects:
  • the vehicle steering device provided by the embodiments of the present application has high safety.
  • the driver can also manually output power steering.
  • the multiple steering subsystems included in the lower steering system 2 can independently control the steering of the corresponding wheels, making the steering of the vehicle more flexible.
  • the function of changing Ackerman angle can be realized through multiple modes. After a single side failure of the lower steering, the inconsistent steering angle control of the left front wheel and the right front wheel can be realized through the non-failed side and the front wheel steering transmission assembly 3, and the function of changing the Ackerman angle can be realized. After the failure of both sides of the lower steering, the mechanical connection can be realized, and the function of changing the Ackerman angle can still be realized by converting to the working mode of the upper steering assist. In the case of all the upper and lower steering systems fail, there is the final mechanical steering to ensure safety and still achieve the function of changing Ackerman angle. The steering force can be reduced by adjusting the speed ratio.
  • An embodiment of the present application also provides a vehicle, which includes the vehicle steering device as described in any one of the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

一种车辆转向装置,包括上转向系统(1)、下转向系统(2)、传动组件(3、7)和离合器(4、5、6、8、9),上转向系统(1)和下转向系统(2)分别通过离合器(4、5、6、8、9)与传动组件(3、7)连接。还公开了一种车辆。在此转向装置中,当下转向系统(2)动力有效时,可以使上转向系统(1)和传动组件(3、7)之间的离合器(4、5、6、8、9)处于分离状态,上转向系统(1)和下转向系统(2)机械解耦,便于实现在自动驾驶状态下,上转向系统中方向盘(12)的静默,提升驾驶体验。而当下转向系统(2)动力失效时,可以使上转向系统(1)与传动组件(3、7)之间的离合器(4、5、6、8、9)以及下转向系统(2)与传动组件(3、7)之间的离合器(4、5、6、8、9)均处于接合状态,上转向系统(1)和下转向系统(2)之间通过传动组件(3、7)机械连接,从而,驾驶人员可以通过操作上转向系统(1)为下转向系统(2)提供动力,实现车辆的转向。

Description

车辆转向装置和车辆
本申请要求于2020年04月23日提交的申请号为202010328152.X、发明名称为“车辆转向装置和车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆技术领域,特别涉及一种车辆转向装置和车辆。
背景技术
车辆转向装置是汽车底盘的重要组成部分。车辆转向装置一般包括上转向系统和下转向系统,上转向系统是指包括方向盘在内的转向控制机构。下转向系统包括左前轮转向子系统和右前轮转向子系统,是指左前轮和右前轮的转向执行机构。
相关技术中,随着自动驾驶系统越来越高级,人慢慢的从驾驶行为上解脱,线控转向正是人完全从驾驶行为上解脱出来的趋势产品。在运用线控转向的车辆转向装置中,上转向系统和下转向系统之间无机械连接,由控制器接收上转向系统的转向信号(如方向盘的转动角度),然后,控制器根据转向信号生成转向指令,并发送给下转向系统,以使下转向系统执行转向动作。
在实现本申请的过程中,发明人发现相关技术至少存在以下问题:
由于上转向系统和下转向系统之间缺少机械连接,所以在下转向系统动力失效的情况下,整车将会完全失去转向功能。
发明内容
本申请提供了一种车辆转向装置和车辆,该车辆转向装置在上转向系统和下转向系统之间增设有传动组件,并使上转向系统、下转向系统和传动组件之间通过离合器连接。这样,在下转向系统动力有效时,可以使上转向系统和下转向系统之间机械解耦,而在下转向动力失效时,可以使上转向系统和下转向系统之间机械连接,从而,由上转向系统提供转向动力。所述车辆转向装置和车辆的技术方案可以如下所述:
第一方面,提供了一种车辆转向装置,所述车辆转向装置包括上转向系统、下转向系统、前轮转向传动组件、中间离合器、左前离合器和右前离合器,其中,所述前轮转向传动组件包括中间传动轮、左前传动轮、右前传动轮和第一传动带,所述中间传动轮、所述左前传动轮和所述右前传动轮通过所述第一传动带传动连接;所述下转向系统包括左前轮转向子系统和右前轮转向子系统;所述上转向系统通过所述中间离合器与所述中间传动轮连接,所述左前轮转向子系统通过所述左前离合器与所述左前传动轮连接,所述右前轮转向子系统通过所述右前离合器与所述右前传动轮连接。
其中,上转向系统是指车辆转向的控制系统,在某些场景下也可以提供转向动力。
下转向系统是指车辆转向的执行系统,下转向系统可以包括左前轮转向子系统和右前轮转向子系统,分别用于执行左前轮和右前轮的转向动作。当车辆转向装置为四轮转向装置时, 下转向系统还可以包括左后轮转向子系统和右后轮转向子系统,分别用于执行左后轮和右后轮的转向动作。
前轮转向传动组件包括中间传动轮、左前传动轮、右前传动轮和第一传动带,中间传动轮、左前传动轮和右前传动轮通过第一传动带传动连接。前轮转向传动组件用于在上转向系统、左前轮转向子系统和右前轮转向子系统之间传递动力。具体的,当左前离合器和右前离合器均处于接合状态时,左前轮转向子系统和右前轮转向子系统之间可以通过前轮转向传动组件传递动力,当中间离合器、左前离合器和右前离合器均处于接合状态时,上转向系统和下转向系统之间可以传递动力。当中间离合器、左前离合器和右前离合器均处于分离状态时,上转向系统与前轮转向传动组件机械解耦,下转向系统与前轮转向传动组件机械解耦,从而,上转向系统和下转向系统之间机械解耦。
中间离合器、左前离合器和右前离合器泛指一切可接合与可分离的连接装置,而不仅仅指常规的离合器。
车辆转向装置还可以包括控制车辆转向的控制器,该控制器可以与上转向系统、左前轮转向子系统和右前轮转向子系统、中间离合器、左前离合器和右前离合器电性连接,以对这些部件进行控制。
本申请实施例所示的方案,本申请实施例提供了一种车辆转向装置,该车辆转向装置的上转向系统与前轮转向传动组件中的中间传动轮之间通过中间离合器连接,左前轮转向子系统与左前传动轮之间通过左前离合器连接,右前轮转向子系统与右前传动轮之间通过右前离合器连接。这样,当左前轮转向子系统和右前轮转向子系统均处于动力失效状态时,可以控制中间离合器、左前离合器和右前离合器均处于接合状态,则上转向系统与下转向系统之间机械连接,驾驶人员可以通过操作上转向系统来为下转向系统提供转向动力,从而,在下转向系统动力失效的情况下,整车也不会失去转向功能。
另外,在左前轮转向子系统和右前轮转向子系统之间有一个转向子系统损坏时,可以使左前离合器和右前离合器均处于接合状态。这样,动力有效的转向子系统的转向动力可以通过前轮转向传动组件传递给动力失效的转向子系统。
再者,当左前轮转向子系统和右前轮转向子系统的动力均有效的状态下,可以使中间离合器、左前离合器和右前离合器均处于分离状态。这样,左前轮转向子系统和右前轮转向子系统可以独立控制对应的车轮的转向,避免相互干扰。而且,这也使得车辆转向装置可以实现不同的阿克曼角,使得车辆的转弯更加稳定,针对不同的场景可以采用不同的阿克曼角(即两个车轮的转向角度不同)。其中,所谓的阿克曼角是为了使车辆在转弯的时候不发生侧滑而设计的,在设计车辆转向装置的时候,将内侧轮(相对弯心)转弯的角度略大于外侧轮,使两个车轮的角度一大一小,形成一个夹角,这样就形成了阿克曼角。这样的设计可以让车辆在快速过弯的时候车身更加稳定。
在一种可能的实现方式中,所述左前传动轮和所述右前传动轮中至少有一个传动轮的工作直径可变。
其中,工作直径也可以称为与传动带的啮合直径、配合直径等。
控制器可以与左前传动轮和右前传动轮连接,以控制左前传动轮和右前传动轮的工作直径。
本申请实施例所示的方案,通过调节左前传动轮和/或右前传动轮的工作直径,可以改变 左前传动轮和右前传动轮的传动比,这样可以实现左前轮和右前轮任意比例的转向角,从而,实现变阿克曼角功能。
具体的,可以是左前传动轮的工作直径可变,也可以是右前传动轮的工作直径可变,还可以是左前传动轮和右前传动轮的工作直径均可变。
在一种可能的实现方式中,所述中间传动轮的工作直径可变。
本申请实施例所示的方案,在左前传动轮和/或右前传动轮的工作直径变化的过程中,第一传动带的张紧力会发生变化,即第一传动带的松紧程度会发生变化。因此,为了使第一传动带的张紧力可以保持在一个合适的范围内,可以使中间传动轮也为工作直径可变的传动轮,这样,控制器在控制左前传动轮和/或右前传动轮的工作直径变化以调节传动比时,可以适应性控制中间传动轮的工作直径变化,以使第一传动带的张紧力保持在合适的范围内。
在一种可能的实现方式中,所述下转向系统还包括左后轮转向子系统和右后轮转向子系统,所述车辆转向装置还包括后轮转向传动组件、左后离合器和右后离合器,所述后轮转向传动组件包括左后传动轮、右后传动轮和第二传动带,所述左后传动轮和所述右后传动轮通过所述第二传动带传动连接。所述左后轮转向子系统通过所述左后离合器与所述左后传动轮连接,所述右后轮转向子系统通过所述右后离合器与所述右后传动轮连接。
本申请实施例所示的方案,四轮车辆转向装置与双轮转向驱动装置相比,四个轮子的转向角度的控制更加精确。
在左后轮转向子系统和右后轮转向子系统均处于动力有效状态下,可以控制左后离合器与右后离合器处于分离状态,以使左后轮转向子系统和右后轮转向子系统独立控制对应的车轮的转向。在左后轮转向子系统和右后轮转向子系统只有一个处于动力有效状态下,可以控制左后离合器和右后离合器接合,从而,使得动力未失效的转向子系统的转向动力,通过后轮转向传动组件传递到动力失效的转向子系统。
而当左后轮转向子系统和右后轮转向子系统均动力失效时,由于左后轮转向子系统和右后轮转向子系统不能与上转向系统机械连接,所以,此时左后车轮和右后车轮只能跟随转动。
在一种可能的实现方式中,所述左后传动轮和所述右后传动轮中至少有一个传动轮的工作直径可变。
其中,控制器可以与左后传动轮和右后传动轮连接,以控制左后传动轮和右后传动轮的工作直径。
本申请实施例所示的方案,通过调节左后传动轮和/或右后传动轮的工作直径,可以改变左后传动轮和右后传动轮的传动比,这样可以实现左后轮和右后轮任意比例的转向角。
具体的,可以是左后传动轮的工作直径可变,也可以是右后传动轮的工作直径可变,还可以是左后传动轮和右后传动轮的工作直径均可变。
在一种可能的实现方式中,所述后轮转向传动组件还包括用于调节所述第二传动带的张紧力的调节传动轮,所述左后传动轮、所述右后传动轮和所述调节传动轮通过所述第二传动带传动连接。
本申请实施例所示的方案,在左后传动轮和/或右后传动轮的工作直径变化过程中,第二传动带的张紧力会发生变化,即第二传动带的松紧程度会发生变化。因此,为了使第二传动带的张紧力可以保持在一个合适的范围内,在后轮转向传动组件中还可以设置调节传动轮,用于调节第二传动带的张紧力。
在一种可能的实现方式中,所述调节传动轮的工作直径可变。
本申请实施例所示的方案,调节传动轮可以为工作直径可变的传动轮,这样,控制器在控制左后传动轮和/或右后传动轮的工作直径变化以调节传动比的时,可以适应性的控制调节传动轮的工作直径变化,以使第二传动带的张紧力保持在合适的范围内。
在一种可能的实现方式中,所述上转向系统包括上转向驱动电机。
在一种可能的实现方式中,对于每个传动轮,所述传动轮包括第一锥形盘、第二锥形盘、传动轴和锥形盘驱动装置,所述第一锥形盘和所述第二锥形盘套设在所述传动轴上,且所述第一锥形盘和所述第二锥形盘的锥形面相对。所述锥形盘驱动装置用于控制所述第一锥形盘和所述第二锥形盘的距离,以改变所述传动轮的工作直径。
其中,所述传动轮为中间传动轮、左前传动轮、右前传动轮、左后传动轮、右后传动轮或调节传动轮。
锥形盘驱动装置可以为液压驱动装置。锥形盘驱动装置可以与车辆上的控制器电性连接,以便控制器通过锥形盘驱动装置控制传动轮的工作直径变化。
本申请实施例所示的方案,第一锥形盘和第二锥形盘套设在传动轴上,且锥形面相对。传动带设置在两个锥形面之间,当两个锥形面距离较近时,传动轮的工作直径变大;当两个锥形面距离较远时,传动轮的工作直径变小。所以,可以通过控制第一锥形盘和第二锥形盘之间的距离的变化,来实现传动轮的工作直径的变化。
在一种可能的实现方式中,所述车辆转向装置还包括控制器,所述控制器,用于在所述左前轮转向子系统和所述右前轮转向子系统处于动力有效状态下,控制所述中间离合器、所述左前离合器和所述右前离合器处于分离状态。所述控制器,还用于控制所述左前轮转向子系统和所述右前轮转向子系统分别执行对应的车轮的转向动作。
其中,控制器可以与左前轮转向子系统、右前轮转向子系统、中间离合器、左前离合器和右前离合器电性连接,以便控制器对各个部件进行控制。具体的,控制器可以与左前轮转向子系统和右前轮转向子系统的下转向驱动电机连接。
本申请实施例所示的方案,左前轮转向子系统和右前轮转向子系统均处于动力有效状态下,可以控制中间离合器、左前离合器和右前离合器均处于分离状态,使左前轮转向子系统、右前轮转向子系统和上转向系统机械解耦,以便左前轮转向子系统和右前轮转向子系统可以分别执行对应的车轮的转向动作,避免上转向系统、左前轮转向子系统和右前轮转向子系统互相干扰。
安装有本申请实施例提供的车辆转向装置的车辆可以包括自动驾驶模式和手动驾驶模式,在自动驾驶模式下,可以控制上转向系统处于静默状态,方向盘保持不动,从而,提高驾驶人员的自动驾驶体验。
在手动驾驶模式下,由于上转向系统和下转向系统机械解耦,所以,驾驶人员在操作方向盘时不能感知到路面状态。所以,可以通过上转向系统来对方向盘施加转向阻力,以模拟真实的路感。由于驾驶员路感通过模拟生成,所以可以提取出最能够反应车辆实际行驶状态和路面状况的信息,作为方向盘回正力矩的控制变量,使方向盘仅向驾驶员提供有用信息,从而为驾驶员提供更为真实的路感。
在一种可能的实现方式中,所述控制器,还用于在所述左前轮转向子系统和所述右前轮转向子系统中有且只有一个转向子系统处于动力失效状态下,控制所述中间离合器处于分离 状态,控制所述左前离合器和所述右前离合器处于接合状态。所述控制器,还用于控制动力未失效的转向子系统执行对应的车轮的转向动作,并通过所述前轮转向传动组件将动力传递给动力失效的转向子系统,以使所述动力失效的转向子系统执行对应的车轮的转向动作。
本申请实施例所示的方案,左前轮转向子系统和右前轮转向子系统中有且只有一个转向子系统处于动力有效状态下,可以控制中间离合器处于分离状态,左前离合器和右前离合器处于接合状态,以便,左前轮转向子系统和右前轮转向子系统之间可以完成动力传递。
在自动驾驶模式下,可以控制上转向系统处于静默状态,方向盘保持不动,从而,提高驾驶人员的自动驾驶体验。
在手动驾驶模式下,由于上转向系统和下转向系统机械解耦,所以,驾驶人员在操作方向盘时不能感知到路面状态。所以,可以通过上转向系统来对方向盘施加转向阻力,以模拟真实的路感。由于驾驶员路感通过模拟生成,所以可以提取出最能够反应车辆实际行驶状态和路面状况的信息,作为方向盘回正力矩的控制变量,使方向盘仅向驾驶员提供有用信息,从而为驾驶员提供更为真实的路感。
在一种可能的实现方式中,所述控制器,还用于在所述左前轮转向子系统和所述右前轮转向子系统均处于动力失效状态,且所述上转向系统中的上转向驱动电机处于动力有效状态下,控制所述中间离合器、所述左前离合器和所述右前离合器均处于接合状态。所述控制器,还用于控制所述上转向系统中的上转向驱动电机通过所述前轮转向传动组件传递动力给所述左前轮转向子系统和所述右前轮转向子系统,以执行左前轮和右前轮的转向动作。
本申请实施例所示的方案,左前轮转向子系统和右前轮转向子系统均处于动力失效状态,且上转向系统中的上转向驱动电机处于动力有效状态下,可以控制中间离合器、左前离合器和右前离合器处于接合状态,以便上转向系统和下转向系统之间完成机械连接。
需要说明的是,在上转向系统和下转向系统机械连接的手动驾驶模式下,下转向系统的转向动力由上转向系统提供,所以,此时上转向驱动电机提供的是转向驱动力,而不是模拟路感时提供的转向阻力。
在一种可能的实现方式中,所述控制器,还用于在所述左前轮转向子系统和所述右前轮转向子系统均处于动力失效状态,所述上转向系统中的上转向驱动电机处于动力失效状态下,控制所述中间离合器、所述左前离合器和所述右前离合器均处于接合状态。
本申请实施例所示的方案,左前轮转向子系统和右前轮转向子系统均处于动力失效状态,且上转向系统中的上转向驱动电机处于动力失效状态下,可以控制中间离合器、左前离合器和右前离合器处于接合状态,以便上转向系统和下转向系统之间完成机械连接。
安装有本申请实施例提供的车辆转向装置的车辆可以包括两种驾驶模式,即自动驾驶模式和手动驾驶模式。但是,在上转向系统和下转向系统均处于动力失效的状态下,无法进入自动驾驶模式。在手动驾驶模式下,驾驶员手动转动方向盘,产生转向动力。然后转向动力通过前轮转向传动组件分别传递到左前轮转向子系统和右前轮转向子系统中,以执行左前轮和右前轮的转向动作。
在一种可能的实现方式中,所述控制器,还用于控制所述左前传动轮和所述右前传动轮的工作直径变化,以改变所述左前传动轮和所述右前传动轮的传动比,实现左前轮和右前轮不同的转向角。
本申请实施例所示的方案,通过调节左前传动轮和右前传动轮的工作直径配合变化,可 以改变左前传动轮和右前传动轮的传动比,从而,可以实现左前轮和右前轮的不同的转向角。
在一种可能的实现方式中,所述控制器,还用于在控制所述左前传动轮和所述右前传动轮的工作直径变化时,控制所述中间传动轮的工作直径变化,以调节所述第一传动带的张紧力。
本申请实施例所示的方案,由于左前传动轮和右前传动轮在改变工作直径的过程中,会改变第一传动带的张紧力,即第一传动带的松紧程度会发生变化,这影响了左前传动轮和右前传动轮之间的动力传动。因此,控制器还可以在控制左前传动轮和右前传动轮的工作直径变化时,控制中间传动轮的工作直径变化,以调节第一传动带的张紧力。
在一种可能的实现方式中,所述车辆转向装置还包括控制器,所述控制器,用于在所述左后轮转向子系统和所述右后轮转向子系统均处于动力有效状态下,控制所述左后离合器和所述右后离合器处于分离状态。所述控制器,还用于控制所述左后轮转向子系统和所述右后轮转向子系统分别执行对应的车轮的转向动作。
其中,控制器可以与左后轮转向子系统、右后轮转向子系统、左后离合器和右后离合器电性连接,以便控制器对各个部件进行控制。具体的,控制器可以分别与左后轮转向子系统和右后轮转向子系统中的下转向驱动电机连接。
本申请实施例所示的方案,在左后轮转向子系统和右后轮转向子系统均处于动力有效状态下,可以控制左后离合器和右后离合器均处于分离状态,使左后轮转向子系统和右后轮转向子系统机械解耦,以便左后轮转向子系统和右后轮转向子系统可以分别执行对应的车轮的转向动作,避免左后轮转向子系统和右后轮转向子系统互相干扰。
在一种可能的实现方式中,所述控制器,还用于在所述左后轮转向子系统和所述右后轮转向子系统中有且只有一个转向子系统处于动力失效状态下,控制所述左后离合器和所述右后离合器处于接合状态。所述控制器,还用于控制动力未失效的转向子系统执行对应的车轮的转向动作,并通过所述后轮转向传动组件将动力传递给动力失效的转向子系统,以使所述动力失效的转向子系统执行对应的车轮的转向动作。
本申请实施例所示的方案,左后轮转向子系统和右后轮转向子系统中有且只有一个转向子系统处于动力有效状态下,可以控制左后离合器和右后离合器处于接合状态,以便,左后轮转向子系统和右后轮转向子系统之间可以完成动力传递。
在一种可能的实现方式中,所述控制器,还用于控制所述左后传动轮和所述右后传动轮的工作直径变化,以改变所述左后传动轮和所述右后传动轮的传动比,实现左后车轮和右后车轮不同的转向角。
其中,控制器还可以与左后传动轮和右后传动轮电性连接,以对左后传动轮和右后传动轮的工作直径进行控制。
本申请实施例所示的方案,通过调节左后传动轮和右后传动轮的工作直径配合变化,可以改变左后传动轮和右后传动轮的传动比,从而,可以实现左后车轮和右后车轮不同的转向角。
在一种可能的实现方式中,所述控制器,还用于在控制所述左后传动轮和所述右后传动轮的工作直径变化时,控制所述调节传动轮的工作直径变化,以调节所述第二传动带的张紧力。
本申请实施例所示的方案,由于左后传动轮和右后传动轮在改变工作直径的过程中,会 改变第二传动带的张紧力,即第二传动带的松紧程度会发生变化,这影响了左后传动轮和右后传动轮之间的动力传动。因此,控制器还可以在控制左后传动轮和右后传动轮的工作直径变化时,控制调节传动轮的工作直径变化,以调节第二传动带的张紧力。
在一种可能的实现方式中,所述控制器还用于在所述左后轮转向子系统和所述右后轮转向子系统均处于动力失效状态时,控制所述左后离合器和所述右后离合器处于分离状态。
本申请实施例所示的方案,如果左后轮转向子系统和右后轮转向子系统均处于动力失效状态,由于左后轮转向子系统和右后轮转向子系统与上转向系统机械解耦,所以,左后轮转向子系统和右后轮转向子系统在动力失效状态下不具备控制车轮转向的功能,四轮转向装置变为双轮转向装置,左后车轮和右后车轮跟随转向,则此时,控制器可以控制左后离合器和右后离合器处于分离状态,以避免左后车轮和右后车轮在跟随转向时,互相干扰。
第二方面,提供了一种车辆,所述车辆包括如第一方面任一项所述的车辆转向装置。
本申请实施例提供的技术方案带来的有益效果是:
本申请实施例提供了一种车辆转向装置,该车辆转向装置的上转向系统与前轮转向传动组件中的中间传动轮之间通过中间离合器连接,左前轮转向子系统与左前传动轮之间通过左前离合器连接,右前轮转向子系统与右前传动轮之间通过右前离合器连接。这样,当左前轮转向子系统和右前轮转向子系统均处于动力失效状态时,可以中间离合器、左前离合器和右前离合器均处于接合状态,则上转向系统与下转向系统之间机械连接,驾驶人员可以通过操作上转向系统来为下转向系统提供转向动力,从而,在下转向系统动力失效的情况下,整车也不会失去转向功能。
附图说明
图1是本申请实施例提供的一种车辆转向装置的示意图;
图2是本申请实施例提供的一种前轮转向传动组件的示意图;
图3是本申请实施例提供的一种上转向系统的结构示意图;
图4是本申请实施例提供的一种下转向子系统的结构示意图;
图5是本申请实施例提供的一种阿克曼角的示意图;
图6是本申请实施例提供的一种车辆转向装置的示意图;
图7是本申请实施例提供的一种后轮转向传动组件的示意图;
图8是本申请实施例提供的一种工作直径可变的传动轮的结构示意图;
图9是本申请实施例提供的一种车辆转向装置处于正常工作模式的示意图;
图10是本申请实施例提供的一种车辆转向装置处于下单侧助力模式的示意图;
图11是本申请实施例提供的一种车辆转向装置处于上助力模式的示意图;
图12是本申请实施例提供的一种车辆转向装置处于机械转向模式的示意图;
图13是本申请实施例提供的一种车辆转向装置的模式选择流程图;
图14是本申请实施例提供的一种车轮状态的示意图;
图15是本申请实施例提供的一种车轮状态的示意图;
图16是本申请实施例提供的一种车轮状态的示意图;
图17是本申请实施例提供的一种车轮状态的示意图;
图18是本申请实施例提供的一种工作直径可变的传动轮的结构示意图;
图19是本申请实施例提供的一种工作直径可变的传动轮的结构示意图;
图20是本申请实施例提供的一种工作直径可变的传动轮的结构示意图。
图例说明
1、上转向系统,11、上转向驱动电机,12、方向盘,13、管柱,14、中间轴;
2、下转向系统,21、左前轮转向子系统,22、右前轮转向子系统,23、左后转向子系统,24、右后转向子系统,201、下转向驱动电机,202、齿轮轴,203、驱动齿条;
3、前轮转向传动组件,31、中间传动轮,32、左前传动轮,33、右前传动轮,34、第一传动带,301、第一锥形盘,302、第二锥形盘,303、传动轴,304、锥形盘驱动装置,305、第一圆弧分体,306、轮毂,307、驱动杆,308、第二圆弧分体,309、撑杆,310、驱动装置;
4、中间离合器;
5、左前离合器;
6、右前离合器;
7、后轮转向传动组件,71、左后传动轮,72、右后传动轮,73、第二传动带,74、调节传动轮;
8、左后离合器;
9、右后离合器。
具体实施方式
本申请实施例提供了一种车辆转向装置以及安装有该车辆转向装置的车辆。该车辆转向装置包括上转向系统、下转向系统、传动组件和离合器,上转向系统和下转向系统分别通过离合器与传动组件连接。这样,当下转向系统动力有效时,可以使离合器处于分离状态,上转向系统和下转向系统机械解耦,便于实现在自动驾驶状态下,上转向系统中方向盘的静默,提升驾驶体验。而当下转向系统动力失效时,可以使上转向系统与传动组件之间的离合器以及下转向系统与传动组件之间的离合器均处于接合状态,上转向系统和下转向系统之间通过传动组件机械连接,从而,驾驶人员可以通过操作上转向系统为下转向系统提供动力,实现车辆的转向。
本申请实施例提供了一种车辆转向装置,如图1所示,该车辆转向装置包括上转向系统1、下转向系统2、前轮转向传动组件3、中间离合器4、左前离合器5和右前离合器6。
前轮转向传动组件3包括中间传动轮31、左前传动轮32、右前传动轮33和第一传动带34,中间传动轮31、左前传动轮32和右前传动轮33通过第一传动带34传动连接。下转向系统2包括左前轮转向子系统21和右前轮转向子系统22。
上转向系统1通过中间离合器4与中间传动轮31连接,左前轮转向子系统21通过左前离合器5与左前传动轮32连接,右前轮转向子系统22通过右前离合器6与右前传动轮33连接。
其中,上转向系统1是指车辆转向的控制系统,在某些场景下也可以提供转向动力。
下转向系统2是指车辆转向的执行系统,下转向系统2可以包括左前轮转向子系统21和右前轮转向子系统22,分别用于执行左前轮和右前轮的转向动作。当车辆转向装置为四轮转向装置时,下转向系统2还可以包括左后轮转向子系统23和右后轮转向子系统24,分别用于执行左后轮和右后轮的转向动作。
前轮转向传动组件3包括中间传动轮31、左前传动轮32、右前传动轮33和第一传动带34,如图2所示,中间传动轮31、左前传动轮32和右前传动轮33通过第一传动带34传动连接。前轮转向传动组件3用于在上转向系统1、左前轮转向子系统21和右前轮转向子系统22之间传递动力。具体的,当左前离合器5和右前离合器6均处于接合状态时,左前轮转向子系统21和右前轮转向子系统22之间可以通过前轮转向传动组件3传递动力,当中间离合器4、左前离合器5和右前离合器6均处于接合状态时,上转向系统1和下转向系统2之间可以传递动力。当中间离合器4、左前离合器5和右前离合器6均处于分离状态时,上转向系统1与前轮转向传动组件3机械解耦,下转向系统2与前轮转向传动组件3机械解耦,从而,上转向系统1和下转向系统2之间机械解耦。
中间离合器4、左前离合器5和右前离合器6泛指一切可接合与可分离的连接装置,而不仅仅指常规的离合器。
车辆转向装置还可以包括控制车辆转向的控制器,该控制器可以与上转向系统1、左前轮转向子系统21和右前轮转向子系统22、中间离合器4、左前离合器5和右前离合器6电性连接,以对这些部件进行控制。
本申请实施例所示的方案,本申请实施例提供了一种车辆转向装置,该车辆转向装置的上转向系统1与前轮转向传动组件3中的中间传动轮31之间通过中间离合器4连接,左前轮转向子系统21与左前传动轮32之间通过左前离合器5连接,右前轮转向子系统22与右前传动轮33之间通过右前离合器6连接。这样,当左前轮转向子系统21和右前轮转向子系统22均处于动力失效状态时,可以控制中间离合器4、左前离合器5和右前离合器6均处于接合状态,则上转向系统1与下转向系统2之间机械连接,驾驶人员可以通过操作上转向系统1来为下转向系统2提供转向动力,从而,在下转向系统2动力失效的情况下,整车也不会失去转向功能。
另外,在左前轮转向子系统21和右前轮转向子系统22之间有一个转向子系统损坏时,可以使左前离合器5和右前离合器6均处于接合状态。这样,动力有效的转向子系统的转向动力可以通过前轮转向传动组件3传递给动力失效的转向子系统。
再者,当左前轮转向子系统21和右前轮转向子系统22的动力均有效的状态下,可以使中间离合器4、左前离合器5和右前离合器6均处于分离状态。这样,左前轮转向子系统21和右前轮转向子系统22可以独立控制对应的车轮的转向,避免相互干扰。而且,这也使得车辆转向装置可以实现不同的阿克曼角,使得车辆的转弯更加稳定,针对不同的场景可以采用不同的阿克曼角(即两个车轮的转向角度不同)。其中,所谓的阿克曼角是为了使车辆在转弯的时候不发生侧滑而设计的,在设计车辆转向装置的时候,将内侧轮(相对弯心)转弯的角度略大于外侧轮,使两个车轮的角度一大一小,形成一个夹角,这样就形成了阿克曼角,如图5所示。这样的设计可以让车辆在快速过弯的时候车身更加稳定。
在一种可能的实现方式中,提供一种上转向系统1的具体实现方式:
如图3所示,上转向系统1包括上转向驱动电机11、方向盘12、管柱13和中间轴14。
其中,上转向驱动电机11为上转向系统1的动力来源,上转向驱动电机11可以与控制器电性连接,从而,便于控制器对上转向驱动电机11进行控制。通过设置上转向驱动电机11,在下转向系统2的动力处于失效状态时,可以通过上转向驱动电机11来提供转向动力,使得驾驶人员操作更加省力,避免完全由人力提供转向动力。
另外,在上转向系统1与下转向系统2机械解耦时,上转向驱动电机11还可以为方向盘12提供转向阻力,以模拟路感,提高驾驶员的驾驶体验。
本申请实施例所示的方案,驾驶员操作方向盘12旋转,方向盘12的旋转传递到管柱13上,再经管柱13传递到中间轴14上,如果中间离合器4、左前离合器5和右前离合器6处于接合状态,则旋转还会经前轮转向传动组件3传递到下转向系统2,在这种状态下,上转向驱动电机11提供助力,以使驾驶人员的操作更加省力。
另外,为了使得上转向系统1和下转向系统2处于机械解耦状态下,仍能实现手动驾驶模式,则可以在上转向系统1中设置传感器,该传感器用于检测方向盘12的转动角度,该传感器与控制器电性连接,从而,控制器可以接收传感器的转角信号,并基于转角信号确定车轮的转向角度,并下发相应的转向角度信号给对应的下转向子系统。
在一种可能的实现方式中,提供一种下转向子系统的具体实现方式,该下转向子系统可以为左前轮转向子系统21、右前轮转向子系统22、左后轮转向子系统23和右后轮转向子系统24:
如图4所示,下转向子系统包括下转向驱动电机201、齿轮轴202和驱动齿条203。
其中,下转向驱动电机201为下转向子系统的动力来源,下转向驱动电机201可以与控制器电性连接,从而,控制器可以对下转向子系统进行控制。具体的,下转向驱动电机201可以接收控制器发送的转角信号,并基于转角信号控制车轮转动对应的角度。当下转向驱动电机201的动力失效时,该下转向子系统动力失效。
本申请实施例所示的方案,下转向驱动电机201驱动齿轮轴202转动,齿轮轴202与驱动齿条203啮合,则齿轮轴202可以驱动驱动齿条203做线性运动,驱动齿轮203与车轮连接,从而,可以驱动车轮转动。
当该下转向子系统失效时,来源于其余下转向子系统或上转向系统1的动力通过前轮转向传动组件3或后轮转向传动组件7传递给该下转子系统的齿轮轴202,则齿轮轴202仍然可以驱动驱动齿条203做线性运动。
在一种可能的实现方式中,左前传动轮32和右前传动轮33中至少有一个传动轮的工作直径可变。
其中,工作直径也可以称为与传动带的啮合直径、配合直径等,如图8和图2所示。
控制器可以与左前传动轮32和右前传动轮33连接,以控制左前传动轮32和右前传动轮33的工作直径。
本申请实施例所示的方案,通过调节左前传动轮32和/或右前传动轮33的工作直径,如图2所示,可以改变左前传动轮32和右前传动轮33的传动比,这样可以实现左前轮和右前轮任意比例的转向角,从而,实现变阿克曼角功能。
具体的,可以是左前传动轮32的工作直径可变,则此时可以通过改变左前转动轮32的工作直径,来改变左前传动轮32和右前传动轮33的传动比。也可以是右前传动轮33的工作直径可变,则此时可以通过改变右前传动轮33的工作直径,来改变左前传动轮32和右前传 动轮33的传动比。还可以是左前传动轮32和右前传动轮33的工作直径均可变,则此时,可以通过配合调节左前传动轮32和右前传动轮33的工作直径,来改变左前传动轮32和右前传动轮33的传动比。对于最后一种情况,其可实现的传动比的范围较大。
在一种可能的实现方式中,如图2所示,中间传动轮31的工作直径可变。
本申请实施例所示的方案,在左前传动轮32和/或右前传动轮33的工作直径变化的过程中,第一传动带34的张紧力会发生变化,即第一传动带34的松紧程度会发生变化。因此,为了使第一传动带34的张紧力可以保持在一个合适的范围内,可以使中间传动轮31也为工作直径可变的传动轮,这样,控制器在控制左前传动轮32和/或右前传动轮33的工作直径变化以调节传动比时,可以适应性控制中间传动轮31的工作直径变化,以使第一传动带34的张紧力保持在合适的范围内。
或者,在另一种可能的实现方式中,中间传动轮31的工作直径固定,前轮转向传动组件3还包括张紧轮,该张紧轮可以为弹簧式张紧轮等。
需要说明的是,本申请实施例提供车辆转向装置可以为两轮转向装置,也可以为四轮转向装置。当本申请实施例提供的车辆转向装置为四轮转向装置时,车辆转向装置的技术方案可以如下所述:
在一种可能的实现方式中,如图6和14所示,下转向系统2还包括左后轮转向子系统23和右后轮转向子系统24,车辆转向装置还包括后轮转向传动组件7、左后离合器8和右后离合器9,后轮转向传动组件7包括左后传动轮71、右后传动轮72和第二传动带73,左后传动轮71和右后传动轮72通过第二传动带73传动连接。
左后轮转向子系统23通过左后离合器8与左后传动轮71连接,右后轮转向子系统24通过右后离合器9与右后传动轮72连接。
本申请实施例所示的方案,四轮车辆转向装置与双轮转向驱动装置相比,四个轮子的转向角度的控制更加精确。
在左后轮转向子系统23和右后轮转向子系统24均处于动力有效状态下,可以控制左后离合器8与右后离合器9处于分离状态,以使左后轮转向子系统23和右后轮转向子系统24独立控制对应的车轮的转向。在左后轮转向子系统23和右后轮转向子系统24只有一个处于动力有效状态下,可以控制左后离合器8和右后离合器9接合,从而,使得动力未失效的转向子系统的转向动力,通过后轮转向传动组件7传递到动力失效的转向子系统。
而当左后轮转向子系统23和右后轮转向子系统24均动力失效时,由于左后轮转向子系统23和右后轮转向子系统24不能与上转向系统1机械连接,所以,此时左后车轮和右后车轮只能跟随转动。
在一种可能的实现方式中,左后传动轮71和右后传动轮72中的至少一个传动轮的工作直径可变。
其中,控制器可以与左后传动轮71和右后传动轮72连接,以控制左后传动轮71和右后传动轮72的工作直径。
本申请实施例所示的方案,通过调节左后传动轮71和/或右后传动轮72的工作直径,如图7所示,可以改变左后传动轮71和右后传动轮72的传动比,这样可以实现左后轮和右后轮任意比例的转向角。
具体的,可以是左后传动轮71的工作直径可变,则此时可以通过改变左后传动轮71的 工作直径,来改变左后传动轮71和右后传动轮72的传动比。也可以是右后传动轮72的工作直径可变,则此时可以通过改变右后传动轮72的工作直径,来改变左后传动轮71和右后传动轮72的传动比。
还可以是左后传动轮71和右后传动轮72的工作直径均可变,则此时,可以通过配合调节左后传动轮71和右后传动轮72的工作直径,来改变左后传动轮71和右后传动轮72的传动比。对于最后一种情况,其可实现的传动比的范围较大。
在一种可能的实现方式中,如图7所示,后轮转向传动组件7还包括用于调节第二传动带73的张紧力的调节传动轮74,左后传动轮71、右后传动轮72和调节传动轮74通过第二传动带73传动连接。
本申请实施例所示的方案,与前轮转向传送组件3相似,在左后传动轮71和/或右后传动轮72的工作直径变化过程中,第二传动带73的张紧力会发生变化,即第二传动带73的松紧程度会发生变化。因此,为了使第二传动带73的张紧力可以保持在一个合适的范围内,在后轮转向传动组件7中还可以设置调节传动轮74,用于调节第二传动带73的张紧力。
在一种可能的实现方式中,调节传动轮74为张紧轮,例如,可以为弹簧式张紧轮。
在另一种可能的实现方式中,调节传动轮74的工作直径可变,也即,调节传动轮74与左后传动轮71、右后传动轮72相同,均为工作直径可变的传动轮。在这种实现方式下,如图7所示,控制器在控制左后传动轮71和/或右后传动轮72的工作直径变化以调节传动比的时,可以适应性的控制调节传动轮74的工作直径变化,以使第二传动带73的张紧力保持在合适的范围内。
可变工作直径的传动轮的实现形式可以有多种,本申请对其具体实现形式不做限定。下面,提供三种可变工作直径的传动轮的具体实现方式:
在一种可能的实现方式中,如图8所示,对于每个传动轮,传动轮包括第一锥形盘301、第二锥形盘302、传动轴303和锥形盘驱动装置304,第一锥形盘301和第二锥形盘302套设在传动轴303上,且第一锥形盘301和第二锥形盘302的锥形面相对。
锥形盘驱动装置4用于控制第一锥形盘301和第二锥形盘302的距离,以改变传动轮的工作直径。
其中,上述传动轮可以为中间传动轮31、左前传动轮32、右前传动轮33、左后传动轮71、右后传动轮72和调节传动轮74。
锥形盘驱动装置4可以为液压驱动装置。锥形盘驱动装置4可以与车辆上的控制器电性连接,以便控制器通过锥形盘驱动装置4控制传动轮的工作直径变化。
本申请实施例所示的方案,如图8所示,第一锥形盘301和第二锥形盘302套设在传动轴303上,且锥形面相对。传动带设置在两个锥形面之间,当两个锥形面距离较近时,传动轮的工作直径变大(如图8中的左侧传动轮);当两个锥形面距离较远时,传动轮的工作直径变小(如图8中的右侧传动轮)。所以,可以通过控制第一锥形盘301和第二锥形盘302之间的距离的变化,来实现传动轮的工作直径的变化。
可以通过锥形盘驱动装置304来控制第二锥形盘302的移动,来实现两个锥形盘之间的距离变化。而第一锥形盘301可以为固定盘,固定在传动轴303上,第二锥形盘302为移动盘。当然,第一锥形盘301和第二锥形盘302可以均为移动盘,本申请对此不做限定。
在另一种可能的实现方式中,如图18所示,传动轮包括多个第一圆弧分体305、轮毂306 和多个驱动杆307。多个第一圆弧分体305形成传动轮轮体,每个驱动杆307的一端与一个第一圆弧分体305连接,另一端设置在轮毂306中,且可以在轮毂306中伸缩。轮毂306安装在转动轴上。
本申请实施例所示的方案,驱动杆307可以通过在轮毂306中伸缩,来驱动多个第一圆弧分体305互相远离或互相靠近,从而,实现传动轮的工作直径可变。当多个第一圆弧分体305互相远离时,传动轮的工作直径逐渐变大;当多个第一圆弧分体305互相靠近时,传动轮的工作直径逐渐减小。如图18所示,传动轮的工作直径处于最小状态。
驱动杆307可以采用液压驱动,也可以采用电机驱动,本申请对此不做限定。
在另一种可能的实现方式中,如图19和图20所示,传动轮包括多个第二圆弧分体308、多个撑杆309和两个驱动装置310。多个第二圆弧分体308形成传动轮轮体,每个撑杆309的一端与一个第二圆弧分体308连接,另一端与驱动装置310连接。两个驱动装置310设置在第二圆弧分体308的两侧。
本申请实施例所示的方案,通过两个驱动装置310的靠近和远离,可以实现多个撑杆309撑开或缩回多个第二圆弧分体308。如图19所示,两个驱动装置310距离较近,多个第二圆弧分体308被撑开,传动轮的工作直径较大。如图20所示,两个驱动装置310的距离变远,多个第二圆弧分体308收回,且相邻两个第二圆弧分体308接触,传动轮的工作直径最小。
驱动装置310可以是液压驱动装置,也可以是电机驱动装置,本申请对此不做限定。
需要说明的是,以上传动轮的结构,仅仅是本申请实施例提供的三种具体的实例,并不构成对本申请的限定,传动轮还可以通过其他方式来实现工作直径的变化。另外,各个传动轮可以采用同一种结构实现工作直径可变,也可以采用多种不同的结构实现工作直径可变,本申请对此不做限定。
下面,结合具体的场景,对本申请实施例提供的车辆转向装置的工作流程进行说明:
(1)左前轮转向子系统21和右前轮转向子系统22均处于动力有效的状态下,此时,车辆转向装置进入正常工作模式,如图9所示:
在一种可能的实现方式中,车辆转向装置还包括控制器,控制器,用于在左前轮转向子系统21和右前轮转向子系统22处于动力有效状态下,控制中间离合器4、左前离合器5和右前离合器6处于分离状态。控制器,还用于控制左前轮转向子系统21和右前轮转向子系统22分别执行对应的车轮的转向动作。
其中,控制器可以与左前轮转向子系统21、右前轮转向子系统22、中间离合器4、左前离合器5和右前离合器6电性连接,以便控制器对各个部件进行控制。具体的,控制器可以与左前轮转向子系统21和右前轮转向子系统22的下转向驱动电机连接。
本申请实施例所示的方案,左前轮转向子系统21和右前轮转向子系统22均处于动力有效状态下,可以控制中间离合器4、左前离合器5和右前离合器6均处于分离状态,使左前轮转向子系统21、右前轮转向子系统22和上转向系统1机械解耦,以便左前轮转向子系统21和右前轮转向子系统22可以分别执行对应的车轮的转向动作,避免上转向系统1、左前轮转向子系统21和右前轮转向子系统22互相干扰。
安装有本申请实施例提供的车辆转向装置的车辆可以包括两种驾驶模式,即自动驾驶模式和手动驾驶模式,下面分别以自动驾驶模式和手动驾驶模式的具体场景来对控制器的控制 流程进行详细叙述:
在自动驾驶模式下,控制器确定左前轮转向子系统21和右前轮转向子系统22处于动力有效状态,控制中间离合器4、左前离合器5和右前离合器6均处于分离状态。然后,根据传感器检测到的外界数据,实时的确定左前轮和右前轮的转向角度,并下发相应的转向角度信号给左前轮转向子系统21和右前轮转向子系统22,左前轮转向子系统21和右前轮转向子系统22分别根据接收到的转向角度信号控制左前轮、右前轮的转向动作。
并且,在自动驾驶模式下,可以控制上转向系统1处于静默状态,方向盘12保持不动,从而,提高驾驶人员的自动驾驶体验。
在手动驾驶模式下,控制器确定左前轮转向子系统21和右前轮转向子系统22处于动力有效状态,控制中间离合器4、左前离合器5和右前离合器6均处于分离状态。然后,根据传感器检测到的方向盘的转角信号,确定左前轮和右前轮的转向角度,并下发相应的转向角度信号给左前轮转向子系统21和右前轮转向子系统22,左前轮转向子系统21和右前轮转向子系统22分别根据接收到转向角度信号控制左前轮、右前轮的转向动作。
并且,由于上转向系统1和下转向系统2机械解耦,所以,驾驶人员在操作方向盘时不能感知到路面状态。所以,可以通过上转向系统1来对方向盘施加转向阻力,以模拟真实的路感。由于驾驶员路感通过模拟生成,所以可以提取出最能够反应车辆实际行驶状态和路面状况的信息,作为方向盘回正力矩的控制变量,使方向盘仅向驾驶员提供有用信息,从而为驾驶员提供更为真实的路感。
(2)左前轮转向子系统21和右前轮转向子系统22中有且只有一个转向子系统处于动力失效的状态下,此时,车辆转向装置进入下单侧助力模式,如图10所示:
在一种可能的实现方式中,控制器,还用于在左前轮转向子系统21和右前轮转向子系统22中有且只有一个转向子系统处于动力失效状态下,控制中间离合器4处于分离状态,控制左前离合器5和右前离合器6处于接合状态。
控制器,还用于控制动力未失效的转向子系统执行对应的车轮的转向动作,并通过前轮转向传动组件3将动力传递给动力失效的转向子系统,以使动力失效的转向子系统执行对应的车轮的转向动作。
本申请实施例所示的方案,左前轮转向子系统21和右前轮转向子系统22中有且只有一个转向子系统处于动力有效状态下,可以控制中间离合器4处于分离状态,左前离合器5和右前离合器6处于接合状态,以便,左前轮转向子系统21和右前轮转向子系统22之间可以完成动力传递。
在自动驾驶模式下,控制器确定左前轮转向子系统21和右前轮转向子系统22中有且只有一个转向子系统处于动力有效状态,控制中间离合器4处于分离状态,左前离合器5和右前离合器6均处于接合状态。然后,根据传感器检测到的外界数据,实时的确定车轮的目标转向角度,并下发相应的转向角度信号给左前轮转向子系统21和右前轮转向子系统22(或只下发给动力有效的转向子系统),动力有效的转向子系统根据接收到的转向角度信号执行对应的车轮的转向动作。并且,动力有效的转向子系统的动力可以通过前轮转向传动组件3将动力传递给动力失效的转向子系统,则动力失效的转向子系统可以执行对应的车轮的转向动作。
并且,在自动驾驶模式下,可以控制上转向系统1处于静默状态,方向盘保持不动,从 而,提高驾驶人员的自动驾驶体验。
在手动驾驶模式下,控制器确定左前轮转向子系统21和右前轮转向子系统22中有且只有一个转向子系统处于动力有效状态,控制中间离合器4处于分离状态,左前离合器5和右前离合器6均处于接合状态。然后,根据传感器检测到的方向盘的转角信号,确定车轮的转向角度,并下发相应的转向角度信号给左前轮转向子系统21和右前轮转向子系统22(或只下发给动力有效的转向子系统),动力有效的转向子系统根据接收到的转向角度信号执行对应的车轮的转向动作。并且,动力有效的转向子系统的动力可以通过前轮转向传动组件3将动力传递给动力失效的转向子系统,则动力失效的转向子系统可以执行对应的车轮的转向动作。
并且,由于上转向系统1和下转向系统2机械解耦,所以,驾驶人员在操作方向盘时不能感知到路面状态。所以,可以通过上转向系统1来对方向盘施加转向阻力,以模拟真实的路感。由于驾驶员路感通过模拟生成,所以可以提取出最能够反应车辆实际行驶状态和路面状况的信息,作为方向盘回正力矩的控制变量,使方向盘仅向驾驶员提供有用信息,从而为驾驶员提供更为真实的路感。
在一种可能的实现方式中,控制器,还用于控制左前传动轮32和右前传动轮33的工作直径变化,以改变左前传动轮32和右前传动轮33的传动比,实现左前轮和右前轮不同的转向角。
其中,控制器还可以与左前传动轮32和右前传动轮33电性连接,以对左前传动轮32和右前传动轮33的工作直径进行控制。
本申请实施例所示的方案,通过调节左前传动轮32和右前传动轮33的工作直径配合变化,可以改变左前传动轮32和右前传动轮33的传动比,从而,可以实现左前轮和右前轮的不同的转向角。
具体的,在自动驾驶模式下,控制器确定左前轮转向子系统21和右前轮转向子系统22中有且只有一个转向子系统处于动力有效状态,控制中间离合器4处于分离状态,左前离合器5和右前离合器6均处于接合状态。然后,根据传感器检测到的外界数据,实时的确定左前轮和右前轮的目标转向角度,并根据两个车轮的目标转向角度,确定动力未失效的转向子系统的转向角度,以及,左前传动轮32和右前传动轮33的目标工作直径。然后,控制器下发转向角度信号给动力未失效的转向子系统、下发各自的目标工作直径信号给左前传动轮32和右前传动轮33,使左前传动轮32和右前传动轮33的工作直径变为各自的目标工作直径。这样,动力未失效的转向子系统根据转向角度信号控制对应的车轮转动相应的转向角,并通过前轮转向传动组件3将转动传动给动力失效的转向子系统,并且,使得动力失效的转向子系统的转动与动力未失效的转向子系统的转动为目标比例,动力失效的转向子系统控制对应的车轮完成转动,且转动的角度为控制器确定的目标转向角度。
在手动驾驶模式下,控制器确定左前轮转向子系统21和右前轮转向子系统22中有且只有一个转向子系统处于动力有效状态,控制中间离合器4处于分离状态,左前离合器5和右前离合器6均处于接合状态。然后,根据传感器检测到的方向盘的转角信号,确定左前轮和右前轮转向角度,并根据确定出的两个车轮的转向角度,确定动力未失效的转向子系统的转向角度,以及,左前传动轮32和右前传动轮33的目标工作直径。然后,控制器下发转向角度信号给动力未失效的转向子系统、下发各自的目标工作直径信号给左前传动轮32和右前传 动轮33,使左前传动轮32和右前传动轮33的工作直径变为各自的目标工作直径。这样,动力未失效的转向子系统根据转向角度信号控制对应的车轮转动相应的转向角,并通过前轮转向传动组件3将转动传动给动力失效的转向子系统,并且,使得动力失效的转向子系统的转动与动力未失效的转向子系统的转动为目标比例,动力失效的转向子系统控制对应的车轮完成转动,且转动的角度为控制器确定的目标转向角度。
另外,由于左前传动轮32和右前传动轮33在改变工作直径的过程中,会改变第一传动带34的张紧力,即第一传动带34的松紧程度会发生变化,这影响了左前传动轮32和右前传动轮33之间的动力传动。因此,控制器还可以在控制左前传动轮32和右前传动轮33的工作直径变化时,控制中间传动轮31的工作直径变化,以调节第一传动带34的张紧力。
或者,也可以设置张紧轮,张紧轮用于对第一传动带34上的张紧力进行调节,从而,中间传动轮31可以不用改变工作直径,可以为普通的固定直径传动轮。
(3)左前轮转向子系统21和右前轮转向子系统22均处于动力失效状态,且上转向系统1中的上转向驱动电机11处于动力有效状的情况下,此时,车辆转向装置进入上助力模式,如图11所示:
在一种可能的实现方式中,控制器,还用于在左前轮转向子系统21和右前轮转向子系统22均处于动力失效状态,且上转向系统1中的上转向驱动电机11处于动力有效状态下,控制中间离合器4、左前离合器5和右前离合器6均处于接合状态。
控制器,还用于控制上转向系统1中的上转向驱动电机11通过前轮转向传动组件3传递动力给左前轮转向子系统21和右前轮转向子系统22,以执行左前轮和右前轮的转向动作。
本申请实施例所示的方案,左前轮转向子系统21和右前轮转向子系统22均处于动力失效状态,且上转向系统1中的上转向驱动电机11处于动力有效状态下,可以控制中间离合器4、左前离合器5和右前离合器6处于接合状态,以便上转向系统1和下转向系统2之间完成机械连接。
在自动驾驶模式下,控制器确定左前轮转向子系统21和右前轮转向子系统22均处于动力失效状态,且上转向系统1中的上转向驱动电机11处于动力有效状态下,控制中间离合器4、左前离合器5和右前离合器6均处于接合状态。然后,根据传感器检测到的外界数据,实时的确定车轮的转向角度,并基于车轮的转向角度确定上转向驱动电机11的转向角度,并下发相应的转向角度信号给上转向驱动电机11。上转向驱动电机11的转动通过前轮转向传动组件3分别传递到左前轮转向子系统21和右前轮转向子系统22中,实现左前轮和右前轮的转向动作。
在手动驾驶模式下,控制器确定左前轮转向子系统21和右前轮转向子系统22均处于动力失效状态,且上转向系统1中的上转向驱动电机11处于动力有效状态下,控制中间离合器4、左前离合器5和右前离合器6均处于接合状态。然后,上转向驱动电机11输入的动力以及驾驶人员输出的动力,通过前轮转向传动组件3分别传递到左前轮转向子系统21和右前轮转向子系统22中,实现左前轮和右前轮的转向动作。
需要说明的是,在上转向系统1和下转向系统2机械连接的手动驾驶模式下,下转向系统2的转向动力由上转向系统1提供,所以,此时上转向驱动电机11提供的是转向驱动力,而不是模拟路感时提供的转向阻力。
在一种可能的实现方式中,控制器,还用于控制左前传动轮32和右前传动轮33的工作 直径变化,以改变左前传动轮32和右前传动轮33的传动比,实现左前轮和右前轮不同的转向角。
本申请实施例所示的方案,通过调节左前传动轮32和右前传动轮33的工作直径配合变化,可以改变左前传动轮32和右前传动轮33的传动比,从而,可以实现左前轮和右前轮的不同的转向角。
具体的,在自动驾驶模式下,控制器确定左前轮转向子系统21和右前轮转向子系统22均处于动力失效状态,且上转向系统1中的上转向驱动电机11处于动力有效状态下,控制中间离合器4、左前离合器5和右前离合器6均处于接合状态。然后,根据传感器检测到的外界数据,实时的确定左前轮和右前轮的转向角度,并根据两个车轮的转向角度,确定上转向驱动电机11的转向角度,以及,左前传动轮32和右前传动轮33的目标工作直径。然后,控制器下发转向角度信号给上转向驱动电机11、下发各自的目标工作直径信号给左前传动轮32和右前传动轮33,使左前传动轮32和右前传动轮33的工作直径变为各自的目标工作直径。这样,上转向驱动电机11根据转向角度信号转动相应的角度,并通过前轮转向传动组件3将转动传动给动力失效的下转向系统2,并且,使左前轮转向子系统21的转动与右前轮转向子系统22的转动为目标比例,左前轮转向子系统21的转动与右前轮转向子系统22控制对应的车轮完成转动,且转动的角度为控制器确定的转向角度。
在手动驾驶模式下,控制器确定左前轮转向子系统21和右前轮转向子系统22均处于动力失效状态,且上转向系统1中的上转向驱动电机11处于动力有效状态下,控制中间离合器4、左前离合器5和右前离合器6均处于接合状态。然后,根据传感器检测到的方向盘的转角信号,确定左前传动轮32和右前传动轮33的目标工作直径。然后,控制器使左前传动轮32和右前传动轮33的工作直径变为各自的目标工作直径。这样,上转向驱动电机11输入的动力,以及驾驶人员输出的动力通过前轮转向传动组件3传动给动力失效的下转向系统2,并且,使左前轮转向子系统21的转动与右前轮转向子系统22的转动为目标比例,左前轮转向子系统21的转动与右前轮转向子系统22控制对应的车轮完成转动,且转动的角度为控制器确定的转向角度。
另外,由于左前传动轮32和右前传动轮33在改变工作直径的过程中,会改变第一传动带34的张紧力,即第一传动带34的松紧程度会发生变化,这影响了左前传动轮32和右前传动轮33之间的动力传动。因此,控制器还可以在控制左前传动轮32和右前传动轮33的工作直径变化时,控制中间传动轮31的工作直径变化,以调节第一传动带34的张紧力。
或者,也可以设置张紧轮,张紧轮用于对第一传动带34上的张紧力进行调节,从而,中间传动轮31可以不用改变工作直径,可以为普通的固定直径传动轮。
(4)左前轮转向子系统21和右前轮转向子系统22均处于动力失效状态,且上转向系统1中的上转向驱动电机11处于动力失效状态下,此时,车辆转向装置进入机械转向模式,如图12所示:
在一种可能的实现方式中,控制器,还用于在左前轮转向子系统21和右前轮转向子系统22均处于动力失效状态,上转向系统1中的上转向驱动电机11处于动力失效状态下,控制中间离合器4、左前离合器5和右前离合器6均处于接合状态。
本申请实施例所示的方案,左前轮转向子系统21和右前轮转向子系统22均处于动力失效状态,且上转向系统1中的上转向驱动电机11处于动力失效状态下,可以控制中间离合器 4、左前离合器5和右前离合器6处于接合状态,以便上转向系统1和下转向系统2之间完成机械连接。
安装有本申请实施例提供的车辆转向装置的车辆可以包括两种驾驶模式,即自动驾驶模式和手动驾驶模式。但是,在上转向系统1和下转向系统2均处于动力失效的状态下,无法进入自动驾驶模式。
在手动驾驶模式下,驾驶员手动转动方向盘,产生转向动力。然后转向动力通过前轮转向传动组件3分别传递到左前轮转向子系统21和右前轮转向子系统22中,以执行左前轮和右前轮的转向动作。
在一种可能的实现方式中,控制器,还用于控制左前传动轮32和右前传动轮33的工作直径变化,以改变左前传动轮32和右前传动轮33的传动比,实现左前轮和右前轮不同的转向角。
本申请实施例所示的方案,通过调节左前传动轮32和右前传动轮33的工作直径配合变化,可以改变左前传动轮32和右前传动轮33的传动比,从而,可以实现左前轮和右前轮的不同的转向角。
具体的,在手动驾驶模式下,控制器确定左前轮转向子系统21和右前轮转向子系统22均处于动力失效状态,且上转向系统1中的上转向驱动电机11处于动力失效状态下,控制中间离合器4、左前离合器5和右前离合器6均处于接合状态。然后,根据传感器检测到的方向盘的转角信号,确定左前轮和右前轮的转向角度,并根据两个车轮的转向角度,确定左前传动轮32和右前传动轮33的目标工作直径。然后,控制器使左前传动轮32和右前传动轮33的工作直径变为各自的目标工作直径。
然后,手动产生的上转向系统1的转向动力,通过前轮转向传动组件3传递到左前轮转向子系统21和右前轮转向子系统22中,以执行左前轮和右前轮的转向动作,且转动的角度为控制器确定的转向角度。
另外,由于左前传动轮32和右前传动轮33在改变工作直径的过程中,会改变第一传动带34的张紧力,即第一传动带34的松紧程度会发生变化,这影响了左前传动轮32和右前传动轮33之间的动力传动。因此,控制器还可以在控制左前传动轮32和右前传动轮33的工作直径变化时,控制中间传动轮31的工作直径变化,以调节第一传动带34的张紧力。
或者,也可以设置张紧轮,张紧轮用于对第一传动带34上的张紧力进行调节,从而,中间传动轮31可以不用改变工作直径,可以为普通的固定直径传动轮。
如图13所示,为本申请实施例提供的一种车辆转向装置的模式选择流程图:
控制器确定下转向系统是否存在失效,如果不存在,则进入正常工作模式;
如果存在失效,则确定是单侧失效还是双侧失效,如果是单侧失效,则进入下单侧助力模式;
如果是双侧失效确定上转向系统是否失效,如果未失效,则进入上助力模式;
如果失效,则进入机械转向模式。
本申请实施例提供的车辆转向装置可以为双轮转向装置,也可以为四轮转向装置。当本申请实施例提供的车辆转向装置为四轮转向装置时,车辆转向装置的工作流程还包括以下步骤:
(5)左后轮转向子系统23和右后轮转向子系统24均处于动力有效状态下:
在一种可能的实现方式中,车辆转向装置还包括控制器,控制器,用于在左后轮转向子系统23和右后轮转向子系统24均处于动力有效状态下,控制左后离合器8和右后离合器9处于分离状态。
控制器,还用于控制左后轮转向子系统23和右后轮转向子系统24分别执行对应的车轮的转向动作。
其中,控制器可以与左后轮转向子系统23、右后轮转向子系统24、左后离合器8和右后离合器9电性连接,以便控制器对各个部件进行控制。具体的,控制器可以分别与左后轮转向子系统23和右后轮转向子系统24中的下转向驱动电机连接。
本申请实施例所示的方案,左前轮和右前轮的转向可以按照上述(1)-(4)中的控制方式进行控制,下面,仅仅对左后轮和右后轮的转向控制进行说明:
在左后轮转向子系统23和右后轮转向子系统24均处于动力有效状态下,可以控制左后离合器8和右后离合器9均处于分离状态,使左后轮转向子系统23和右后轮转向子系统24机械解耦,以便左后轮转向子系统23和右后轮转向子系统24可以分别执行对应的车轮的转向动作,避免左后轮转向子系统23和右后轮转向子系统24互相干扰。
在自动驾驶模式下,控制器确定左后轮转向子系统23和右后轮转向子系统24均处于动力有效状态,控制左后离合器8和右后离合器9均处于分离状态。然后,根据传感器检测到的外界数据,实时的确定左后轮和右后轮的转向角度,并下发相应的转向角度信号给左后轮转向子系统23和右后轮转向子系统24,左后轮转向子系统23和右后轮转向子系统24分别根据接收到的转向角度信号控制左后轮、右后轮的转向动作。
在手动驾驶模式下,控制器确定左后轮转向子系统23和右后轮转向子系统24处于动力有效状态,控制左后离合器8和右后离合器9均处于分离状态。然后,根据传感器检测到的方向盘的转角信号,确定左后轮和右后轮的转向角度,并下发相应的转向角度信号给左后轮转向子系统23和右后轮转向子系统24,左后轮转向子系统23和右后轮转向子系统24分别根据接收到的转向角度信号控制左后轮、右后轮的转向动作。
(6)左后轮转向子系统23和右后轮转向子系统24中有且只有一个转向子系统处于动力失效的状态下:
在一种可能的实现方式中,控制器,还用于在左后轮转向子系统23和右后轮转向子系统24中有且只有一个转向子系统处于动力失效状态下,控制左后离合器8和右后离合器9处于接合状态。
控制器,还用于控制动力未失效的转向子系统执行对应的车轮的转向动作,并通过后轮转向传动组件7将动力传递给动力失效的转向子系统,以执行动力失效的转向子系统对应的车轮的转向动作。
本申请实施例所示的方案,左后轮转向子系统23和右后轮转向子系统24中有且只有一个转向子系统处于动力有效状态下,可以控制左后离合器8和右后离合器9处于接合状态,以便,左后轮转向子系统23和右后轮转向子系统24之间可以完成动力传递。
在自动驾驶模式下,控制器确定左后轮转向子系统23和右后轮转向子系统24中有且只有一个转向子系统处于动力有效状态,控制左后离合器8和右后离合器9均处于接合状态。然后,根据传感器检测到的外界数据,实时的确定车轮的目标转向角度,并下发相应的转向 角度信号给左后轮转向子系统23和右后轮转向子系统24(或只下发给动力有效的转向子系统),动力有效的转向子系统根据接收到的转向角度信号执行对应的车轮的转向动作。并且,动力有效的转向子系统的动力可以通过后轮转向传动组件7将动力传递给动力失效的转向子系统,则动力失效的转向子系统可以执行对应的车轮的转向动作。
在手动驾驶模式下,控制器确定左后轮转向子系统23和右后轮转向子系统24中有且只有一个转向子系统处于动力方向盘的转向角度,控制左后离合器8和右后离合器9均处于接合状态。然后,根据传感器检测到的外界数据,实时的确定车轮的目标转向角度,并下发相应的转向角度信号给左后轮转向子系统23和右后轮转向子系统24(或只下发给动力有效的转向子系统),动力有效的转向子系统根据接收到的转向角度信号执行对应的车轮的转向动作。并且,动力有效的转向子系统的动力可以通过后轮转向传动组件7将动力传递给动力失效的转向子系统,则动力失效的转向子系统可以执行对应的车轮的转向动作。
在一种可能的实现方式中,控制器,还用于控制左后传动轮71和右后传动轮72的工作直径变化,以改变左后传动轮71和右后传动轮72的传动比,实现左后车轮和右后车轮不同的转向角。
其中,控制器还可以与左后传动轮71和右后传动轮72电性连接,以对左后传动轮71和右后传动轮72的工作直径进行控制。
本申请实施例所示的方案,通过调节左后传动轮71和右后传动轮72的工作直径配合变化,可以改变左后传动轮71和右后传动轮的传动比,从而,可以实现左后车轮和右后车轮不同的转向角。
具体的,在自动驾驶模式下,确定左后轮转向子系统23和右后轮转向子系统24中有且只有一个转向子系统处于动力有效状态,控制左后离合器8和右后离合器9均处于接合状态。然后,根据传感器检测到的外界数据,实时的确定车轮的目标转向角度,并根据两个车轮的目标转向角度,确定动力未失效子系统的目标转向角度,以及左后传动轮71和右后传动轮72的目标工作直径。然后,控制器下发转向角度信号给动力未失效的转向子系统、下发各自的目标工作直径信号给左后传动轮71和右后传动轮72,使左后传动轮71和右后传动轮72的工作直径变为各自的目标工作直径。这样,动力未失效的转向子系统根据转向角度信号控制对应的车轮转动相应的转向角,并通过后轮转向传动组件7将转动传动给动力失效的转向子系统,并且,使得动力失效的转向子系统的转动与动力未失效的转向子系统的转动为目标比例,动力失效的转向子系统控制对应的车轮完成转动,且转动的角度为控制器确定的目标转向角度。
在手动驾驶模式下,确定左后轮转向子系统23和右后轮转向子系统24中有且只有一个转向子系统处于动力有效状态,控制左后离合器8和右后离合器9均处于接合状态。然后,根据传感器检测到的方向盘的转向角度,确定车轮的目标转向角度,并根据车轮的目标转向角度,确定动力未失效子系统的目标转向角度,以及左后传动轮71和右后传动轮72的目标工作直径。然后,控制器下发转向角度信号给动力未失效的转向子系统、下发各自的目标工作直径信号给左后传动轮71和右后传动轮72,使左后传动轮71和右后传动轮72的工作直径变为各自的目标工作直径。这样,动力未失效的转向子系统根据转向角度信号控制对应的车轮转动相应的转向角,并通过后轮转向传动组件7将转动传动给动力失效的转向子系统,并且,使得动力失效的转向子系统的转动与动力未失效的转向子系统的转动为目标比例,动 力失效的转向子系统控制对应的车轮完成转动,且转动的角度为控制器确定的目标转向角度。
另外,由于左后传动轮71和右后传动轮72在改变工作直径的过程中,会改变第二传动带73的张紧力,即第二传动带73的松紧程度会发生变化,这影响了左后传动轮71和右后传动轮72之间的动力传动。因此,控制器还可以在控制左后传动轮71和右后传动轮72的工作直径变化时,控制调节传动轮74的工作直径变化,以调节第二传动带73的张紧力。
或者,调节传动轮74的工作直径可以不可变,而是一个张紧轮。
(7)左后轮转向子系统23和右后轮转向子系统24均处于动力失效状态下:
如果左后轮转向子系统23和右后轮转向子系统24均处于动力失效状态,由于左后轮转向子系统23和右后轮转向子系统24与上转向系统1机械解耦,所以,左后轮转向子系统23和右后轮转向子系统24在动力失效状态下不具备控制车轮转向的功能,四轮转向装置变为双轮转向装置,左后车轮和右后车轮跟随转向,则此时,控制器可以控制左后离合器8和右后离合器9处于分离状态,以避免左后车轮和右后车轮在跟随转向时,互相干扰。
下面,对于四轮车辆转向装置,介绍几种典型的转向状态:
直行稳定,低速转向,高速稳定,原地转向。
如图14所示,直行稳定:四轮独立转向,能够帮助整车在异常情况下,通过小范围单独修正轮胎的偏小实现更加稳定的直行。
如图15所示,高速稳定:在高速上行驶时,通过前后轮同向,可以实现在高速上更稳定的平移转向。
如图16所示,低速转向:在低速情况下,通过前后轮反向,可以实现减小转弯半径的功能。
如图7所示,原地转向:通过该模式,可以实现整车原地直接转向的功能。
综上,本申请实施例提供的车辆转向装置至少具有以下有益效果:
首先,本申请实施例提供的车辆转向装置的安全性较高,在上转向系统1和下转向系统2均处于动力失效状态下,还可以通过驾驶人员手动输出动力转向。
其次,下转向系统2包括的多个转向子系统之间可以独立控制对应的车轮的转向,使得车辆的转向更加灵活。
再次,可以通过多种模式实现变阿克曼角的功能。在下转向单侧失效后,可以通过未失效一侧和前轮转向传动组件3实现左前轮和右前轮不一致的转角控制,实现变阿克曼角的功能。在下转向双侧失效后,可以实现机械连接,通过转换成上转向助力的工作模式,仍能实现变阿克曼角的功能。在上下转向系统全部失效的情况下,还有最后的机械转向可以保证安全性,仍能实现变阿克曼角的功能。可以通过调整速比减小转向手力。
本申请实施例还提供了一种车辆,该车辆包括如上述任一项所述的车辆转向装置。
以上所述仅为本申请一个实施例,并不用以限制本申请,凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (21)

  1. 一种车辆转向装置,其特征在于,所述车辆转向装置包括上转向系统(1)、下转向系统(2)、前轮转向传动组件(3)、中间离合器(4)、左前离合器(5)和右前离合器(6),其中,
    所述前轮转向传动组件(3)包括中间传动轮(31)、左前传动轮(32)、右前传动轮(33)和第一传动带(34),所述中间传动轮(31)、所述左前传动轮(32)和所述右前传动轮(33)通过所述第一传动带(34)传动连接;
    所述下转向系统(2)包括左前轮转向子系统(21)和右前轮转向子系统(22);
    所述上转向系统(1)通过所述中间离合器(4)与所述中间传动轮(31)连接,所述左前轮转向子系统(21)通过所述左前离合器(5)与所述左前传动轮(32)连接,所述右前轮转向子系统(22)通过所述右前离合器(6)与所述右前传动轮(33)连接。
  2. 根据权利要求1所述的车辆转向装置,其特征在于,所述左前传动轮(32)和所述右前传动轮(33)中至少有一个传动轮的工作直径可变。
  3. 根据权利要求2所述的车辆转向装置,其特征在于,所述中间传动轮(31)的工作直径可变。
  4. 根据权利要求1-3任一项所述的车辆转向装置,其特征在于,所述下转向系统(2)还包括左后轮转向子系统(23)和右后轮转向子系统(24),所述车辆转向装置还包括后轮转向传动组件(7)、左后离合器(8)和右后离合器(9),所述后轮转向传动组件(7)包括左后传动轮(71)、右后传动轮(72)和第二传动带(73),所述左后传动轮(71)和所述右后传动轮(72)通过所述第二传动带(73)传动连接;
    所述左后轮转向子系统(23)通过所述左后离合器(8)与所述左后传动轮(71)连接,所述右后轮转向子系统(24)通过所述右后离合器(9)与所述右后传动轮(72)连接。
  5. 根据权利要求4所述的车辆转向装置,其特征在于,所述左后传动轮(71)和所述右后传动轮(72)中至少有一个传动轮的工作直径可变。
  6. 根据权利要求5所述的车辆转向装置,其特征在于,所述后轮转向传动组件(7)还包括用于调节所述第二传动带(73)的张紧力的调节传动轮(74),所述左后传动轮(71)、所述右后传动轮(72)和所述调节传动轮(4)通过所述第二传动带(73)传动连接。
  7. 根据权利要求6所述的车辆转向装置,其特征在于,所述调节传动轮(74)的工作直径可变。
  8. 根据权利要求1-7任一项所述的车辆转向装置,其特征在于,所述上转向系统(1)包括上转向驱动电机(11)。
  9. 根据权利要求1-8任一项所述的车辆转向装置,其特征在于,对于每个传动轮,所述传动轮包括第一锥形盘(301)、第二锥形盘(302)、传动轴(303)和锥形盘驱动装置(304),所述第一锥形盘(301)和所述第二锥形盘(302)套设在所述传动轴(303)上,且所述第一锥形盘(301)和所述第二锥形盘(302)的锥形面相对;
    所述锥形盘驱动装置(4)用于控制所述第一锥形盘(301)和所述第二锥形盘(302)的距离,以改变所述传动轮的工作直径;
    其中,所述传动轮为中间传动轮(31)、左前传动轮(32)、右前传动轮(33)、左后传动轮(71)、右后传动轮(72)或调节传动轮(74)。
  10. 根据权利要求1-9任一项所述的车辆转向装置,其特征在于,所述车辆转向装置还包括控制器,所述控制器,用于在所述左前轮转向子系统(21)和所述右前轮转向子系统(22)处于动力有效状态下,控制所述中间离合器(4)、所述左前离合器(5)和所述右前离合器(6)处于分离状态;
    所述控制器,还用于控制所述左前轮转向子系统(21)和所述右前轮转向子系统(22)分别执行对应的车轮的转向动作。
  11. 根据权利要求10所述的车辆转向装置,其特征在于,所述控制器,还用于在所述左前轮转向子系统(21)和所述右前轮转向子系统(22)中有且只有一个转向子系统处于动力失效状态下,控制所述中间离合器(4)处于分离状态,控制所述左前离合器(5)和所述右前离合器(6)处于接合状态;
    所述控制器,还用于控制动力未失效的转向子系统执行对应的车轮的转向动作,并通过所述前轮转向传动组件(3)将动力传递给动力失效的转向子系统,以使所述动力失效的转向子系统执行对应的车轮的转向动作。
  12. 根据权利要求9-11任一项所述的车辆转向装置,其特征在于,所述控制器,还用于在所述左前轮转向子系统(21)和所述右前轮转向子系统(22)均处于动力失效状态,且所述上转向系统(1)中的上转向驱动电机(11)处于动力有效状态下,控制所述中间离合器(4)、所述左前离合器(5)和所述右前离合器(6)均处于接合状态;
    所述控制器,还用于控制所述上转向系统(1)中的上转向驱动电机(11)通过所述前轮转向传动组件(3)传递动力给所述左前轮转向子系统(21)和所述右前轮转向子系统(22),以执行左前轮和右前轮的转向动作。
  13. 根据权利要求9-12任一项所述的车辆转向装置,其特征在于,所述控制器,还用于在所述左前轮转向子系统(21)和所述右前轮转向子系统(22)均处于动力失效状态,所述上转向系统(1)中的上转向驱动电机(11)处于动力失效状态下,控制所述中间离合器(4)、所述左前离合器(5)和所述右前离合器(6)均处于接合状态。
  14. 根据权利要求11-13任一项所述的车辆转向装置,其特征在于,所述控制器,还用于控制所述左前传动轮(32)和所述右前传动轮(33)的工作直径变化,以改变所述左前传动轮(32)和所述右前传动轮(33)的传动比,实现左前轮和右前轮不同的转向角。
  15. 根据权利要求14所述的车辆转向装置,其特征在于,所述控制器,还用于在控制所述左前传动轮(32)和所述右前传动轮(33)的工作直径变化时,控制所述中间传动轮(31)的工作直径变化,以调节所述第一传动带(34)的张紧力。
  16. 根据权利要求4-7任一项所述的车辆转向装置,其特征在于,所述车辆转向装置还包括控制器,所述控制器,用于在所述左后轮转向子系统(23)和所述右后轮转向子系统(24)均处于动力有效状态下,控制所述左后离合器(8)和所述右后离合器(9)处于分离状态;
    所述控制器,还用于控制所述左后轮转向子系统(23)和所述右后轮转向子系统(24)分别执行对应的车轮的转向动作。
  17. 根据权利要求16所述的车辆转向装置,其特征在于,所述控制器,还用于在所述左后轮转向子系统(23)和所述右后轮转向子系统(24)中有且只有一个转向子系统处于动力 失效状态下,控制所述左后离合器(8)和所述右后离合器(9)处于接合状态;
    所述控制器,还用于控制动力未失效的转向子系统执行对应的车轮的转向动作,并通过所述后轮转向传动组件(7)将动力传递给动力失效的转向子系统,以使所述动力失效的转向子系统执行对应的车轮的转向动作。
  18. 根据权利要求17所述的车辆转向装置,其特征在于,所述控制器,还用于控制所述左后传动轮(71)和所述右后传动轮(72)的工作直径变化,以改变所述左后传动轮(71)和所述右后传动轮(72)的传动比,实现左后车轮和右后车轮不同的转向角。
  19. 根据权利要求18所述的车辆转向装置,其特征在于,所述控制器,还用于在控制所述左后传动轮(71)和所述右后传动轮(72)的工作直径变化时,控制所述调节传动轮(74)的工作直径变化,以调节所述第二传动带(73)的张紧力。
  20. 根据权利要求16-19任一项所述的车辆转向装置,其特征在于,所述控制器还用于在所述左后轮转向子系统(23)和所述右后轮转向子系统(24)均处于动力失效状态时,控制所述左后离合器(8)和所述右后离合器(9)处于分离状态。
  21. 一种车辆,其特征在于,所述车辆包括如权利要求1-20任一项所述的车辆转向装置。
PCT/CN2021/077855 2020-04-23 2021-02-25 车辆转向装置和车辆 WO2021213001A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21792637.7A EP4140857B1 (en) 2020-04-23 2021-02-25 Vehicle steering device and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010328152.XA CN113548108B (zh) 2020-04-23 2020-04-23 车辆转向装置和车辆
CN202010328152.X 2020-04-23

Publications (1)

Publication Number Publication Date
WO2021213001A1 true WO2021213001A1 (zh) 2021-10-28

Family

ID=78129451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077855 WO2021213001A1 (zh) 2020-04-23 2021-02-25 车辆转向装置和车辆

Country Status (3)

Country Link
EP (1) EP4140857B1 (zh)
CN (1) CN113548108B (zh)
WO (1) WO2021213001A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114889689A (zh) * 2022-05-13 2022-08-12 一汽解放青岛汽车有限公司 一种转向装置及其布置方案

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022150998A1 (zh) * 2021-01-13 2022-07-21 华为技术有限公司 一种具有冗余功能的线控独立转向机构及控制方法
CN114872792B (zh) * 2022-06-07 2023-07-21 上海跨悦信息技术有限公司 一种车辆转向控制方法、装置、电子设备和存储介质
CN115384656B (zh) * 2022-08-18 2023-08-01 湖南工业大学 一种多自由度机器人行走机构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103661578A (zh) * 2012-09-04 2014-03-26 丰田自动车株式会社 转向系统
JP5958257B2 (ja) * 2012-10-04 2016-07-27 日産自動車株式会社 操舵制御装置
CN108177687A (zh) * 2017-12-27 2018-06-19 潍柴动力股份有限公司 一种车辆转向系统、新能源汽车及转向方法
CN209795598U (zh) * 2019-04-17 2019-12-17 傅江标 一种车辆无级变速转向机构
CN110696912A (zh) * 2019-11-22 2020-01-17 吉林大学 乘用车多模式电机驱动线控转向系统及其转向控制方法
CN210011791U (zh) * 2019-04-02 2020-02-04 上海衡鲁汽车科技有限公司 一种满足asil_d标准的无人驾驶冗余转向装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100436227C (zh) * 2003-10-02 2008-11-26 日产自动车株式会社 车辆转向装置
JP5660009B2 (ja) * 2011-11-18 2015-01-28 トヨタ自動車株式会社 パワーステアリング装置
CN103171611B (zh) * 2013-03-25 2016-03-02 长城汽车股份有限公司 电控可变传动比转向连接机构、具有该连接机构的车辆转向系统
JP6582675B2 (ja) * 2015-07-24 2019-10-02 株式会社ジェイテクト 操舵制御装置
CN108248676A (zh) * 2017-12-15 2018-07-06 上海理工大学 一种具有容错功能的多电机线控转向系统及控制方法
CN114030525B (zh) * 2021-12-22 2023-12-19 吉林大学 一种差动协同多模式线控转向系统及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103661578A (zh) * 2012-09-04 2014-03-26 丰田自动车株式会社 转向系统
JP5958257B2 (ja) * 2012-10-04 2016-07-27 日産自動車株式会社 操舵制御装置
CN108177687A (zh) * 2017-12-27 2018-06-19 潍柴动力股份有限公司 一种车辆转向系统、新能源汽车及转向方法
CN210011791U (zh) * 2019-04-02 2020-02-04 上海衡鲁汽车科技有限公司 一种满足asil_d标准的无人驾驶冗余转向装置
CN209795598U (zh) * 2019-04-17 2019-12-17 傅江标 一种车辆无级变速转向机构
CN110696912A (zh) * 2019-11-22 2020-01-17 吉林大学 乘用车多模式电机驱动线控转向系统及其转向控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4140857A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114889689A (zh) * 2022-05-13 2022-08-12 一汽解放青岛汽车有限公司 一种转向装置及其布置方案

Also Published As

Publication number Publication date
CN113548108B (zh) 2023-02-14
CN113548108A (zh) 2021-10-26
EP4140857A4 (en) 2023-10-04
EP4140857B1 (en) 2024-06-26
EP4140857A1 (en) 2023-03-01

Similar Documents

Publication Publication Date Title
WO2021213001A1 (zh) 车辆转向装置和车辆
US11919568B2 (en) Autopark steering wheel snap reduction
US11884346B2 (en) Motor vehicle with driven wheels on a number of axles and method for controlling same
US9758190B2 (en) Vehicle
EP3015415B1 (de) Verfahren zur lenkungssteuerung bei einem flurförderzeug
JP2012121391A (ja) ステアリング装置
CN114834524B (zh) 一种多模式双余度主动转向系统总成及控制方法
CN112278070B (zh) 一种独立转向装置及使用该装置的前轮转向系统
JP7499350B2 (ja) ステアバイワイヤーステアリングシステムの劣化コンセプト
CN102152808B (zh) 数控机械传输的前后桥转向系统
JP2007326499A (ja) 操舵装置
US20170073002A1 (en) Method for controlling a steering device, and vehicle
JP3899739B2 (ja) 車両用操舵装置
US6523632B1 (en) Vehicle equipped with turning mechanism
JP3952796B2 (ja) 車両用操舵装置
JPH10157652A (ja) トレーラの操縦装置
CN111845922A (zh) 转向驱动装置和转向系统
JP4211770B2 (ja) 車両用操舵装置
CN115158444B (zh) 一种线控转向结构及其控制方法
CN215577320U (zh) 一种能使后轮与前轮联动的仿真演示模型车
KR20080107170A (ko) 차량의 능동제어 서스펜션 시스템
JP2006175925A (ja) 車両用操舵装置
JP2003306162A (ja) 車両用操舵装置
KR101550597B1 (ko) 능동제어 서스펜션 시스템용 구동장치
KR101171898B1 (ko) 캠형상을 이용한 가변 스티어링비를 갖는 랙 앤 피니언조향 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021792637

Country of ref document: EP

Effective date: 20221121