WO2021212962A1 - 热水机组 - Google Patents

热水机组 Download PDF

Info

Publication number
WO2021212962A1
WO2021212962A1 PCT/CN2021/075275 CN2021075275W WO2021212962A1 WO 2021212962 A1 WO2021212962 A1 WO 2021212962A1 CN 2021075275 W CN2021075275 W CN 2021075275W WO 2021212962 A1 WO2021212962 A1 WO 2021212962A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
valve
water tank
outlet
heating
Prior art date
Application number
PCT/CN2021/075275
Other languages
English (en)
French (fr)
Inventor
张宝库
韩伟涛
韩业飞
毛守博
王春刚
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Priority to EP21793723.4A priority Critical patent/EP4141343A4/en
Publication of WO2021212962A1 publication Critical patent/WO2021212962A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0026Domestic hot-water supply systems with conventional heating means
    • F24D17/0031Domestic hot-water supply systems with conventional heating means with accumulation of the heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/246Water level
    • F24H15/248Water level of water storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/315Control of valves of mixing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/32Control of valves of switching valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0235Three-way-valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/048Level sensors, e.g. water level sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the invention belongs to the technical field of water heaters, and specifically relates to a hot water unit.
  • the Chinese patent application document discloses a household atmospheric heat pump water heater, which includes a heat preservation water tank, a heat exchanger and a heat pump system.
  • the heat exchanger is provided with a refrigerant channel and a water flow channel for mutual heat exchange, and the refrigerant channel and the heat pump system Connected into a loop, the water inlet of the heat preservation water tank is connected with the outlet of the water flow channel; the a port of the electric three-way regulating valve is connected with the water outlet of the heat preservation water tank, the b port is connected with the inlet of the water flow channel through the water pump, and the c port is connected with the water inlet pipe ; There is also a water outlet pipe between the outlet hole of the heat preservation water tank and the a port of the electric three-way regulating valve.
  • the b port and c port of the electric three-way valve are connected, and the water pump provides power for the tap water supplemented by the water inlet pipe to enter the water flow channel.
  • the water in the water flow channel enters the heat preservation water tank after one heat exchange with the refrigerant channel.
  • the a port and the c port of the electric three-way valve are connected, and the water pump provides power for the water in the outlet hole of the heat preservation water tank to enter the water flow channel, so as to circulate and heat the water in the heat preservation water tank to improve the heat preservation water tank. Water temperature.
  • the existing water heaters need to pass a period of time after replenishing the water to heat the water temperature in the heat preservation water tank to the required water temperature by circulating heating.
  • the disadvantage of this type of water heater is that the water temperature in the heat preservation water tank during the heating process cannot meet the needs of users. Requirements, affecting the normal use of users.
  • the present invention provides a hot water unit.
  • the hot water unit includes a heating host, a pressurized water tank, a heat preservation water tank, and a water mixing valve; the water inlet of the pressurized water tank is used to connect to tap water, and the drain of the heat preservation water tank is used to supply domestic water;
  • the water outlet of the water tank is connected to the first inlet of the water mixing valve, the water outlet of the heat preservation water tank is connected to the second inlet of the water mixing valve, and the outlet of the water mixing valve is connected to the water inlet of the heating host Connection;
  • the water outlet of the heating host is connected with the water return port of the pressurized water tank and the water return port of the heat preservation water tank.
  • the heating host is a heat pump host, and the heat pump host includes a heating water cavity and a first heating device for heating water in the heating water cavity.
  • Heat exchanger the first heat exchanger is connected to the electronic expansion valve, the compressor, and the second heat exchanger through a refrigerant pipeline to form a refrigerant circulation loop; the water outlet and water inlet of the heating host are connected to the heating water The cavity is connected.
  • the valve is a three-way valve, and the water outlet of the heating host passes through the three-way valve with The backwater connection.
  • the hot water unit further includes a water level detector, a first temperature sensor, a second temperature sensor, a third temperature sensor, a first on-off valve, and a second temperature sensor.
  • the third on-off valve is arranged on the water inlet side of the pressurized water tank; the first water pump is arranged between the heating host and the water mixing valve; the second water pump is arranged on the heat preservation water tank Side of the drain.
  • the hot water unit further includes a controller; the signal input terminal of the controller is connected to the water level detector, the first temperature sensor, and the At least one of the second temperature sensor and the third temperature sensor is communicatively connected; the signal output end of the controller is connected to the water mixing valve, the three-way valve, the first on-off valve, and the At least one of the second on-off valve, the third on-off valve, the first water pump, and the second water pump is communicatively connected.
  • the first on-off valve, the second on-off valve and the third on-off valve are solenoid valves or electric valves.
  • a first water purifying device is connected to the water inlet side of the pressurized water tank; and/or the water inlet of the heating host and the water mixing valve
  • a second water purification device is connected between.
  • the first water purifying device and the second water purifying device are electronic descalers or filters.
  • the hot water unit further includes at least one of a first check valve, a second check valve, and a third check valve;
  • the first A check valve is arranged on the water inlet side of the pressurized water tank to prevent the water in the pressurized water tank from flowing backward;
  • the second check valve is arranged at the water outlet of the pressurized water tank and the water mixing valve In order to prevent water from flowing back to the pressurized water tank;
  • the third check valve is arranged on the side of the drain port of the domestic hot water tank to prevent water from flowing back to the heat preservation water tank.
  • the water outlet of the pressurized water tank is arranged at the lower part of the pressurized water tank; and/or the water outlet and/or the drain port of the heat preservation water tank It is arranged at the lower part of the heat preservation water tank; and/or the heat preservation water tank is also provided with a water inlet for connecting with a living return pipe.
  • the water mixing valve is used to adjust the flow ratio of the hot water entering the heating host from the pressurized water tank and the heat preservation water tank, so as to realize that the adjusted water is heated by the heating host once. Directly enter the heat preservation water tank to ensure that the user’s needs are always met; at the same time, in the process of dynamic adjustment of the mixing valve, the water that does not meet the temperature requirements from the outlet of the hot water host can be returned through the valve connected to the outlet of the heating host. In the pressurized water tank, the water that does not meet the temperature requirements is prevented from flowing into the heat preservation water tank.
  • the tee can be adjusted
  • the valve connects the water outlet of the heat pump main unit and the return water port of the pressurized water tank, and connects the water inlet of the heat pump main unit and the water outlet of the pressurized water tank through the mixing valve, so that the heat pump main unit and the pressurized water tank are connected.
  • a water cycle is formed between.
  • Figure 1 is a schematic diagram of the structure of the hot water unit of this embodiment
  • Figure 2 is a schematic flow chart of the control method of the hot water unit of this embodiment.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense. For example, they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed e.g., they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • this implementation provides a hot water unit and its control method.
  • the hot water unit includes a heating host 1, a pressurized water tank 2, a heat preservation water tank 3, and a mixing valve 9; the water inlet of the pressurized water tank 2 ( Figure 1.
  • One end of the pressurized water tank 2 connected to the third on-off valve 21) is used to connect to tap water, and the drain port of the insulated water tank 3 (the end of the insulated water tank 3 connected to the third check valve 34 in Figure 1) is used for supply Domestic water;
  • the outlet of the pressurized water tank 2 is connected with the first inlet of the mixing valve 9, the outlet of the insulated water tank 3 is connected with the second inlet of the mixing valve 9, and the outlet of the mixing valve 9 is connected with the inlet of the heating host 1 Water outlet connection;
  • the water outlet of the heating host 1 is connected to the backwater outlet of the pressurized water tank 2 and the backwater outlet of the heat preservation water tank 3 through a valve (such as the three-way valve 8 in 1).
  • valve of the water outlet of the heating host 1 is a three-way valve 8, and the water outlet of the heating host 1 passes through the three-way valve 8 and the return port of the pressure water tank 2, and the heat preservation water tank
  • the connection of the return port of 3 is described as an example.
  • the three-way valve 8 is mainly used to selectively connect the water discharged from the water outlet of the heating host 1 to the pressurized water tank 2 or the thermal insulation water tank 3 according to different situations; as another embodiment of the above valve to achieve this purpose ,
  • the valve may include a fourth on-off valve (not shown in the figure) and a fifth on-off valve (not shown in the figure), specifically between the water outlet of the heating host 1 and the water return port of the pressurized water tank 2.
  • a fourth on-off valve is provided, and a fifth on-off valve is provided between the water outlet of the heating host 1 and the water return port of the heat preservation water tank 3.
  • the water mixing valve 9 not only selectively connects the water discharged from the water outlet of the pressurized water tank 2 and the water outlet of the thermal insulation water tank 3 to the water inlet of the heating host 1, but also needs to be used to remove the water from the pressurized water tank 2 It has the effect of mixing with the water in the heat preservation water tank 3 to the required temperature.
  • the mixing valve 9 includes manual mechanical adjustment and electric temperature control valves.
  • the water mixing valve 9 can also adjust the flow rate due to the change of its internal water flow cross section during the adjustment process.
  • the water mixing valve 9 can also realize that only the water in the pressurized water tank 2 can pass through and adjust its flow rate, and it can also realize that it can only allow the water in the insulated water tank 3 to pass through and regulate its flow rate.
  • the specific structure of the water mixing valve 9 belongs to the prior art, so the specific structure of the water mixing valve 9 is not described here, but those skilled in the art can refer to the Chinese patent in the process of implementing the hot water unit of the present invention
  • Application documents CN105626903A, CN205780896U, CN208651635U and other publicly disclosed electric temperature control valves, as well as existing water mixing valves 9 on the market, can be selected and used according to actual needs.
  • the water mixing valve 9 is used to adjust the flow ratio of the hot water entering the heating host 1 from the pressurized water tank 2 and the heat preservation water tank 3 during the hot water process, so as to realize that the water after deployment is passed through the heating host 1 Directly enter the heat preservation water tank 3 after heating once to ensure that the user’s needs are always met; at the same time, during the dynamic adjustment of the mixing valve 9, the water outlet of the hot water host can be discharged through the valve connected to the water outlet of the heating host 1 The water that does not meet the temperature requirement is returned to the pressurized water tank 2 to prevent the water that does not meet the temperature requirement from flowing into the heat preservation water tank 3.
  • the heating host 1 in this embodiment can be selected as a heat pump host.
  • the heat pump host includes a heating water cavity and a first heat exchanger for heating water in the heating water cavity;
  • the expansion valve, the compressor and the second heat exchanger are connected to form a refrigerant circulation loop; the water outlet and the water inlet of the heating host 1 are in communication with the heating water cavity.
  • the heating water cavity of the heat pump main body can be formed in a coil with a certain length, so that the water flow path to obtain the heating effect can be extended, and the first heat exchanger can be set as a disk parallel to the extension path of the heating water cavity Tube style. So there is enough time to heat the flowing water, and when the heating water cavity is formed in the coil, the contact area between the unit volume of water and the first heat exchanger is larger, which is more conducive to the first heat exchanger and the water flow. Perform heat exchange between.
  • the first heat exchanger When hot water is used, the first heat exchanger is used as a condenser and the second heat exchanger is used as an evaporator. When the hot water is in a very low external environment, the surface of the second heat exchanger will be frosted, which will reduce the hot water effect. . When defrosting, it is necessary to use the first heat exchanger as an evaporator and the second heat exchanger as a condenser to use the heat released by the second heat exchanger for defrosting.
  • the heating host 1 is the heat pump host
  • the process of defrosting the second heat exchanger located outdoors connected to the heat pump host through the refrigerant circulation pipeline Adjusting the three-way valve 8 connects the water outlet of the heat pump main unit and the return water port of the pressurized water tank 2, and connects the water inlet of the heat pump main unit and the water outlet of the pressurized water tank 2 through the mixing valve 9 to A water circulation is formed between the heat pump host and the pressurized water tank 2.
  • the amount of water for heat exchange with the first heat exchanger is large, which is beneficial to improve the heat absorption effect of the first heat exchanger, thereby improving the defrosting effect of the second heat exchanger.
  • the hot water unit further includes a water level detector 31, a first temperature sensor 32, a second temperature sensor 11, a third temperature sensor 12, and a first on-off. At least one of the valve 6, the second on-off valve 5, the third on-off valve 21, the first water pump 91, and the second water pump 33; wherein the water level detector 31 is provided in the thermal insulation water tank 3 for detecting the thermal insulation water tank 3
  • the first temperature sensor 32 is installed in the heat preservation water tank 3 to detect the temperature of the water in the heat preservation water tank 3;
  • the second temperature sensor 11 is provided on the water inlet side of the heating host 1;
  • the third temperature sensor 12 is provided at the heating host 1 On the water outlet side;
  • the first on-off valve 6 is provided between the water outlet of the pressurized water tank 2 and the mixing valve 9;
  • the second on-off valve 5 is provided between the three-way valve 8 and the return water port of the heat preservation water tank 3;
  • the third on-off valve 21 is set on the water in
  • the hot water unit further includes a controller; the signal input terminal of the controller and the water level detector 31, the first temperature sensor 32, the second temperature sensor 11 and At least one of the third temperature sensors 12 is in communication connection; the signal output end of the controller is connected to the mixing valve 9, the three-way valve 8, the first on-off valve 6, the second on-off valve 5, and the third on-off valve 21, At least one of the first water pump 91 and the second water pump 33 is communicatively connected.
  • the water level detector 31 can detect that the water level of the heat preservation water tank 3 drops, and the heating host 1 is immediately started, and the pressure water tank 2 is adjusted through the water mixing valve 9 It is proportional to the flow rate of the hot water entering the heating host 1 from the holding water tank 3, and at the same time according to the water temperature at the water inlet side of the heating host 1 detected by the second temperature sensor 11, or according to the water outlet side of the heating host 1 detected by the third temperature sensor 12 In order to realize that the adjusted water is heated by the heating host 1 once and then enters the heat preservation water tank 3, which can always ensure that the user’s requirements are met.
  • the water outlet of the heating host 1 is immediately connected to the return water port of the heat preservation water tank 3 through the three-way valve 8 ,
  • the water inlet of the heating main unit 1 is connected with the water outlet of the heat preservation water tank 3 through the water mixing valve 9, and the heating main unit 1 is started at the same time, and the water temperature in the heat preservation water tank 3 is increased by means of circulating heating.
  • a first water purification device 22 can be connected to the water inlet side of the pressurized water tank 2; in addition, in order to prevent too much scale from accumulating in the heat preservation water tank 3, the heating host 1 and the water flow pipeline, it is also A second water purifying device 92 may be connected between the water inlet of the heating host 1 and the water mixing valve 9.
  • the first water purifying device 22 and the second water purifying device 92 are electronic descalers or filters
  • the first water purifying device 22 may preferably be a filter
  • the second water purifying device 92 may preferably be an electronic descaler.
  • the hot water unit is also provided with a first check valve 23, a second check valve 7 and a third check valve 34 At least one of; the first check valve 23 is provided on the water inlet side of the pressurized water tank 2 to prevent the water in the pressurized water tank 2 from flowing backward; the second check valve 7 is provided at the water outlet of the pressurized water tank 2 Between the water mixing valve 9 and the water mixing valve 9 to prevent the water from flowing back into the pressurized water tank 2;
  • the water pressure at the lower part of the pressurized water tank 2 is relatively large, and the water outlet of the pressurized water tank 2 can be arranged in the lower part of the pressurized water tank 2 to facilitate The water in the pressurized water tank 2 is discharged; similarly, the water outlet and/or the drain port of the heat preservation water tank 3 can also be arranged in the lower part of the heat preservation water tank 3.
  • the heat preservation water tank 3 is also provided with a water inlet for connection with the domestic return water pipe 4.
  • the hot water unit includes a heating host 1, a pressurized water tank 2, a heat preservation water tank 3, and a mixing valve 9; and a pressurized water tank 2
  • the water inlet is used to connect to tap water, the outlet of the insulated water tank 3 is used to supply domestic water; the outlet of the pressurized water tank 2 is connected with the first inlet of the mixing valve 9, and the outlet of the insulated water tank 3 is connected with the mixing valve 9
  • the second inlet is connected, the outlet of the water mixing valve 9 is connected with the water inlet of the heating host 1; the water outlet of the heating host 1 is connected to the backwater port of the pressure water tank 2 and the backwater port of the heat preservation water tank 3 through the valve, as shown in Figure 2.
  • the control method includes:
  • the water outlet temperature of the water outlet of the heating host 1 and the actual water temperature of the heat preservation water tank 3 are respectively compared with the user set water temperature, and the actual water level of the heat preservation water tank 3 is compared with the preset water temperature.
  • the circulating hot water level and the overflow level are compared, and then the heating host 1, the mixing valve 9 and the valve are controlled based on the comparison result.
  • the temperature of the water outlet of the heating host 1 can be monitored by the third temperature sensor 12, and the actual water temperature of the heat preservation water tank 3 can be monitored by the first temperature sensor 32.
  • the actual water level of the thermal insulation water tank 3 can be implemented through the water level detector 31 for implementation monitoring.
  • step S2 and step S3 can be performed at the same time, or can be performed sequentially in any order.
  • the step of controlling the heating host 1, the mixing valve 9 and the valve based on the comparison result in step S4 includes: if the actual water level is greater than the circulating hot water level and less than the overflow Flowing water level, and the difference between the actual water temperature and the user-set water temperature is less than or equal to the preset allowable temperature difference; then the heating host 1 is started for heating, and the water mixing valve 9 is controlled according to the comparison result of the outlet water temperature and the user-set water temperature.
  • the outlet water temperature is adjusted to the user set water temperature, and at the same time, according to the comparison result of the outlet water temperature and the user set water temperature, the valve is controlled to selectively connect the outlet of the heating host 1 with the backwater outlet of the pressurized water tank 2 or the backwater outlet of the insulated water tank 3 .
  • the control program can be actually set to adjust the outlet water temperature to a certain range based on the user-set water temperature, such as When the user sets the temperature to 60°C, the adjustment temperature can be set to 59°C to 61°C. Such a setting can generally meet the actual needs of users in practice, and it should still fall within the protection scope of the present invention.
  • the preset allowable temperature difference can be set according to actual requirements and the accuracy of the temperature sensor. For example, the preset allowable temperature difference can be any value from 2°C to 3°C.
  • the step of controlling the water mixing valve 9 to adjust the water output temperature to the user setting water temperature according to the comparison result of the outlet water temperature and the user setting water temperature includes: if the outlet water temperature is lower than the user setting water temperature, reducing by the water mixing valve 9 The flow rate of the water outlet of the pressurized water tank 2 and/or the flow rate of the water outlet of the heat preservation water tank 3 is increased to increase the temperature of the outlet water to the water temperature set by the user. In addition, if the outlet water temperature is greater than the user's set water temperature, the water mixing valve 9 increases the flow rate of the water outlet of the pressurized water tank 2 and/or reduces the flow rate of the water outlet of the heat preservation water tank 3 to reduce the outlet water temperature to the user Set the water temperature.
  • the step of controlling the valve to selectively connect the outlet of the heating host 1 with the backwater outlet of the pressurized water tank 2 or the backwater outlet of the insulated water tank 3 according to the comparison result of the outlet water temperature and the user set water temperature includes: if the outlet water temperature is less than If the user sets the water temperature, the water outlet of the heating host 1 and the return water inlet of the pressurized water tank 2 are connected through a valve; and/or if the outlet water temperature is greater than or equal to the user set water temperature, the water outlet of the host 1 will be heated through the valve It is connected to the return water port of the heat preservation water tank 3.
  • the outlet of the heating host 1 and the return port of the pressurized water tank 2 are connected through the valve ,
  • the water that does not meet the user's set water temperature requirements from the outlet of the hot water host is returned to the pressurized water tank 2 to prevent the water that does not meet the temperature requirements from flowing into the heat preservation water tank 3. Therefore, it is further ensured that the temperature of the water in the heat-preserving water tank 3 can always meet the user's use requirements when replenishing water, so as to improve the user's use experience.
  • the step of controlling the heating host 1, the mixing valve 9 and the valve based on the comparison result in step S4 includes: if the actual water level is less than the circulating hot water level, start The heating host 1 is heated, and the mixing valve 9 is controlled to allow only the water outlet of the pressurized water tank 2 to be connected to the water inlet of the heating host 1, and the control valve only allows the water outlet of the heating host 1 and the return water inlet of the heat preservation water tank 3 to be conducted. Pass.
  • the amount of hot water in the heat preservation water tank 3 is low. 1 After heating once, enter the heat preservation water tank 3 directly. If the water temperature set by the user is not reached after one heating, the following cyclic heating method can be used to circulate the water in the heat preservation water tank 3 through the heating host 1 to the user set water temperature. At the same time, when the hot water in the heat preservation water tank 3 is naturally cooled below the water temperature set by the user, a cyclic heating method can also be used.
  • the step of controlling the heating host 1, the mixing valve 9 and the valve based on the comparison result in step S4 includes: if the actual water level is greater than the circulating hot water level, and the actual If the difference between the water temperature and the water temperature set by the user is greater than the preset allowable temperature difference, the heating host 1 is started for heating, and the mixing valve 9 is controlled to only allow the water outlet of the heat preservation water tank 3 to be connected to the water inlet of the heating host 1, and control The valve only allows the water outlet of the heating host 1 to be connected to the water return of the heat preservation water tank 3. That is, the hot water in the heat preservation water tank 3 is heated to the water temperature set by the user by means of circulating heating.
  • the heating host 1 is a heat pump host, and before the step of controlling the heating host 1, the mixing valve 9 and the valve based on the comparison result in step S4, the control method further includes : Obtain the inlet water temperature of the water inlet of the heating host 1; calculate the actual temperature difference between the water temperature and the inlet water temperature; compare the actual temperature difference with the preset first temperature difference value; when the actual temperature difference is less than the first temperature difference value, control the heat pump
  • the host enters the defrost mode, the control valve only allows the water outlet of the heating host 1 to be connected to the return water inlet of the pressurized water tank 2, and controls the mixing valve 9 to connect the water outlet of the pressurized water tank 2 with the water inlet of the heating host 1 .
  • the water inlet temperature of the water inlet of the heating host 1 can be monitored in real time by the second temperature sensor 11.
  • the first temperature difference value can be used to measure the heating effect of the heating host 1.
  • the actual temperature difference between the outlet water temperature and the inlet water temperature is less than the first temperature difference value, it indicates that the heating effect of the heating host 1 is low, and the heat preservation water tank 3 cannot be properly heated.
  • the heating host 1 is a heat pump host in winter, it is often caused by frosting with the outdoor second heat exchanger of the heat pump host.
  • the heat pump host is controlled to enter the defrost mode, that is, the first heat exchanger is used as an evaporator and the second heat exchanger is used as a condenser, so that the heat released by the second heat exchanger is used for defrosting.
  • the control valve only allows the water outlet of the heating host 1 to be connected to the return water inlet of the pressurized water tank 2, and controls the mixing valve 9 to connect the water outlet of the pressurized water tank 2 with the water inlet of the heating host 1 to make the heating
  • a water circulation is formed between the main engine 1 and the pressurized water tank 2. In this way, the amount of water for heat exchange with the first heat exchanger is large, which is beneficial to improve the heat absorption effect of the first heat exchanger, thereby improving the defrosting effect of the outdoor heat exchanger.
  • the water mixing valve 9 is controlled to connect the water outlet of the pressurized water tank 2 with the water inlet of the heating host 1
  • the control method further includes: comparing the actual temperature difference with a preset second temperature difference value; when the actual temperature difference is less than the second temperature difference value, reducing the flow rate of the water outlet of the pressurized water tank 2 through the mixing valve 9 and /Or increase the flow rate of the water outlet of the heat preservation water tank 3 so that the actual temperature difference is greater than or equal to the second temperature difference value.
  • the heating host 1 when the heating host 1 is defrosting, the water temperature at the water inlet of the heating host 1 is greater than the water temperature at the outlet, and the second temperature difference is used to measure the defrosting effect of the heating host 1.
  • the outlet water temperature is equal to
  • the actual temperature difference of the inlet water temperature is less than the second temperature difference value, it indicates that the defrosting effect of the heating host 1 is low, and the water temperature in the pressurized water tank 2 cannot meet the normal defrosting requirements of the heating host 1, and the water mixing valve 9 can be controlled at this time Part of the hot water in the heat preservation water tank 3 is mixed with the cold water in the pressure water tank 2 and then flows into the heating host 1 to improve the defrosting effect of the heating host 1.
  • a first water pump 91 is provided between the water mixing valve 9 and the water inlet of the heating host 1, and can be a pressurized water tank 2 or heat preservation when the water needs to be heated.
  • the water in the water tank 3 enters the heating host 1 to provide power; therefore, the water mixing valve 9 can be controlled to connect the water inlet of the heating host 1 with the water outlet of the pressurized water tank 2 and/or the water outlet of the heat preservation water tank 3 at the same time.
  • First water pump 91 is provided between the water mixing valve 9 and the water inlet of the heating host 1, and can be a pressurized water tank 2 or heat preservation when the water needs to be heated.
  • the water in the water tank 3 enters the heating host 1 to provide power; therefore, the water mixing valve 9 can be controlled to connect the water inlet of the heating host 1 with the water outlet of the pressurized water tank 2 and/or the water outlet of the heat preservation water tank 3 at the same time.
  • First water pump 91 is provided between the water mixing valve 9 and the water inlet
  • a first on-off valve 6 is provided between the water outlet of the pressurized water tank 2 and the water mixing valve 9, and the control water mixing valve 9 will heat the main engine 1
  • the first on-off valve 6 is opened when the water inlet is connected to the outlet of the pressurized water tank 2; the second on-off valve 5 is connected to the return port of the heat preservation water tank 3, and the control valve connects the water outlet of the heating host 1 and the heat preservation water tank
  • the second on-off valve 5 is opened while the water return port of 3 is turned on.
  • the first on-off valve 6 and the second on-off valve 5 can be closed to block the flow of water in the hot water unit, thereby achieving Reliable control of the aforementioned hot water unit provided by this embodiment.
  • the method for controlling the hot water unit can be stored as a program in a computer readable storage medium.
  • the storage medium includes a number of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute some steps of the methods in the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种热水机组,热水过程中通过混水阀(9)来调节承压水箱(2)与保温水箱(3)进入加热主机(1)的热水的流量比例,以实现调配后的水经加热主机(1)一次加热后直接进入保温水箱(3)以始终保证满足用户的使用需求;同时,在混水阀(9)动态调节过程中可以通过与加热主机(1)的出水口连接的阀门(8)将热水主机(1)的出水口流出的不满足温度要求的水回流至承压水箱(2)中,避免了不满足温度要求的水流入保温水箱(2)。

Description

热水机组 技术领域
本发明属于热水器技术领域,具体涉及一种热水机组。
背景技术
中国专利申请文件(CN108019938A)公开了一种家用常压热泵热水器,该热水器包括保温水箱、换热器和热泵系统,换热器设有相互换热的冷媒通道和水流通道,冷媒通道与热泵系统连接成回路,保温水箱的进水孔与水流通道的出口连通;电动三通调节阀的a端口与保温水箱的出水孔连通、b端口通过水泵与水流通道的进口连通,c端口与进水管连通;保温水箱的出水孔与电动三通调节阀的a端口之间还设有出水管。
现有的上述热水器在使用时,在用户由出水管使用保温水箱中的热水后,电动三通阀的b端口与c端口导通,水泵为由进水管补入的自来水进入水流通道提供动力,水流通道中的水经过与冷媒通道一次换热后进入保温水箱中。在补充水量后,电动三通阀的a端口与c端口导通,水泵为保温水箱的出水孔中的水进入水流通道提供动力,以对保温水箱中的水进行循环加热,以提高保温水箱中的水温。
现有上述热水器在补水后需要经过一段时间将保温水箱中的水温采用循环加热的方式加热至所需的水温,但是这种热水器的缺点为在加热过程中保温水箱中的水温不能满足用户的使用要求,影响用户的正常使用。
相应地,本领域需要一种新的热水机组来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有的上述循环式热水器在将在补水后的保温水箱中的水加热到用户设定的温度过程中,保温水箱中的水温不能满足用户的使用要求,影响用户的正常使用的问题,本发明提供了一种热水机组。该热水机组包括加热主机、承压 水箱、保温水箱和混水阀;所述承压水箱的进水口用于接入自来水,所述保温水箱的排水口用于供给生活用水;所述承压水箱的出水口与所述混水阀的第一进口连接,所述保温水箱的出水口与所述混水阀的第二进口连接,所述混水阀的出口与所述加热主机的进水口连接;所述加热主机的出水口与所述承压水箱的回水口、所述保温水箱的回水口连接。
作为本发明提供的上述热水机组的一种优选的技术方案,所述加热主机为热泵主机,所述热泵主机包括加热水腔以及用于对所述加热水腔中的水进行加热的第一换热器;所述第一换热器通过冷媒管路与电子膨胀阀、压缩机和第二换热器连接并形成冷媒循环回路;所述加热主机的出水口和进水口与所述加热水腔连通。
作为本发明提供的上述热水机组的一种优选的技术方案,所述阀门为三通阀,所述加热主机的出水口通过三通阀与所述承压水箱的回水口、所述保温水箱的回水口连接。
作为本发明提供的上述热水机组的一种优选的技术方案,所述热水机组还包括水位检测器、第一温度传感器、第二温度传感器、第三温度传感器、第一通断阀、第二通断阀、第三通断阀、第一水泵和第二水泵中的至少一个;其中,所述水位检测器设置于所述保温水箱中;所述第一温度传感器设置于所述保温水箱中;所述第二温度传感器设置于所述加热主机的进水口侧;所述第三温度传感器设置于所述加热主机的出水口侧;所述第一通断阀设置于所述承压水箱的出水口与所述混水阀之间;所述第二通断阀设置于所述三通阀与所述保温水箱的回水口之间;
所述第三通断阀设置于所述承压水箱的进水口侧;所述第一水泵设置于所述加热主机与所述混水阀之间;所述第二水泵设置于所述保温水箱的排水口侧。
作为本发明提供的上述热水机组的一种优选的技术方案,所述热水机组还包括控制器;所述控制器的信号输入端与所述水位检测器、所述第一温度传感器、所述第二温度传感器和所述第三温度传感器中的至少一个通信连接;所述控制器的信号输出端与所述混水阀、所述三通阀、所述第一通断阀、所述第二通断阀、所述第三通断阀、所述第一水泵和所述第二水泵中的至少一个通信连接。
作为本发明提供的上述热水机组的一种优选的技术方案,所述第一通断阀、所述第二通断阀和所述第三通断阀为电磁阀或电动阀。
作为本发明提供的上述热水机组的一种优选的技术方案,所述承压水箱的进水口侧连接有第一净水装置;并且/或者所述加热主机的进水口与所述混水阀之间连接有第二净水装置。
作为本发明提供的上述热水机组的一种优选的技术方案,所述第一净水装置和所述第二净水装置为电子除垢仪或过滤器。
作为本发明提供的上述热水机组的一种优选的技术方案,所述热水机组还包括第一止回阀、第二止回阀和第三止回阀中的至少一个;所述第一止回阀设置在所述承压水箱的进水口侧,以防止承压水箱中的水向外倒流;所述第二止回阀设置在所述承压水箱的出水口与所述混水阀之间,以防止水倒流回所述承压水箱;所述第三止回阀设置在所述生活热水箱的排水口侧,以防止水倒流回所述保温水箱。
作为本发明提供的上述热水机组的一种优选的技术方案,所述承压水箱的出水口设置于所述承压水箱的下部;并且/或者所述保温水箱的出水口和/或排水口设置于所述保温水箱的下部;并且/或者所述保温水箱还设置有用于与生活回水管连接的进水口。
在本发明提供的一种热水机组中,热水过程中通过混水阀来调节承压水箱与保温水箱进入加热主机的热水的流量比例,以实现调配后的水经加热主机一次加热后直接进入保温水箱以始终保证满足用户的使用需求;同时,在混水阀动态调节过程中可以通过与加热主机的出水口连接的阀门将热水主机的出水口流出的不满足温度要求的水回流至承压水箱中,避免了不满足温度要求的水流入保温水箱。
此外,在本发明提供的一种热水机组中,当加热主机为热泵主机时,在对与热泵主机通过冷媒循环管路连接的第二换热器进行除霜过程中,可以通过调节三通阀将热泵主机的出水口与承压水箱的回水口之间导通,且通过混水阀将热泵主机的进水口与承压水箱的出水口之间导通,以使热泵主机与承压水箱之间形成水循环。如此,与第一换热器进行热交换的水量较多而有利于改善第一换热器的吸热效果,进而提高了室外换热器的除霜效果。
附图说明
下面参照附图来描述本发明的热水机组及其控制方法。附图中:
图1为本实施例的热水机组的结构示意图;
图2为本实施例的热水机组的控制方法的流程示意图。
附图标记列表
1-加热主机;11-第二温度传感器;12-第三温度传感器;2-承压水箱;21-第三通断阀;22-第一净水装置;23-第一止回阀;3-保温水箱;31-水位检测器;32-第一温度传感器;33-第二水泵;34-第三止回阀;4-生活回水管;5-第二通断阀;6-第一通断阀;7-第二止回阀;8-三通阀;9-混水阀;91-第一水泵;92-第二净水装置。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然本实施例是以热泵式热水机组为例进行说明书的,但在不偏离本发明原理的条件下,本领域技术人员可以将本发明应用于其他类型的热水机组中,如电热式热水机组、太阳能热水机组等。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
为了解决现有的上述热水器在将在补水后的保温水箱中的水加热到用户设定的温度过程中,保温水箱中的水温不能满足用户的使用要求,影响用户的正常使用的问题,本实施例提供了一种热水机组及其控制方法。
首先,本实施例提供的一种热水机组如图1所示,该热水机组包括加热主机1、承压水箱2、保温水箱3和混水阀9;承压水箱2的进水口(图1中承压水箱2连接有第三通断阀21的一端)用于接入自来水,保温水箱3的排水口(图1中保温水箱3连接有第三止回阀34的一端)用于供给生活用水;承压水箱2的出水口与混水阀9的第一进口连接,保温水箱3的出水口与混水阀9的第二进口连接,混水阀9的出口与加热主机1的进水口连接;加热主机1的出水口通过阀门(如1中为三通阀8)与承压水箱2的回水口、保温水箱3的回水口连接。
示例性的,本实施例的图1中是以加热主机1的出水口的阀门为三通阀8,且加热主机1的出水口通过三通阀8与承压水箱2的回水口、保温水箱3的回水口连接为例进行说明的。其中,三通阀8主要用于根据不同情况选择性地将加热主机1的出水口排出的水接入承压水箱2或保温水箱3中;作为实现该目的的上述阀门的另一种实施方式,该阀门可以包括第四通断阀(图中未示出)和第五通断阀(图中未示出),具体地在加热主机1的出水口与承压水箱2的回水口之间设置有第四通断阀、加热主机1的出水口与保温水箱3的回水口之间设置有第五通断阀。
本实施例中混水阀9除了选择性地将承压水箱2的出水口和保温水箱3的出水口排出的水接入加热主机1的进水口之外,还需要起到将由承压水箱2和保温水箱3的水混合到要求的温度的作用,目前混水阀9包括手动机械调节式和电动温控阀。同时混水阀9由于调节过程中其内部水流截面的改变,还能起到调节流量的作用。所以,混水阀9还可以实现仅允许承压水箱2的水通过并对其流量进行调节,也实现可以仅允许保温水箱3的水通过并对其流量进行调节。其中,混水阀9的具体结构属于现有技术,故在此不对该混水阀9的具体结构进行说明,但是本领域技术人员在实施本发明的热水机组的过程中,可以参照中国专利申请文件CN105626903A、CN205780896U、CN208651635U等公开的电动温控阀,以及市场上现有的混水阀9并根据实际需要进行选择使用。
在本发明提供的上述热水机组中,热水过程中通过混水阀9来调节承压水箱2与保温水箱3进入加热主机1的热水的流量比例,以实现调配后的水经加热主机1一次加热后直接进入保温水箱3以始终保证满足用户的使用需求;同时,在混水阀9动态调节过程中可以通过与加热主机1的出水口连接的阀门将热水主机的出水口流出的不满足温度要求的水回流至承压水箱2中,避免了不满足温度要求的水流入保温水箱3。
本实施例中的加热主机1可以选择为热泵主机,热泵主机包括加热水腔以及用于对加热水腔中的水进行加热的第一换热器;第一换热器通过冷媒管路与电子膨胀阀、压缩机和第二换热器连接并形成冷媒循环回路;加热主机1的出水口和进水口与加热水腔连通。可以理解的是,该热泵主机的加热水腔可以形成于具有一定长度的盘管内,从而能使获得加热效果水流路线延长,第一换热器可以设置为与加热水腔的延伸路线并行的盘管式。从而有足够的时间对流动中的水流进行加热,且当加热水腔形成于盘管内时,单位体积的水与第一换热器的接触面积较大,更利于第一换热器与水流之间进行热交换。
在热水时第一换热器作冷凝器使用且第二换热器作蒸发器使用,在极低外界环境下热水时,第二换热器的表面会结霜,导致热水效果降低。而在除霜时,需要将第一换热器作蒸发器使用且第二换热器作冷凝器使用,以利用第二换热器释放的热量来进行化霜。
在本实施例提供的上述热水机组中,当加热主机1为热泵主机时,在对与热泵主机通过冷媒循环管路连接的位于室外的第二换热器进行除霜的过程中,可以通过调节三通阀8将热泵主机的出水口与承压水箱2的回水口之间导通,且通过混水阀9将热泵主机的进水口与承压水箱2的出水口之间导通,以使热泵主机与承压水箱2之间形成水循环。如此,与第一换热器进行热交换的水量较多而有利于改善第一换热器的吸热效果,进而提高了第二换热器的除霜效果。
作为本实施例提供的上述热水机组的一种优选的实施方式,热水机组还包括水位检测器31、第一温度传感器32、第二温度传感器11、第三温度传感器12、第一通断阀6、第二通断阀5、第三通断阀21、第一水泵91和第二水泵33中的至少一个;其中,水位检测器31设置于保温水箱3中,用于检测保温水箱3的水位;第一温度传感器32设置于保温水箱3 中,用于检测保温水箱3中的水温;第二温度传感器11设置于加热主机1的进水口侧;第三温度传感器12设置于加热主机1的出水口侧;第一通断阀6设置于承压水箱2的出水口与混水阀9之间;第二通断阀5设置于三通阀8与保温水箱3的回水口之间;第三通断阀21设置于承压水箱2的进水口侧;第一水泵91设置于加热主机1与混水阀9之间,当需要加热水时可以为承压水箱2和保温水箱3中的水进入加热主机1中提供动力;第二水泵33设置于保温水箱3的排水口侧,为生活用水提供动力。其中,本实施例中的第一通断阀6、第二通断阀5和第三通断阀21可以选择为电磁阀和电动阀,以便于热水机组的自动控制。
作为本实施例提供的上述热水机组的一种优选的实施方式,热水机组还包括控制器;控制器的信号输入端与水位检测器31、第一温度传感器32、第二温度传感器11和第三温度传感器12中的至少一个通信连接;控制器的信号输出端与混水阀9、三通阀8、第一通断阀6、第二通断阀5、第三通断阀21、第一水泵91和第二水泵33中的至少一个通信连接。
示例性地,当用户对保温水箱3中的热水进行使用后,水位检测器31能检测到保温水箱3的水位下降,则立即启动加热主机1,通过混水阀9来调节承压水箱2与保温水箱3进入加热主机1的热水的流量比例,同时根据第二温度传感器11检测的加热主机1的进水口侧的水温,或者根据第三温度传感器12检测的加热主机1的出水口侧的水温,以实现调配后的水经加热主机1一次加热后进入保温水箱3能始终保证满足用户的使用需求。
此外,当保温水箱3中的水位没有下降但保温水箱3中的水温降低到用户需求的水温范围以下时,则即时通过三通阀8将加热主机1的出水口与保温水箱3的回水口连通,通过混水阀9将加热主机1的进水口与保温水箱3的出水口连通,同时启动加热主机1,通过循环加热的方式来提高保温水箱3中的水温。
为了保证生活用水的干净卫生,可以在承压水箱2的进水口侧连接有第一净水装置22;此外,为了防止保温水箱3、加热主机1及水流管路中积累太多的水垢,还可以在加热主机1的进水口与混水阀9之间连接有第二净水装置92。其中,第一净水装置22和第二净水装置92为电子除垢仪或过滤器,第一净水装置22可以优选为过滤器,第二净水装置 92可以优选为电子除垢仪。
进一步地,为了防止由于水压异常等原因导致水倒流影响热水机组的正常使用,该热水机组中还设置有第一止回阀23、第二止回阀7和第三止回阀34中的至少一个;第一止回阀23设置在承压水箱2的进水口侧,以防止承压水箱2中的水向外倒流;第二止回阀7设置在承压水箱2的出水口与混水阀9之间,以防止水倒流回承压水箱2;第三止回阀34设置在生活热水箱的排水口侧,以防止水倒流回保温水箱3。
作为本实施例提供的上述热水机组的一种优选的实施方式,承压水箱2的下部的水压较大,可以将承压水箱2的出水口设置于承压水箱2的下部,以利于承压水箱2的水排出;类似的,还可以将保温水箱3的出水口和/或排水口设置于保温水箱3的下部。此外,当热水机组的热水用于供给暖气等需要反复循环利用热水的设备时,保温水箱3还设置有用于与生活回水管4连接的进水口。
然后,本实施例还提供了一种热水机组的控制方法,如图1所示,该热水机组包括加热主机1、承压水箱2、保温水箱3和混水阀9;承压水箱2的进水口用于接入自来水,保温水箱3的排水口用于供给生活用水;承压水箱2的出水口与混水阀9的第一进口连接,保温水箱3的出水口与混水阀9的第二进口连接,混水阀9的出口与加热主机1的进水口连接;加热主机1的出水口通过阀门与承压水箱2的回水口、保温水箱3的回水口连接,如图2所示,该控制方法包括:
S1、获取加热主机1的出水口的出水温度、保温水箱3的实际水温和实际水位;
S2、将出水温度、实际水温分别与用户设定水温进行比较;
S3、将实际水位与预设的循环制热水位和溢流水位进行比较;
S4、基于比较结果控制加热主机1、混水阀9和阀门。
根据本实施例的热水机组的控制方法,通过将加热主机1的出水口的出水温度、保温水箱3的实际水温分别与用户设定水温进行比较,并将保温水箱3的实际水位与预设的循环制热水位和溢流水位进行比较,然后基于比较结果控制加热主机1、混水阀9和阀门。使得可以根据获取的具体信息来实现热水机组的自动控制,并且保证当保温水箱3的实际水位大于循环制热水位且小于溢流水位,且实际水温与用户设定水温的差 值小于或等于预设的允许温差时,可以通过混水阀9来调节承压水箱2与保温水箱3进入加热主机1的水流量比例,使得调配后的水经加热主机1一次加热后直接进入保温水箱3并能始终保证满足用户的使用需求。
本实施例结合图1中的三通阀8作为阀门进行说明,加热主机1的出水口的出水温度可以通过第三温度传感器12进行实施监测,保温水箱3的实际水温可以通过第一温度传感器32进行实施监测,保温水箱3的实际水位可以通过水位检测器31进行实施监测。
需要说明的是,尽管上文详细描述了本发明的热水机组的控制方法的详细步骤,但是,在不偏离本发明的基本原理的前提下,本领域技术人员可以对上述步骤进行组合、拆分及调换顺序,如此修改后的技术方案并没有改变本发明的基本构思,因此也落入本发明的保护范围之内。例如,步骤S2与步骤S3可以同时执行,也可以按照任意顺序先后执行。
作为本实施例提供的上述控制方法的一种优选的实施方式,步骤S4中基于比较结果控制加热主机1、混水阀9和阀门的步骤包括:若实际水位大于循环制热水位且小于溢流水位,且实际水温与用户设定水温的差值小于或等于预设的允许温差;则启动加热主机1进行加热,并根据出水温度与用户设定水温的比较结果控制混水阀9以将出水温度调节至用户设定水温,同时根据出水温度与用户设定水温的比较结果控制阀门选择性地将加热主机1的出水口与承压水箱2的回水口或保温水箱3的回水口导通。
本领域技术人员可以理解的是,将出水温度调节至用户设定水温,在具体实施时,可以将控制程序实际设定为将出水温度调节至以用户设定水温为准的一定范围内,如用户设定温度为60℃时,其调节温度可以设置为59℃~61℃。如此设置,在实际中一般均能满足用户的实际需求,其仍应落入本发明的保护范围之内。预设的允许温差可以根据实际需求以及温度传感器的精度等条件进行设定,例如,预设的允许温差可以为2℃~3℃中的任何值。
具体地,根据出水温度与用户设定水温的比较结果控制混水阀9以将出水温度调节至用户设定水温的步骤包括:若出水温度小于用户设定水温,则通过混水阀9减小承压水箱2的出水口的流量并且/或者增大 保温水箱3的出水口的流量,以将出水温度增大至用户设定水温。此外,若出水温度大于用户设定水温,则通过混水阀9增大承压水箱2的出水口的流量并且/或者减小保温水箱3的出水口的流量,以将出水温度减小至用户设定水温。
同时,根据出水温度与用户设定水温的比较结果控制阀门选择性地将加热主机1的出水口与承压水箱2的回水口或保温水箱3的回水口导通的步骤包括:若出水温度小于用户设定水温,则通过阀门将加热主机1的出水口与承压水箱2的回水口导通;并且/或者若出水温度大于或等于用户设定水温,则通过阀门将加热主机1的出水口与保温水箱3的回水口导通。
根据本发明的热水机组的控制方法,在混水阀9动态调节过程中,若出水温度小于用户设定水温,则通过阀门将加热主机1的出水口与承压水箱2的回水口导通,以将热水主机的出水口流出的不满足用户设定水温要求的水回流至承压水箱2中,避免了不满足温度要求的水流入保温水箱3。从而,进一步地保证了在补水时保温水箱3中的水温能始终满足用户的使用要求,以提高用户的使用体验。
作为本实施例提供的上述控制方法的一种优选的实施方式,步骤S4中基于比较结果控制加热主机1、混水阀9和阀门的步骤包括:若实际水位小于循环制热水位,则启动加热主机1进行加热,并控制混水阀9仅允许承压水箱2的出水口与加热主机1的进水口导通,且控制阀门仅允许加热主机1的出水口与保温水箱3的回水口导通。
当保温水箱3中实际水位小于循环制热水位时,则保温水箱3中的热水量偏低,为了兼顾补水和热水效率,可以通过上述方法将承压水箱2中的水经加热主机1一次加热后直接进入保温水箱3。如果经一次加热后没有达到用户设定水温的要求,则可以使用以下的循环加热方法,通过加热主机1对保温水箱3中的水进行循环加热至用户设定水温。同时,当保温水箱3中的热水自然冷却到用户设定水温以下时,也可以采用循环加热的方法。
作为本实施例提供的上述控制方法的一种优选的实施方式,步骤S4中基于比较结果控制加热主机1、混水阀9和阀门的步骤包括:若实际水位大于循环制热水位,且实际水温与用户设定水温的差值大于预 设的允许温差,则启动加热主机1进行加热,并控制混水阀9仅允许保温水箱3的出水口与加热主机1的进水口导通,且控制阀门仅允许加热主机1的出水口与保温水箱3的回水口导通。即通过循环加热的方式将保温水箱3中的热水加热至用户设定水温。
作为本实施例提供的上述控制方法的一种优选的实施方式,加热主机1为热泵主机,在步骤S4中基于比较结果控制加热主机1、混水阀9和阀门的步骤之前该控制方法还包括:获取加热主机1的进水口的进水温度;计算出水温度与进水温度的实际温差;将实际温差与预设的第一温差值进行比较;当实际温差小于第一温差值时,控制热泵主机进入除霜模式,控制阀门仅允许加热主机1的出水口与承压水箱2的回水口导通,并控制混水阀9将承压水箱2的出水口与加热主机1的进水口导通。
示例性地,加热主机1的进水口的进水温度可以通过第二温度传感器11进行实时监测。第一温差值可以用于衡量加热主机1的加热效果,当出水温度与进水温度的实际温差小于第一温差值时,说明加热主机1的加热效果较低,不能正常的对保温水箱3中的水进行加热,而在冬季加热主机1为热泵主机时,往往是由于与热泵主机的室外的第二换热器结霜所致。此时,控制热泵主机进入除霜模式,即将第一换热器作蒸发器使用且第二换热器作冷凝器使用,以利用第二换热器释放的热量来进行化霜。同时,控制阀门仅允许加热主机1的出水口与承压水箱2的回水口导通,并控制混水阀9将承压水箱2的出水口与加热主机1的进水口导通,以使得加热主机1与承压水箱2之间形成水循环。如此,与第一换热器进行热交换的水量较多而有利于改善第一换热器的吸热效果,进而提高了室外换热器的除霜效果。
作为本实施例提供的上述控制方法的一种优选的实施方式,当控制热泵主机进入除霜模式后,在控制混水阀9将承压水箱2的出水口与加热主机1的进水口导通时,该控制方法还包括:将实际温差与预设的第二温差值进行比较;当实际温差小于第二温差值时,则通过混水阀9减小承压水箱2的出水口的流量并且/或者增大保温水箱3的出水口的流量,以使实际温差大于或等于第二温差值。
示例性地,特殊情形下,加热主机1在进行除霜时,加热主机1的进水口的水温大于出水口的水温,第二温差值用于衡量加热主机1 的除霜效果,当出水温度与进水温度的实际温差小于第二温差值时,说明加热主机1的除霜效果较低,承压水箱2中的水温不能满足加热主机1正常的除霜需求,此时混水阀9可以控制保温水箱3中的部分热水与承压水箱2的冷水混合后流入加热主机1,以提高加热主机1的除霜效果。
作为本实施例提供的上述控制方法的一种优选的实施方式,混水阀9与加热主机1的进水口之间设置有第一水泵91,当需要加热水时可以为承压水箱2或保温水箱3中的水进入加热主机1中提供动力;所以可以在控制混水阀9将加热主机1的进水口与承压水箱2的出水口和/或保温水箱3的出水口导通的同时启动第一水泵91。
作为本实施例提供的上述控制方法的一种优选的实施方式,承压水箱2的出水口与混水阀9之间设置有第一通断阀6,控制混水阀9将加热主机1的进水口与承压水箱2的出水口导通的同时打开第一通断阀6;保温水箱3的回水口上连接有第二通断阀5,控制阀门将加热主机1的出水口与保温水箱3的回水口导通的同时打开第二通断阀5。当本实施例的热水机组不需要加热保温水箱3中的热水时,可以将第一通断阀6、第二通断阀5关闭,来阻断热水机组中水的流动,从而实现对本实施例提供的前述热水机组的可靠控制。
当然,上述可以替换的实施方式之间、以及可以替换的实施方式和优选的实施方式之间还可以交叉配合使用,从而组合出新的实施方式以适用于更加具体的应用场景。
本领域的技术人员应当理解的是,可以将本实施例提供的热水机组的控制方法作为程序存储在一个计算机可读取存储介质中。该存储介质中包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的保护范围之内并且形成不同的实施例。 例如,在本发明的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种热水机组,其特征在于,所述热水机组包括加热主机、承压水箱、保温水箱和混水阀;所述承压水箱的进水口用于接入自来水,所述保温水箱的排水口用于供给生活用水;所述承压水箱的出水口与所述混水阀的第一进口连接,所述保温水箱的出水口与所述混水阀的第二进口连接,所述混水阀的出口与所述加热主机的进水口连接;所述加热主机的出水口通过阀门与所述承压水箱的回水口、所述保温水箱的回水口连接。
  2. 根据权利要求1所述的热水机组,其特征在于,所述加热主机为热泵主机,所述热泵主机包括加热水腔以及用于对所述加热水腔中的水进行加热的第一换热器;
    所述第一换热器通过冷媒管路与电子膨胀阀、压缩机和第二换热器连接并形成冷媒循环回路;
    所述加热主机的出水口和进水口与所述加热水腔连通。
  3. 根据权利要求1所述的热水机组,所述阀门为三通阀,所述加热主机的出水口通过所述三通阀与所述承压水箱的回水口、所述保温水箱的回水口连接。
  4. 根据权利要求3所述的热水机组,其特征在于,所述热水机组还包括水位检测器、第一温度传感器、第二温度传感器、第三温度传感器、第一通断阀、第二通断阀、第三通断阀、第一水泵和第二水泵中的至少一个;其中,
    所述水位检测器设置于所述保温水箱中;
    所述第一温度传感器设置于所述保温水箱中;
    所述第二温度传感器设置于所述加热主机的进水口侧;
    所述第三温度传感器设置于所述加热主机的出水口侧;
    所述第一通断阀设置于所述承压水箱的出水口与所述混水阀之间;
    所述第二通断阀设置于所述三通阀与所述保温水箱的回水口之间;
    所述第三通断阀设置于所述承压水箱的进水口侧;
    所述第一水泵设置于所述加热主机与所述混水阀之间;
    所述第二水泵设置于所述保温水箱的排水口侧。
  5. 根据权利要求4所述的热水机组,其特征在于,所述热水机组还包括控制器;
    所述控制器的信号输入端与所述水位检测器、所述第一温度传感器、所述第二温度传感器和所述第三温度传感器中的至少一个通信连接;
    所述控制器的信号输出端与所述混水阀、所述三通阀、所述第一通断阀、所述第二通断阀、所述第三通断阀、所述第一水泵和所述第二水泵中的至少一个通信连接。
  6. 根据权利要求4所述的热水机组,其特征在于,所述第一通断阀、所述第二通断阀和所述第三通断阀为电磁阀或电动阀。
  7. 根据权利要求1所述的热水机组,其特征在于,所述承压水箱的进水口侧连接有第一净水装置;并且/或者
    所述加热主机的进水口与所述混水阀之间连接有第二净水装置。
  8. 根据权利要求7所述的热水机组,其特征在于,所述第一净水装置和所述第二净水装置为电子除垢仪或过滤器。
  9. 根据权利要求1所述的热水机组,其特征在于,所述热水机组还包括第一止回阀、第二止回阀和第三止回阀中的至少一个;
    所述第一止回阀设置在所述承压水箱的进水口侧,以防止承压水箱中的水向外倒流;
    所述第二止回阀设置在所述承压水箱的出水口与所述混水阀之间,以防止水倒流回所述承压水箱;
    所述第三止回阀设置在所述生活热水箱的排水口侧,以防止水倒流回所述保温水箱。
  10. 根据权利要求1所述的热水机组,其特征在于,所述承压水箱的出水口设置于所述承压水箱的下部;并且/或者
    所述保温水箱的出水口和/或排水口设置于所述保温水箱的下部;并且/或者
    所述保温水箱还设置有用于与生活回水管连接的进水口。
PCT/CN2021/075275 2020-04-23 2021-02-04 热水机组 WO2021212962A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21793723.4A EP4141343A4 (en) 2020-04-23 2021-02-04 WATER HEATER UNIT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010327616.5 2020-04-23
CN202010327616.5A CN111609552A (zh) 2020-04-23 2020-04-23 热水机组

Publications (1)

Publication Number Publication Date
WO2021212962A1 true WO2021212962A1 (zh) 2021-10-28

Family

ID=72198247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075275 WO2021212962A1 (zh) 2020-04-23 2021-02-04 热水机组

Country Status (3)

Country Link
EP (1) EP4141343A4 (zh)
CN (1) CN111609552A (zh)
WO (1) WO2021212962A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543363A (zh) * 2022-02-24 2022-05-27 本溪钢铁(集团)矿业有限责任公司 一种电加热器及其使用方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111609552A (zh) * 2020-04-23 2020-09-01 青岛海尔空调电子有限公司 热水机组
CN111609561B (zh) * 2020-04-23 2022-10-28 青岛海尔空调电子有限公司 热水机组的控制方法
CN112129010B (zh) * 2020-09-23 2021-06-29 广州特殊拉新能源科技有限公司 空气能热水模块机

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024242A (ja) * 2004-09-22 2005-01-27 Sanyo Electric Co Ltd ヒートポンプ式給湯装置
EP2434231A1 (en) * 2009-05-18 2012-03-28 Mitsubishi Electric Corporation Heat pump device and method of controlling regulation valve
CN104633925A (zh) * 2013-11-15 2015-05-20 广东美的暖通设备有限公司 热泵热水机系统及其控制方法
CN104964431A (zh) * 2015-06-09 2015-10-07 芜湖鸣人热能设备有限公司 热水炉热水利用系统
CN204987463U (zh) * 2015-09-21 2016-01-20 英特换热设备(浙江)有限公司 一种混合直热型热泵热水系统
CN105466034A (zh) * 2015-12-24 2016-04-06 珠海格力电器股份有限公司 热泵热水器的水箱的控制方法及装置
CN105626903A (zh) 2016-03-18 2016-06-01 浙江科技学院 一种恒温混水阀
CN205780896U (zh) 2016-05-26 2016-12-07 宁波埃美柯铜阀门有限公司 流量调节电动温控阀
CN107687707A (zh) * 2017-11-24 2018-02-13 戴曜 一种采用空气源的热水系统及其控制方法
CN108019938A (zh) 2016-11-01 2018-05-11 威海桦众节能设备有限公司 家用常压热泵热水器
CN108375101A (zh) * 2018-01-19 2018-08-07 天津大学 热水型太阳能空气能热电联产一体化系统及运行方法
CN208651635U (zh) 2018-04-03 2019-03-26 顾建花 一种电动温控阀
CN111609561A (zh) * 2020-04-23 2020-09-01 青岛海尔空调电子有限公司 热水机组的控制方法
CN111609552A (zh) * 2020-04-23 2020-09-01 青岛海尔空调电子有限公司 热水机组

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101424451A (zh) * 2008-11-18 2009-05-06 浙江正理电子电气有限公司 双水箱系统空气源热泵热水器
FR2942301A1 (fr) * 2009-02-18 2010-08-20 Elka S A Installation de preparation instantanee d'eau chaude
CN102445027A (zh) * 2011-12-31 2012-05-09 广东欧科空调制冷有限公司 一种热回收型风冷热泵机组的双水箱热水系统
ITRM20120162U1 (it) * 2012-09-28 2014-03-29 Carlo Corsetti Impianto di riscaldamento e raffreddamento dell¿aria ambiente e produzione di acqua calda sanitaria
CN205373025U (zh) * 2016-01-07 2016-07-06 广东芬尼克兹节能设备有限公司 热水系统
CN108019937A (zh) * 2016-11-03 2018-05-11 威海桦众节能设备有限公司 一种承压型家用一体式热泵热水器

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024242A (ja) * 2004-09-22 2005-01-27 Sanyo Electric Co Ltd ヒートポンプ式給湯装置
EP2434231A1 (en) * 2009-05-18 2012-03-28 Mitsubishi Electric Corporation Heat pump device and method of controlling regulation valve
CN104633925A (zh) * 2013-11-15 2015-05-20 广东美的暖通设备有限公司 热泵热水机系统及其控制方法
CN104964431A (zh) * 2015-06-09 2015-10-07 芜湖鸣人热能设备有限公司 热水炉热水利用系统
CN204987463U (zh) * 2015-09-21 2016-01-20 英特换热设备(浙江)有限公司 一种混合直热型热泵热水系统
CN105466034A (zh) * 2015-12-24 2016-04-06 珠海格力电器股份有限公司 热泵热水器的水箱的控制方法及装置
CN105626903A (zh) 2016-03-18 2016-06-01 浙江科技学院 一种恒温混水阀
CN205780896U (zh) 2016-05-26 2016-12-07 宁波埃美柯铜阀门有限公司 流量调节电动温控阀
CN108019938A (zh) 2016-11-01 2018-05-11 威海桦众节能设备有限公司 家用常压热泵热水器
CN107687707A (zh) * 2017-11-24 2018-02-13 戴曜 一种采用空气源的热水系统及其控制方法
CN108375101A (zh) * 2018-01-19 2018-08-07 天津大学 热水型太阳能空气能热电联产一体化系统及运行方法
CN208651635U (zh) 2018-04-03 2019-03-26 顾建花 一种电动温控阀
CN111609561A (zh) * 2020-04-23 2020-09-01 青岛海尔空调电子有限公司 热水机组的控制方法
CN111609552A (zh) * 2020-04-23 2020-09-01 青岛海尔空调电子有限公司 热水机组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543363A (zh) * 2022-02-24 2022-05-27 本溪钢铁(集团)矿业有限责任公司 一种电加热器及其使用方法

Also Published As

Publication number Publication date
EP4141343A4 (en) 2023-10-18
CN111609552A (zh) 2020-09-01
EP4141343A1 (en) 2023-03-01

Similar Documents

Publication Publication Date Title
WO2021212962A1 (zh) 热水机组
WO2021212956A1 (zh) 热水机组的控制方法
US7883024B2 (en) Heat pump type water heater
CN203823880U (zh) 流量控制装置及流体回路系统
US20050189431A1 (en) Heat pump type water heater
CN106322768B (zh) 热水器及其控制方法
CN110736203B (zh) 用于空调除霜的控制方法、控制装置及空调
CN107062468B (zh) 一种双冷源机房空调系统及其控制方法
KR20130102479A (ko) 히트 펌프식 급탕 난방기
EP4354048A1 (en) Heat pump system and control method therefor
JP2006112781A (ja) ヒートポンプ式給湯機
WO2020010801A1 (zh) 多联机系统及控制方法
CN208254038U (zh) 一种跨临界二氧化碳空气源热泵除霜系统
CN203744542U (zh) 一种具有双模式热泵热水机
CN204880702U (zh) 一种智能调节水温的空气源热泵热水器
US11982487B2 (en) Defrosting control method, central controller and heating system
CN201047687Y (zh) 热气旁通回气补热除霜恒温热水系统
CN102721174A (zh) 一种家用变容无级调节即热式热泵热水器
KR20170055678A (ko) 태양광 전기를 이용한 공기열 히트펌프의 제어방법
JP2006046839A (ja) 冷温水搬送システム
CN110470004B (zh) 用于空调除霜的控制方法及装置、空调
CN115218462B (zh) 空调系统及其控制方法、设备和存储介质
US11644141B2 (en) Controller, method of operating a water source heat pump and a water source heat pump
CN114061025B (zh) 空调系统的化霜控制方法、控制装置、控制器及空调系统
CN112013447B (zh) 一种空气源热泵采暖机组控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021793723

Country of ref document: EP

Effective date: 20221123