WO2021212707A1 - 一种机翼碎涡结构、机翼及飞机 - Google Patents

一种机翼碎涡结构、机翼及飞机 Download PDF

Info

Publication number
WO2021212707A1
WO2021212707A1 PCT/CN2020/110221 CN2020110221W WO2021212707A1 WO 2021212707 A1 WO2021212707 A1 WO 2021212707A1 CN 2020110221 W CN2020110221 W CN 2020110221W WO 2021212707 A1 WO2021212707 A1 WO 2021212707A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
vortex
opening
aircraft
wing body
Prior art date
Application number
PCT/CN2020/110221
Other languages
English (en)
French (fr)
Inventor
潘卫军
韩帅
王玄
左青海
何天剑
王艺娟
潘军成
Original Assignee
中国民用航空飞行学院
潘卫军
韩帅
王玄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国民用航空飞行学院, 潘卫军, 韩帅, 王玄 filed Critical 中国民用航空飞行学院
Publication of WO2021212707A1 publication Critical patent/WO2021212707A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/36Structures adapted to reduce effects of aerodynamic or other external heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/005Influencing air flow over aircraft surfaces, not otherwise provided for by other means not covered by groups B64C23/02 - B64C23/08, e.g. by electric charges, magnetic panels, piezoelectric elements, static charges or ultrasounds

Definitions

  • the invention relates to the field of flight, in particular to a wing broken vortex structure, a wing and an aircraft.
  • Wingtip vortices are a major hazard to air traffic.
  • the takeoff and landing interval of the existing aircraft mainly depends on the influence of the wing tail vortex on the large airflow field during the approach phase, and it is necessary to wait for several minutes for the wake vortex to dissipate.
  • the cause of the wingtip vortex is that the pressure on the lower surface of the wing is greater than the upper surface of the wing, which generates lift.
  • a wingtip vortex is generated at the wingtip from the bottom to the top, which propagates backward with the atmospheric wind field. The hindrance will have an impact.
  • wingtip vortices through winglets.
  • Common winglets include windsurfing, fusion, and double feather winglets.
  • the winglet only reduces the amount of the wake vortex by obstructing the air flow caused by the pressure difference between the upper and lower wing surfaces. Although the amount of the wake vortex generated at this time is reduced, it still has a greater impact on the rear aircraft. .
  • the purpose of the present invention is to reduce the amount of the wake vortex by obstructing the air flow caused by the pressure difference between the upper and lower wing surfaces. Reduce the problem, but still have a greater impact on the rear aircraft.
  • a wing broken vortex structure comprising a first opening provided at the front edge of an aircraft wing body and a second opening provided at the rear edge of the wing body, the first opening and the second opening passing through a communicating pipe
  • the connecting pipe is located inside the wing body.
  • the leading edge and the trailing edge of the wing body are conducted through the connecting pipe, and the front and rear pressure difference of the wing body produces a blowing direction in the connecting pipe.
  • the airflow of the wake vortex because the wake vortex is generated behind the wing tip of the wing body, the connecting pipe is located inside the wing tip, and the airflow derived from the connecting pipe can apply a side jet to the wake vortex, so that the amount of vortex is not constant.
  • the balance can effectively trigger the instability of the vortex, greatly accelerate the dissipation of the wake vortex, and reduce the impact of the wake vortex on the rear aircraft.
  • the wing broken vortex structure is extremely simple, the manufacturing is very convenient, the effect is particularly good, and it is easy to promote.
  • the connecting pipe is arranged obliquely with respect to the longitudinal direction of the aircraft body, and the rear end of the oblique direction is close to the wing tip of the wing body.
  • the communication pipe is directly directed to the wake vortex, and the air flow out of it can also destroy the wake vortex more quickly and accelerate the dissipation of the wake vortex.
  • the first opening is provided at a distance of 1/4-1/2 from the leading edge of the wing body from the wing tip.
  • the second opening is provided at a distance of 1/4-1/2 from the leading edge of the wing body from the wing tip.
  • the vortex-breaking structure of the wing further includes a shutter, the shutter is arranged on the wing body, and the shutter is used to open and close the first opening or the second opening, or the The shutter is used to switch on and off the communication pipe.
  • the shutter when the aircraft takes off, the shutter opens the communicating pipe, so that the airflow flows to the wake vortex to accelerate the wake vortex to dissipate, reducing the take-off interval; the shutter closes the communicating pipe when the aircraft is cruising, The drag is reduced and the lift required by the aircraft is maintained; when the aircraft is landing, the shutter opens the connecting pipe again, so that the airflow flows to the wake vortex to accelerate the wake vortex to dissipate and reduce the landing interval.
  • the shutter is arranged on the front edge of the wing body, the shutter includes a driver, a shielding baffle and a sliding rail, and the upper and lower sides of the front edge of the wing body are respectively provided with the sliding rails
  • the shielding plate is slidably connected to the two sliding rails, the driver drives the shielding plate to move along the sliding rail, and the shielding plate can open and close the first opening.
  • a rack is provided on the shielding plate, the driver includes a gear and a drive shaft, the drive shaft is connected to the gear and drives the gear to rotate, and the gear engages the rack.
  • the vortex-breaking structure of the wing further includes a controller electrically connected to the shutter, and the controller is used to control the operation of the shutter.
  • the controller is an onboard computer.
  • the present invention also provides a wing including a wing body and the wing broken vortex structure as described in any one of the above.
  • the leading edge and the trailing edge of the wing body are conducted through the connecting pipe, and the pressure difference between the front and rear pressures of the wing body produces a blow to the wake vortex in the connecting pipe.
  • the connecting pipe Since the wake vortex is generated after the wing tip of the wing body, the connecting pipe is located inside the wing tip, and the air flow derived from the connecting pipe can apply a side jet to the wake vortex, which makes the vortex volume unbalanced. It can effectively trigger the instability of the vortex, greatly accelerate the dissipation of the wake vortex, and reduce the influence of the wake vortex on the rear aircraft.
  • the wing broken vortex structure is extremely simple, the manufacturing is very convenient, the effect is particularly good, and it is easy to promote.
  • a winglet is provided on the wing body.
  • the present invention also provides an aircraft including the wing as described in any one of the above.
  • the leading edge and the trailing edge of the wing body are conducted through the connecting pipe, and the airflow blowing to the wake vortex is generated in the connecting pipe by the pressure difference between the front and rear of the wing body
  • the communicating tube is located inside the wing tip, and the air flow derived from the communicating tube can apply a side jet to the wake vortex, which makes the vortex volume unbalanced, which can be effective
  • Trigger the instability of the vortex greatly accelerate the dissipation of the wake vortex, and reduce the impact of the wake vortex on the rear aircraft.
  • the wing broken vortex structure is extremely simple, the manufacturing is very convenient, the effect is particularly good, and it is easy to promote.
  • the leading edge and trailing edge of the wing body are conducted through the connecting pipe, and the pressure difference between the front and rear of the wing body is in the
  • the connecting pipe generates an airflow blowing toward the wake vortex. Since the wake vortex is generated behind the wing tip of the wing body, the connecting pipe is located inside the wing tip, and the airflow derived from the connecting pipe can apply a side jet to the wake vortex , Make the vortex ring unbalanced, can effectively trigger the instability of the vortex, greatly accelerate the dissipation of the wake vortex, and reduce the impact of the wake vortex on the rear aircraft.
  • the wing broken vortex structure is extremely simple, the manufacturing is very convenient, and the effect is particularly good. , Easy to promote;
  • the connecting pipe is arranged obliquely with respect to the length direction of the aircraft body, the rear end of the oblique direction is close to the wing tip of the wing body, and the connecting pipe Directly directed to the wake vortex, the air flow out of it can also destroy the wake vortex faster and accelerate the wake vortex to dissipate;
  • the shutter when the aircraft takes off, the shutter opens the connecting pipe, so that the airflow flows to the wake vortex to accelerate the wake vortex to dissipate and reduce the take-off interval;
  • the shutter closes the communicating pipe to reduce drag and maintain the required lift of the aircraft;
  • the shutter opens the communicating pipe again, so that the airflow flows to the wake vortex and accelerates the wake vortex to dissipate and reduce Small landing interval.
  • Fig. 1 is the first schematic diagram of the broken vortex structure of the wing according to the present invention
  • Figure 2 is the second schematic diagram of the broken vortex structure of the wing according to the present invention.
  • Figure 3a is the third schematic diagram of the broken vortex structure of the wing according to the present invention.
  • Figure 3b is the fourth schematic diagram of the broken vortex structure of the wing according to the present invention.
  • Figure 4a is the vorticity cloud image of NACA4412 standard wing slice (40m);
  • Figure 4b is a NACA4412 wing slice vorticity cloud diagram (40m) with a wing broken vortex structure
  • Figure 5a is the vorticity cloud image of NACA4412 standard wing slice (80m);
  • Figure 5b is a NACA4412 wing slice vorticity cloud diagram (80m) with a broken vortex structure of the wing;
  • Figure 6a is the vorticity cloud image of NACA4412 standard wing slice (120m);
  • Figure 6b is a NACA4412 wing slice vorticity cloud diagram (120m) with a broken vortex structure of the wing;
  • Figure 7a is the vorticity cloud image of NACA4412 standard wing slice (160m);
  • Figure 7b is a NACA4412 wing slice vorticity cloud diagram (160m) with a wing broken vortex structure
  • Figure 8a is the speed gradient map of NACA4412 standard wing slice (40m);
  • Figure 8b is the speed gradient diagram (40m) of the NACA4412 wing slice with wing broken vortex structure
  • Figure 9a is the speed gradient map of NACA4412 standard wing slice (80m);
  • Figure 9b is a velocity gradient diagram (80m) of the NACA4412 wing slice with wing broken vortex structure
  • Figure 10a is the speed gradient map of NACA4412 standard wing slice (120m);
  • Fig. 10b is the speed gradient diagram of the NACA4412 wing slice (120m) with the broken vortex structure of the wing;
  • Figure 11a is the speed gradient map of NACA4412 standard wing slice (160m);
  • Fig. 11b is a velocity gradient diagram (160m) of the NACA4412 wing slice with a broken vortex structure of the wing.
  • Icon 1-wing body, 11-first opening, 12-second opening, 13-connecting pipe, 14-winglet, 2-baffle plate, 21-rack, 3-sliding rail, 4-gear , 41-drive shaft.
  • the wing broken vortex structure of the present invention includes a first opening 11 provided on the front edge of the aircraft wing body 1 and a first opening 11 provided on the rear edge of the wing body 1.
  • Two openings 12, the first opening 11 and the second opening 12 are conducted through a communication tube 13 which is located inside the wing body 1.
  • the connecting pipe 13 is arranged obliquely with respect to the length direction of the aircraft body, and the rear end of the oblique direction is close to the wing tip of the wing body 1.
  • the connecting pipe 13 directly points to the wake vortex, The air flow out of it can also destroy the wake vortex more quickly and accelerate its dissipation; as shown in Figures 1 and 2, the first opening 11 is provided at a position 1/3 away from the leading edge of the wing body 1 from the tip of the wing.
  • the second opening 12 is located at the 1/4 distance from the leading edge of the wing body 1 to the wing tip, so that the airflow flows through the opening and intersects the wake vortex at the best position that is twice the span of the wing, and can effectively generate in the wake vortex.
  • the phase triggers the self-intersecting instability of the wake vortex.
  • the wing vortex structure further includes a shutter and a controller.
  • the shutter is provided on the wing body 1, and the shutter is used to open and close the first An opening 11 or a second opening 12, or the shutter is used to switch the connecting pipe 13, the controller is electrically connected to the shutter, and the controller is used to control the operation of the shutter;
  • the shutter is provided on the front edge of the wing body 1, the shutter includes a driver, a shield 2 and a slide rail 3.
  • the upper and lower sides of the front edge of the wing body 1 are respectively provided with a The slide rail 3, the shielding plate 2 is slidably connected to the two slide rails 3, the driver drives the shielding plate 2 to move along the slide rail 3, and the shielding plate 2 can open and close the first Opening 11, the shield plate 2 is provided with a rack 21, the driver includes a gear 4 and a drive shaft 41, the drive shaft 41 is connected to the gear 4 and drives the gear 4 to rotate, and the gear 4 meshes For the rack 21, the controller is an onboard computer.
  • the annular volume, vorticity, tangential velocity, vortex core radius, sinking speed, etc. are usually used as parameters to quantify the characteristics of the wake vortex.
  • the vorticity has a greater impact on the aerodynamic performance of the rear aircraft.
  • the tangential velocity the following will analyze and compare the vorticity and tangential velocity of the NACA4412 standard wing and the NACA4412 wing with a wing broken vortex structure.
  • the vorticity is an important parameter that characterizes the strength of the aircraft wake vortex. Its physical meaning is to describe the curl of the fluid velocity vector.
  • the vorticity vector form in the three-dimensional flow field can be expressed as follows:
  • ⁇ x , ⁇ y , and ⁇ z are the components of the vorticity in the x, y, and z directions, respectively.
  • the vorticity For a two-dimensional plane flow field, since the vorticity only has a component in one direction, it can be expressed by the component of the vorticity in the y direction, namely:
  • Figure 4a-7b Figure 4a, Figure 5a, Figure 6a and Figure 7a are NACA4412 standard wing slice vorticity cloud diagrams
  • Figure 4b, Figure 5b, Figure 6b and Figure 7b are the wing broken vortex structure The vorticity cloud image of NACA4412 wing slice.
  • the maximum value of the vortex is 5.01; a year-on-year decrease of about 13%.
  • the airflow wake vortex generated by the broken vortex structure of the wing accelerates the dissipation of the wingtip wake vortex, and the vorticity decreases more obviously with the development of the wake vortex.
  • the sharp opening can reduce the vorticity transmitted backwards.
  • Circulation is the path integral of the fluid velocity (that is, the tangential velocity of the wake vortex) along a closed curve. It is usually expressed as, and its expression is as follows:
  • the amount of wake circulation of an airplane is related to various factors such as flight speed and wing shape; when the lift coefficient is C L , the wing aspect ratio is AR , and the airplane with wingspan B is at speed V During flight, the lift obtained by it is equal to the momentum flux of the curled wake vortex, and s is the load factor along the span direction. From this, the initial circulation of the aircraft wake vortex ⁇ 0 can be expressed as:
  • Fig. 8a-11b Fig. 8a, Fig. 9a, Fig. 10a and Fig. 11a are the NACA4412 standard wing slice velocity gradient map
  • Fig. 8b, Fig. 9b, Fig. 10b and Fig. 11b are the structure with broken vortex wing The speed gradient map of the NACA4412 wing slice.
  • the leading edge and the trailing edge of the wing body 1 are connected through the connecting pipe 13, and the pressure difference between the front and back of the wing body 1 is in the connecting pipe 13 Since the wake vortex is generated behind the wing tip of the wing body 1, the communicating tube 13 is located inside the wing tip, and the air flow derived from the communicating tube 13 can apply side jets to the wake vortex.
  • the flow makes the vortex circulation unbalanced, which can effectively trigger the instability of the vortex, greatly accelerate the dissipation of the wake vortex, and reduce the influence of the wake vortex on the following aircraft;
  • the shutter opens the connecting pipe 13 , Make the air flow to the wake vortex to accelerate the wake vortex dissipate, reduce the take-off interval;
  • the shutter closes the communicating pipe 13 to reduce drag and maintain the required lift of the aircraft;
  • the shutter is again Opening the connecting pipe 13 allows the airflow to flow to the wake vortex to accelerate the wake vortex dissipation, and reduce the landing interval;
  • the wing broken vortex structure is extremely simple, the manufacturing is very convenient, the effect is particularly good, and it is easy to promote.
  • a wing according to the present invention includes a wing body 1 and a wing vortex structure as described in embodiment 1. As shown in Figures 1 and 2, the wing body 1 is provided with winglet 14.
  • the leading edge and the trailing edge of the wing body 1 are connected through the connecting pipe 13, and the pressure difference between the front and rear pressures of the wing body 1 generates blowing in the connecting pipe 13.
  • the airflow to the wake vortex because the wake vortex is generated after the wing tip of the wing body 1, the communication tube 13 is located inside the wing tip, and the airflow derived from the communication tube 13 can apply a side jet to the wake vortex, so that The unbalanced vortex ring volume can effectively trigger the instability of the vortex, greatly accelerate the dissipation of the wake vortex, and reduce the impact of the wake vortex on the rear aircraft.
  • the wing broken vortex structure is extremely simple, the manufacturing is very convenient, the effect is particularly good, and it is convenient Promotion.
  • An airplane according to the present invention includes a body, and the body is connected to the wing described in the second embodiment.
  • the leading edge and the trailing edge of the wing body 1 are connected through the connecting pipe 13, and the front and rear pressure difference of the wing body 1 generates a blowing direction in the connecting pipe 13
  • the air flow of the wake vortex because the wake vortex is generated behind the wing tip of the wing body 1, the communication tube 13 is located inside the wing tip, and the air flow derived from the communication tube 13 can apply a side jet to the wake vortex, so that the vortex
  • the unbalanced circulation can effectively trigger the instability of the vortex, greatly accelerate the dissipation of the wake vortex, and reduce the impact of the wake vortex on the rear aircraft.
  • the wing broken vortex structure is extremely simple, the manufacturing is very convenient, the effect is particularly good, and it is easy to promote .

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Toys (AREA)

Abstract

一种机翼碎涡结构、机翼及飞机,该机翼碎涡结构包括设于飞机机翼本体(1)前缘的第一开口(11)和设于所述机翼本体(1)后缘的第二开口(12),所述第一开口(11)和所述第二开口(12)通过连通管(13)导通,所述连通管(13)位于所述机翼本体(1)内部。所述的机翼碎涡结构,通过所述连通管(13)导通所述机翼本体(1)前缘和后缘,由所述机翼本体(1)前后压力差在所述连通管(13)中产生吹向尾涡的气流,由于尾涡产生于所述机翼本体(1)翼梢之后,所述连通管(13)位于翼梢内侧,所述连通管(13)导出的气流能够向尾涡施加侧向喷流,使涡环量不均衡,可以有效触发涡流的不稳定性,极大加速尾涡消散,减小尾涡对后机的影响,该机翼碎涡结构极其简单,制造十分方便,效果特别良好,便于推广。

Description

一种机翼碎涡结构、机翼及飞机 技术领域
本发明涉及飞行领域,特别是涉及一种机翼碎涡结构、机翼及飞机。
背景技术
翼尖涡是航空交通的一大危害,飞机在空中航行时,如遭遇前机尾涡,会导致激烈翻转或猛然下坠,尤其在起飞降落阶段,这一影响更为严重。为保证现有飞机的安全,现有飞机起落间隔主要取决于进近阶段机翼尾涡对大气流场的影响,要等待数分钟以使尾涡消散。
翼尖涡产生的原因是由于机翼下表面压力大于机翼上表面,这一方面产生了升力,一方面在翼尖处产生了从下方向上方的翼尖涡,随大气风场向后传播对后机造成影响。
现有的技术方案主要是通过翼梢小翼阻挡翼尖涡的生成。现常见的翼梢小翼包括帆板式、融合式、双羽式等多种翼梢小翼。然而翼梢小翼仅仅通过阻碍由于上下翼表面的压力差导致的空气流动而减小尾涡的环量,此时虽然产生的尾涡环量减小,但仍然对后机有较大的影响。
发明内容
本发明的目的在于:针对现有技术存在的现有翼梢小翼仅仅通过阻碍由于上下翼表面的压力差导致的空气流动而减小尾涡的环量,此时虽然产生的尾涡环量减小,但仍然对后机有较大的影响的问题,提供一种机翼碎涡结构、机翼及飞机,形成对产生尾涡的侧向气流,使涡环量不均衡进而加速尾涡的消散,大幅减少尾涡对后机的影响。
为了实现上述目的,本发明采用的技术方案为:
一种机翼碎涡结构,包括设于飞机机翼本体前缘的第一开口和设于所述机 翼本体后缘的第二开口,所述第一开口和所述第二开口通过连通管导通,所述连通管位于所述机翼本体内部。
采用本发明所述的一种机翼碎涡结构,通过所述连通管导通所述机翼本体前缘和后缘,由所述机翼本体前后压力差在所述连通管中产生吹向尾涡的气流,由于尾涡产生于所述机翼本体翼梢之后,所述连通管位于翼梢内侧,所述连通管导出的气流能够向尾涡施加侧向喷流,使涡环量不均衡,可以有效触发涡流的不稳定性,极大加速尾涡消散,减小尾涡对后机的影响,该机翼碎涡结构极其简单,制造十分方便,效果特别良好,便于推广。
优选地,所述连通管相对飞机机体长度方向倾斜设置,倾斜方向的后端靠近所述机翼本体翼梢。
采用这种结构设置,所述连通管直接指向尾涡,其流出的气流也能更快破坏尾涡,加速尾涡消散。
优选地,所述第一开口设于所述机翼本体前缘距离翼梢1/4-1/2处。
优选地,所述第二开口设于所述机翼本体前缘距离翼梢1/4-1/2处。
优选地,该机翼碎涡结构还包括启闭器,所述启闭器设于所述机翼本体上,所述启闭器用于启闭所述第一开口或者第二开口,或者所述启闭器用于通断所述连通管。
采用这种结构设置,在飞机起飞时所述启闭器开启所述连通管,使气流流向尾涡加速尾涡消散,减小起飞间隔;飞机巡航时所述启闭器关闭所述连通管,减小阻力,保持飞机所需升力;飞机降落时所述启闭器再次开启所述连通管,使气流流向尾涡加速尾涡消散,减小降落间隔。
进一步优选地,所述启闭器设于所述机翼本体前缘,所述启闭器包括驱动器、遮挡板和滑轨,所述机翼本体前缘上下两侧分别设有所述滑轨,所述遮挡板滑动连接于两个所述滑轨,所述驱动器驱动所述遮挡板沿所述滑轨移动,所 述遮挡板能够启闭所述第一开口。
进一步优选地,所述遮挡板上设有齿条,所述驱动器包括齿轮和驱动轴,所述驱动轴连接所述齿轮,并驱动所述齿轮转动,所述齿轮啮合所述齿条。
优选地,该机翼碎涡结构还包括控制器,所述控制器电性连接所述启闭器,所述控制器用于控制所述启闭器工作。
进一步优选地,所述控制器为机载电脑。
本发明还提供了一种机翼,包括机翼本体和如以上任一项所述机翼碎涡结构。
采用本发明所述的一种机翼,通过所述连通管导通所述机翼本体前缘和后缘,由所述机翼本体前后压力差在所述连通管中产生吹向尾涡的气流,由于尾涡产生于所述机翼本体翼梢之后,所述连通管位于翼梢内侧,所述连通管导出的气流能够向尾涡施加侧向喷流,使涡环量不均衡,可以有效触发涡流的不稳定性,极大加速尾涡消散,减小尾涡对后机的影响,该机翼碎涡结构极其简单,制造十分方便,效果特别良好,便于推广。
优选地,所述机翼本体上设有翼梢小翼。
本发明还提供了一种飞机,包括如以上任一项所述的机翼。
采用本发明所述的一种飞机,通过所述连通管导通所述机翼本体前缘和后缘,由所述机翼本体前后压力差在所述连通管中产生吹向尾涡的气流,由于尾涡产生于所述机翼本体翼梢之后,所述连通管位于翼梢内侧,所述连通管导出的气流能够向尾涡施加侧向喷流,使涡环量不均衡,可以有效触发涡流的不稳定性,极大加速尾涡消散,减小尾涡对后机的影响,该机翼碎涡结构极其简单,制造十分方便,效果特别良好,便于推广。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、本发明所述的一种机翼碎涡结构、机翼及飞机,通过所述连通管导通所 述机翼本体前缘和后缘,由所述机翼本体前后压力差在所述连通管中产生吹向尾涡的气流,由于尾涡产生于所述机翼本体翼梢之后,所述连通管位于翼梢内侧,所述连通管导出的气流能够向尾涡施加侧向喷流,使涡环量不均衡,可以有效触发涡流的不稳定性,极大加速尾涡消散,减小尾涡对后机的影响,该机翼碎涡结构极其简单,制造十分方便,效果特别良好,便于推广;
2、本发明所述的一种机翼碎涡结构、机翼及飞机,所述连通管相对飞机机体长度方向倾斜设置,倾斜方向的后端靠近所述机翼本体翼梢,所述连通管直接指向尾涡,其流出的气流也能更快破坏尾涡,加速尾涡消散;
3、本发明所述的一种机翼碎涡结构、机翼及飞机,在飞机起飞时所述启闭器开启所述连通管,使气流流向尾涡加速尾涡消散,减小起飞间隔;飞机巡航时所述启闭器关闭所述连通管,减小阻力,保持飞机所需升力;飞机降落时所述启闭器再次开启所述连通管,使气流流向尾涡加速尾涡消散,减小降落间隔。
附图说明
图1是本发明所述机翼碎涡结构的示意图一;
图2是本发明所述机翼碎涡结构的示意图二;
图3a是本发明所述机翼碎涡结构的示意图三;
图3b是本发明所述机翼碎涡结构的示意图四;
图4a是NACA4412标准机翼切片涡量云图(40m);
图4b是具有机翼碎涡结构的NACA4412机翼切片涡量云图(40m);
图5a是NACA4412标准机翼切片涡量云图(80m);
图5b是具有机翼碎涡结构的NACA4412机翼切片涡量云图(80m);
图6a是NACA4412标准机翼切片涡量云图(120m);
图6b是具有机翼碎涡结构的NACA4412机翼切片涡量云图(120m);
图7a是NACA4412标准机翼切片涡量云图(160m);
图7b是具有机翼碎涡结构的NACA4412机翼切片涡量云图(160m);
图8a是NACA4412标准机翼切片速度梯度图(40m);
图8b是具有机翼碎涡结构的NACA4412机翼切片速度梯度图(40m);
图9a是NACA4412标准机翼切片速度梯度图(80m);
图9b是具有机翼碎涡结构的NACA4412机翼切片速度梯度图(80m);
图10a是NACA4412标准机翼切片速度梯度图(120m);
图10b是具有机翼碎涡结构的NACA4412机翼切片速度梯度图(120m);
图11a是NACA4412标准机翼切片速度梯度图(160m);
图11b是具有机翼碎涡结构的NACA4412机翼切片速度梯度图(160m)。
图标:1-机翼本体,11-第一开口,12-第二开口,13-连通管,14-翼梢小翼,2-遮挡板,21-齿条,3-滑轨,4-齿轮,41-驱动轴。
具体实施方式
下面结合附图,对本发明作详细的说明。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
如图1-图11b所示,本发明所述的一种机翼碎涡结构,包括设于飞机机翼本体1前缘的第一开口11和设于所述机翼本体1后缘的第二开口12,所述第一开口11和所述第二开口12通过连通管13导通,所述连通管13位于所述机翼本体1内部。
如图2所示,所述连通管13相对飞机机体长度方向倾斜设置,倾斜方向的后端靠近所述机翼本体1翼梢,采用这种结构设置,所述连通管13直接指向尾涡,其流出的气流也能更快破坏尾涡,加速尾涡消散;如图1和图2所示,所述第一开口11设于所述机翼本体1前缘距离翼梢1/3处,所述第二开口12设于所述机翼本体1前缘距离翼梢1/4处,使气流流经开孔交于尾涡后一倍翼展长度处最佳,可有效在尾涡生成阶段触发尾涡的自相交不稳定性。
如图3a和图3b所示,该机翼碎涡结构还包括启闭器和控制器,所述启闭器设于所述机翼本体1上,所述启闭器用于启闭所述第一开口11或者第二开口12,或者所述启闭器用于通断所述连通管13,所述控制器电性连接所述启闭器,所述控制器用于控制所述启闭器工作;具体地,所述启闭器设于所述机翼本体1前缘,所述启闭器包括驱动器、遮挡板2和滑轨3,所述机翼本体1前缘上下两侧分别设有所述滑轨3,所述遮挡板2滑动连接于两个所述滑轨3,所述驱动器驱动所述遮挡板2沿所述滑轨3移动,所述遮挡板2能够启闭所述第一开口11,所述遮挡板2上设有齿条21,所述驱动器包括齿轮4和驱动轴41,所述驱动轴41连接所述齿轮4,并驱动所述齿轮4转动,所述齿轮4啮合所述齿条21,所述控制器为机载电脑。
为了了解飞机尾涡的演化规律,通常选用环量、涡量、切向速度、涡核半径、下沉速度等作为量化尾涡特性的参数,其中对后机气动性能影响较大的是涡量以及切向速度,因此以下将分析对比NACA4412标准机翼和具有机翼碎涡结构的NACA4412机翼的涡量以及切向速度。
涡量是表征飞机尾涡强度的重要参数,其物理意义在于描述流体速度矢量的旋度,对于三维流场域内涡量矢量形式可表述如下:
Figure PCTCN2020110221-appb-000001
其中,ω x、ω y、ω z分别为涡量在x、y、z三个方向上的分量。
对于二维平面流场,由于涡量仅在一个方向上存在分量,因此可用涡量在y方向上的分量来表述,即:
Figure PCTCN2020110221-appb-000002
计算后如图4a-图7b所示,图4a、图5a、图6a和图7a为NACA4412标准机翼切片涡量云图,图4b、图5b、图6b和图7b为具有机翼碎涡结构的NACA4412机翼切片涡量云图。
如图4a所示,NACA4412标准机翼在y=40m处测得y向涡量最大值为17.90;如图4b所示,具有机翼碎涡结构的NACA4412机翼在y=40m处测得y向涡量最大值为16.69;同比下降约7%。
如图5a所示,NACA4412标准机翼在y=80m处测得y向涡量最大值为5.78;如图5b所示,具有机翼碎涡结构的NACA4412机翼在y=40m处测得y向涡量最大值为5.01;同比下降约13%。
如图6a所示,NACA4412标准机翼在y=120m处测得y向涡量最大值为4.26;如图6b所示,具有机翼碎涡结构的NACA4412机翼在y=40m处测得y向涡量最大值为3.65;同比下降约15%。
如图7a所示,NACA4412标准机翼在y=160m处测得y向涡量最大值为3.86;如图7b所示,具有机翼碎涡结构的NACA4412机翼在y=40m处测得y向涡量最大值为2.91;同比下降约25%。
根据四处切片对比可知,具有机翼碎涡结构产生的气流尾涡加速了翼尖尾涡的消散,且随着尾涡的发展涡量下降越明显;根据涡量对比,说明在近地阶段翼尖开孔可以减小向后传递的涡量。
环量是流体速度(即尾涡切向速度)沿着一条闭曲线的路径积分,通常以来 表示,其表达式如下:
Figure PCTCN2020110221-appb-000003
由Kutta-Joukowsky定律可知,飞机尾流环量与飞行速度及机翼形状等多种因素有关;当升力系数为C L,机翼展弦比为A R,翼展为B的飞机以速度V飞行时,其获取的升力等于卷起的尾涡动量通量,s为沿翼展方向的载荷因素,由此得飞机尾涡的初始环量Γ 0可表述为:
Figure PCTCN2020110221-appb-000004
当作用在飞机上的力达到平衡时,飞机的升力和尾流的垂直动量通量等于飞机的重量,我们可以得到平衡状态时的尾涡的初始环量Γ 0
Figure PCTCN2020110221-appb-000005
对于单个尾涡或轴对称的尾涡而言,其在固定半径上的环量值还可利用该半径处的切向速度来表述:
Γ=∮V θds=Γ (r)=2πrV θ(r)
由于切向速度由于需要确定不同平面的涡核中心,根据图4a-图7b对比可知,机翼开孔对涡核位置影响较小,因此直接选用不同xoz截面上的速度进行对比。
计算后如图8a-图11b所示,图8a、图9a、图10a和图11a为NACA4412标准机翼切片速度梯度图,图8b、图9b、图10b和图11b为具有机翼碎涡结构的NACA4412机翼切片速度梯度图。
如图8a、图9a、图10a和图11a所示,可知气流流过机翼后在y=40m、80m、 120m、160m处形成翼尖涡,且随着翼尖涡向后传递过程中切向速度逐渐减小、涡环量逐渐减小。
如图8b、图9b、图10b和图11b所示,可知气流流过开孔机翼后在y=40m、80m、120m、160m处并排形成两个大小不同的涡,其中翼尖涡切向速度与涡环量较大,因此对后机气动性能影响较大,开孔后形成的涡与翼尖涡方向相同,涡环量较小,因而对后机气动性能影响较小。
根据图8a与图8b的对比可知,开孔后相比正常机翼翼尖涡影响区域较小,且两并排形成的涡中间有紊流产生,导致两涡能量消耗增加,加速尾涡消散;根据图11a与图11b的对比可知,未开孔机翼此时切向速度标量仍可达4.2m/s,而开孔后机翼此时切向速度标量可降至3.4m/s;说明开孔机翼能够有效减小翼尖涡向后传递过程中的环量以及切向速度。
运用本发明所述的一种机翼碎涡结构,通过所述连通管13导通所述机翼本体1前缘和后缘,由所述机翼本体1前后压力差在所述连通管13中产生吹向尾涡的气流,由于尾涡产生于所述机翼本体1翼梢之后,所述连通管13位于翼梢内侧,所述连通管13导出的气流能够向尾涡施加侧向喷流,使涡环量不均衡,可以有效触发涡流的不稳定性,极大加速尾涡消散,减小尾涡对后机的影响;在飞机起飞时所述启闭器开启所述连通管13,使气流流向尾涡加速尾涡消散,减小起飞间隔;飞机巡航时所述启闭器关闭所述连通管13,减小阻力,保持飞机所需升力;飞机降落时所述启闭器再次开启所述连通管13,使气流流向尾涡加速尾涡消散,减小降落间隔;该机翼碎涡结构极其简单,制造十分方便,效果特别良好,便于推广。
实施例2
本发明所述的一种机翼,包括机翼本体1和如实施例1所述机翼碎涡结构,如图1和图2所示,所述机翼本体1上设有翼梢小翼14。
运用本发明所述的一种机翼,通过所述连通管13导通所述机翼本体1前缘 和后缘,由所述机翼本体1前后压力差在所述连通管13中产生吹向尾涡的气流,由于尾涡产生于所述机翼本体1翼梢之后,所述连通管13位于翼梢内侧,所述连通管13导出的气流能够向尾涡施加侧向喷流,使涡环量不均衡,可以有效触发涡流的不稳定性,极大加速尾涡消散,减小尾涡对后机的影响,该机翼碎涡结构极其简单,制造十分方便,效果特别良好,便于推广。
实施例3
本发明所述的一种飞机,包括机体,所述机体连接如实施例2所述的机翼。
运用本发明所述的一种飞机,通过所述连通管13导通所述机翼本体1前缘和后缘,由所述机翼本体1前后压力差在所述连通管13中产生吹向尾涡的气流,由于尾涡产生于所述机翼本体1翼梢之后,所述连通管13位于翼梢内侧,所述连通管13导出的气流能够向尾涡施加侧向喷流,使涡环量不均衡,可以有效触发涡流的不稳定性,极大加速尾涡消散,减小尾涡对后机的影响,该机翼碎涡结构极其简单,制造十分方便,效果特别良好,便于推广。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种机翼碎涡结构,其特征在于,包括设于飞机机翼本体(1)前缘的第一开口(11)和设于所述机翼本体(1)后缘的第二开口(12),所述第一开口(11)和所述第二开口(12)通过连通管(13)导通,所述连通管(13)位于所述机翼本体(1)内部。
  2. 根据权利要求1所述的机翼碎涡结构,其特征在于,所述连通管(13)相对飞机机体长度方向倾斜设置,倾斜方向的后端靠近所述机翼本体(1)翼梢。
  3. 根据权利要求1所述的机翼碎涡结构,其特征在于,所述第一开口(11)设于所述机翼本体(1)前缘距离翼梢1/4-1/2处。
  4. 根据权利要求1-3任一项所述的机翼碎涡结构,其特征在于,还包括启闭器,所述启闭器设于所述机翼本体(1)上,所述启闭器用于启闭所述第一开口(11)或者第二开口(12),或者所述启闭器用于通断所述连通管(13)。
  5. 根据权利要求4所述的机翼碎涡结构,其特征在于,所述启闭器设于所述机翼本体(1)前缘,所述启闭器包括驱动器、遮挡板(2)和滑轨(3),所述机翼本体(1)前缘上下两侧分别设有所述滑轨(3),所述遮挡板(2)滑动连接于两个所述滑轨(3),所述驱动器驱动所述遮挡板(2)沿所述滑轨(3)移动,所述遮挡板(2)能够启闭所述第一开口(11)。
  6. 根据权利要求5所述的机翼碎涡结构,其特征在于,所述遮挡板(2)上设有齿条(21),所述驱动器包括齿轮(4)和驱动轴(41),所述驱动轴(41)连接所述齿轮(4),并驱动所述齿轮(4)转动,所述齿轮(4)啮合所述齿条(21)。
  7. 根据权利要求4所述的机翼碎涡结构,其特征在于,还包括控制器,所述控制器电性连接所述启闭器,所述控制器用于控制所述启闭器工作。
  8. 一种机翼,其特征在于,包括机翼本体(1)和如权利要求1-7任一项所述机翼碎涡结构。
  9. 根据权利要求8所述的机翼,其特征在于,所述机翼本体(1)上设有翼梢 小翼(14)。
  10. 一种飞机,其特征在于,包括如权利要求8-9任一项所述的机翼。
PCT/CN2020/110221 2020-04-20 2020-08-20 一种机翼碎涡结构、机翼及飞机 WO2021212707A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010314476.8A CN111452954A (zh) 2020-04-20 2020-04-20 一种机翼碎涡结构、机翼及飞机
CN202010314476.8 2020-04-20

Publications (1)

Publication Number Publication Date
WO2021212707A1 true WO2021212707A1 (zh) 2021-10-28

Family

ID=71675498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110221 WO2021212707A1 (zh) 2020-04-20 2020-08-20 一种机翼碎涡结构、机翼及飞机

Country Status (2)

Country Link
CN (1) CN111452954A (zh)
WO (1) WO2021212707A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111452954A (zh) * 2020-04-20 2020-07-28 中国民用航空飞行学院 一种机翼碎涡结构、机翼及飞机
CN112810803A (zh) * 2021-02-22 2021-05-18 中国民用航空飞行学院 一种用于加快翼尖涡耗散的飞机尾流调整装置
CN114735196B (zh) * 2022-04-15 2024-01-26 重庆交通大学绿色航空技术研究院 一种固定翼无人机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5201829A (en) * 1991-12-19 1993-04-13 General Dynamics Corporation Flight control device to provide directional control
CN101767648A (zh) * 2010-01-14 2010-07-07 西北工业大学 一种消除大迎角细长体侧向力的装置
CN103407570A (zh) * 2013-07-12 2013-11-27 西北工业大学 用于控制大迎角细长体侧向力的涡流发生装置
CN206407132U (zh) * 2017-01-24 2017-08-15 厦门大学 一种用于抑制旋翼噪声的后掠桨尖开孔装置
CN110588957A (zh) * 2019-10-08 2019-12-20 江西洪都航空工业集团有限责任公司 一种机翼翼尖涡流动控制方法
CN111452954A (zh) * 2020-04-20 2020-07-28 中国民用航空飞行学院 一种机翼碎涡结构、机翼及飞机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101913426B (zh) * 2010-08-11 2013-08-21 厦门大学 一种翼梢涡抑制装置及其抑制方法
CN102556331A (zh) * 2010-12-23 2012-07-11 北京航空航天大学 一种鸭式布局飞机高效间接涡控技术的方法与装置
US9511850B2 (en) * 2014-04-12 2016-12-06 The Boeing Company Wing tip device for an aircraft wing
US11192625B2 (en) * 2016-06-17 2021-12-07 Bombardier Inc. Panels for obstructing air flow through apertures in an aircraft wing
CN107264775A (zh) * 2017-06-16 2017-10-20 青岛华创风能有限公司 气腔连接控制器
CN110210568A (zh) * 2019-06-06 2019-09-06 中国民用航空飞行学院 基于卷积神经网络的航空器尾涡识别方法及系统
CN212290312U (zh) * 2020-04-20 2021-01-05 中国民用航空飞行学院 一种机翼碎涡结构、机翼及飞机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5201829A (en) * 1991-12-19 1993-04-13 General Dynamics Corporation Flight control device to provide directional control
CN101767648A (zh) * 2010-01-14 2010-07-07 西北工业大学 一种消除大迎角细长体侧向力的装置
CN103407570A (zh) * 2013-07-12 2013-11-27 西北工业大学 用于控制大迎角细长体侧向力的涡流发生装置
CN206407132U (zh) * 2017-01-24 2017-08-15 厦门大学 一种用于抑制旋翼噪声的后掠桨尖开孔装置
CN110588957A (zh) * 2019-10-08 2019-12-20 江西洪都航空工业集团有限责任公司 一种机翼翼尖涡流动控制方法
CN111452954A (zh) * 2020-04-20 2020-07-28 中国民用航空飞行学院 一种机翼碎涡结构、机翼及飞机

Also Published As

Publication number Publication date
CN111452954A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
WO2021212707A1 (zh) 一种机翼碎涡结构、机翼及飞机
US8651813B2 (en) Fluid dynamic body having escapelet openings for reducing induced and interference drag, and energizing stagnant flow
RU2531537C2 (ru) Летательный аппарат, имеющий лямбда-образную коробчатую конфигурацию крыла
CN206318014U (zh) 一种机翼尾缘及具有其的飞翼式飞机
US4382569A (en) Wing tip flow control
JP6214851B2 (ja) 航空機の騒音低減のための方法および装置
Garmann et al. Interactions of a streamwise-oriented vortex with a finite wing
US20110260008A1 (en) Fluid flow control device for an aerofoil
US20060006290A1 (en) Vorticity cancellation at trailing edge for induced drag elimination
CN104176241B (zh) 一种高空螺旋桨协同射流高效气动布局构型
US20110309202A1 (en) Wingtec Holding Limited
US20070262205A1 (en) Retractable multiple winglet
CN104118557A (zh) 具有多缝道协同射流控制的低雷诺数翼型及控制方法
CN107336842B (zh) 一种高超声速乘波鸭翼气动布局方法
JP2012500157A (ja) 地面効果翼機の翼構造
US20140064979A1 (en) Multicant Winglets
Boermans Research on sailplane aerodynamics at Delft University of Technology
US6318677B1 (en) Method and apparatus for generating a stable leading-edge lifting-vortex controller
CN107848619B (zh) 机翼的流体流动控制
KR20200055036A (ko) 항공기용 큐폴라 페어링 및 이를 제조하기 위한 방법
CN207607638U (zh) 基于主动流动控制技术的飞翼布局飞行器航向控制装置
CN113859515A (zh) 一种飞机襟翼
CN212290312U (zh) 一种机翼碎涡结构、机翼及飞机
JP2022545576A (ja) 固定翼を有する航空機の揚力増強アセンブリ
CN216185999U (zh) 一种飞机襟翼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932270

Country of ref document: EP

Kind code of ref document: A1