WO2021212695A1 - 一种热交换器 - Google Patents

一种热交换器 Download PDF

Info

Publication number
WO2021212695A1
WO2021212695A1 PCT/CN2020/107901 CN2020107901W WO2021212695A1 WO 2021212695 A1 WO2021212695 A1 WO 2021212695A1 CN 2020107901 W CN2020107901 W CN 2020107901W WO 2021212695 A1 WO2021212695 A1 WO 2021212695A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
plates
exchange tube
heat exchanger
shell
Prior art date
Application number
PCT/CN2020/107901
Other languages
English (en)
French (fr)
Inventor
朱书成
王希彬
李金峰
吕艳伍
Original Assignee
河南龙成煤高效技术应用有限公司
河北龙成煤综合利用有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南龙成煤高效技术应用有限公司, 河北龙成煤综合利用有限公司 filed Critical 河南龙成煤高效技术应用有限公司
Publication of WO2021212695A1 publication Critical patent/WO2021212695A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0131Auxiliary supports for elements for tubes or tube-assemblies formed by plates

Definitions

  • the present disclosure relates to the field of heat exchange technology, and in particular, to a heat exchanger.
  • the heat exchanger is a device that performs heat exchange and realizes the flow of heat from a high-temperature medium to a low-temperature medium to realize heating or cooling.
  • the heat exchange device in the prior art has at least the following shortcomings: In actual use, due to the relatively long length of the straight section of the heat exchange tube, the middle part of the straight section of the heat exchange tube tends to bend downwards. However, when the straight section of the heat exchange tube is bent to a certain extent, the shell connected with the heat exchange tube will have cracks and air leakage; in addition, due to the inconsistent direction of the bending deformation of the heat exchange tube, the material will not fall smoothly and cause material blockage. Phenomenon, it is difficult to repair.
  • the present disclosure provides a heat exchanger, which can improve the problem of bending deformation of heat exchange tubes.
  • a heat exchanger includes a shell, and a heat exchange unit is arranged in the shell.
  • the heat exchange unit includes a heat exchange tube, a support assembly and a beam.
  • the number of heat exchange tubes is multiple.
  • the beam penetrates the shell.
  • Group of supporting plates and multiple connecting plates each group of supporting plates is composed of multiple pairs of supporting plates, the end of each supporting plate is fixedly connected with the beam, and each supporting plate is arrayed with grooves configured to clamp the heat exchange tube.
  • Each heat exchange tube is surrounded by two supporting plates symmetrical about the center of the heat exchange tube through grooves that are arranged opposite each other.
  • the two supporting plates arranged opposite to each other form a pair of supporting plates, and each group of supporting plates corresponds to It is arranged on one heat exchange tube, and the connecting plate fixes and connects multiple groups of support plates in sequence, so that the multiple pairs of support plates are firmly combined, and at the same time, it is satisfied that each heat exchange tube maintains a uniform height in the horizontal direction.
  • the embodiment of the present disclosure is provided with a support plate on the heat exchange tube, and the heat exchange tube is clamped through the grooves in the array on the support plate.
  • the arc of the groove can hug the outer wall of the heat exchange tube, and they are arranged opposite to each other.
  • the groove encloses and hugs the heat exchange tube, thereby supporting the heat exchange tube in the vertical direction, so that the heat exchange tube will not bend because the tube is too long.
  • the inventor provided a connecting plate on one side of the support plate to limit the height of the plurality of heat exchange tubes in the vertical direction, so that more The heights of the heat exchange tubes in the vertical direction are kept the same.
  • the connecting plate is fixedly connected with a plurality of supporting plates in sequence, so that the height of the supporting plate under the same height is not changed.
  • the end of the support plate is fixedly connected with the cross beam, so that the support plate can be firmly positioned in the vertical direction, thereby ensuring the positioning of the heat exchange tube in the vertical direction, and avoiding the problem of bending of the heat exchange tube. There will be no deformation and cracks at the connection between the tube and the shell.
  • a plurality of heat exchange medium inlets and a plurality of heat exchange medium outlets are provided on the outer periphery of the shell, and two ends of each heat exchange tube are respectively connected with the heat exchange medium inlet and the heat exchange medium outlet.
  • each heat exchange tube includes a plurality of U-shaped turn-back sections and a plurality of horizontal sections, and the plurality of U-shaped turn-back sections are alternately connected with a plurality of the horizontal sections along the extending direction of the heat exchange tube;
  • Each horizontal section is clamped in the grooves of the supporting plates arranged opposite to each other.
  • each of the supporting plates is provided with a plurality of grooves, and the plurality of grooves are correspondingly engaged with a plurality of the horizontal sections in a one-to-one correspondence.
  • each connecting plate is fixedly connected to the side surfaces of multiple pairs of the supporting plates, and the multiple supporting plates are fixedly connected to the connecting plate in series on the same horizontal line.
  • each heat exchange tube is correspondingly provided with a separate heat exchange medium inlet and heat exchange medium outlet.
  • Each heat exchange tube is composed of a plurality of U-shaped turn-back sections and a plurality of horizontal sections, and both ends of the U-shaped turn-back section are connected with the respective horizontal sections.
  • the heat exchange medium is introduced into the heat exchange tube from the heat exchange medium inlet, passes through multiple U-shaped turn-back sections and horizontal sections, and is exported from the heat exchange medium outlet to realize heat exchange.
  • the heat exchange medium can be water or gas. According to different heat exchange methods, water can be cold water or hot water; gas can be hot gas or cooling gas.
  • the heat exchanger provided by the embodiments of the present disclosure may be configured to cool and heat exchange materials, or may be configured to heat materials.
  • the heat exchange medium inlet can either enter water or hot gas.
  • the heat exchange medium outlet may be a water outlet (a flue gas outlet) or an exhaust gas outlet.
  • the position of the horizontal section can be corrected in the vertical direction to ensure that the horizontal section remains relatively straight and prevent the horizontal section from deforming and extending under the action of its own gravity.
  • the radius of the groove is greater than the outer radius of the heat exchange tube.
  • multiple pairs of support plates are provided on each of the above heat exchange tubes, and the multiple pairs of support plates are evenly distributed along the axis of the heat exchange tube.
  • the supporting plates are evenly distributed on the heat exchange tube, and at least a pair of supporting plates are spatially symmetrically distributed with respect to the heat exchange tube. This arrangement can ensure that the horizontal section remains at the design position, and the axisymmetric distribution can give uniform support to the horizontal section, prevent the horizontal section from bending and deformation, and also reduce the force of the heat exchange tube on the shell.
  • the supporting plate is in the shape of a plate
  • the connecting plate is in the shape of a prism.
  • the above-mentioned beam is a hollow square tube or a welded tube, and a refractory material is provided on the periphery of the beam.
  • the cross beam includes two vertical plates and two horizontal plates, the two horizontal plates are arranged at intervals up and down, the two vertical plates are arranged between the two horizontal plates, and the upper and lower ends of the vertical plates are connected to the two The horizontal plate is fixedly connected.
  • a sloped roof ridge with low sides of the middle protrusion is provided on the top of the beam.
  • the slope roof ridge is filled with refractory material.
  • the crossbeam is arranged in a hollow structure to facilitate the passage of cooling medium in the cavity of the crossbeam.
  • the cooling medium is cooling air.
  • the cooling medium in the hollow structure can reduce the temperature of the beam and minimize the rigidity and strength of the beam.
  • the two elevations of the square tube or the two elevations of the four welded plates have strong bending strength, and it is easy to keep the beam straight.
  • Refractory material is wrapped around the beam.
  • the outer shell is wrapped with refractory material to facilitate heat insulation, so that the stiffness and strength of the beam are relatively small.
  • the setting of the sloping roof is conducive to the falling of materials and prevents materials from staying on the beams, especially in terms of coal pyrolysis, to reduce coking or coking on the beams.
  • the refractory material may be carbon composite refractory material, zirconium refractory material, magnesia, magnesia calcium, aluminum magnesia, magnesia silicon, corundum, aluminum silicate or special refractory materials.
  • the above-mentioned beams include upper beams and/or lower beams, the upper beams are arranged above the heat exchange tubes, the lower beams are arranged below the heat exchange tubes, and the upper beams and/or lower beams are fixedly connected to the supporting plate.
  • an upper beam and a lower beam are provided to support the top and bottom ends of the support plate, which can make the horizontal section easier to maintain in the design position, prevent the horizontal section’s own gravity from causing the support plate to deform and extend, and also ensure that the horizontal section does not bend. It is also beneficial to reduce the force of the heat exchange tube on the shell and improve the reliability of the equipment.
  • only the upper cross beam can be retained to fix the top end of the support plate, or only the lower cross beam can be retained to fix the lower end of the support plate.
  • the number of upper beams and/or lower beams can be adaptively added or deleted according to the actual support requirements of the heat exchange tubes. In order to ensure the support balance, at least two beams are provided. The shell itself is not load-bearing.
  • a thermal insulation glue is arranged between the beam and the shell.
  • the installation of heat-insulating mortar at the penetration is not only good for heat insulation, but also good for reducing the gap between the beam and the shell.
  • a first expansion seal joint is provided between the heat exchange medium inlet and the heat exchange medium outlet and the shell.
  • the arrangement of the first expansion seal joint is not only to satisfy the thermal expansion and contraction of the heat exchange tube, but also to ensure the seal between the heat exchange tube and the shell.
  • the above-mentioned heat exchanger further includes a bracket arranged outside the shell, both ends of the cross beam are supported on the bracket, and the cross beam can slide on the bracket.
  • a second expansion seal joint is provided between the cross beam and the shell, so that the shell can be displaced relative to the cross beam.
  • the arrangement of the second expansion seal joint is not only to satisfy the thermal expansion and contraction of the beam, but also to ensure the seal between the beam and the shell.
  • both ends of the upper beam are supported on the bracket and can slide on the bracket, and both ends of the lower beam are supported on the bracket and can slide on the bracket.
  • the bracket is set up to support the beam and the heat exchange tube connected with the beam, and the other is to allow the beam and the bracket to slide relative to each other when the beam and the bracket are subjected to cold expansion and contraction.
  • the top and bottom of the housing are respectively provided with a feed port and a discharge port.
  • the shell has a three-layer structure, wherein the inner layer is a stainless steel plate, the outer layer is a carbon steel plate, and the middle is a heat insulation layer.
  • the material When in use, the material is fed from the inlet on the top of the shell, and the material is discharged from the outlet on the bottom of the shell.
  • the heat exchange of the material is realized in the shell.
  • the insulation layer is arranged in the middle of the material constituting the shell to effectively isolate the inside of the shell. And heat transfer outside the shell.
  • the beneficial effects of the embodiments of the present disclosure include, for example:
  • the embodiment of the present disclosure provides a heat exchanger, which realizes the heat exchange of materials through a heat exchange unit.
  • the heat exchanger provided by the embodiments of the present disclosure can be configured to cool and heat the materials, or It is configured to heat the material.
  • a support plate is arranged on the heat exchange tube, and the two support plates on both sides of the heat exchange tube are symmetrical about the center of the heat exchange tube.
  • the heat exchange tube is clamped by the grooves in the array on the support plate.
  • the arc of the groove can hug the outer wall of the heat exchange tube.
  • the heat exchange tube is supported in the direction so that the heat exchange tube will not bend because the tube is too long.
  • the inventor provided a connecting plate on one side of the support plate.
  • the height of the tubes in the vertical direction is defined, so that the plurality of heat exchange tubes maintain the same height in the vertical direction.
  • the end of the support plate is fixedly connected with the beam, so that the support plate can be firmly positioned in the vertical direction, thereby ensuring the vertical positioning of the heat exchange tube, and avoiding the bending of the heat exchange tube, and the heat exchange tube and the shell
  • the joints of the bodies will not deform and crack.
  • Fig. 1 is a schematic structural diagram of a heat exchanger provided by an embodiment of the disclosure from a first perspective
  • FIG. 2 is a schematic structural diagram of a heat exchanger provided by an embodiment of the disclosure from a second perspective;
  • FIG. 3 is a schematic structural diagram of a support plate in a heat exchanger provided by an embodiment of the disclosure
  • FIG. 4 is a schematic diagram of a support plate embracing a heat exchange tube in a heat exchanger provided by an embodiment of the disclosure
  • FIG. 5 is a schematic structural diagram from a first perspective of another heat exchanger provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic structural diagram from a second perspective of another heat exchanger provided by an embodiment of the disclosure.
  • Icon 1-shell; 2-heat exchange tube; 21-U-shaped turn-back section; 22-horizontal section; 3-feed port; 4-discharge port; 5-heat exchange medium inlet; 6-heat exchange medium outlet 7-support plate; 71-top of support plate; 72-bottom of support plate; 73-groove; 8-upper beam; 81-upright plate; 82-transverse plate; 9-lower beam; 10-connecting plate; 11 -Refractory material; 12- slope roof; 14- heat insulation cement; 15- second expansion seal joint; 16- first expansion seal joint; 17- support.
  • horizontal does not mean that the component is required to be absolutely horizontal or overhanging, but may be slightly inclined.
  • horizontal only means that its direction is more horizontal than “vertical”, and it does not mean that the structure must be completely horizontal, but can be slightly inclined.
  • FIG. 1 is a schematic structural diagram of the heat exchanger provided by this embodiment from a first perspective
  • Figure 2 is a schematic structural diagram of the heat exchanger provided by this embodiment from a second perspective.
  • the first perspective can be Understand the main perspective
  • the second perspective can be understood as the left perspective.
  • this embodiment provides a heat exchanger, which includes a shell 1, on the outer periphery of the shell 1 is provided with a heat exchange medium inlet 5 and a heat exchange medium outlet 6, inside the shell 1
  • a heat exchange unit is provided, and the heat exchange unit includes a heat exchange tube 2, a supporting plate 7, a connecting plate 10 and an upper cross beam 8.
  • the heat exchange tube 2 is also called a heat exchange tube.
  • the shell 1 is provided with a plurality of heat exchange medium inlets 5 and heat exchange medium outlets 6, and two ends of the heat exchange tube 2 are respectively connected to one of the heat exchange medium inlets 5 and one of the heat exchange medium outlets 6.
  • the number of heat exchange medium inlets 5 and the number of heat exchange medium outlets 6 are the same as the number of heat exchange tubes 2.
  • the upper cross beam 8 penetrates the housing 1.
  • two upper cross beams 8 are provided and are evenly arranged inside the housing 1.
  • the upper beam 8 is configured to hang and fix the support plate 7 and the heat exchange tube 2. Both ends of the upper cross beam 8 are supported on the bracket 17 and are slidably connected with the bracket 17.
  • a second expansion seal joint 15 is provided between the casing 1 and the upper cross beam 8, and the second expansion seal joint 15 is sleeved on the upper cross beam 8 outside the casing 1, so that the casing 1 can interact with the upper cross beam 8. Relative displacement.
  • the heat exchanger provided in this embodiment is configured to cool down and heat exchange materials, and the heat exchange medium passed through the heat exchange tube 2 is cooling water. Specifically, cooling water enters the heat exchange tube 2 from the heat exchange medium inlet 5 and cools the materials in the shell 1, and the waste water after heat exchange flows out from the heat exchange medium outlet 6. The material enters from the inlet 3 at the top of the shell 1, and after the material completes the heat exchange, the material is discharged from the four outlets 4 opened at the bottom of the shell 1.
  • the number and direction of the discharge ports 4 can also be adaptively adjusted as required. Understandably, in other embodiments, the heat exchanger can also be configured to heat the material.
  • the heat exchange tube 2 in the embodiment of the present disclosure is assembled by a plurality of U-shaped turn-back sections 21 and a plurality of horizontal sections 22. As shown in FIGS. 1 and 2, along the extending direction of the heat exchange tube 2, the U-shaped turn-back The sections 21 and the plurality of horizontal sections 22 are alternately arranged in turn, and the plurality of horizontal sections 22 are spaced up and down to form a heat exchange tube 2 that is bent back and forth.
  • Figure 1 shows a schematic structural view of the horizontal section 22 and the U-shaped turn-back section 21 in one of the heat exchange tubes 2, and Figure 2 shows another of the nine heat exchangers with the heat exchange tubes 2 in Figure 1 Schematic view of the structure. Understandably, in other embodiments, the direction and distribution of the tubes of the horizontal section 22 and the U-shaped turn-back section 21 can also be adjusted as required.
  • supporting plates 7 are respectively provided on both sides of the horizontal section 22, and the structure of the supporting plates 7 is shown in FIG. 3 and FIG. 4.
  • the support plate 7 is arrayed with grooves 73 configured to clamp the heat exchange tube 2, and the two support plates 7 symmetric about the center of the heat exchange tube 2 connect the heat exchange tube 2 through the grooves 73 arranged opposite to each other.
  • the horizontal section 22 is enclosed and hugged, that is, the grooves 73 of the two supporting plates 7 located on both sides of the horizontal section 22 are joined together to clamp the horizontal section 22 in the two grooves 73, and at the same time the two supporting plates 7 form A pair of support plates 7.
  • the cross section of the groove 73 is semicircular, so the grooves 73 of the two supporting plates 7 are enclosed to form a circular hole, so as to realize the clamping of the horizontal section 22.
  • the connecting plate 10 is arranged on one side of the supporting plate 7 and fixedly connected to the plurality of supporting plates 7 so that the horizontal sections 22 of the plurality of heat exchange tubes 2 are kept horizontal in the vertical plane.
  • each heat exchange tube 2 is provided with multiple pairs of support plates 7, and multiple pairs of support plates 7 are arranged at intervals along the axis of the heat exchange tube 2 in sequence, and the multiple pairs of support plates 7 on each heat exchange tube 2 form a Group support plate 7.
  • the axis of the heat exchange tube 2 is the axis of the horizontal section 22, and multiple pairs of support plates 7 clamp and support the horizontal section 22 at the same time.
  • a group of supporting plates 7 includes two pairs of supporting plates 7, and the two pairs of supporting plates 7 are respectively supported on both ends of the horizontal section 22.
  • FIG. 3 is a schematic diagram of the structure of the supporting plate 7 in the heat exchanger provided by this embodiment.
  • the connecting plate 10 is welded to a plurality of supporting plates 7, and the plurality of supporting plates 7 are connected in series through the connecting plate 10, so that the center of the heat exchange tube 2
  • the two symmetrical oppositely arranged support plates 7 are fixed to prevent the horizontal section 22 from falling off.
  • the connecting plate 10 serves to balance multiple pairs of support plates 7 (two support plates arranged oppositely and symmetrically about the center of the heat exchange tube 2 The effect of 7) makes the support plates 7 of the same height stay on the same horizontal line, so that the arrangement can indirectly make the horizontal section remain level without bending and deformation of the pipe.
  • each connecting plate 10 extends in the horizontal direction, and each connecting plate 10 is fixedly connected to multiple pairs of support plates 7 of different heat exchange tubes 2.
  • the two pairs of support plates 7 on the heat exchange tubes 2 can be regarded as the first A supporting plate pair and a second supporting plate pair, and a connecting plate 10 are simultaneously fixedly connected to the first supporting plate pair or the second supporting plate pair on the plurality of heat exchange tubes 2.
  • each pair of support plates 7 is connected to the upper and lower
  • the two distributed connecting plates 10 are fixedly connected.
  • the number of connecting plates 10 is four.
  • Two of the connecting plates 10 are spaced up and down and are both fixedly connected to the first support plate pair.
  • the two connecting plates 10 are spaced up and down and are fixedly connected to the second supporting plate pair. It is understandable that in other embodiments, the number of connecting plates 10 can also be increased as needed, and the height of the connection between the connecting plates 10 and the supporting plate 7 can be changed.
  • the upper beam 8 is a hollow structure welded by four plates. Specifically, two vertical plates 81 of the four plates are fixedly connected to the upper and lower two of the four plates. The edge of the horizontal plate 82, in other words, the upper and lower ends of the two vertical plates 81 are respectively fixedly connected to the upper and lower horizontal plates 82, which is beneficial to the vertical rigidity and strength of the hollow upper cross beam 8 formed by the welding of the four plates. powerful.
  • a refractory material 11 is wrapped around the upper crossbeam 8, and the top of the upper crossbeam 8 is provided with a sloped roof 12 with low sides of the middle protrusion.
  • the hollow part of the upper cross beam 8 passes through a cooling medium.
  • the hollow structure of the upper cross beam 8 passes through cooling air, and the cooling air is configured to cool the upper cross beam 8. Specifically, the cooling air enters from one end of the upper beam 8 and is discharged from the other end of the upper beam 8.
  • a thermal insulation layer is provided on the shell 1, and the thermal insulation layer can effectively isolate the heat transfer between the inside of the shell 1 and the outside of the shell 1.
  • the housing 1 has a three-layer structure, from the inside of the housing 1 to the outside of the housing 1, in order, there are stainless steel plates, thermal insulation layers, and carbon steel plates.
  • a thermal insulation mortar 14 is provided, that is, the thermal insulation mortar 14 is located between the housing 1 and the upper cross beam 8.
  • the placement of heat-insulating mortar at the penetration is not only good for heat insulation, but also good for reducing the gap between the upper beam 8 and the shell 1.
  • the heat exchanger further includes a bracket 17 provided outside the shell 1, and both ends of the upper cross beam 8 extend out of the shell 1 to be connected to the bracket 17, so as to support the upper cross beam 8 through the bracket 17, and the upper cross beam 8 and
  • the bracket 17 can slide relatively, that is, the upper cross beam 8 and the bracket 17 are slidably connected.
  • the bracket 17 is set up to bear the weight of the upper beam 8 and the heat exchange tube 2 connected to the upper beam 8; shift.
  • a second expansion seal joint 15 is provided between the bracket 17 and the housing 1, and the second expansion seal joint 15 is sleeved on the upper cross beam 8.
  • the arrangement of the second expansion seal joint 15 is not only to satisfy the thermal expansion and contraction of the upper cross beam 8, but also to ensure the seal between the upper cross beam 8 and the housing 1.
  • a first expansion seal joint 16 is provided between the heat exchange medium inlet 5 and the heat exchange medium outlet 6 and the housing 1.
  • the first expansion seal joint 16 is arranged to meet the requirements of the heat exchange tube 2 The thermal expansion and contraction, and at the same time, to ensure the seal between the heat exchange tube 2 and the housing 1.
  • FIG. 5 is a schematic structural diagram of another heat exchanger provided by this embodiment from a first perspective
  • FIG. 6 is a schematic structural diagram of another heat exchanger provided by this embodiment from a second perspective.
  • this embodiment also provides another heat exchanger, which includes a shell 1.
  • a heat exchange medium inlet 5 and a heat exchange medium outlet 6 are opened on the outer periphery of the shell 1.
  • the shell 1 A heat exchange unit is provided inside, and the heat exchange unit includes a heat exchange tube 2, a supporting plate 7, a connecting plate 10, an upper cross beam 8 and a lower cross beam 9.
  • the heat exchanger provided in this embodiment is configured to heat materials, and the heat exchange medium passed through the heat exchange tube 2 is hot flue gas.
  • the hot flue gas enters the heat exchange tube 2 from the heat exchange medium inlet 5 and heats up the material in the shell 1, and the exhaust gas after heat exchange is led out from the heat exchange medium outlet 6.
  • the material enters from the inlet 3 at the top of the shell 1, and after the material completes the heat exchange, the material is discharged from the four outlets 4 opened at the bottom of the shell 1.
  • the number and direction of the discharge ports can also be adaptively adjusted as required. Understandably, in other embodiments, the heat exchanger can also be configured to cool the material.
  • the upper cross beam 8 and the lower cross beam 9 both penetrate the housing 1, and the upper cross beam 8 and the lower cross beam 9 are spaced up and down.
  • the upper end of the support plate 7 is fixedly connected to the upper cross beam 8, and the lower end of the support plate 7 is fixedly connected to the lower cross beam 9.
  • two upper beams 8 and two lower beams 9 are provided in this embodiment. Both ends of the upper cross beam 8 are supported on the bracket 17 and are slidably connected with the bracket 17.
  • a second expansion seal joint 15 is provided between the casing 1 and the upper cross beam 8, and the second expansion seal joint 15 is sleeved on the upper cross beam 8 outside the casing 1, so that the casing 1 can interact with the upper cross beam 8 Relative displacement occurs.
  • the upper and lower ends of the support plate 7 are the support plate top end 71 and the support plate bottom end 72 respectively.
  • the upper cross beam 8 and the support plate top end 71 are connected by welding, and the lower cross beam 9 and the support plate bottom end 72 are connected by welding.
  • the heat exchange tube 2 is assembled by a plurality of U-shaped turn-back sections 21 and a plurality of horizontal sections 22.
  • the U-shaped turn-back section 21 and the plurality of horizontal sections 22 are sequentially assembled.
  • the horizontal sections 22 are alternately arranged, and a plurality of horizontal sections 22 are spaced up and down to form a heat exchange tube 2 that is bent back and forth.
  • Figure 5 shows a schematic structural view of the horizontal section 22 and the U-shaped turn-back section 21 in one of the heat exchange tubes 2
  • Figure 6 shows the other 9 heat exchangers with the heat exchange tubes 2 in Figure 1 A schematic view of the structure. It is understandable that in other embodiments, the direction and distribution of the tubes of the horizontal section 22 and the U-shaped turn-back section 21 can also be adjusted as required.
  • supporting plates 7 are respectively provided on both sides of the horizontal section 22, and the structure of the supporting plates 7 is shown in FIG. 4, FIG. 5, and FIG. Specifically, the support plate 7 is arrayed with grooves 73 configured to clamp the heat exchange tube 2, and the two support plates 7 symmetric about the center of the heat exchange tube 2 connect the heat exchange tube 2 through two opposite grooves 73.
  • the horizontal section 22 is enclosed and hugged, that is, the grooves 73 of the two supporting plates 7 located on both sides of the horizontal section 22 are joined together to clamp the horizontal section 22 in the two grooves 73, and at the same time the two supporting plates 7 form A pair of support plates 7.
  • the connecting plate 10 is arranged on one side of the supporting plate 7 and fixedly connects the plurality of supporting plates 7 so that the horizontal sections 22 of the plurality of heat exchange tubes 2 are kept horizontal in the vertical plane.
  • the upper cross beam 8 and the lower cross beam 9 are hollow square tubes, and the two elevations of the square tubes have strong bending strength, and it is easy to keep the upper cross beam 8 and the lower cross beam 9 straight.
  • the outer periphery of the upper cross beam 8 and the lower cross beam 9 is wrapped with refractory material 11.
  • the top of the upper cross beam 8 and the lower cross beam 9 is provided with a sloped roof 12 with low sides on both sides of the middle convex.
  • Material 11, a refractory material 11 is arranged between the slope roof 12 and the lower cross beam 9.
  • a thermal insulation layer is provided on the shell 1, and the thermal insulation layer can effectively isolate the heat transfer between the inside of the shell 1 and the outside of the shell 1.
  • the housing 1 has a three-layer structure, from the inside of the housing 1 to the outside of the housing 1, in order, there are stainless steel plates, thermal insulation layers, and carbon steel plates.
  • a heat-insulating cement 14 is provided.
  • the installation of the heat-insulating mortar 14 at the penetration is not only good for heat insulation, but also good for reducing the gap between the beam and the shell 1.
  • the heat exchanger further includes a bracket 17 provided outside the housing 1.
  • the bracket 17 supports the upper cross beam 8 and the lower cross beam 9, and both the upper cross beam 8 and the lower cross beam 9 can slide relative to the bracket 17.
  • both ends of the upper cross beam 8 extend out of the shell 1 to be fixedly connected to the bracket 17, and both ends of the lower cross beam 9 extend out of the shell 1 to be fixedly connected to the bracket 17.
  • the support 17 is arranged to support the cross beam and the heat exchange tube 2 connected to the cross beam, and the second is that when the cross beam and the support 17 undergo cold expansion and contraction, the cross beam and the support 17 can slide relative to each other.
  • the parts of the upper cross beam 8 and the lower cross beam 9 protruding from the housing 1 are both sleeved with a second expansion seal joint 15.
  • the arrangement of the second expansion seal joint 15 is not only to satisfy the thermal expansion and contraction of the beam, but also to ensure the seal between the beam and the housing 1.
  • a first expansion seal joint 16 is provided between the heat exchange medium inlet 5 and the heat exchange medium outlet 6 and the housing 1.
  • the first expansion seal joint 16 is arranged to meet the requirements of the heat exchange tube 2. Thermal expansion and contraction are also in order to ensure the seal between the heat exchange tube 2 and the housing 1.
  • the present disclosure provides a heat exchanger, which can avoid the problem of bending of the heat exchange tube during use, resulting in deformation and cracks at the connection between the heat exchange tube and the shell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种热交换器,即可配置成对物料的降温换热,也可配置成对物料的加热。在热交换管(2)上设置支撑板(7),通过支撑板(7)上陈列的凹槽(73)实现对热交换管(2)的卡接,凹槽(73)的弧线可以抱住热交换管(2)的外壁,两两相对设置的两个凹槽(73)将热交换管(2)合围抱住,从而在竖直方向上对热交换管(2)进行支撑,使得热交换管(2)不会因为管子过长而发生弯曲。支撑板(7)的端部与横梁(8,9)固定连接,这样可以使得支撑板(7)具有牢固的竖直方向的定位,进而保证热交换管(2)竖直方向的定位,避免了热交换管(2)发生下托弯曲的问题,热交换管(2)与壳体(1)之间也不会产生变形和裂纹。

Description

一种热交换器
相关申请的交叉引用
本公开要求于2020年04月22日提交中国专利局的申请号为2020103252461、名称为“一种热交换器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及热交换技术领域,具体而言,涉及一种热交换器。
背景技术
热交换器是进行热量交换,实现热量从高温介质流向低温介质,实现加热或冷却的装置。
发明人在研究中发现,现有技术中的热交换装置至少存在以下缺点:在实际使用过程中,由于热交换管直段长度比较长,往往出现热交换管直段的中间部位向下弯曲的情况,当热交换管直段弯曲到一定程度时,与热交换管连接的壳体会产生裂纹漏气;此外,由于热交换管弯曲变形的方向不一致,还会造成物料下落不顺畅,发生物料堵塞现象,修复难度大。
发明内容
本公开提供了一种热交换器,其能够改善热交换管发生弯曲变形的问题。
本公开的实施例可以这样实现:
一种热交换器,其包括壳体,壳体内设置有热交换单元,热交换单元包括热交换管、支撑组件和横梁,热交换管的数目为多个,横梁贯穿壳体,支撑组件包括多组支撑板和多个连接板,每组支撑板由多对支撑板组成,每个支撑板 的端部与横梁固定连接,每个支撑板上阵列有配置成卡接热交换管的凹槽,每个热交换管均被关于热交换管中心对称的两个支撑板通过两两相对设置的凹槽合围抱住,两两相对设置的两个支撑板组成一对支撑板,每组支撑板对应设置于一个热交换管上,连接板将多组支撑板依次固定连接,以使多个成对支撑板结合牢固,同时满足每个热交换管在水平方向上保持一致高度。
本公开的实施例在热交换管上设置支撑板,通过支撑板上阵列的凹槽实现对热交换管的卡接,凹槽的弧线可以抱住热交换管的外壁,两两相对设置的凹槽将热交换管合围抱住,从而在竖直方向上对热交换管进行支撑,使得热交换管不会因为管子过长而发生弯曲。为了保证支撑板与热交换管的卡接状态,防止热交换管滑落滑槽,发明人在支撑板的一侧设置连接板以对多个热交换管竖直方向上的高度进行限定,使得多个热交换管竖直方向上高度保持一致。
连接板与多个支撑板依次固定连接,从而使得同一高度下的支撑板高度不变。
支撑板的端部与横梁固定连接,这样可以使得支撑板具有牢固的竖直方向的定位,进而保证热交换管在竖直方向的定位,避免了热交换管发生下托弯曲的问题,热交换管与壳体的连接处也不会产生变形和裂纹。
可选地,壳体外周开设有多个换热介质进口和多个换热介质出口,每个热交换管的两端分别与换热介质进口和换热介质出口连接。
可选地,每个热交换管包括多个U形折返段和多个水平段,沿所述热交换管的延伸方向,多个所述U形折返段与多个所述水平段交替连接;每个水平段夹设于两两相对设置的支撑板的凹槽内。
可选地,每个所述支撑板上设置有多个凹槽,多个所述凹槽一一对应卡接多个所述水平段。
可选地,每个连接板与多对所述支撑板的侧面固定连接,且多个支撑板在同一水平线上固定串接于所述连接板。
可选地,每个热交换管对应设置有单独的一个换热介质进口和换热介质出口。每个热交换管由多个U形折返段和多个水平段组成,U形折返段的两端与分别水平段连接。使用时,换热介质由换热介质进口通入至热交换管中,经过多个U形折返段、水平段,从换热介质出口导出,从而实现热交换。
换热介质可以是水,也可以是气体。根据换热方式的不同,水可以是冷水或热水;气体可以是热气或冷却气体。
因此,本公开的实施例提供的热交换器既可配置成对物料的降温换热,也可能是配置成对物料的加热。换热介质进口既可以进水也可以进热气,同理,换热介质出口可能是出水口(出烟气口)也可能是废气出口。
通过设置多个水平段与支撑板的凹槽卡接,可以在竖直方向上对水平段进行位置矫正,保证水平段保持相对平直,防止水平段在自身重力作用下变形伸长。
可选地,上述凹槽的半径大于热交换管的外半径。
这样可以保证热交换管顺利与凹槽卡接,同时留有一定的间隙也可以为热交换管热胀冷缩留有一定的空间。
可选地,上述每个热交换管上设置有多对支撑板,所述多对支撑板沿热交换管的轴线均匀分布。
支撑板均匀分布于热交换管上,至少一对支撑板在空间上关于热交换管轴对称分布。这样设置可以保证水平段保持在设计位置,且轴对称分布可以对水平段给予均匀的支撑力,防止水平段发生弯曲变形,同时也降低了热交换管对壳体的作用力。
可选地,支撑板呈板片状,连接板呈棱柱状。通过设置多个连接板可以保持水平段之间的相对水平位置保持一致,可选地,连接板与支撑板在空间上的位置相互垂直。
可选地,上述横梁为中空的方管或焊接管,横梁的外围设置有耐火材料。
可选地,所述横梁包括两个立板和两个横板,两个横板上下间隔设置,两个立板设置在两个横板之间,且立板的上下两端分别与两个横板固定连接。
可选地,在横梁的顶部设置有中间凸起两侧低的斜坡屋脊。
可选地,斜坡屋脊内填充有耐火材料。
横梁设置为中空的结构以利于在横梁的腔室内通冷却介质,从横梁的一端通入,另一端导出。可选地,冷却介质为冷却空气。中空结构通入冷却介质可以降低横梁的温度,尽量减小横梁的刚度和强度。
方管的两个立面或四块焊接板的两个立面,都具有较强的抗弯强度,容易保持横梁的平直。
在横梁的外围包裹着耐火材料。外围包裹着耐火材料有利于隔热,使横梁刚度和强度下降比较小。
斜坡屋脊的设置有利于物料的下落,防止物料滞留于梁上,尤其是在煤热解方面减少横梁上的析焦或结焦。
耐火材料可以是碳复合耐火材料、锆质耐火材料、镁质、镁钙质、铝镁质、镁硅质、刚玉质、硅酸铝质或特种耐火材料。
可选地,上述横梁包括上横梁和/或下横梁,上横梁设置于热交换管的上方,下横梁设置于热交换管的下方,且上横梁和/或下横梁与支撑板固定连接。
同时设置上横梁和下横梁分别对支撑板顶端和底端进行支撑,可以使得水平段更容易保持在设计位置,防止水平段自身重力使得支撑板变形伸长,也可 以保证水平段不发生弯曲,也有利于降低热交换管对壳体的作用力,提升设备的可靠性。
在其他实施方式中,可以只保留上横梁对支撑板的顶端进行固定,或者只保留下横梁对支撑板的下端进行固定。上横梁和/或下横梁的数目可以根据实际热交换管的支撑需求进行自适应增删,为保证支撑平衡,设置至少两个横梁。壳体本身并不承重。
可选地,在横梁贯穿壳体处,所述横梁与所述壳体之间设置有隔热胶泥。
在贯穿处设置隔热胶泥,既有利于隔热,也有利于减小横梁与壳体之间缝隙。
可选地,上述换热介质进口和换热介质出口与壳体之间均设置有第一膨胀密封节。
第一膨胀密封节的设置既为了满足热交换管的热胀冷缩,同时为了保证热交换管与壳体之间的密封。
可选地,上述热交换器还包括设置于壳体外的支架,横梁的两端支撑在支架上,且横梁能在支架上滑移。
可选地,所述横梁与所述壳体之间设置有第二膨胀密封节,以使壳体能与横梁发生相对位移。
第二膨胀密封节的设置既为了满足横梁的热胀冷缩,同时为了保证横梁与壳体之间的密封。
在其他实施方式中,上横梁的两端支撑在支架上,并在支架上可以滑移,下横梁的两端支撑在支架上,并在支架上可以滑移。
支架的设置一是为了对横梁以及与横梁连接的热交换管承重,二是为了横梁与支架之间在受到冷胀热缩时,横梁与支架可发生相对滑移。
可选地,上述壳体的顶部和底部分别开设有进料口和出料口。
可选地,壳体具有三层结构,其中内层为不锈钢板,外层为碳钢板,中间为隔热保温层。
使用时,从壳体顶部的进料口进料,从壳体底部的出料口出料,在壳体内实现物料的换热,构成壳体的材料中间设置有隔热层可以有效隔绝壳体内和壳体外的传热。
与现有技术相比,本公开的实施例的有益效果包括,例如:
本公开的实施例提供了一种热交换器,该热交换器通过热交换单元实现物料的热交换,本公开的实施例提供的热交换器既可配置成对物料的降温换热,也可以是配置成对物料的加热。在热交换管上设置支撑板,且热交换管两侧的两个支撑板关于热交换管中心对称。通过支撑板上阵列的凹槽实现对热交换管的卡接,凹槽的弧线可以抱住热交换管的外壁,两两相对设置的凹槽将热交换管合围抱住,从而在竖直方向上对热交换管进行支撑,使得热交换管不会因为管子过长而发生弯曲。为了保证支撑板与热交换管的卡接状态,防止热交换管滑落滑槽,发明人在支撑板的一侧设置连接板,连接板将多组支撑板依次固定连接,以对多个热交换管在竖直方向上的高度进行限定,使得多个热交换管在竖直方向上保持高度一致。支撑板的端部与横梁固定连接,这样可以使得支撑板具有牢固的竖直方向的定位,进而保证热交换管竖直方向的定位,避免了热交换管发生下托弯曲,热交换管与壳体的连接处也不会产生变形和裂纹。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创 造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例提供的热交换器在第一视角下的结构示意图;
图2为本公开实施例提供的热交换器在第二视角下的结构示意图;
图3为本公开实施例提供的热交换器中支撑板的结构示意图;
图4为本公开实施例提供的热交换器中支撑板抱住热交换管的示意图;
图5为本公开实施例提供的另一种热交换器在第一视角下的结构示意图;
图6为本公开实施例提供的另一种热交换器在第二视角下的结构示意图。
图标:1-壳体;2-热交换管;21-U形折返段;22-水平段;3-进料口;4-出料口;5-换热介质进口;6-换热介质出口;7-支撑板;71-支撑板顶端;72-支撑板底端;73-凹槽;8-上横梁;81-立板;82-横板;9-下横梁;10-连接板;11-耐火材料;12-斜坡屋脊;14-隔热胶泥;15-第二膨胀密封节;16-第一膨胀密封节;17-支架。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解 释。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,术语“水平”、“竖直”、“悬垂”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本公开的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
图1为本实施例提供的热交换器在第一视角下的结构示意图,图2为本实施例提供的热交换器在第二视角下的结构示意图,在本实施例中,第一视角可理解为主视角,第二视角可理解为左视角。请结合参照图1和图2,本实施例提供了一种热交换器,其包括壳体1,在壳体1的外周开设有换热介质进口5和换热介质出口6,壳体1内设置有热交换单元,热交换单元包括热交换管2、 支撑板7、连接板10和上横梁8。需要说明的是,热交换管2又称换热管。
壳体1开设有多个换热介质进口5和换热介质出口6,热交换管2的两端分别与其中一个换热介质进口5以及其中一个换热介质出口6连接。具体地,换热介质进口5的数量以及换热介质出口6的数量均与热交换管2的数量相同。
上横梁8贯穿壳体1,本实施例中设置有两根上横梁8,且均匀布置于壳体1内部。上横梁8配置成对支撑板7和热交换管2进行吊紧固定。上横梁8的两端支撑在支架17上,并与支架17可滑移地连接。壳体1与上横梁8之间设置有第二膨胀密封节15,且第二膨胀密封节15套设于位于壳体1之外的上横梁8,以使壳体1能与上横梁8发生相对位移。
本实施例中提供的热交换器配置成对物料进行降温换热,在热交换管2中通入的换热介质为冷却水。具体地,冷却水从换热介质进口5进入热交换管2中,并对壳体1中的物料进行冷却降温,热交换后的废水从换热介质出口6流出。物料从壳体1顶部的进料口3进入,物料完成换热后,从壳体1底部开设的4个出料口4下料。此外,在其他实施方式中,出料口4的数目和方向也可以根据需要进行自适应调整。可以理解地,在其他实施例中,该热交换器也可以配置成对物料进行加热。
本公开的实施例中的热交换管2由多个U形折返段21和多个水平段22组装而成,参照图1和图2所示,沿热交换管2的延伸方向,U形折返段21和多个水平段22依次交替设置,且多个水平段22上下间隔分布,以形成往返弯折的热交换管2。图1中示出了其中一个热交换管2中水平段22与U形折返段21的结构示意图,图2中示出了9个具有图1中的热交换管2的热交换器的另一视角的结构示意图。可以理解地,在其他实施例中,也可以根据需要 调整水平段22与U形折返段21的管子走向和分布。
为了对水平段22进行支撑,在水平段22的两侧分别设置有支撑板7,支撑板7的结构参照图3和图4所示。具体地,支撑板7上阵列有配置成卡接热交换管2的凹槽73,关于热交换管2中心对称的两个支撑板7通过两两相对设置的凹槽73将热交换管2的水平段22合围抱住,即位于水平段22两侧的两个支撑板7的凹槽73对接合围,以将水平段22卡接在两个凹槽73内,同时该两个支撑板7形成一对支撑板7。具体地,凹槽73的截面为半圆形,因此两个支撑板7的凹槽73合围形成圆形的孔洞,以实现对水平段22的夹持。连接板10设置于支撑板7的一侧并与多个支撑板7固定连接,以使多个热交换管2的水平段22在竖直平面内保持水平。
可选地,每个热交换管2上设置有多对支撑板7,多对支撑板7沿热交换管2的轴线依次间隔设置,每个热交换管2上的多对支撑板7形成一组支撑板7。需要说明的是,由于热交换管2包括多个水平段22,在本实施例中,热交换管2的轴线即为水平段22的轴线,多对支撑板7同时夹持支撑水平段22,从而保证了水平段22的支撑效果。具体地,一组支撑板7包括两对支撑板7,两对支撑板7分别支撑于水平段22的两端。
图3为本实施例提供的热交换器中支撑板7的结构示意图。请结合参照图3和图4所示,在本实施例中,连接板10与多个支撑板7焊接,且通过连接板10将多个支撑板7串接,从而使得关于热交换管2中心对称的两个相对设置的支撑板7固定,防止水平段22向外脱落,同时连接板10又起到平衡多对支撑板7(相对设置的、关于热交换管2中心对称的两个支撑板7)的作用,使得同一高度的支撑板7的处于保持同一水平线上,这样设置可以间接性的使得水平段保持水平,不会发生管子的弯曲变形。具体地,连接板10沿水平方 向延伸,且每一连接板10与不同热交换管2的多对支撑板7固定连接,换言之,热交换管2上的两对支撑板7可分别看做第一支撑板对和第二支撑板对,一连接板10同时与多个热交换管2上的第一支撑板对或第二支撑板对固定连接。
为提升连接板10对沿上下方向延伸的支撑板7的稳定连接,本实施例设置了上下分布的两个连接板10(参照图4所示),具体地,每对支撑板7均与上下分布的两个连接板10固定连接,换言之,在本实施例中,连接板10的数量为四个,其中两个连接板10上下间隔设置并均与第一支撑板对固定连接,其中另外两个连接板10上下间隔设置并均与第二支撑板对固定连接。可以理解的,在其他实施例中,也可以根据需要增加连接板10的数目,改变连接板10与支撑板7的连接高度。
请参照图1,在本实施例中,上横梁8是由四块板子焊接而成的中空结构,具体地,四块板子中的两个立板81固定连接于四块板子中的上下两块横板82的边沿,换言之,两个立板81的上下两端分别与上下两块横板82固定连接,这样有利于四块板子焊接构成的中空上横梁8在垂直方向上的刚度和强度更强。
在上横梁8的外围包裹着耐火材料11,同时上横梁8的顶部设置有中间凸起两侧低的斜坡屋脊12。上横梁8的中空部分通冷却介质,本实施例中,上横梁8的中空结构通入的是冷却空气,冷却空气配置成对上横梁8进行冷却降温。具体地,冷却空气从上横梁8的一端进入,再从上横梁8的另一端排出。
可选地,壳体1上设置有隔热保温层,隔热保温层可以有效隔绝壳体1内部和壳体1外部的传热。具体地,壳体1为三层结构,从壳体1内侧到壳体1外侧,依次为不锈钢板、隔热保温层以及碳钢板。
请参照图2所示,在上横梁8贯穿壳体1处设置隔热胶泥14,即隔热胶泥14位于壳体1与上横梁8之间。在贯穿处设置隔热胶泥,既有利于隔热,也有利于减小上横梁8与壳体1之间缝隙。
在本实施例中,热交换器还包括壳体1外设置的支架17,上横梁8的两端伸出壳体1与支架17连接,以通过支架17支撑上横梁8,同时上横梁8与支架17可以相对滑移,即上横梁8与支架17可滑动地连接。支架17的设置一是为了对上横梁8及与上横梁8连接的热交换管2承重,二是当上横梁8与支架17受到冷胀热缩时,上横梁8与支架17可发生相对滑移。
具体地,支架17与壳体1之间设置第二膨胀密封节15,第二膨胀密封节15套设于上横梁8。第二膨胀密封节15的设置既为了满足上横梁8的热胀冷缩,同时也为了保证上横梁8与壳体1之间的密封。
请参照图1所示,在换热介质进口5和换热介质出口6与壳体1之间均设置有第一膨胀密封节16,第一膨胀密封节16的设置既为了满足热交换管2的热胀冷缩,同时为了保证热交换管2与壳体1之间的密封。
图5为本实施例提供的另一种热交换器在第一视角下的结构示意图,图6为本实施例提供的另一种热交换器在第二视角下的结构示意图。请参照图5和图6,本实施例还提供了另外一种热交换器,其包括壳体1,在壳体1的外周开设有换热介质进口5和换热介质出口6,壳体1内设置有热交换单元,热交换单元包括热交换管2、支撑板7、连接板10、上横梁8和下横梁9。
本实施例中提供的热交换器配置成对物料进行加热,在热交换管2中通入的换热介质为热烟气。具体地,热烟气从换热介质进口5进入热交换管2中,并对壳体1中的物料进行加热升温,热交换后的废气从换热介质出口6导出。物料从壳体1顶部的进料口3进入,物料完成换热后,从壳体1底部开设的4 个出料口4下料。此外,在其他实施方式中,出料口的数目和方向也可以根据需要进行自适应调整。可以理解地,在其他实施例中,该热交换器也可以配置成对物料进行冷却。
上横梁8和下横梁9均贯穿壳体1,且上横梁8和下横梁9上下间隔设置,支撑板7的上端固定连接于上横梁8,支撑板7的下端固定连接于下横梁9。可选地,本实施例中设置有两根上横梁8和两根下横梁9。上横梁8的两端支撑在支架17上,并与支架17可滑移地连接。壳体1与上横梁8之间设置有第二膨胀密封节15,且第二膨胀密封节15套设于位于壳体1之外的上横梁8上,以使壳体1能与上横梁8发生相对位移。具体地,支撑板7的上下两端分别为支撑板顶端71和支撑板底端72,上横梁8与支撑板顶端71通过焊接连接,下横梁9与支撑板底端72通过焊接连接。
本公开的实施例中,热交换管2由多个U形折返段21和多个水平段22组装而成,参照图5和图6所示,U形折返段21和多个水平段22依次交替设置,且多个水平段22上下间隔分布,以形成往返弯折的热交换管2。图5中示出了其中一个热交换管2中的水平段22与U形折返段21的结构示意图,图6中示出了9个具有图1中的热交换管2的热交换器的另一视角的结构示意图。可以理解地,在其他实施例中,也可以根据需要调整水平段22与U形折返段21的管子走向和分布。
为了对水平段22进行支撑,在水平段22的两侧分别设置有支撑板7,支撑板7的结构参照图4、图5和图6所示。具体地,支撑板7上阵列有配置成卡接热交换管2的凹槽73,关于热交换管2中心对称的两个支撑板7通过相对设置的两个凹槽73将热交换管2的水平段22合围抱住,即位于水平段22两侧的两个支撑板7的凹槽73对接合围,以将水平段22卡接在两个凹槽73 内,同时该两个支撑板7形成一对支撑板7。连接板10设置于支撑板7的一侧并将多个支撑板7固定连接,以使多个热交换管2的水平段22在竖直平面内保持水平。
上横梁8和下横梁9是中空的方管,方管的两个立面具有较强的抗弯强度,容易保持上横梁8和下横梁9的平直。
上横梁8和下横梁9的外围包裹着耐火材料11,同时上横梁8和下横梁9的顶部设置有中间凸起两侧低的斜坡屋脊12,斜坡屋脊12与上横梁8之间设置有耐火材料11,斜坡屋脊12与下横梁9之间设置有耐火材料11。
可选地,壳体1上设置有隔热保温层,隔热保温层可以有效隔绝壳体1内和壳体1外的传热。具体地,壳体1为三层结构,从壳体1内侧到壳体1外侧,依次为不锈钢板、隔热保温层以及碳钢板。
请参照图2所示,在上横梁8和下横梁9贯穿壳体1处均设置隔热胶泥14。在贯穿处设置隔热胶泥14,既有利于隔热,也有利于减小横梁与壳体1之间缝隙。
在本实施例中,热交换器还包括壳体1外设置的支架17,支架17支撑上横梁8和下横梁9,上横梁8和下横梁9均可与支架17发生相对滑移。具体地,上横梁8的两端伸出壳体1以与支架17固定连接,下横梁9的两端伸出壳体1以与支架17固定连接。支架17的设置一是为了对横梁及与横梁连接的热交换管2承重,二是当横梁与支架17受到冷胀热缩时,横梁与支架17可发生相对滑移。
上横梁8和下横梁9伸出壳体1的部分均套设第二膨胀密封节15。第二膨胀密封节15的设置既为了满足横梁的热胀冷缩,同时也为了保证横梁与壳体1之间的密封。
参照图5所示,在换热介质进口5和换热介质出口6与壳体1之间均设置有第一膨胀密封节16,第一膨胀密封节16的设置既为了满足热交换管2的热胀冷缩,同时也为了保证热交换管2与壳体1之间的密封。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
工业实用性
综上所述,本公开提供了一种热交换器,其能够避免在使用过程中热交换管发生弯曲,导致热交换管与壳体的连接处发生变形和裂纹的问题。

Claims (17)

  1. 一种热交换器,其特征在于,其包括壳体,所述壳体内设置有热交换单元,所述热交换单元包括热交换管、支撑组件和横梁,所述热交换管的数目为多个,所述横梁贯穿所述壳体,所述支撑组件包括多组支撑板和多个连接板,每组所述支撑板由多对支撑板组成,每个所述支撑板的端部与所述横梁固定连接,每个所述支撑板上阵列有配置成卡接所述热交换管的凹槽,每个所述热交换管均被关于热交换管中心对称的两个所述支撑板通过两两相对设置的凹槽合围抱住,两两相对设置的两个所述支撑板组成一对支撑板,每组所述支撑板对应设置于一个所述热交换管上,所述连接板将多组所述支撑板依次固定连接,以使多个成对支撑板结合牢固,同时满足每个热交换管在水平方向上保持一致高度。
  2. 根据权利要求1所述的热交换器,其特征在于,所述壳体外周开设有多个换热介质进口和多个换热介质出口,每个所述热交换管的两端分别与所述换热介质进口和所述换热介质出口连接。
  3. 根据权利要求1或2所述的热交换器,其特征在于,每个所述热交换管包括多个U形折返段和多个水平段,沿所述热交换管的延伸方向,多个所述U形折返段与多个所述水平段交替连接;每个所述水平段夹设于两两相对设置的所述支撑板的凹槽内。
  4. 根据权利要求3所述的热交换器,其特征在于,每个所述支撑板上设置有多个凹槽,多个所述凹槽一一对应卡接多个所述水平段。
  5. 根据权利要求3所述的热交换器,其特征在于,每个所述连接板与多对所述支撑板的侧面固定连接,且多个所述支撑板沿水平方向固定串接于所述连接板。
  6. 根据权利要求1-5任一项所述的热交换器,其特征在于,每个所述热交换管上设置有多对支撑板,所述多对支撑板沿所述热交换管的轴线均匀分布。
  7. 根据权利要求1-6任一项所述的热交换器,其特征在于,所述横梁为中空的方管或焊接管,所述横梁的外围设置有耐火材料。
  8. 根据权利要求7所述的热交换器,其特征在于,所述横梁包括两个立板和两个横板,两个横板上下间隔设置,两个立板设置在两个横板之间,且立板的上下两端分别与两个横板固定连接。
  9. 根据权利要求1-8任一项所述的热交换器,其特征在于,所述横梁的顶部设置有中间凸起两侧低的斜坡屋脊。
  10. 根据权利要求9所述的热交换器,其特征在于,所述斜坡屋脊内填充有耐火材料。
  11. 根据权利要求1-10任一项所述的热交换器,其特征在于,所述横梁包括上横梁和/或下横梁,所述上横梁设置于所述热交换管的上方,所述下横梁设置于所述热交换管的下方,且所述上横梁和/或下横梁与所述支撑板固定连接。
  12. 根据权利要求1-11任一项所述的热交换器,其特征在于,在所述横梁贯穿所述壳体处,所述横梁与所述壳体之间设置有隔热胶泥。
  13. 根据权利要求2所述的热交换器,其特征在于,所述换热介质进口和换热介质出口与所述壳体之间均设置有第一膨胀密封节。
  14. 根据权利要求1-13任一项所述的热交换器,其特征在于,所述热交换器还包括设置于所述壳体外的支架,所述横梁的两端支撑在所述支架上,且所述横梁能在所述支架上滑移。
  15. 根据权利要求14所述的热交换器,其特征在于,所述横梁与所述壳体 之间设置有第二膨胀密封节,以使所述壳体能与所述横梁发生相对位移。
  16. 根据权利要求1-15任一项所述的热交换器,其特征在于,所述壳体的顶部和底部分别开设有进料口和出料口。
  17. 根据权利要求1-16任一项所述的热交换器,其特征在于,所述壳体具有三层结构,其中内层为不锈钢板,外层为碳钢板,中间为隔热保温层。
PCT/CN2020/107901 2020-04-22 2020-08-07 一种热交换器 WO2021212695A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010325246.1A CN111366016A (zh) 2020-04-22 2020-04-22 一种热交换器
CN202010325246.1 2020-04-22

Publications (1)

Publication Number Publication Date
WO2021212695A1 true WO2021212695A1 (zh) 2021-10-28

Family

ID=71209493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107901 WO2021212695A1 (zh) 2020-04-22 2020-08-07 一种热交换器

Country Status (2)

Country Link
CN (1) CN111366016A (zh)
WO (1) WO2021212695A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111366016A (zh) * 2020-04-22 2020-07-03 河南龙成煤高效技术应用有限公司 一种热交换器

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0045392A1 (de) * 1980-08-06 1982-02-10 BASF Aktiengesellschaft Desublimator für die Gewinnung von Sublimationsprodukten aus Reaktionsgasen
CN102221304A (zh) * 2011-07-28 2011-10-19 山东北辰压力容器有限公司 组装式矩形管束支持板
JP2012167908A (ja) * 2011-02-16 2012-09-06 Mitsubishi Heavy Ind Ltd 熱交換器の解体処理方法
CN202614066U (zh) * 2012-03-22 2012-12-19 汪申 冷却器换热管的支撑支架
CN202793090U (zh) * 2012-05-09 2013-03-13 汪申 冷却器的蒸发段换热装置
CN104864747A (zh) * 2015-06-10 2015-08-26 山东国舜压力容器有限公司 节能热网加热器
CN105180681A (zh) * 2015-11-05 2015-12-23 洛阳隆华传热节能股份有限公司 一种可拆卸管束烟道式集热设备及方法
CN205138269U (zh) * 2015-11-05 2016-04-06 洛阳隆华传热节能股份有限公司 一种可拆卸管束烟道式集热设备
CN107062956A (zh) * 2017-05-12 2017-08-18 江苏龙净节能科技有限公司 一种用于大容量烟气余热利用的螺旋鳍片管换热装置
CN206670440U (zh) * 2017-04-10 2017-11-24 武汉燃控科技热能工程有限公司 锅炉省煤器的h型翅片管管夹结构
CN207365757U (zh) * 2017-10-19 2018-05-15 江苏龙净节能科技有限公司 一种烟气余热利用换热装置
CN111366016A (zh) * 2020-04-22 2020-07-03 河南龙成煤高效技术应用有限公司 一种热交换器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0045392A1 (de) * 1980-08-06 1982-02-10 BASF Aktiengesellschaft Desublimator für die Gewinnung von Sublimationsprodukten aus Reaktionsgasen
JP2012167908A (ja) * 2011-02-16 2012-09-06 Mitsubishi Heavy Ind Ltd 熱交換器の解体処理方法
CN102221304A (zh) * 2011-07-28 2011-10-19 山东北辰压力容器有限公司 组装式矩形管束支持板
CN202614066U (zh) * 2012-03-22 2012-12-19 汪申 冷却器换热管的支撑支架
CN202793090U (zh) * 2012-05-09 2013-03-13 汪申 冷却器的蒸发段换热装置
CN104864747A (zh) * 2015-06-10 2015-08-26 山东国舜压力容器有限公司 节能热网加热器
CN105180681A (zh) * 2015-11-05 2015-12-23 洛阳隆华传热节能股份有限公司 一种可拆卸管束烟道式集热设备及方法
CN205138269U (zh) * 2015-11-05 2016-04-06 洛阳隆华传热节能股份有限公司 一种可拆卸管束烟道式集热设备
CN206670440U (zh) * 2017-04-10 2017-11-24 武汉燃控科技热能工程有限公司 锅炉省煤器的h型翅片管管夹结构
CN107062956A (zh) * 2017-05-12 2017-08-18 江苏龙净节能科技有限公司 一种用于大容量烟气余热利用的螺旋鳍片管换热装置
CN207365757U (zh) * 2017-10-19 2018-05-15 江苏龙净节能科技有限公司 一种烟气余热利用换热装置
CN111366016A (zh) * 2020-04-22 2020-07-03 河南龙成煤高效技术应用有限公司 一种热交换器

Also Published As

Publication number Publication date
CN111366016A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
WO2021212695A1 (zh) 一种热交换器
CA2352192A1 (en) Heat exchanger
US2773487A (en) Furnace having walls organized for cubical expansion
JP2007192535A (ja) 熱交換器装置
RU2364785C2 (ru) Подвесной паровой котел
JPH0579777A (ja) 熱交換器
US3066656A (en) Fluid heater
FI122210B (fi) Kiertopetikattilan keittopintarakenne
US4357907A (en) Fluidized bed combustor with improved indirect heat exchanger units
JP2012533042A (ja) 熱交換器
US4485766A (en) Conduction cooled tube supports
US4444157A (en) Liquid cooled tube supports
US4361183A (en) Recuperator design
CN212362911U (zh) 一种热交换器
KR20090113235A (ko) 조립식 온돌용 판넬
JPH0585803B2 (zh)
CN104654588B (zh) 燃气式热水器或壁挂炉的不锈钢换热器
CN103776279A (zh) 用于尿素热解工艺的高温烟气换热器
SU371404A1 (ru) ВСЕСОЮЗНАЯ n-T'"(!'^m ' i'VJl'J'!''' П.-ТсНгпи icXIiil;;:
FI97566C (fi) Höyrykattilan tulipesän pysty- ja vaakaputkistojen syöttö- ja kytkentäjärjestelmä
CN218626911U (zh) 一种高温烟气排气系统柔性连接段
CN210802125U (zh) 换热器管板与换热器
JPH0749190A (ja) 熱交換器の製造方法
US20150209748A1 (en) Exhaust system for a steam reformer and bearing therefor
CN207514397U (zh) 一种管排支吊装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931928

Country of ref document: EP

Kind code of ref document: A1