WO2021212641A1 - 干法重介质流化床分选机智能控制方法 - Google Patents

干法重介质流化床分选机智能控制方法 Download PDF

Info

Publication number
WO2021212641A1
WO2021212641A1 PCT/CN2020/097386 CN2020097386W WO2021212641A1 WO 2021212641 A1 WO2021212641 A1 WO 2021212641A1 CN 2020097386 W CN2020097386 W CN 2020097386W WO 2021212641 A1 WO2021212641 A1 WO 2021212641A1
Authority
WO
WIPO (PCT)
Prior art keywords
bed
density
medium
height
ash content
Prior art date
Application number
PCT/CN2020/097386
Other languages
English (en)
French (fr)
Inventor
董良
赵跃民
任永鑫
王光辉
代伟
周恩会
段晨龙
李妍娇
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to US17/432,486 priority Critical patent/US20220258176A1/en
Priority to GB2111923.5A priority patent/GB2614693B/en
Publication of WO2021212641A1 publication Critical patent/WO2021212641A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B4/00Separating by pneumatic tables or by pneumatic jigs
    • B03B4/06Separating by pneumatic tables or by pneumatic jigs using fixed and inclined tables ; using stationary pneumatic tables, e.g. fluidised beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B13/00Control arrangements specially adapted for wet-separating apparatus or for dressing plant, using physical effects

Definitions

  • the invention belongs to the technical field of dry heavy medium fluidized bed coal preparation, and in particular relates to an intelligent control method for a dry heavy medium fluidized bed separator.
  • Dry heavy-medium fluidized bed is a high-efficiency dry separation technology that applies gas-solid fluidization technology to the field of coal preparation. Under the action of the updraft, a gas-solid two-phase suspension with a certain density and height is formed. The coal particles entering the separator are layered according to the density in the bed. The clean coal floats on the surface of the bed, and the gangue sinks at the bottom of the bed. , So as to realize the sorting of coal.
  • the key to dry heavy-medium fluidized bed coal preparation is the bed density of the fluidized bed.
  • the raw coal will bring in fine-grained slime, and a certain amount of secondary slime will be produced during the sorting process.
  • the fine-grained slime in the fluidized bed can broaden the particle size distribution of the particles in the bed, which acts like a lubricant, which is beneficial to improve the quality of fluidization.
  • the presence of too much fine-grained slime in the fluidized bed will cause the bed The layer density decreases, which is not conducive to the uniformity and stability of the bed layer density. This requires monitoring the bed density and timely replenishment of high-density magnetite powder to maintain uniform and stable bed density.
  • the bed height is also one of the important factors that affect the effect of dry heavy medium fluidized bed coal preparation.
  • the airflow enters the bed in the form of microbubbles through the air distribution plate, and the bubbles will merge and become larger during the ascent.
  • the bed height of the fluidized bed is an important parameter and must be controlled within an appropriate range.
  • the height and density of the bed must be uniform and stable.
  • the automatic control system of dry-process heavy medium fluidized bed sorting machine measures the density and height of the bed, inputs the measurement signal into the computer for analysis and processing, and the computer adopts the control method, and outputs the adjustment signal to the regulator. Adjust the bed height. This method has high measurement accuracy, convenient operation and use, and realizes the automatic control of the density of the dry heavy medium fluidized bed separator, but it still has problems.
  • the first is the disturbance of the air flow, the movement of bubbles, the collision of particles and other interference factors will cause fluctuations in the bed pressure, the bed pressure is unstable, and the pressure drop signal detected by the sensor is constantly changing; the second is the nature and selection of raw coal. The nature of later products lacks necessary monitoring.
  • the present invention proposes an intelligent control method for a dry heavy medium fluidized bed separator to solve the problem of low degree of intelligent control in current production and improve the quality of coal preparation.
  • the technical solution adopted by the present invention is: an intelligent control method for a dry heavy medium fluidized bed separator, which includes the following steps:
  • Step 1 Control the fan to blow air into the bed to fluidize the bed.
  • the air pressure and air volume to maintain stability; estimate the initial bed density according to the selectivity curve of the selected raw coal
  • Step 2 Detect the magnetic content in the bed and calculate the real-time bed density And the initial bed density Make a comparison, adjust the medium adding valve according to the comparison result, and add the medium to the sorting machine;
  • Step 3 Control and adjust the scraper discharge speed and the amount of medium added to maintain the stability of the bed height; the raw coal is separated in the separator to obtain a clean coal product;
  • Step 4 The ash content of the clean coal product obtained by the separation is detected in real time and compared with the target ash content of the clean coal product. If the difference between the ash content of the product and the target ash exceeds the expectation, the initial bed density is adjusted.
  • the circulating medium is the magnetite powder mixture containing fine-grained coal slime, which is discharged with the separation product and has not been magnetically separated.
  • the discharge speed of the scraper and the amount of medium added are controlled to maintain the stability of the bed height, specifically as follows:
  • the real-time detected product ash content is compared with the target ash content of the clean coal product, and the initial bed density is adjusted according to the comparison result, specifically as follows:
  • D 3 >A 3 and Ad t >Ad 0 reduce the initial bed density, that is, increase the amount of circulating medium and reduce the amount of magnetite powder; if D 3 >A 3 and Ad t ⁇ Ad 0 , increase the initial bed density.
  • the bed density is to increase the amount of magnetite powder added and reduce the amount of circulating media.
  • the intelligent control method of the dry heavy medium fluidized bed sorting machine of the present invention can detect and adjust the magnetic content in the bed in real time to ensure the sorting density; it can adjust the medium addition and the scraper discharge speed in time to maintain the sorting process
  • the bed height is stable; the separation density is adjusted according to the nature of the raw coal and product to form two closed-loop automatic control systems, one is a feedforward system that adjusts the coal preparation parameters according to the nature of the raw coal, and the other is the coal preparation parameter according to the properties of the clean coal product
  • the adjusted feedback system has the advantage of a high degree of intelligence.
  • Figure 1 is the intelligent control flow chart of the dry heavy medium fluidized bed separator.
  • the intelligent control method of the dry heavy medium fluidized bed separator of the present invention has a flow as shown in Fig. 1, and includes the following steps:
  • Step 1 Control the fan to blow air into the bed body to fluidize the bed layer.
  • the air pressure and air volume are controlled to remain stable; the sorting density is estimated according to the selectability curve of the selected raw coal, that is, the initial Bed density
  • Step 2 Determine the magnetic content in the bed by the magnetic content detector, and calculate the real-time bed density And the initial bed density Make comparisons; according to the comparison results, adjust the medium addition valve and add the medium to the sorting machine to make the deviation between the real-time bed density and the initial bed density meet expectations; the details are as follows:
  • a 1 is the density deviation threshold; if D 1 >A 1 and Add circulating medium to the sorting machine to reduce the bed density; if D 1 >A 1 and Add magnetite powder to the separator to increase the bed density; the circulating medium is the magnetite powder mixture containing fine-grained coal slime that is discharged with the separation product without magnetic separation. Coal slime has a lower density and can be used to adjust the density of the bed.
  • Step 3 During the sorting process, the accumulation of coal slime content will cause the bed density to decrease.
  • High-density magnetite powder can be added to the sorting machine. After adding the magnetite powder, the bed height will change, control and adjust The discharge speed of the scraper and the amount of medium added to maintain the stability of the bed height; the raw coal is separated in the separator to obtain a clean coal product; the details are as follows:
  • Step 4 Use the on-line ash analyzer on the conveyor belt of the clean coal to detect the ash content of the clean coal product obtained in real time, and compare it with the target ash content of the clean coal product. If the difference between the product ash content and the target ash content exceeds the expected
  • the bed density is adjusted; the details are as follows:

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

本发明公开了一种干法重介质流化床分选机智能控制方法,属于干法重介质流化床选煤技术领域。该方法包括以下步骤:风机供风使床层流化;根据原煤可选性曲线估算床层初始密度;检测床层磁性物含量,得出实时床层密度,根据与初始密度值的偏差分析结果,对床层密度进行调节;分选过程中可调节介质添加量及刮板排料速度以维持床层高度的稳定;原煤在分选机中经过分选得到精煤产品;检测精煤产品灰分,与目标灰分进行比较,若产品灰分与目标灰分差异超过预期,则对床层密度进行调节。本发明能够调节分选过程中介质添加量和刮板排料速度,维持床高稳定;依据原煤及产品性质对分选密度进行调节,具有智能化程度高的优点。

Description

干法重介质流化床分选机智能控制方法 技术领域
本发明属于干法重介质流化床选煤技术领域,尤其涉及一种干法重介质流化床分选机智能控制方法。
背景技术
干法重介质流化床是一种将气固流态化技术应用于选煤领域的高效干法分选技术,其将细颗粒物料(如磁铁矿粉)作为加重质床层,在均匀上升气流的作用下,形成具有一定密度、高度的气固两相悬浮体,进入分选机的煤炭颗粒在床层中按密度分层,精煤浮在床层表面,矸石沉在床层底部,从而实现煤炭的分选。
干法重介质流化床选煤的关键在于流化床的床层密度。在分选过程中,原煤会带入细粒煤泥,分选过程中还会产生一定量的次生煤泥。细粒煤泥在流化床中能拓宽床内颗粒的粒度分布,起到类似润滑剂的效果,有利于改善流化质量,但过多的细粒煤泥存在于流化床中会导致床层密度下降,不利于床层密度的均匀稳定。这就需要对床层密度进行监测,及时补充高密度磁铁矿粉,以维持床层密度均匀稳定。
床高也是影响干法重介质流化床选煤效果的重要因素之一。气流通过布风板以微泡形式进入床层,气泡在上升过程中会合并变大,床层越高,气泡越大,对床层扰动作用越强,不利于床层稳定;除此之外,床层太高时,床层中重产物下沉降时间长,影响分选效果;床层太低时,又会使轻产物低于输送刮板而不能被排出,影响分选过程的进行。所以流化床的床层高度是一个重要的参数,必须控制在合适的范围内。
要使干法重介质流化床选煤分选过程得以正常进行,必须保证床层的高度及密度均匀、稳定。目前干法重介质流化床分选机自动控制系统,是对床层密度和高度进行测量,将测量信号输入计算机进行分析处理,由计算机采取控制方法,输出调节信号给调节器,对密度和床高进行调节。这种方法测量精度高,操作使用方便,实现了干法重介质流化床分选机密度高度自动控制,但仍然具有问题。一是气流的扰动、气泡的运动、颗粒的碰撞等干扰因素会对床层压力造成波动,床层压力不稳,传感器检测到的压降信号时刻处于变化中;二是对原料煤性质、选后产品性质等缺少必要的监控。
发明内容
发明目的:针对以上问题,本发明提出一种干法重介质流化床分选机智能控制方法,以解决目前生产中存在的智能化控制程度不高的问题,提高选煤质量。
技术方案:为实现本发明的目的,本发明所采用的技术方案是:一种干法重介质流化床分选机智能控制方法,包括以下步骤:
步骤一、控制风机向床体中鼓入气流,使床层流化,当床层压降波动稳定时,控制 风压风量维持稳定;根据入选原煤的可选性曲线,估算初始床层密度
Figure PCTCN2020097386-appb-000001
步骤二、检测床层中磁性物含量,计算实时床层密度
Figure PCTCN2020097386-appb-000002
并与初始床层密度
Figure PCTCN2020097386-appb-000003
进行比较,根据比较结果,调节介质添加阀门,向分选机中加入介质;
步骤三、控制调节刮板排料速度及介质添加量,维持床层高度的稳定;原煤在分选机中经过分选得到精煤产品;
步骤四、对分选得到的精煤产品实时检测产品灰分,并与精煤产品的目标灰分进行比较,若产品灰分与目标灰分差异超过预期,则对初始床层密度进行调节。
进一步地,所述步骤二中,根据实时床层密度与初始床层密度的比较结果,调节介质添加阀门,向分选机中加入介质,具体如下:
计算实时床层密度
Figure PCTCN2020097386-appb-000004
与初始密度值
Figure PCTCN2020097386-appb-000005
的偏差
Figure PCTCN2020097386-appb-000006
若D 1≤A 1,表明偏差满足预期,不对床层密度进行调节,A 1为密度偏差阈值;
若D 1>A 1
Figure PCTCN2020097386-appb-000007
向分选机中加入循环介质,降低床层密度;
若D 1>A 1
Figure PCTCN2020097386-appb-000008
向分选机中加入磁铁矿粉,增大床层密度;
所述的循环介质是随分选产物排出未经磁选的含有细粒煤泥的磁铁矿粉混合物。
进一步地,所述步骤三中,控制调节刮板排料速度及介质添加量,维持床层高度的稳定,具体如下:
获取实时床层高度H t,计算床层高度H t与设定高度值H 0的偏差D 2=|H t-H 0|;
若D 2≤A 2,表明偏差满足预期,不对床层高度进行调节,A 2为高度偏差阈值;
若D 2>A 2且H t>H 0,提高刮板排料速度,同时减少介质添加量,降低床层高度;
若D 2>A 2且H t<H 0,降低刮板排料速度,同时增大介质添加量,增大床层高度。
进一步地,所述步骤四中,将实时检测的产品灰分与精煤产品的目标灰分进行比较,根据比较结果调节初始床层密度,具体如下:
计算实时精煤产品灰分Ad t与精煤产品的目标灰分Ad 0的偏差D 3=|Ad t-Ad 0|;
若D 3≤A 3,表明偏差满足预期,不对初始床层密度进行调节,A 3为灰分偏差阈值;
若D 3>A 3且Ad t>Ad 0,降低初始床层密度,即增加循环介质添加量,降低磁铁矿粉添加量;若D 3>A 3且Ad t<Ad 0,增大初始床层密度,即增加磁铁矿粉添加量,降低循环介质添加量。
有益效果:与现有技术相比,本发明的技术方案具有以下有益的技术效果:
本发明的干法重介质流化床分选机智能控制方法能够实时检测并调整床层中磁性物含量,保证分选密度;能够及时调节介质添加量和刮板排料速度,维持分选过程床高稳定;依据原煤及产品性质对分选密度进行调节,形成两个闭环自动控制系统,一个是依据原煤性质对选煤参数调节的前馈系统,一个是依据精煤产品性质对选煤参数调节的反馈系统,具有智能化程度高的优点。
附图说明
图1是干法重介质流化床分选机智能控制流程图。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明。
本发明所述的干法重介质流化床分选机智能控制方法,流程如图1所示,包括如下步骤:
步骤一、控制风机向床体中鼓入气流,使床层流化,当床层压降波动稳定时,控制风压风量维持稳定;根据入选原煤的可选性曲线估算分选密度,即初始床层密度
Figure PCTCN2020097386-appb-000009
步骤二、通过磁性物含量检测仪测定床层中磁性物含量,计算实时床层密度
Figure PCTCN2020097386-appb-000010
并与初始床层密度
Figure PCTCN2020097386-appb-000011
进行比较;根据比较结果,调节介质添加阀门,向分选机中加入介质,使实时床层密度与初始床层密度的偏差满足预期;具体如下:
计算实时床层密度
Figure PCTCN2020097386-appb-000012
与初始密度值
Figure PCTCN2020097386-appb-000013
的偏差
Figure PCTCN2020097386-appb-000014
若D 1≤A 1,偏差满足预期,不对床层密度进行调节,A 1为密度偏差阈值;若D 1>A 1
Figure PCTCN2020097386-appb-000015
向分选机中加入循环介质,降低床层密度;若D 1>A 1
Figure PCTCN2020097386-appb-000016
向分选机中加入磁铁矿粉,增大床层密度;所述的循环介质是随分选产物排出未经磁选的含有细粒煤泥的磁铁矿粉混合物,由于其中混合了细粒煤泥,密度较低,可用来调节床层密度。
步骤三、在分选过程中由于煤泥含量的累积会导致床层密度下降,可向分选机中添加高密度的磁铁矿粉,加入磁铁矿粉之后床层高度发生变化,控制调节刮板排料速度及介质添加量,维持床层高度的稳定;原煤在分选机中经过分选得到精煤产品;具体如下:
获取实时床层高度H t,计算床层高度H t与设定高度值H 0的偏差D 2=|H t-H 0|;若D 2≤A 2,偏差满足预期,不对床层高度进行调节,A 2为高度偏差阈值;若D 2>A 2且H t>H 0,提高刮板排料速度,同时减少介质添加量,降低床层高度;若D 2>A 2且H t<H 0,降低刮板排料速度,同时增大介质添加量,增大床层高度。
步骤四、通过精煤输送皮带上的在线灰分仪对分选得到的精煤产品实时检测产品灰分,并与精煤产品的目标灰分进行比较,若产品灰分与目标灰分差异超过预期,则对初始床层密度进行调节;具体如下:
计算实时精煤产品灰分Ad t与精煤产品的目标灰分Ad 0的偏差D 3=|Ad t-Ad 0|;若D 3≤A 3,偏差满足预期,不对初始床层密度进行调节,A 3为灰分偏差阈值;若D 3>A 3且Ad t>Ad 0,降低初始床层密度,即增加循环介质添加量,降低磁铁矿粉添加量;若D 3>A 3且Ad t<Ad 0,增大初始床层密度,即增加磁铁矿粉添加量,降低循环介质添加量。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (4)

  1. 一种干法重介质流化床分选机智能控制方法,其特征在于:包括以下步骤:
    步骤一、控制风机向床体中鼓入气流,使床层流化,当床层压降波动稳定时,控制风压风量维持稳定;根据入选原煤的可选性曲线,估算初始床层密度
    Figure PCTCN2020097386-appb-100001
    步骤二、检测床层中磁性物含量,计算实时床层密度
    Figure PCTCN2020097386-appb-100002
    并与初始床层密度
    Figure PCTCN2020097386-appb-100003
    进行比较,根据比较结果,调节介质添加阀门,向分选机中加入介质;
    步骤三、控制调节刮板排料速度及介质添加量,维持床层高度的稳定;原煤在分选机中经过分选得到精煤产品;
    步骤四、对分选得到的精煤产品实时检测产品灰分,并与精煤产品的目标灰分进行比较,若产品灰分与目标灰分差异超过预期,则对初始床层密度进行调节。
  2. 根据权利要求1所述的一种干法重介质流化床分选机智能控制方法,其特征在于:所述步骤二中,根据实时床层密度与初始床层密度的比较结果,调节介质添加阀门,向分选机中加入介质,具体如下:
    计算实时床层密度
    Figure PCTCN2020097386-appb-100004
    与初始密度值
    Figure PCTCN2020097386-appb-100005
    的偏差
    Figure PCTCN2020097386-appb-100006
    若D 1≤A 1,表明偏差满足预期,不对床层密度进行调节,A 1为密度偏差阈值;
    若D 1>A 1
    Figure PCTCN2020097386-appb-100007
    向分选机中加入循环介质,降低床层密度;
    若D 1>A 1
    Figure PCTCN2020097386-appb-100008
    向分选机中加入磁铁矿粉,增大床层密度;
    所述的循环介质是随分选产物排出未经磁选的含有细粒煤泥的磁铁矿粉混合物。
  3. 根据权利要求1所述的一种干法重介质流化床分选机智能控制方法,其特征在于:所述步骤三中,控制调节刮板排料速度及介质添加量,维持床层高度的稳定,具体如下:
    获取实时床层高度H t,计算床层高度H t与设定高度值H 0的偏差D 2=|H t-H 0|;
    若D 2≤A 2,表明偏差满足预期,不对床层高度进行调节,A 2为高度偏差阈值;
    若D 2>A 2且H t>H 0,提高刮板排料速度,同时减少介质添加量,降低床层高度;
    若D 2>A 2且H t<H 0,降低刮板排料速度,同时增大介质添加量,增大床层高度。
  4. 根据权利要求1-3任一所述的一种干法重介质流化床分选机智能控制方法,其特征在于:所述步骤四中,将实时检测的产品灰分与精煤产品的目标灰分进行比较,根据比较结果调节初始床层密度,具体如下:
    计算实时精煤产品灰分Ad t与精煤产品的目标灰分Ad 0的偏差D 3=|Ad t-Ad 0|;
    若D 3≤A 3,表明偏差满足预期,不对初始床层密度进行调节,A 3为灰分偏差阈值;
    若D 3>A 3且Ad t>Ad 0,降低初始床层密度,即增加循环介质添加量,降低磁铁矿粉添加量;若D 3>A 3且Ad t<Ad 0,增大初始床层密度,即增加磁铁矿粉添加量,降低循环介质添加量;所述的循环介质是随分选产物排出未经磁选的含有细粒煤泥的磁铁矿粉混合物。
PCT/CN2020/097386 2020-04-20 2020-06-22 干法重介质流化床分选机智能控制方法 WO2021212641A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/432,486 US20220258176A1 (en) 2020-04-20 2020-06-22 Intelligent control method for dry dense medium fluidized bed separator
GB2111923.5A GB2614693B (en) 2020-04-20 2020-06-22 Intelligent control method for dry dense medium fluidized bed separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010311220.1A CN111515013B (zh) 2020-04-20 2020-04-20 干法重介质流化床分选机智能控制方法
CN202010311220.1 2020-04-20

Publications (1)

Publication Number Publication Date
WO2021212641A1 true WO2021212641A1 (zh) 2021-10-28

Family

ID=71903355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097386 WO2021212641A1 (zh) 2020-04-20 2020-06-22 干法重介质流化床分选机智能控制方法

Country Status (2)

Country Link
CN (1) CN111515013B (zh)
WO (1) WO2021212641A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116159672A (zh) * 2023-03-01 2023-05-26 湖南中科电气股份有限公司 一种基于石墨化材料分选的磁选系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113058753B (zh) * 2021-03-30 2022-09-13 中国矿业大学 一种井下煤炭液固流态化分选装置
CN115970881B (zh) * 2023-03-16 2023-07-07 天津美腾科技股份有限公司 一种分选系统及精煤质量调控方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103071583A (zh) * 2013-01-28 2013-05-01 中国煤炭进出口公司 一种重介选煤中重介质密度的控制方法及系统
CN104525359A (zh) * 2014-12-30 2015-04-22 唐山市神州机械有限公司 采用干法重介质分选床的干法重介分选机及分选装置
CN105214956A (zh) * 2015-10-28 2016-01-06 中国矿业大学 一种浓相气固流化床干法分选系统及工艺
CN109331989A (zh) * 2018-09-18 2019-02-15 中国矿业大学 一种煤炭全粒级干法脱水脱灰系统与工艺
CN110605178A (zh) * 2019-09-23 2019-12-24 中国矿业大学 一种重介分选过程智能控制系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2179204Y (zh) * 1993-12-10 1994-10-12 天津航空机电公司 空气重介流化床密度测控装置
CN101875025A (zh) * 2010-06-03 2010-11-03 于海波 动力煤的高效、优质跳汰选控制方法
CN105289985B (zh) * 2015-11-20 2017-05-24 中国矿业大学 一种煤炭全粒级干法分选洁净工艺及系统
CN106964483B (zh) * 2017-04-28 2019-02-26 中国矿业大学 一种无压给料重介旋流器选煤过程自动控制方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103071583A (zh) * 2013-01-28 2013-05-01 中国煤炭进出口公司 一种重介选煤中重介质密度的控制方法及系统
CN104525359A (zh) * 2014-12-30 2015-04-22 唐山市神州机械有限公司 采用干法重介质分选床的干法重介分选机及分选装置
CN105214956A (zh) * 2015-10-28 2016-01-06 中国矿业大学 一种浓相气固流化床干法分选系统及工艺
CN109331989A (zh) * 2018-09-18 2019-02-15 中国矿业大学 一种煤炭全粒级干法脱水脱灰系统与工艺
CN110605178A (zh) * 2019-09-23 2019-12-24 中国矿业大学 一种重介分选过程智能控制系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIONG, JIAN-JUN: "Exploration for the Factors Effecting on Performance of Dry Coal Cleaning by Use of Air Dense Medium Fluidized Bed", COAL PREPARATION TECHNOLOGY, no. 6, 31 December 2003 (2003-12-31), pages 99 - 102+19, XP055861194, ISSN: 1001-3571, DOI: 10.16447/j.cnki.cpt.2003.06.026 *
XIUXIANG TAO: "Measurement and Control of Density and Height for Gas-Solid Fluidized Bed", JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING, vol. 24, no. 5, 31 October 2002 (2002-10-31), pages 1 - 4, XP055740427 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116159672A (zh) * 2023-03-01 2023-05-26 湖南中科电气股份有限公司 一种基于石墨化材料分选的磁选系统
CN116159672B (zh) * 2023-03-01 2024-01-05 湖南中科电气股份有限公司 一种基于石墨化材料分选的磁选系统

Also Published As

Publication number Publication date
CN111515013A (zh) 2020-08-11
CN111515013B (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2021212641A1 (zh) 干法重介质流化床分选机智能控制方法
JP5058567B2 (ja) 流動乾燥方法および流動層乾燥装置
CN110328140A (zh) 提高颗粒流化质量和分选密度稳定性的方法及配套装置
CA1217656A (en) Teeter bed density control device and method
US20120230778A1 (en) Potential fluidization device for conveying powder materials in a hyperdense bed
US8425159B2 (en) Process for conveying powdery materials without segregation
Yang et al. Kinematic properties and beneficiation performance of fine coal in a continuous vibrated gas-fluidized bed separator
CA1204081A (en) System for controlling separating gravity in dense media cyclone
US20220258176A1 (en) Intelligent control method for dry dense medium fluidized bed separator
CN115970881B (zh) 一种分选系统及精煤质量调控方法
WO2008083472A1 (en) Density-based coke separation process in paste plant
US3349912A (en) Fluidized bed separator
EA004660B1 (ru) Способ и устройство для разделения фракций в потоке материала
CN114558778B (zh) 一种微米级粉体物料可控分级气流筛及筛分方法
CN220657874U (zh) 一种干扰床层分选机
Galvin et al. Enhanced recovery of zircon using a REFLUX™ classifier with an inclined channel spacing of 3 mm
JPH0389975A (ja) 粒度による粒子分離装置および方法
CN117019371A (zh) 干扰床分选机及控制方法
Kohmuench et al. Process engineering evaluation of the CrossFlow Separator
JPH08309225A (ja) 流動層式分級機を備えた粉砕設備
CN116984114B (zh) 数变旋流器控制方法及系统
CN113522743B (zh) 一种气固分选流化床内弱化气泡的方法及系统
WO2023180191A1 (en) Feedback control loop for pneumatic conveying
CN110425867B (zh) 一种连续式回转炉高精度进料系统
SU1072903A2 (ru) Способ оптимального управлени заполнением мельниц измельчаемым материалом и измельчающей средой

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202111923

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200622

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932825

Country of ref document: EP

Kind code of ref document: A1