WO2021212634A1 - 一种用于步进梁式连续脱脂烧结炉的多区控温及进气装置 - Google Patents
一种用于步进梁式连续脱脂烧结炉的多区控温及进气装置 Download PDFInfo
- Publication number
- WO2021212634A1 WO2021212634A1 PCT/CN2020/096910 CN2020096910W WO2021212634A1 WO 2021212634 A1 WO2021212634 A1 WO 2021212634A1 CN 2020096910 W CN2020096910 W CN 2020096910W WO 2021212634 A1 WO2021212634 A1 WO 2021212634A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sintering furnace
- sintering
- temperature control
- air intake
- walking beam
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1017—Multiple heating or additional steps
- B22F3/1021—Removal of binder or filler
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/003—Apparatus, e.g. furnaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1003—Use of special medium during sintering, e.g. sintering aid
- B22F3/1007—Atmosphere
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
- B22F3/225—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Definitions
- the invention relates to the technical field of powder metallurgy injection molding, in particular to a multi-zone temperature control and air intake device for a walking beam type continuous degreasing sintering furnace.
- Walking beam type continuous debinding and sintering furnace is used for metal powder injection molding.
- Metal powder injection molding introduces modern plastic injection molding technology into the field of powder metallurgy to form a new type of powder metallurgy near-net forming technology.
- Metal powder injection molding is a new process that combines traditional powder metallurgy technology and plastic molding technology. It is a product of multidisciplinary integration of plastic molding technology, polymer chemistry, powder metallurgy technology, and metal materials. Injection molding can quickly manufacture high-density, high-precision, and complex-shaped structural parts. It can quickly and accurately transform design ideas into products with certain structural and functional characteristics, and can directly produce parts in batches. It is a new development in the manufacturing technology industry. change.
- the injection mechanism is: the mixture of metal powder and binder is injected into the mold cavity at a certain temperature, speed and pressure through the injection machine, and the preform of a certain shape and size is obtained after cooling and shaping, and then the preform is removed from the preform. Binder and sintering can obtain parts with certain mechanical properties.
- the forming process is as follows: 1. Mixing of metal powder and binder, 2. Forming, 3. Debinding, 4. Sintering, 5. Post-processing, 6. Finished product.
- debinding and sintering are the most critical steps.
- Debinding is the process of removing the binder contained in the body before sintering.
- the debinding process must ensure that the binder is gradually discharged from different parts of the compact along the tiny channels between the particles without compromising the high strength of the formed compact.
- Sintering can shrink and densify the porous degreased blank into a product with a certain structure and performance.
- the present invention provides a multi-zone temperature control and air inlet device for a walking beam type continuous degreasing sintering furnace to solve the uneven temperature and atmosphere of the upper and lower layers of the sintered product and the heater caused by carbon deposition.
- the problem of short life is a multi-zone temperature control and air inlet device for a walking beam type continuous degreasing sintering furnace to solve the uneven temperature and atmosphere of the upper and lower layers of the sintered product and the heater caused by carbon deposition.
- the present invention provides the following solutions:
- the invention provides a multi-zone temperature control and air inlet device for a walking beam type continuous degreasing and sintering furnace, which comprises an upper thermocouple and an upper air inlet pipe arranged on the top of the sintering section of the sintering furnace, and the lower part on both sides of the sintering section of the sintering furnace
- the lower thermocouple and lower air inlet pipe of the sintering furnace are also provided with molybdenum heating bodies on both sides of the material boat inside the sintering section of the sintering furnace.
- an upper mounting hole is provided at the top of the sintering section of the sintering furnace, and lower mounting holes are provided at the lower part of both sides of the sintering section of the sintering furnace.
- the lower thermocouple and the lower air inlet pipe are both arranged in the lower mounting hole.
- a through passage is provided inside the upper air intake pipe, an air inlet is provided on the outer end side wall of the upper air intake pipe, and the upper thermocouple is arranged in the through passage.
- the through channel penetrates the refractory brick in the sintering section of the sintering furnace.
- a middle channel is arranged inside the lower air inlet pipe, an air inlet is arranged on the outer end side wall of the lower air inlet pipe, and the lower thermocouple is arranged in the middle channel.
- the middle channel penetrates the refractory bricks in the sintering section of the sintering furnace.
- the molybdenum heating body includes an upper molybdenum heating body and a lower molybdenum heating body; the upper molybdenum heating body is located on both sides of the upper part of the material boat, and the lower molybdenum heating body is located on both sides of the lower part of the material boat.
- the upper molybdenum heating body is connected to an upper lead structure
- the lower molybdenum heating body is connected to a lower lead structure
- the upper lead structure and the lower lead structure are arranged in a left-right position.
- the side wall of the sintering section of the sintering furnace includes thermal insulation cotton panels, thermal insulation bricks and refractory bricks which are sequentially arranged from the outside to the inside; the molybdenum heating body is arranged on the inner side wall of the refractory bricks.
- the upper and lower parts of a single zone are separately provided with heating bodies, and the upper and lower temperatures of the single zone are individually heated.
- the upper and lower temperature control and temperature modification are used to correct the dimensional deviation caused by different gas states.
- the setting of the air inlet device enables the clean hydrogen atmosphere to be directly introduced into the bottom and upper part of the molybdenum heater, so that the carbon atmosphere is not easy to deposit, protects the molybdenum heater, adjusts the atmosphere in the upper and lower parts of the furnace, and reduces the difference in sintering performance between the upper and lower parts of the material boat.
- the air intake hole is shared with the original thermocouple hole, which realizes thermocouple temperature control and air intake, reducing the setting of air intake holes.
- Figure 1 is a schematic structural diagram of a multi-zone temperature control and air intake device used in a walking beam type continuous degreasing sintering furnace according to the present invention
- FIG. 2 is a schematic diagram of the structure of the upper and lower molybdenum heating bodies in a single area of the multi-zone temperature control and air intake device used in the walking beam type continuous degreasing sintering furnace of the present invention
- FIG. 3 is a schematic diagram of the arrangement of the upper and lower molybdenum heating bodies in the multi-zone temperature control and air intake device of the walking beam type continuous degreasing sintering furnace according to the present invention
- FIG. 4 is a schematic perspective view of the structure of the upper and lower molybdenum heating bodies in multiple regions of the multi-zone temperature control and air intake device used in the walking beam type continuous degreasing sintering furnace of the present invention
- FIG. 5 is a schematic perspective view of the upper and lower lead-out structures of the molybdenum heating body in the upper and lower regions of the multi-zone temperature control and air intake device used in the walking beam type continuous degreasing sintering furnace of the present invention.
- this embodiment provides a multi-zone temperature control and air inlet device for a walking beam type continuous degreasing sintering furnace, which includes an upper thermocouple 1 and an upper air inlet pipe 13 arranged on the top of the sintering section of the sintering furnace, and The lower thermocouple 10 and the lower air inlet pipe 16 are arranged at the lower part of both sides of the sintering section of the sintering furnace.
- the inside of the sintering section of the sintering furnace is also provided with molybdenum heating bodies on both sides of the material boat 4.
- thermocouple 1 is set on the top of the sintering section of the sintering furnace
- lower thermocouples are set on both sides of the lower part of the sintering section of the sintering furnace.
- the upper molybdenum heating body 12 and the lower molybdenum heating body 11 are arranged on both sides of the material boat, and the upper and lower temperatures of a single zone are individually heated to control, so that the sintering temperature in the furnace with a larger output is more uniform.
- the upper molybdenum heating body is connected to an upper lead structure 15, the lower molybdenum heating body is connected to a lower lead structure 14, and the upper lead structure 15 and the lower lead structure 14 are arranged in a left-right position.
- the amount of gas has also increased significantly, and the gas environment conditions at the upper and lower parts of the material boat 4 in the furnace will also be different, which affects the stability of the product.
- the upper and lower temperature control and modification of the temperature are used to correct the size caused by different gas states. deviation.
- an upper air inlet pipe 13 is set on the top of the sintering section of the sintering furnace, and lower air inlet pipes are set on both lower sides of the sintering section of the sintering furnace. 16.
- the clean hydrogen atmosphere is directly introduced into the bottom and upper part of the molybdenum heater, so that the carbon atmosphere is not easy to deposit, protects the molybdenum heater, and can also be used to adjust the upper and lower atmospheres in the furnace to make it uniform, so that the sintering performance of the upper and lower parts of the boat is different. smaller.
- thermocouple and the air inlet pipe are arranged in the same air inlet hole, that is, the upper air inlet pipe 13 is provided with a through channel, and the outer end side wall of the upper air inlet pipe 13 is provided with an air inlet, and the upper thermocouple 1 Set in the through channel.
- the hydrogen enters the furnace through the gap between the upper thermocouple 1 and the through channel.
- the lower air inlet pipe 16 is provided with a middle passage, the outer end side wall of the lower air inlet pipe 16 is provided with an air inlet, and the lower thermocouple 10 is arranged in the middle passage.
- the hydrogen enters the furnace through the gap between the lower thermocouple 10 and the middle channel.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Tunnel Furnaces (AREA)
Abstract
一种用于步进梁式连续脱脂烧结炉的多区控温及进气装置,涉及粉末冶金注射成形技术领域,该装置包括设置于烧结炉烧结段顶部的上热电偶(1)和上进气管(13)以及设置于烧结炉烧结段两侧下部的下热电偶(10)和下进气管(16),烧结炉烧结段内部位于料舟的两侧还设置有钼加热体(11,12)。该装置对单个区域上下部位单独设置加热体,进行单区域上下温度单独加热控制。对于大产量的烧结炉,通过上下控温,修改温度,来修正气体状态不同引起的尺寸偏差。进气装置的设置使干净的氢气气氛直接引入到钼加热器底部和上部,使碳气氛不易沉积,保护了钼加热器,调节炉内上下气氛,减小料舟上下部位产品烧结性能差异。
Description
本发明涉及粉末冶金注射成形技术领域,特别是涉及一种用于步进梁式连续脱脂烧结炉的多区控温及进气装置。
步进梁式连续脱脂烧结炉用于金属粉末注射成形。
金属粉末注射成形将现代塑料注射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成型技术。
金属粉末注射成形,是传统的粉末冶金工艺与塑料成形工艺相结合的新工艺,是集塑料成形工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科交叉的产物,利用模具可注射成形,快速制造高密度、高精度、复杂形状的结构零件,能够快速准确地将设计思想转变为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。其注射机理为:通过注射机将金属粉末与粘结剂的混合物以一定的温度,速度和压力注入充满模腔,经冷却定形出模得到一定形状、尺寸的预制件,再脱出预制件中的粘结剂并进行烧结,可得到具有一定机械性能的制件。其成形工艺流程如下:1.金属粉末和粘结剂混料,2.成形,3.脱脂,4.烧结,5.后处理,6.成品。
其中,脱脂和烧结是最关键的步骤。脱脂是成形坯在烧结前去除体内所含粘结剂的过程。脱脂工艺必须保证粘结剂从坯块的不同部位沿着颗粒之间的微小通道逐渐地排出,而不损害成形坯的高强度。烧结能使多孔的脱脂毛坯收缩密化成为具有一定组织和性能的制品。
为满足日益增长的需求,炉子越做越大,产量越来越高,随之而来的产品稳定性问题越来越显著,主要体现在同一料舟内的上部和下部烧结温度偏差较大,从而反映到上下层产品的尺寸偏差较大,产品烧结良率低下。
发明内容
为解决以上技术问题,本发明提供一种用于步进梁式连续脱脂烧结炉的多区控温及进气装置,以解决烧结产品上下层温度不均和气氛不均以及 碳沉积引起加热器寿命短的问题。
为实现上述目的,本发明提供了如下方案:
本发明提供一种用于步进梁式连续脱脂烧结炉的多区控温及进气装置,包括设置于烧结炉烧结段顶部的上热电偶和上进气管以及设置于烧结炉烧结段两侧下部的下热电偶和下进气管,烧结炉烧结段内部位于料舟的两侧还设置有钼加热体。
可选的,烧结炉烧结段顶部设置有上安装孔,烧结炉烧结段两侧下部设置有下安装孔,所述上热电偶和所述上进气管均设置于所述上安装孔内,所述下热电偶和所述下进气管均设置于所述下安装孔内。
可选的,所述上进气管内部设置有贯穿通道,所述上进气管的外端侧壁上设置有进气口,所述上热电偶设置于所述贯穿通道内。
可选的,所述贯穿通道贯穿烧结炉烧结段内的耐火砖。
可选的,所述下进气管内部设置有中部通道,所述下进气管的外端侧壁上设置有进气口,所述下热电偶设置于所述中部通道内。
可选的,所述中部通道贯穿烧结炉烧结段内的耐火砖。
可选的,所述钼加热体包括上部钼加热体和下部钼加热体;所述上部钼加热体位于料舟的上部两侧,所述下部钼加热体位于料舟的下部两侧。
可选的,所述上部钼加热体连接一上引出结构,所述下部钼加热体连接一下引出结构,所述上引出结构与所述下引出结构左右错位布置。
可选的,烧结炉烧结段的侧壁包括由外向内依次设置的隔热棉板、保温砖和耐火砖;所述钼加热体设置于所述耐火砖的内侧壁上。
本发明相对于现有技术取得了以下技术效果:
本发明中的用于步进梁式连续脱脂烧结炉的多区控温及进气装置,对单个区域上下部位单独设置加热体,进行单区域上下温度单独加热控制。对于大产量的烧结炉,通过上下控温,修改温度,来修正气体状态不同引起的尺寸偏差。进气装置的设置使干净的氢气气氛直接引入到钼加热器底部和上部,使碳气氛不易沉积,保护了钼加热器,调节炉内上下气氛,减小料舟上下部位产品烧结性能差异。进气孔与原有的热电偶孔共用,即实现热电偶控温,又实现进气,减少进气孔设置。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明用于步进梁式连续脱脂烧结炉的多区控温及进气装置的结构示意图;
图2为本发明用于步进梁式连续脱脂烧结炉的多区控温及进气装置中单个区域上下钼加热体的结构示意图;
图3为本发明用于步进梁式连续脱脂烧结炉的多区控温及进气装置中多个区域上下钼加热体的布置位置结构示意图;
图4为本发明用于步进梁式连续脱脂烧结炉的多区控温及进气装置中多个区域上下钼加热体结构示意立体图;
图5为本发明用于步进梁式连续脱脂烧结炉的多区控温及进气装置中上下区域钼加热体上引出结构和下引出结构剖视示意立体图。
附图标记说明:1、上热电偶;2、保温填充料;3、吊顶砖;4、料舟;5、耐火砖;6、保温砖;7、隔热棉板;8、隔热砖;9、步进梁;10、下热电偶;11、下钼加热体;12、上钼加热体;13、上进气管;14、下引出结构;15、上引出结构;16、下进气管。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:
如图1所示,本实施例提供一种用于步进梁式连续脱脂烧结炉的多区控温及进气装置,包括设置于烧结炉烧结段顶部的上热电偶1和上进气管13以及设置于烧结炉烧结段两侧下部的下热电偶10和下进气管16,烧结炉烧结段内部位于料舟4的两侧还设置有钼加热体。
于本具体实施例中,如图1-4所示,对单个区域上下部位单独设置加热体,即在烧结炉烧结段顶部设置上热电偶1,在烧结炉烧结段两侧下部设置下热电偶10,在料舟的两侧设置上钼加热体12和下钼加热体11,进行单区域上下温度单独加热控制,从而使较大产量的炉型中烧结温度更加均匀。
所述上部钼加热体连接一上引出结构15,所述下部钼加热体连接一下引出结构14,所述上引出结构15与所述下引出结构14左右错位布置。
对于大产量的烧结炉,气体用量也显著增加,炉内料舟4上下部位的气体环境状态也会有不同,影响产品的稳定性,通过上下控温,修改温度来修正气体状态不同引起的尺寸偏差。
为使料舟4上下部位的气体环境状态更加均匀,在单个区域上下部位单独设置进气装置,即,在烧结炉烧结段顶部设置上进气管13,在烧结炉烧结段两侧下部设置下进气管16,使干净的氢气气氛直接引入到钼加热体底部和上部,使碳气氛不易沉积,保护了钼加热体,也可用于调节炉内上下气氛使之均匀,使料舟上下部位产品烧结性能差异更小。
为了减少进气孔,将热电偶与进气管设置于同一进气孔中,即,上进气管13内部设置有贯穿通道,上进气管13的外端侧壁上设置有进气口,上热电偶1设置于贯穿通道内。氢气通过上热电偶1与贯穿通道之间的间隙进入炉内。下进气管16内部设置有中部通道,下进气管16的外端侧壁上设置有进气口,下热电偶10设置于中部通道内。氢气通过下热电偶10与中部通道之间的间隙进入炉内。从而实现了在烧结炉烧结段炉壁上设置一个进气孔即可同时安装热电偶与进气管。
需要说明的是,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内,不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
本说明书中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
Claims (9)
- 一种用于步进梁式连续脱脂烧结炉的多区控温及进气装置,其特征在于,包括设置于烧结炉烧结段顶部的上热电偶和上进气管以及设置于烧结炉烧结段两侧下部的下热电偶和下进气管,烧结炉烧结段内部位于料舟的两侧还设置有钼加热体。
- 根据权利要求1所述的用于步进梁式连续脱脂烧结炉的多区控温及进气装置,其特征在于,烧结炉烧结段顶部设置有上安装孔,烧结炉烧结段两侧下部设置有下安装孔,所述上热电偶和所述上进气管均设置于所述上安装孔内,所述下热电偶和所述下进气管均设置于所述下安装孔内。
- 根据权利要求1所述的用于步进梁式连续脱脂烧结炉的多区控温及进气装置,其特征在于,所述上进气管内部设置有贯穿通道,所述上进气管的外端侧壁上设置有进气口,所述上热电偶设置于所述贯穿通道内。
- 根据权利要求3所述的用于步进梁式连续脱脂烧结炉的多区控温及进气装置,其特征在于,所述贯穿通道贯穿烧结炉烧结段内的耐火砖。
- 根据权利要求1所述的用于步进梁式连续脱脂烧结炉的多区控温及进气装置,其特征在于,所述下进气管内部设置有中部通道,所述下进气管的外端侧壁上设置有进气口,所述下热电偶设置于所述中部通道内。
- 根据权利要求5所述的用于步进梁式连续脱脂烧结炉的多区控温及进气装置,其特征在于,所述中部通道贯穿烧结炉烧结段内的耐火砖。
- 根据权利要求1所述的用于步进梁式连续脱脂烧结炉的多区控温及进气装置,其特征在于,所述钼加热体包括上部钼加热体和下部钼加热体;所述上部钼加热体位于料舟的上部两侧,所述下部钼加热体位于料舟的下部两侧。
- 根据权利要求7所述的用于步进梁式连续脱脂烧结炉的多区控温及进气装置,其特征在于,所述上部钼加热体连接一上引出结构,所述下部钼加热体连接一下引出结构,所述上引出结构与所述下引出结构左右错位布置。
- 根据权利要求1所述的用于步进梁式连续脱脂烧结炉的多区控温及进气装置,其特征在于,烧结炉烧结段的侧壁包括由外向内依次设置的 隔热棉板、保温砖和耐火砖;所述钼加热体设置于所述耐火砖的内侧壁上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010330871.5 | 2020-04-24 | ||
CN202010330871.5A CN111299573A (zh) | 2020-04-24 | 2020-04-24 | 一种用于步进梁式连续脱脂烧结炉的多区控温及进气装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021212634A1 true WO2021212634A1 (zh) | 2021-10-28 |
Family
ID=71152023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/096910 WO2021212634A1 (zh) | 2020-04-24 | 2020-06-19 | 一种用于步进梁式连续脱脂烧结炉的多区控温及进气装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111299573A (zh) |
WO (1) | WO2021212634A1 (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04126993A (ja) * | 1990-09-19 | 1992-04-27 | Kobe Steel Ltd | 熱間等方圧加圧装置の断熱層の劣化判定方法 |
JP2001012861A (ja) * | 1999-07-01 | 2001-01-19 | Daido Steel Co Ltd | 真空炉およびその操業方法 |
CN104896928A (zh) * | 2015-06-17 | 2015-09-09 | 河南屹力新能源科技有限公司 | 一种气压、温度可控型高温烧结炉 |
CN205464323U (zh) * | 2016-02-19 | 2016-08-17 | 宁波恒普真空技术有限公司 | 多区控温金属热场烧结炉 |
CN106621689A (zh) * | 2017-02-23 | 2017-05-10 | 深圳市星特烁科技有限公司 | 一种用于步进梁式连续排胶烧结炉的气体净化分离装置 |
CN106702123A (zh) * | 2016-12-26 | 2017-05-24 | 北京京诚凤凰工业炉工程技术有限公司 | 双步进梁式热处理炉 |
CN108253792A (zh) * | 2016-12-29 | 2018-07-06 | 中核建中核燃料元件有限公司 | 步进梁式烧结炉 |
US20190255612A1 (en) * | 2018-02-18 | 2019-08-22 | Markforged, Inc. | Sintering furnace |
CN110822894A (zh) * | 2018-08-08 | 2020-02-21 | 中国电子科技集团公司第四十八研究所 | 一种炉膛温度均匀的辊道烧结炉 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203687639U (zh) * | 2013-12-11 | 2014-07-02 | 湖南红太阳光电科技有限公司 | 一种进气装置 |
CN108405855B (zh) * | 2018-06-07 | 2024-03-15 | 宁波恒普技术股份有限公司 | 一种用于金属粉末注射成形的脱脂烧结炉 |
CN212144497U (zh) * | 2020-04-24 | 2020-12-15 | 宁波恒普真空技术有限公司 | 一种用于步进梁式连续脱脂烧结炉的多区控温及进气装置 |
-
2020
- 2020-04-24 CN CN202010330871.5A patent/CN111299573A/zh active Pending
- 2020-06-19 WO PCT/CN2020/096910 patent/WO2021212634A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04126993A (ja) * | 1990-09-19 | 1992-04-27 | Kobe Steel Ltd | 熱間等方圧加圧装置の断熱層の劣化判定方法 |
JP2001012861A (ja) * | 1999-07-01 | 2001-01-19 | Daido Steel Co Ltd | 真空炉およびその操業方法 |
CN104896928A (zh) * | 2015-06-17 | 2015-09-09 | 河南屹力新能源科技有限公司 | 一种气压、温度可控型高温烧结炉 |
CN205464323U (zh) * | 2016-02-19 | 2016-08-17 | 宁波恒普真空技术有限公司 | 多区控温金属热场烧结炉 |
CN106702123A (zh) * | 2016-12-26 | 2017-05-24 | 北京京诚凤凰工业炉工程技术有限公司 | 双步进梁式热处理炉 |
CN108253792A (zh) * | 2016-12-29 | 2018-07-06 | 中核建中核燃料元件有限公司 | 步进梁式烧结炉 |
CN106621689A (zh) * | 2017-02-23 | 2017-05-10 | 深圳市星特烁科技有限公司 | 一种用于步进梁式连续排胶烧结炉的气体净化分离装置 |
US20190255612A1 (en) * | 2018-02-18 | 2019-08-22 | Markforged, Inc. | Sintering furnace |
CN110822894A (zh) * | 2018-08-08 | 2020-02-21 | 中国电子科技集团公司第四十八研究所 | 一种炉膛温度均匀的辊道烧结炉 |
Also Published As
Publication number | Publication date |
---|---|
CN111299573A (zh) | 2020-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150203411A1 (en) | Additive manufacturing hybrid core | |
TWI601587B (zh) | 內置孔道結構的零件之製備方法 | |
CN107159887B (zh) | 一种基于微波吸收发热材料的成型方法 | |
JPS58204836A (ja) | ガラスフアイバ光導波体の製造方法 | |
CN108863343A (zh) | 一种脱脂-烧结一体式生产ito靶材的方法 | |
WO2021212634A1 (zh) | 一种用于步进梁式连续脱脂烧结炉的多区控温及进气装置 | |
CN108405855A (zh) | 一种用于金属粉末注射成形的脱脂烧结炉 | |
CN212144497U (zh) | 一种用于步进梁式连续脱脂烧结炉的多区控温及进气装置 | |
CN205927111U (zh) | 金属粉末注射成形连续烧结炉 | |
KR102015643B1 (ko) | 열전대 삽입 홈을 구비한 히터 | |
CN109650910A (zh) | 承烧板与氧化锆陶瓷注塑胚体的脱脂工艺及其用途 | |
CN216729562U (zh) | 一种用于步进梁式连续脱脂烧结炉的辅助装置 | |
CN107857597A (zh) | 一种先进结构陶瓷的制备方法 | |
JP2008110893A (ja) | ハニカム構造体の焼成方法及び焼成装置 | |
CN101646537A (zh) | 蜂窝成形体的干燥方法 | |
CN113277715B (zh) | 具有复杂结构的石英玻璃器件的制备方法 | |
CN204504221U (zh) | 一种基于激光熔融的打印喷头装置 | |
KR20140088821A (ko) | 전자 교반을 이용한 액상 또는 레오로지 소재의 박막 부품 제조장치 | |
CN107473751B (zh) | 一种两段式烧结陶瓷型芯的制作方法 | |
CN206702219U (zh) | 一种金属粉末注射成型烧结治具 | |
US20090057963A1 (en) | Method for firing ceramic honeycomb bodies in a kiln | |
KR100415166B1 (ko) | 세라믹 전자부품 제조용로 | |
CN114322587B (zh) | 一种连续烧结控制方法 | |
RU2319574C1 (ru) | Способ изготовления составного керамического стержня для литья полых изделий | |
CN206677121U (zh) | 一种用于热芯盒防止合模不严的让道结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20932203 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20932203 Country of ref document: EP Kind code of ref document: A1 |