WO2021212624A1 - 纽扣电池极壳与电极极耳无痕焊接方法及焊接结构和产品 - Google Patents

纽扣电池极壳与电极极耳无痕焊接方法及焊接结构和产品 Download PDF

Info

Publication number
WO2021212624A1
WO2021212624A1 PCT/CN2020/094972 CN2020094972W WO2021212624A1 WO 2021212624 A1 WO2021212624 A1 WO 2021212624A1 CN 2020094972 W CN2020094972 W CN 2020094972W WO 2021212624 A1 WO2021212624 A1 WO 2021212624A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
welding
shell
metal sheet
electrode tab
Prior art date
Application number
PCT/CN2020/094972
Other languages
English (en)
French (fr)
Inventor
常海涛
叶永锋
张志明
许华灶
Original Assignee
福建南平延平区南孚新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建南平延平区南孚新能源科技有限公司 filed Critical 福建南平延平区南孚新能源科技有限公司
Publication of WO2021212624A1 publication Critical patent/WO2021212624A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • H01M10/0427Button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/216Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for button or coin cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/005Devices for making primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for seamless welding of a button battery pole shell and an electrode tab, a welding structure and a product.
  • Button cell also known as button cell, refers to a battery whose shape is like a small button. Generally speaking, it has a larger diameter and thinner thickness (compared to cylindrical batteries such as AA batteries on the market). Button batteries are classified according to their appearance, and the equivalent battery classification includes cylindrical batteries, square batteries, and special-shaped batteries.
  • Button batteries include stacked and wound types.
  • the basic structure of the wound button battery is as follows: includes a first pole shell, a second pole shell, an insulating sealing ring and a battery core. A gap is left between a pole shell and a second pole shell, and an insulating sealing ring fills the gap to electrically isolate the first pole shell from the second pole shell.
  • the first output conductor of the cell is first bent so that the first output conductor is placed close to the lower surface of the cell, and the first output conductor extends to the axial cavity Directly below; then insert the cell vertically into the first pole housing; then insert the welding needle vertically downwards into the axial cavity and press the first output conductor on the first housing through resistance welding
  • the first output conductor is welded to the first pole shell, or the first pole shell is realized by laser welding by emitting laser from below the first pole shell to the area of the first pole shell that overlaps the first output conductor.
  • One of the objectives of the present invention is to provide a method for seamless welding of the electrode shell and the electrode lug of the button battery. Leakage and bulging on the surface.
  • a method for seamless welding of button battery pole shells and electrode tabs The pole shell is cup-shaped, and the cell is installed in the pole shell.
  • the cell is mainly formed by stacking or winding a positive electrode sheet, a negative electrode sheet, and a diaphragm.
  • the positive and negative plates are respectively electrically connected to an electrode tab, and any one of the electrode tabs is welded to the corresponding pole shell to achieve electrical connection.
  • the welding method includes the following steps:
  • the end of the electrode tabs extending from the battery core is welded to the metal sheet before the metal sheet is loaded into the pole shell, and after the metal sheet is loaded into the pole shell, the parallel welding is performed from the pole shell by resistance welding.
  • the metal sheet is welded to the electrode shell inside, and at the same time, the two needle-shaped electrodes for resistance welding are respectively welded on the outer surface of the metal sheet outside the welding position of the metal sheet and the electrode tab.
  • a circular welding current channel will be formed between the two needle-shaped electrodes. The welding current will not penetrate the pole shell, so that only the molten pool and solder joints will be formed inside the pole shell, thus keeping the appearance of the pole shell intact and preventing solder joints.
  • the rupture causes the risk of battery leakage, and at least one pair of second solder joints are formed between the metal sheet and the electrode case, and the connection between the metal sheet and the electrode case is more stable. At the same time, the metal sheet and the electrode case are more stable.
  • the number of solder joints is large.
  • the internal resistance of the welding position between the pole shell and the metal sheet is usually smaller than the internal resistance of the physical contact position between the pole shell and the metal sheet, the overall contact internal resistance between the pole shell and the metal sheet is smaller. The smaller the contact resistance is, the more beneficial it is for battery discharge; in addition, it is also convenient to detect the welding quality between the electrode tab and the metal sheet and between the metal sheet and the electrode shell to avoid false welding.
  • step S2 is performed continuously for 1 to 3 times, so that 1 to 3 pairs of second solder joints are formed between the metal sheet and the pole shell, ensuring that the metal sheet and the pole shell are reliably welded together, and at the same time, minimizing the operation cost and Improve work efficiency.
  • the contact positions of the two needle-shaped electrodes in different sub-steps S2 and the metal sheet are not overlapped, so as to avoid the overlap of the second solder joints in different sub-steps S2, the molten pool will expand, resulting in the bonding of the needle-shaped electrode and the metal sheet. Together, it brings the trouble of dialing the needle.
  • step S2 the two needle-shaped electrodes of the resistance welding can also be pressed at different positions on the outer surface of the metal sheet outside the welding position of the electrode tab, and then the metal The top of the sheet is pressed on the inner surface of the pole case.
  • any welding method of laser welding or resistance welding is used between the metal sheet and the electrode tabs in step S1.
  • step S1 the sequence of steps S1 and S2 can also be changed, and in step S1, at least one pair of first solder joints is formed between the electrode tabs and the metal sheet through parallel welding resistance welding.
  • the first welding spot and the second welding spot are both located inside the pole shell, and the outer surface of the pole shell remains flat and intact, and between the pole shell and the metal sheet
  • the number of second solder joints is large, the connection between the electrode shell and the metal sheet is stronger, and the contact internal resistance is also smaller, which is beneficial to improve the discharge efficiency of the battery.
  • all the second welding points are evenly distributed around the circumference with the center of the pole shell as the center. More preferably, the second welding points of each pair are symmetrically distributed, so that the welding efficiency is higher, and it is also more conducive to automatic welding.
  • the third object of the present invention is to provide a button battery, including a positive electrode shell, a negative electrode shell, an insulating sealing ring and a battery core.
  • Button battery shell a gap is left between the positive shell and the negative shell, the insulating sealing ring fills the gap to electrically isolate the positive shell from the negative shell, and a containing cavity is formed between the positive shell, the negative shell and the insulating sealing ring;
  • the electric core is arranged in the accommodating cavity.
  • the electric core is mainly formed by stacking or winding a positive electrode sheet, a negative electrode sheet, and a diaphragm. At least one of the connection structure between the positive electrode case and the positive electrode tab and the connection structure between the negative electrode case and the negative electrode tab.
  • the connection structure adopts the above-mentioned seamless welding structure of the button battery electrode shell and the electrode lug.
  • connection structure between the negative electrode shell and the negative electrode tab adopts the above-mentioned seamless welding structure of the button battery pole case and the electrode tab. Since most of the existing button battery manufacturing processes use the negative case as the bottom case and the positive case as the top case, the battery core is first put into the bottom case, and then the top case is correspondingly covered to assemble the battery. Therefore, the negative case The non-marking welding structure of the button battery electrode shell and the electrode lug between the button battery and the negative electrode lug is more operability.
  • FIG. 1 is a schematic diagram of the welding structure of the electrode tab and the metal sheet in any one of the embodiments 1 to 3, wherein the metal sheet is a sectional structural view;
  • FIG. 2 is a schematic diagram of the welding structure of the pole shell and the metal sheet in any one of Embodiments 1 to 3, wherein the pole shell and the metal sheet are both sectional structural views;
  • Figure 3 is a top view of the structure of the pole case in Example 1;
  • Example 4 is a schematic cross-sectional structure diagram of the button battery in Example 1;
  • Figure 5 is a top view of the structure of the pole case in Example 2.
  • Figure 6 is a top view of the structure of the pole case in Example 3.
  • FIG. 7 is a schematic cross-sectional structure diagram of the button battery in Embodiment 4.
  • FIG. 8 is a schematic cross-sectional view of the button battery of the present invention.
  • a method for seamless welding of the button battery pole shell and the electrode tab the pole shell 10 is cup-shaped, and the cell 30 is installed in the pole shell 10, and the cell 30 is mainly composed of a positive electrode sheet 31, The negative electrode sheet 32 and the separator 33 are laminated or wound.
  • the positive and negative electrode sheets (31, 32) are respectively electrically connected to an electrode tab (21, 22), and any electrode tab 22 is then connected to the electrode shell 10.
  • the electric connection is realized by welding, and the welding method includes the following steps:
  • S1 Prepare a metal sheet 40, weld one end of the electrode tab 20 that protrudes from the battery to the metal sheet 40, and form a first solder joint 50 between the electrode tab 20 and the metal sheet 40, and then the metal sheet 40 is placed horizontally in the pole shell 10;
  • S2 Press the metal sheet 40 on the inner surface of the electrode shell 10, and press the two needle electrodes (100, 200) of resistance welding to the metal sheet outside the welding position of the metal sheet 40 and the electrode tab 20, respectively At different positions on the outer surface of 40, the two needle electrodes in this step are then energized to realize the fixed connection between the electrode shell 10 and the metal sheet 40. At least one pair of second solder joints 60 is formed between 40 and the pole shell 10, and the welding positions of the metal sheet 40 and the pole shell 10 in different substeps S2 may overlap.
  • Step S2 is performed only once, and the number of second solder joints 60 is one pair.
  • the present invention will only form molten pools and solder joints on the inner side of the electrode shell 10, thereby maintaining the complete appearance of the electrode shell 10, eliminating the risk of battery leakage due to the cracking of the solder joints, and forming at least With a pair of second solder joints 60, the connection stability between the metal sheet 40 and the pole shell 10 is better. At the same time, the number of solder joints between the metal sheet 40 and the pole shell 10 is large, which can also reduce the metal sheet 40 and the pole shell.
  • the contact internal resistance between the shells 10 increases the discharge efficiency of the battery; in addition, it is convenient to detect the welding quality between the electrode tab 20 and the metal sheet 40 and between the metal sheet 40 and the electrode shell 10 to avoid false welding.
  • the welded structure made by the method for seamless welding of the button battery pole shell and the electrode tab of Embodiment 1 includes a pole shell 10 and an electrode tab 20.
  • the pole shell 10 is cup-shaped and the pole A battery cell 30 is installed in the shell 10, and the battery cell 30 is mainly formed by stacking or winding a positive electrode sheet 31, a negative electrode sheet 32, and a separator 33.
  • the positive and negative electrode sheets (31, 32) are respectively connected to an electrode.
  • the ear 20 is electrically connected, and one end of any electrode tab 20 that extends out of the battery core 30 is fixedly connected to the outer surface of a metal sheet 40 through the first solder joint 50, and the electrode housing 10 corresponding to the any electrode tab 20
  • the metal sheet 40 is horizontally fixed on the inner surface through the second solder joints 60.
  • the number of the second solder joints 60 is one pair, and the second solder joints 60 of different pairs can be overlapped.
  • the two second solder joints of the same pair The first welding spot 50 and the second welding spot 60 are arranged in a staggered manner.
  • the present invention will only form molten pools and solder joints on the inner side of the electrode shell 10, so as to keep the appearance of the electrode shell 10 intact, and to prevent the risk of battery leakage due to the rupture of the solder joints, and the metal sheet 40 and the electrode shell 10 form a gap.
  • the stability of the connection between the metal sheet 40 and the pole case 10 is better.
  • the number of solder joints between the metal sheet 40 and the pole case 10 is large, which can also reduce the size of the metal sheet 40 and the pole case 10.
  • the internal resistance between the contacts increases the discharge efficiency of the battery.
  • the electrode case 10 is a negative electrode case
  • the electrode tab 20 electrically connected to the electrode case is the negative electrode electrically connected to the negative electrode plate 32.
  • Ear 22 ;
  • the electrode lug 20 that is electrically connected to the electrode shell will be electrically connected to the positive electrode sheet 31 Connect the positive tab 21.
  • Embodiment 1 also provides a button battery, which includes a positive electrode shell 11, a negative electrode shell 12, an insulating sealing ring 70 and a battery core 30.
  • the positive electrode shell 11 and the negative electrode shell 12 are cup-shaped, and the positive electrode shell 11 and The upper and lower openings of the negative electrode shell 12 are opposed to each other to form a cylindrical button battery shell; a gap is left between the positive electrode shell 11 and the negative electrode shell 12, and the insulating sealing ring 70 fills the gap to electrically isolate the positive electrode shell 11 and the negative electrode shell 12.
  • a accommodating cavity is formed between the positive electrode shell 11, the negative electrode shell 12 and the insulating sealing ring 70; the battery core 30 is arranged in the accommodating cavity, and the battery core 30 is mainly composed of a positive electrode sheet 31, a negative electrode sheet 32, and a diaphragm layer 33. Wound, the positive electrode sheet 31 is electrically connected to a positive electrode tab 21, the positive electrode tab 21 is electrically connected to the positive electrode shell 11, the negative electrode sheet 32 is electrically connected to a negative electrode tab 22, and the negative electrode tab 22 is then electrically connected to the negative electrode.
  • the shell 12 is electrically connected; the connection structure between the negative electrode shell 12 and the negative electrode tab 22 adopts the welding structure made by the non-trace welding method of the button battery pole shell and the electrode tab according to Embodiment 1; the positive electrode shell 11 and the positive electrode tab 21
  • the connection structure adopts a welding structure formed by directly welding the positive electrode tab 21 on the inner surface of the positive electrode can 11 by parallel welding resistance welding on the inner side of the positive electrode can 11, that is, the inner surface of the positive electrode can 11 and the positive electrode.
  • the ears 21 are fixedly connected by the third welding point 300, and the number of the third welding point 300 is one pair, and the two third welding points 300 of the same pair are arranged in a staggered manner.
  • the number of third solder joints 300 is not limited to one pair, and can also be two or more than two pairs.
  • Step S2 is performed twice in succession, and two pairs are formed between the metal sheet 40 and the electrode shell 10.
  • Step S2 is performed twice in succession, and two pairs are formed between the metal sheet 40 and the electrode shell 10.
  • two of the welding positions of the metal sheet 40 and the pole housing 10 in different sub-steps S2 overlap, and the remaining steps are the same as in the first embodiment.
  • the welding structure made by the method of non-marking welding of the button battery electrode shell and the electrode tab of the embodiment 2 differs from the welding structure of the embodiment 1 in that: the number of second welding points 60 There are two pairs, and two of the second solder joints 60 of different pairs overlap, and the rest of the structure is the same as that of the first embodiment.
  • step S2 is performed three times in succession, and three pairs are formed between the metal sheet 40 and the electrode shell 10.
  • the second welding spot 60, and the welding positions of the metal sheet 40 and the pole case 10 in different sub-steps S2 do not overlap, and the remaining steps are the same as in the first embodiment.
  • the welding structure made according to the method of non-marking welding of the button battery electrode shell and the electrode tab of Example 3 differs from the welding structure of Example 1 in that: the number of second welding points 60 There are 3 pairs, and the second solder joints 60 of different pairs do not overlap, and the rest of the structure is the same as that of the first embodiment.
  • the welding method and welding structure of embodiment 2 and embodiment 3 also only form molten pool and welding spot on the inner side of the pole case 10, so as to keep the appearance of the pole case 10 intact, and to prevent the risk of battery leakage due to the rupture of the welding spot, and , 2 to 3 pairs of second solder joints 60 are formed between the metal sheet 40 and the pole shell 10, and the connection between the metal sheet 40 and the pole shell 10 is more stable.
  • the metal sheet 40 and the pole shell 10 are The contact internal resistance is small, which is beneficial to improve the discharge efficiency of the battery.
  • embodiment 4 provides a button battery, which is different from the button battery of embodiment 1 in that the connection structure between the positive electrode shell 11 and the positive electrode tab 21 also adopts the button battery electrode according to embodiment 1.
  • the welding structure made by the non-mark welding method of the shell and the electrode tabs.
  • the electrode tabs are metal foils that can be bent at will.
  • step S2 the two needle electrodes (100, 200) of resistance welding may be pressed respectively on the outer surface of the metal sheet 40 outside the welding position of the electrode tab. At different positions, the metal sheet 40 is pressed against the inner surface of the pole housing 10.
  • step S1 of the method for seamless welding of the button battery electrode shell and the electrode tab of the present invention the metal sheet 40 and the electrode shell 10 are welded by either laser welding or resistance welding.
  • all the second welding points 60 are evenly distributed around the circumference with the center of the pole shell 10 as the center. . More preferably, the second welding points of each pair are symmetrically distributed, so that the welding efficiency is higher, and it is also more conducive to automatic welding.
  • the button battery of the present invention is further preferably: the connection structure between the negative electrode shell 12 and the negative electrode tab 22 adopts the above-mentioned seamless welding structure of the button battery pole case and the electrode tab. Since most of the existing button battery manufacturing processes use the negative electrode case 12 as the bottom case and the positive electrode case 11 as the top case, the battery core 30 is first put into the bottom case, and then the top case is correspondingly covered to assemble the battery. , The non-marking welding structure between the negative electrode shell 12 and the negative electrode tab 22 is more operability.
  • the method for seamless welding of the button battery case and the electrode tab in Example 1 is a preferred embodiment of the present invention.
  • the method for the non-marking welding of the button battery case and the electrode tab of the present invention can also be "the step The sequence of S1 and step S2 is exchanged, and in step S1, at least one pair of first solder joints 50" is formed between the electrode tab 22 and the metal sheet 40 by parallel welding resistance welding (the resulting welding structure is shown in Figure 8 )and others.
  • connection structure when there is only one connection structure between the positive electrode shell 11 and the positive electrode tab 21 and the connection structure between the negative electrode shell 12 and the negative electrode tab 22
  • another connection structure can also be used to directly glue the electrode tabs to the corresponding pole shell through conductive glue, or the electrode tabs are physically contacted with the corresponding pole shell by physical contact, etc.
  • Any existing connection method that can realize the electrical connection between the electrode tab and the corresponding electrode shell can be used.
  • the first welding point of the present invention is not limited to one welding point in the drawings, and it can also be two or more than two welding points.
  • the structure of the cell 30 of the present invention is not limited to the specific structure shown in the drawings, and it can be any cell structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

提供一种纽扣电池极壳(10)与电极极耳(20)无痕焊接方法及焊接结构和产品,其中的焊接方法包括以下步骤:(S1)先准备一金属片(40),将电极极耳(20)伸出电芯的一端焊接在金属片(40)上,在电极极耳(20)与金属片(40)之间形成第一焊点(50),之后将该金属片(40)水平放置于极壳(10)内;(S2)接着再将金属片(40)顶压在极壳(10)内表面上,将电阻焊的两个针状电极(100,200)均分别顶压在金属片(40)与电极极耳(20)焊接位置之外的金属片(40)外表面上的不同位置处,然后对本步骤中的两个针状电极(100,200)进行通电,实现极壳(10)与金属片(40)的固定连接,采用该焊接方法制得的焊接结构和纽扣电池产品的极壳(10)表面完整,可避免由极壳(10)破裂所带来的电解液的漏液以及表面鼓包等现象,并且,也便于检测电极极耳(20)与金属片(40)以及金属片(40)与极壳(10)之间的焊接质量,避免虚焊。

Description

纽扣电池极壳与电极极耳无痕焊接方法及焊接结构和产品 技术领域
本发明涉及一种纽扣电池极壳与电极极耳无痕焊接方法及焊接结构和产品。
背景技术
纽扣电池(button cell)也称扣式电池,是指外形尺寸象一颗小纽扣的电池,一般来说直径较大,厚度较薄(相对于柱状电池如市场上的5号AA等电池),纽扣电池是从外形上来对电池来分,同等对应的电池分类有柱状电池、方形电池、异形电池等。
纽扣电池包括有叠层式和卷绕式的。卷绕式纽扣电池的基本结构为:包括第一极壳、第二极壳、绝缘密封圈和电芯,第一极壳与第二极壳上下开口相对对扣形成圆柱形纽扣电池外壳;第一极壳与第二极壳之间留有缝隙,绝缘密封圈填满该缝隙将第一极壳与第二极壳电性隔绝,所述第一极壳、第二极壳和绝缘密封圈之间形成容置腔;电芯设于所述容置腔内,电芯包括第一极片、第二极片和隔膜,第一极片与第二极片之间通过隔膜间隔,第一极片、第二极片和隔膜卷绕制成电芯,电芯的中心形成有轴向腔体,第一极片上设有第一输出导体,第一输出导体从电芯伸出并与第一极壳焊接,第二极片上设有第二输出导体,第二输出导体从电芯伸出并与第二极壳焊接。在制作现有的这种卷绕式纽扣电池时,先将电芯的第一输出导体弯折使第一输出导体紧贴电芯的下表面设置,且第一输出导体延伸至轴向腔体的正下方;然后将电芯垂直装入第一极壳内;接着通过将焊针垂直向下插入轴向腔体内并将第一输出导体压紧在第一壳体上通过电阻焊的方式实现第一输出导体与第一极壳焊接在一起,或者通过从第一极壳的下方对着第一极壳的与第一输出导体上下重叠的区域发射激光通过激光焊的方式实现第一极壳与第一输出导体焊接在一起;再将电芯的第二输出导体焊接在第二极壳上,第二极壳外套装有绝缘密封圈;最后将第二极壳和绝缘密封圈一起盖合在第一极壳的上端开口处,进行封口。由于第一输出导体与第一极壳焊接时,电阻焊的电流和激光焊的激光束均会穿透第一极壳,连接第一极壳与第一输出导体的焊点是贯穿第一极壳设置的,破坏了第一极壳的表面平整度和稳定性,在电池使用过程中,第一极壳的焊点位置容易出现电解液的漏液以及表面鼓包等现象。
发明内容
本发明的目的之一在于提供一种纽扣电池极壳与电极极耳无痕焊接方法,该焊接方法能够避免破坏极壳表面的平整度和稳定性,进而避免由此所带来的电解液的漏液以及表面鼓包等现象。
纽扣电池极壳与电极极耳无痕焊接方法,所述极壳呈杯状,极壳内安装有电芯,所述 电芯主要由正极片、负极片、隔膜层状叠加或卷绕而成,正、负极片均分别与一电极极耳电连接,任一电极极耳再与对应极壳焊接实现电连接,所述焊接方法包括以下步骤:
S1:准备一金属片,将电极极耳伸出电芯的一端焊接在金属片上,在电极极耳与金属片之间形成第一焊点,之后将该金属片水平放置于极壳内;
S2:将金属片顶压在极壳内表面上,将电阻焊的两个针状电极均分别顶压在金属片与电极极耳焊接位置之外的金属片外表面上的不同位置处,然后对本步骤中的两个针状电极进行通电,实现极壳与金属片的固定连接,本步骤S2的上述焊接步骤进行1次或以上,在金属片与极壳之间形成至少1对的第二焊点,且不同次步骤S2中金属片与极壳的焊接位置可存在重叠。
本发明通过在金属片装入极壳之前,先将电极极耳伸出电芯的一端焊接在金属片上,并且,在金属片装入极壳内之后,通过平行焊的电阻焊方式从极壳内部将金属片焊接在极壳上,同时限定电阻焊的两个针状电极均分别在金属片与电极极耳焊接位置之外的金属片的外表面进行焊接作业,当两个针状电极通电后,在两个针状电极之间会形成环形焊接电流通道,焊接电流不会贯穿极壳,使得只会在极壳内侧形成熔池和焊点,从而保持极壳外观完整,杜绝因焊点破裂造成电池漏液的风险,并且,金属片与极壳之间形成至少1对的第二焊点,金属片与极壳之间的连接稳定性更好,同时,金属片与极壳之间焊点数量多,鉴于极壳与金属片之间焊接位置的内阻通常小于极壳与金属片之间物理接触位置的内阻,因此极壳与金属片之间的整体接触内阻更小,而接触内阻越小,对电池放电越有利;另外,也方便检测电极极耳与金属片以及金属片与极壳之间的焊接质量,避免虚焊。
优选的,步骤S2连续进行1~3次,从而在金属片与极壳之间形成1~3对第二焊点,确保金属片与极壳可靠地焊接在一起的同时,尽量降低操作成本和提高工作效率。
优选的,不同次步骤S2的两针状电极与金属片的接触位置均不重叠,避免不同次步骤S2中的第二焊点发生重叠时,熔池扩大,导致针状电极与金属片粘结在一起,带来拨针的麻烦。
在具体实施过程中,步骤S2中也可以先将电阻焊的两个针状电极均分别顶压在金属片与电极极耳焊接位置之外的金属片外表面上的不同位置处,再将金属片顶压在极壳内表面上。
在具体实施过程中,步骤S1中金属片与电极极耳之间采用激光焊或电阻焊中任一种焊接方式进行。
在具体实施过程中,所述步骤S1与步骤S2也可调换顺序,且步骤S1中电极极耳与金 属片之间通过平行焊的电阻焊方式形成至少1对的第一焊点。
本发明的目的之二在于提供一种纽扣电池极壳与电极极耳无痕焊接结构,包括极壳和电极极耳,所述极壳呈杯状,极壳内安装有电芯,所述电芯主要由正极片、负极片、隔膜层状叠加或卷绕而成,正、负极片均分别与一电极极耳电连接,任一电极极耳的伸出电芯的一端与一金属片的外表面通过第一焊点固定连接,与该任一电极极耳对应的极壳的内表面通过第二焊点水平固定设置所述金属片,第二焊点的数量为≥1对,且不同对的第二焊点之间可重叠,同一对的两第二焊点之间错位设置,同时,第一焊点与第二焊点错位设置。
本发明的纽扣电池极壳与电极极耳无痕焊接结构中第一焊点和第二焊点均位于极壳的内侧,极壳的外表面保持平整完好,并且,极壳与金属片之间的第二焊点数量多,极壳与金属片之间连接更牢固,接触内阻也更小,利于提高电池的放电效率。
优选的,所有第二焊点以极壳的中心为圆心绕圆周均匀分布。更优选的,每对的第二焊点对称分布,焊接效率更高,也更有利于进行自动化焊接。
本发明的目的之三在于提供一种纽扣电池,包括正极壳、负极壳、绝缘密封圈和电芯,正极壳和负极壳均呈杯状,正极壳与负极壳上下开口相对对扣形成圆柱形纽扣电池外壳;正极壳与负极壳之间留有缝隙,绝缘密封圈填满该缝隙将正极壳与负极壳电性隔绝,所述正极壳、负极壳和绝缘密封圈之间形成容置腔;电芯设于所述容置腔内,电芯主要由正极片、负极片、隔膜层状叠加或卷绕而成,正极片与一正极极耳电连接,该正极极耳再与正极壳电连接,负极片与一负极极耳电连接,该负极极耳再与负极壳电连接;正极壳与正极极耳之间的连接结构和负极壳与负极极耳之间的连接结构中的至少一个连接结构采用上述纽扣电池极壳与电极极耳无痕焊接结构。
优选的,所述负极壳与负极极耳之间的连接结构采用上述纽扣电池极壳与电极极耳无痕焊接结构。由于现有的纽扣电池的制作工艺中大多是以负极壳为底壳、正极壳为顶壳,将电芯先装入底壳内,再对应盖设顶壳来组装电池的,因此,负极壳与负极极耳之间采用上述纽扣电池极壳与电极极耳无痕焊接结构操作性更强。
附图说明
图1为实施例1~3中任一实施例电极极耳与金属片的焊接结构示意图,其中金属片为剖视结构图;
图2为实施例1~3中任一实施例极壳与金属片的焊接结构示意图,其中极壳、金属片均为剖视结构图;
图3为实施例1中极壳的俯视结构图;
图4为实施例1中纽扣电池的剖视结构示意图;
图5为实施例2中极壳的俯视结构图;
图6为实施例3中极壳的俯视结构图;
图7为实施例4中纽扣电池的剖视结构示意图;
图8为本发明的纽扣电池的剖视结构示意图;
其中图3、图5、图6中虚线圈指示的是第二焊点的位点。
具体实施方式
现结合附图具体说明本发明的较佳实施方式:
实施例1
结合图1~图3,纽扣电池极壳与电极极耳无痕焊接方法,所述极壳10呈杯状,极壳10内安装有电芯30,所述电芯30主要由正极片31、负极片32、隔膜33层状叠加或卷绕而成,正、负极片(31、32)均分别与一电极极耳(21、22)电连接,任一电极极耳22再与极壳10焊接实现电连接,所述焊接方法包括以下步骤:
S1:准备一金属片40,将电极极耳20的伸出电芯的一端焊接在金属片40上,在电极极耳20与金属片40之间形成第一焊点50,之后将该金属片40水平放置于极壳10内;
S2:将金属片40顶压在极壳10内表面上,将电阻焊的两个针状电极(100、200)均分别顶压在金属片40与电极极耳20焊接位置之外的金属片40外表面上的不同位置处,然后对本步骤中的两个针状电极进行通电,实现极壳10与金属片40的固定连接,本步骤S2的上述焊接步骤进行1次或以上,在金属片40与极壳10之间形成至少1对的第二焊点60,且不同次步骤S2中金属片40与极壳10的焊接位置可存在重叠。
步骤S2仅进行一次,第二焊点60的数量为1对。
本发明只会在极壳10的内侧形成熔池和焊点,从而保持极壳10外观完整,杜绝因焊点破裂造成电池漏液的风险,并且,金属片40与极壳10之间形成至少1对的第二焊点60,金属片40与极壳10之间的连接稳定性更好,同时,金属片40与极壳10之间焊点数量多,也能够减小金属片40与极壳10之间的接触内阻,增加电池的放电效率;另外,方便检测电极极耳20与金属片40之间以及金属片40与极壳10之间的焊接质量,避免虚焊。
结合图1~图3,根据实施例1的纽扣电池极壳与电极极耳无痕焊接方法制得的焊接结构,包括极壳10和电极极耳20,所述极壳10呈杯状,极壳10内安装有电芯30,所述电芯30主要由正极片31、负极片32、隔膜33层状叠加或卷绕而成,正、负极片(31、32)均分别与一电极极耳20电连接,任一电极极耳20的伸出电芯30的一端与一金属片40的 外表面通过第一焊点50固定连接,与该任一电极极耳20对应的极壳10的内表面通过第二焊点60水平固定设置所述金属片40,第二焊点60的数量为1对,且不同对的第二焊点60之间可重叠,同一对的两第二焊点60之间错位设置,同时,第一焊点50与第二焊点60错位设置。
本发明只会在极壳10的内侧形成熔池和焊点,从而保持极壳10外观完整,杜绝因焊点破裂造成电池漏液的风险,并且,金属片40与极壳10之间形成1对第二焊点60,金属片40与极壳10之间的连接稳定性更好,同时,金属片40与极壳10之间焊点数量多,也能够减小金属片40与极壳10之间的接触内阻,增加电池的放电效率。
实施例1的纽扣电池极壳与电极极耳无痕焊接方法和焊接结构中,极壳10为负极壳,与该极壳对应电连接的电极极耳20是与负极片32电连接的负极极耳22;当然,若纽扣电池极壳与电极极耳无痕焊接方法和焊接结构中,极壳为正极壳时,与极壳对应电连接的的电极极耳20就会是与正极片31电连接的正极极耳21。
如图4所示,实施例1还提供一种纽扣电池,包括正极壳11、负极壳12、绝缘密封圈70和电芯30,正极壳11和负极壳12均呈杯状,正极壳11与负极壳12上下开口相对对扣形成圆柱形纽扣电池外壳;正极壳11与负极壳12之间留有缝隙,绝缘密封圈70填满该缝隙将正极壳11与负极壳12电性隔绝,所述正极壳11、负极壳12和绝缘密封圈70之间形成容置腔;电芯30设于所述容置腔内,电芯30主要由正极片31、负极片32、隔膜层33状叠加或卷绕而成,正极片31与一正极极耳21电连接,该正极极耳21再与正极壳11电连接,负极片32与一负极极耳22电连接,该负极极耳22再与负极壳12电连接;负极壳12与负极极耳22之间的连接结构采用根据实施例1的纽扣电池极壳与电极极耳无痕焊接方法制得的焊接结构;正极壳11与正极极耳21之间的连接结构采用在正极壳11的内侧通过平行焊的电阻焊方式将正极极耳21直接焊接在正极壳11的内表面上所形成的焊接结构,即正极壳11的内表面与正极极耳21之间通过第三焊点300实现固定连接,所述第三焊点300的数量为1对,且同一对的两第三焊点300错位设置。当然,第三焊点300的数量也不限于1对,也可以2对或多于2对。
实施例2
如图5所示,实施例2的纽扣电池极壳与电极极耳无痕焊接方法与实施例1不同的是:步骤S2连续进行2次,在金属片40与极壳10之间形成2对第二焊点60,且不同次步骤S2中金属片40与极壳10的焊接位置中有两个焊接位置存在重叠,其余步骤均与实施例1相同。
如图5所示,根据实施例2的纽扣电池极壳与电极极耳无痕焊接方法制得的焊接结构,其与实施例1的焊接结构的不同之处在于:第二焊点60的数量为2对,且不同对的第二焊点60中有两个第二焊点60重叠,其余结构均与实施例1相同。
实施例3
如图6所示,实施例3的纽扣电池极壳与电极极耳无痕焊接方法与实施例1不同的是:步骤S2连续进行3次,在金属片40与极壳10之间形成3对第二焊点60,且不同次步骤S2中金属片40与极壳10的焊接位置均不存在重叠,其余步骤均与实施例1相同。
如图6所示,根据实施例3的纽扣电池极壳与电极极耳无痕焊接方法制得的焊接结构,其与实施例1的焊接结构的不同之处在于:第二焊点60的数量为3对,且不同对的第二焊点60均不重叠,其余结构均与实施例1相同。
实施例2和实施例3的焊接方法以及焊接结构也只会在极壳10内侧形成熔池和焊接焊点,从而保持极壳10外观完整,杜绝因焊接点破裂造成电池漏液的风险,并且,金属片40与极壳10之间形成2~3对的第二焊点60,金属片40与极壳10之间的连接稳定性更好,同时,金属片40与极壳10之间的接触内阻小,利于提高电池的放电效率。
实施例4
如图7所示,实施例4提供一种纽扣电池,其与实施例1的纽扣电池不同的是:正极壳11与正极极耳21之间的连接结构也采用根据实施例1的纽扣电池极壳与电极极耳无痕焊接方法制得的焊接结构。
通常来说,所述电极极耳为能够随意弯折的金属箔片。
在具体实施过程中,步骤S2中也可以先将电阻焊的两个针状电极(100、200)均分别顶压在金属片40与电极极耳焊接位置之外的金属片40外表面上的不同位置处,再将金属片40顶压在极壳10内表面上。在具体实施过程中,本发明的纽扣电池极壳与电极极耳无痕焊接方法的步骤S1中金属片40与极壳10之间采用激光焊或电阻焊中任一种焊接方式进行。
优选的,如图3、图5、图6所示,本发明的纽扣电池极壳与电极极耳无痕焊接结构中,所有第二焊点60以极壳10的中心为圆心绕圆周均匀分布。更优选的,每对的第二焊点对称分布,焊接效率更高,也更有利于进行自动化焊接。
本发明的纽扣电池进一步优选为:所述负极壳12与负极极耳22之间的连接结构采用上述纽扣电池极壳与电极极耳无痕焊接结构。由于现有的纽扣电池的制作工艺中大多是以负极壳12为底壳、正极壳11为顶壳,将电芯30先装入底壳内,再对应盖设顶壳来组装电 池的,因此,负极壳12与负极极耳22之间采用上述纽扣电池极壳与电极极耳无痕焊接结构操作性更强。
实施例1中的纽扣电池极壳与电极极耳无痕焊接方法为本发明的较佳实施方式,但是,本发明的纽扣电池极壳与电极极耳无痕焊接方法还可以是“所述步骤S1与步骤S2调换顺序,且步骤S1中电极极耳22与金属片40之间通过平行焊的电阻焊方式形成至少1对的第一焊点50”(所制得焊接结构如图8所示)及其他。
需要说明的是,当正极壳11与正极极耳21之间的连接结构和负极壳12与负极极耳22之间的连接结构中只有一个连接结构采用根据上述纽扣电池极壳与电极极耳无痕焊接方法制得的焊接结构时,另一连接结构也可采用将电极极耳通过导电胶直接胶粘在对应极壳上,或者电极极耳采用物理接触的方式与相应极壳物理接触连接等等任意一种现有的能够实现电极极耳与相应极壳之间电连接的连接方式均可。另外,本发明的第一焊点也不限于附图中的1个焊点,其也可以为2个或多于2个焊点均可。本发明的电芯30结构不限于附图所示的具体结构,其可以是任意的电芯结构均可。

Claims (11)

  1. 纽扣电池极壳与电极极耳无痕焊接方法,所述极壳呈杯状,极壳内安装有电芯,所述电芯主要由正极片、负极片、隔膜层状叠加或卷绕而成,正、负极片均分别与一电极极耳电连接,任一电极极耳再与对应极壳焊接实现电连接,其特征在于,所述焊接方法包括以下步骤:
    S1:准备一金属片,将电极极耳伸出电芯的一端焊接在金属片上,在电极极耳与金属片之间形成第一焊点,之后将该金属片水平放置于极壳内;
    S2:将金属片顶压在极壳内表面上,将电阻焊的两个针状电极均分别顶压在金属片与电极极耳焊接位置之外的金属片外表面上的不同位置处,然后对本步骤中的两个针状电极进行通电,实现极壳与金属片的固定连接,本步骤S2的上述焊接步骤进行1次或以上,在金属片与极壳之间形成至少1对的第二焊点,且不同次步骤S2中金属片与极壳的焊接位置可存在重叠。
  2. 根据权利要求1所述的纽扣电池极壳与电极极耳无痕焊接方法,其特征在于:步骤S2连续进行1~3次。
  3. 根据权利要求1所述的纽扣电池极壳与电极极耳无痕焊接方法,其特征在于:不同次步骤S2的两针状电极与金属片的接触位置均不重叠。
  4. 根据权利要求1所述的纽扣电池极壳与电极极耳无痕焊接方法,其特征在于:步骤S2中先将电阻焊的两个针状电极均分别顶压在金属片与电极极耳焊接位置之外的金属片外表面上的不同位置处,再将金属片顶压在极壳内表面上。
  5. 根据权利要求1所述的纽扣电池极壳与电极极耳无痕焊接方法,其特征在于:步骤S1中金属片与电极极耳之间采用激光焊或电阻焊中任一种焊接方式进行。
  6. 根据权利要求1~4中任一项所述的纽扣电池极壳与电极极耳无痕焊接方法,其特征在于:所述步骤S1与步骤S2调换顺序,且步骤S1中电极极耳与金属片之间通过平行焊的电阻焊方式形成至少1对第一焊点。
  7. 一种纽扣电池极壳与电极极耳无痕焊接结构,其包括极壳和电极极耳,所述极壳呈杯状,极壳内安装有电芯,所述电芯主要由正极片、负极片、隔膜层状叠加或卷绕而成,正、负极片均分别与一电极极耳电连接,其特征在于,任一电极极耳伸出电芯的一端与一金属片的外表面通过第一焊点固定连接,与该任一电极极耳对应的极壳的内表面通过第二焊点水平固定设置所述金属片,第二焊点的数量为≥1对,且不同对的第二焊点之间可重叠,同一对的两第二焊点之间错位设置,同时,第一焊点与第二焊点错位设置。
  8. 根据权利要求7所述的一种纽扣电池极壳与电极极耳无痕焊接结构,其特征在于:所有 第二焊点以极壳的中心为圆心绕圆周均匀分布。
  9. 根据权利要求8所述的一种纽扣电池极壳与电极极耳无痕焊接结构,其特征在于:每对的第二焊点对称分布。
  10. 一种纽扣电池,包括正极壳、负极壳、绝缘密封圈和电芯,正极壳和负极壳均呈杯状,正极壳与负极壳上下开口相对对扣形成圆柱形纽扣电池外壳;正极壳与负极壳之间留有缝隙,绝缘密封圈填满该缝隙将正极壳与负极壳电性隔绝,所述正极壳、负极壳和绝缘密封圈之间形成容置腔;电芯设于所述容置腔内,电芯主要由正极片、负极片、隔膜层状叠加或卷绕而成,正极片与一正极极耳电连接,该正极极耳再与正极壳电连接,负极片与一负极极耳电连接,该负极极耳再与负极壳电连接;其特征在于:正极壳与正极极耳之间的连接结构和负极壳与负极极耳之间的连接结构中的至少一个连接结构采用权利要求7~9中任一项所述的纽扣电池极壳与电极极耳无痕焊接结构。
  11. 根据权利要求10所述的一种纽扣电池,其特征在于:所述负极壳与负极极耳之间的连接结构采用权利要求7~9中任一项所述的纽扣电池极壳与电极极耳无痕结构。
PCT/CN2020/094972 2020-04-24 2020-06-08 纽扣电池极壳与电极极耳无痕焊接方法及焊接结构和产品 WO2021212624A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010335164.5A CN111354914B (zh) 2020-04-24 2020-04-24 纽扣电池极壳与电极极耳无痕焊接方法及焊接结构和产品
CN202010335164.5 2020-04-24

Publications (1)

Publication Number Publication Date
WO2021212624A1 true WO2021212624A1 (zh) 2021-10-28

Family

ID=71195072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094972 WO2021212624A1 (zh) 2020-04-24 2020-06-08 纽扣电池极壳与电极极耳无痕焊接方法及焊接结构和产品

Country Status (2)

Country Link
CN (1) CN111354914B (zh)
WO (1) WO2021212624A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114395865A (zh) * 2021-12-16 2022-04-26 新沂国泰华溢制衣有限公司 一种服装制造用快速定位纽扣位置并自动缝纫的辅助设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220063584A (ko) * 2020-11-10 2022-05-17 주식회사 엘지에너지솔루션 버튼형 이차전지의 용접장치
CN114122629A (zh) * 2021-10-29 2022-03-01 广东微电新能源有限公司 一种电池引出端位置确定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102117895A (zh) * 2010-11-19 2011-07-06 广州市鹏辉电池有限公司 扣式锂电池的正极钢壳及扣式锂电池
CN104900415A (zh) * 2015-05-27 2015-09-09 湖北金泉新材料有限责任公司 一种电池电容器
CN110380106A (zh) * 2019-08-23 2019-10-25 漳州万宝能源科技有限公司 一种卷绕电极电池电极结构及其制造方法
KR20200007560A (ko) * 2018-07-13 2020-01-22 주식회사 엘지화학 이차전지 및 이의 제조방법
CN110854338A (zh) * 2019-11-21 2020-02-28 漳州万宝能源科技有限公司 扣式电池的防爆结构及其工作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728574A (zh) * 2009-12-04 2010-06-09 王昉 一种单壁结构扣式锂离子蓄电池
CN206639838U (zh) * 2017-04-01 2017-11-14 深圳市秸川材料科技有限公司 具有集流环形支架的纽扣电池
CN113363634B (zh) * 2019-05-15 2023-08-04 广东微电新能源有限公司 纽扣型电池及其制造方法
CN211578866U (zh) * 2020-04-24 2020-09-25 福建南平延平区南孚新能源科技有限公司 纽扣电池极壳与电极极耳无痕焊接结构
CN210984846U (zh) * 2020-04-24 2020-07-10 福建南平延平区南孚新能源科技有限公司 纽扣电池极壳与电极极耳无痕焊接结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102117895A (zh) * 2010-11-19 2011-07-06 广州市鹏辉电池有限公司 扣式锂电池的正极钢壳及扣式锂电池
CN104900415A (zh) * 2015-05-27 2015-09-09 湖北金泉新材料有限责任公司 一种电池电容器
KR20200007560A (ko) * 2018-07-13 2020-01-22 주식회사 엘지화학 이차전지 및 이의 제조방법
CN110380106A (zh) * 2019-08-23 2019-10-25 漳州万宝能源科技有限公司 一种卷绕电极电池电极结构及其制造方法
CN110854338A (zh) * 2019-11-21 2020-02-28 漳州万宝能源科技有限公司 扣式电池的防爆结构及其工作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114395865A (zh) * 2021-12-16 2022-04-26 新沂国泰华溢制衣有限公司 一种服装制造用快速定位纽扣位置并自动缝纫的辅助设备
CN114395865B (zh) * 2021-12-16 2023-09-05 枣庄市金刚缝纫设备有限公司 一种服装制造用快速定位纽扣位置并自动缝纫的辅助设备

Also Published As

Publication number Publication date
CN111354914B (zh) 2024-03-22
CN111354914A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
WO2021212624A1 (zh) 纽扣电池极壳与电极极耳无痕焊接方法及焊接结构和产品
CN111370635B (zh) 一种无焊接痕迹纽扣电池的生产方法及所制得的纽扣电池
WO2021212625A1 (zh) 一种纽扣电池的防渗液焊接方法和焊接结构及其应用
CN111354912B (zh) 纽扣电池极壳与电极极耳电连接方法及电连接结构和产品
JP2010511992A (ja) 円筒形二次電池及びその製造方法
JP2010511992A6 (ja) 円筒形二次電池及びその製造方法
US11850673B2 (en) Button cell and method for welding electrode tabs to a pole shell of the button cell
CN111370637B (zh) 一种无焊接痕迹纽扣电池的生产方法及所制得的纽扣电池
CN111354910B (zh) 纽扣电池极壳与电极极耳无痕焊接方法及焊接结构和产品
WO2022206866A1 (zh) 电池
CN111354909B (zh) 纽扣电池极壳与电极极耳无痕焊接方法及焊接结构和产品
CN111354911A (zh) 纽扣电池极壳与电极极耳无痕焊接方法及焊接结构和产品
CN211578865U (zh) 纽扣电池极壳与电极极耳无痕焊接结构
CN111354916A (zh) 纽扣电池极壳与电极极耳电连接方法及电连接结构和产品
CN111370638B (zh) 一种无焊接痕迹纽扣电池的生产方法及所制得的纽扣电池
CN211578868U (zh) 纽扣电池极壳与电极极耳无痕焊接结构
CN210984846U (zh) 纽扣电池极壳与电极极耳无痕焊接结构
CN211629210U (zh) 一种无焊接痕迹纽扣电池
CN211578866U (zh) 纽扣电池极壳与电极极耳无痕焊接结构
CN211789242U (zh) 纽扣电池极壳与电极极耳无痕焊接结构
CN211789307U (zh) 一种具有无痕焊接结构的纽扣电池
CN111370636B (zh) 一种无焊接痕迹纽扣电池的生产方法及所制得的纽扣电池
CN111341967A (zh) 一种防渗液纽扣电池的生产方法及所制得的纽扣电池
CN211700458U (zh) 一种具有无痕焊接结构的纽扣电池
CN211629209U (zh) 一种无焊接痕迹纽扣电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932444

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20932444

Country of ref document: EP

Kind code of ref document: A1