WO2021212412A1 - 一种基于海水浮力调节系统的水下滑翔机 - Google Patents

一种基于海水浮力调节系统的水下滑翔机 Download PDF

Info

Publication number
WO2021212412A1
WO2021212412A1 PCT/CN2020/086413 CN2020086413W WO2021212412A1 WO 2021212412 A1 WO2021212412 A1 WO 2021212412A1 CN 2020086413 W CN2020086413 W CN 2020086413W WO 2021212412 A1 WO2021212412 A1 WO 2021212412A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
seawater
underwater glider
piston
water tank
Prior art date
Application number
PCT/CN2020/086413
Other languages
English (en)
French (fr)
Inventor
王树新
张宏伟
王延辉
刘玉红
杨亚楠
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to PCT/CN2020/086413 priority Critical patent/WO2021212412A1/zh
Publication of WO2021212412A1 publication Critical patent/WO2021212412A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • B63G8/16Control of attitude or depth by direct use of propellers or jets

Definitions

  • the present disclosure relates to the technical field of marine vehicles, and in particular to an underwater glider based on a seawater buoyancy adjustment system.
  • the underwater glider has many advantages such as long range, long time sequence, low cost, good concealment, and reusability, and it has played an increasingly important role in the field of ocean observation. Since the American scientist Herny Stommel first proposed the concept of underwater gliders in 1989, various marine powers have begun to develop underwater gliders, making the theory and technology of underwater gliders enter a period of rapid development. Among them, gliders of Slocum, Spray and Seaglider have been used. Used in oceanographic research and coastal survey missions. At this stage, the technology of small underwater gliders less than 100 kilograms has become mature, but the research of large underwater gliders started relatively late. Among them, the Xray and Zray underwater gliders in the United States are the earlier large underwater gliders.
  • Small underwater gliders can achieve a range of thousands of kilometers. However, due to their limited volume and weight and internal space, on the one hand, they have limited load capacity. On the other hand, they can carry a small number of sensors. They can only be equipped with low-energy hydrological detection sensors such as CTD. Equipped with high energy consumption environmental parameter measurement sensors and acoustic sensors. On the contrary, large underwater gliders can be equipped with a larger capacity battery system, which can provide tens of kilowatt-hours of energy, which provides technical feasibility for carrying more energy-intensive sensors and long-range detection missions.
  • small underwater gliders In order to prevent the deep water pressure from damaging the internal fuel tank, small underwater gliders generally need to return to the surface for oil return after each measurement profile is completed, that is, open the electromagnetic shut-off valve to make the hydraulic oil in the outer oil tank flow back in a self-priming manner.
  • Small underwater gliders are usually unable to achieve underwater oil return operations. This operation increases the time the glider is exposed to the surface; but large underwater gliders have sufficient internal space and load capacity, and can be realized by more complete and complex hydraulic systems.
  • the present disclosure provides an underwater glider based on a seawater buoyancy adjustment system, including: a fuselage and a seawater buoyancy adjustment system installed on the fuselage; the seawater buoyancy adjustment system can use seawater to adjust the underwater glider The size of the buoyancy.
  • the underwater glider of the present disclosure does not require an external oil bag due to the seawater buoyancy adjustment system, which reduces the internal occupied space, improves the response ability and control speed of the underwater glider, and has better buoyancy control. Accurate and flexible, reducing the time of exposure to the water and increasing the concealment of actions.
  • FIG. 1 is a schematic structural diagram of an underwater glider based on a seawater buoyancy adjustment system according to an embodiment of the disclosure.
  • Fig. 2 is a schematic diagram of the structure of the seawater buoyancy adjustment system in Fig. 1.
  • FIG. 3 is a schematic diagram of the depth interval profile measurement of the underwater glider based on the seawater buoyancy adjustment system according to the embodiment of the disclosure.
  • Fig. 4a is a schematic diagram of the structure of the telescopic wing in Fig. 1.
  • Fig. 4b is a schematic side view of the structure of the telescopic wing in Fig. 1.
  • Fig. 4c is a schematic top view of the structure of the telescopic wing in Fig. 1.
  • the present disclosure provides an underwater glider based on a seawater buoyancy adjustment system.
  • the underwater glider of the present disclosure is a multifunctional large glider.
  • the so-called large glider generally satisfies a mass of more than 500KG, a length of more than 4 meters, and a diameter of more than 500mm.
  • the underwater glider of the present disclosure has a typical weight of 1000 kg, a diameter of 533 mm, a length of 6 meters, and a wingspan of 2 to 3.5 meters. It uses a seawater buoyancy adjustment system.
  • As a large-scale underwater glider it includes a pressure cabin, a shell, and seawater.
  • Buoyancy adjustment system mobile battery, communication navigation and control system, telescopic wing, propulsion and control system, sensor system, etc.; the control system controls the sea water buoyancy adjustment system to adjust the buoyancy of the underwater glider, and controls the mobile battery to adjust the underwater glider
  • the underwater glider uses the communication navigation system to set the course and task after returning to the surface; the propulsion and control system realizes the direct flight movement of the glider; the telescopic wing mechanism realizes the expansion and contraction of the wings, respectively in the gliding mode and the direct flight propulsion Used in the mode; the multifunctional large-scale underwater glider increases the concealment when performing tasks, and improves the adaptability of the glider for diversified underwater detection tasks.
  • an underwater glider based on a seawater buoyancy adjustment system includes: a fuselage 1, and a fuselage 1 Seawater buoyancy adjustment system 2, mobile battery 3, telescopic wing 4, navigation communication system 5, propeller propulsion device 6, steering gear system 7, sensor device 8, fixed battery 9, control system 10, Doppler log 11, Throw the load 12.
  • the sea water buoyancy adjustment system 2 can use sea water to adjust the buoyancy of the underwater glider.
  • the mobile battery 3 and the fixed battery 9 jointly supply power for various devices of the underwater glider.
  • the mobile battery 3 can move back and forth along the axial direction of the fuselage 1 to adjust the pitch attitude of the underwater glider.
  • the telescopic wings 4 are arranged on both sides of the fuselage 1, and the wings can be extended or contracted to correspond to the gliding mode or the direct propulsion mode of the underwater glider, respectively.
  • the navigation communication system 5 is arranged on the top surface of the fuselage 1, and after the underwater glider returns to the surface, the navigation communication system 5 is used to receive the heading and operation tasks sent by the control terminal.
  • the propeller propulsion device 6 is arranged at the tail end of the fuselage 1 to provide power for the underwater glider to realize the direct flight movement in the direct flight propulsion mode.
  • the steering gear system 7 is used to adjust the heading of the underwater glider.
  • the sensor device 8 may be arranged at the head end of the fuselage 1, and may include a hydrological detection sensor, an environmental parameter measurement sensor, and an acoustic sensor for detecting the marine environment and sound field.
  • the Doppler log 11 is used to measure the speed and mileage of the underwater glider.
  • the throwing load 12 includes a load that can be thrown from the fuselage 1, and is a device that enables the glider to obtain positive buoyancy in an emergency situation and float up and escape danger.
  • the seawater buoyancy adjustment system 2 of this embodiment includes a pressure-bearing shell, a piston-type inner water tank 21 arranged in the pressure-bearing shell, a drainage branch and a return water branch.
  • the piston type inner water tank 21 is used to store seawater.
  • the drainage branch is used to discharge the seawater of the piston-type inner water tank 21 to the outside, including: a seawater pump 22, a first one-way valve 251, and a first filter 284 arranged in the drainage circuit in sequence; and an accumulator connected in sequence 24.
  • the first filter 284 and the first electromagnetic cut-off valve 292 are connected to the outside via the second electromagnetic cut-off valve 291 and the third filter 281 in this order.
  • the backwater branch is used to recover external seawater to the piston-type inner water tank 21, and includes: a slow backwater branch and a fast backwater branch.
  • the backwater branch includes: a slow flow valve 262, a second one-way valve 253, a fast flow valve 261, a third one-way valve 252, a three-position two-way electromagnetic reversing valve 27, and a fourth filter 282.
  • the slow flow valve 262 and the second one-way valve 253 are sequentially connected between the piston-type inner water tank 21 and the three-position two-way electromagnetic reversing valve 27 to form a slow return water branch.
  • the fast flow valve 261 and the third one-way valve 252 are sequentially connected between the piston-type inner water tank 21 and the three-position two-way electromagnetic reversing valve 27 to form a fast water return branch.
  • the sea water pump 22 is connected to the piston-type inner water tank 21 for providing power for sea water discharge.
  • the accumulator 24 is used to quickly transfer the seawater and increase the discharge speed when the seawater is discharged.
  • the seawater buoyancy adjustment system 2 of this embodiment has two drainage modes: a rapid drainage mode and a normal drainage mode.
  • a rapid drainage mode the seawater pump 22 presses the seawater in the piston-type inner water tank 21 into the accumulator 24, and then quickly discharges the seawater through the accumulator 24.
  • the normal drainage mode the seawater pump 22 directly discharges the seawater in the piston-type inner water tank 21 to the outside.
  • the first electromagnetic shut-off valve 292 is closed, and the second electromagnetic shut-off valve 291 is opened.
  • the seawater in the piston-type inner water tank 21 passes through the first check valve 251 and the second one in sequence.
  • a filter 284, a second electromagnetic shut-off valve 291, and a third filter 281 are discharged out of the cabin.
  • the second electromagnetic shut-off valve 291 In the quick drain mode, the second electromagnetic shut-off valve 291 is closed, and the first electromagnetic shut-off valve 292 is opened. Under the action of the sea water pump 22, the seawater in the piston-type inner water tank 21 passes through the first check valve 251 and the first filter in sequence. The accumulator 284, the first electromagnetic shut-off valve 292, and the second filter 283 are pressed into the accumulator 24. After the seawater stored in the accumulator 24 reaches the specified discharge amount, the second electromagnetic shut-off valve 291 is opened, and the seawater in the accumulator 24 is discharged out of the cabin, realizing the function of rapid drainage.
  • the first one-way valve 251 acts as a back pressure on the drain branch, and the three-position two-way electromagnetic reversing valve 27 is switched to close the passage to act as a back pressure on the return branch.
  • the second electromagnetic shut-off valve 291 is closed, and at this time the second electromagnetic shut-off valve 291 acts as a back pressure.
  • the drainage branch also includes a safety valve 23 and a check valve 254, which are connected between the sea water pump 22 and the first check valve 251.
  • the safety valve 23 prevents the pressure of the seawater buoyancy adjustment system 2 from exceeding a prescribed value, and plays a role in protecting the seawater buoyancy adjustment system 2.
  • the seawater buoyancy adjustment system 2 of this embodiment has two backwater modes: a fast backwater mode and a slow backwater mode.
  • the second electromagnetic shut-off valve 291 In the slow water return mode, the second electromagnetic shut-off valve 291 is opened, and the first electromagnetic shut-off valve 292 is closed, and the seawater enters the seawater buoyancy adjustment system 2 after being filtered by the third filter 281.
  • the three-position two-way electromagnetic reversing valve 27 is switched to the slow return water branch, and the seawater flows into the piston-type inner water tank 21 through the second one-way valve 253 and the flow valve 262.
  • the second electromagnetic shut-off valve 291 When the seawater in the piston-type inner water tank 21 reaches a specified amount, the second electromagnetic shut-off valve 291 is closed, the three-position two-way electromagnetic reversing valve 27 is switched to the closed passage, and the slow water return ends.
  • the three-position two-way electromagnetic reversing valve 27 is switched to the fast return branch, and the seawater flows into the piston-type inner water tank 21 through the third one-way valve 252 and the flow valve 261.
  • the second electromagnetic shut-off valve 291 is closed, the three-position two-way electromagnetic reversing valve 27 is switched to the closed passage, and the rapid water return ends.
  • the first one-way valve 251 plays a back pressure on the drainage branch
  • the third one-way valve 252 and the second one-way valve 253 play a back pressure on the fast return branch and the slow return branch respectively.
  • the second electromagnetic shut-off valve 291 is closed, and at this time, the second electromagnetic shut-off valve 291 acts as a back pressure.
  • the seawater buoyancy adjustment system further includes: a buoyancy compensation module for buoyancy compensation during the buoyancy adjustment process.
  • the water drainage mode and the return mode of the seawater buoyancy adjustment system with back pressure are selected, and the mobile battery moves forward and backward, so that the glider can realize the underwater depth range without returning to the water surface.
  • the up and down reciprocating gliding and hovering functions inside, complete the depth interval profile measurement function.
  • sea water is sucked and discharged by the sea water pump to change the gravity of the glider itself, thereby providing the required variable net buoyancy for the glide motion.
  • this seawater buoyancy adjustment system directly uses seawater as the working fluid, does not require an external oil tank to store hydraulic oil, greatly reduces the internal space occupied, and is very beneficial for the design and manufacture of large gliders;
  • the sea water pump, accumulator and solenoid valve cooperate to realize the fast drainage function of the sea water buoyancy adjustment system.
  • Sea water is pumped into the accumulator by the sea water pump, and when the buoyancy is adjusted, the solenoid valve is opened to quickly discharge the sea water, so that the glider can quickly change the net buoyancy in a small depth interval and in a short time, which improves the response ability and control speed of the underwater glider ;
  • the seawater buoyancy adjustment system with two back pressure backwater branches is adopted to enable the glider to have fast and slow backwater speeds under deep water pressure, and switch between fast and slow backwater modes through the electromagnetic reversing valve.
  • the combination of multiple drainage and backwater modes makes the buoyancy control more precise and flexible; the underwater glider has the function of depth section profile measurement and underwater suspension.
  • the comprehensive utilization of the fast drainage and slow backwater modes enables the glider to achieve underwater fixed depth and reciprocating glide within the range of underwater depth without returning to the surface, reducing the time that the glider is exposed to the water surface, increasing the concealment of movement, and improving the glider’s resistance.
  • the adaptability of diversified underwater detection tasks; the working fluid of the seawater buoyancy adjustment system is not only suitable for seawater, but also suitable for working fluids such as hydraulic oil. If hydraulic oil is used as the working fluid, the sea water buoyancy adjustment system only needs to be equipped with an external oil bladder.
  • the underwater glider of this embodiment has a gliding mode and a direct propulsion mode.
  • the propeller propulsion device 6 can provide power for the underwater glider, so as to realize the direct flight movement in the direct flight propulsion mode.
  • the telescopic wing 4 of this embodiment includes: a motor 41, a reducer 42, a gear 43, a wing 44, and a rack 45.
  • the extension and incomplete contraction of the wing 44 are controlled by a double rack and pinion mechanism.
  • the reducer 42 is used to decelerate the motor shaft of the motor 41.
  • the gear 43 is fixed on the output shaft of the reducer 42, and the rack 45 is engaged with the gear 43.
  • the wing 44 is fixed to the rack 45.
  • the motor 41 rotates forward, and after deceleration by the reducer 42, the drive gear 43 rotates forward, the gear 43 drives the rack 45, and the rack 45 drives the wing 44 to incompletely retract to reduce the wing during sailing.
  • the resistance generated reduces energy consumption.
  • the expansion and contraction function of the wing with a small aspect ratio is realized by adopting an incomplete contraction method.
  • This function can be realized by, but not limited to, the rack and pinion mechanism mentioned in the present disclosure, which occupies a small space and the action process is stable and reliable.
  • the underwater glider of this embodiment adopts two working modes: the gliding mode and the direct flight propulsion mode, where the direct flight propulsion mode can complete the survey task with precise motion control.
  • the gliding mode can realize the profile movement and complete the task of vertical profile measurement.
  • the direct flight propulsion mode can also be used as auxiliary propulsion to resist the influence of sea currents and improve the gliding speed and track keeping ability; its rack and pinion telescopic wing 4 mechanism, reasonable and moderate aspect ratio, takes up less space , The action process is stable and reliable.
  • the direct propulsion mode the wings retract to reduce drag and improve navigation efficiency.
  • the gliding mode the wings are extended to provide lift.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种基于海水浮力调节系统的水下滑翔机,包括:机身(1)、以及安装于所述机身(1)的海水浮力调节系统(2),海水浮力调节系统(2)可利用海水调节所述水下滑翔机的浮力大小。

Description

一种基于海水浮力调节系统的水下滑翔机 技术领域
本公开涉及海洋航行器技术领域,尤其涉及一种基于海水浮力调节系统的水下滑翔机。
背景技术
水下滑翔机具有大航程、长时序、低成本、隐蔽性好、可重复利用等多方面优点,其在海洋观测领域发挥了越来越重要的作用。自1989年美国科学家Herny Stommel首次提出水下滑翔机的概念以来,各海洋强国开始研制水下滑翔机,使得水下滑翔机的理论和技术进入高速发展期,其中Slocum、Spray和Seaglider等类型的滑翔机已被海洋学研究和沿海调查任务所采用。现阶段百公斤以内的小型水下滑翔机技术已趋向成熟,但大型水下滑翔机的研究起步较晚,其中美国的Xray和Zray水下滑翔机为较早出现的大型水下滑翔机。
小型水下滑翔机可以实现数千公里的航程,但由于其体积重量和内部空间有限,一方面带载能力有限,另一方面可搭载传感器种类少,只能搭载CTD等低能耗水文探测传感器,无法搭载高能耗的环境参数测量传感器和声学传感器。相反,大型水下滑翔机能够搭载更大容量的电池系统,其可供能量达数十千瓦时,为搭载更多高能耗的传感器和大航程探测任务提供了技术可行性。
为防止深水压力破坏内部油箱,小型水下滑翔机一般在每个测量剖面结束后都需返回水面进行回油操作,即打开电磁截止阀,使外油囊中的液压油以自吸的方式流回内部油箱。小型水下滑翔机通常无法实现水下的回油操作,如此操作增加了滑翔机暴露在水面的时间;但大型水下滑翔机具有足够的内部空间和带载能力,可以采用更加完备和复杂的液压系统实现水下回油和快速排油等功能,进而实现滑翔机的水下悬浮和区间深度剖面测量功能,总体上提升滑翔机对于海洋测量任务的适用性。
现有的大型水下滑翔机由于机翼较长,在直航推进模式下,其机翼会产生额外的航行阻力,增加能耗。为此,需研制机翼折叠或伸缩机构,在直航状态下将机翼部分缩回,提升滑翔机动稳定性及操纵性的同时提升其 航行效率。
发明内容
本公开提供了一种基于海水浮力调节系统的水下滑翔机,包括:机身、以及安装于所述机身的海水浮力调节系统;所述海水浮力调节系统可利用海水调节所述水下滑翔机的浮力大小。
本公开的水下滑翔机,由于采用海水浮力调节系统,与传统滑翔机浮力调节系统相比,不需要外油囊,减少了内部占用空间,提升了水下滑翔机的响应能力和操控速度,浮力控制更加精准灵活,减少了暴露在水面的时间,增加了行动隐蔽性。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为本公开实施例基于海水浮力调节系统的水下滑翔机的结构示意图。
图2为图1中基于海水浮力调节系统的结构示意图。
图3为本公开实施例基于海水浮力调节系统的水下滑翔机进行深度区间剖面测量的示意图。
图4a为图1中伸缩翼的结构示意图。
图4b为图1中伸缩翼的侧视结构示意图。
图4c为图1中伸缩翼的俯视结构示意图。
具体实施方式
本公开提供了一种基于海水浮力调节系统的水下滑翔机,本公开的水下滑翔机为多功能大型滑翔机,所谓大型滑翔机一般满足质量500KG以上,长度4米以上,直径500mm以上。本公开水下滑翔机典型重量1000公斤,直径533毫米,长度6米,翼展2至3.5米,其采用海水浮力调节系统,作为一种大型水下滑翔机,其包括耐压舱体、外壳、海水浮力调节系统、移动电池、通讯导航与控制系统、伸缩翼、推进与操纵系统、传感器系统等;控制系统控制海水浮力调节系统实现水下滑翔机的浮力大小调 节,控制移动电池用于调节水下滑翔机的俯仰姿态;水下滑翔机在返回水面后利用通讯导航系统设定航向和作业任务;推进与操纵系统实现滑翔机的直航运动;伸缩翼机构实现机翼的伸缩,分别在滑翔模式和直航推进模式中使用;所述多功能大型水下滑翔机增加了执行任务时的隐蔽性,提高了滑翔机对多元化水下探测任务的适应性。
下面将结合实施例和实施例中的附图,对本公开技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开实施例中,提供一种基于海水浮力调节系统的水下滑翔机,如图1所示,所述基于海水浮力调节系统的水下滑翔机,包括:机身1、以及安装于机身1的海水浮力调节系统2、移动电池3、伸缩翼4、导航通讯系统5、螺旋桨推进装置6、舵机系统7、传感器装置8、固定电池9、控制系统10、多普勒计程仪11、抛载12。
海水浮力调节系统2可利用海水调节水下滑翔机的浮力大小。
移动电池3和固定电池9共同为水下滑翔机的各个设备供电。移动电池3可沿机身1轴向方向前后移动,以调节水下滑翔机的俯仰姿态。
伸缩翼4设置于机身1两侧,可对机翼进行伸展或收缩,以分别对应水下滑翔机的滑翔模式或直航推进模式。
导航通讯系统5设置于机身1的顶面,水下滑翔机在返回水面后,导航通讯系统5用于接收控制端发送的航向和作业任务。
螺旋桨推进装置6设置于机身1的尾端,为水下滑翔机提供动力,以实现直航推进模式下的直航运动。
舵机系统7用于调节水下滑翔机的航向。
传感器装置8可设置于机身1的首端,可包括水文探测传感器、环境参数测量传感器和声学传感器,用于对海洋环境和声场进行探测。
多普勒计程仪11用于测量水下滑翔机的航速以及里程。
抛载12包括可从机身1抛出的负载,是使滑翔机在应急情况下获得正浮力而上浮脱险的装置。
本实施例的海水浮力调节系统2,如图2所示,包括承压外壳、以及 设置于承压外壳内的活塞式内水箱21、排水支路和回水支路。
活塞式内水箱21,用于储存海水。
排水支路,用于将活塞式内水箱21的海水向外排放,包括:依次设置于排水回路的海水泵22、第一单向阀251、第一过滤器284;以及依次连接的蓄能器24、第二过滤器283、第一电磁截止阀292。第一过滤器284和第一电磁截止阀292依次经第二电磁截止阀291、第三过滤器281连接外部。
回水支路,用于将外部海水回收至活塞式内水箱21,包括:慢速回水支路和快速回水支路。回水支路包括:慢速流量阀262、第二单向阀253、快速流量阀261、第三单向阀252、三位两通电磁换向阀27、第四过滤器282。慢速流量阀262、第二单向阀253依次连接于活塞式内水箱21与三位两通电磁换向阀27之间,形成慢速回水支路。快速流量阀261、第三单向阀252依次连接于活塞式内水箱21与三位两通电磁换向阀27之间,形成快速回水支路。
海水泵22与活塞式内水箱21连接,用于提供海水排放的动力。蓄能器24用于快速转存海水并在排放海水时提高排放速度。
本实施例的海水浮力调节系统2具备两种排水模式:快速排水模式和正常排水模式。在快速排水模式中,海水泵22将活塞式内水箱21中的海水压入蓄能器24后,再通过蓄能器24将海水快速排出。在正常排水模式中,海水泵22将活塞式内水箱21中的海水直接排出至外部。
在正常排水模式下,关闭第一电磁截止阀292,开启第二电磁截止阀291,此时在海水泵22的作用下,活塞式内水箱21中的海水依次通过第一单向阀251、第一过滤器284、第二电磁截止阀291、第三过滤器281排出舱外。
在快速排水模式下,关闭第二电磁截止阀291,开启第一电磁截止阀292,在海水泵22的作用下,活塞式内水箱21中的海水依次通过第一单向阀251、第一过滤器284、第一电磁截止阀292、第二过滤器283压入蓄能器24。待蓄能器24存储的海水达到排出指定量后,再打开第二电磁截止阀291,蓄能器24中的海水排除舱外,实现快速排水功能。
排水过程中第一单向阀251在排水支路起背压作用,三位两通电磁换 向阀27切换到关闭通路,在回水支路起背压作用。排水过程结束后,关闭第二电磁截止阀291,此时第二电磁截止阀291起背压作用。
排水支路还包括安全阀23和单向阀254,连接于海水泵22和第一单向阀251之间。安全阀23使海水浮力调节系统2的压力不超过规定值,起到保护海水浮力调节系统2的作用。
本实施例的海水浮力调节系统2具备两种回水模式:快速回水模式和慢速回水模式。
在慢速回水模式下,开启第二电磁截止阀291,关闭第一电磁截止阀292,海水通过第三过滤器281过滤后进入海水浮力调节系统2。将三位两通电磁换向阀27切换到慢速回水支路,海水通过第二单向阀253和流量阀262流入活塞式内水箱21。当活塞式内水箱21中的海水达到指定量时,关闭第二电磁截止阀291,三位两通电磁换向阀27切换到关闭通路,慢速回水结束。
在快速回水模式下,三位两通电磁换向阀27切换到快回支路,海水通过第三单向阀252和流量阀261流入活塞式内水箱21。当活塞式内水箱21中的海水达到指定量时,关闭第二电磁截止阀291,三位两通电磁换向阀27切换到关闭通路,快速回水结束。回水过程中第一单向阀251在排水支路起背压作用,第三单向阀252和第二单向阀253分别在快速回水支路和慢速回水支路起背压作用。每次回水过程结束后,关闭第二电磁截止阀291,此时第二电磁截止阀291起背压作用。
所述海水浮力调节系统还包括:浮力补偿模块,用于在浮力调节过程中进行浮力补偿。
在本公开实施例中,如图3所示,通过带背压的海水浮力调节系统的排水模式和回水模式的选择,配合移动电池前后移动,使滑翔机不返回水面即可实现水下深度区间内的上下往复滑翔及悬停功能,完成深度区间剖面测量功能。
由此可见,本实施例的水下滑翔机,由海水泵吸入和排出海水改变滑翔机自身重力,进而为滑翔运动提供所需的可变净浮力。与传统滑翔机浮力调节系统相比,此种海水浮力调节系统直接使用海水作为工作液体,不需要外油囊来存储液压油,大大减少了内部占用空间,对于大型滑翔机的 设计与制造十分有利;采用海水泵、蓄能器和电磁阀配合实现海水浮力调节系统的快速排水功能。由海水泵将海水打入蓄能器中,在调节浮力时打开电磁阀快速排出海水,使滑翔机可以在小深度区间和短时间内快速改变净浮力,提升了水下滑翔机的响应能力和操控速度;采用两条背压回水支路的海水浮力调节系统,使滑翔机在深水压力下具备快慢两种回水速度,通过电磁换向阀实现快慢两种回水模式的切换。多种排水、回水模式的组合使浮力控制更加精准灵活;水下滑翔机具备的深度区间剖面测量和水下悬浮功能。综合利用快速排水和慢速回水的模式,可以使滑翔机不返回水面即可实现水下定深和水下深度区间内的往复滑翔,减少滑翔机暴露在水面的时间,增加行动隐蔽性,提高滑翔机对多元化水下探测任务的适应性;所述海水浮力调节系统的工作液体不仅适用于海水,而且适用于液压油等工作液体。如果采用液压油作为工作液体,海水浮力调节系统只需另外加装外油囊即可。
本实施例的水下滑翔机,具备滑翔模式和直航推进模式。螺旋桨推进装置6可为水下滑翔机提供动力,以实现直航推进模式下的直航运动。
结合图4a至图4c所示,本实施例的伸缩翼4包括:电机41、减速器42、齿轮43、机翼44、齿条45。通过双齿轮齿条机构控制机翼44的伸展和不完全收缩。减速器42用于对电机41的电机轴减速。齿轮43固定在减速器42的输出轴上,齿条45与齿轮43咬合。机翼44固定在齿条45上。
在直航推进模式下,电机41正转,经过减速器42减速后,驱动齿轮43正转,齿轮43传动齿条45,齿条45带动机翼44不完全收缩,以减少航行过程中机翼产生的阻力,减少能耗。
在滑翔模式下,电机41反转,经过减速器42减速后,驱动齿轮43反转,齿轮43传动齿条45,齿条45带动机翼44伸出,为水下滑翔机提供所需的升力。本实施例通过采用不完全收缩的方式实现小展弦比机翼的伸缩功能。该功能可以通过但不局限于本公开所提的齿轮齿条机构来实现,该机构占用空间小,动作过程平稳可靠。
由此可见,本实施例的水下滑翔机,采用滑翔模式和直航推进模式两种工作模式,其中直航推进模式可以以精确的运动控制完成调查任务。滑 翔模式可以实现剖面运动,完成垂直剖面测量任务。同时在滑翔模式下亦可采用直航推进模式作为辅助推进,以抵抗海流的影响,提高滑翔速度和航迹保持能力;其齿轮齿条的伸缩翼4机构,展弦比合理适中,占用空间小,动作过程平稳可靠。在直航推进模式下,机翼收缩以降低阻力提高航行效率,在滑翔模式下伸出机翼提供升力。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;在不冲突的情况下,本公开实施例中的特征可以任意组合;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (14)

  1. 一种基于海水浮力调节系统的水下滑翔机,其特征在于,包括:机身、以及安装于所述机身的海水浮力调节系统;
    所述海水浮力调节系统可利用海水调节所述水下滑翔机的浮力大小。
  2. 如权利要求1所述的水下滑翔机,其特征在于,所述海水浮力调节系统包括:承压外壳、以及设置于所述承压外壳内的活塞式内水箱、排水支路和回水支路;
    所述活塞式内水箱用于储存海水;
    所述排水支路用于将所述活塞式内水箱的海水向外排放,所述排水支路可工作于快速排水模式和正常排水模式;
    所述回水支路包括:慢速回水支路和快速回水支路,用于将外部海水回收至所述活塞式内水箱。
  3. 如权利要求2所述的水下滑翔机,其特征在于,所述排水支路包括:依次连接的海水泵、第一单向阀、第一过滤器;以及依次连接的蓄能器、第二过滤器、第一电磁截止阀;所述第一过滤器和所述第一电磁截止阀依次经第二电磁截止阀和第三过滤器连接外部。
  4. 如权利要求3所述的水下滑翔机,其特征在于,在所述正常排水模式下,所述第一电磁截止阀关闭,所述第二电磁截止阀开启,在所述海水泵的作用下,所述活塞式内水箱中的海水依次通过所述第一单向阀、所述第一过滤器、所述第二电磁截止阀、所述第三过滤器排出舱外。
  5. 如权利要求3所述的水下滑翔机,其特征在于,在所述快速排水模式下,所述第二电磁截止阀关闭,所述第一电磁截止阀开启,在所述海水泵的作用下,所述活塞式内水箱中的海水依次通过所述第一单向阀、所述第一过滤器、所述第一电磁截止阀、所述第二过滤器压入所述蓄能器;当所述蓄能器存储的海水达到排出指定量后,所述第二电磁截止阀开启,所述蓄能器中的海水排除舱外。
  6. 如权利要求2所述的水下滑翔机,其特征在于,所述回水支路包括:慢速流量阀、第二单向阀、快速流量阀、第三单向阀、三位两通电磁换向阀、第四过滤器;
    所述慢速流量阀、所述第二单向阀依次连接于所述活塞式内水箱与所 述三位两通电磁换向阀之间,形成所述慢速回水支路;所述快速流量阀、所述第三单向阀依次连接于所述活塞式内水箱与所述三位两通电磁换向阀之间,形成所述快速回水支路。
  7. 如权利要求6所述的水下滑翔机,其特征在于,在所述慢速回水模式下,所述第二电磁截止阀打开,所述第一电磁截止阀关闭,所述三位两通电磁换向阀切换到所述慢速回水支路,海水通过所述第三过滤器过滤后通过所述第二单向阀和所述慢速流量阀流入所述活塞式内水箱;当所述活塞式内水箱中的海水达到指定量时,所述第二电磁截止阀关闭,所述三位两通电磁换向阀切换到关闭通路。
  8. 如权利要求6所述的水下滑翔机,其特征在于,在所述快速回水模式下,所述三位两通电磁换向阀切换到快速回水支路,海水通过所述第三单向阀和所述快速流量阀流入所述活塞式内水箱;当所述活塞式内水箱中的海水达到指定量时,所述第二电磁截止阀关闭,所述三位两通电磁换向阀切换到关闭通路。
  9. 如权利要求1所述的水下滑翔机,其特征在于,还包括:安装于所述机身的移动电池;所述移动电池可沿所述机身轴向方向前后移动,以调节水下滑翔机的俯仰姿态。
  10. 如权利要求1所述的水下滑翔机,其特征在于,还包括:螺旋桨推进装置;所述螺旋桨推进装置可为水下滑翔机提供动力,以实现直航推进模式下的直航运动。
  11. 如权利要求1或10所述的水下滑翔机,其特征在于,还包括:伸缩翼;所述伸缩翼设置于所述机身两侧,可对机翼进行伸展或收缩。
  12. 如权利要求11所述的水下滑翔机,其特征在于,所述伸缩翼包括:电机、减速器、齿轮、机翼和齿条;所述减速器用于对所述电机减速;所述齿轮固定在所述减速器的输出轴上;所述齿条与所述齿轮咬合;所述机翼固定在所述齿条上。
  13. 如权利要求12所述的水下滑翔机,其特征在于,在直航推进模式下,所述电机正转,经过所述减速器减速后,驱动所述齿轮正转,所述齿轮传动所述齿条,所述齿条带动所述机翼不完全收缩。
  14. 如权利要求12所述的水下滑翔机,其特征在于,在滑翔模式下, 所述电机反转,经过所述减速器减速后,驱动所述齿轮反转,所述齿轮传动所述齿条,所述齿条带动所述机翼伸出。
PCT/CN2020/086413 2020-04-23 2020-04-23 一种基于海水浮力调节系统的水下滑翔机 WO2021212412A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/086413 WO2021212412A1 (zh) 2020-04-23 2020-04-23 一种基于海水浮力调节系统的水下滑翔机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/086413 WO2021212412A1 (zh) 2020-04-23 2020-04-23 一种基于海水浮力调节系统的水下滑翔机

Publications (1)

Publication Number Publication Date
WO2021212412A1 true WO2021212412A1 (zh) 2021-10-28

Family

ID=78270962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086413 WO2021212412A1 (zh) 2020-04-23 2020-04-23 一种基于海水浮力调节系统的水下滑翔机

Country Status (1)

Country Link
WO (1) WO2021212412A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114604400A (zh) * 2022-04-01 2022-06-10 中科探海(深圳)海洋科技有限责任公司 具有沉底探测功能的水下滑翔机
CN115071928A (zh) * 2022-06-23 2022-09-20 衡州机器(杭州)有限公司 一种内外膜片浮力调节装置
CN115959272A (zh) * 2023-01-04 2023-04-14 北京先驱高技术开发有限责任公司 分段式模块化水下机器人
CN116873129A (zh) * 2023-07-21 2023-10-13 河北盛丰测绘服务有限公司 一种水文监测无人船

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015456A1 (en) * 1993-01-05 1994-07-21 Faanes Peraage Fishing tool
US6681711B2 (en) * 2001-07-26 2004-01-27 American Systems Corporation System for deploying cable
CN101003298A (zh) * 2006-12-21 2007-07-25 天津大学 复合能源的自持式水下剖面浮标及其驱动方法
JP2007276609A (ja) * 2006-04-06 2007-10-25 Osaka Prefecture Univ 水中グライダー
CN101070092A (zh) * 2007-06-11 2007-11-14 天津大学 混合驱动水下自航行器
CN108639287A (zh) * 2018-05-24 2018-10-12 天津大学 一种大型重载混合驱动水下滑翔机
CN208203535U (zh) * 2018-05-08 2018-12-07 国家海洋技术中心 水下滑翔机浮力泵系统动压、疲劳寿命及功耗测试装置
CN108974287A (zh) * 2017-06-05 2018-12-11 周泽才 一种波动翼混合驱动水下滑翔机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015456A1 (en) * 1993-01-05 1994-07-21 Faanes Peraage Fishing tool
US6681711B2 (en) * 2001-07-26 2004-01-27 American Systems Corporation System for deploying cable
JP2007276609A (ja) * 2006-04-06 2007-10-25 Osaka Prefecture Univ 水中グライダー
CN101003298A (zh) * 2006-12-21 2007-07-25 天津大学 复合能源的自持式水下剖面浮标及其驱动方法
CN101070092A (zh) * 2007-06-11 2007-11-14 天津大学 混合驱动水下自航行器
CN108974287A (zh) * 2017-06-05 2018-12-11 周泽才 一种波动翼混合驱动水下滑翔机
CN208203535U (zh) * 2018-05-08 2018-12-07 国家海洋技术中心 水下滑翔机浮力泵系统动压、疲劳寿命及功耗测试装置
CN108639287A (zh) * 2018-05-24 2018-10-12 天津大学 一种大型重载混合驱动水下滑翔机

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114604400A (zh) * 2022-04-01 2022-06-10 中科探海(深圳)海洋科技有限责任公司 具有沉底探测功能的水下滑翔机
CN114604400B (zh) * 2022-04-01 2024-01-02 中科探海(深圳)海洋科技有限责任公司 具有沉底探测功能的水下滑翔机
CN115071928A (zh) * 2022-06-23 2022-09-20 衡州机器(杭州)有限公司 一种内外膜片浮力调节装置
CN115071928B (zh) * 2022-06-23 2024-04-12 衡州机器(杭州)有限公司 一种内外膜片浮力调节装置
CN115959272A (zh) * 2023-01-04 2023-04-14 北京先驱高技术开发有限责任公司 分段式模块化水下机器人
CN116873129A (zh) * 2023-07-21 2023-10-13 河北盛丰测绘服务有限公司 一种水文监测无人船
CN116873129B (zh) * 2023-07-21 2023-12-19 河北盛丰测绘服务有限公司 一种水文监测无人船

Similar Documents

Publication Publication Date Title
WO2021212412A1 (zh) 一种基于海水浮力调节系统的水下滑翔机
CN111439358B (zh) 基于海水浮力调节系统的多功能大型水下滑翔机
CN110901864B (zh) 一种紧凑化、模块化的海洋温差能驱动浮力调节装置
CN105836124A (zh) 一种无人驾驶潜水飞行器
CN110065607A (zh) 辅助仿生机器鱼
CN110641663A (zh) 一种具备自弃式机翼的大型水下航行器
CN108609134B (zh) 一种水下滑翔机的电磁式紧急抛载装置
CN106043634A (zh) 一种高机动水下滑翔机
CN104527953A (zh) 一种圆碟形水下滑翔器及其工作方法
CN113277044B (zh) 一种舵翼可变具有宽航速域的324毫米直径水下滑翔机
CN103832591A (zh) 新能源多功能飞机
CN112660347B (zh) 一种节能式水下滑翔机
Yao et al. Submersible unmanned flying boat: Design and experiment
CN114524091A (zh) 一种可变结构的跨介质飞行器
CN218786088U (zh) 一种水空两栖跨介质飞行器
CN105059544A (zh) 三栖无人航行器
CN105109649A (zh) 一种利用康达效应实现灵活转向的水下矢量推进器
CN114435044A (zh) 一种可变体的跨介质航行器
CN111907672A (zh) 一种具备两种推进方式的仿生乌贼跨介质航行器
CN113232809A (zh) 模块化小型auv装置
CN117360814A (zh) 基于斜置折叠机翼的可变布局仿生跨介质无人航行器及方法
CN112298504B (zh) 一种有翼电力正反双向挤压推进型智能水下无人航行器
CN204916130U (zh) 一种新型水下矢量推进器
CN115959272A (zh) 分段式模块化水下机器人
CN209814272U (zh) 可收放式水上飞机水翼型起落架装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932708

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20932708

Country of ref document: EP

Kind code of ref document: A1