WO2021212304A1 - Recovery from a problematic cell - Google Patents

Recovery from a problematic cell Download PDF

Info

Publication number
WO2021212304A1
WO2021212304A1 PCT/CN2020/085822 CN2020085822W WO2021212304A1 WO 2021212304 A1 WO2021212304 A1 WO 2021212304A1 CN 2020085822 W CN2020085822 W CN 2020085822W WO 2021212304 A1 WO2021212304 A1 WO 2021212304A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
measurement
event pattern
period
muted
Prior art date
Application number
PCT/CN2020/085822
Other languages
French (fr)
Inventor
Yuankun ZHU
Chaofeng HUI
Fojian ZHANG
Hao Zhang
Quanling ZHANG
Pan JIANG
Xiuqiu XIA
Shouxin XU
Harvey HUANG
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/085822 priority Critical patent/WO2021212304A1/en
Publication of WO2021212304A1 publication Critical patent/WO2021212304A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0079Transmission or use of information for re-establishing the radio link in case of hand-off failure or rejection

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for recovery from a problematic cell.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication may include identifying an occurrence of an event pattern associated with a cell, the event pattern being associated with a measurement-based secondary cell group addition associated with the cell; and muting measurement of the cell for a period of time based at least in part on identifying the occurrence of the event pattern associated with the cell.
  • a UE for wireless communication may include a memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to identify an occurrence of an event pattern associated with a cell, the event pattern being associated with a measurement-based secondary cell group addition associated with the cell; and mute measurement of the cell for a period of time based at least in part on identifying the occurrence of the event pattern associated with the cell.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a UE, may cause the one or more processors to identify an occurrence of an event pattern associated with a cell, the event pattern being associated with a measurement-based secondary cell group addition associated with the cell; and mute measurement of the cell for a period of time based at least in part on identifying the occurrence of the event pattern associated with the cell.
  • an apparatus for wireless communication may include means for identifying an occurrence of an event pattern associated with a cell, the event pattern being associated with a measurement-based secondary cell group addition associated with the cell; and means for muting measurement of the cell for a period of time based at least in part on identifying the occurrence of the event pattern associated with the cell.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 3 is a diagram illustrating an example of recovery from a problematic cell, in accordance with various aspects of the present disclosure.
  • Fig. 4 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
  • Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • TX transmit
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3 and 4.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. In some aspects, the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein (for example, as described with reference to Figs. 3 and 4) .
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with recovery from a problematic cell, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 400 of Fig. 4 and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 400 of Fig. 4 and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • UE 120 may include means for identifying an occurrence of an event pattern associated with a cell, the event pattern being associated with a measurement-based secondary cell group addition associated with the cell; means for muting measurement of the cell for a period of time based at least in part on identifying the occurrence of the event pattern associated with the cell; and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • dual connectivity aims to utilize radio resources within multiple carriers.
  • DC can be used to increase throughput, provide mobility robustness, support load-balancing among network nodes, and/or the like.
  • a DC mode of operation is a mode in which a UE (e.g., a UE 120) is configured to utilize radio resources of two distinct schedulers located in two network nodes (e.g., two base stations 110) . These network nodes are referred to as a master node (MN) and a secondary node (SN) .
  • MN master node
  • SN secondary node
  • a master cell group is a group of serving cells associated with the MN and includes a primary cell (Pcell) and optionally one or more secondary cells (Scells) .
  • a secondary cell group is a group of serving cells associated with the SN and includes a primary secondary cell (PScell) and optionally one or more Scells.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • EN-DC allows a UE to connect to an LTE base station (e.g., that acts as an MN) and an NR base station (e.g., that acts as an SN) .
  • An EN-DC enabled UE registers with an LTE core network (i.e., the LTE evolved packet core (EPC) ) and reports measurements on NR frequencies. If signal quality for the UE supports NR service, then the LTE base station communicates with the NR base station to assign resources for a bearer.
  • LTE core network i.e., the LTE evolved packet core (EPC)
  • the NR resource assignment is then signaled to the UE via an LTE radio resource control (RRC) connection reconfiguration message.
  • RRC radio resource control
  • the UE simultaneously connects to the LTE and NR networks.
  • a secondary cell group addition is performed using an RRC procedure.
  • an RRC connection reconfiguration procedure may be used to add, modify, or release a secondary cell group based on NR measurements performed by the UE.
  • this problematic cell may cause the UE to be stuck in a loop of measurement-setup-release associated with the problematic cell, which negatively impacts UE data service and increases UE power consumption.
  • a UE may identify an occurrence of an event pattern associated with a cell, the event pattern being associated with a measurement-based secondary cell group addition associated with the cell.
  • the UE may mute measurement of the cell for a period of time based at least in part on identifying the event pattern. In this way, identification of an event pattern that is indicative of a problematic cell may be used to prevent the UE from being stuck a loop associated with a secondary cell group addition of the problematic cell, thereby improving UE data service and reducing UE power consumption. Additional details are provided below.
  • Fig. 3 is a diagram illustrating an example 300 of recovery from a problematic cell, in accordance with various aspects of the present disclosure.
  • a UE e.g., a UE 120
  • an EN-DC UE that is RRC connected to an NR capable LTE cell of a base station (e.g., a base station 110) .
  • the UE may identify one or more occurrences of an event pattern associated with a cell (e.g., an NR cell, identified as Cell A) .
  • the event pattern is associated with a measurement-based secondary cell group addition associated with the cell.
  • the event pattern may include a set of communications between the UE and the base station associated with a measurement-based secondary cell group addition of Cell A.
  • the set of events includes (1) receiving an RRC reconfiguration message including a list of measurement objects indicating that the UE is to perform a measurement on Cell A; (2) performing a measurement for Cell A and providing an uplink measurement report including measurement information associated with Cell A; (3) receiving an RRC reconfiguration message with a secondary cell group addition on Cell A; (4) completing a secondary cell group addition on Cell A; and (5) receiving an RRC reconfiguration message indicating a secondary cell group release on Cell A.
  • the set of events and the sequence of particular events in the set of events are provided as illustrative examples and, in some other aspects, the event pattern may be defined by one or more additional events, fewer events, different events and/or differently sequenced events than shown in example 300.
  • the UE may be configured with information associated with the event pattern (e.g., information that identifies the set of events, a sequence of the set of events, and/or the like) , and may identify the event pattern based at least in part on the configuration associated with the event pattern. For example, the UE may monitor for the event pattern based at least in part on the configuration, and may identify an occurrence of the event pattern based at least in part on the monitoring.
  • information associated with the event pattern e.g., information that identifies the set of events, a sequence of the set of events, and/or the like
  • the UE may monitor for the event pattern based at least in part on the configuration, and may identify an occurrence of the event pattern based at least in part on the monitoring.
  • the UE may mute measurement of the cell based at least in part on identifying the one or more occurrences of the event pattern. For example, the UE may mute measurement of Cell A for a period of time (e.g., 30 minutes) based at least in part on identifying the one or more occurrences of the event pattern associated with Cell A. In some aspects, the UE may receive configuration information indicating a length of the period of time from the base station.
  • the UE may mute the measurement of the call based at least in part on a determination that a number of occurrences of the event pattern satisfies a threshold. For example, the UE may maintain a counter that tracks a number of occurrences of the event pattern associated with Cell A. Here, when the counter reaches a threshold value (e.g., when 10 occurrences of the event pattern have been identified) , the UE may mute the measurement of Cell A for the period of time.
  • a threshold value e.g., when 10 occurrences of the event pattern have been identified
  • the UE may mute measurement of the cell further based at least in part on a determination that the threshold number of occurrences of the event pattern occurred within a time window associated with monitoring for the event pattern.
  • a start time of the time window is not associated with an identification of an occurrence of the event pattern.
  • the time window may be configured to start at a particular time on a periodic basis, based at least in part on an indication from the base station to start the time window, based at least in part on detecting another event that triggers the start of the time window, or the like.
  • the start time of the time window is associated with an identification of an occurrence of the event pattern.
  • the time window may start upon the UE detecting a first occurrence of the event pattern (e.g., such that the UE may monitor for additional occurrences of the event pattern during the time window) .
  • the UE may receive configuration information associated with the time window from the base station.
  • the configuration information may include information that identifies a length of the time window, information associated with starting the time window, or the like.
  • the UE may ignore an indication to perform a measurement associated with the cell. For example, as shown in Fig. 3, after muting the measurement of Cell A, the UE receives an RRC reconfiguration message including a list of measurement objects indicating that the UE is to perform a measurement on Cell A. As shown, the UE performs a measurement on one or more other cells, but not Cell A and, therefore, provides an uplink measurement report that does not include measurement information associated with Cell A. As further shown, the UE receives an RRC reconfiguration message with a secondary cell group addition on another cell (e.g., an NR cell other than Cell A) , after which the secondary cell group addition on the other cell is completed. Here, there may not be a release on the other cell (as was occurring in the case of the problematic Cell A) .
  • a secondary cell group addition on another cell e.g., an NR cell other than Cell A
  • the UE may unmute the measurement of the cell, perform a measurement of the cell, and provide a measurement report including information associated with a result of performing the measurement of the cell. For example, the UE may unmute measurement of Cell A after the period of time.
  • the UE may perform a measurement on Cell A and provide an uplink measurement report including measurement information associated with Cell A, accordingly.
  • the above-described process may be repeated for a given cell (e.g., such that the UE can mute a problematic cell after unmuting the problematic cell) .
  • Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
  • Fig. 4 is a diagram illustrating an example process 400 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 400 is an example where the UE (e.g., UE 120 and/or the like) performs operations associated with recovery from a problematic cell.
  • the UE e.g., UE 120 and/or the like
  • process 400 may include identifying an occurrence of an event pattern associated with a cell, the event pattern being associated with a measurement-based secondary cell group addition associated with the cell (block 410) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 400 may include muting measurement of the cell for a period of time based at least in part on identifying the occurrence of the event pattern associated with the cell (block 420) .
  • the user equipment e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • Process 400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the measurement of the cell is muted further based at least in part on a determination that a number of occurrences of the event pattern satisfies a threshold.
  • the measurement of the cell is muted further based at least in part on a determination that the number of occurrences of the event pattern occurred within a time window associated with monitoring for the event pattern.
  • the event pattern includes a measurement associated with the cell, completion of a secondary cell group addition setup associated with the cell, and a release of the cell.
  • an indication to perform a measurement associated with the cell is ignored during the period of time in which the measurement of the cell is muted.
  • process 400 includes unmuting the measurement of the cell after the period of time has lapsed; performing a measurement of the cell; and providing a measurement report including information associated with a result of performing the measurement of the cell.
  • process 400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 4. Additionally, or alternatively, two or more of the blocks of process 400 may be performed in parallel.
  • ком ⁇ онент is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may identify an occurrence of an event pattern associated with a cell. The event pattern may be associated with a measurement-based secondary cell group addition associated with the cell. In some aspects, the user equipment may mute measurement of the cell for a period of time based at least in part on identifying the occurrence of the event pattern associated with the cell. Numerous other aspects are provided.

Description

RECOVERY FROM A PROBLEMATIC CELL
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for recovery from a problematic cell.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving  spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In some aspects, a method of wireless communication, performed by a UE, may include identifying an occurrence of an event pattern associated with a cell, the event pattern being associated with a measurement-based secondary cell group addition associated with the cell; and muting measurement of the cell for a period of time based at least in part on identifying the occurrence of the event pattern associated with the cell.
In some aspects, a UE for wireless communication may include a memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to identify an occurrence of an event pattern associated with a cell, the event pattern being associated with a measurement-based secondary cell group addition associated with the cell; and mute measurement of the cell for a period of time based at least in part on identifying the occurrence of the event pattern associated with the cell.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a UE, may cause the one or more processors to identify an occurrence of an event pattern associated with a cell, the event pattern being associated with a measurement-based secondary cell group addition associated with the cell; and mute measurement of the cell for a period of time based at least in part on identifying the occurrence of the event pattern associated with the cell.
In some aspects, an apparatus for wireless communication may include means for identifying an occurrence of an event pattern associated with a cell, the event pattern being associated with a measurement-based secondary cell group addition  associated with the cell; and means for muting measurement of the cell for a period of time based at least in part on identifying the occurrence of the event pattern associated with the cell.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example of recovery from a problematic cell, in accordance with various aspects of the present disclosure.
Fig. 4 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the  example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered  Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received  from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3 and 4.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. In some aspects, the base station 110 includes a transceiver. The transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein (for example, as described with reference to Figs. 3 and 4) .
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with recovery from a problematic cell, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor  280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 400 of Fig. 4 and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 400 of Fig. 4 and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
In some aspects, UE 120 may include means for identifying an occurrence of an event pattern associated with a cell, the event pattern being associated with a measurement-based secondary cell group addition associated with the cell; means for muting measurement of the cell for a period of time based at least in part on identifying the occurrence of the event pattern associated with the cell; and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
In a wireless communication system, dual connectivity (DC) aims to utilize radio resources within multiple carriers. DC can be used to increase throughput, provide mobility robustness, support load-balancing among network nodes, and/or the like. A DC mode of operation is a mode in which a UE (e.g., a UE 120) is configured to utilize radio resources of two distinct schedulers located in two network nodes (e.g., two base stations 110) . These network nodes are referred to as a master node (MN) and a secondary node (SN) . Thus, DC enables a UE to simultaneously transmit and receive data on multiple component carriers from groups of cells via the MN and the SN. In the context of DC, a master cell group is a group of serving cells associated with the MN and includes a primary cell (Pcell) and optionally one or more secondary cells (Scells) .  Further, a secondary cell group is a group of serving cells associated with the SN and includes a primary secondary cell (PScell) and optionally one or more Scells.
A particular example of DC is Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN) NR–DC, which is referred to as EN-DC. EN-DC allows a UE to connect to an LTE base station (e.g., that acts as an MN) and an NR base station (e.g., that acts as an SN) . An EN-DC enabled UE registers with an LTE core network (i.e., the LTE evolved packet core (EPC) ) and reports measurements on NR frequencies. If signal quality for the UE supports NR service, then the LTE base station communicates with the NR base station to assign resources for a bearer. The NR resource assignment is then signaled to the UE via an LTE radio resource control (RRC) connection reconfiguration message. Once the RRC connection reconfiguration procedure is complete, the UE simultaneously connects to the LTE and NR networks. In EN-DC, a secondary cell group addition is performed using an RRC procedure. For example, an RRC connection reconfiguration procedure may be used to add, modify, or release a secondary cell group based on NR measurements performed by the UE.
In some cases of EN-DC operation, there may be a cell that repeatedly initiates an NR measurement-based secondary cell group addition but then causes a connection to be released soon after the secondary cell group addition on the cell is complete. In such a case, this problematic cell may cause the UE to be stuck in a loop of measurement-setup-release associated with the problematic cell, which negatively impacts UE data service and increases UE power consumption.
Some aspects described herein provide techniques and apparatuses for recovery from a problematic cell. In some aspects, a UE may identify an occurrence of an event pattern associated with a cell, the event pattern being associated with a measurement-based secondary cell group addition associated with the cell. In some aspects, the UE may mute measurement of the cell for a period of time based at least in part on identifying the event pattern. In this way, identification of an event pattern that is indicative of a problematic cell may be used to prevent the UE from being stuck a loop associated with a secondary cell group addition of the problematic cell, thereby improving UE data service and reducing UE power consumption. Additional details are provided below.
Fig. 3 is a diagram illustrating an example 300 of recovery from a problematic cell, in accordance with various aspects of the present disclosure. In  example 300, a UE (e.g., a UE 120) is an EN-DC UE that is RRC connected to an NR capable LTE cell of a base station (e.g., a base station 110) .
As shown by references 305-1 and 305-N (N ≥ 1) , the UE may identify one or more occurrences of an event pattern associated with a cell (e.g., an NR cell, identified as Cell A) . In some aspects, the event pattern is associated with a measurement-based secondary cell group addition associated with the cell. For example, as shown in Fig. 3, the event pattern may include a set of communications between the UE and the base station associated with a measurement-based secondary cell group addition of Cell A. In this example, the set of events includes (1) receiving an RRC reconfiguration message including a list of measurement objects indicating that the UE is to perform a measurement on Cell A; (2) performing a measurement for Cell A and providing an uplink measurement report including measurement information associated with Cell A; (3) receiving an RRC reconfiguration message with a secondary cell group addition on Cell A; (4) completing a secondary cell group addition on Cell A; and (5) receiving an RRC reconfiguration message indicating a secondary cell group release on Cell A. Notably, the set of events and the sequence of particular events in the set of events are provided as illustrative examples and, in some other aspects, the event pattern may be defined by one or more additional events, fewer events, different events and/or differently sequenced events than shown in example 300.
In some aspects, the UE may be configured with information associated with the event pattern (e.g., information that identifies the set of events, a sequence of the set of events, and/or the like) , and may identify the event pattern based at least in part on the configuration associated with the event pattern. For example, the UE may monitor for the event pattern based at least in part on the configuration, and may identify an occurrence of the event pattern based at least in part on the monitoring.
As shown by reference 310, the UE may mute measurement of the cell based at least in part on identifying the one or more occurrences of the event pattern. For example, the UE may mute measurement of Cell A for a period of time (e.g., 30 minutes) based at least in part on identifying the one or more occurrences of the event pattern associated with Cell A. In some aspects, the UE may receive configuration information indicating a length of the period of time from the base station.
In some aspects, the UE may mute the measurement of the call based at least in part on a determination that a number of occurrences of the event pattern satisfies a threshold. For example, the UE may maintain a counter that tracks a number of  occurrences of the event pattern associated with Cell A. Here, when the counter reaches a threshold value (e.g., when 10 occurrences of the event pattern have been identified) , the UE may mute the measurement of Cell A for the period of time.
In some aspects, as indicated in example 300, the UE may mute measurement of the cell further based at least in part on a determination that the threshold number of occurrences of the event pattern occurred within a time window associated with monitoring for the event pattern. In some aspects, a start time of the time window is not associated with an identification of an occurrence of the event pattern. For example, the time window may be configured to start at a particular time on a periodic basis, based at least in part on an indication from the base station to start the time window, based at least in part on detecting another event that triggers the start of the time window, or the like. Alternatively, in some aspects, the start time of the time window is associated with an identification of an occurrence of the event pattern. For example, the time window may start upon the UE detecting a first occurrence of the event pattern (e.g., such that the UE may monitor for additional occurrences of the event pattern during the time window) . In some aspects, the UE may receive configuration information associated with the time window from the base station. In some aspects, the configuration information may include information that identifies a length of the time window, information associated with starting the time window, or the like.
In some aspects, during the period of time in which the measurement of the cell is muted, the UE may ignore an indication to perform a measurement associated with the cell. For example, as shown in Fig. 3, after muting the measurement of Cell A, the UE receives an RRC reconfiguration message including a list of measurement objects indicating that the UE is to perform a measurement on Cell A. As shown, the UE performs a measurement on one or more other cells, but not Cell A and, therefore, provides an uplink measurement report that does not include measurement information associated with Cell A. As further shown, the UE receives an RRC reconfiguration message with a secondary cell group addition on another cell (e.g., an NR cell other than Cell A) , after which the secondary cell group addition on the other cell is completed. Here, there may not be a release on the other cell (as was occurring in the case of the problematic Cell A) .
In some aspects, after the period of time has lapsed, the UE may unmute the measurement of the cell, perform a measurement of the cell, and provide a measurement report including information associated with a result of performing the measurement of  the cell. For example, the UE may unmute measurement of Cell A after the period of time. Upon receiving (at a later time) another RRC reconfiguration message including a list of measurement objects indicating that the UE is to perform a measurement on Cell A, the UE may perform a measurement on Cell A and provide an uplink measurement report including measurement information associated with Cell A, accordingly.
In some aspects, the above-described process may be repeated for a given cell (e.g., such that the UE can mute a problematic cell after unmuting the problematic cell) .
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
Fig. 4 is a diagram illustrating an example process 400 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 400 is an example where the UE (e.g., UE 120 and/or the like) performs operations associated with recovery from a problematic cell.
As shown in Fig. 4, in some aspects, process 400 may include identifying an occurrence of an event pattern associated with a cell, the event pattern being associated with a measurement-based secondary cell group addition associated with the cell (block 410) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may identify an occurrence of an event pattern associated with a cell, the event pattern being associated with a measurement-based secondary cell group addition associated with the cell, as described above.
As further shown in Fig. 4, in some aspects, process 400 may include muting measurement of the cell for a period of time based at least in part on identifying the occurrence of the event pattern associated with the cell (block 420) . For example, the user equipment (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may mute measurement of the cell for a period of time based at least in part on identifying the occurrence of the event pattern associated with the cell, as described above.
Process 400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the measurement of the cell is muted further based at least in part on a determination that a number of occurrences of the event pattern satisfies a threshold.
In a second aspect, alone or in combination with the first aspect, the measurement of the cell is muted further based at least in part on a determination that the number of occurrences of the event pattern occurred within a time window associated with monitoring for the event pattern.
In a third aspect, alone or in combination with one or more of the first and second aspects, the event pattern includes a measurement associated with the cell, completion of a secondary cell group addition setup associated with the cell, and a release of the cell.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, an indication to perform a measurement associated with the cell is ignored during the period of time in which the measurement of the cell is muted.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, process 400 includes unmuting the measurement of the cell after the period of time has lapsed; performing a measurement of the cell; and providing a measurement report including information associated with a result of performing the measurement of the cell.
Although Fig. 4 shows example blocks of process 400, in some aspects, process 400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 4. Additionally, or alternatively, two or more of the blocks of process 400 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less  than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (25)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    identifying an occurrence of an event pattern associated with a cell, the event pattern being associated with a measurement-based secondary cell group addition associated with the cell; and
    muting measurement of the cell for a period of time based at least in part on identifying the occurrence of the event pattern associated with the cell.
  2. The method of claim 1, wherein the measurement of the cell is muted further based at least in part on a determination that a number of occurrences of the event pattern satisfies a threshold.
  3. The method of claim 2, wherein the measurement of the cell is muted further based at least in part on a determination that the number of occurrences of the event pattern occurred within a time window associated with monitoring for the event pattern.
  4. The method of claim 1, wherein the event pattern includes a measurement associated with the cell, completion of a secondary cell group addition setup associated with the cell, and a release of the cell.
  5. The method of claim 1, wherein an indication to perform a measurement associated with the cell is ignored during the period of time in which the measurement of the cell is muted.
  6. The method of claim 1, further comprising:
    unmuting the measurement of the cell after the period of time has lapsed;
    performing a measurement of the cell; and
    providing a measurement report including information associated with a result of performing the measurement of the cell.
  7. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    identify an occurrence of an event pattern associated with a cell, the event pattern being associated with a measurement-based secondary cell group addition associated with the cell; and
    mute measurement of the cell for a period of time based at least in part on identifying the occurrence of the event pattern associated with the cell.
  8. The UE of claim 7, wherein the measurement of the cell is muted further based at least in part on a determination that a number of occurrences of the event pattern satisfies a threshold.
  9. The UE of claim 8, wherein the measurement of the cell is muted further based at least in part on a determination that the number of occurrences of the event pattern occurred within a time window associated with monitoring for the event pattern.
  10. The UE of claim 7, wherein the event pattern includes a measurement associated with the cell, completion of a secondary cell group addition setup associated with the cell, and a release of the cell.
  11. The UE of claim 7, wherein an indication to perform a measurement associated with the cell is ignored during the period of time in which the measurement of the cell is muted.
  12. The UE of claim 7, wherein the one or more processors are further configured to:
    unmute the measurement of the cell after the period of time has lapsed;
    perform a measurement of the cell; and
    provide a measurement report including information associated with a result of performing the measurement of the cell.
  13. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment, cause the one or more processors to:
    identify an occurrence of an event pattern associated with a cell, the event pattern being associated with a measurement-based secondary cell group addition associated with the cell; and
    mute measurement of the cell for a period of time based at least in part on identifying the occurrence of the event pattern associated with the cell.
  14. The non-transitory computer-readable medium of claim 13, wherein the measurement of the cell is muted further based at least in part on a determination that a number of occurrences of the event pattern satisfies a threshold.
  15. The non-transitory computer-readable medium of claim 14, wherein the measurement of the cell is muted further based at least in part on a determination that the number of occurrences of the event pattern occurred within a time window associated with monitoring for the event pattern.
  16. The non-transitory computer-readable medium of claim 13, wherein the event pattern includes a measurement associated with the cell, completion of a secondary cell group addition setup associated with the cell, and a release of the cell.
  17. The non-transitory computer-readable medium of claim 13, wherein an indication to perform a measurement associated with the cell is ignored during the period of time in which the measurement of the cell is muted.
  18. The non-transitory computer-readable medium of claim 13, wherein the one or more instructions, when executed by the one or more processors, further cause the one or more processors to:
    unmute the measurement of the cell after the period of time has lapsed;
    perform a measurement of the cell; and
    provide a measurement report including information associated with a result of performing the measurement of the cell.
  19. An apparatus for wireless communication, comprising:
    means for identifying an occurrence of an event pattern associated with a cell, the event pattern being associated with a measurement-based secondary cell group addition associated with the cell; and
    means for muting measurement of the cell for a period of time based at least in part on identifying the occurrence of the event pattern associated with the cell.
  20. The apparatus of claim 19, wherein the measurement of the cell is muted further based at least in part on a determination that a number of occurrences of the event pattern satisfies a threshold.
  21. The apparatus of claim 20, wherein the measurement of the cell is muted further based at least in part on a determination that the number of occurrences of the event pattern occurred within a time window associated with monitoring for the event pattern.
  22. The apparatus of claim 19, wherein the event pattern includes a measurement associated with the cell, completion of a secondary cell group addition setup associated with the cell, and a release of the cell.
  23. The apparatus of claim 19, wherein an indication to perform a measurement associated with the cell is ignored during the period of time in which the measurement of the cell is muted.
  24. The apparatus of claim 19, further comprising:
    means for unmuting the measurement of the cell after the period of time has lapsed;
    means for performing a measurement of the cell; and
    means for providing a measurement report including information associated with a result of performing the measurement of the cell.
  25. A method, device, apparatus, computer program product, non-transitory computer-readable medium, user equipment, base station, node, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
PCT/CN2020/085822 2020-04-21 2020-04-21 Recovery from a problematic cell WO2021212304A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085822 WO2021212304A1 (en) 2020-04-21 2020-04-21 Recovery from a problematic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085822 WO2021212304A1 (en) 2020-04-21 2020-04-21 Recovery from a problematic cell

Publications (1)

Publication Number Publication Date
WO2021212304A1 true WO2021212304A1 (en) 2021-10-28

Family

ID=78271048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085822 WO2021212304A1 (en) 2020-04-21 2020-04-21 Recovery from a problematic cell

Country Status (1)

Country Link
WO (1) WO2021212304A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018028271A1 (en) * 2016-08-10 2018-02-15 深圳市金立通信设备有限公司 Control information transmission method, equipment and communication system
US20190215686A1 (en) * 2016-08-22 2019-07-11 Nokia Technologies Oy Security procedure
US20200021946A1 (en) * 2018-07-13 2020-01-16 Qualcomm Incorporated Systems and methods for prs muting in a fifth generation wireless network
CN110831096A (en) * 2019-11-11 2020-02-21 维沃移动通信有限公司 Network switching method and electronic equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018028271A1 (en) * 2016-08-10 2018-02-15 深圳市金立通信设备有限公司 Control information transmission method, equipment and communication system
US20190215686A1 (en) * 2016-08-22 2019-07-11 Nokia Technologies Oy Security procedure
US20200021946A1 (en) * 2018-07-13 2020-01-16 Qualcomm Incorporated Systems and methods for prs muting in a fifth generation wireless network
CN110831096A (en) * 2019-11-11 2020-02-21 维沃移动通信有限公司 Network switching method and electronic equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION, SANECHIPS: "Discussion on measurement relaxation solutions", 3GPP DRAFT; R2-1906527 DISCUSSION ON MEASUREMENT RELAXATION SOLUTIONS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051729988 *

Similar Documents

Publication Publication Date Title
US11515981B2 (en) Techniques and apparatuses for providing system information updates in a system using bandwidth parts
US11916609B2 (en) Techniques for indicating a user equipment capability for Layer 1 signal to interference plus noise ratio measurement
US11871422B2 (en) Frequency allocation for channel state information reference signals
WO2019157902A1 (en) Channel state determination or reference signaling with traffic preemption
US11758425B2 (en) Techniques for indicating a user equipment capability for layer 1 signal to interference plus noise ratio measurement
WO2021226982A1 (en) Measurement report offset increase for avoiding ping-pong between long term evolution cells in non-stand-alone mode
US20210235307A1 (en) Techniques for indicating beams for user equipment beam reporting
WO2021253262A1 (en) Processing of two-stage downlink control information
WO2022040652A1 (en) Layer 2 remote radio head configuration
WO2021212304A1 (en) Recovery from a problematic cell
WO2021232182A1 (en) Recovery from a problematic cell
WO2021226983A1 (en) Hysteresis increase for avoiding ping-pong between long term evolution cells in non-stand-alone mode
WO2021212452A1 (en) Restoration of data connectivity upon bearer removal after handover
WO2021208074A1 (en) Data service with dual subscriber information modules
WO2021226985A1 (en) Barring handover to cell for avoiding ping-pong between long term evolution cells in non-stand-alone mode
US11540239B2 (en) Synchronization signal block transmission using spatial division multiplexing
WO2021232179A1 (en) Restoration of vehicle to everything service
WO2021243689A1 (en) Recovery from radio link failure
WO2021203346A1 (en) New radio data connectivity from non-standalone network
WO2021226859A1 (en) Restoration of data connectivity after random access problem in non-standalone network
WO2022061579A1 (en) Performance of secondary cell group adding procedures or handover or redirection procedures
WO2021207917A1 (en) Restoration of data connectivity after failure by rrc connection releases in non-standalone network
WO2021223212A1 (en) Pathloss reference signal update for multiple resources
WO2021203339A1 (en) Flexible time division duplexing configuration
WO2021212299A1 (en) Data service with dual subscriber identity modules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932337

Country of ref document: EP

Kind code of ref document: A1