WO2021212266A1 - 法珀传感器腔长解调系统和法珀传感器腔长解调方法 - Google Patents

法珀传感器腔长解调系统和法珀传感器腔长解调方法 Download PDF

Info

Publication number
WO2021212266A1
WO2021212266A1 PCT/CN2020/085609 CN2020085609W WO2021212266A1 WO 2021212266 A1 WO2021212266 A1 WO 2021212266A1 CN 2020085609 W CN2020085609 W CN 2020085609W WO 2021212266 A1 WO2021212266 A1 WO 2021212266A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
curve
wavelength
interference signal
fabry
Prior art date
Application number
PCT/CN2020/085609
Other languages
English (en)
French (fr)
Inventor
黄祖炎
乔蒙
张立喆
Original Assignee
北京佰为深科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京佰为深科技发展有限公司 filed Critical 北京佰为深科技发展有限公司
Priority to CN202080099947.6A priority Critical patent/CN115427778A/zh
Priority to PCT/CN2020/085609 priority patent/WO2021212266A1/zh
Publication of WO2021212266A1 publication Critical patent/WO2021212266A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/28Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with deflection of beams of light, e.g. for direct optical indication
    • G01D5/30Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with deflection of beams of light, e.g. for direct optical indication the beams of light being detected by photocells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means

Definitions

  • the invention relates to a Fabry Perot sensor cavity length demodulation system and a Fabry Perot sensor cavity length demodulation method.
  • Fiber-optic Fabry-Perot (F-P) sensors have the advantages of small size, high sensitivity, good stability, immunity from electromagnetic interference, etc., and are widely used in measurement fields such as strain, temperature, and pressure.
  • the optical fiber Fabry Perot sensor senses the measurement by measuring the change of cavity length, and the accuracy of cavity length demodulation directly affects the accuracy of measurement. Therefore, the rapid and accurate demodulation of the cavity length of the fiber Fabry-Perot sensor is of great significance.
  • the demodulation system is responsible for continuously sending optical signals to the optical fiber sensor and receiving the returned optical signals carrying the information to be measured. After photoelectric conversion, signal acquisition, and signal demodulation, the required information is extracted come out.
  • the representative ones are FISO in Canada, Davidson in the United States, and Opsens in Canada.
  • the first two companies use non-scanning correlation scanning technology, and Opsens uses white light polarization interference technology. Both of these technologies require well-made wedge and linear CCD, which are expensive, and because of the need to collect spectral images, the solution The rate of modulation cannot be increased, so it is not suitable for measuring rapidly changing signals, such as the measurement of explosion pressure.
  • the intensity demodulation method demodulates the cavity length by detecting the reflected light intensity of the sensor, with high sensitivity and fast demodulation rate.
  • the sensor output light intensity is in a sinusoidal relationship with the Fabryper sensor cavity length.
  • the invention relates to a Fabry-Perot sensor cavity length demodulation system, comprising: a first light source, emitting light of a first wavelength; a second light source, emitting light of a second wavelength; a wavelength division multiplexer, receiving light from the first light source Light and light from the second light source; fiber coupler, receiving and coupling the light from the wavelength division multiplexer; Fabry Perot sensor, receiving the coupled light from the fiber coupler, so that the coupled light in the first plane of the Fabry Perot sensor and Reflect at the second plane to cause interference and return the interference light to the fiber coupler; demultiplexer, which receives the interference light, and divides the interference light into the first beam and the second beam; the first detector and the second detector , Respectively receiving the first light beam and the second light beam, and transmitting the first interference signal of the first light beam and the second interference signal of the second light beam to the processor, and the processor is configured to acquire and analyze the first interference signal The first curve and the second curve of the second interference signal are used to
  • the processor determines the to-be-tested curve based on any one of the first curve and the second curve.
  • the turning point of physical quantities when both the first curve and the second curve show that they are not located at the inflection points of the peaks and valleys, the processor determines the to-be-tested curve based on any one of the first curve and the second curve. The turning point of physical quantities.
  • the processor determines the inflection point of the physical quantity to be measured based on the one curve.
  • the first light source and the second light source are semiconductor lasers.
  • the first wavelength is in the range of 1300 nm to 1320 nm
  • the second wavelength is in the range of 1540 nm to 1560 nm.
  • the first wavelength is 1310 nm and the second wavelength is 1550 nm.
  • the present invention also relates to a method for demodulating the cavity length of an optical fiber Fabry Perot sensor, which includes the following steps: guiding the light of the first wavelength emitted by the first light source and the light of the second wavelength emitted by the second light source to the wavelength division multiplexer;
  • the wavelength division multiplexer receives the light from the first light source and the light from the second light source, and transmits it to the fiber coupler;
  • the fiber coupler couples the light from the first light source and the light from the second light source, and transmits the coupled light to the method.
  • the multiplexer divides the interference light into the first light beam and the second light beam; the first light beam and the second light beam are received by the first detector and the second detector respectively, and the first interference signal and the second light beam of the first light beam are combined
  • the second interference signal of the first interference signal is transmitted to the processor, and the processor analyzes the first curve of the first interference signal and the second curve of the second interference signal to determine in the first curve and/or the second curve that the FAPER sensor is caused
  • the inflection point of the physical quantity to be measured when the cavity length changes, the first curve is the curve of the light intensity of the first interference signal with respect to the cavity length, and the second curve is the curve of the light intensity of the second interference signal with respect to the cavity length.
  • the processor determines the physical quantity to be measured based on any one of the first curve and the second curve The turning point.
  • the processor determines the inflection point of the physical quantity to be measured based on the one curve.
  • the first light source and the second light source are semiconductor lasers.
  • the first wavelength is in the range of 1300 nm to 1320 nm
  • the second wavelength is in the range of 1540 nm to 1560 nm.
  • the first wavelength is 1310 nm and the second wavelength is 1550 nm.
  • Fig. 1 is a schematic diagram showing a cavity length demodulation system of a Fabry-Perot sensor according to the present invention.
  • FIG. 2 is a diagram showing the first curve of the first interference signal and the second curve of the second interference signal obtained by the cavity length demodulation system of the Fabry Perot sensor according to the present invention, showing that only the second curve has a peak or trough not located at the peak or trough. Turning point.
  • Fig. 1 is a schematic diagram showing a cavity length demodulation system of a Fabry-Perot sensor according to the present invention.
  • the Fabry-Perot sensor cavity length demodulation system includes a first light source 1 and a second light source 2.
  • the first light source 1 emits light of a first wavelength
  • the second light source 2 emits light of a second wavelength.
  • the first wavelength is in the range of 1300 nm to 1320 nm, and more preferably, the first wavelength is 1310 nm.
  • the second wavelength is in the range of 1540 nm to 1560 nm, and more preferably, the second wavelength is 1550 nm.
  • the first light source and the second light source are preferably semiconductor lasers.
  • the Fabry-Perot sensor cavity length demodulation system also includes a wavelength division multiplexer 3, which receives light of the first wavelength and light of the second wavelength; an optical fiber coupler 4, such as a 1*2 coupler, which receives and couples light from the wavelength division The light of the first wavelength and the light of the second wavelength of the multiplexer 3; the Fabry-Perot sensor 5, which has a cavity and a diaphragm.
  • the light received by the Fabry-Perot sensor is reflected at the bottom of the cavity and the diaphragm respectively, so the The bottom of the cavity and the diaphragm are called the first plane and the second plane, respectively.
  • the Fabry-Perot sensor receives the coupled light from the fiber coupler 4, and the coupled light is reflected at the first plane and the second plane of the Fabry-Perot sensor, so that multi-beam interference occurs, and the interference light returns to the fiber coupler again.
  • the principle of interference light generated by light reflected by two reflection planes separated by a certain distance is well known to those skilled in the art, so it will not be repeated here.
  • the demultiplexer 6 After the interference light returns to the fiber coupler, it is further transmitted to the demultiplexer 6, and the demultiplexer divides the interference light into the first light beam L1 and the second light beam L2.
  • the first light beam and the second light beam are respectively transmitted to the first detector 7 and the second detector 8 (for example, a photodetector), and the first detector 7 and the second detector 8 obtain the first interference signal and the first interference signal of the first light beam.
  • the second interference signal of the two beams For example, a photodetector
  • the cavity length of the Fabry Perot sensor changes, and the sensor output light intensity also changes accordingly.
  • the relationship between output light intensity and cavity length is as follows:
  • I R is the intensity of reflected light
  • L is the cavity length
  • the Fabry sensor cavity length demodulation system also includes a processor 9 (such as a high-speed acquisition card), which receives the first interference signal and the second interference signal, and obtains the first curve S1 of the first interference signal and the second curve S1 of the second interference signal.
  • Curve S2 the first curve is the curve of the light intensity of the first interference signal with respect to the cavity length (abscissa is the cavity length, and the ordinate is the light intensity), and the second curve is the light intensity of the second interference signal with respect to the cavity length Curve (abscissa is cavity length, ordinate is light intensity).
  • both curves are observed in the first curve and the second curve, they are not located at the peak and The inflection point of the wave trough, then the inflection point of the physical quantity to be measured can be determined based on any one of the first curve and the second curve. 2. If an inflection point not located at the peak or trough is observed in only one of the first curve and the second curve, as shown in FIG. 2, then the inflection point P of the physical quantity to be measured is determined based on the one curve. Since the wavelengths of the first beam and the second beam are different, the first curve formed by the first beam and the second curve formed by the second beam will be offset from each other without overlapping.
  • the inflection point of the first curve occurs at In the case of a wave crest or trough
  • the inflection point in the second curve must not be located at the crest or trough, so that the cavity length can be determined based on the inflection point in the second curve.
  • the cavity length value of the abscissa can be obtained based on a calibration method known to those skilled in the art, thereby obtaining the cavity length variation, and further determining the physical quantity to be measured.
  • the change of the cavity length of the Fabryper sensor happens to be the least common multiple of the first wavelength and the second wavelength
  • the inflection points will appear at the peak or trough on both the first curve and the second curve.
  • the least common multiple of the first wavelength and the second wavelength is much larger than the change of the cavity length of the Fabryper sensor, so there will not be a situation where the inflection points in the two curves appear at the peak or trough at the same time.
  • the operation steps of the method for demodulating the cavity length of a Fabry-Perot sensor according to the present invention are as follows: guiding the light of the first wavelength emitted by the first light source and the light of the second wavelength emitted by the second light source to the wavelength division multiplexer;
  • the user receives the light from the first light source and the light from the second light source, and transmits them to the fiber coupler;
  • the fiber coupler couples the light from the first light source and the light from the second light source, and transmits the coupled light to the Fabry Perot sensor;
  • the coupled light is reflected at the first plane and the second plane of the Fabry-Perot sensor, thereby interfering; guiding the interfering light back to the fiber coupler, and guiding the interfering light to the demultiplexer through the fiber coupler; passing the demultiplexer
  • the interference light is divided into a first beam and a second beam; the first beam and the second beam are received by the first detector and the second detector respectively, and the
  • the inflection point can be accurately determined, thereby determining the inflection point of the reciprocating change of the physical quantity to be measured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

一种法珀传感器腔长解调系统和法珀传感器腔长解调方法。解调系统包括:第一光源(1),发出第一波长的光;第二光源(2),发出第二波长的光;波分复用器(3),接收来自第一光源(1)的光和来自第二光源(2)的光;光纤耦合器(4),接收并耦合第一光源(1)的光和第二光源(2)的光;法珀传感器(5),接收来自光纤耦合器(4)的耦合光,使得耦合光在法珀传感器(5)的第一平面和第二平面处反射以发生干涉,并使干涉光返回光纤耦合器(4);解复用器(6),接收干涉光,并将干涉光分为第一光束(L1)和第二光束(L2);第一探测器(7)和第二探测器(8),分别接收第一光束(L1)和第二光束(L2),并将第一光束(L1)的第一干涉信号和第二光束(L2)的第二干涉信号传输至处理器(9),处理器(9)构造成获取并分析第一干涉信号的第一曲线(S1)和第二干涉信号的第二曲线(S2),以在第一曲线(S1)和/或第二曲线(S2)中确定引起腔长变化的待测物理量的拐点,第一曲线(S1)是第一干涉信号的光强相对于腔长的曲线,第二曲线(S2)是第二干涉信号的光强相对于腔长的曲线。

Description

法珀传感器腔长解调系统和法珀传感器腔长解调方法 技术领域
本发明涉及一种法珀传感器腔长解调系统和法珀传感器腔长解调方法。
背景技术
光纤法布里-珀罗(Fabry-Perot,F-P)传感器具有体积小、灵敏度高、稳定性好、免受电磁干扰等优点,被广泛应用于应变、温度、压力等测量领域。光纤法珀传感器通过测量腔长的变化感知被测量,腔长解调的准确性直接影响测量的准确性。因此,光纤法珀传感器的腔长快速精确解调具有重要意义。
在光纤传感应用中,解调系统负责连续不断的向光纤传感器发送光信号并接收返回来的携带有待测量信息的光信号,在经过光电转换、信号采集,信号解调后将需要的信息提取出来。目前对于法珀腔传感器解调系统的研究,具有代表性的是加拿大的FISO公司、美国的Davidson公司以加拿大的Opsens公司。前两家公司采用的是非扫描式相关扫描技术,Opsens公司采用的是白光偏振干涉技术,这两种技术都需要制作精良的光楔和线阵CCD,成本高昂,而且由于需要采集光谱图像,解调速率无法提高,因此不适合用来测量快速的变化的信号,例如爆炸压力的测量。强度解调法通过探测传感器反射光强来解调腔长,灵敏度高,解调速率快。在强度解调法中,传感器输出光强和法珀传感器腔长成正弦关系。当待测物理量动 态往复变化时,干涉光强曲线会出现明显拐点。但当拐点恰好是正弦曲线的最高点或者最低点时,拐点无法准确判断。因此仅凭单波长测定变化的物理量容易出现错误。
发明内容
本发明涉及一种法珀传感器腔长解调系统,包括:第一光源,发出第一波长的光;第二光源,发出第二波长的光;波分复用器,接收来自第一光源的光和来自第二光源的光;光纤耦合器,接收并耦合来自波分复用器的光;法珀传感器,接收来自光纤耦合器的耦合光,使得耦合光在法珀传感器的第一平面和第二平面处反射以发生干涉,并使干涉光返回光纤耦合器;解复用器,接收干涉光,并将干涉光分为第一光束和第二光束;第一探测器和第二探测器,分别接收第一光束和第二光束,并将第一光束的第一干涉信号和第二光束的第二干涉信号传输至处理器,所述处理器,构造成获取并分析第一干涉信号的第一曲线和第二干涉信号的第二曲线,以在第一曲线和/或第二曲线中确定引起法珀传感器腔长变化的待测物理量的拐点,其中,所述第一曲线是第一干涉信号的光强相对于腔长的曲线,所述第二曲线是第二干涉信号的光强相对于腔长的曲线。
有利地,基于处理器的分析结果,当第一曲线和第二曲线两者均显示出不位于波峰和波谷的拐点时,处理器基于第一曲线与第二曲线中的任一个来确定待测物理量的拐点。
有利地,基于处理器的分析结果,当第一曲线和第二曲线中的仅一个曲线显示出不位于波峰或波谷的拐点时,处理器基于该一个曲线确定待 测物理量的拐点。
有利地,所述第一光源和所述第二光源是半导体激光器。
有利地,所述第一波长在1300nm至1320nm的范围内,所述第二波长在1540nm至1560nm的范围内。
有利地,所述第一波长是1310nm,所述第二波长是1550nm。
本发明还涉及一种光纤法珀传感器腔长解调方法,包括以下步骤:将第一光源发出的第一波长的光和第二光源发出的第二波长的光引导至波分复用器;波分复用器接收来自第一光源的光和来自第二光源的光,并传输至光纤耦合器;光纤耦合器耦合第一光源的光和第二光源的光,并将耦合光传输至法珀传感器;耦合光在法珀传感器的第一平面和第二平面处反射,从而发生干涉;将干涉光引导回光纤耦合器,并通过光纤耦合器将干涉光引导至解复用器;通过解复用器将干涉光分为第一光束和第二光束;通过第一探测器和第二探测器分别接收第一光束和第二光束,并将第一光束的第一干涉信号和第二光束的第二干涉信号传输至处理器,所述处理器分析第一干涉信号的第一曲线和第二干涉信号的第二曲线,以在第一曲线和/或第二曲线中确定引起法珀传感器腔长变化的待测物理量的拐点,第一曲线是第一干涉信号的光强相对于腔长的曲线,第二曲线是第二干涉信号的光强相对于腔长的曲线。
有利地,基于处理器的分析结果,当第一曲线和第二曲线两者均显示出不位于波峰和波谷的拐点时,处理器基于第一曲线和第二曲线中任一个来确定待测物理量的拐点。
有利地,基于处理器的分析结果,当第一曲线和第二曲线中的仅一 个曲线显示出不位于波峰或波谷的拐点时,处理器基于该一个曲线确定待测物理量的拐点。
有利地,所述第一光源和所述第二光源是半导体激光器。
有利地,所述第一波长在1300nm至1320nm的范围内,所述第二波长在1540nm至1560nm的范围内。
有利地,所述第一波长是1310nm,所述第二波长是1550nm。
从以下结合附图对用于实施本教导的最佳模式的详细描述中,本教导的上述特征和优点以及其它特征和优点是显而易见的。
附图说明
图1是示出根据本发明的法珀传感器腔长解调系统的示意图。
图2是示出根据本发明的法珀传感器腔长解调系统获得的第一干涉信号的第一曲线和第二干涉信号的第二曲线,显示出仅第二曲线具有不位于波峰或波谷的拐点。
在不同附图中,相同的元件用相同的附图标记表示。
具体实施方式
为了使得本发明的技术方案的目的、技术方案和优点更加清楚,下文中将结合本发明具体实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。附图中相同的附图标记代表相同的部件。需要说明的是,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不必然表示数量限制。“包括”或者“包含”等类似的词语意指出现该词前面的元件或物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在下文中,将参照附图详细描述本发明的实施例。
图1是示出根据本发明的法珀传感器腔长解调系统的示意图。如图1所示,法珀传感器腔长解调系统包括第一光源1和第二光源2,第一光源1发出第一波长的光,第二光源2发出第二波长的光。优选地,第一波长在1300nm至1320nm的范围内,更优选地,第一波长为1310nm。优选地,第二波长在1540nm至1560nm的范围内,更优选地,第二波长为1550nm。采用如上所述波长的第一波长的光和第二波长的光可以减少光纤损耗,有利于远距离传输,本领域技术人员应明白,可以采用任意两种波长的光。第一光源和第二光源优选地是半导体激光器。
法珀传感器腔长解调系统还包括波分复用器3,其接收第一波长的光和第二波长的光;光纤耦合器4,例如1*2耦合器,其接收并耦合来自 波分复用器3的第一波长的光和第二波长的光;法珀传感器5,其具有腔体和膜片,法珀传感器接收的光分别在腔体底部和膜片处进行反射,因此将腔体底部和膜片分别称为第一平面和第二平面。法珀传感器接收来自光纤耦合器4的耦合光,耦合光在法珀传感器的第一平面和第二平面处反射,从而发生多光束干涉,干涉光再次返回光纤耦合器。经相距一定距离的两个反射平面反射的光产生干涉光的原理是本领域技术人员所熟知的,因此不再赘述。
在干涉光返回光纤耦合器后,进一步传输至解复用器6,解复用器将干涉光分为第一光束L1和第二光束L2。第一光束和第二光束分别传输至第一探测器7和第二探测器8(例如光电探测器),第一探测器7和第二探测器8获得第一光束的第一干涉信号和第二光束的第二干涉信号。
随着待测物理量(压力、温度、应力等)的往复变化,法珀传感器腔长变化,传感器输出光强也随之变化。输出光强和腔长的关系如下式:
Figure PCTCN2020085609-appb-000001
其中I R为反射光强,L为腔长。由此,针对第一干涉信号和第二干涉信号,可以形成光强相对于腔长的曲线,例如正弦曲线,如下所述。
法珀传感器腔长解调系统还包括处理器9(例如高速采集卡),其接收第一干涉信号和第二干涉信号,获得第一干涉信号的第一曲线S1和第二干涉信号的第二曲线S2,第一曲线是第一干涉信号的光强相对于腔长的曲线(横坐标为腔长,纵坐标为光强),第二曲线是第二干涉信号的光强相对于腔长的曲线(横坐标为腔长,纵坐标为光强)。通过分析第一曲线和第二曲线,可以基于以下方式确定引起腔长变化的待测物理量的拐点:1、如果 在第一曲线和第二曲线中观察到两条曲线均显示出不位于波峰和波谷的拐点,那么可以基于第一曲线和第二曲线中任一个来确定待测物理量的拐点。2、如果在第一曲线和第二曲线中的仅一个曲线中观察到不位于波峰或波谷的拐点,如图2所示,那么基于该一个曲线确定待测物理量的拐点P。由于第一光束和第二光束的波长不同,所以第一光束形成的第一曲线和第二光束形成的第二曲线会彼此偏移,而不会重合,那么例如当第一曲线的拐点发生在波峰或波谷时,第二曲线中的拐点必然不会位于波峰或波谷,从而能够基于该第二曲线中的拐点确定腔长。在确定了拐点之后,可以基于本领域技术人员公知的标定方法得到横坐标的腔长数值,从而得到腔长变化量,进一步可以确定待测物理量。
此外,当法珀传感器的腔长变化量恰好是第一波长和第二波长的最小公倍数,那么在第一曲线和第二曲线上,拐点均会出现在波峰或波谷。然而,通常来说,第一波长和第二波长的最小公倍数远大于法珀传感器的腔长变化量,因此不会存在两个曲线中的拐点同时出现在波峰或者波谷的情况。
根据本发明的法珀传感器腔长解调方法的操作步骤如下:将第一光源发出的第一波长的光和第二光源发出的第二波长的光引导至波分复用器;波分复用器接收来自第一光源的光和来自第二光源的光,并传输至光纤耦合器;光纤耦合器耦合第一光源的光和第二光源的光,并将耦合光传输至法珀传感器;耦合光在法珀传感器的第一平面和第二平面处反射,从而发生干涉;将干涉光引导回光纤耦合器,并通过光纤耦合器将干涉光引导至解复用器;通过解复用器将干涉光分为第一光束和第二光束;通过第 一探测器和第二探测器分别接收第一光束和第二光束,并将第一光束的第一干涉信号和第二光束的第二干涉信号传输至处理器,所述处理器分析第一干涉信号的第一曲线和第二干涉信号的第二曲线,以在第一曲线和/或第二曲线中确定引起腔长变化的待测物理量的拐点。
本申请采用两路不同波长的光源,在法珀腔腔长变化范围内,可以准确判断出拐点,从而确定往复变化的待测物理量的拐点。
虽然已经详细描述了用于执行本教导的许多方面的最佳模式,但是本领域技术人员可理解的是,在不背离本发明理念的前提下,可以对上述具体实施例做出多种变型和改型,且可以对本发明提出的各种技术特征、结构进行多种组合,而不超出本发明的保护范围。

Claims (12)

  1. 一种法珀传感器腔长解调系统,其特征在于,所述解调系统包括:
    第一光源(1),发出第一波长的光;
    第二光源(2),发出第二波长的光;
    波分复用器(3),接收来自第一光源(1)的光和来自第二光源(2)的光;
    光纤耦合器(4),接收并耦合来自波分复用器(3)的光;
    法珀传感器(5),接收来自光纤耦合器(4)的耦合光,使得耦合光在法珀传感器的第一平面和第二平面处反射以发生干涉,并使干涉光返回光纤耦合器;
    解复用器(6),接收干涉光,并将干涉光分为第一光束(L1)和第二光束(L2);
    第一探测器(7)和第二探测器(8),分别接收第一光束和第二光束,并将第一光束的第一干涉信号和第二光束的第二干涉信号传输至处理器(9),
    所述处理器构造成分析第一干涉信号的第一曲线(S1)和第二干涉信号的第二曲线(S2),以在第一曲线和/或第二曲线中确定引起法珀传感器腔长变化的待测物理量的拐点,其中,所述第一曲线是第一干涉信号的光强相对于腔长的曲线,所述第二曲线是第二干涉信号的光强相对于腔长的曲线。
  2. 如权利要求1所述的解调系统,其特征在于,基于处理器(9)的分析结果,当第一曲线和第二曲线两者均显示出不位于波峰和波谷的拐点时,处理器基于第一曲线与第二曲线中的任一个来确定待测物理量的拐点。
  3. 如权利要求1所述的解调系统,其特征在于,基于处理器(9)的分析结果,当第一曲线和第二曲线中的仅一个曲线显示出不位于波峰或波谷的拐点时,处理器基于该一个曲线确定待测物理量的拐点。
  4. 如权利要求1所述的解调系统,其特征在于,所述第一光源和所述第二光源是半导体激光器。
  5. 如权利要求1所述的解调系统,其特征在于,所述第一波长在1300nm至1320nm的范围内,所述第二波长在1540nm至1560nm的范围内。
  6. 如权利要求5所述的解调系统,其特征在于,所述第一波长是 1310nm,所述第二波长是1550nm。
  7. 一种光纤法珀传感器腔长解调方法,其特征在于,所述解调方法包括以下步骤:
    将第一光源(1)发出的第一波长的光和第二光源(2)发出的第二波长的光引导至波分复用器(3);
    通过波分复用器(3)接收来自第一光源的光和来自第二光源的光,并传输至光纤耦合器(4);
    通过光纤耦合器(4)耦合来自波分复用器的光,并将耦合光传输至法珀传感器(5);
    耦合光在法珀传感器的第一平面和第二平面处反射,从而发生干涉;
    将干涉光引导回光纤耦合器(4),并通过光纤耦合器将干涉光引导至解复用器(6);
    通过解复用器(6)将干涉光分为第一光束(L1)和第二光束(L2);
    通过第一探测器(7)和第二探测器(8)分别接收第一光束和第二光束,并将第一光束的第一干涉信号和第二光束的第二干涉信号传输至处理器(9),所述处理器比较第一干涉信号的第一曲线(S1)和第二干涉信号的第二曲线(S2),以在第一曲线和/或第二曲线中确定引起法珀传感器腔长变化的待测物理量的拐点,其中,所述第一曲线是第一干涉信号的光强相对于腔长的曲线,所述第二曲线是第二干涉信号的光强相对于腔长的曲线。
  8. 如权利要求7所述的解调方法,其特征在于,基于处理器的比较结果,当第一曲线和第二曲线两者均显示出不位于波峰和波谷的拐点时,处理器基于第一曲线和第二曲线中任一个来确定待测物理量的拐点。
  9. 如权利要求7所述的解调方法,其特征在于,基于处理器的比较结果,当第一曲线和第二曲线中的仅一个曲线显示出不位于波峰或波谷的拐点时,处理器基于该一个曲线确定待测物理量的拐点。
  10. 如权利要求7所述的解调方法,其特征在于,所述第一光源和所述第二光源是半导体激光器。
  11. 如权利要求7所述的解调方法,其特征在于,所述第一波长在1300nm至1320nm的范围内,所述第二波长在1540nm至1560nm的范围内。
  12. 如权利要求11所述的解调方法,其特征在于,所述第一波长是1310nm,所述第二波长是1550nm。
PCT/CN2020/085609 2020-04-20 2020-04-20 法珀传感器腔长解调系统和法珀传感器腔长解调方法 WO2021212266A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080099947.6A CN115427778A (zh) 2020-04-20 2020-04-20 法珀传感器腔长解调系统和法珀传感器腔长解调方法
PCT/CN2020/085609 WO2021212266A1 (zh) 2020-04-20 2020-04-20 法珀传感器腔长解调系统和法珀传感器腔长解调方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085609 WO2021212266A1 (zh) 2020-04-20 2020-04-20 法珀传感器腔长解调系统和法珀传感器腔长解调方法

Publications (1)

Publication Number Publication Date
WO2021212266A1 true WO2021212266A1 (zh) 2021-10-28

Family

ID=78271013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085609 WO2021212266A1 (zh) 2020-04-20 2020-04-20 法珀传感器腔长解调系统和法珀传感器腔长解调方法

Country Status (2)

Country Link
CN (1) CN115427778A (zh)
WO (1) WO2021212266A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114323121A (zh) * 2021-12-06 2022-04-12 北京遥测技术研究所 一种基于光纤传感器声与温度双参量同时测量系统
CN114879426A (zh) * 2022-07-11 2022-08-09 中国航空工业集团公司北京长城计量测试技术研究所 用于提高可调谐法珀滤波器工作带宽温度适应性的装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115931022B (zh) * 2023-01-04 2023-05-23 北京佰为深科技发展有限公司 光纤法布里珀罗传感器解调系统
CN115900535B (zh) * 2023-01-04 2023-05-23 北京佰为深科技发展有限公司 干涉解调装置和干涉测量系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057911A (en) * 1997-11-17 2000-05-02 Northrop Grumman Corporation Fiber optic fabry-perot sensor for measuring absolute strain
CN101858926A (zh) * 2010-05-17 2010-10-13 哈尔滨工程大学 基于四芯光纤的集成式二维光纤微加速度计
CN101865935A (zh) * 2010-06-04 2010-10-20 哈尔滨工程大学 二维高精度组合干涉式纤维集成加速度计
CN102003977A (zh) * 2010-10-14 2011-04-06 厦门大学 基于法布里-珀罗腔的多波长光纤传感器
CN105606193A (zh) * 2015-12-18 2016-05-25 天津大学 基于双可调谐光源的光纤法珀声振动传感装置及解调方法
US20160334275A1 (en) * 2015-05-14 2016-11-17 Kulite Semiconductor Products, Inc. Two wavelength optical interferometric pressure switch and pressure transducers
CN106643834A (zh) * 2016-12-26 2017-05-10 重庆大学 一种高速大量程光纤法珀解调系统
CN108507597A (zh) * 2018-04-09 2018-09-07 西安工业大学 光纤法珀传感器解调装置及方法
CN110044466A (zh) * 2019-05-15 2019-07-23 重庆大学 光纤Fabry-Perot水听器的双波长非线性声压解调方法及系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057911A (en) * 1997-11-17 2000-05-02 Northrop Grumman Corporation Fiber optic fabry-perot sensor for measuring absolute strain
CN101858926A (zh) * 2010-05-17 2010-10-13 哈尔滨工程大学 基于四芯光纤的集成式二维光纤微加速度计
CN101865935A (zh) * 2010-06-04 2010-10-20 哈尔滨工程大学 二维高精度组合干涉式纤维集成加速度计
CN102003977A (zh) * 2010-10-14 2011-04-06 厦门大学 基于法布里-珀罗腔的多波长光纤传感器
US20160334275A1 (en) * 2015-05-14 2016-11-17 Kulite Semiconductor Products, Inc. Two wavelength optical interferometric pressure switch and pressure transducers
CN105606193A (zh) * 2015-12-18 2016-05-25 天津大学 基于双可调谐光源的光纤法珀声振动传感装置及解调方法
CN106643834A (zh) * 2016-12-26 2017-05-10 重庆大学 一种高速大量程光纤法珀解调系统
CN108507597A (zh) * 2018-04-09 2018-09-07 西安工业大学 光纤法珀传感器解调装置及方法
CN110044466A (zh) * 2019-05-15 2019-07-23 重庆大学 光纤Fabry-Perot水听器的双波长非线性声压解调方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114323121A (zh) * 2021-12-06 2022-04-12 北京遥测技术研究所 一种基于光纤传感器声与温度双参量同时测量系统
CN114879426A (zh) * 2022-07-11 2022-08-09 中国航空工业集团公司北京长城计量测试技术研究所 用于提高可调谐法珀滤波器工作带宽温度适应性的装置及方法
CN114879426B (zh) * 2022-07-11 2022-09-09 中国航空工业集团公司北京长城计量测试技术研究所 用于提高可调谐法珀滤波器工作带宽温度适应性的装置及方法

Also Published As

Publication number Publication date
CN115427778A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2021212266A1 (zh) 法珀传感器腔长解调系统和法珀传感器腔长解调方法
WO2021212271A1 (zh) 法珀传感器腔长解调系统和法珀传感器腔长解调方法
US4703175A (en) Fiber-optic sensor with two different wavelengths of light traveling together through the sensor head
CN106197492B (zh) 基于光纤复合法珀腔结构的法珀腔长与折射率计算方法
WO2013100742A1 (ko) 광섬유 센서장치
KR100922577B1 (ko) 휴대형 광바이오 센서 측정 시스템
US20080129985A1 (en) Slanted Bragg Grating Refractometer, Using the Optical Power Diffracted to the Radiation-Mode Continuum
AU2020103584A4 (en) A distributed fiber white light interferometric sensor array based on a tunable Fabry-Perot resonant cavity
AU2020103626A4 (en) An optical path autocorrelator used for distributed fiber strain sensing measurement
CN108020170A (zh) 一种反射式强度调制型光纤传感器不等间距错位式补偿结构
CN115931022B (zh) 光纤法布里珀罗传感器解调系统
CN109490233B (zh) 基于fp干涉计级联增敏及光热技术的强度探测型气体传感器
CN201373781Y (zh) 半导体吸收式光纤温度检测装置
CN103344265A (zh) 一种光纤光栅解调仪
CN206959867U (zh) 一种基于瑞利散射的光信号采集系统
CN110307862A (zh) 一种基于射频信号带宽检测的光纤光栅拍频解调系统
WO2023159395A1 (zh) 光纤法布里珀罗传感器解调系统
CN111664880A (zh) 一种基于法布里珀罗的光纤传感器及其应用
CN112964668B (zh) 一种基于谐振器的物质浓度检测装置及方法
RU2819565C1 (ru) Способ опроса сенсорных элементов волоконных брегговских решеток, основанный на использовании времяпролетного датчика расстояния
CN202041285U (zh) 一种具有波长识别功能的光功率测量装置
CN209841783U (zh) 一种反射式光纤声发射系统
CN117928613A (zh) 一种基于二向色镜的光纤光栅解调装置及检测方法
Harpin Static and dynamic pressure measurements with temperature correction using high temperature optical pressure sensors
CN116086507A (zh) 一种相位正交四波长光纤f-p腔传感器解调系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932432

Country of ref document: EP

Kind code of ref document: A1