CN116086507A - 一种相位正交四波长光纤f-p腔传感器解调系统和方法 - Google Patents

一种相位正交四波长光纤f-p腔传感器解调系统和方法 Download PDF

Info

Publication number
CN116086507A
CN116086507A CN202211626974.1A CN202211626974A CN116086507A CN 116086507 A CN116086507 A CN 116086507A CN 202211626974 A CN202211626974 A CN 202211626974A CN 116086507 A CN116086507 A CN 116086507A
Authority
CN
China
Prior art keywords
optical fiber
cavity
wavelength
narrow
cavity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211626974.1A
Other languages
English (en)
Inventor
鞠玲
翁蓓蓓
黄怿
邓传鲁
胡程勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou Power Supply Co of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
Taizhou Power Supply Co of State Grid Jiangsu Electric Power Co Ltd
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou Power Supply Co of State Grid Jiangsu Electric Power Co Ltd, University of Shanghai for Science and Technology filed Critical Taizhou Power Supply Co of State Grid Jiangsu Electric Power Co Ltd
Priority to CN202211626974.1A priority Critical patent/CN116086507A/zh
Publication of CN116086507A publication Critical patent/CN116086507A/zh
Priority to PCT/CN2023/127004 priority patent/WO2024125101A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35312Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • G01D5/35387Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques using wavelength division multiplexing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

本发明涉及一种相位正交四波长光纤F‑P腔传感器解调系统和方法,方法包括平坦型ASE宽带光源、光纤环形器、密集波分复用器、光电探测器和数据采集处理单元;所述平坦型ASE宽带光源和光纤环形器连接,所述光纤环形器和密集波分复用器连接,所述密集波分复用器和光电探测器连接,所述光电探测器和数据采集处理单元连接;本发明通过相位正交四波长光纤F‑P腔传感器解调系统能够解调得到光纤F‑P腔传感器的腔长变化量。本发明采用平坦型ASE宽带光源和密集波分复用器代替四个独立的窄带激光光源与光滤波器,无需光滤波器的匹配,大大降低了系统成本和技术难度,并且本发明结构简单体积小、精度高、成本低。

Description

一种相位正交四波长光纤F-P腔传感器解调系统和方法
技术领域
本发明涉及光纤传感技术领域,尤其是指一种相位正交四波长光纤F-P腔传感器解调系统和方法。
背景技术
光纤F-P腔传感器以灵敏度高、抗干扰能力强等优点在医疗检测、结构状态检测、光声成像和电力电缆监测等领域受到了广泛的关注。解调方法是制约光纤F-P腔传感器检测能力的主要因素。
目前,光纤F-P传感信号的解调主要有强度解调和相位解调两大类。其中强度解调又包含:单波长解调,双波长解调和三波长解调。单波长解调法受光源稳定性影响较大;双波长解调法易发生正交相位漂移;三波长解调法一般采用三个激光光源,结构复杂,成本较高。而相位解调法输出的光谱为所有波长信息的叠加,所以在解调精度、分辨率以及稳定性方面优势明显,但系统成本高,测量速度慢,难以胜任动态变量的实时解调。
因此,研制一种体积小,高精度,低成本的光纤F-P腔传感器解调系统是十分有必要的。
发明内容
为此,本发明所要解决的技术问题在于克服现有技术中光纤F-P腔传感器解调结构复杂、解调系统成本过高的问题。
为解决上述技术问题,本发明提供了一种相位正交四波长光纤F-P腔传感器解调系统,包括平坦型ASE宽带光源、光纤环形器、密集波分复用器、光电探测器和数据采集处理单元;
所述平坦型ASE宽带光源和光纤环形器连接,所述光纤环形器和密集波分复用器连接,所述密集波分复用器和光电探测器连接,所述光电探测器和数据采集处理单元连接;
所述光纤环形器用于光信号的传输,来自所述平坦型ASE宽带光源经由光纤环形器进入光纤F-P腔传感器产生反射光,所述光纤F-P腔传感器产生的反射光经由光纤环形器输入至密集波分复用器,所述密集波分复用器将接收到的反射光分解为四束不同波长的窄带光输入至光电探测器,所述光电探测器对四束不同波长的窄带光进行光电转换后输入至数据采集处理单元,所述数据采集处理单元对光电转换后四束不同波长的窄带光进行解调得到光纤F-P腔传感器的腔长变化量,其中,所述腔长变化量用于反应外界待测环境的变化,根据所述腔长变化量反应外界待测环境的变化。
在本发明的一个实施例中,所述光纤F-P腔传感器的腔长变化量公式为:
Figure BDA0004003909710000021
其中,φi为第i路窄带光波长对应的相位;λi为第i路窄带光波长;I1、I2、I3和I4为四束不同波长的窄带光波长对应的光强度;m为整数;n为光纤F-P腔传感器腔内空气的折射率;Ld为光纤F-P腔传感器的实时腔长,L表示F-P腔传感器的初始腔长;ΔL为光纤F-P腔传感器的腔长变化量。
在本发明的一个实施例中,所述平坦型ASE宽带光源采用C波段光纤放大自发辐射光源。
在本发明的一个实施例中,所述光电探测器为具有光纤输入接口、直流耦合的光电探测器。
在本发明的一个实施例中,所述光电探测器对四束不同波长的窄带光进行光电转换后输出的四路电压幅值相等。
为解决上述技术问题,本发明提供了一种相位正交四波长光纤F-P腔传感器解调方法,采用如上述相位正交四波长光纤F-P腔传感器解调系统侦测外界待测环境的变化,包括:
获取光纤F-P腔传感器的干涉光谱;
根据所述干涉光谱计算光纤F-P腔传感器的初始腔长;
光源进入光纤F-P腔传感器产生反射光,将所述反射光分解为四束窄带光,再对四束窄带光进行光电转换;
根据相邻波长相位正交关系,确定光电转换后四束窄带光的波长;
根据所述光纤F-P腔传感器的初始腔长和光电转换后四束窄带光的波长,计算四束窄带光波长对应的相位;
根据所述四束窄带光波长对应的相位,计算四束窄带光波长对应的光强度;
根据所述四束窄带光波长对应的光强度,计算光纤F-P腔传感器的腔长变化量。
在本发明的一个实施例中,根据所述干涉光谱计算光纤F-P腔传感器的初始腔长L,公式为:
Figure BDA0004003909710000031
其中,n为光纤F-P腔传感器腔内空气的折射率,L为光纤F-P腔传感器的初始腔长,λx和λy为光纤F-P腔传感器的干涉光谱中任意相邻波峰对应的中心波长。
在本发明的一个实施例中,所述确定光电转换后四束窄带光的波长,公式为:
Figure BDA0004003909710000041
其中,k为第二整数,λ1、λ2、λ3和λ4为四束不同波长的窄带光的波长,φ1、φ2、φ3和φ4为四束不同波长的窄带光的波长λ1、λ2、λ3和λ4对应的相位,L表示光纤F-P腔传感器的初始腔长,n为光纤F-P腔传感器腔内空气的折射率。
在本发明的一个实施例中,所述根据所述四束窄带光波长对应的相位,计算四束窄带光波长对应的光强度,公式为:
Figure BDA0004003909710000042
其中,A为干涉光谱的直流分量,B为干涉光谱的对比度;φi为第i路窄带光波长对应的相位;φ0为第i路窄带光波长对应的初始相位;n为光纤F-P腔传感器腔内空气的折射率;L为F-P腔传感器的初始腔长。
在本发明的一个实施例中,所述根据所述四束窄带光波长对应的光强度,计算光纤F-P腔传感器的腔长变化量,公式为:
Figure BDA0004003909710000043
其中,φi为第i路窄带光波长对应的相位;λi为第i路窄带光波长;I1、I2、I3和I4为四束不同波长的窄带光波长对应的光强度;m为整数;n为光纤F-P腔传感器腔内空气的折射率;Ld为光纤F-P腔传感器的实时腔长,L表示F-P腔传感器的初始腔长;ΔL为光纤F-P腔传感器的腔长变化量。
本发明的上述技术方案相比现有技术具有以下优点:
本发明与传统单波长、双波长、三波长相比可解调腔长的动态范围更大;
本发明采用平坦型ASE宽带光源和密集波分复用器代替四个独立的窄带激光光源与光滤波器,无需光滤波器的匹配,大大降低了系统成本和技术难度;
本发明能够将光纤F-P腔传感器推向实用。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明。
图1是本发明的结构原理图。
说明书附图标记说明:1、平坦型ASE宽带光源;2、光纤环形器;3、密集波分复用器;4、光电探测器;5、数据采集处理单元;6、光纤F-P腔传感器;7、第一端口;8、第二端口;9、第三端口;11、第一输出端口;12、第二输出端口;13、第三输出端口;14、第四输出端口。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1
参照图1所示,本发明的相位正交四波长光纤F-P腔传感器解调系统包括平坦型ASE宽带光源1、光纤环形器2、密集波分复用器3、光电探测器4和数据采集处理单元5;
所述平坦型ASE宽带光源1和光纤环形器2连接,所述光纤环形器2和密集波分复用器3连接,所述密集波分复用器3和光电探测器4连接,所述光电探测器4和数据采集处理单元5连接。
来自所述平坦型ASE宽带光源1经由光纤环形器2进入光纤F-P腔传感器6产生反射光,所述光纤F-P腔传感器6产生的反射光经由光纤环形器2输入至密集波分复用器3,所述密集波分复用器3将接收到的反射光分解为四束不同波长的窄带光输入至光电探测器4,所述光电探测器4对四束不同波长的窄带光进行光电转换后输入至数据采集处理单元5,所述数据采集处理单元5对光电转换后四束不同波长的窄带光进行解调得到光纤F-P腔传感器6的腔长变化量,其中,所述腔长变化量用于反应外界待测环境的变化。
传统的三波长法需要三个独立的窄带激光光源,需要与这三个波长匹配的窄带光滤波器,成本高,并且光滤波器的品质参差不齐,难以实现精准控制;本实施例采用平坦型ASE宽带光源1和密集波分复用器3代替四个独立的窄带激光光源与光滤波器,无需光滤波器的匹配,大大降低了系统成本和技术难度。
以下对本实施例进行详细介绍:
具体地,所述平坦型ASE宽带光源1和光纤环形器2通过光纤连接,所述光纤环形器2和密集波分复用器3通过光纤连接,所述密集波分复用器3和光电探测器4通过光纤连接,所述光电探测器4与数据采集处理单元5之间通过同轴电缆连接。
所述平坦型ASE宽带光源1的输出光注入光纤环形器2的第一端口7,再经光纤环形器2的第二端口8注入光纤F-P腔传感器6,光纤F-P腔传感器6的反射光再次注入光纤环形器2的第二端口8,经由光纤环形器2的第三端口9输出后注入密集波分复用器3的输入端口,经密集波分复用器3滤波后将注入的宽带反射光分解为四束不同波长的窄带光;这四束窄带光波由密集波分复用器3的四个输出端口(分别为第一输出端口11、第二输出端口12、第三输出端口13和第四输出端口14)同时输出并注入光电探测器4,经光电转换后由数据采集处理单元5进行计算,解调得到待测光纤F-P腔传感器6的腔长变化量。
进一步地,所述平坦型ASE宽带光源1采用C波段光纤放大自发辐射光源。
进一步地,所述光纤环形器2的中心波长是1550nm。
进一步地,所述密集波分复用器3包含1个输入端口与5个输出端口,其中4个输出端(即第一输出端口11、第二输出端口12、第三输出端口13和第四输出端口14)的中心波长的干涉光谱相位差为
Figure BDA0004003909710000071
(k为第二整数),另外1个输出端口输出无用的光信号。
进一步地,所述光电探测器4的四路输出电压应满足幅值相等。
进一步地,所述数据采集处理单元5包含一块高速A/D采集卡和一台计算机,A/D采集卡通过USB接口与计算机相连。
实施例2
本实施例提供一种相位正交四波长光纤F-P腔传感器解调方法,采用实施例1的相位正交四波长光纤F-P腔传感器解调系统侦测外界待测环境的变化,包括:
获取光纤F-P腔传感器6的干涉光谱;
根据所述干涉光谱计算光纤F-P腔传感器6的初始腔长;
光源进入光纤F-P腔传感器6产生反射光,将所述反射光分解为四束窄带光,再对四束窄带光进行光电转换;
根据相窄带光邻波长相位正交关系以及选定的一路窄带光波长,确定光电转换后剩下三束窄带光的波长;
根据所述光纤F-P腔传感器6的初始腔长和光电转换后四束窄带光的波长,计算四束窄带光波长对应的相位;
根据所述四束窄带光波长对应的相位,计算四束窄带光波长对应的光强度;
根据所述四束窄带光波长对应的光强度,计算光纤F-P腔传感器6的腔长变化量。
以下对相位正交四波长光纤F-P腔传感器的解调原理进行详细介绍(即光纤F-P腔传感器6的腔长变化量的计算方法):
1)根据光纤F-P腔传感器6的干涉光谱计算出初始腔长L:
Figure BDA0004003909710000081
其中,λx和λy为光纤F-P腔传感器的干涉光谱中任意相邻波峰对应的中心波长。
2)波长选择的原理具体如下:
对于光纤F-P腔传感器6,四个波长λ1、λ2、λ3和λ4对应的光强度I1、I2、I3和I4满足如下公式:
Figure BDA0004003909710000082
其中,A为干涉光谱的直流分量,B为干涉光谱的对比度;φi为第i路窄带光波长对应的相位;φ0为第i路窄带光波长对应的初始相位;n为光纤F-P腔传感器腔内空气的折射率;L为F-P腔传感器的初始腔长。
为了满足正交关系,四个波长λ1、λ2、λ3和λ4之间必须满足以下关系:
Figure BDA0004003909710000083
其中,k为第二整数,L表示光纤F-P腔传感器的初始腔长,根据以上条件确定所需要的四个输出波长。
需要注意的是:根据公式
Figure BDA0004003909710000091
Figure BDA0004003909710000092
能够计算出Δλ满足的公式(即
Figure BDA0004003909710000093
),可以理解为通过相位关系能够得到波长关系,也即当选定一个波长λ2时(本实施例选定波长2),根据公式
Figure BDA0004003909710000094
就能计算出其他波长λ1、λ3和λ4
3)由四波长λ1、λ2、λ3和λ4对应的光强度数据I1、I2、I3和I4计算光纤F-P腔传感器6的实时腔长:
Figure BDA0004003909710000095
其中,φi为第i路窄带光波长对应的相位;λi为第i路窄带光波长;I1、I2、I3和I4为四束不同波长的窄带光波长对应的光强度;m为第一整数;n为光纤F-P腔传感器腔内空气的折射率;Ld为光纤F-P腔传感器的实时腔长,L表示F-P腔传感器的初始腔长;ΔL为光纤F-P腔传感器的腔长变化量。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种相位正交四波长光纤F-P腔传感器解调系统,其特征在于:包括平坦型ASE宽带光源(1)、光纤环形器(2)、密集波分复用器(3)、光电探测器(4)和数据采集处理单元(5);
所述平坦型ASE宽带光源(1)和光纤环形器(2)连接,所述光纤环形器(2)和密集波分复用器(3)连接,所述密集波分复用器(3)和光电探测器(4)连接,所述光电探测器(4)和数据采集处理单元(5)连接;
所述光纤环形器(2)用于光信号的传输,来自所述平坦型ASE宽带光源(1)经由光纤环形器(2)进入光纤F-P腔传感器(6)产生反射光,所述光纤F-P腔传感器(6)产生的反射光经由光纤环形器(2)输入至密集波分复用器(3),所述密集波分复用器(3)将接收到的反射光分解为四束不同波长的窄带光输入至光电探测器(4),所述光电探测器(4)对四束不同波长的窄带光进行光电转换后输入至数据采集处理单元(5),所述数据采集处理单元(5)对光电转换后四束不同波长的窄带光进行解调得到光纤F-P腔传感器(6)的腔长变化量,根据所述腔长变化量反应外界待测环境的变化。
2.根据权利要求1所述的相位正交四波长光纤F-P腔传感器解调系统,其特征在于:所述光纤F-P腔传感器(6)的腔长变化量公式为:
Figure FDA0004003909700000011
其中,φi为第i路窄带光波长对应的相位;λi为第i路窄带光波长;I1、I2、I3和I4为四束不同波长的窄带光波长对应的光强度;m为第一整数;n为光纤F-P腔传感器腔内空气的折射率;Ld为光纤F-P腔传感器的实时腔长,L表示F-P腔传感器的初始腔长;ΔL为光纤F-P腔传感器的腔长变化量。
3.根据权利要求1所述的相位正交四波长光纤F-P腔传感器解调系统,其特征在于:所述平坦型ASE宽带光源(1)采用C波段光纤放大自发辐射光源。
4.根据权利要求1所述的相位正交四波长光纤F-P腔传感器解调系统,其特征在于:所述光电探测器(4)为具有光纤输入接口、直流耦合的光电探测器。
5.根据权利要求1所述的相位正交四波长光纤F-P腔传感器解调系统,其特征在于:所述光电探测器(4)对四束不同波长的窄带光进行光电转换后输出的四路电压幅值相等。
6.一种相位正交四波长光纤F-P腔传感器解调方法,采用如权利要求1-5中任一所述相位正交四波长光纤F-P腔传感器解调系统侦测外界待测环境的变化,包括:
获取光纤F-P腔传感器(6)的干涉光谱;
根据所述干涉光谱计算光纤F-P腔传感器(6)的初始腔长L;
光源进入光纤F-P腔传感器(6)产生反射光,将所述反射光分解为四束窄带光,再对四束窄带光进行光电转换,确定光电转换后四束窄带光的波长;
根据所述光纤F-P腔传感器(6)的初始腔长L和光电转换后四束窄带光的波长,计算四束窄带光波长对应的相位;
根据所述四束窄带光波长对应的相位,计算四束窄带光波长对应的光强度;
根据所述四束窄带光波长对应的光强度,计算光纤F-P腔传感器(6)的腔长变化量。
7.根据权利要求6所述的相位正交四波长光纤F-P腔传感器解调系统,其特征在于:根据所述干涉光谱计算光纤F-P腔传感器(6)的初始腔长L,公式为:
Figure FDA0004003909700000031
其中,n为光纤F-P腔传感器腔内空气的折射率,L为光纤F-P腔传感器的初始腔长,λx和λy为光纤F-P腔传感器的干涉光谱中任意相邻波峰对应的中心波长。
8.根据权利要求6所述的相位正交四波长光纤F-P腔传感器解调系统,其特征在于:所述确定光电转换后四束窄带光的波长,公式为:
Figure FDA0004003909700000032
其中,k为第二整数,λ1、λ2、λ3和λ4为四束不同波长的窄带光的波长,φ1、φ2、φ3和φ4为四束不同波长的窄带光的波长λ1、λ2、λ3和λ4对应的相位,L表示光纤F-P腔传感器的初始腔长,n为光纤F-P腔传感器腔内空气的折射率。
9.根据权利要求6所述的相位正交四波长光纤F-P腔传感器解调系统,其特征在于:所述根据所述四束窄带光波长对应的相位,计算四束窄带光波长对应的光强度,公式为:
Figure FDA0004003909700000033
其中,A为干涉光谱的直流分量,B为干涉光谱的对比度;φi为第i路窄带光波长对应的相位;φ0为第i路窄带光波长对应的初始相位;n为光纤F-P腔传感器腔内空气的折射率;L为F-P腔传感器的初始腔长。
10.根据权利要求6所述的相位正交四波长光纤F-P腔传感器解调系统,
其特征在于:所述根据所述四束窄带光波长对应的光强度,计算光纤F-P腔传5感器(6)的腔长变化量,公式为:
Figure FDA0004003909700000041
其中,φi为第i路窄带光波长对应的相位;λi为第i路窄带光波长;I1、I2、I3和I4为四束不同波长的窄带光波长对应的光强度;m为第一整数;n为光纤F-P腔传感器腔内空气的折射率;Ld为光纤F-P腔传感器的实时腔长,L表示F-P腔传感器的初始腔长;ΔL为光纤F-P腔传感器的腔长变化量。
CN202211626974.1A 2022-12-16 2022-12-16 一种相位正交四波长光纤f-p腔传感器解调系统和方法 Pending CN116086507A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202211626974.1A CN116086507A (zh) 2022-12-16 2022-12-16 一种相位正交四波长光纤f-p腔传感器解调系统和方法
PCT/CN2023/127004 WO2024125101A1 (zh) 2022-12-16 2023-10-27 相位正交四波长光纤f-p腔传感器解调系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211626974.1A CN116086507A (zh) 2022-12-16 2022-12-16 一种相位正交四波长光纤f-p腔传感器解调系统和方法

Publications (1)

Publication Number Publication Date
CN116086507A true CN116086507A (zh) 2023-05-09

Family

ID=86209415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211626974.1A Pending CN116086507A (zh) 2022-12-16 2022-12-16 一种相位正交四波长光纤f-p腔传感器解调系统和方法

Country Status (2)

Country Link
CN (1) CN116086507A (zh)
WO (1) WO2024125101A1 (zh)

Also Published As

Publication number Publication date
WO2024125101A1 (zh) 2024-06-20

Similar Documents

Publication Publication Date Title
CN105606193A (zh) 基于双可调谐光源的光纤法珀声振动传感装置及解调方法
CN112033568B (zh) 一种双脉冲调制的温度与应变光纤传感系统
CN101666689B (zh) 波长优化型高性能分布式光纤温度传感系统及传感方法
CN111854812B (zh) 一种基于光子灯笼光纤的传感解调系统及传感解调方法
US20180143067A1 (en) Fiber optic acoustic wave detection system
CN105444793A (zh) 基于高速脉冲激光器的光纤布拉格光栅传感装置
CN104316090A (zh) 温度自补偿高分辨率高频光纤光栅解调系统及方法
CN108204827A (zh) 一种相移光纤光栅解调系统
CN109883348B (zh) 一种使用伪随机码码分复用的pdh多传感器应变测量装置
CN114754689A (zh) 一种基于双电光外差调制的相位式距离测量装置及方法
CN110082068A (zh) 一种具有波长修正功能的光纤光栅波长解调系统及方法
CN112880866A (zh) 长距离高空间分辨率的拉曼光纤多参量传感系统及方法
CN111006787B (zh) 基于差分温度补偿的分布式光纤拉曼双端温度解调方法
CN110375779B (zh) 提高ofdr频域采样率的装置和方法
CN116086507A (zh) 一种相位正交四波长光纤f-p腔传感器解调系统和方法
CN112880865B (zh) 超长距离的高空间分辨率拉曼光纤双参量传感系统和方法
CN112697303B (zh) 面向智能电网的分布式光纤传感系统和检测方法
CN111537129B (zh) 一种高速大动态范围光纤光栅解调系统及解调方法
CN110044401B (zh) 一种光纤传感器的信号解调方法及系统
CN111521206B (zh) 光纤光栅边缘叠加滤波的波长解调方法
CN114923507A (zh) 基于波长错位的双阵列波导光栅的高分辨光谱解调系统
CN210862726U (zh) 一种多通道高速光纤光栅解调模块
CN113390449A (zh) 一种光纤传感装置
CN107389191B (zh) 一种c波段无源光谱分析仪及其分析系统
CN216132474U (zh) 一种光纤光栅中心波长解调系统及解调仪

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20230711

Address after: 225300 No. 2 Fenghuang West Road, Jiangsu, Taizhou

Applicant after: STATE GRID JIANGSU ELECTRIC POWER Co.,Ltd. TAIZHOU POWER SUPPLY BRANCH

Address before: No.2, Fenghuang West Road, Taizhou City, Jiangsu Province

Applicant before: STATE GRID JIANGSU ELECTRIC POWER Co.,Ltd. TAIZHOU POWER SUPPLY BRANCH

Applicant before: Shanghai University

TA01 Transfer of patent application right