WO2021210876A1 - Air purifying device and air purifying method using artificial intelligence - Google Patents

Air purifying device and air purifying method using artificial intelligence Download PDF

Info

Publication number
WO2021210876A1
WO2021210876A1 PCT/KR2021/004618 KR2021004618W WO2021210876A1 WO 2021210876 A1 WO2021210876 A1 WO 2021210876A1 KR 2021004618 W KR2021004618 W KR 2021004618W WO 2021210876 A1 WO2021210876 A1 WO 2021210876A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
artificial intelligence
unit
purification
purifying
Prior art date
Application number
PCT/KR2021/004618
Other languages
French (fr)
Korean (ko)
Inventor
허현미
Original Assignee
허현미
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200045694A external-priority patent/KR102291791B1/en
Priority claimed from KR1020210041603A external-priority patent/KR102484592B1/en
Application filed by 허현미 filed Critical 허현미
Priority to CN202180028363.4A priority Critical patent/CN115397544A/en
Publication of WO2021210876A1 publication Critical patent/WO2021210876A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/02Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour over or through a liquid bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air purification apparatus and an air purification method using artificial intelligence, and more particularly, to measure the pollution degree of outside air in real time through a control unit controlled by an artificial intelligence algorithm, and if the pollution degree is higher than a certain value, It relates to an air purifying device and an air purifying method using artificial intelligence to automatically drive 1 and 2 purifying units to improve air purifying efficiency.
  • an air purifier is a device for removing harmful components or odors contained in polluted air.
  • filters or electrostatic filters of the electrostatic precipitation method are used.
  • the above filter may be effective in filtering particle dust, but it is impossible or possible to sterilize fine viruses or bacteria, or to filter volatile organic compounds, odors, and ethylene gas, etc., but the effect is weak.
  • an activated carbon filter made of activated carbon which is a filter for deodorization only, has been applied, but the deodorization effect does not meet expectations despite the filter for deodorization only.
  • a sterilization-only filter that sterilizes the microorganisms captured in the photocatalyst filter by ultraviolet rays is used.
  • the sterilization performance of viruses and bacteria of small particle size is not certain due to the lack of irradiation time of ultraviolet rays, and there is also the inconvenience of cleaning or replacing the filter regularly.
  • the newly appeared water filter installs a water screen and passes contaminated air through the water screen to wash away foreign substances, or by forcibly blowing air into fresh water and passing through the water.
  • a method is taken so that foreign substances and odors in the air are washed away by water as they are discharged.
  • the latter case as in the principle of blowing a stroke with the mouth to inject air into the water, it uses a blower and an injection tube to
  • the present invention has been devised in view of the above problems, and an object of the present invention is to measure the pollution level of the outside air in real time through a control unit controlled by an artificial intelligence algorithm, and if the pollution level is greater than a certain value, the first and second An object of the present invention is to provide an air purifying device and an air purifying method using artificial intelligence to automatically drive a purifying unit to improve air purifying efficiency.
  • Another object of the present invention is to easily purify polluted air dissolved in purified water by adjusting the amount of bubbles generated by changing the arrangement position, shape and size of the through holes of the first and second screens installed inside the first and second purification units. It is to provide an air purifying device and an air purifying method using artificial intelligence.
  • Another object of the present invention is to increase the purifying efficiency of polluted air by arranging the first and second purifying units to be stacked in either direction in series or in parallel, and at the same time, install the air purifier at a location and place desired by the user.
  • the purpose of the present invention is to provide an air purifying device and an air purifying method using artificial intelligence that can be freely installed without any restrictions.
  • the first air supply unit installed on the lower side to supply contaminated air, and purified water that is freshly watered in a certain amount in the inner space to dissolve the dust and organic gas of the contaminated air; , a first purifying unit provided with a first screen having a plurality of through holes formed therein, and a first air outlet installed on one upper side to discharge purified air;
  • a second air supply unit connected to the first air discharge unit for supplying purified air, purified water for dissolving dust and organic gas in the polluted air with a predetermined amount of fresh water in the internal space, and a second plurality of through holes are formed a second purifying unit provided with a screen and a second air discharging unit installed on one upper side and discharging purified air;
  • control unit for controlling the first and second purification units
  • the control unit is characterized in that it is controlled through an artificial intelligence algorithm.
  • control unit further includes an air quality measurement sensor installed on one side of the first and second purification units,
  • the air quality measurement sensor measures the pollution level of the outside air in real time, and when the pollution level is higher than a predetermined value, the first and second purification units are automatically driven.
  • control unit controls the control unit
  • the analysis server unit The analysis server unit,
  • the supply amount of the polluted air is controlled by comparing the pollution degree data of the outside air measured by the air quality sensor and the average size data and the amount of bubbles measured by the bubble measurement sensor.
  • control unit and the analysis server unit is characterized in that wired and wireless communication via a communication unit.
  • first and second purification units are characterized in that they are loaded in any one direction in series or parallel.
  • the sludge discharge part inclined in one direction is further installed on the inner lower surface of the first and second purification units.
  • It includes an upper screen having a first through hole, a middle screen having a second through hole, and a lower screen having a third through hole,
  • the upper screen, the middle screen and the lower screen are stacked along the axis (z) constituting the flow direction of the polluted air.
  • first through-hole, the second through-hole, and the third through-hole are characterized in that at least one or more of a shape, a position, and a size are different from each other.
  • the cross-sections of the first through hole, the second through hole, and the third through hole are formed so as not to overlap along the axis (z) constituting the flow direction of the contaminated air.
  • a plurality of air holes are formed on the outer circumferential surface, and the first and second purification units include an air supply that extends to the lower inner side to supply contaminated air,
  • a protruding bubble guide projection is installed inside the first and second purification units,
  • the bubble guide protrusion is positioned between the first and second screens and the air supply unit.
  • Discharge step (S40) of discharging the purified air to the outside including,
  • the supply step (S10), the discharge step (S40) is characterized in that it is controlled through an artificial intelligence algorithm of the control unit.
  • control unit controls the control unit
  • the analysis server unit The analysis server unit,
  • Analyzes the pollution degree data of the outside air measured by the air quality sensor analyzes and compares the average size data and the amount of bubbles measured by the bubble measurement sensor to control the supply amount of the polluted air do it with
  • the polluted air is characterized in that it passes through a plurality of through-holes formed in the end surfaces of the first and second screens.
  • the pollution level of the outside air is measured in real time through a control unit controlled by an artificial intelligence algorithm, and if the pollution level is higher than a certain value, the first and second purification It has the effect of improving the air purification efficiency by automatically driving the unit.
  • the air purification device can be freely installed regardless of the location and location desired by the user. has the effect of
  • FIG. 1 is a schematic diagram showing an air purification device utilizing artificial intelligence according to an embodiment of the present invention
  • Figure 6 is a front view showing the position of the through hole according to another embodiment of the present invention.
  • FIG. 7 is a block diagram of a control unit according to an embodiment of the present invention.
  • FIG. 8 is a block diagram of an air purification method using bubbles according to an embodiment of the present invention.
  • FIGS. 2, 3, and 4 are plan views of each screen according to an embodiment of the present invention
  • FIG. 5 (a ) and (b) are front views of each screen according to another embodiment of the present invention
  • Figure 6 is a front view showing the position of the through hole according to another embodiment of the present invention
  • Figure 7 is a view of the present invention It is a block diagram of a control unit according to an embodiment.
  • the air purifying device using artificial intelligence largely includes a first purifying unit 100 , a second purifying unit 200 , and a control unit 300 .
  • the purified water is freshened in the internal space, and the purified water is freshened by about 60 to 80% in the first purification unit 100, and the upper part is an auxiliary purification unit to be described below. It is preferable to secure an air purification space 131 for purifying the air contained in the bubble floating at 130 .
  • a first air supply unit 110 is installed on one side of the lower side of the first purification unit 100 to supply polluted air from the outside to the inside of the first purification unit 100.
  • polluted air microscopic It contains substances harmful to the human body such as dust, foreign substances, carbon dioxide, radon, formaldehyde and volatile organic compounds.
  • the first air supply unit 110 has a configuration including a pump, a blower, and an air supply unit 111, and the pump and the blower are installed on one side of the first purification unit 100 to supply contaminated air,
  • the contaminated air supplied in this way is installed to extend with the pump and the blower, and is supplied through the air supply unit 111 extending inside the lower portion of the first purification unit 100 .
  • the air supply 111 may have a plurality of air holes 112 formed on an outer circumferential surface thereof, and may supply contaminated air into the first purification unit 100 through the air holes 112 .
  • the diameter of the air hole 112 may be formed between 90 ⁇ 110 mm, when the diameter of the air hole 112 is less than 90 mm, the amount of the supplied contaminated air is supplied somewhat less and the contaminated air There is a problem in that the supply amount is reduced and a load of the pump is generated, which can cause damage to the pump.
  • the diameter of the air hole 112 is 110 mm or more, the flow rate of the supplied contaminated air is supplied slightly, so that the polluted air with large particles is supplied. At the same time, since it takes a long time to purify the air, the diameter of the air hole 112 is preferably formed between 90 and 110 mm.
  • the air is purified through a plurality of air purifiers such as the first purifying unit 100 and the second purifying unit 200 to increase the air purification rate, and the pump and blower It is desirable to lower the capacity to lower the amount of power and lower the noise generation.
  • the first screen 120 is installed in multiple stages inside the first purification unit 100 and a plurality of through holes 121 are formed in the cross section to divide the supplied contaminated air into micro- or nano-sized bubbles. It will create a lot of other bubbles.
  • the first screen 120 includes an upper screen 120-1 having a first through hole 121-1, a middle screen 120-2 having a second through hole 121-2, and a third It has a configuration including a lower screen 120-3 having a through hole 121-3 formed therein.
  • the upper screen 120-1, the middle screen 120-2, and the lower screen 120-3 are aligned with the upper screen 120-1 along the axis z constituting the flow direction of the contaminated air. ) and the middle screen 120-2 and the lower screen 120-3 are stacked and installed.
  • the cross section of (121-3) does not overlap along the axis (z) constituting the flow direction of the contaminated air, that is, formed apart from each other in a direction perpendicular to the axis (z) constituting the flow direction of the air it is preferable
  • the positions of the plurality of first through holes 121-1 formed in the upper screen 120-1 and the positions of the plurality of second through holes 121-2 formed in the middle screen 120-2 are located in the upper screen 120-1. and the position of the plurality of second through holes 121-2 formed in the middle screen 120-2, and the lower end, and may be disposed not to overlap along the axis (z) constituting the flow direction of the contaminated air.
  • the positions of the plurality of third through holes 121-3 formed in the screen 120-3 are arranged so as not to overlap along the axis z constituting the flow direction of the contaminated air.
  • the bubble proceeds in the vertical direction, that is, the purified water ( W) moves in a zigzag manner to move toward the through hole 121 of each first screen 120 for injury.
  • the first and second screens 120 and 220 pass through the through holes 121 of each of the first screens 120 in a zigzag manner. ) has the effect of increasing the amount of bubble generation and breaking the particles of the bubble more finely by increasing the contact area.
  • an opening (not shown) that is opened about 1/4 of the diameters of the upper screen 120-1, the middle screen 120-2, and the lower screen 120-3 in which a plurality of through holes are formed. ) is formed, and the openings (not shown) of the upper screen 120-1, the middle screen 120-2, and the lower screen 120-3 are arranged so that they do not overlap each other, so that the moving direction of the bubble In the vertical direction, that is, after contacting the lower end surfaces of the upper screen 120-1, the middle screen 120-2, and the lower screen 120-3 without floating in a straight line, it zigzags through the opening side. It is possible to reduce the load caused by the moved and supplied purified water W, and at the same time reduce the load and noise generated by the pumps configured in the first and second air supply units 110 and 210 .
  • the first through hole 121-1, the second through hole 121-2, and the third through hole 121-3 have at least one of a shape, a position, and a size (cross-sectional area). They may be formed differently, and the diameters of the first through hole 121-1, the second through hole 121-2, and the third through hole 121-3 may be formed to be different from each other.
  • the diameter of the first through-hole 121-1 is formed to be 10 mm
  • the diameter of the second through-hole 121-2 is formed to be 5 mm
  • the third through-hole 121-3 has a diameter of 5 mm.
  • the diameter may be formed to be 2 mm.
  • a plurality of first through holes 121-1 formed in the upper screen 120-1 have a relatively large diameter of 8 to 12 mm, so that the supplied contaminated air can be primarily split large.
  • the diameter of the plurality of through holes 121 formed in the upper screen 120-1 is preferably 8 to 12 mm, and more preferably 10 mm.
  • the diameter of the plurality of second through-holes 121-2 formed in the middle screen 120-2 is 4 to 6 mm, which is relatively smaller than the first through-hole 121-1 of the upper screen 120-1.
  • the diameter of the second through hole 121-2 is 4 mm or less, the bubble split from the first through hole 121-1 of the upper screen 120-1 does not pass through the middle screen 120 -2) there is a problem in that a load is generated in the cross-sectional area, and when the diameter of the second through hole 121-2 is 6 mm or more, from the first through hole 121-1 of the upper screen 120-1
  • the diameter is preferably formed of 4 to 6 mm, more preferably may be formed of 5 mm.
  • the diameter of the plurality of third through-holes 121-3 formed in the lower screen 120-3 is 1-3 mm, which is smaller than the second through-holes 121-2 of the middle screen 120-2.
  • the diameter of the third through hole 121 is 1 mm or less, the bubble split from the second through hole 121-2 of the middle screen 120-2 does not pass through the lower screen 120-3.
  • the diameter of the plurality of third through holes 121-3 formed in the lower screen 120-3 is 1 It is preferably formed to be ⁇ 3 mm, and more preferably formed to be 2 mm so that it is possible to finally create small particles of bubbles.
  • the diameter of the plurality of first through-holes 121-1 formed in the upper screen 120-1 is small, and the diameter of the plurality of second through-holes 121-2 formed in the middle screen 120-2 is small.
  • the diameter of the first through hole 121-1 of the upper screen 120-1 is formed smaller than the diameter of the plurality of third through holes 121-3 formed in the lower screen 120-3 is the middle screen. It may be formed larger than the second through hole (121-2) of (120-2).
  • the diameter of the plurality of first through-holes 121-1 formed in the upper screen 120-1 is small, and the diameter of the plurality of second through-holes 121-2 formed in the middle screen 120-2 is small.
  • the diameter of the first through hole 121-1 of the upper screen 120-1 is larger than the diameter of the plurality of third through holes 121-3 formed in the lower screen 120-3 is the middle screen.
  • the size of the bubble can be divided in various ways by varying the diameter of each through hole in various ways, such as making the second through hole 121-2 smaller than the second through hole 121-2 of 120-2.
  • the sizes of the diameters of the plurality of through holes 121 are measured on each of the first screens 120. After forming differently, the value was calculated as an average value after measuring 10 times through the bubble measuring sensor 310 installed on the upper part of the lower screen 120-3.
  • the diameter of the first through hole 121-1 of the upper screen 120-1 is 10 mm
  • the diameter of the second through hole 121-2 of the middle screen 120-2 is formed. was formed to be 5 mm
  • an experiment was performed by forming the diameter of the third through hole 121-3 of the lower screen 120-3 to be 2 mm.
  • the diameter of the first through hole 121-1 of the upper screen 120-1 is 10 mm
  • the diameter of the second through hole 121-2 of the middle screen 120-2 is formed. was formed to be 2 mm
  • the diameter of the third through hole 121-3 of the lower screen 120-3 was formed to be 5 mm, and an experiment was performed.
  • the diameter of the first through hole 121-1 of the upper screen 120-1 is 5 mm
  • the diameter of the second through hole 121-2 of the middle screen 120-2 is formed. was formed to be 10 mm
  • the diameter of the third through hole 121-3 of the lower screen 120-3 was formed to be 2 mm, and an experiment was performed.
  • the average amount of bubbles generated was about 81%, which was higher than the control group of Tables 2 and 3, and the average size of the bubbles was about 13 ⁇ 21 um, which was higher than that of the control group of Tables 2 and 3 It was found that the average size was formed to be small.
  • the cross-sectional area of the second through-hole 121-2 was formed to be smaller than that of the first through-hole 121-1, and the third through-hole 121- By forming the cross-sectional area of 3) smaller than the cross-sectional area of the second through hole 121-2, it was confirmed that the average production amount of bubbles was increased and the average size of the bubbles was decreased, thereby increasing the purification efficiency of polluted air.
  • the shape of the through hole 121 may be manufactured in any one of a circular shape or a prismatic shape, and a plurality of first through holes 121 - formed in the upper screen 120-1 1) is formed in a circular shape, the plurality of second through holes 121-2 formed in the middle screen 120-2 are formed in a square shape, and the plurality of second through holes 121-2 formed in the lower screen 120-3 are formed in a circular shape.
  • the three through-holes 121-3 may be formed in a triangular shape.
  • the third through-holes 121-3 are formed in a concave regular polygon (star shape) having an interior angle of about 36°.
  • the shapes of the plurality of through holes 121 are differently formed in each of the first screens 120 . After measuring 10 times through the bubble measuring sensor 310 installed on the upper part of the lower screen 120-3, the value was calculated as an average value.
  • the shape of the first through hole 121-1 of the upper screen 120-1 is formed in a circular shape
  • the shape of the second through hole 121-2 of the middle screen 120-2 is formed in a circular shape. It was formed in a square shape, and the experiment was performed by forming the shape of the third through hole 121-3 of the lower screen 120-3 into a triangle.
  • the shape of the first through hole 121-1 of the upper screen 120-1 is formed in a circular shape
  • the shape of the second through hole 121-2 of the middle screen 120-2 is formed in a circular shape. It was formed in a rectangle, and the experiment was performed by forming the shape of the third through hole 121 of the lower screen 120-3 in a triangle.
  • the shape of the first through hole 121-1 of the upper screen 120-1 is formed in a square shape, and the shape of the second through hole 121-2 of the middle screen 120-2 is formed. It was formed in a triangle, and the experiment was performed by forming the shape of the third through hole 121-3 of the lower screen 120-3 in a circular shape.
  • the average amount of bubbles produced was about 86% and 78%, which was found to be higher than that of the control group in Table 6, and the average size of the bubbles was about 11 ⁇ 18 um, 15 ⁇ 22 It was found that the average bubble size was formed smaller than that of the control group in Table 6 in um.
  • one interior angle of the third through hole 121-3 was higher than one interior angle of the second through hole 121-2. It is preferable that it is formed smaller, and that one inner angle of the third through hole 121-3 is formed to be larger than one inner angle of the second through hole 121-2.
  • the first through hole 121-1 in a circular shape to generate a relatively smooth primary bubble, and the second through hole 121-2 and the third through hole 121-3.
  • the friction area is sequentially increased to the floating bubbles, and at the same time, the average amount of bubbles is increased and the average size of the bubbles is decreased, so that the air purification efficiency It could be seen that this increased.
  • each through hole 121 by installing the shape of each through hole 121 to vary for each first screen 120, there is an effect of increasing the amount of bubble generation and breaking the particles of the bubble more finely. It should be noted that the shape of the through hole 121 can be changed by those skilled in the art.
  • each of the first screens 120 may be relatively thick and formed in an arcuate shape.
  • the arc shape may be installed in the same direction or facing each other to prevent the bubbles from floating in the vertical direction, thereby increasing the contact area with the purified water (W).
  • the through holes 121 are formed so as to be perpendicular to the cross section of the first screen 120 so that bubbles are radially sprayed with the purified water W.
  • a bubble guiding protrusion 122 is installed inside the first purifying unit 100, and the bubble guiding protrusion 122 protrudes when the floating bubble is installed toward the first purifying unit 100. After contact with the bubble guide protrusion 122 , the bubble may be guided toward the through hole 121 .
  • the bubble guide protrusion 122 is made of a triangle or an inverted triangle to guide the bubbles toward the through hole 121 and at the same time increase the remaining residence time in the purified water W.
  • the first air discharge unit 140 is installed on the first air purification unit 100 to purify the air through the auxiliary purification unit 130, and then purifies the air toward the second purification unit 200 to be described below. air can be transported.
  • the auxiliary purification unit 130 may be installed by selecting one or more of an ozone/anion supply unit, a chlorine dioxide supply unit, a dust collector, and an odor adsorber.
  • the ozone/anion supply device is partially purified by the emission of ozone and anion having oxidizing power, and the bubbles are split at the surface of the purified water (W), and at the same time, it is possible to use it as an auxiliary means to purify the polluted air by removing and sterilizing the odor. do.
  • the chlorine dioxide supplier is installed to supply chlorine dioxide to the purified water (W) side and to the air purification space 131 side, and is periodically supplied, that is, supplied by a timer or by separately measuring the contamination concentration of the purified water (W).
  • Auxiliary means capable of purifying the purified water (W) and the contaminated air by selecting the input amount of chlorine dioxide according to the contamination concentration of the purified water (W) and then injecting it to kill the bacteria and viruses inside the purified water (W) can be used as
  • the electric heater heats heat to adjust the temperature of the purified water W to a constant temperature, thereby promoting the proliferation of microorganisms present in the purified water W, It can be used as an auxiliary means to improve water quality.
  • the odor absorber together with the ozone/anion supply unit and chlorine dioxide supply unit, can be utilized as an auxiliary means for purifying polluted air by removing odors.
  • a fragrance spraying device may be further installed in addition to the odor absorber, and the perfume spraying device periodically sprays natural fragrances, such as aroma incense, phytoncide, etc. available for use
  • a dust removal filter may be further installed on one side of the first air discharge unit 140, and the dust removal filter is equipped with filters such as ocher ceramics and activated carbon, so that the bubbles floated to the surface of the purified water (W) burst. It can be used as an auxiliary means to remove dust, dust, etc.
  • a dust collector may be further installed on one side of the first air discharge unit 140, and the dust collector is generated by bursting bubbles floating to the surface of the purified water (W). It can be used as an auxiliary means to collect and remove environmental pollutants.
  • a UV sterilizer may be further installed on one side of the first air discharge unit 140, and the UV sterilizer is the purified water (W) inside the purified water (W) and the bubbles floating to the surface of the purified water (W) burst. It can be used as an auxiliary sterilization means to sterilize the generated air.
  • the first air discharge unit 140 may discharge the purified air by transferring the purified air to the second air supply unit 210 installed on one side of the second purification unit 200 .
  • the air purification process is completed as described above, there is a waiting time for a certain amount of time, and the harmful substances and foreign substances mixed in the purified water W are settled, and one side is placed on the inner lower surface of the first purification unit 100.
  • the sludge can be easily discharged through the sludge discharge unit 150 installed inclined in the direction.
  • the sludge discharge unit 150 may be installed inclined in one direction, but the lower part of the first purification unit 100 is manufactured in a funnel shape to collect the sludge toward the center and discharge the sludge to the lower side.
  • the air purified by the second purification unit 200 is discharged to the outside through the second air discharge unit 240 , or a bypass pipe connected to the side of the first air supply unit 110 separately. It is possible to re-purify the polluted air by supplying it through the
  • an anti-vibration device (not shown) is further provided under the first and second purification units 100 and 200 to prevent damage to the first and second purification units 100 and 200 when an earthquake or external force occurs. You may.
  • the first and second purification units 100 and 200 may be controlled through the control unit 300 .
  • control unit 300 further includes an air quality measurement sensor 330 installed on one side of the first and second purification units 100 and 200, and the air quality measurement sensor In step 330, the degree of pollution of the outside air is measured in real time, and when the degree of pollution is equal to or greater than a predetermined value, the first and second purification units 100 and 200 may be controlled to be automatically driven.
  • control unit 300 may automatically drive the first and second purification units 100 and 200 according to the pollution level measured by the air quality measurement sensor 330 , and the outside air is constant. When the value is less than the value, the outside air is determined to be within the normal range and the first and second purification units 100 and 200 are restricted from driving. 2 The purification units 100 and 200 are automatically driven to purify the outside air.
  • control unit 300 further includes a bubble measurement sensor 310 installed on one side of the first and second purification units 100 and 200, and measures the amount of bubbles generated and the average size of the bubbles in real time.
  • the bubble measurement sensor 310 measures the amount of generated bubbles and the average size of bubbles, and provides the measured data on the amount of generated bubbles and data on the average size of bubbles to the control unit 300 .
  • it may further include an analysis server unit 400 that is interlocked with the control unit 300, the analysis server unit 400, the pollution degree data of the outside air measured by the air quality measurement sensor (330) And by comparing the bubble generation amount and the average size data of the bubble measured by the bubble measurement sensor 310, it is possible to control the supply amount of the contaminated air.
  • an analysis server unit 400 that is interlocked with the control unit 300, the analysis server unit 400, the pollution degree data of the outside air measured by the air quality measurement sensor (330) And by comparing the bubble generation amount and the average size data of the bubble measured by the bubble measurement sensor 310, it is possible to control the supply amount of the contaminated air.
  • the analysis server unit 400 interworking with the control unit 300 may perform wired/wireless communication via the communication unit 500 .
  • the communication unit 500 transmits the pollution degree data of the outside air measured by the air quality measurement sensor 330 and the bubble generation amount and average size data of the bubbles measured by the bubble measurement sensor 310 to the manager through wired/wireless communication. It can also be provided in real time.
  • the communication unit 500 may include one or more communication modules capable of a wireless communication network, and the communication unit 500 may include a wireless communication or short-range communication module or a location information module.
  • the wireless communication module refers to a module for wireless Internet access, and the wireless Internet module may be installed inside or outside one side of the first and second purification units 100 and 200 .
  • WLAN Wireless LAN
  • WiFi Wireless Fidelity
  • Wibro Wireless broadband
  • Wimax Worldwide interoperability for Microwave Access
  • HSDPA High Speed Downlink Packet Access
  • the short-distance communication module refers to a module for short-range communication, and may be built-in or externally installed on one side of the first and second purification units 100 and 200 .
  • Bluetooth Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • ZigBee WiHD, WiGig, etc.
  • the pollution degree data of the outside air measured by the air quality measurement sensor 330 and the bubble generation amount and the average size data of the bubbles measured by the bubble measurement sensor 310 to the outside for example, for example, when receiving with a control unit or an analysis server unit
  • encryption suitable for wired/wireless communication may be used to secure it safely.
  • the encryption uses a lightweight hash function suitable in such an embedded computing environment.
  • the lightweight hash function is a function that consumes relatively low computing power designed to ensure the integrity of transmitted or received data, excluding features that require high computing power in standard cryptographic hash algorithms such as SHA-3. It is a hash function (one-way function).
  • the sponge makes the original message (here, the original data of the random key) a certain size (padding), and then converts it to a specific standard size (for example, the original message divided into specific bit sizes) that only the creator of the key can know.
  • a specific standard size for example, the original message divided into specific bit sizes
  • random data is exchanged using several update functions at the rear end of the split data (segmented original message), and the other side is implemented to decode using a known reference size.
  • control unit 300 may be controlled through an artificial intelligence algorithm.
  • control unit 300 is interlocked with the above-described bubble measurement sensor 310, the air pollution measurement sensor 320 and the air quality measurement sensor 330, in particular, the air quality measurement sensor 330
  • the degree of pollution of the outside air (concentration of fine dust, etc.) is monitored and the measured degree of pollution of the outside air is received from the , bacteria, viruses, carbon monoxide, VOC S , animal hair, etc.) may be collected and then the first and second purification units 100 and 200 may be driven according to the degree of contamination and the supply amount of the contaminated air may be controlled.
  • the air quality measurement sensor 330 may receive and store the concentration data corresponding to PM 1.0 / 2.5 / 10.0 in time series, and process the stored data using an artificial neural network.
  • the artificial neural network uses an LSTM (Long Short Term Memory) neural network model suitable for processing time-series accumulated data to estimate the pollution level of the outside air and at the same time, the SVM effective for estimating the pattern of noise such as disturbance. It is desirable to effectively estimate the presence or absence of noise such as disturbance by using an algorithm.
  • LSTM Long Short Term Memory
  • the first and second purification units 100 and 200 are driven through the control unit 300 and the supply amount of the contaminated air is adjusted according to the situation. can be adaptively controlled.
  • the control unit 300 uses an artificial intelligence algorithm to operate the first and second purification units 100 and 200 and the first and second purification units 100 and 200 on one side.
  • the artificial intelligence algorithm collects the average amount of bubbles and the average size of bubbles from the bubble measurement sensor 310, and the air pollution measurement sensor 320 detects the first and second air outlets 140. 240 from the side.
  • the pumps or blowers of the first and second air supply units 110 and 210 are operated according to the average amount and average size of bubbles, the pollution degree and the pollution concentration of the air. Presence and operating strength, the operation of the auxiliary purification units 130 and 230, and the inflow from the second air outlet 240 to the bypass pipe connected to the first air supply 110 are controlled. can do.
  • the bubble measurement sensor 310 and the air pollution measurement sensor 320 data obtained by measuring the average value of the amount of bubbles and the size of bubbles are time-series received, stored, and the stored data is artificially processed. It can be processed using neural networks. More specifically, the artificial neural network preferably uses a Recurrent Neural Networks (RNN) neural network model suitable for processing time-series accumulated data to estimate the average value of the bubble generation amount and bubble size.
  • RNN Recurrent Neural Networks
  • an attention mechanism to compensate for the fact that RNN requires recurrent training, so that too much training cost (such as the time required for learning to meet the target estimate) is too high. It is preferable to additionally use
  • the attention mechanism is characterized by encoding input time-series data, vectorizing the encoded data, passing through the attention mechanism, and then decoding this vector.
  • the attention mechanism may be implemented to multiply the encoded vectors by an appropriate weight, and then pass through a normalization function such as softmax.
  • control unit 300 measures the contamination level of the purified water (W) freshwater in the first and second purification units (100, 200) using the above-described artificial intelligence algorithm, and the measured contamination level of the purified water (W)
  • the first and second purification units 100, 200 can be automatically discharged by controlling the opening and closing of the discharge valve provided on one side, and the first and second purification units 100, 200), by controlling the opening and closing of the supply valve provided on one side, the amount of the discharged purified water W may be automatically charged into the interior of the first and second purification units 100 and 200.
  • control unit 300 can remotely control the air purification process while monitoring the air purification process by interworking with remote control Wi-Fi and a smart phone, and individually control only the first purification unit 100 or the first and second By forming a group such as the purification unit 100, it is possible to perform operation and stop, adjustment of the wind direction of the blower, and a notification when water exchange or replenishment of the purified water (W).
  • control unit 300 further includes a proximity touch module (not shown) that the manager controls through a touch and a voice recognition module (not shown) that the manager controls through a voice, so that the first and second purification units (100, 200) can be controlled, and the first and second purification units (100, 200) can be easily controlled through a separately provided remote control (not shown).
  • a proximity touch module not shown
  • a voice recognition module not shown
  • control unit 300 may control to switch to a night mode to prevent noise generated during night driving, wherein the night mode is a day mode when the first and second purification units 100 and 200 are driven. Noise pollution can be prevented by further reducing the amount of operation.
  • control unit 300 is configured to surround the first and second purification units 100 and 200 through a temperature and humidity control unit (not shown) provided on one side of the first and second purification units 100 and 200 .
  • the temperature and humidity of the air conditioner and the constant temperature and humidity of the outside air and the inside of the first and second purification units 100 and 200 can be adjusted, and the constant temperature and humidity can be adjusted in the space desired by the administrator.
  • the temperature and humidity control unit (not shown) controls the temperature and humidity around the first and second purification units 100 and 200 and the first and second purification through the artificial intelligence algorithm of the control unit 300 described above. It is possible to adjust the constant temperature and humidity of the outside air and the inside of the units 100 and 200, and it is also possible to automatically adjust the constant temperature and humidity in the space desired by the manager.
  • control unit 300 includes a spray unit (not shown) provided on one side of the first and second purification units 100 and 200, and a disinfectant, a sterilizer, and a fragrance freshwater in the spray unit (not shown); By periodically spraying oxygen or the like according to the setting of the administrator, the environment around the first and second purification units 100 and 200 may be kept clean.
  • the first and second purification units 100 and 200 are It can also be driven economically.
  • FIG. 8 is a block diagram of an air purification method using bubbles according to an embodiment of the present invention.
  • the air purification method using bubbles according to the present invention has a configuration including a supply step (S10), a contact step (S20), a dissolution step (S30), and a discharge step (S40).
  • a first air supply unit 110 is installed on one lower side of the first purification unit 100 to supply contaminated air from the outside to the inside of the first purification unit 100. Polluted air contains substances harmful to the human body, such as fine dust, carbon dioxide, radon, formaldehyde and volatile organic compounds.
  • the first air supply unit 110 has a configuration including a pump, a blower, and an air supply unit 111, and the pump and the blower are installed on one side of the first purification unit 100 to supply contaminated air,
  • the contaminated air supplied in this way is installed to extend with the pump and the blower, and is supplied through the air supply unit 111 extending inside the lower portion of the first purification unit 100 .
  • the air supply 111 may have a plurality of air holes 112 formed on an outer circumferential surface thereof, and may supply contaminated air into the first purification unit 100 through the air holes 112 .
  • a contact step (S20) of contacting the contaminated air supplied in the supply step (S10) with the purified water (W) is passed.
  • the contacting step (S20) is a process in which the contaminated air is directly supplied to the surface area of the purified water W, and a plurality of large-diameter bubbles are formed or harmful substances, foreign substances, and dust mixed in the contaminated air are in contact with each other. am.
  • a dissolution step (S30) in which the dust and organic gas contained in the polluted air are dissolved with the purified water is performed.
  • the contaminated air passes through the plurality of through holes 121. 221 formed in the cross-sections of the first and second screens 120 and 220 and repeats the process of being dissolved and collected, each It will create bubbles of different sizes.
  • the bubble proceeds in the vertical direction, that is, the lower end surface of each first screen 120 without floating in a straight line. After contact, it moves in a zigzag direction to move to the through hole 121 side of each first screen 120 for levitation to the purified water W side, and is split into micro- or nano-sized bubbles to generate a large amount of bubbles of different sizes.
  • the bubbles increase the contact area and remaining residence time in the purified water W, and at the same time pass through the through holes 121 of each of the multi-stage first screens 120 in a zigzag manner. ), increase the amount of bubble generation and break the particles of the bubble more finely by increasing the contact area.
  • the bubble floats to the surface of the purified water W, and the bubble may be in a state including some harmful substances, foreign substances, dust, and the like.
  • the bubbles are broken at the surface of the purified water W, and harmful substances, foreign substances, and dust are purified through the separate auxiliary purification unit 130 .
  • a discharge step (S40) of discharging the purified air to the outside is performed.
  • the discharging step (S40) partially purified air is discharged toward the first air discharge unit 140 of the first purification unit 100, and the discharged purified air is used in the second purification unit 200 of the second purification unit 200.
  • the air purified by discharging to the second air supply unit 210 may be circulated for re-purification.
  • the first air discharge unit 140 transfers the purified air to the second air supply unit 210 installed on one side of the second purification unit 200 and re-purifies the purified air to discharge the purified air to the outside.
  • the air purified by the second purification unit 200 is discharged to the outside through the second air discharge unit 240 , or a bypass pipe connected to the side of the first air supply unit 110 separately. It is possible to re-purify the polluted air by supplying it through the
  • the air is purified through a plurality of air purifiers such as the first purifying unit 100 and the second purifying unit 200 to increase the air purification rate, and the pump and blower It is desirable to lower the capacity to lower the amount of power and lower the noise generation.
  • the supply step (S10) and the discharge step (S40) may be controlled by an artificial intelligence algorithm through the control unit 300 .
  • control unit 300 is interlocked with the above-described bubble measurement sensor 310, the air pollution measurement sensor 320 and the air quality measurement sensor 330, in particular, the air quality measurement sensor 330
  • the contamination level of the outside air (concentration of fine dust, etc.) is monitored and the measured contamination level of the outside air is received from the After cleaning, the first and second purification units 100 and 200 may be driven according to the degree of pollution, and the amount of supply of the contaminated air may be controlled.
  • the air quality measurement sensor 330 may receive and store the concentration data corresponding to PM 1.0 / 2.5 / 10.0 in time series, and process the stored data using an artificial neural network.
  • the artificial neural network uses an LSTM (Long Short Term Memory) neural network model suitable for processing time-series accumulated data to estimate the pollution level of the outside air and at the same time, the SVM effective for estimating the pattern of noise such as disturbance. It is desirable to effectively estimate the presence or absence of noise such as disturbance by using an algorithm.
  • LSTM Long Short Term Memory
  • the first and second purification units 100 and 200 are driven through the control unit 300 and the supply amount of the contaminated air is adjusted according to the situation. can be adaptively controlled.
  • control unit 300 may be controlled through an artificial intelligence algorithm.
  • the artificial intelligence algorithm measures the amount of generated bubbles and the average size of bubbles in the bubble measurement sensor 310 installed at one side of the first and second purification units 100 and 200, and the average of the measured bubble generation data and bubbles By linking the size data with the control unit 300 to perform learning in real time, it is possible to predict the generation amount data of the bubbles and the average size data of the bubbles and control the supply amount of polluted air.
  • the artificial intelligence algorithm measures the air pollution concentration in the air pollution measurement sensor 320 installed on one side of the first and second purification units 100 and 200, and transmits the measured air pollution concentration data to the control unit ( 300) by performing learning in real time, predicting the air pollution concentration data, and controlling the auxiliary purification units 130 and 230.
  • the air purifying apparatus and air purifying method using artificial intelligence according to the present invention through the control unit controlled by the artificial intelligence algorithm
  • the pollution level of the outside air is measured in real time, and when the pollution level is higher than a predetermined value, the first and second purification units are automatically driven to improve the air purification efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

The present invention relates to an air purifying device and an air purifying method using artificial intelligence, and, more specifically, the device comprises: a first purifying unit, which has a first air supply unit provided on one side of the bottom thereof so as to supply polluted air, a fixed amount of purifying water held in the internal space so as to dissolve dust and organic gas in the polluted air, a first screen having a plurality of through-holes, and a first air discharge unit provided on one side of the top thereof so as to discharge the purified air; a second purifying unit, which has a second air supply unit connected to the first air discharge unit so as to supply the purified air, a fixed amount of purifying water held in the internal space so as to dissolve dust and organic gas in the polluted air, a second screen having a plurality of through-holes, and a second air discharge unit provided on one side of the top thereof so as to discharge the purified air; and a control unit for controlling the first and second purifying units, wherein: the first and second air supply units have a plurality of air holes formed on the outer circumferential surfaces thereof, and include respective air suppliers extending to the bottom of the inside of the first and second purifying units so as to supply the polluted air; the first and second purifying units have bubble-inducing protrusions protruding on the inside thereof, the bubble-inducing protrusions being positioned between the first and second screens and the air suppliers; and the control unit further includes an air quality measurement sensor provided on one side of the first and second purifying units, measures the pollution level of the outside air in real time by means of the air quality measurement sensor, and, if the pollution level is greater than or equal to a certain value, the first and second purifying units are controlled so as to be driven automatically, the control unit being controlled through an artificial intelligence algorithm.

Description

인공지능을 활용한 공기정화장치 및 공기정화방법Air purification device and air purification method using artificial intelligence
본 발명은 인공지능을 활용한 공기정화장치 및 공기정화방법에 관한 것으로, 보다 상세하게는 인공지능 알고리즘으로 제어되는 제어유닛을 통해 외부공기의 오염도를 실시간으로 측정하고 오염도가 일정값 이상이면 상기 제1, 2정화유닛을 자동으로 구동시켜 공기정화효율을 향상시키기 위한 인공지능을 활용한 공기정화장치 및 공기정화방법에 관한 것이다.The present invention relates to an air purification apparatus and an air purification method using artificial intelligence, and more particularly, to measure the pollution degree of outside air in real time through a control unit controlled by an artificial intelligence algorithm, and if the pollution degree is higher than a certain value, It relates to an air purifying device and an air purifying method using artificial intelligence to automatically drive 1 and 2 purifying units to improve air purifying efficiency.
일반적으로 공기정화장치는 오염된 공기에 포함된 유해성분이나 냄새 등을 제거하기 위한 장치로서, 가장 보편화된 공기정화수단으로는 폴리프로필렌(PP) 수지섬유 또는 폴리에틸렌(PE) 수지섬유로 된 부직포 형태의 필터나 전기집진방식의 정전필터가 사용되고 있다. 그러나, 상기한 필터는 입자먼지를 여과하는데는 효과적일지 모르나 미세한 바이러스나 박테리아 등을 살균하거나, 휘발성 유기화합물, 악취 및 에틸렌가스 등의 여과는 불가능하거나 가능하더라도 그 효과가 미약한 단점이 있다.In general, an air purifier is a device for removing harmful components or odors contained in polluted air. of filters or electrostatic filters of the electrostatic precipitation method are used. However, the above filter may be effective in filtering particle dust, but it is impossible or possible to sterilize fine viruses or bacteria, or to filter volatile organic compounds, odors, and ethylene gas, etc., but the effect is weak.
최근에는 탈취전용필터인 활성탄으로 만들어진 활성탄 필터가 적용되고 있으나, 탈취전용필터임에도 불구하고 탈취효과가 기대치에 미치지 못한다. 또한 알루미늄이나 구리의 표면에 광촉매를 코팅한 광촉매필터에 자외선을 조사하는 방식을 이용하여 광촉매필터에 포집된 미생물을 자외선에 의해 살균되게 하는 살균전용필터를 사용하기도 하는데, 이 필터는 자외선의 전반적인 조사가 어렵고 자외선의 조사시간부족으로 입도가 작은 바이러스, 박테리아 등의 살균성능이 확실치 않을 뿐만 아니라 정기적으로 필터를 세척하거나 교체해야 하는 관리상의 번거러움도 있다.Recently, an activated carbon filter made of activated carbon, which is a filter for deodorization only, has been applied, but the deodorization effect does not meet expectations despite the filter for deodorization only. In addition, using the method of irradiating ultraviolet rays to a photocatalyst filter coated with a photocatalyst on the surface of aluminum or copper, a sterilization-only filter that sterilizes the microorganisms captured in the photocatalyst filter by ultraviolet rays is used. The sterilization performance of viruses and bacteria of small particle size is not certain due to the lack of irradiation time of ultraviolet rays, and there is also the inconvenience of cleaning or replacing the filter regularly.
이에 따라, 새로이 등장한 워터필터는 워터스크린(water screen)을 설치해 놓고 이 워터스크린에 오염된 공기를 통과시킴으로써 워터스크린에 이물질이 씻겨지도록 하거나, 또는 담수된 물에 공기를 강제로 불어넣어서 물속을 경유하여 배출되게 함에 따라 공기속의 이물질 및 냄새가 물에 의해 씻겨지도록 하는 방법을 취하기도 한다. 이중에서 후자의 경우는 마치 스트로그를 입으로 불어서 물속으로 공기를 주입하는 원리와 같이 송풍기와 주입관을 이용하여 송풍기의 강한 풍력에 의Accordingly, the newly appeared water filter installs a water screen and passes contaminated air through the water screen to wash away foreign substances, or by forcibly blowing air into fresh water and passing through the water. In some cases, a method is taken so that foreign substances and odors in the air are washed away by water as they are discharged. Among them, in the latter case, as in the principle of blowing a stroke with the mouth to inject air into the water, it uses a blower and an injection tube to
해서 주입관을 통과한 공기가 물속으로 입수되게 하는 것이다.This allows the air that has passed through the inlet pipe to enter the water.
하지만, 주입관의 관경이 큰 경우에는 일시에 많은 양의 공기가 물속으로 입수되기 때문에 큰 공기방울이 생성되며, 생성된 크기를 유지한 채 그대로 배출된다. 그러나, 이렇게 공기방울이 크게 되면 공기방울이 수면위로 올라가서 터질 때 소음이 크게 발생하게 되며, 많은 양의 공기를 큰 관을 통해 배출되게 하려면 송풍기의 풍력이 커야 하므로 크기가 큰 송풍기를 사용해야 한다. 따라서, 송풍기의 구동소음, 고가의 송풍기를 적용함에 따른 가격상승, 송풍기 확대와 맞물려서 공기정화장치의 전체 사이즈가 확대되어야 하는 등의 문제점이 발생되었다.However, when the diameter of the injection tube is large, large air bubbles are generated because a large amount of air is received into the water at once, and the generated size is maintained and discharged as it is. However, when the air bubble becomes large, noise is generated when the air bubble rises above the water surface and burst, and in order to discharge a large amount of air through a large pipe, the wind power of the blower must be large, so a large size blower must be used. Accordingly, problems such as driving noise of the blower, price increase due to the application of an expensive blower, and the need to enlarge the overall size of the air purifier due to the expansion of the blower have occurred.
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은, 인공지능 알고리즘으로 제어되는 제어유닛을 통해 외부공기의 오염도를 실시간으로 측정하고 오염도가 일정값 이상이면 상기 제1, 2정화유닛을 자동으로 구동시켜 공기정화효율을 향상시키기 위한 인공지능을 활용한 공기정화장치 및 공기정화방법을 제공하는데 있다.The present invention has been devised in view of the above problems, and an object of the present invention is to measure the pollution level of the outside air in real time through a control unit controlled by an artificial intelligence algorithm, and if the pollution level is greater than a certain value, the first and second An object of the present invention is to provide an air purifying device and an air purifying method using artificial intelligence to automatically drive a purifying unit to improve air purifying efficiency.
본 발명의 다른 목적은, 제1, 2정화유닛 내부에 설치된 제1, 2스크린의 통공 배치 위치와 모양 및 크기를 변화시켜 버블의 생성량을 조절함으로써 정화수에 용해된 오염된 공기를 손쉽게 정화시키기 위한 인공지능을 활용한 공기정화장치 및 공기정화방법을 제공하는데 있다.Another object of the present invention is to easily purify polluted air dissolved in purified water by adjusting the amount of bubbles generated by changing the arrangement position, shape and size of the through holes of the first and second screens installed inside the first and second purification units. It is to provide an air purifying device and an air purifying method using artificial intelligence.
본 발명의 다른 목적은, 제1, 2정화유닛을 직렬 또는 병렬 중 어느 하나의 방향으로 적재되도록 배치함으로써 오염된 공기의 정화효율을 증대시킴과 동시에, 공기정화장치를 사용자가 원하는 위치 및 장소에 구애받지 않고 자유롭게 설치하기 위한 인공지능을 활용한 공기정화장치 및 공기정화방법을 제공하는데 있다.Another object of the present invention is to increase the purifying efficiency of polluted air by arranging the first and second purifying units to be stacked in either direction in series or in parallel, and at the same time, install the air purifier at a location and place desired by the user. The purpose of the present invention is to provide an air purifying device and an air purifying method using artificial intelligence that can be freely installed without any restrictions.
본 발명의 실시예들의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The purpose of the embodiments of the present invention is not limited to the above-mentioned purpose, and other objects not mentioned will be clearly understood by those of ordinary skill in the art to which the present invention belongs from the description below. .
상기한 바와 같은 목적을 달성하기 위한 특징에 따르면, 하부 일측에 설치되어 오염된 공기를 공급하는 제1공기공급부와, 내부공간에 일정량 담수되어 상기 오염된 공기의 먼지 및 유기기체를 용해시키는 정화수와, 복수의 통공이 형성되는 제1스크린과, 상부 일측에 설치되어 정화된 공기를 배출하는 제1공기배출부가 구비되는 제1정화유닛;According to the features for achieving the above object, the first air supply unit installed on the lower side to supply contaminated air, and purified water that is freshly watered in a certain amount in the inner space to dissolve the dust and organic gas of the contaminated air; , a first purifying unit provided with a first screen having a plurality of through holes formed therein, and a first air outlet installed on one upper side to discharge purified air;
상기 제1공기배출부와 연결되어 정화된 공기를 공급하는 제2공기공급부와, 내부공간에 일정량 담수되어 상기 오염된 공기의 먼지 및 유기기체를 용해시키는 정화수와, 복수의 통공이 형성되는 제2스크린과, 상부 일측에 설치되어 정화된 공기를 배출하는 제2공기배출부가 구비되는 제2정화유닛;A second air supply unit connected to the first air discharge unit for supplying purified air, purified water for dissolving dust and organic gas in the polluted air with a predetermined amount of fresh water in the internal space, and a second plurality of through holes are formed a second purifying unit provided with a screen and a second air discharging unit installed on one upper side and discharging purified air;
상기 제1, 2정화유닛을 제어하는 제어유닛;을 포함하되,Including; a control unit for controlling the first and second purification units;
상기 제어유닛은, 인공지능 알고리즘을 통해 제어되는 것을 특징으로 한다The control unit is characterized in that it is controlled through an artificial intelligence algorithm.
또한, 상기 제1, 2공기공급부는,In addition, the first and second air supply units,
상기 제1, 2정화유닛 내측 하부로 연장되어 오염된 공기를 공급하는 공기공급기를 포함하는 것을 특징으로 한다.It characterized in that it includes an air supply that extends to the inner lower portion of the first and second purification units to supply the contaminated air.
또한, 상기 제어유닛은, 상기 제1, 2정화유닛의 일측에 설치되는 대기질측정센서를 더 포함하고,In addition, the control unit further includes an air quality measurement sensor installed on one side of the first and second purification units,
상기 대기질측정센서에서 외부공기의 오염도를 실시간으로 측정하고, 오염도가 일정값 이상이면 상기 제1, 2정화유닛이 자동으로 구동되는 것을 특징으로 한다.The air quality measurement sensor measures the pollution level of the outside air in real time, and when the pollution level is higher than a predetermined value, the first and second purification units are automatically driven.
또한, 상기 제어유닛은,In addition, the control unit,
상기 제1, 2정화유닛의 일측에 설치되는 버블측정센서를 더 포함하고, 버블의 생성량 및 버블의 평균크기를 측정하는 것을 특징으로 한다.It further includes a bubble measuring sensor installed on one side of the first and second purification units, and measures the amount of bubbles generated and the average size of the bubbles.
또한, 상기 제어유닛과 연동되는 분석서버부를 더 포함하고,In addition, further comprising an analysis server unit interlocked with the control unit,
상기 분석서버부는,The analysis server unit,
상기 대기질측정센서에서 측정된 외부공기의 오염도 데이터 및 상기 버블측정센서에서 측정된 버블의 생성량 및 버블의 평균크기 데이터를 비교하여 상기 오염된 공기의 공급량을 제어하는 것을 특징으로 한다.It is characterized in that the supply amount of the polluted air is controlled by comparing the pollution degree data of the outside air measured by the air quality sensor and the average size data and the amount of bubbles measured by the bubble measurement sensor.
또한, 상기 제어유닛과 상기 분석서버부는 통신부를 매개로 유무선 통신하는 것을 특징으로 한다.In addition, the control unit and the analysis server unit is characterized in that wired and wireless communication via a communication unit.
또한, 상기 제1, 2정화유닛은 직렬 또는 병렬 중 어느 하나의 방향으로 적재되는 것을 특징으로 한다.In addition, the first and second purification units are characterized in that they are loaded in any one direction in series or parallel.
또한, 상기 제1, 2정화유닛 내측 하부면에 일측방향으로 경사진 슬러지배출부가 더 설치되는 것을 특징으로 한다.In addition, it is characterized in that the sludge discharge part inclined in one direction is further installed on the inner lower surface of the first and second purification units.
또한, 상기 제1, 2스크린은,In addition, the first and second screens,
제1통공이 형성된 상단스크린과, 제2통공이 형성된 중단스크린과, 제3통공이 형성된 하단스크린을 포함하고,It includes an upper screen having a first through hole, a middle screen having a second through hole, and a lower screen having a third through hole,
상기 오염된 공기의 유동방향을 이루는 축(z)을 따라 상기 상단스크린, 중단스크린 및 하단스크린이 적층되는 것을 특징으로 한다.It is characterized in that the upper screen, the middle screen and the lower screen are stacked along the axis (z) constituting the flow direction of the polluted air.
또한, 상기 제1통공, 제2통공 및 제3통공은 형상, 위치 및 크기 중 적어도 어느 하나 이상이 서로 다른 것을 특징으로 한다.In addition, the first through-hole, the second through-hole, and the third through-hole are characterized in that at least one or more of a shape, a position, and a size are different from each other.
또한, 상기 제1통공, 제2통공 및 제3통공의 단면은 상기 오염된 공기의 유동방향을 이루는 축(z)을 따라 중첩되지 않도록 형성되는 것을 특징으로 한다.In addition, the cross-sections of the first through hole, the second through hole, and the third through hole are formed so as not to overlap along the axis (z) constituting the flow direction of the contaminated air.
또한, 상기 제1, 2공기공급부는,In addition, the first and second air supply units,
외주면에 복수의 공기구멍이 형성되고, 상기 제1, 2정화유닛 내측 하부로 연장되어 오염된 공기를 공급하는 공기공급기를 포함하고,A plurality of air holes are formed on the outer circumferential surface, and the first and second purification units include an air supply that extends to the lower inner side to supply contaminated air,
상기 제1, 2정화유닛 내측에는 돌출된 버블유도돌기가 설치되되,A protruding bubble guide projection is installed inside the first and second purification units,
상기 버블유도돌기는 상기 제1, 2스크린과 상기 공기공급기 사이에 위치하는 것을 특징으로 한다.The bubble guide protrusion is positioned between the first and second screens and the air supply unit.
본 발명의 일 실시예에 따르면, 인공지능을 활용한 공기정화장치를 이용한 공기정화방법에 있어서,According to an embodiment of the present invention, in an air purification method using an air purification device utilizing artificial intelligence,
오염된 공기를 공급하는 공급단계(S10);a supply step of supplying contaminated air (S10);
상기 오염된 공기가 정화수와 접촉하는 접촉단계(S20);a contact step (S20) in which the contaminated air is in contact with purified water;
상기 오염된 공기에 포함된 먼지 및 유기기체가 정화수와 용해되는 용해단계(S30);a dissolution step (S30) in which dust and organic gas contained in the polluted air are dissolved with purified water;
정화된 공기를 외부로 배출하는 배출단계(S40);를 포함하되,Discharge step (S40) of discharging the purified air to the outside; including,
상기 공급단계(S10), 배출단계(S40)는 상기 제어유닛의 인공지능 알고리즘을 통해 제어되는 것을 특징으로 한다.The supply step (S10), the discharge step (S40) is characterized in that it is controlled through an artificial intelligence algorithm of the control unit.
또한, 상기 제어유닛은,In addition, the control unit,
상기 제1, 2정화유닛의 일측에 설치되는 버블측정센서를 더 포함하고, 버블의 생성량 및 버블의 평균크기를 측정하는 것을 특징으로 한다.It further includes a bubble measuring sensor installed on one side of the first and second purification units, and measures the amount of bubbles generated and the average size of the bubbles.
또한, 상기 제어유닛과 연동되는 분석서버부를 더 포함하고,In addition, further comprising an analysis server unit interlocked with the control unit,
상기 분석서버부는,The analysis server unit,
상기 대기질측정센서에서 측정된 외부공기의 오염도 데이터를 분석하고, 상기 버블측정센서에서 측정된 버블의 생성량 및 버블의 평균크기 데이터를 분석하고, 비교하여 상기 오염된 공기의 공급량을 제어하는 것을 특징으로 한다.Analyzes the pollution degree data of the outside air measured by the air quality sensor, analyzes and compares the average size data and the amount of bubbles measured by the bubble measurement sensor to control the supply amount of the polluted air do it with
또한, 상기 용해단계에서,In addition, in the dissolution step,
상기 오염된 공기는 상기 제1, 2스크린의 단면에 형성된 복수의 통공을 통과하는 것을 특징으로 한다.The polluted air is characterized in that it passes through a plurality of through-holes formed in the end surfaces of the first and second screens.
본 발명에 따른 인공지능을 활용한 공기정화장치 및 공기정화방법에 따르면, 인공지능 알고리즘으로 제어되는 제어유닛을 통해 외부공기의 오염도를 실시간으로 측정하고 오염도가 일정값 이상이면 상기 제1, 2정화유닛을 자동으로 구동시켜 공기정화효율을 향상시키는 효과가 있다.According to the air purification apparatus and air purification method using artificial intelligence according to the present invention, the pollution level of the outside air is measured in real time through a control unit controlled by an artificial intelligence algorithm, and if the pollution level is higher than a certain value, the first and second purification It has the effect of improving the air purification efficiency by automatically driving the unit.
또한, 제1, 2정화유닛 내부에 설치된 제1, 2스크린의 통공 배치 위치와 모양 및 크기를 변화시켜 버블의 생성량을 조절함으로써 정화수에 용해된 오염된 공기를 손쉽게 정화하는 효과가 있다.In addition, there is an effect of easily purifying the polluted air dissolved in the purified water by controlling the amount of bubbles generated by changing the arrangement position, shape, and size of the through holes of the first and second screens installed inside the first and second purification units.
또한, 제1, 2정화유닛을 직렬 또는 병렬 중 어느 하나의 방향으로 적재되도록 배치함으로써 오염된 공기의 정화효율을 증대시킴과 동시에, 공기정화장치를 사용자가 원하는 위치 및 장소에 구애받지 않고 자유롭게 설치하는 효과가 있다.In addition, by arranging the first and second purification units to be stacked in either direction in series or in parallel, the purification efficiency of polluted air is increased, and the air purification device can be freely installed regardless of the location and location desired by the user. has the effect of
도 1은 본 발명의 일 실시예에 따른 인공지능을 활용한 공기정화장치를 도시한 개략도,1 is a schematic diagram showing an air purification device utilizing artificial intelligence according to an embodiment of the present invention;
도 2, 3, 4는 본 발명의 일 실시예에 따른 각 스크린의 평면도,2, 3 and 4 are plan views of each screen according to an embodiment of the present invention;
도 5 (a)와 (b)는 본 발명의 또 다른 일 실시예에 따른 각 스크린의 정면도,5 (a) and (b) are front views of each screen according to another embodiment of the present invention,
도 6은 본 발명의 또 다른 일 실시예에 따른 통공의 위치를 도시한 정면도,Figure 6 is a front view showing the position of the through hole according to another embodiment of the present invention,
도 7은 본 발명의 일 실시예에 따른 제어부의 블록도,7 is a block diagram of a control unit according to an embodiment of the present invention;
도 8은 본 발명의 일 실시예에 따른 버블을 이용한 공기정화방법의 블록도이다.8 is a block diagram of an air purification method using bubbles according to an embodiment of the present invention.
이하의 본 발명의 목적들, 다른 목적들, 특징들 및 이점들은 첨부된 도면과 관련된 이하의 바람직한 실시예들을 통해서 쉽게 이해될 것이다. 그러나 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다.The following objects, other objects, features and advantages of the present invention will be readily understood through the following preferred embodiments in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms.
오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.Rather, the embodiments introduced herein are provided so that the disclosed subject matter may be thorough and complete, and that the spirit of the present invention may be sufficiently conveyed to those skilled in the art.
여기에 설명되고 예시되는 실시예들은 그것의 상보적인 실시예들도 포함한다.The embodiments described and illustrated herein also include complementary embodiments thereof.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprise)' 및/또는 '포함하는(comprising)'은 언급된 구성요소는 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, the terms 'comprise' and/or 'comprising' do not exclude the presence or addition of one or more other components.
이하, 도면을 참조하여 본 발명을 상세히 설명하도록 한다. 아래의 특정 실시예들을 기술하는데 있어서, 여러가지의 특정적인 내용들은 발명을 더 구체적으로 설명하고 이해를 돕기 위해 작성되었다. 하지만 본 발명을 이해할 수 있을 정도로 이 분야의 지식을 갖고 있는 독자는 이러한 여러 가지의 특정적인 내용들이 없어도 사용될수 있다는 것을 인지할 수 있다. 어떤 경우에는, 발명을 기술하는 데 있어서 흔히 알려졌으면서 발명과 크게 관련없는 부분들은 본 발명을 설명하는 데 있어 혼돈을 막기 위해 기술하지 않음을 미리 언급해 둔다.Hereinafter, the present invention will be described in detail with reference to the drawings. In describing the specific embodiments below, various specific contents have been prepared to more specifically explain and help the understanding of the invention. However, a reader having enough knowledge in this field to understand the present invention can recognize that it can be used without these various specific details. In some cases, it is mentioned in advance that parts that are commonly known and not largely related to the invention in describing the invention are not described in order to avoid confusion in describing the invention.
도 1은 본 발명의 일 실시예에 따른 인공지능을 활용한 공기정화장치를 도시한 개략도이고, 도 2, 3, 4는 본 발명의 일 실시예에 따른 각 스크린의 평면도이고, 도 5 (a)와 (b)는 본 발명의 또 다른 일 실시예에 따른 각 스크린의 정면도이며, 도 6은 본 발명의 또 다른 일 실시예에 따른 통공의 위치를 도시한 정면도이고, 도 7은 본 발명의 일 실시예에 따른 제어부의 블록도이다.1 is a schematic diagram showing an air purification device utilizing artificial intelligence according to an embodiment of the present invention, FIGS. 2, 3, and 4 are plan views of each screen according to an embodiment of the present invention, and FIG. 5 (a ) and (b) are front views of each screen according to another embodiment of the present invention, Figure 6 is a front view showing the position of the through hole according to another embodiment of the present invention, Figure 7 is a view of the present invention It is a block diagram of a control unit according to an embodiment.
도 1 내지 도 7에 도시된 바와 같이, 본 발명인 인공지능을 활용한 공기정화장치 는 크게 제1정화유닛(100), 제2정화유닛(200), 제어유닛(300)을 포함하는 구성이다.As shown in FIGS. 1 to 7 , the air purifying device using artificial intelligence according to the present invention largely includes a first purifying unit 100 , a second purifying unit 200 , and a control unit 300 .
상기 제1정화유닛(100)은, 내부공간에 일정량의 정화수가 담수되는데, 상기 정화수는 상기 제1정화유닛(100) 내부에 60 ~ 80 % 정도 담수되되, 상부로는 이하 설명될 보조정화유닛(130)에서 부상된 버블에 포함된 공기를 정화시키는 공기정화공간(131)을 확보하는 것이 바람직하다.In the first purification unit 100, a certain amount of purified water is freshened in the internal space, and the purified water is freshened by about 60 to 80% in the first purification unit 100, and the upper part is an auxiliary purification unit to be described below. It is preferable to secure an air purification space 131 for purifying the air contained in the bubble floating at 130 .
또한, 상기 제1정화유닛(100) 하부 일측에 제1공기공급부(110)가 설치되어 외부의 오염된 공기를 상기 제1정화유닛(100) 내측으로 공급하게 되는데, 이러한 오염된 공기에는, 미세먼지, 이물질, 이산화탄소, 라돈, 포름알데히드 및 휘발성 유기화합물 등의 인체에 유해한 물질이 포함되어 있다.In addition, a first air supply unit 110 is installed on one side of the lower side of the first purification unit 100 to supply polluted air from the outside to the inside of the first purification unit 100. In this polluted air, microscopic It contains substances harmful to the human body such as dust, foreign substances, carbon dioxide, radon, formaldehyde and volatile organic compounds.
상기 제1공기공급부(110)는, 펌프와, 송풍기 및 공기공급기(111)를 포함한 구성으로, 상기 펌프와 송풍기는 상기 제1정화유닛(100) 일측에 설치되어 오염된 공기를 공급하게 되고, 이렇게 공급된 오염된 공기는 상기 펌프와 송풍기와 연장되도록 설치되고, 상기 제1정화유닛(100) 내측 하부로 연장된 상기 공기공급기(111)를 통해 공급하게 된다.The first air supply unit 110 has a configuration including a pump, a blower, and an air supply unit 111, and the pump and the blower are installed on one side of the first purification unit 100 to supply contaminated air, The contaminated air supplied in this way is installed to extend with the pump and the blower, and is supplied through the air supply unit 111 extending inside the lower portion of the first purification unit 100 .
이러한, 상기 공기공급기(111)는 외주면에 복수의 공기구멍(112)이 형성되고, 상기 공기구멍(112)을 통해 오염된 공기를 상기 제1정화유닛(100) 내부로 공급시킬 수 있다.The air supply 111 may have a plurality of air holes 112 formed on an outer circumferential surface thereof, and may supply contaminated air into the first purification unit 100 through the air holes 112 .
상기 공기공급기(111)를 통해 공급되는 오염된 공기가 상기 정화수(W)와 접촉하는 과정에서, 오염된 공기에 포함된 먼지 및 유기기체 등의 입자가 상기 정화수(W)와 용해 및 포집됨으로써 오염된 공기의 유해물질을 손쉽게 제거할 수 있다.In the process in which the polluted air supplied through the air supply unit 111 comes into contact with the purified water W, particles such as dust and organic gas contained in the polluted air are dissolved and collected with the purified water W, thereby becoming contaminated. It is easy to remove harmful substances from the air.
이때, 상기 공기구멍(112)의 직경은 90 ~ 110 mm 사이로 형성될 수 있는데, 상기 공기구멍(112)의 직경이 90 mm 이하일 경우, 공급되는 오염된 공기의 공급량이 다소 적게 공급되어 오염된 공기의 공급량이 감소되는 문제점과 펌프의 부하가 발생되어 펌프의 손상이 발생할 수 있는 문제점이 있다.At this time, the diameter of the air hole 112 may be formed between 90 ~ 110 mm, when the diameter of the air hole 112 is less than 90 mm, the amount of the supplied contaminated air is supplied somewhat less and the contaminated air There is a problem in that the supply amount is reduced and a load of the pump is generated, which can cause damage to the pump.
또한, 상기 공기구멍(112)의 직경이 110 mm 이상일 경우, 공급되는 오염된 공기의 유량이 다소 많이 공급됨으로써 입자가 큰 오염된 공기가 공급되므로 버블을 잘개 쪼개는 시간이 증가되어 공기정화 효율이 낮아짐과 동시에 공기정화 시간이 오래 걸리는 문제점이 있으므로 상기 공기구멍(112)의 직경은 90 ~ 110 mm 사이로 형성되는 것이 바람직하다.In addition, when the diameter of the air hole 112 is 110 mm or more, the flow rate of the supplied contaminated air is supplied slightly, so that the polluted air with large particles is supplied. At the same time, since it takes a long time to purify the air, the diameter of the air hole 112 is preferably formed between 90 and 110 mm.
아울러, 상기 제1정화유닛(100)의 용량이 대형일 경우, 상기 펌프와 송풍기의 용량이 커짐으로써 전력량의 증가와 소음 발생 등의 문제점이 발생하기 때문에, 상기 제1정화유닛(100) 즉, 단일개의 공기정화장치로 정화하는 것보다, 상기 제1정화유닛(100)과 제2정화유닛(200) 등 다수개의 공기정화장치를 통해, 공기를 정화시켜 공기정화율을 높이고 상기 펌프와 송풍기의 용량을 낮춰 전력량을 낮추고 소음 발생을 저하시키는 것이 바람직하다.In addition, when the capacity of the first purification unit 100 is large, since the capacity of the pump and the blower increases, problems such as an increase in the amount of power and generation of noise occur. Rather than purifying with a single air purifier, the air is purified through a plurality of air purifiers such as the first purifying unit 100 and the second purifying unit 200 to increase the air purification rate, and the pump and blower It is desirable to lower the capacity to lower the amount of power and lower the noise generation.
한편, 상기 제1정화유닛(100) 내부에 제1스크린(120)이 다단으로 설치되고 단면에 복수의 통공(121)이 형성되어 공급되는 오염된 공기를 마이크로 또는 나노 단위의 버블로 쪼개 크기가 다른 버블을 다량으로 생성하게 된다.On the other hand, the first screen 120 is installed in multiple stages inside the first purification unit 100 and a plurality of through holes 121 are formed in the cross section to divide the supplied contaminated air into micro- or nano-sized bubbles. It will create a lot of other bubbles.
이러한, 상기 제1스크린(120)은 제1통공(121-1)이 형성된 상단스크린(120-1)과, 제2통공(121-2)이 형성된 중단스크린(120-2)과, 제3통공(121-3)이 형성된 하단스크린(120-3)을 포함한 구성이다.The first screen 120 includes an upper screen 120-1 having a first through hole 121-1, a middle screen 120-2 having a second through hole 121-2, and a third It has a configuration including a lower screen 120-3 having a through hole 121-3 formed therein.
이때, 상기 상단스크린(120-1)과 중단스크린(120-2) 및 하단스크린(120-3)은, 상기 오염된 공기의 유동방향을 이루는 축(z)을 따라 상기 상단스크린(120-1)과 중단스크린(120-2) 및 하단스크린(120-3)이 적층되어 설치되는 구성이다.At this time, the upper screen 120-1, the middle screen 120-2, and the lower screen 120-3 are aligned with the upper screen 120-1 along the axis z constituting the flow direction of the contaminated air. ) and the middle screen 120-2 and the lower screen 120-3 are stacked and installed.
또한, 상기 상단스크린(120-1)과 중단스크린(120-2) 및 하단스크린(120-3)에 형성된 상기 제1통공(121-1), 제2통공(121-2) 및 제3통공(121-3)의 단면이 상기 오염된 공기의 유동방향을 이루는 축(z)을 따라 중첩되지 않도록 배치 즉, 상기 공기의 유동방향을 이루는 축(z)에 수직인 방향으로 상호 이격되어 형성되는 것이 바람직하다.In addition, the first through hole 121-1, the second through hole 121-2 and the third through hole formed in the upper screen 120-1, the middle screen 120-2, and the lower screen 120-3. Arranged so that the cross section of (121-3) does not overlap along the axis (z) constituting the flow direction of the contaminated air, that is, formed apart from each other in a direction perpendicular to the axis (z) constituting the flow direction of the air it is preferable
예를 들어, 상기 상단스크린(120-1)에 형성된 복수의 제1통공(121-1)의 위치와, 상기 중단스크린(120-2)에 형성된 복수의 제2통공(121-2)의 위치와 상기 오염된 공기의 유동방향을 이루는 축(z)을 따라 중첩되지 않도록 배치할 수 있으며, 상기 중단스크린(120-2)에 형성된 복수의 제2통공(121-2)의 위치와, 상기 하단스크린(120-3)에 형성된 복수의 제3통공(121-3)의 위치가 상기 오염된 공기의 유동방향을 이루는 축(z)을 따라 중첩되지 않도록 배치된다.For example, the positions of the plurality of first through holes 121-1 formed in the upper screen 120-1 and the positions of the plurality of second through holes 121-2 formed in the middle screen 120-2 are located in the upper screen 120-1. and the position of the plurality of second through holes 121-2 formed in the middle screen 120-2, and the lower end, and may be disposed not to overlap along the axis (z) constituting the flow direction of the contaminated air. The positions of the plurality of third through holes 121-3 formed in the screen 120-3 are arranged so as not to overlap along the axis z constituting the flow direction of the contaminated air.
이렇게, 상기 복수의 통공(121)의 형성 위치를 상호 중첩되지 않도록 배치함으로써, 버블의 진행방향인 수직방향 즉, 일직선으로 부유하지 않고 각 제1스크린(120)의 하부 단면과 접촉 후, 정화수(W) 측으로 부상을 위해 각 제1스크린(120)의 통공(121) 측으로 이동하기 위해 지그재그로 이동하게 된다.In this way, by arranging the formation positions of the plurality of through-holes 121 so as not to overlap each other, the bubble proceeds in the vertical direction, that is, the purified water ( W) moves in a zigzag manner to move toward the through hole 121 of each first screen 120 for injury.
따라서, 버블이 정화수(W) 내에서의 잔류되는 체류시간을 증대시킴과 동시에, 다단의 각 제1스크린(120)의 통공(121)을 지그재그로 통과하면서 상기 제1, 2스크린(120, 220)과의 접촉면적을 늘려 버블의 생성량 증대 및 버블의 입자를 더욱 잘개 쪼갤 수 있는 효과가 있는 것이다.Accordingly, while increasing the remaining residence time of the bubbles in the purified water W, the first and second screens 120 and 220 pass through the through holes 121 of each of the first screens 120 in a zigzag manner. ) has the effect of increasing the amount of bubble generation and breaking the particles of the bubble more finely by increasing the contact area.
또한, 복수의 통공이 형성된 상기 상단스크린(120-1), 상기 중단스크린(120-2), 상기 하단스크린(120-3)의 지름을 기준으로 약 1/4 정도 개방된 개방구(미도시)가 형성되되, 상기 상단스크린(120-1), 상기 중단스크린(120-2), 상기 하단스크린(120-3)의 개방구(미도시)는 상호 중첩되지 않도록 배치함으로써, 버블의 진행방향인 수직방향 즉, 일직선으로 부유하지 않고 상기 상단스크린(120-1), 상기 중단스크린(120-2), 상기 하단스크린(120-3)의 하부 단면과 접촉 후, 개방구 측을 통해 지그재그로 이동되어 공급되는 정화수(W)에 의한 부하를 저감시킴과 동시에, 상기 제1, 2공기공급부(110, 210)에 구성된 펌프에 발생되는 부하 및 소음을 저감시킬 수 있다.In addition, an opening (not shown) that is opened about 1/4 of the diameters of the upper screen 120-1, the middle screen 120-2, and the lower screen 120-3 in which a plurality of through holes are formed. ) is formed, and the openings (not shown) of the upper screen 120-1, the middle screen 120-2, and the lower screen 120-3 are arranged so that they do not overlap each other, so that the moving direction of the bubble In the vertical direction, that is, after contacting the lower end surfaces of the upper screen 120-1, the middle screen 120-2, and the lower screen 120-3 without floating in a straight line, it zigzags through the opening side. It is possible to reduce the load caused by the moved and supplied purified water W, and at the same time reduce the load and noise generated by the pumps configured in the first and second air supply units 110 and 210 .
본 발명의 일 실시예로서, 상기 제1통공(121-1), 제2통공(121-2) 및 제3통공(121-3)은 형상, 위치 및 크기(단면적) 중 적어도 어느 하나 이상이 서로 다르게 형성될 수 있는데, 상기 제1통공(121-1), 제2통공(121-2) 및 제3통공(121-3)의 지름은 상호 다르게 형성될 수 있다.In one embodiment of the present invention, the first through hole 121-1, the second through hole 121-2, and the third through hole 121-3 have at least one of a shape, a position, and a size (cross-sectional area). They may be formed differently, and the diameters of the first through hole 121-1, the second through hole 121-2, and the third through hole 121-3 may be formed to be different from each other.
보다 구체적으로, 상기 제1통공(121-1)의 지름은 10 mm로 형성되고, 상기 제2통공(121-2)의 지름은 5 mm로 형성되며, 상기 제3통공(121-3)의 지름은 2 mm로 형성될 수 있다.More specifically, the diameter of the first through-hole 121-1 is formed to be 10 mm, the diameter of the second through-hole 121-2 is formed to be 5 mm, and the third through-hole 121-3 has a diameter of 5 mm. The diameter may be formed to be 2 mm.
예를 들어, 상기 상단스크린(120-1)에 형성된 복수의 제1통공(121-1) 지름은 8 ~ 12 mm로 비교적 크게 형성시켜 공급되는 오염된 공기를 1차적으로 크게 쪼갤 수 있다.For example, a plurality of first through holes 121-1 formed in the upper screen 120-1 have a relatively large diameter of 8 to 12 mm, so that the supplied contaminated air can be primarily split large.
이러한, 상기 통공(121)의 지름이 8 mm 이하일 경우, 공급되는 오염된 공기 입자가 비교적 큰 형태로 유입되어 상기 통공(121)을 통과하지 못하여 상기 상단스크린(120-1)의 단면적에 부하가 발생하는 문제점 있으며, 상기 통공(121)의 지름이 12 mm 이상일 경우, 공급되는 오염된 공기의 입자가 작아 상기 통공(121) 측면의 접촉이 없이 통과되어 버블을 잘개 쪼갤 수 없는 문제점이 있으므로, 상기 상단스크린(120-1)에 형성된 복수의 통공(121) 지름은 8 ~ 12 mm로 형성되는 것이 바람직하며, 더욱 바람직하게는 10 mm로 형성될 수 있다.When the diameter of the through hole 121 is 8 mm or less, the supplied contaminated air particles are introduced in a relatively large form and do not pass through the through hole 121, so that a load is applied to the cross-sectional area of the upper screen 120-1. There is a problem that occurs, and when the diameter of the through hole 121 is 12 mm or more, the particles of the supplied contaminated air are small and pass without contacting the side of the through hole 121. The diameter of the plurality of through holes 121 formed in the upper screen 120-1 is preferably 8 to 12 mm, and more preferably 10 mm.
또한, 상기 중단스크린(120-2)에 형성된 복수의 제2통공(121-2) 지름은 4 ~ 6 mm로 상기 상단스크린(120-1)의 제1통공(121-1) 보다 비교적 작게 형성될 수 있는데, 상기 제2통공(121-2) 지름이 4 mm 이하일 경우, 상기 상단스크린(120-1)의 제1통공(121-1)으로 부터 쪼개진 버블이 통과하지 못하여 상기 중단스크린(120-2)의 단면적에 부하가 발생하는 문제점이 있으며, 상기 제2통공(121-2)의 지름이 6 mm 이상일 경우, 상기 상단스크린(120-1)의 제1통공(121-1)으로 부터 쪼개진 버블이, 앞서 상술한 바와 같이 버블의 진행방향인 수직방향 즉, 일직선으로 부유되어 버블을 잘개 쪼개지 못하는 문제점이 있으므로, 상기 중단스크린(120-2)에 형성된 복수의 제2통공(121-2) 지름은 4 ~ 6 mm로 형성되는 것이 바람직하며, 더욱 바람직하게는 5 mm로 형성될 수 있다.In addition, the diameter of the plurality of second through-holes 121-2 formed in the middle screen 120-2 is 4 to 6 mm, which is relatively smaller than the first through-hole 121-1 of the upper screen 120-1. However, when the diameter of the second through hole 121-2 is 4 mm or less, the bubble split from the first through hole 121-1 of the upper screen 120-1 does not pass through the middle screen 120 -2) there is a problem in that a load is generated in the cross-sectional area, and when the diameter of the second through hole 121-2 is 6 mm or more, from the first through hole 121-1 of the upper screen 120-1 As described above, since the split bubble floats in the vertical direction, that is, in a straight line, as described above, the bubble cannot be split well, so the plurality of second through holes 121-2 formed in the middle screen 120-2 ) The diameter is preferably formed of 4 to 6 mm, more preferably may be formed of 5 mm.
아울러, 상기 하단스크린(120-3)에 형성된 복수의 제3통공(121-3) 지름은 1 ~ 3 mm로 상기 중단스크린(120-2)의 제2통공(121-2) 보다 더 작게 형성될 수 있는데, 상기 제3통공(121) 지름이 1 mm 이하일 경우, 상기 중단스크린(120-2)의 제2통공(121-2)으로 부터 쪼개진 버블이 통과하지 못하여 상기 하단스크린(120-3)의 단면적에 부하가 발생하는 문제점이 있으며, 상기 제3통공(121)의 지름이 3 mm 이상일 경우, 상기 중단스크린(120-2)의 제2통공(121-2)으로 부터 쪼개진 버블이, 앞서 상술한 바와 같이 버블의 진행방향인 수직방향 즉, 일직선으로 부유되어 버블을 잘개 쪼개지 못하는 문제점이 있으므로, 상기 하단스크린(120-3)에 형성된 복수의 제3통공(121-3) 지름은 1 ~ 3 mm로 형성되는 것이 바람직하며, 더욱 바람직하게는 2 mm로 형성되어 최종적으로 작은 입자의 버블을 생성할 수 있는 것이다.In addition, the diameter of the plurality of third through-holes 121-3 formed in the lower screen 120-3 is 1-3 mm, which is smaller than the second through-holes 121-2 of the middle screen 120-2. However, when the diameter of the third through hole 121 is 1 mm or less, the bubble split from the second through hole 121-2 of the middle screen 120-2 does not pass through the lower screen 120-3. ), there is a problem that a load occurs in the cross-sectional area, and when the diameter of the third through hole 121 is 3 mm or more, the bubble split from the second through hole 121-2 of the middle screen 120-2 is As described above, since there is a problem in that the bubbles are floated in the vertical direction, that is, in a straight line, and cannot be divided into small pieces, the diameter of the plurality of third through holes 121-3 formed in the lower screen 120-3 is 1 It is preferably formed to be ~ 3 mm, and more preferably formed to be 2 mm so that it is possible to finally create small particles of bubbles.
또한, 상기 상단스크린(120-1)에 형성된 복수의 제1통공(121-1)의 지름은 작게 형성되고, 상기 중단스크린(120-2)에 형성된 복수의 제2통공(121-2)의 지름은 상기 상단스크린(120-1)의 제1통공(121-1) 보다 작게 형성되고, 상기 하단스크린(120-3)에 형성된 복수의 제3통공(121-3)의 지름은 상기 중단스크린(120-2)의 제2통공(121-2) 보다 크게 형성될 수 있다.In addition, the diameter of the plurality of first through-holes 121-1 formed in the upper screen 120-1 is small, and the diameter of the plurality of second through-holes 121-2 formed in the middle screen 120-2 is small. The diameter of the first through hole 121-1 of the upper screen 120-1 is formed smaller than the diameter of the plurality of third through holes 121-3 formed in the lower screen 120-3 is the middle screen. It may be formed larger than the second through hole (121-2) of (120-2).
한편, 상기 상단스크린(120-1)에 형성된 복수의 제1통공(121-1)의 지름은 작게 형성되고, 상기 중단스크린(120-2)에 형성된 복수의 제2통공(121-2)의 지름은 상기 상단스크린(120-1)의 제1통공(121-1) 보다 크게 형성되고, 상기 하단스크린(120-3)에 형성된 복수의 제3통공(121-3)의 지름은 상기 중단스크린(120-2)의 제2통공(121-2) 보다 작게 형성시키는 등 다양하게 각 통공의 지름을 가변시켜 버블의 크기를 다양하게 쪼갤 수 있다.On the other hand, the diameter of the plurality of first through-holes 121-1 formed in the upper screen 120-1 is small, and the diameter of the plurality of second through-holes 121-2 formed in the middle screen 120-2 is small. The diameter of the first through hole 121-1 of the upper screen 120-1 is larger than the diameter of the plurality of third through holes 121-3 formed in the lower screen 120-3 is the middle screen. The size of the bubble can be divided in various ways by varying the diameter of each through hole in various ways, such as making the second through hole 121-2 smaller than the second through hole 121-2 of 120-2.
[실험예 1][Experimental Example 1]
상기 각 제1스크린(120)에 형성되는 복수의 통공(121) 지름 크기에 따른 버블의 평균생성량과 평균크기를 확인하기 위해, 복수의 통공(121) 지름의 크기를 각 제1스크린(120)에 다르게 형성시킨 후, 상기 하단스크린(120-3)의 상부에 설치된 버블측정센서(310)를 통해 10회 측정 후, 그 값을 평균값으로 계산하였다.In order to check the average amount and average size of bubbles according to the diameters of the plurality of through holes 121 formed in each of the first screens 120, the sizes of the diameters of the plurality of through holes 121 are measured on each of the first screens 120. After forming differently, the value was calculated as an average value after measuring 10 times through the bubble measuring sensor 310 installed on the upper part of the lower screen 120-3.
아래의 표 1과 같이, 상기 상단스크린(120-1)의 제1통공(121-1) 지름을 10 mm로 형성시키고, 상기 중단스크린(120-2)의 제2통공(121-2) 지름을 5 mm로 형성시켰으며, 상기 하단스크린(120-3)의 제3통공(121-3) 지름을 2 mm로 형성시켜 실험을 수행하였다.As shown in Table 1 below, the diameter of the first through hole 121-1 of the upper screen 120-1 is 10 mm, and the diameter of the second through hole 121-2 of the middle screen 120-2 is formed. was formed to be 5 mm, and an experiment was performed by forming the diameter of the third through hole 121-3 of the lower screen 120-3 to be 2 mm.
또한, 표 2와 같이, 상기 상단스크린(120-1)의 제1통공(121-1) 지름을 10 mm로 형성시키고, 상기 중단스크린(120-2)의 제2통공(121-2) 지름을 2 mm로 형성시켰으며, 상기 하단스크린(120-3)의 제3통공(121-3) 지름을 5 mm로 형성시켜 실험을 수행하였다.In addition, as shown in Table 2, the diameter of the first through hole 121-1 of the upper screen 120-1 is 10 mm, and the diameter of the second through hole 121-2 of the middle screen 120-2 is formed. was formed to be 2 mm, and the diameter of the third through hole 121-3 of the lower screen 120-3 was formed to be 5 mm, and an experiment was performed.
아울러, 표 3과 같이, 상기 상단스크린(120-1)의 제1통공(121-1) 지름을 5 mm로 형성시키고, 상기 중단스크린(120-2)의 제2통공(121-2) 지름을 10 mm로 형성시켰으며, 상기 하단스크린(120-3)의 제3통공(121-3) 지름을 2 mm로 형성시켜 실험을 수행하였다.In addition, as shown in Table 3, the diameter of the first through hole 121-1 of the upper screen 120-1 is 5 mm, and the diameter of the second through hole 121-2 of the middle screen 120-2 is formed. was formed to be 10 mm, and the diameter of the third through hole 121-3 of the lower screen 120-3 was formed to be 2 mm, and an experiment was performed.
실험조건 1(mm)Experimental condition 1(mm) 버블의 평균생성량(%)Average amount of bubble (%) 버블의 평균크기(um)Average size of bubbles (um)
상단스크린의 제1통공 지름 : 10Diameter of the first hole of the upper screen: 10
81

81

13 ~ 21

13 to 21
중단스크린의 제2통공 지름 : 5Second hole diameter of middle screen: 5
하단스크린의 제3통공 지름 : 23rd hole diameter of bottom screen : 2
실험조건 2(mm)Experimental condition 2(mm) 버블의 평균생성량(%)Average amount of bubble (%) 버블의 평균크기(um)Average size of bubbles (um)
상단스크린의 제1통공 지름 : 10Diameter of the first hole of the upper screen: 10
68

68

18 ~ 26

18 to 26
중단스크린의 제2통공 지름 : 2Second hole diameter of middle screen: 2
하단스크린의 제3통공 지름 : 53rd hole diameter of bottom screen : 5
실험조건 3(mm)Experimental condition 3(mm) 버블의 평균생성량(%)Average amount of bubble (%) 버블의 평균크기(um)Average size of bubbles (um)
상단스크린의 제1통공 지름 : 5Diameter of the first hole of the upper screen: 5
61

61

15 ~ 25

15 to 25
중단스크린의 제2통공 지름 : 10Second hole diameter of middle screen: 10
하단스크린의 제3통공 지름 : 23rd hole diameter of bottom screen : 2
표 1의 실험결과에서 버블의 평균생성량이 약 81 %로 표 2, 3의 대조군 보다 버블 생성량이 많은것을 알 수 있었고, 버블의 평균크기가 약 13 ~ 21 um로 표 2, 3의 대조군 보다 버블 평균크기가 작게 형성됨을 알 수 있었다.이러한 실험결과를 통해, 제2통공(121-2)의 단면적이 상기 제1통공(121-1)의 단면적 보다 작게 형성되고, 상기 제3통공(121-3)의 단면적이 상기 제2통공(121-2)의 단면적 보다 작게 형성시킴으로써, 버블의 평균생성량이 증가되고, 버블의 평균크기가 감소되어 오염된 공기의 정화효율이 상승함을 확인할 수 있었다.In the experimental results of Table 1, the average amount of bubbles generated was about 81%, which was higher than the control group of Tables 2 and 3, and the average size of the bubbles was about 13 ~ 21 um, which was higher than that of the control group of Tables 2 and 3 It was found that the average size was formed to be small. Through these experimental results, the cross-sectional area of the second through-hole 121-2 was formed to be smaller than that of the first through-hole 121-1, and the third through-hole 121- By forming the cross-sectional area of 3) smaller than the cross-sectional area of the second through hole 121-2, it was confirmed that the average production amount of bubbles was increased and the average size of the bubbles was decreased, thereby increasing the purification efficiency of polluted air.
따라서, 각 실시예에 따른, 상기 통공(121)의 지름의 크기를 각 제1스크린(120)마다 가변시키도록 설치됨으로써, 버블의 생성량 증대 및 버블의 입자를 더욱 잘개 쪼갤 수 있는 효과가 있으며, 상기 통공의 지름은 당업자에 의해 변경실시 가능함을 밝혀둔다.Therefore, according to each embodiment, by installing to vary the size of the diameter of the through hole 121 for each first screen 120, there is an effect of increasing the amount of bubble generation and breaking the particles of the bubble more finely, It should be noted that the diameter of the through hole can be changed by those skilled in the art.
본 발명의 또 다른 일 실시예로서, 상기 통공(121)의 형상을 원형 또는 각형 중 어느 하나의 형상으로 제작될 수 있는데, 상기 상단스크린(120-1)에 형성된 복수의 제1통공(121-1)은 원형의 형상으로 형성되고, 상기 중단스크린(120-2)에 형성된 복수의 제2통공(121-2)은 사각형상으로 형성되며, 상기 하단스크린(120-3)에 형성된 복수의 제3통공(121-3)은 삼각형의 형상으로 형성될 수 있는데, 상기 제3통공(121-3)은 한 내각의 크기가 약 36°인 오목정다각형(별 형상)으로 형성되는 것이 바람직하다.As another embodiment of the present invention, the shape of the through hole 121 may be manufactured in any one of a circular shape or a prismatic shape, and a plurality of first through holes 121 - formed in the upper screen 120-1 1) is formed in a circular shape, the plurality of second through holes 121-2 formed in the middle screen 120-2 are formed in a square shape, and the plurality of second through holes 121-2 formed in the lower screen 120-3 are formed in a circular shape. The three through-holes 121-3 may be formed in a triangular shape. Preferably, the third through-holes 121-3 are formed in a concave regular polygon (star shape) having an interior angle of about 36°.
이와 같이, 상기 통공(121)의 형상을 각 제1스크린(120)마다 한 내각의 크기를 각기 다르게 형성시킴으로써, 버블의 생성량 증대 및 버블의 입자를 더욱 잘개 쪼갤 수 있는 효과가 있다.In this way, by forming the shape of the through hole 121 so that the size of one inner shell is different for each first screen 120, there is an effect of increasing the amount of bubbles generated and breaking the particles of the bubble more finely.
[실험예 2][Experimental Example 2]
상기 각 제1스크린(120)에 형성되는 복수의 통공(121) 형상에 따른 버블의 평균생성량과 평균크기를 확인하기 위해, 복수의 통공(121) 형상을 각 제1스크린(120)에 다르게 형성시킨 후, 상기 하단스크린(120-3)의 상부에 설치된 버블측정센서(310)를 통해 10회 측정 후, 그 값을 평균값으로 계산하였다.In order to check the average amount and average size of bubbles according to the shapes of the plurality of through holes 121 formed in each of the first screens 120 , the shapes of the plurality of through holes 121 are differently formed in each of the first screens 120 . After measuring 10 times through the bubble measuring sensor 310 installed on the upper part of the lower screen 120-3, the value was calculated as an average value.
아래의 표 4과 같이, 상기 상단스크린(120-1)의 제1통공(121-1) 형상을 원형으로 형성시키고, 상기 중단스크린(120-2)의 제2통공(121-2) 형상을 사각형으로 형성시켰으며, 상기 하단스크린(120-3)의 제3통공(121-3) 형상을 삼각형으로 형성시켜 실험을 수행하였다.As shown in Table 4 below, the shape of the first through hole 121-1 of the upper screen 120-1 is formed in a circular shape, and the shape of the second through hole 121-2 of the middle screen 120-2 is formed in a circular shape. It was formed in a square shape, and the experiment was performed by forming the shape of the third through hole 121-3 of the lower screen 120-3 into a triangle.
또한, 표 5와 같이, 상기 상단스크린(120-1)의 제1통공(121-1) 형상을 원형으로 형성시키고, 상기 중단스크린(120-2)의 제2통공(121-2) 형상을 사각형으로 형성시켰으며, 상기 하단스크린(120-3)의 제3통공(121) 형상을 삼각형으로 형성시켜 실험을 수행하였다.In addition, as shown in Table 5, the shape of the first through hole 121-1 of the upper screen 120-1 is formed in a circular shape, and the shape of the second through hole 121-2 of the middle screen 120-2 is formed in a circular shape. It was formed in a rectangle, and the experiment was performed by forming the shape of the third through hole 121 of the lower screen 120-3 in a triangle.
아울러, 표 6과 같이, 상기 상단스크린(120-1)의 제1통공(121-1) 형상을 사각형으로 형성시키고, 상기 중단스크린(120-2)의 제2통공(121-2) 형상을 삼각형으로 형성시켰으며, 상기 하단스크린(120-3)의 제3통공(121-3) 형상을 원형으로 형성시켜 실험을 수행하였다.In addition, as shown in Table 6, the shape of the first through hole 121-1 of the upper screen 120-1 is formed in a square shape, and the shape of the second through hole 121-2 of the middle screen 120-2 is formed. It was formed in a triangle, and the experiment was performed by forming the shape of the third through hole 121-3 of the lower screen 120-3 in a circular shape.
실험조건 1Experimental condition 1 버블의 평균생성량(%)Average amount of bubble (%) 버블의 평균크기(um)Average size of bubbles (um)
상단스크린의 제1통공 형상 : 원형The shape of the first hole of the upper screen: circular
86

86

11 ~ 18

11 to 18
중단스크린의 제2통공 형상 : 사각형Second through hole shape of middle screen: Rectangle
하단스크린의 제3통공 형상 : 삼각형3rd hole shape of bottom screen: triangle
실험조건 2Experiment condition 2 버블의 평균생성량(%)Average amount of bubble (%) 버블의 평균크기(um)Average size of bubbles (um)
상단스크린의 제1통공 형상 : 원형The shape of the first hole of the upper screen: circular
78

78

15 ~ 22

15 to 22
중단스크린의 제2통공 형상 : 삼각형Second through hole shape of middle screen: triangle
하단스크린의 제3통공 형상 : 사각형The shape of the third hole of the lower screen: Rectangle
실험조건 3Experiment condition 3 버블의 평균생성량(%)Average amount of bubble (%) 버블의 평균크기(um)Average size of bubbles (um)
상단스크린의 제1통공 형상 : 사각형The shape of the first hole of the upper screen: Rectangle
57

57

18 ~ 31

18 to 31
중단스크린의 제2통공 형상 : 삼각형Second through hole shape of middle screen: triangle
하단스크린의 제3통공 형상 : 원형3rd hole shape of bottom screen: round
표 4, 5의 실험결과에서 버블의 평균생성량이 약 86 %와, 78 %로, 표 6의 대조군 보다 버블 생성량이 많은것을 알 수 있었고, 버블의 평균크기가 약 11 ~ 18 um, 15 ~ 22 um으로 표 6의 대조군 보다 버블 평균크기가 작게 형성됨을 알 수 있었다.이러한 실험결과를 통해, 상기 제2통공(121-2)의 한 내각 보다 상기 제3통공(121-3)의 한 내각이 더 작게 형성되는 것과, 상기 제2통공(121-2)의 한 내각 보다 상기 제3통공(121-3)의 한 내각이 더 크게 형성되는 것이 바람직하다.In the experimental results of Tables 4 and 5, the average amount of bubbles produced was about 86% and 78%, which was found to be higher than that of the control group in Table 6, and the average size of the bubbles was about 11 ~ 18 um, 15 ~ 22 It was found that the average bubble size was formed smaller than that of the control group in Table 6 in um. Through these experimental results, one interior angle of the third through hole 121-3 was higher than one interior angle of the second through hole 121-2. It is preferable that it is formed smaller, and that one inner angle of the third through hole 121-3 is formed to be larger than one inner angle of the second through hole 121-2.
즉, 상기 제1통공(121-1) 형상을 원형으로 형성시켜, 비교적 스무스하게 1차 버블을 생성하는 것이 바람직하고, 상기 제2통공(121-2)과, 제3통공(121-3)의 형상을 각형, 오목정다각형(별 형상) 등의 형상으로 제작하여, 부상되는 버블에 순차적으로 마찰면적을 넓힘과 동시에, 버블의 평균생성량이 증가되고, 버블의 평균크기가 감소되어 공기의 정화효율이 상승됨을 확인할 수 있었다.That is, it is preferable to form the first through hole 121-1 in a circular shape to generate a relatively smooth primary bubble, and the second through hole 121-2 and the third through hole 121-3. By producing the shape of a square, concave polygon (star shape), etc., the friction area is sequentially increased to the floating bubbles, and at the same time, the average amount of bubbles is increased and the average size of the bubbles is decreased, so that the air purification efficiency It could be seen that this increased.
따라서, 각 실시예에 따른, 상기 각 통공(121)의 형상을 각 제1스크린(120)마다 가변시키도록 설치됨으로써, 버블의 생성량 증대 및 버블의 입자를 더욱 잘개 쪼갤 수 있는 효과가 있으며, 상기 통공(121)의 형상은 당업자에 의해 변경실시 가능함을 밝혀둔다.Therefore, according to each embodiment, by installing the shape of each through hole 121 to vary for each first screen 120, there is an effect of increasing the amount of bubble generation and breaking the particles of the bubble more finely. It should be noted that the shape of the through hole 121 can be changed by those skilled in the art.
도 5에 도시된 바와 같이, 상기 각 제1스크린(120)의 두께는 비교적 두껍게 제작되어 아치형상으로 형성될 수 있다.As shown in FIG. 5 , the thickness of each of the first screens 120 may be relatively thick and formed in an arcuate shape.
이때, 아치형상은 서로 동일한 방향으로 설치되거나, 마주보게 설치될 수 있어 버블의 수직방향으로의 부상을 방지하여 정화수(W)와의 접촉면적을 넓힐 수 있다.At this time, the arc shape may be installed in the same direction or facing each other to prevent the bubbles from floating in the vertical direction, thereby increasing the contact area with the purified water (W).
즉, 상기 각 제1스크린(120)을 아치형상으로 제작될 경우, 상기 통공(121)은 상기 제1스크린(120)의 단면과 수직되도록 형성됨으로써 버블이 방사향으로 분사되어 정화수(W)와의 접촉면적을 넓힘과 동시에 체류시간을 늘릴 수 있어 버블의 생성량 및 크기가 증가되어 공기의 정화효율을 향상시킬 수 있다.That is, when each of the first screens 120 is manufactured in an arcuate shape, the through holes 121 are formed so as to be perpendicular to the cross section of the first screen 120 so that bubbles are radially sprayed with the purified water W. By increasing the contact area and increasing the residence time at the same time, the amount and size of bubbles can be increased to improve the air purification efficiency.
아울러, 상기 제1정화유닛(100) 내측에는 버블유도돌기(122)가 설치되는데, 상기 버블유도돌기(122)는 부상되는 버블이 상기 제1정화유닛(100) 측으로 설치될 경우, 돌출된 상기 버블유도돌기(122)와 접촉 후 상기 통공(121) 측으로 버블을 유도할 수 있다.In addition, a bubble guiding protrusion 122 is installed inside the first purifying unit 100, and the bubble guiding protrusion 122 protrudes when the floating bubble is installed toward the first purifying unit 100. After contact with the bubble guide protrusion 122 , the bubble may be guided toward the through hole 121 .
상기 버블유도돌기(122)는 삼각형 또는 역삼각형 등으로 제작되어 버블을 통공(121) 측으로 유도함과 동시에, 정화수(W) 내에서의 잔류되는 체류시간을 증대시킬 수 있는 것이다.The bubble guide protrusion 122 is made of a triangle or an inverted triangle to guide the bubbles toward the through hole 121 and at the same time increase the remaining residence time in the purified water W.
상기 제1공기배출부(140)는, 상기 제1공기정화유닛(100) 상부에 설치되어 보조정화유닛(130)을 통해 공기를 정화시킨 후, 이하 설명될 제2정화유닛(200) 측으로 정화된 공기를 이송시킬 수 있다.The first air discharge unit 140 is installed on the first air purification unit 100 to purify the air through the auxiliary purification unit 130, and then purifies the air toward the second purification unit 200 to be described below. air can be transported.
이때, 상기 보조정화유닛(130)은 오존/음이온공급기, 이산화염소공급기, 집진기, 냄새흡착기 중 어느 하나 이상을 선택하여 설치될 수 있다.In this case, the auxiliary purification unit 130 may be installed by selecting one or more of an ozone/anion supply unit, a chlorine dioxide supply unit, a dust collector, and an odor adsorber.
상기 오존/음이온공급기는, 산화력을 갖는 오존 및 음이온 발산에 의해 일부 정화되어 승강된 버블이 정화수(W) 수면에서 쪼개짐과 동시에 악취제거 및 살균시켜 오염된 공기를 정화시킬 수 있는 보조수단으로 활용 가능하다.The ozone/anion supply device is partially purified by the emission of ozone and anion having oxidizing power, and the bubbles are split at the surface of the purified water (W), and at the same time, it is possible to use it as an auxiliary means to purify the polluted air by removing and sterilizing the odor. do.
상기 이산화염소공급기는, 이산화염소를 정화수(W) 측과, 공기정화공간(131) 측으로 공급되도록 설치되며, 주기적으로 공급 즉, 타이머에 의해 공급되거나 상기 정화수(W)의 오염농도를 별도로 측정하여 상기 정화수(W)의 오염농도에 따라 이산화염소의 투입량을 선정한 후, 투입시켜 상기 정화수(W) 내부의 세균과 바이러스 등을 사멸시킴으로써 상기 정화수(W)와 오염된 공기를 정화시킬 수 있는 보조수단으로 활용 가능하다.The chlorine dioxide supplier is installed to supply chlorine dioxide to the purified water (W) side and to the air purification space 131 side, and is periodically supplied, that is, supplied by a timer or by separately measuring the contamination concentration of the purified water (W). Auxiliary means capable of purifying the purified water (W) and the contaminated air by selecting the input amount of chlorine dioxide according to the contamination concentration of the purified water (W) and then injecting it to kill the bacteria and viruses inside the purified water (W) can be used as
상기 전열기는, 외부의 날씨가 습할 경우, 열을 가열하여 상기 정화수(W)의 온도를 일정온도로 조정함으로써, 상기 정화수(W) 내부에 존재하고 있는 미생물의 증식을 도모하여 정화수(W)의 수질을 개선시킬 수 있는 보조수단으로 활용 가능하다.When the external weather is humid, the electric heater heats heat to adjust the temperature of the purified water W to a constant temperature, thereby promoting the proliferation of microorganisms present in the purified water W, It can be used as an auxiliary means to improve water quality.
상기 냄새흡착기는, 상기 오존/음이온공급기와 이산화염소공급기와 더불어 악취와를 제거하여 오염된 공기를 정화시킬 수 있는 보조수단으로 활용 가능하다.The odor absorber, together with the ozone/anion supply unit and chlorine dioxide supply unit, can be utilized as an auxiliary means for purifying polluted air by removing odors.
상기 냄새흡착기와 더불어 향기분사장치가 더 설치될 수 있는데, 이러한 상기 향기분사장치는 공기정화 시 발생되는 악취에 천연향료인 아로마향, 피톤치드 등을 주기적으로 분사시켜 악취가 나는 것을 방지하는 보조수단으로 활용 가능하다.A fragrance spraying device may be further installed in addition to the odor absorber, and the perfume spraying device periodically sprays natural fragrances, such as aroma incense, phytoncide, etc. available for use
또한, 상기 제1공기배출부(140) 일측에 먼지제거필터가 더 설치될 수 있는데, 상기 먼지제거필터는 황토세라믹, 활성탄 등의 필터가 설치되어 상기 정화수(W) 수면으로 부상된 버블이 터지면서 발생되는 먼지와 분진 등을 제거할 수 있는 보조수단으로 활용 가능하다.In addition, a dust removal filter may be further installed on one side of the first air discharge unit 140, and the dust removal filter is equipped with filters such as ocher ceramics and activated carbon, so that the bubbles floated to the surface of the purified water (W) burst. It can be used as an auxiliary means to remove dust, dust, etc.
한편, 상기 제1공기배출부(140) 일측에 집진장치가 더 설치될 수 있는데, 상기 집진장치는 상기 정화수(W) 수면으로 부상된 버블이 터지면서 발생되는 먼지나 분진, 라듐, 다이옥신 등의 환경 오염물질을 집진하여 제거하는 보조수단으로 활용 가능하다.On the other hand, a dust collector may be further installed on one side of the first air discharge unit 140, and the dust collector is generated by bursting bubbles floating to the surface of the purified water (W). It can be used as an auxiliary means to collect and remove environmental pollutants.
아울러, 상기 제1공기배출부(140) 일측에는 UV소독기가 더 설치될 수 있는데, 상기 UV소독기는 상기 정화수(W) 정화수(W) 내부와, 상기 정화수(W) 수면으로 부상된 버블이 터지면서 발생되는 공기를 살균하는 보조살균수단으로 활용 가능하다.In addition, a UV sterilizer may be further installed on one side of the first air discharge unit 140, and the UV sterilizer is the purified water (W) inside the purified water (W) and the bubbles floating to the surface of the purified water (W) burst. It can be used as an auxiliary sterilization means to sterilize the generated air.
이러한, 상기 제1공기배출부(140)에서는 정화된 공기를 상기 제2정화유닛(200) 일측에 설치된 제2공기공급부(210) 측으로 이송함으로써 청정한 공기를 배출할 수 있다. The first air discharge unit 140 may discharge the purified air by transferring the purified air to the second air supply unit 210 installed on one side of the second purification unit 200 .
아울러, 상기한 바와 같이 공기정화과정이 끝나게 되면 일정시간 대기시간을 갖게 되는데, 상기 정화수(W)에 혼합된 유해물질과 이물질 등을 가라앉혀, 상기 제1정화유닛(100) 내측 하부면에 일측방향으로 경사지게 설치된 슬러지배출부(150)를 통해 슬러지를 손쉽게 배출할 수 있다.In addition, when the air purification process is completed as described above, there is a waiting time for a certain amount of time, and the harmful substances and foreign substances mixed in the purified water W are settled, and one side is placed on the inner lower surface of the first purification unit 100. The sludge can be easily discharged through the sludge discharge unit 150 installed inclined in the direction.
상기 슬러지배출부(150)는 일측방향으로 경사지게 설치될 수도 있지만, 상기 제1정화유닛(100) 하부를 깔데기 형상으로 제작하여, 상기 슬러지를 중앙측으로 포집하여 하부 측으로 슬러지를 배출할 수 있다.The sludge discharge unit 150 may be installed inclined in one direction, but the lower part of the first purification unit 100 is manufactured in a funnel shape to collect the sludge toward the center and discharge the sludge to the lower side.
상기 제2정화유닛(200)의 세부 구성은, 앞서 설명한 제1정화유닛(100)과 동일하므로 이하 설명은 생략한다.Since the detailed configuration of the second purification unit 200 is the same as that of the first purification unit 100 described above, the following description will be omitted.
또한, 상기 제2정화유닛(200)에서 정화된 공기는 제2공기배출부(240)를 통해 외부로 배출되거나, 상기 제1공기공급부(110) 측과 별도로 연결된 바이패스(by-pass)관을 통해 공급시킴으로써 오염된 공기를 재 정화시킬 수 있다.In addition, the air purified by the second purification unit 200 is discharged to the outside through the second air discharge unit 240 , or a bypass pipe connected to the side of the first air supply unit 110 separately. It is possible to re-purify the polluted air by supplying it through the
아울러, 상기 제1, 2정화유닛(100, 200)의 하부에는 방진장치(미도시)가 더 구비되어 지진이나 외력의 발생 시, 상기 제1, 2정화유닛(100, 200)의 파손을 방지할 수도 있다.In addition, an anti-vibration device (not shown) is further provided under the first and second purification units 100 and 200 to prevent damage to the first and second purification units 100 and 200 when an earthquake or external force occurs. You may.
이러한, 상기 제1, 2정화유닛(100, 200)은 제어유닛(300)을 통해 제어될 수 있다.The first and second purification units 100 and 200 may be controlled through the control unit 300 .
본 발명의 일 실시예로, 상기 제어유닛(300)은, 상기 제1, 2정화유닛(100, 200)의 일측에 설치되는 대기질측정센서(330)를 더 포함하고, 상기 대기질측정센서(330)에서 외부공기의 오염도를 실시간으로 측정하고, 오염도가 일정값 이상이면 상기 제1, 2정화유닛(100, 200)을 자동으로 구동되도록 제어될 수 있다.In an embodiment of the present invention, the control unit 300 further includes an air quality measurement sensor 330 installed on one side of the first and second purification units 100 and 200, and the air quality measurement sensor In step 330, the degree of pollution of the outside air is measured in real time, and when the degree of pollution is equal to or greater than a predetermined value, the first and second purification units 100 and 200 may be controlled to be automatically driven.
더욱 상세하게는, 상기 제어유닛(300)은 상기 대기질측정센서(330)에 측정된 오염도에 따라 상기 제1, 2정화유닛(100, 200)을 자동으로 구동시킬 수 있는데, 외부공기가 일정값 이하일 경우, 외부공기를 정상범위로 판단하여 상기 제1, 2정화유닛(100, 200)의 구동을 제한하고, 외부공기가 일정값 이상일 경우, 외부공기를 비정상범위로 판단하여 상기 제1, 2정화유닛(100, 200)을 자동으로 구동시켜 외부공기를 정화시키게 되는 것이다.More specifically, the control unit 300 may automatically drive the first and second purification units 100 and 200 according to the pollution level measured by the air quality measurement sensor 330 , and the outside air is constant. When the value is less than the value, the outside air is determined to be within the normal range and the first and second purification units 100 and 200 are restricted from driving. 2 The purification units 100 and 200 are automatically driven to purify the outside air.
한편, 상기 제어유닛(300)은, 상기 제1, 2정화유닛(100, 200)의 일측에 설치되는 버블측정센서(310)를 더 포함하고, 버블의 생성량 및 버블의 평균크기를 실시간으로 측정하게 된다.Meanwhile, the control unit 300 further includes a bubble measurement sensor 310 installed on one side of the first and second purification units 100 and 200, and measures the amount of bubbles generated and the average size of the bubbles in real time. will do
즉, 상기 버블측정센서(310)에서 버블의 생성량 및 버블의 평균크기를 측정하고, 측정된 버블의 생성량 데이터와 버블의 평균크기 데이터를 상기 제어유닛(300)에 제공하게 된다.That is, the bubble measurement sensor 310 measures the amount of generated bubbles and the average size of bubbles, and provides the measured data on the amount of generated bubbles and data on the average size of bubbles to the control unit 300 .
더 나아가, 상기 제어유닛(300)과 연동되는 분석서버부(400)를 더 포함할 수 있는데, 상기 분석서버부(400)는, 상기 대기질측정센서(330)에서 측정된 외부공기의 오염도 데이터 및 상기 버블측정센서(310)에서 측정된 버블의 생성량 및 버블의 평균크기 데이터를 비교하여 상기 오염된 공기의 공급량을 제어할 수 있다.Furthermore, it may further include an analysis server unit 400 that is interlocked with the control unit 300, the analysis server unit 400, the pollution degree data of the outside air measured by the air quality measurement sensor (330) And by comparing the bubble generation amount and the average size data of the bubble measured by the bubble measurement sensor 310, it is possible to control the supply amount of the contaminated air.
여기서, 상기 제어유닛(300)과 연동되는 상기 분석서버부(400)는 통신부(500)를 매개로 유무선 통신을 수행할 수 있다.Here, the analysis server unit 400 interworking with the control unit 300 may perform wired/wireless communication via the communication unit 500 .
상기 통신부(500)는 상기 대기질측정센서(330)에서 측정된 외부공기의 오염도 데이터 및 상기 버블측정센서(310)에서 측정된 버블의 생성량 및 버블의 평균크기 데이터 등을 관리자에게 유무선 통신을 통해 실시간으로 제공할 수도 있다.The communication unit 500 transmits the pollution degree data of the outside air measured by the air quality measurement sensor 330 and the bubble generation amount and average size data of the bubbles measured by the bubble measurement sensor 310 to the manager through wired/wireless communication. It can also be provided in real time.
이러한, 상기 통신부(500)는 무선통신 네트워크가 가능한 하나 이상의 통신모듈을 포함할 수 있으며, 상기 통신부(500)는 무선 통신 또는 근거리 통신 모듈 또는 위치정보 모듈 등을 포함할 수 있다.The communication unit 500 may include one or more communication modules capable of a wireless communication network, and the communication unit 500 may include a wireless communication or short-range communication module or a location information module.
예를 들어, 무선 통신 모듈은, 무선 인터넷 접속을 위한 모듈을 말하는 것으로, 무선 인터넷 모듈은 상기 제1, 2정화유닛(100, 200)의 일측에 내장 또는 외장되어 설치될 수 있다.For example, the wireless communication module refers to a module for wireless Internet access, and the wireless Internet module may be installed inside or outside one side of the first and second purification units 100 and 200 .
무선 인터넷 기술로는 WLAN(Wireless LAN), WiFi(Wireless Fidelity), Wibro(Wireless broadband), Wimax(World interoperability for Microwave Access), HSDPA(High Speed Downlink Packet Access) 등이 이용될 수 있다.As the wireless Internet technology, WLAN (Wireless LAN), WiFi (Wireless Fidelity), Wibro (Wireless broadband), Wimax (World interoperability for Microwave Access), HSDPA (High Speed Downlink Packet Access), etc. may be used.
또한, 근거리 통신 모듈은 근거리 통신을 위한 모듈을 말하는 것으로, 상기 제1, 2정화유닛(100, 200)의 일측에 내장 또는 외장되어 설치될 수 있다.In addition, the short-distance communication module refers to a module for short-range communication, and may be built-in or externally installed on one side of the first and second purification units 100 and 200 .
근거리 통신 기술로는 블루투스(Bluetooth), RFID(RadioFrequency Identification), 적외선 통신(IrDA, Infrared Data Association), UWB(Ultra Wideband), ZigBee, WiHD, WiGig 등이 이용될 수 있다.As the short-range communication technology, Bluetooth, Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra Wideband (UWB), ZigBee, WiHD, WiGig, etc. may be used.
이러한, 상기 통신부(500)를 통해 상기 대기질측정센서(330)에서 측정된 외부공기의 오염도 데이터 및 상기 버블측정센서(310)에서 측정된 버블의 생성량 및 버블의 평균크기 데이터를 외부(예를 들면, 제어유닛 또는 분석서버부 등)와 유무선으로 수신하게 될 때, 이를 안전하게 보안하기 위해, 유무선 통신에 적합한 암호화를 사용할 수 있다.Such, through the communication unit 500, the pollution degree data of the outside air measured by the air quality measurement sensor 330 and the bubble generation amount and the average size data of the bubbles measured by the bubble measurement sensor 310 to the outside (for example, For example, when receiving with a control unit or an analysis server unit) and wirelessly, encryption suitable for wired/wireless communication may be used to secure it safely.
더욱 바람직하게는, 상기 암호화는 이러한 임베디드 컴퓨팅 환경에서 적합한 경량 해시 함수(lightweight hash function)를 사용하는 것이 바람직하다.More preferably, the encryption uses a lightweight hash function suitable in such an embedded computing environment.
상기 경량 해시 함수란, SHA-3와 같은 표준적인 암호화 해시 알고리즘에서 일부 컴퓨팅 파워가 높게 소요되는 특징들을 제외하고도 송신 또는 수신되는 데이터의 무결성을 보장할 수 있도록 설계된 컴퓨팅 파워가 상대적으로 낮게 소모되는 해시 함수(일방향 함수)이다.The lightweight hash function is a function that consumes relatively low computing power designed to ensure the integrity of transmitted or received data, excluding features that require high computing power in standard cryptographic hash algorithms such as SHA-3. It is a hash function (one-way function).
보다 구체적으로는, 이러한 경량 해시함수 중에서도 키가 없이(unkeyed) 데이터의 치환(permutation)이 가능하도록 하는 스폰지(Sponge) 알고리즘을 사용하는 것이 바람직하다.More specifically, it is preferable to use a sponge algorithm that enables permutation of data without a key (unkeyed) among these lightweight hash functions.
좀더 구체적으로 스폰지는 원본 메시지(여기서는 랜덤키의 원본 데이터)를 일정한 크기로 만든 뒤(padding), 이를 키의 생성자만 알 수 있는 특정한 기준 크기(예를 들어 특정 비트 사이즈로 분할된 원본 메시지)로 복수 개로 분할한 뒤, 복수 개로 분할된 데이터(분할된 원본 메시지)의 후단에 랜덤한 데이터들을 여러 업데이트 함수를 활용하여 교환하고, 반대편에서는 이미 알고 있는 기준 크기를 활용하여 복호화도록 구현된다.More specifically, the sponge makes the original message (here, the original data of the random key) a certain size (padding), and then converts it to a specific standard size (for example, the original message divided into specific bit sizes) that only the creator of the key can know. After splitting into a plurality of pieces, random data is exchanged using several update functions at the rear end of the split data (segmented original message), and the other side is implemented to decode using a known reference size.
즉, 이러한 경량 해시함수를 활용하여, 해시함수의 보안성을 확보하면서, 일반적인 해시함수의 사용보다 상대적으로 적은 컴퓨팅 파워가 필요하도록 하여 결과적으로 전력소모를 적게하고, 오래 사용하도록 할 수 있는 것이다.That is, by utilizing such a lightweight hash function, while securing the security of the hash function, it requires relatively less computing power than the use of a general hash function, resulting in reduced power consumption and long-term use.
더 나아가, 상기 제어유닛(300)은, 인공지능 알고리즘을 통해 제어될 수 있다.Furthermore, the control unit 300 may be controlled through an artificial intelligence algorithm.
이러한, 상기 제어유닛(300)은 상술된 상기 버블측정센서(310)와 상기 공기오염측정센서(320) 및 상기 대기질측정센서(330)와 연동되는데, 특히, 상기 대기질측정센서(330)로 부터 외부공기의 오염도(미세먼지 등의 농도)를 모니터링하고 측정된 외부공기의 오염도를 수신하게 되는데, 상기 인공지능 알고리즘은 특히, 상기 대기질측정센서(330)에서 외부공기의 오염도 정보(먼지, 세균, 바이러스, 일산화탄소, VOCS, 동물의 털 등)를 수집한 후 오염도에 따라 상기 제1, 2정화유닛(100, 200)을 구동하고 상기 오염된 공기의 공급량을 제어할 수 있다.Such, the control unit 300 is interlocked with the above-described bubble measurement sensor 310, the air pollution measurement sensor 320 and the air quality measurement sensor 330, in particular, the air quality measurement sensor 330 The degree of pollution of the outside air (concentration of fine dust, etc.) is monitored and the measured degree of pollution of the outside air is received from the , bacteria, viruses, carbon monoxide, VOC S , animal hair, etc.) may be collected and then the first and second purification units 100 and 200 may be driven according to the degree of contamination and the supply amount of the contaminated air may be controlled.
보다 구체적으로, 상기 대기질측정센서(330)는, PM 1.0 / 2.5 / 10.0에 해당하는 농도 데이터를 시계열적으로 수신하여, 저장하고, 저장된 데이터를 인공 신경망을 이용하여 처리함할 수 있다. 보다 구체적으로 상기 인공 신경망은 시계열적으로 축적된 데이터의 처리에 적합한 LSTM(Long Short Term Memory) 신경망 모델을 사용하여, 외부공기의 오염도를 추정하고, 동시에 외란과 같은 노이즈의 패턴의 추정에 효과적인 SVM 알고리즘을 활용함으로써 외란과 같은 노이즈의 유무를 효과적으로 추정하는 것이 바람직하다.More specifically, the air quality measurement sensor 330 may receive and store the concentration data corresponding to PM 1.0 / 2.5 / 10.0 in time series, and process the stored data using an artificial neural network. More specifically, the artificial neural network uses an LSTM (Long Short Term Memory) neural network model suitable for processing time-series accumulated data to estimate the pollution level of the outside air and at the same time, the SVM effective for estimating the pattern of noise such as disturbance. It is desirable to effectively estimate the presence or absence of noise such as disturbance by using an algorithm.
따라서, 순간적인 외부의 노이즈 등에 강건한 형태의 데이터 처리가 가능하고, 결과적으로 제어유닛(300)을 통해 상기 제1, 2정화유닛(100, 200)을 구동하고 상기 오염된 공기의 공급량을 상황에 따라 적응적으로 제어할 수 있다.Therefore, it is possible to process data in a robust form such as instantaneous external noise, and as a result, the first and second purification units 100 and 200 are driven through the control unit 300 and the supply amount of the contaminated air is adjusted according to the situation. can be adaptively controlled.
본 발명의 또 다른 일 실시예로, 상기 제어유닛(300)은 인공지능 알고리즘을 이용하여 제1, 2정화유닛(100, 200)의 동작 및 상기 제1, 2정화유닛(100, 200) 일측에 설치된 버블측정센서(310)와, 공기오염측정센서(320)와 연동되어 버블의 평균생성량 및 버블의 평균크기 등을 모니터링하여 측정된 버블의 평균생성량 및 버블의 평균크기를 수신하게 되는데, 상기 인공지능 알고리즘은 상기 버블측정센서(310)에서 버블의 평균생성량 및 버블의 평균크기 데이터를 수집하고, 공기오염측정센서(320)에서 상기 제1, 2공기배출부(140. 240) 측에서 검출되는 공기의 오염정도 및 오염농도 등의 데이터를 수집한 후 버블의 평균생성량 및 평균크기, 공기의 오염정도 및 오염농도에 따라 상기 제1, 2공기공급부(110, 210)의 펌프나 송풍기의 작동유무와 작동세기, 보조정화유닛(130, 230)의 가동 및 상기 제2공기배출부(240)에서 제1공기공급부(110) 측과 연결된 바이패스(by-pass)관으로의 유입 등을 제어할 수 있다.In another embodiment of the present invention, the control unit 300 uses an artificial intelligence algorithm to operate the first and second purification units 100 and 200 and the first and second purification units 100 and 200 on one side. In conjunction with the bubble measurement sensor 310 and the air pollution measurement sensor 320 installed in the The artificial intelligence algorithm collects the average amount of bubbles and the average size of bubbles from the bubble measurement sensor 310, and the air pollution measurement sensor 320 detects the first and second air outlets 140. 240 from the side. After collecting data such as the pollution degree and pollution concentration of the air, the pumps or blowers of the first and second air supply units 110 and 210 are operated according to the average amount and average size of bubbles, the pollution degree and the pollution concentration of the air. Presence and operating strength, the operation of the auxiliary purification units 130 and 230, and the inflow from the second air outlet 240 to the bypass pipe connected to the first air supply 110 are controlled. can do.
보다 구체적으로, 상기 버블측정센서(310)와, 공기오염측정센서(320)를 통해, 버블의 생성량 및 버블의 크기의 평균값을 측정한 데이터를 시계열적으로 수신하여, 저장하고, 저장된 데이터를 인공 신경망을 이용하여 처리할 수 있다. 보다 구체적으로 상기 인공 신경망은 시계열적으로 축적된 데이터의 처리에 적합한 RNN(Recurrent Neural Networks) 신경망 모델을 사용하여, 버블의 생성량 및 버블의 크기의 평균값을 추정하는 것이 바람직하다.More specifically, through the bubble measurement sensor 310 and the air pollution measurement sensor 320, data obtained by measuring the average value of the amount of bubbles and the size of bubbles are time-series received, stored, and the stored data is artificially processed. It can be processed using neural networks. More specifically, the artificial neural network preferably uses a Recurrent Neural Networks (RNN) neural network model suitable for processing time-series accumulated data to estimate the average value of the bubble generation amount and bubble size.
더욱 바람직하게는 RNN이 재귀적(recurrent)한 트레이닝이 필요하여 너무 많은 트레이닝 코스트(목표 추정도를 맞출 수 있도록 학습에 필요한 시간 등)가 너무 높다는 점에서, 이를 보완할 수 있도록 주의(attention) 메카니즘을 추가적으로 사용하는 것이 바람직하다. More preferably, an attention mechanism to compensate for the fact that RNN requires recurrent training, so that too much training cost (such as the time required for learning to meet the target estimate) is too high. It is preferable to additionally use
주의 메카니즘의 경우, 입력 시계열 데이터를 인코딩(encoder)하고, 인코딩(encoding)된 데이터를 벡터화한 뒤, 주의 메카니즘을 거치고 나서, 이러한 벡터를 디코딩(decoding)하는 것을 특징으로 한다.The attention mechanism is characterized by encoding input time-series data, vectorizing the encoded data, passing through the attention mechanism, and then decoding this vector.
좀더 구체적으로, 주의 메카니즘의 경우, 인코딩된 벡터들에 적절한 가중치(weight)을 곱하고, 이후 softmax 등의 정규화 함수를 거치도록 구현될 수 있다.More specifically, in the case of the attention mechanism, it may be implemented to multiply the encoded vectors by an appropriate weight, and then pass through a normalization function such as softmax.
결과적으로, 이렇게 RNN과 주의 메카니즘을 퉁해 학습한 데이터의 경우, 우리가 포커스하는 학습 데이터에 좀더 집중할 수 있도록 하여, 전체 신경망 학습의 코스트와 성능을 적절히 유지시킬 수 있도록 한다.As a result, in the case of data learned through the RNN and attention mechanism, we can focus more on the training data we focus on, so that the cost and performance of the entire neural network training can be properly maintained.
따라서, 순간적인 외부의 노이즈 등에 강건한 형태의 데이터 처리가 가능하고, 결과적으로 상기 제어유닛(300)을 통해 제1, 2정화유닛(100, 200)의 동작 및 상기 제1, 2정화유닛(100, 200) 일측에 설치된 버블측정센서(310)와, 공기오염측정센서(320) 등에서 측정된 데이터를 상황에 따라 적응적으로 제어할 수 있다.Therefore, data processing in a robust form to instantaneous external noise and the like is possible, and as a result, the operation of the first and second purification units 100 and 200 and the first and second purification units 100 through the control unit 300 , 200) It is possible to adaptively control the data measured by the bubble measuring sensor 310 and the air pollution measuring sensor 320 installed on one side according to the situation.
아울러, 상기 제어유닛(300)은 상술된 인공지능 알고리즘을 이용하여 상기 제1, 2정화유닛(100, 200)에 담수된 정화수(W)의 오염도를 측정하고, 측정된 정화수(W)의 오염도가 기준치 이상일 경우, 상기 제1, 2정화유닛(100, 200)의 일측에 구비되는 배출밸브의 개폐를 제어하여 정화수(W)를 자동 배출할 수 있고, 상기 제1, 2정화유닛(100, 200)의 일측에 구비되는 공급밸브의 개폐를 제어하여 배출된 정화수(W)의 양만큼 상기 제1, 2정화유닛(100, 200)의 내부로 자동 충전할 수도 있다.In addition, the control unit 300 measures the contamination level of the purified water (W) freshwater in the first and second purification units (100, 200) using the above-described artificial intelligence algorithm, and the measured contamination level of the purified water (W) When is greater than the reference value, the first and second purification units 100, 200 can be automatically discharged by controlling the opening and closing of the discharge valve provided on one side, and the first and second purification units 100, 200), by controlling the opening and closing of the supply valve provided on one side, the amount of the discharged purified water W may be automatically charged into the interior of the first and second purification units 100 and 200.
이를 통해, 상기 제1, 2정화유닛(100, 200)에 담수된 정화수(W)의 청결을 항시 유지할 수 있는 효과가 있다.Through this, there is an effect that can always maintain the cleanliness of the purified water (W) fresh water in the first and second purification units (100, 200).
또한, 상기 제어유닛(300)은 원격제어 와이파이 및 스마트폰과 연동되어 공기정화과정을 모니터링과 동시에 원격제어할 수 있고, 상기 제1정화유닛(100) 만을 개별로 제어하거나, 상기 제1, 2정화유닛(100) 등 그룹을 형성시켜, 가동과 정지, 송풍기의 풍향조정, 정화수(W)의 물교환이나 보충 시 알림 등을 수행할 수 있다.In addition, the control unit 300 can remotely control the air purification process while monitoring the air purification process by interworking with remote control Wi-Fi and a smart phone, and individually control only the first purification unit 100 or the first and second By forming a group such as the purification unit 100, it is possible to perform operation and stop, adjustment of the wind direction of the blower, and a notification when water exchange or replenishment of the purified water (W).
이와 같은, 상기 제어유닛(300)은 관리자가 터치를 통해 제어하는 근접터치모듈(미도시)과 관리자가 음성을 통해 제어하는 음성인식모듈(미도시)을 더 포함함으로서 상기 제1, 2정화유닛(100, 200)을 제어할 수 있고, 별도로 구비되는 리모컨(미도시)을 통해 상기 제1, 2정화유닛(100, 200)을 간편하게 제어할 수 있음을 밝혀둔다.As such, the control unit 300 further includes a proximity touch module (not shown) that the manager controls through a touch and a voice recognition module (not shown) that the manager controls through a voice, so that the first and second purification units (100, 200) can be controlled, and the first and second purification units (100, 200) can be easily controlled through a separately provided remote control (not shown).
또, 상기 제어유닛(300)은 야간 운전 시 발생되는 소음을 방지하기 위하여 야간모드로 전환하도록 제어할 수 있는데, 상기 야간모드는 상기 제1, 2정화유닛(100, 200)의 구동 시 주간모드 보다 가동량을 줄임으로서 소음공해를 방지할 수도 있다.In addition, the control unit 300 may control to switch to a night mode to prevent noise generated during night driving, wherein the night mode is a day mode when the first and second purification units 100 and 200 are driven. Noise pollution can be prevented by further reducing the amount of operation.
이와 같은, 상기 제어유닛(300)은 상기 제1, 2정화유닛(100, 200)의 일측에 구비되는 온습도조절부(미도시)를 통해 상기 제1, 2정화유닛(100, 200)의 주변의 온도와 습도 및 상기 제1, 2정화유닛(100, 200)의 외기와 내기의 항온항습을 조절할 수 있고, 관리자가 원하는 공간에 항온항습을 조절할 수도 있다.As such, the control unit 300 is configured to surround the first and second purification units 100 and 200 through a temperature and humidity control unit (not shown) provided on one side of the first and second purification units 100 and 200 . The temperature and humidity of the air conditioner and the constant temperature and humidity of the outside air and the inside of the first and second purification units 100 and 200 can be adjusted, and the constant temperature and humidity can be adjusted in the space desired by the administrator.
이러한, 상기 온습도조절부(미도시)는 상술된 상기 제어유닛(300)의 인공지능 알고리즘을 통해 상기 제1, 2정화유닛(100, 200)의 주변의 온도와 습도 및 상기 제1, 2정화유닛(100, 200)의 외기와 내기의 항온항습을 조절할 수 있고, 관리자가 원하는 공간에 항온항습을 자동으로 조절할 수도 있다.The temperature and humidity control unit (not shown) controls the temperature and humidity around the first and second purification units 100 and 200 and the first and second purification through the artificial intelligence algorithm of the control unit 300 described above. It is possible to adjust the constant temperature and humidity of the outside air and the inside of the units 100 and 200, and it is also possible to automatically adjust the constant temperature and humidity in the space desired by the manager.
또한, 상기 제어유닛(300)은 상기 제1, 2정화유닛(100, 200)의 일측에 구비되는 분무부(미도시)와, 상기 분무부(미도시)에 담수된 소독제, 살균제, 방향제, 산소 등을 관리자의 설정에 의해 주기적으로 분무함으로서, 상기 제1, 2정화유닛(100, 200)의 주변의 환경을 청결하게 유지할 수도 있다.In addition, the control unit 300 includes a spray unit (not shown) provided on one side of the first and second purification units 100 and 200, and a disinfectant, a sterilizer, and a fragrance freshwater in the spray unit (not shown); By periodically spraying oxygen or the like according to the setting of the administrator, the environment around the first and second purification units 100 and 200 may be kept clean.
또, 상기 제1, 2정화유닛(100, 200)의 일측에 별도로 구비되는 태양광 발전시스템(미도시)을 통해 전력을 발전시킬 수 있으므로, 상기 제1, 2정화유닛(100, 200)을 경제적으로 구동시킬 수도 있다.In addition, since power can be generated through a solar power generation system (not shown) separately provided on one side of the first and second purification units 100 and 200, the first and second purification units 100 and 200 are It can also be driven economically.
이하에서는 도 8을 참조하여 본 발명에 따른 버블을 이용한 공기정화방법에 관하여 상세히 설명하기로 한다.Hereinafter, an air purification method using bubbles according to the present invention will be described in detail with reference to FIG. 8 .
도 8은 본 발명의 일 실시예에 따른 버블을 이용한 공기정화방법의 블록도이다.8 is a block diagram of an air purification method using bubbles according to an embodiment of the present invention.
먼저, 도 8에 도시된 바와 같이 본 발명에 따른 버블을 이용한 공기정화방법은 공급단계(S10)와, 접촉단계(S20)와, 용해단계(S30) 및 배출단계(S40)를 포함한 구성이다.First, as shown in FIG. 8 , the air purification method using bubbles according to the present invention has a configuration including a supply step (S10), a contact step (S20), a dissolution step (S30), and a discharge step (S40).
상기 공급단계(S10)는, 상기 제1정화유닛(100) 하부 일측에 제1공기공급부(110)가 설치되어 외부의 오염된 공기를 상기 제1정화유닛(100) 내측으로 공급하게 되는데, 이러한 오염된 공기에는, 미세먼지, 이산화탄소, 라돈, 포름알데히드 및 휘발성 유기화합물 등의 인체에 유해한 물질이 포함되어 있다.In the supplying step (S10), a first air supply unit 110 is installed on one lower side of the first purification unit 100 to supply contaminated air from the outside to the inside of the first purification unit 100. Polluted air contains substances harmful to the human body, such as fine dust, carbon dioxide, radon, formaldehyde and volatile organic compounds.
상기 제1공기공급부(110)는, 펌프와, 송풍기 및 공기공급기(111)를 포함한 구성으로, 상기 펌프와 송풍기는 상기 제1정화유닛(100) 일측에 설치되어 오염된 공기를 공급하게 되고, 이렇게 공급된 오염된 공기는 상기 펌프와 송풍기와 연장되도록 설치되고, 상기 제1정화유닛(100) 내측 하부로 연장된 상기 공기공급기(111)를 통해 공급하게 된다.The first air supply unit 110 has a configuration including a pump, a blower, and an air supply unit 111, and the pump and the blower are installed on one side of the first purification unit 100 to supply contaminated air, The contaminated air supplied in this way is installed to extend with the pump and the blower, and is supplied through the air supply unit 111 extending inside the lower portion of the first purification unit 100 .
이러한, 상기 공기공급기(111)는 외주면에 복수의 공기구멍(112)이 형성되고, 상기 공기구멍(112)을 통해 오염된 공기를 상기 제1정화유닛(100) 내부로 공급시킬 수 있다.The air supply 111 may have a plurality of air holes 112 formed on an outer circumferential surface thereof, and may supply contaminated air into the first purification unit 100 through the air holes 112 .
상기 공급단계(S10)에서 공급되는 오염된 공기와 정화수(W)와 접촉되는 접촉단계(S20)를 거치게 된다.A contact step (S20) of contacting the contaminated air supplied in the supply step (S10) with the purified water (W) is passed.
상기 접촉단계(S20)는, 상기 정화수(W) 표면적에 직접적으로 오염된 공기를 공급함과 동시에 직경이 큰 버블이 복수개 형성되거나 오염된 공기에 혼합된 유해물질이나 이물질 및 먼지 등이 상호 접촉되는 과정이다.The contacting step (S20) is a process in which the contaminated air is directly supplied to the surface area of the purified water W, and a plurality of large-diameter bubbles are formed or harmful substances, foreign substances, and dust mixed in the contaminated air are in contact with each other. am.
상기 접촉단계(S20)를 마치게 되면, 상기 오염된 공기에 포함된 먼지 및 유기기체가 정화수와 용해되는 용해단계(S30)를 거치게 된다.Upon completion of the contacting step (S20), a dissolution step (S30) in which the dust and organic gas contained in the polluted air are dissolved with the purified water is performed.
이때, 상기 용해단계(S30)에서, 상기 오염된 공기는 상기 제1, 2스크린(120, 220)의 단면에 형성된 복수의 통공(121. 221)을 통과하며 용해되고 포집되는 과정을 반복하며 각기 다른 크기의 버블을 생성하게 된다.At this time, in the dissolution step (S30), the contaminated air passes through the plurality of through holes 121. 221 formed in the cross-sections of the first and second screens 120 and 220 and repeats the process of being dissolved and collected, each It will create bubbles of different sizes.
상기 용해단계(S30)에서는, 복수의 통공(121)의 형성 위치를 상호 중첩되지 않도록 배치함으로써, 버블의 진행방향인 수직방향 즉, 일직선으로 부유하지 않고 각 제1스크린(120)의 하부 단면과 접촉 후, 정화수(W) 측으로 부상을 위해 각 제1스크린(120)의 통공(121) 측으로 이동하기 위해 지그재그로 이동하며 마이크로 또는 나노 단위의 버블로 쪼개 크기가 다른 버블을 다량으로 생성하게 된다.In the dissolution step (S30), by arranging the formation positions of the plurality of through holes 121 so as not to overlap each other, the bubble proceeds in the vertical direction, that is, the lower end surface of each first screen 120 without floating in a straight line. After contact, it moves in a zigzag direction to move to the through hole 121 side of each first screen 120 for levitation to the purified water W side, and is split into micro- or nano-sized bubbles to generate a large amount of bubbles of different sizes.
즉, 버블이 정화수(W) 내에서의 접촉면적 및 잔류되는 체류시간을 증대시킴과 동시에, 다단의 각 제1스크린(120)의 통공(121)을 지그재그로 통과하면서 상기 각 제1스크린(120)과의 접촉면적을 늘려 버블의 생성량 증대 및 버블의 입자를 더욱 잘개 쪼개는 효과가 있다.That is, the bubbles increase the contact area and remaining residence time in the purified water W, and at the same time pass through the through holes 121 of each of the multi-stage first screens 120 in a zigzag manner. ), increase the amount of bubble generation and break the particles of the bubble more finely by increasing the contact area.
또한, 상기 버블이 상기 정화수(W) 수면으로 부상하게 되며, 상기 버블은 일부 유해물질과 이물질 및 먼지 등을 포함한 상태일 수 있다.In addition, the bubble floats to the surface of the purified water W, and the bubble may be in a state including some harmful substances, foreign substances, dust, and the like.
아울러, 상기 버블이 상기 정화수(W) 수면에서 깨지게되고, 유해물질과 이물질 및 먼지 등을 별도의 상기 보조정화유닛(130)을 통해 정화시키게 된다.In addition, the bubbles are broken at the surface of the purified water W, and harmful substances, foreign substances, and dust are purified through the separate auxiliary purification unit 130 .
상기 용해단계(S30) 이후, 정화된 공기를 외부로 배출하는 배출단계(S40)를 거치게 된다.After the dissolution step (S30), a discharge step (S40) of discharging the purified air to the outside is performed.
상기 배출단계(S40)는, 상기 제1정화유닛(100)의 제1공기배출부(140) 측으로 일부 정화된 공기를 배출하고, 배출되는 정화된 공기를 상기 제2정화유닛(200)의 제2공기공급부(210) 측으로 배출하여 정화된 공기를 재 정화를 위해 순환킬 수도 있다.In the discharging step (S40), partially purified air is discharged toward the first air discharge unit 140 of the first purification unit 100, and the discharged purified air is used in the second purification unit 200 of the second purification unit 200. The air purified by discharging to the second air supply unit 210 may be circulated for re-purification.
즉, 상기 제1공기배출부(140)에서는 정화된 공기를 상기 제2정화유닛(200) 일측에 설치된 제2공기공급부(210) 측으로 이송하고 재 정화함으로써 청정한 공기를 외부로 배출할 수 있다. That is, the first air discharge unit 140 transfers the purified air to the second air supply unit 210 installed on one side of the second purification unit 200 and re-purifies the purified air to discharge the purified air to the outside.
상기 제2정화유닛(200)의 공기정화방법은 앞서 설명한 제1정화유닛(100)의 공기정화방법과 동일하므로 이하 설명은 생략한다.Since the air purification method of the second purification unit 200 is the same as the air purification method of the first purification unit 100 described above, the following description will be omitted.
또한, 상기 제2정화유닛(200)에서 정화된 공기는 제2공기배출부(240)를 통해 외부로 배출되거나, 상기 제1공기공급부(110) 측과 별도로 연결된 바이패스(by-pass)관을 통해 공급시킴으로써 오염된 공기를 재 정화시킬 수 있다.In addition, the air purified by the second purification unit 200 is discharged to the outside through the second air discharge unit 240 , or a bypass pipe connected to the side of the first air supply unit 110 separately. It is possible to re-purify the polluted air by supplying it through the
한편, 상기 제1정화유닛(100)의 용량이 대형일 경우, 상기 펌프와 송풍기의 용량이 커짐으로써 전력량의 증가와 소음 발생 등의 문제점이 발생하기 때문에, 상기 제1정화유닛(100) 즉, 단일개의 공기정화장치로 정화하는 것보다, 상기 제1정화유닛(100)과 제2정화유닛(200) 등 다수개의 공기정화장치를 통해, 공기를 정화시켜 공기정화율을 높이고 상기 펌프와 송풍기의 용량을 낮춰 전력량을 낮추고 소음 발생을 저하시키는 것이 바람직하다.On the other hand, when the capacity of the first purification unit 100 is large, since the capacity of the pump and the blower increases, problems such as an increase in the amount of power and generation of noise occur. Rather than purifying with a single air purifier, the air is purified through a plurality of air purifiers such as the first purifying unit 100 and the second purifying unit 200 to increase the air purification rate, and the pump and blower It is desirable to lower the capacity to lower the amount of power and lower the noise generation.
한편, 상기 공급단계(S10), 배출단계(S40)는 상기 제어유닛(300)을 통해 인공지능 알고리즘으로 제어될 수 있다.Meanwhile, the supply step (S10) and the discharge step (S40) may be controlled by an artificial intelligence algorithm through the control unit 300 .
이러한, 상기 제어유닛(300)은 상술된 상기 버블측정센서(310)와 상기 공기오염측정센서(320) 및 상기 대기질측정센서(330)와 연동되는데, 특히, 상기 대기질측정센서(330)로 부터 외부공기의 오염도(미세먼지 등의 농도)를 모니터링하고 측정된 외부공기의 오염도를 수신하게 되는데, 상기 인공지능 알고리즘은 특히, 상기 대기질측정센서(330)에서 외부공기의 오염도 정보를 수집한 후 오염도에 따라 상기 제1, 2정화유닛(100, 200)을 구동하고 상기 오염된 공기의 공급량을 제어할 수 있다.Such, the control unit 300 is interlocked with the above-described bubble measurement sensor 310, the air pollution measurement sensor 320 and the air quality measurement sensor 330, in particular, the air quality measurement sensor 330 The contamination level of the outside air (concentration of fine dust, etc.) is monitored and the measured contamination level of the outside air is received from the After cleaning, the first and second purification units 100 and 200 may be driven according to the degree of pollution, and the amount of supply of the contaminated air may be controlled.
보다 구체적으로, 상기 대기질측정센서(330)는, PM 1.0 / 2.5 / 10.0에 해당하는 농도 데이터를 시계열적으로 수신하여, 저장하고, 저장된 데이터를 인공 신경망을 이용하여 처리함할 수 있다. 보다 구체적으로 상기 인공 신경망은 시계열적으로 축적된 데이터의 처리에 적합한 LSTM(Long Short Term Memory) 신경망 모델을 사용하여, 외부공기의 오염도를 추정하고, 동시에 외란과 같은 노이즈의 패턴의 추정에 효과적인 SVM 알고리즘을 활용함으로써 외란과 같은 노이즈의 유무를 효과적으로 추정하는 것이 바람직하다.More specifically, the air quality measurement sensor 330 may receive and store the concentration data corresponding to PM 1.0 / 2.5 / 10.0 in time series, and process the stored data using an artificial neural network. More specifically, the artificial neural network uses an LSTM (Long Short Term Memory) neural network model suitable for processing time-series accumulated data to estimate the pollution level of the outside air and at the same time, the SVM effective for estimating the pattern of noise such as disturbance. It is desirable to effectively estimate the presence or absence of noise such as disturbance by using an algorithm.
따라서, 순간적인 외부의 노이즈 등에 강건한 형태의 데이터 처리가 가능하고, 결과적으로 제어유닛(300)을 통해 상기 제1, 2정화유닛(100, 200)을 구동하고 상기 오염된 공기의 공급량을 상황에 따라 적응적으로 제어할 수 있다.Therefore, it is possible to process data in a robust form such as instantaneous external noise, and as a result, the first and second purification units 100 and 200 are driven through the control unit 300 and the supply amount of the contaminated air is adjusted according to the situation. can be adaptively controlled.
본 발명의 또 다른 일 실시예로, 상기 제어유닛(300)은 인공지능 알고리즘을 통해 제어될 수 있다.In another embodiment of the present invention, the control unit 300 may be controlled through an artificial intelligence algorithm.
상기 인공지능 알고리즘은, 상기 제1, 2정화유닛(100, 200) 일측에 설치된 버블측정센서(310)에서 버블의 생성량 및 버블의 평균크기를 측정하고, 측정된 버블의 생성량 데이터와 버블의 평균크기 데이터를 상기 제어유닛(300)과 연동시켜 실시간으로 학습을 수행하여, 상기 버블의 생성량 데이터와 버블의 평균크기 데이터를 예측하고 오염된 공기의 공급량을 제어할 수 있다.The artificial intelligence algorithm measures the amount of generated bubbles and the average size of bubbles in the bubble measurement sensor 310 installed at one side of the first and second purification units 100 and 200, and the average of the measured bubble generation data and bubbles By linking the size data with the control unit 300 to perform learning in real time, it is possible to predict the generation amount data of the bubbles and the average size data of the bubbles and control the supply amount of polluted air.
또한, 상기 인공지능 알고리즘은, 상기 제1, 2정화유닛(100, 200) 일측에 설치된 공기오염측정센서(320)에서 공기의 오염농도를 측정하고, 측정된 공기 오염농도 데이터를 상기 제어유닛(300)과 연동시켜 실시간으로 학습을 수행하여, 상기 공기 오염농도 데이터를 예측하고 상기 보조정화유닛(130, 230)을 제어할 수 있다.In addition, the artificial intelligence algorithm measures the air pollution concentration in the air pollution measurement sensor 320 installed on one side of the first and second purification units 100 and 200, and transmits the measured air pollution concentration data to the control unit ( 300) by performing learning in real time, predicting the air pollution concentration data, and controlling the auxiliary purification units 130 and 230.
따라서, 본 발명에 따른 인공지능을 활용한 공기정화장치 및 공기정화방법에 따르면, 본 발명에 따른 인공지능을 활용한 공기정화장치 및 공기정화방법에 따르면, 인공지능 알고리즘으로 제어되는 제어유닛을 통해 외부공기의 오염도를 실시간으로 측정하고 오염도가 일정값 이상이면 상기 제1, 2정화유닛을 자동으로 구동시켜 공기정화효율을 향상시키는 효과가 있다.Therefore, according to the air purifying apparatus and air purifying method using artificial intelligence according to the present invention, according to the air purifying apparatus and air purifying method using artificial intelligence according to the present invention, through the control unit controlled by the artificial intelligence algorithm The pollution level of the outside air is measured in real time, and when the pollution level is higher than a predetermined value, the first and second purification units are automatically driven to improve the air purification efficiency.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.The embodiments described in this specification and the configurations shown in the drawings are only the most preferred embodiment of the present invention and do not represent all the technical spirit of the present invention, so various equivalents that can be substituted for them at the time of the present application It should be understood that there may be variations and examples.

Claims (15)

  1. 하부 일측에 설치되어 오염된 공기를 공급하는 제1공기공급부와, 내부공간에A first air supply unit installed on one side of the lower part to supply contaminated air, and
    일정량 담수되어 상기 오염된 공기의 먼지 및 유기기체를 용해시키는 정화수와, 복수의 통공이 형성되는 제1스크린과, 상부 일측에 설치되어 정화된 공기를 배출하는 제1공기배출부가 구비되는 제1정화유닛;The first purification is provided with a predetermined amount of fresh water to dissolve the dust and organic gas in the polluted air; unit;
    상기 제1공기배출부와 연결되어 정화된 공기를 공급하는 제2공기공급부와, 내부공간에 일정량 담수되어 상기 오염된 공기의 먼지 및 유기기체를 용해시키는 정화수와, 복수의 통공이 형성되는 제2스크린과, 상부 일측에 설치되어 정화된 공기를 배출하는 제2공기배출부가 구비되는 제2정화유닛;A second air supply unit connected to the first air discharge unit for supplying purified air, purified water for dissolving dust and organic gas in the polluted air with a predetermined amount of fresh water in the internal space, and a second plurality of through holes are formed a second purifying unit provided with a screen and a second air discharging unit installed on one upper side and discharging purified air;
    상기 제1, 2정화유닛을 제어하는 제어유닛;을 포함하되,Including; a control unit for controlling the first and second purification units;
    상기 제어유닛은, 인공지능 알고리즘을 통해 제어되는 것을 특징으로 하는 인공지능을 활용한 공기정화장치.The control unit is an air purifier using artificial intelligence, characterized in that it is controlled through an artificial intelligence algorithm.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제1, 2공기공급부는,The first and second air supply units,
    상기 제1, 2정화유닛 내측 하부로 연장되어 오염된 공기를 공급하는 공기공급기를 포함하는 것을 특징으로 하는 인공지능을 활용한 공기정화장치.The air purifying device using artificial intelligence, characterized in that it includes an air supply that extends to the lower inner side of the first and second purifying units to supply contaminated air.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 제어유닛은, 상기 제1, 2정화유닛의 일측에 설치되는 대기질측정센서를 더 포함하고,The control unit further includes an air quality measuring sensor installed on one side of the first and second purification units,
    상기 대기질측정센서에서 외부공기의 오염도를 실시간으로 측정하고, 오염도가 일정값 이상이면 상기 제1, 2정화유닛이 자동으로 구동되는 것을 특징으로 하는 인공지능을 활용한 공기정화장치.The air quality measurement sensor measures the pollution level of the outside air in real time, and when the pollution level is higher than a certain value, the first and second purification units are automatically operated.
  4. 청구항 3에 있어서,4. The method according to claim 3,
    상기 제어유닛은,The control unit is
    상기 제1, 2정화유닛의 일측에 설치되는 버블측정센서를 더 포함하고, 버블의 생성량 및 버블의 평균크기를 측정하는 것을 특징으로 하는 인공지능을 활용한 공기정화장치.The air purification apparatus using artificial intelligence, characterized in that it further comprises a bubble measuring sensor installed on one side of the first and second purification units, and measures the amount of bubbles generated and the average size of the bubbles.
  5. 청구항 4에 있어서,5. The method according to claim 4,
    상기 제어유닛과 연동되는 분석서버부를 더 포함하고,Further comprising an analysis server unit interlocked with the control unit,
    상기 분석서버부는,The analysis server unit,
    상기 대기질측정센서에서 측정된 외부공기의 오염도 데이터 및 상기 버블측정센서에서 측정된 버블의 생성량 및 버블의 평균크기 데이터를 비교하여 상기 오염된 공기의 공급량을 제어하는 것을 특징으로 하는 인공지능을 활용한 공기정화장치.By comparing the pollution degree data of the outside air measured by the air quality sensor and the average size data of the amount of bubbles and the average size of the bubbles measured by the bubble measuring sensor, artificial intelligence characterized in that the supply of the polluted air is controlled. an air purifier.
  6. 청구항 5에 있어서,6. The method of claim 5,
    상기 제어유닛과 상기 분석서버부는 통신부를 매개로 유무선 통신하는 것을 특징으로 하는 인공지능을 활용한 공기정화장치.The air purifier using artificial intelligence, characterized in that the control unit and the analysis server unit wired and wireless communication via a communication unit.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 제1, 2정화유닛은 직렬 또는 병렬 중 어느 하나의 방향으로 적재되는 것을 특징으로 하는 인공지능을 활용한 공기정화장치.The first and second purifying units are air purifying devices using artificial intelligence, characterized in that they are loaded in either direction of series or parallel.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 제1, 2정화유닛 내측 하부면에 일측방향으로 경사진 슬러지배출부가 더 설치되는 것을 특징으로 하는 인공지능을 활용한 공기정화장치.An air purification device using artificial intelligence, characterized in that a sludge discharge unit inclined in one direction is further installed on the inner lower surface of the first and second purification units.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 제1, 2스크린은,The first and second screens,
    제1통공이 형성된 상단스크린과, 제2통공이 형성된 중단스크린과, 제3통공이 형성된 하단스크린을 포함하고,It includes an upper screen having a first through hole, a middle screen having a second through hole, and a lower screen having a third through hole,
    상기 오염된 공기의 유동방향을 이루는 축(z)을 따라 상기 상단스크린, 중단스크린 및 하단스크린이 적층되는 것을 특징으로 하는 인공지능을 활용한 공기정화장치.An air purification device using artificial intelligence, characterized in that the upper screen, the middle screen and the lower screen are stacked along the axis (z) constituting the flow direction of the polluted air.
  10. 청구항 9에 있어서,10. The method of claim 9,
    상기 제1통공, 제2통공 및 제3통공은 형상, 위치 및 크기 중 적어도 어느 하나 이상이 서로 다른 것을 특징으로 하는 인공지능을 활용한 공기정화장치.The air purifying device using artificial intelligence, characterized in that at least one of a shape, a location, and a size of the first through hole, the second through hole and the third through hole is different from each other.
  11. 청구항 9에 있어서,10. The method of claim 9,
    상기 제1통공, 제2통공 및 제3통공의 단면은 상기 오염된 공기의 유동방향을 이루는 축(z)을 따라 중첩되지 않도록 형성되는 것을 특징으로 하는 인공지능을 활용한 공기정화장치.The air purifier using artificial intelligence, characterized in that the cross-sections of the first, second, and third through holes are formed so as not to overlap along the axis (z) constituting the flow direction of the polluted air.
  12. 청구항 1의 인공지능을 활용한 공기정화장치를 이용한 공기정화방법에 있어서,In the air purification method using the air purification device using the artificial intelligence of claim 1,
    오염된 공기를 공급하는 공급단계(S10);a supply step of supplying contaminated air (S10);
    상기 오염된 공기가 정화수와 접촉하는 접촉단계(S20);a contact step (S20) in which the contaminated air is in contact with purified water;
    상기 오염된 공기에 포함된 먼지 및 유기기체가 정화수와 용해되는 용해단계(S30);a dissolution step (S30) in which dust and organic gas contained in the polluted air are dissolved with purified water;
    정화된 공기를 외부로 배출하는 배출단계(S40);를 포함하되,Discharge step (S40) of discharging the purified air to the outside; including,
    상기 공급단계(S10), 배출단계(S40)는 상기 제어유닛의 인공지능 알고리즘을 통해 제어되는 것을 특징으로 하는 인공지능을 활용한 공기정화방법.The supply step (S10), the discharge step (S40) is an air purification method using artificial intelligence, characterized in that controlled through an artificial intelligence algorithm of the control unit.
  13. 청구항 12에 있어서,13. The method of claim 12,
    상기 제어유닛은,The control unit is
    상기 제1, 2정화유닛의 일측에 설치되는 버블측정센서를 더 포함하고, 버블의 생성량 및 버블의 평균크기를 측정하는 것을 특징으로 하는 인공지능을 활용한 공기정화방법.The air purification method using artificial intelligence, characterized in that it further comprises a bubble measurement sensor installed on one side of the first and second purification units, and measures the amount of bubbles generated and the average size of the bubbles.
  14. 청구항 13에 있어서,14. The method of claim 13,
    상기 공기정화장치는 상기 제어유닛과 연동되는 분석서버부를 더 포함하고,The air purifier further comprises an analysis server unit interlocked with the control unit,
    상기 제어유닛은 상기 제1, 2정화유닛의 일측에 설치되는 대기질측정센서를 더 포함하며,The control unit further includes an air quality measurement sensor installed on one side of the first and second purification units,
    상기 분석서버부는,The analysis server unit,
    상기 대기질측정센서에서 측정된 외부공기의 오염도 데이터를 분석하고, 상기 버블측정센서에서 측정된 버블의 생성량 및 버블의 평균크기 데이터를 분석하고, 비교하여 상기 오염된 공기의 공급량을 제어하는 것을 특징으로 하는 인공지능을 활용한 공기정화방법.Analyzes the pollution degree data of the outside air measured by the air quality sensor, analyzes and compares the average size data and the amount of bubbles measured by the bubble measurement sensor to control the supply amount of the polluted air Air purification method using artificial intelligence.
  15. 청구항 12에 있어서,13. The method of claim 12,
    상기 용해단계에서,In the dissolution step,
    상기 오염된 공기는 상기 제1, 2스크린의 단면에 형성된 복수의 통공을 통과하는 것을 특징으로 하는 인공지능을 활용한 공기정화방법.The air purification method using artificial intelligence, characterized in that the polluted air passes through a plurality of through-holes formed in the cross-sections of the first and second screens.
PCT/KR2021/004618 2020-04-16 2021-04-13 Air purifying device and air purifying method using artificial intelligence WO2021210876A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180028363.4A CN115397544A (en) 2020-04-16 2021-04-13 Air purification device and air purification method adopting artificial intelligence

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020200045694A KR102291791B1 (en) 2020-04-16 2020-04-16 Air purification device and air purification method using bubble
KR10-2020-0045694 2020-04-16
KR1020210041603A KR102484592B1 (en) 2021-03-31 2021-03-31 Air purification device and air purification method using artificial intelligence
KR10-2021-0041603 2021-03-31

Publications (1)

Publication Number Publication Date
WO2021210876A1 true WO2021210876A1 (en) 2021-10-21

Family

ID=78084325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004618 WO2021210876A1 (en) 2020-04-16 2021-04-13 Air purifying device and air purifying method using artificial intelligence

Country Status (2)

Country Link
CN (1) CN115397544A (en)
WO (1) WO2021210876A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116585886A (en) * 2023-05-05 2023-08-15 江苏科易达环保科技股份有限公司 Photocatalytic oxidation and bio-enhancement cooperative treatment system applying photovoltaic energy supply

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100937577B1 (en) * 2009-04-27 2010-01-20 박진채 Airconditioning system for eliminating bad smell
KR101768882B1 (en) * 2016-08-05 2017-08-17 김지영 Air purification apparatus
CN207645958U (en) * 2017-12-06 2018-07-24 郑州紫盈节能环保科技有限公司 A kind of domestic sewage purification device
US20180221806A1 (en) * 2016-01-27 2018-08-09 Yi Fang Novel air purification methodology and apparatus
KR102069737B1 (en) * 2019-06-04 2020-01-28 에스그린랩 주식회사 Multi function veretation apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105169876A (en) * 2015-10-17 2015-12-23 孝感市创客电子科技有限公司 Welding fume purifying environment-friendly device
CN109550376A (en) * 2017-09-26 2019-04-02 萍乡市普天高科实业有限公司 A kind of equipment and its technique for flue gas desulfurization and denitrification
CN207708732U (en) * 2017-12-23 2018-08-10 河南大松仪器设备有限公司 A kind of non-contaminated air filter device
CN109351167B (en) * 2018-12-14 2019-08-20 宋超 A kind of air cleaning unit
CN109631191A (en) * 2018-12-17 2019-04-16 重庆七泉科技有限公司 A kind of Internet of Things air purifier based on artificial intelligence control
CN110180287B (en) * 2019-05-31 2024-04-05 宜昌鸿昌电子有限责任公司 Energy-saving and environment-friendly type steel ladle rotary furnace exhaust emission device
CN210262220U (en) * 2019-07-12 2020-04-07 绍兴柯桥久运纺织有限公司 Wool-absorbing and dust-removing device of large circular knitting machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100937577B1 (en) * 2009-04-27 2010-01-20 박진채 Airconditioning system for eliminating bad smell
US20180221806A1 (en) * 2016-01-27 2018-08-09 Yi Fang Novel air purification methodology and apparatus
KR101768882B1 (en) * 2016-08-05 2017-08-17 김지영 Air purification apparatus
CN207645958U (en) * 2017-12-06 2018-07-24 郑州紫盈节能环保科技有限公司 A kind of domestic sewage purification device
KR102069737B1 (en) * 2019-06-04 2020-01-28 에스그린랩 주식회사 Multi function veretation apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116585886A (en) * 2023-05-05 2023-08-15 江苏科易达环保科技股份有限公司 Photocatalytic oxidation and bio-enhancement cooperative treatment system applying photovoltaic energy supply
CN116585886B (en) * 2023-05-05 2024-06-11 江苏科易达环保科技股份有限公司 Photocatalytic oxidation and bio-enhancement cooperative treatment system applying photovoltaic energy supply

Also Published As

Publication number Publication date
CN115397544A (en) 2022-11-25

Similar Documents

Publication Publication Date Title
WO2014163270A1 (en) Apparatus for treating air in livestock barn
WO2021210876A1 (en) Air purifying device and air purifying method using artificial intelligence
KR101507559B1 (en) Hybrid Module for Cleaning Environmental Air Having Sterilization, Deodorization and Micro-particle Spraying Function Using Reaction of Air and Liquid Plasma
WO2018208098A1 (en) Fluid treating apparatus
WO2017078418A1 (en) Batch-type painting system using heat storing combustion method
WO2019054551A1 (en) Color aggregate for manufacturing carbon reduction water-permeable block for sidewalks and roads by using bottom ash, and method for manufacturing carbon reduction water-permeable block for sidewalks and roads therefrom
WO2019050154A1 (en) Air purification device and method for controlling same
CN108096969B (en) Tail gas photooxidation cracking treatment method based on volatile oil gas purification technology
WO2018021640A1 (en) Wet scrubber using microorganisms and method for purifying harmful air using same
CN112815482B (en) Air conditioner, control method and device thereof, and computer readable storage medium
CN204469539U (en) A kind of self-cleaning photocatalytic oxidation VOCs cleaning equipment
WO2024025242A1 (en) Constant air volume electric damper and centralized high-efficiency constant static pressure ventilation system comprising same
WO2024106851A1 (en) Air purification system using electrostatic atomization
WO2022124492A1 (en) Air purifying and sterilizing device, boarding bridge smart quarantine system comprising same for preventing infection, boarding bridge smart quarantine method for preventing infection, and boarding bridge
KR20220135641A (en) Air purification device and air purification method using artificial intelligence
JPWO2018150762A1 (en) Air cleaner
KR100636845B1 (en) Plasma apparatus for treating harmful gas
KR101833398B1 (en) System for Carbonizing Middle and Low Level Radiative Waste Using Low Pressure Superheated Vapor
WO2024019231A1 (en) Air recirculation and ventilation system for pig house
CN211036389U (en) Surface fabric removes odor machine deodorization device that disinfects
KR20230042841A (en) Smart Gseous Pollutants Purifying Apparatus Using Plasma
KR102291791B1 (en) Air purification device and air purification method using bubble
CN201225725Y (en) Purifier for sterilizing, deodorizing, abating smoke air of central air conditioner
KR200402169Y1 (en) Heated waste air circulating mechanism for electrostatic precipitator heater's electric power saving
CN215983092U (en) Waste gas sterilization deodorization treatment facility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21789381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21789381

Country of ref document: EP

Kind code of ref document: A1