WO2021210626A1 - Cooked rice configured to suppress increase in blood sugar levels - Google Patents

Cooked rice configured to suppress increase in blood sugar levels Download PDF

Info

Publication number
WO2021210626A1
WO2021210626A1 PCT/JP2021/015525 JP2021015525W WO2021210626A1 WO 2021210626 A1 WO2021210626 A1 WO 2021210626A1 JP 2021015525 W JP2021015525 W JP 2021015525W WO 2021210626 A1 WO2021210626 A1 WO 2021210626A1
Authority
WO
WIPO (PCT)
Prior art keywords
rice
enzyme
glucanotransferase
blood glucose
glucosidase
Prior art date
Application number
PCT/JP2021/015525
Other languages
French (fr)
Japanese (ja)
Inventor
多美 杉野
典子 横山
実穂 佐藤
尚子 藤村
晃子 山本
慎治 染川
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to JP2022515424A priority Critical patent/JPWO2021210626A1/ja
Publication of WO2021210626A1 publication Critical patent/WO2021210626A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products

Definitions

  • the present invention includes a method for producing rice in which an increase in blood glucose level is suppressed, a method for imparting an effect of suppressing an increase in blood glucose level to rice, an enzyme preparation for imparting an effect of suppressing an increase in blood glucose level to rice, and a glycemic index.
  • the present invention relates to a method for producing reduced rice, a method for lowering the glycemic index of rice, and an enzyme preparation for lowering the glycemic index of rice.
  • Elevated blood sugar levels are the cause of obesity and diabetes.
  • Starch-containing foods such as white rice and bread, which are the staple foods of the Japanese, tend to increase the blood glucose level after meals, and are generally considered to have a high GI (glycemic index).
  • GI glycosylic index
  • Various methods have been developed to lower the postprandial blood glucose level of chelow. For example, a method of adding brown rice, dietary fiber, indigestible dextrin, or the like to white rice is known, but there is a problem that the taste and color are deteriorated.
  • high amylose rice has been developed, but in addition to having a problem of taste, there is a problem that the production amount is limited and the cost is high.
  • Patent Document 1 discloses a method for producing an indigestible sugar, which comprises performing a step of causing a maltotriosyltransferase to act on a sugar.
  • Patent Document 2 discloses a method for producing a digestion-delayed sugar that does not change the GI value, which comprises performing a step of causing a blanching enzyme and an exo-type amylase to act on the sugar.
  • Non-Patent Document 1 discloses a method for producing an indigestible sugar, which comprises performing a step of causing a blanching enzyme and amylomaltase to act on a sugar.
  • Patent Document 3 discloses rice that suppresses an increase in blood glucose level and has an amylose content of 25% or more.
  • Patent Document 4 discloses a production method showing an aging-suppressing effect of a starch-containing food, which comprises adding a blanching enzyme and ⁇ -glucosidase to a raw material.
  • a structural change affecting digestibility can be imparted by an enzymatic reaction in the rice cooking process.
  • An object of the present invention is to provide a method for producing a rice food or a processed rice product capable of suppressing an increase in blood glucose level, particularly a rice food or a processed rice product having a lowered glycemic index.
  • the present inventors have found that when cooking rice, a specific enzyme is added and reacted with starch in the rice to suppress an increase in blood glucose level. It has been found that it is possible to produce a possible rice food or processed rice product, particularly a rice food or processed rice product having a reduced glycemic index. Based on the findings, the present inventors further studied and completed the present invention.
  • the present invention provides the following.
  • Rice foods or processed rice products (or indigestible) in which the rise in blood glucose level is suppressed which includes a step of adding exo-type amylase and 4- ⁇ -glucanotransferase to the raw material of raw rice, are imparted. (Rice rice food or processed rice product) manufacturing method.
  • 4- ⁇ -glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  • the production method according to the above [1] or [2] which comprises a step of adding the exo-type amylase and 4- ⁇ -glucanotransferase and then a step of cooking rice.
  • a method for imparting an effect of suppressing an increase in blood glucose level to a rice food or a processed rice product which comprises a step of adding an exo-type amylase and a 4- ⁇ -glucanotransferase to a raw material of raw rice.
  • 4- ⁇ -glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  • the method according to [4] or [5] above which comprises a step of adding the exo-type amylase and 4- ⁇ -glucanotransferase and then a step of cooking rice.
  • [7] To impart the effect of suppressing the increase in blood glucose level to rice foods or processed rice products containing exo-type amylases and 4- ⁇ -glucanotransferase (or to make the rice foods or processed rice products indigestible). Enzyme preparation (for imparting). [8] The enzyme preparation according to the above [7], wherein 4- ⁇ -glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase. [9] The enzyme preparation according to the above [7] or [8] for use in the rice cooking step.
  • a method for producing a rice food or a processed rice product having a reduced glycemic index which comprises a step of adding exo-type amylase and 4- ⁇ -glucanotransferase to a raw material of raw rice.
  • 4- ⁇ -glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  • the production method according to the above [10] or [11] which comprises a step of adding the exo-type amylase and 4- ⁇ -glucanotransferase and then a step of cooking rice.
  • a method for lowering the glycemic index of a rice food or processed rice product which comprises a step of adding exo-type amylase and 4- ⁇ -glucanotransferase to a raw material of raw rice.
  • the 4- ⁇ -glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  • a rice food or processed rice product (or resistant to digestion) in which an increase in blood glucose level is suppressed which comprises a step of adding the following enzymes (1) or (2) to a raw material of raw rice, has been imparted.
  • Manufacturing method of rice food or processed rice (1) ⁇ -Glucosidase and blanching enzyme (2) ⁇ -Glucosidase, blanching enzyme and 4- ⁇ -glucanotransferase
  • 4- ⁇ -glucanotransferase consists of maltotriosyltransferase and amylomaltase.
  • the production method according to the above [19] which is at least one selected from the group.
  • the production method according to the above [19] or [20] which comprises a step of adding the enzyme and then a step of cooking rice.
  • a method (or rice) for imparting an effect of suppressing an increase in blood glucose level to a rice food or a processed rice product which comprises a step of adding the following enzymes (1) or (2) to a raw material of raw rice. Method of imparting indigestibility to food or processed rice products).
  • (1) ⁇ -glucosidase and blanching enzyme (2) ⁇ -glucosidase, blanching enzyme and 4- ⁇ -glucanotransferase
  • 4- ⁇ -glucanotransferase consists of maltotriosyltransferase and amylomaltase.
  • the method according to [22] above which is at least one selected from the group.
  • [25] To impart the effect of suppressing an increase in blood glucose level to rice foods or processed rice products containing the following enzymes (1) or (2) (or to make rice foods or processed rice products indigestible). Enzyme preparation (for granting). (1) ⁇ -Glucosidase and branching enzyme (2) ⁇ -Glucosidase, branching enzyme and 4- ⁇ -glucanotransferase [26] 4- ⁇ -glucanotransferase consists of maltotriosyltransferase and amylomaltase. The enzyme preparation according to the above [25], which is at least one selected from the group. [27] The enzyme preparation according to the above [25] or [26] for use in the rice cooking step.
  • a method for producing a rice food or a processed rice product having a reduced glycemic index which comprises a step of adding the enzyme of (1) or (2) below to a raw material of raw rice.
  • 4- ⁇ -glucanotransferase consists of maltotriosyltransferase and amylomaltase.
  • the production method according to the above [28] which is at least one selected from the group.
  • the production method according to the above [28] or [29] which comprises a step of adding the enzyme and then a step of cooking rice.
  • a method for lowering the glycemic index of rice foods or processed rice products which comprises a step of adding the enzyme of (1) or (2) below to a raw material of raw rice.
  • 4- ⁇ -glucanotransferase consists of maltotriosyltransferase and amylomaltase.
  • the method according to [31] above which is at least one selected from the group.
  • the method according to [31] or [32] above which comprises a step of adding the enzyme and then a step of cooking rice.
  • An enzyme preparation for lowering the glycemic index of rice foods or processed rice products which contains the following enzymes (1) or (2).
  • 4- ⁇ -glucanotransferase consists of maltotriosyltransferase and amylomaltase.
  • the enzyme preparation according to the above [34] which is at least one selected from the group.
  • [37] Rice food or processed rice produced by a method including a step of adding exo-type amylase and 4- ⁇ -glucanotransferase to a raw material of raw rice for a target requiring suppression of an increase in blood glucose level.
  • the 4- ⁇ -glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  • the rice food or processed rice product according to the above [40] or [41] which is produced by a method including a rice cooking step following the step of adding the exo-type amylase and 4- ⁇ -glucanotransferase. ..
  • the 4- ⁇ -glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  • the exo-type amylase and 4- ⁇ -glucanotransferase are used in the rice cooking step.
  • 4- ⁇ -glucanotransferase consists of maltotriosyltransferase and amylomaltase.
  • 4- ⁇ -glucanotransferase consists of maltotriosyltransferase and amylomaltase.
  • the blanched food or processed rice product according to the above [49] which is at least one selected from the group.
  • the rice food or processed rice product according to the above [49] or [50] which is produced by a method including a rice cooking step following the step of adding the enzyme.
  • [52] Use of the following enzymes (1) or (2) for producing rice foods or processed rice products for suppressing an increase in blood glucose level using raw rice as a raw material.
  • 4- ⁇ -glucanotransferase consists of maltotriosyltransferase and amylomaltase.
  • [54] The use according to the above [52] or [53], wherein the enzyme is used in the rice cooking step.
  • the present invention by adding a specific enzyme during the production of rice and reacting it with starch in the rice, it is possible to suppress an increase in blood glucose level after meals as compared with rice without an enzyme. Can be manufactured. According to the present invention, it is possible to produce rice with a lower glycemic index than rice with no enzyme added by the production method.
  • FIG. 1 shows the test schedule of Test Example 1.
  • FIG. 2 shows the results of Test Example 2.
  • FIG. 3 shows the results of Test Example 7.
  • the blanching enzyme (enzyme number EC2.4.1.18) used in the present invention has a part of the 1,4- ⁇ -D-glucan chain as a 6-OH group of the acceptor 1,4- ⁇ -D glucan. It is an enzyme that translocates to and produces a branched structure of ⁇ -1,6 bonds such as amylopectin or glycogen.
  • An example is the food enzyme "Blanching Enzyme” (for example, “Blanching Enzyme A” (trade name) Nagase & Co., Ltd.) manufactured by Nagase & Co., Ltd.
  • the enzymatic activity of the blanching enzyme was defined as follows.
  • the exo-type amylase refers to an enzyme that sequentially decomposes ⁇ -1,4 glycosidic bonds from the non-reducing end of starch.
  • examples of the exo-type amylase include ⁇ -glucosidase and ⁇ -amylase. These enzymes can be used in combination of 1 or 2 or more.
  • the ⁇ -glucosidase (EC 3.2.1.20) used in the present invention is an enzyme that hydrolyzes the non-reducing terminal ⁇ -1,4-glucoside bond to produce ⁇ -glucose.
  • transglucosidase is preferable.
  • An enzyme commercially available from Amano Enzyme Co., Ltd. under the trade names of "transglucosidase” Amano "” and " ⁇ -glucosidase” Amano "” is an example of ⁇ -glucosidase.
  • the ⁇ -amylase used in the present invention is an exo-type enzyme having an activity of hydrolyzing the ⁇ -1,4-glucoside bond of starch every other (in maltose units) from the non-reducing terminal, for example.
  • Various origins such as those derived from microorganisms and those derived from plants are known, but the origin of ⁇ -amylase used in the present invention is not particularly limited as long as it has the above-mentioned activity, and any origin.
  • ⁇ -amylase can also be used, or a recombinant enzyme may be used.
  • the ⁇ -amylase used in the present invention may be a commercially available product, and specific examples thereof include hymaltocin GL, hymaltocin GLH (all manufactured by HBI), ⁇ -amylase F “Amano” (manufactured by Amano Enzyme), and the like. Can be mentioned.
  • the active unit of ⁇ -amylase is measured and defined as follows. ⁇ -amylase is allowed to act on p-nitrophenyl- ⁇ -D-maltotrioside (PNP- ⁇ ) as a substrate. Then, the amount of p-nitrophenol (PNP) produced is measured by the absorbance at 400 nm. The amount of enzyme that dissociates 1 ⁇ mol of PNP per minute is defined as 1 U (unit).
  • 4- ⁇ -glucanotransferase is an enzyme that transfers a unit consisting of a glucosyl group or two or more glucoses to a receptor molecule from the non-reducing end of the donor molecule.
  • 4- ⁇ -glucanotransferase in the present invention include maltotriosyltransferase and amylomaltase. These enzymes can be used in combination of 1 or 2 or more.
  • maltotriose transferase (EC 2.4.1.25) is an enzyme that acts on polysaccharides and oligosaccharides having an ⁇ -1,4 glucosidic bond as a binding mode to transfer maltotriose units to saccharides.
  • the amount of enzyme that produces 1 ⁇ mol of glucose from tetraose per minute is defined as 1 U (unit).
  • An enzyme commercially available from Amano Enzyme Co., Ltd. under the trade names of "Glycotransferase” and "Glycotransferase” Amano "L” is an example of maltotriosyltransferase.
  • amylomaltase removes a part of the ⁇ -glucan chain from the non-reducing end of ⁇ -glucan (eg, amylose, amylopectin, starch, etc.) to another ⁇ -glucan (or another ⁇ -glucan (or).
  • the donor molecule and the acceptor molecule of the ⁇ -glucan chain may be the same, in which case an intramolecular transition occurs and the product has a cyclic structure.
  • the active unit of amylomaltase is measured by the method of Srisimatrat et al.
  • the amylomaltase includes corynebacterium-derived amylomaltase and the like.
  • the present invention relates to a method for producing a rice food or a processed rice product in which an increase in blood glucose level is suppressed, which comprises a step of adding the following enzymes (1), (2) or (3) to a raw material of raw rice.
  • (1) ⁇ -Glucosidase and blanching enzyme (in this specification, it may be referred to as enzyme (1)).
  • (2) ⁇ -Glucosidase, blanching enzyme and 4- ⁇ -glucanotransferase (may be referred to as enzyme (2) in the present specification).
  • (3) Exo-type amylase and 4- ⁇ -glucanotransferase in this specification, it may be referred to as enzyme (3)).
  • examples of the enzyme (2) include the following (2-i) to (2-iii).
  • (2-i) ⁇ -Glucosidase, Blanching Enzyme and Maltotriosyl Translocation Enzyme (2-ii) ⁇ -Glucosidase, Blanching Enzyme and Amylomaltase
  • examples of the enzyme (3) include the following (3-i) to (3-ix).
  • (3-i) ⁇ -Glucosidase and maltotriosyl transferase (3-ii) ⁇ -glucosidase and amylomaltase (3-iii) ⁇ -glucosidase, maltotriosyl transferase and amylomaltase (3-iv) ⁇ -amylase
  • maltotriosyl transferase (3-v) ⁇ -amylase and amylomaltase (3-vi) ⁇ -amylase
  • the raw material used in the present invention is raw rice.
  • the raw rice is not particularly limited in the variety of rice and the presence or absence of polished rice, and examples thereof include polished rice, brown rice, germinated brown rice, high amylose rice, and low amylose rice.
  • the rice food includes, for example, cooked rice (white rice, brown rice, germinated brown rice, high amylose rice, low amylose rice, barley-added rice, glutinous wheat-added rice, miscellaneous grain-added rice, resistant sugar-added rice). , Vinegar rice (sushi rice), red rice, pilaf, fried rice, cooked rice, okowa, porridge, risotto, rice balls, sushi, lunch.
  • examples of processed rice products include rice crackers, okaki, Japanese sweets, and rice cakes.
  • these frozen products, sterile packaged products, retort products, dried products, and canned products are also included.
  • food is a concept that broadly includes foods that can be taken orally (excluding pharmaceuticals), and is not only so-called “food” but also beverages, dietary supplements, and foods with health claims (for example, foods for specified health use). , Functional foods, nutritionally functional foods), supplements, etc.
  • an enzyme is added to the raw rice before cooking and reacted with starch in the rice in the rice cooking process.
  • the enzyme may be added to the raw rice at any stage as long as it is before the rice is cooked.
  • These enzymes may be added to the dipping solution in which the raw rice is immersed for water absorption, but it is preferable to add the enzymes after the immersion and before the rice is cooked.
  • the order in which these enzymes are added to rice is not particularly limited, and one of them may be added first and then the remaining enzymes may be added. , It is preferable to add a plurality of enzymes at the same time. Further, raw materials usually used for foods may be used in combination.
  • Enzyme (1) ⁇ -glucosidase and blanching enzyme
  • the amount of ⁇ -glucosidase added is such that the enzyme activity is preferably 0.0005 to 1 g of raw rice. It is 100 U, more preferably 0.001 to 30 U, still more preferably 0.005 to 10 U, and particularly preferably 0.01 to 3 U.
  • the amount of the blanching enzyme added is preferably 0.001 to 3000 U, more preferably 0.05 to 2000 U, and further, the enzyme activity is preferably 0.001 to 3000 U, more preferably 0.05 to 2000 U, with respect to 1 g of raw rice.
  • alpha-glucosidase and the ratio of the amount of branching enzyme is preferably 1U: 1 ⁇ 10 -3 ⁇ 6 ⁇ 10 7 U, more preferably 1U: 1 ⁇ 10 - It is 2 to 6 ⁇ 10 6 U, more preferably 1 U: 1 ⁇ 10 -1 to 6 ⁇ 10 5 U, and particularly preferably 1 U: 1 to 6 ⁇ 10 4 U.
  • Enzyme (2) ⁇ -glucosidase, branching enzyme and 4- ⁇ -glucanotransferase
  • the amount of ⁇ -glucosidase added is the enzyme activity with respect to 1 g of raw rice. However, it is preferably 0.0005 to 100 U, more preferably 0.001 to 30 U, still more preferably 0.005 to 10 U, and particularly preferably 0.01 to 3 U.
  • the amount of the blanching enzyme added is such that the enzyme activity is preferably 0.001 to 3000 U, more preferably 0.05 to 2000 U, with respect to 1 g of raw rice. It is preferably 0.1 to 1000 U, particularly preferably 1 to 600 U.
  • the amount of 4- ⁇ -glucanotransferase (for example, maltotriosyltransferase, amylomaltase) added is preferably the enzyme activity with respect to 1 g of raw rice. It is 0.00005 to 100U, more preferably 0.0001 to 30U, still more preferably 0.005 to 10U, and particularly preferably 0.01 to 4U.
  • the ratio of the amount of ⁇ -glucosidase, blanching enzyme, and 4- ⁇ -glucanotransferase (for example, maltotriosyltransferase, amylomaltase) added ( ⁇ -glucosidase: blanching enzyme: 4- ⁇ -glucanotransferase).
  • ⁇ -glucosidase: blanching enzyme: 4- ⁇ -glucanotransferase Is preferably 1U: 1 ⁇ 10 -3 to 6 ⁇ 10 7 U: 1 ⁇ 10 -5 to 4 ⁇ 10 5 U, and more preferably 1U: 1 ⁇ 10 -2 to 6 ⁇ 10 6 U: 1 ⁇ .
  • Enzyme (3) Exo-type amylase and 4- ⁇ -glucanotransferase
  • the amount of exo-type amylase (for example, ⁇ -glucosidase, ⁇ -amylase) added is the raw material raw material.
  • the enzyme activity is preferably 0.0005 to 100 U, more preferably 0.001 to 30 U, still more preferably 0.005 to 10 U, and particularly preferably 0.01 to 3 U with respect to 1 g of rice.
  • the amount of 4- ⁇ -glucanotransferase (for example, maltotriosyltransferase, amylomaltase) added is preferably the enzyme activity with respect to 1 g of raw rice. It is 0.001 to 100 U, more preferably 0.1 to 30 U, still more preferably 1 to 20 U, and particularly preferably 3 to 10 U.
  • the ratio of the amount of exo-type amylase (for example, ⁇ -glucosidase, ⁇ -amylase) to 4- ⁇ -glucanotransferase (for example, maltotriosyltransferase, amylomaltase) added is preferably 1U: 0.005 to 500U, more preferably 1U: 0.5 to 150U, still more preferably 1U: 5 to 100U, and particularly preferably 1U: 15 to 50U.
  • the enzyme (3) only one type of exo-type amylase and 4- ⁇ -glucanotransferase may be used, or a plurality of types may be used in combination.
  • the addition amount when a plurality of types of exo-type amylase are used in combination, the addition amount may be as long as the "addition amount of each enzyme" of the plurality of types of exo-type amylase is within the above-mentioned range.
  • the amount of addition may be such that the “addition amount of each enzyme” of the plurality of types of 4- ⁇ -glucanotransferase is within the above-mentioned range.
  • the reaction time of each enzyme is not particularly limited as long as the enzyme can act on starch in rice, which is a substrate substance, but the practical action time is preferably 5 minutes to 24 hours.
  • the reaction temperature is not particularly limited as long as the enzyme maintains its activity, but it is preferable to allow the enzyme to act at 0 to 100 ° C. as a realistic temperature. That is, by using these enzymes in a normal rice cooking step, a sufficient reaction time and reaction temperature can be obtained to achieve the effect of the present invention.
  • the enzyme reaction time it takes preferably 5 to 60 minutes, more preferably 10 to 50 minutes, and further preferably 10 to 10 to reach the temperature from room temperature to 100 ° C. after the addition of the enzyme.
  • the enzyme is inactivated and the enzyme reaction is completed.
  • a boiling step for example, about 15 to 30 minutes, preferably about 15 to 20 minutes
  • a steaming step for example, about 10 to 40 minutes, preferably about 10 to 20 minutes
  • the rice cooking step is, for example, 3 hours or less, preferably 2 hours or less, more preferably about 1 hour (about 50 to 60 minutes) after the addition of the enzyme.
  • the present invention is advantageous over the prior art in that the effect can be obtained even when the rice cooking step is completed in a short time (for example, about 1 hour) after the addition of the enzyme.
  • the rice cooking step may be performed using a commercially available rice cooker.
  • the production method of the present invention may include steps other than the above steps (for example, a drying step and a freeze-drying step) as long as the effects of the present invention are not impaired.
  • the above-mentioned production method of the present invention it is possible to produce rice rice (rice rice having a lowered glycemic index) in which an increase in blood glucose level is suppressed.
  • the blood glucose level for 2 hours after administration (after ingestion) is measured over time by the method of Test Example 1 and Test Example 7 described later or a method similar thereto.
  • the ⁇ blood glucose level AUC value can be calculated and evaluated by comparing it with the ⁇ blood glucose level AUC value of the control (without enzyme addition).
  • the rice rice produced by the production method of the present invention has a ⁇ blood glucose level AUC of less than 100, preferably 95 or less, more preferably 90 or less, when the ⁇ blood glucose level AUC of the control (without enzyme addition) is 100. , More preferably 85 or less.
  • the rice food or processed rice food produced by the above-mentioned production method of the present invention is obtained when the subject (for example, human) ingested (administered) ingests (administers) the rice food or processed rice food containing no enzyme. In comparison, it has the effect of suppressing the rise in blood glucose level.
  • One aspect of the present invention is a method including a step of adding an enzyme (1), an enzyme (2) or an enzyme (3) to a raw material which is raw rice to a target requiring suppression of an increase in blood glucose level.
  • a method for suppressing an increase in blood glucose level in the subject which comprises administering a produced rice food or processed rice product, and "an enzyme (1) as a raw material of raw rice for use in suppressing an increase in blood glucose level.
  • the present invention imparts an effect of suppressing an increase in blood glucose level to a rice food or a processed rice product, which comprises a step of adding an enzyme (1), an enzyme (2) or an enzyme (3) to a raw material which is raw rice.
  • the addition amount of the enzyme (1), the enzyme (2) and the enzyme (3), the ratio of the addition amount, and the addition method are the rice foods of the present invention or the above-mentioned method. It is the same as the addition amount, the ratio of the addition amount, and the addition method described in the method for producing the processed rice product.
  • the present invention relates to an enzyme preparation containing an enzyme (1), an enzyme (2) or an enzyme (3) for imparting an effect of suppressing an increase in blood glucose level to a rice food or a processed rice product.
  • the content ratio of the enzyme is the same as the ratio of the addition amount of the enzyme described in the above-mentioned method for producing the rice food or processed rice product of the present invention.
  • the enzyme preparation of the present invention increases the blood glucose level in the rice food or the processed rice product by adding and reacting with the raw rice according to the method described in the method for producing the rice food or the processed rice product of the present invention. It is possible to impart the effect of suppressing.
  • the enzyme preparation of the present invention further includes excipients such as dextrin, starch, processed starch, indigestible dextrin, reduced maltose, and livestock meat extract. Seasoning, plant protein, gluten, egg white, gelatin, casein and other proteins, protein hydrolyzate, protein partial decomposition product, emulsifier, citrate, polymerized phosphate and other chelating agents, glutathione, cysteine and other reducing agents , Alginic acid, enzyme, fats and oils, pigments, acidulants, fragrances and other other food additives may be contained.
  • the enzyme preparation of the present invention may be in any form of liquid, paste, granule or powder.
  • the present invention also comprises a step of adding an enzyme (1), an enzyme (2) or an enzyme (3) to a raw material which is raw rice, and a method for producing a rice food or a processed rice product having a reduced glycemic index;
  • the present invention relates to a method for lowering the glycemic index of a rice food or a processed rice product, which comprises a step of adding an enzyme (1), an enzyme (2) or an enzyme (3) to the raw material.
  • the amount, the ratio of the addition amount, and the addition method are the same as the addition amount, the ratio of the addition amount, and the addition method described in the above-mentioned method for producing the rice food or processed rice product of the present invention.
  • the present invention also relates to an enzyme preparation containing an enzyme (1), an enzyme (2) or an enzyme (3) for lowering the glycemic index of a rice food or processed rice product.
  • the content ratio of the enzyme is the ratio of the amount of the enzyme added described in the method for producing the rice food or processed rice product of the present invention.
  • the enzyme preparation of the present invention is added to raw rice and reacted according to the method described in the method for producing a rice food or processed rice product of the present invention to obtain a glycemic index of the rice food or processed rice product. Can be lowered.
  • the enzyme preparation of the present invention may further contain the above-mentioned food additives and the like in addition to the enzyme (1), the enzyme (2) and the enzyme (3).
  • the enzyme preparation of the present invention may be in any form of liquid, paste, granule or powder.
  • the calculation of the glycemic index value (GI value) and the preparation of the reference diet can be performed according to the following.
  • First standard meal intake Rice equivalent to 50 g of sugar is ingested, and the blood glucose level is measured by fingertip blood sampling on an empty stomach and 15, 30, 45, 60, 90, 120 minutes after ingestion.
  • Second standard diet intake Ingest rice equivalent to 50 g of sugar, and measure the blood glucose level in the same manner as the first intake.
  • Setting the reference value Calculate the area under the blood glucose curve (IAUC) of the two reference meals, select those with an area difference of 25% or less as subjects, and average the area under the blood glucose curve (IAUC) to use the reference value. do.
  • Ingestion of test meal Blood glucose level is measured by fingertip blood sampling on an empty stomach and 15, 30, 45, 60, 90, 120 minutes after ingestion. Calculation of GI value: The area under the blood glucose curve (IAUC) of the test meal is calculated, and the ratio to the reference value is defined as the GI value.
  • Other regulations will be implemented in accordance with the protocol established by the "Japan Glycemic Index Study Group”. (Http://www.gikenkyukai.com/protocol.html) [Preparation of standard diet] As a standard diet, white rice (Uruchi rice) is cooked with raw rice prepared at a water content of 135%, and rice is provided in an amount equivalent to 50 g of sugar per person.
  • the term "decreased" in the glycemic index means that the value of the glycemic index is lower than the value of the glycemic index of a rice food or processed rice product produced without adding an enzyme.
  • the rice produced by the production method of the present invention for example, white rice, rice mixed with white rice and brown rice
  • Examples 1 to 3 Hitomebore (raw rice) from Miyagi prefecture was used as a raw material.
  • the brown rice was harvested from one producer on the same day, and the rice polished on the same day was placed in a light-shielding vacuum pack containing an oxygen scavenger and refrigerated at 5 ° C. until the test.
  • the polished rice was returned to room temperature 30 minutes before weighing on the day of cooking. Polished rice was weighed using an electronic balance (US6002S, METTLER TOLEDO Co., Ltd.).
  • the polished rice in the colander was gently stirred clockwise 10 times in tap water stored in a bowl. The tap water was replaced and the same work was repeated 5 times.
  • the rice of Comparative Example 2 (Comparative Example 2-1 and Comparative Example 2-2) was obtained by the same method as in Comparative Example 1 except that the raw material Hitomebore produced in Miyagi Prefecture was changed to Hoshino Yutaka (high amylose rice).
  • the rice cooker was turned over on the vat and the rice rice was taken out.
  • the rice near the wall of the kettle was removed and moved to the edge of the bat.
  • the rice was leveled flat, lightly opened, wrapped, and then heated at room temperature for 15 minutes.
  • the rice was frozen in a deep freezer at -80 ° C.
  • Test Example 1 Animal test (in vivo) Effect of suppressing increase in blood glucose level by enzyme-treated rice The blood glucose level after administration of rice was measured using rats by the following method, and the effect of suppressing the increase in blood glucose level was evaluated.
  • rice (lyophilized) of Examples 1 to 3 and Comparative Examples 1 and 2 was crushed using a mixer mill (MM301: Verder sientific), dispensed into a standing pouch, and sealed with a seal. Stored at room temperature and subjected to animal testing.
  • Experiment 1 Comparative Example 1-1, Comparative Example 2-1 and Example 1 shown in Table 3-1 below
  • Experiment 2 Comparative Example 1-2, Comparative Example 2-2
  • Table 3-2 Table 3-2
  • Total sugar mass spectrometry of enzyme-treated rice was outsourced to the Japan Food Research Laboratories and measured using the phenol-sulfuric acid method.
  • the test substance was prepared as a solution with distilled water on the day of the blood glucose measurement test. According to the following blood glucose measurement method and the test schedule of FIG. 1, the blood glucose levels were measured on an empty stomach, 15 minutes, 30 minutes, 60 minutes, and 120 minutes after administration.
  • the test substance was administered orally when the total sugar content of the test substance was 2 g / 20 mL / kg.
  • Body weight is measured on the end of quarantine and acclimation, and the weight obtained is used as an index to assign to 6 to 10 animals / group using a stratified continuous randomization method.
  • [Fasting] Start fasting overnight from the evening of the day before the glucose load test.
  • [Measurement of blood sugar level] An incision is made in the vein at the tip of the tail using a scalpel blade without anesthesia.
  • a test blood glucose level
  • the glucose level for self-examination is measured using the glucose measuring device "Accucheck” or "Glutest Neo", and the blood glucose level displayed on the measuring device is recorded. Let this be the fasting blood glucose level.
  • the same glucose measuring device was used for the test on the same day.
  • the evaluation items were calculated as follows.
  • the fasting blood glucose level was defined as the blood glucose level at 0 minutes.
  • the value obtained by subtracting the blood glucose level of 0 minutes from the blood glucose level at each measurement time was defined as " ⁇ blood glucose level (mg / dL)".
  • the highest value among the ⁇ blood glucose levels at each measurement time was defined as “ ⁇ C max (mg / dL)” of each individual.
  • the value obtained by calculating the lower area of the ⁇ blood glucose level rise curve was defined as “ ⁇ blood glucose level AUC (mg / dL ⁇ min)”.
  • the calculation method was based on the method of the Japan Glycemic index study group.
  • the effect of suppressing the increase in blood glucose level was evaluated from the ⁇ blood glucose level AUC value of the test substance administration group when the ⁇ blood glucose level AUC of the control group was set to 100.
  • the test results are shown in Table 3-1 and Table 3-2.
  • Comparative Example 1 (Comparative Example 1-1, Comparative Example 1-2) is a rice rice to which no enzyme is added, and is generally a food having a high GI value.
  • Comparative Example 2 (Comparative Example 2-1 and Comparative Example 2-2) is a cooked rice made from high amylose rice, which is described in JP-A-2005-328767 (Patent Document 3) as having a low GI value. be.
  • Comparative Example 2 Comparative Example 2-1 and Comparative Example 2-2
  • Comparative Example 2 (Comparative Example 2-1 and Comparative Example 2-2) had a lower ⁇ blood glucose level AUC, and suppression of blood glucose elevation was confirmed. rice field.
  • Examples 1 to 3 the ⁇ blood glucose level AUC was lower than that in Comparative Example 1 (Comparative Example 1-1, Comparative Example 1-2), and suppression of blood glucose elevation was confirmed. Further, it was confirmed that Examples 2 and 3 had a lower ⁇ blood glucose level AUC than Comparative Example 2 (Comparative Example 2-2), and had a higher blood glucose elevation suppressing effect than the existing technique.
  • Example 4 The required amount of polished rice from Miyagi prefecture was weighed, placed in a colander, and then gently stirred clockwise 20 times in tap water stored in a bowl. The tap water was replaced and the same work was repeated 5 times. After washing the rice, the polished rice was transferred to a rice cooker, tap water was added until the weight became 235% of the weight of the raw rice (hydration ratio: 135% of the raw rice), and the rice was immersed for 1 hour.
  • Example 6 and Comparative Example 3 Same as Examples 4 and 5 except that the polished rice (Hitomebore produced in Miyagi prefecture) is changed to a mixed rice of 75% polished rice (Hitomebore produced in Miyagi prefecture) and 25% brown rice (“Hitomebore brown rice” produced in Miyagi prefecture).
  • the enzyme-treated rice of Example 6 was prepared.
  • the enzyme-free rice of Comparative Example 3 was prepared by the same method as in Example 6 except that no enzyme was added.
  • GI value glycemic index value
  • First standard dietary intake Rice equivalent to 50 g of sugar was ingested, and the blood glucose level was measured by fingertip blood sampling on an empty stomach and 15, 30, 45, 60, 90, 120 minutes after the ingestion.
  • Second standard diet intake Rice equivalent to 50 g of sugar was ingested, and the blood glucose level was measured in the same manner as the first intake.
  • Setting the reference value Calculate the area under the blood glucose curve (IAUC) of the two reference meals, select those with an area difference of 25% or less as subjects, and average the area under the blood glucose curve (IAUC) to use the reference value. bottom.
  • IAUC area under the blood glucose curve
  • Ingestion of test meal Blood glucose level was measured by fingertip blood sampling on an empty stomach and 15, 30, 45, 60, 90, 120 minutes after ingestion. Calculation of GI value: The area under the blood glucose curve (IAUC) of the test meal was calculated, and the ratio to the reference value was taken as the GI value. Other regulations were implemented in accordance with the protocol established by the "Japan Glycemic Index Study Group".
  • Test Example 2 Measurement of GI value with enzyme-treated rice (polished rice) 10 healthy adult males (mean age 33.9 ⁇ ) with a difference of 25% or less in the area under the curve (IAUC) between two times of standard diet intake For 6.9 years old), the GI value was measured using the enzyme-treated rice of Examples 4 and 5. In addition, a crossover test was conducted in which only the enzyme-treated rice to be ingested was crossed and repeated with a gap of 24 hours or more between each period of the enzyme-treated rice of Example 4 and the enzyme-treated rice of Example 5, and the enzyme-treated rice was sugar per capita. An amount equivalent to 50 g of quality was provided.
  • the GI value of the enzyme-treated rice intake group of Example 4 was 79 ⁇ 38 (mean ⁇ standard deviation), and that of the enzyme-treated rice intake group of Example 5 was The GI value was 71 ⁇ 31 (mean ⁇ standard deviation) (Fig. 2).
  • the GI values of the enzyme-free rice intake group of Comparative Example 3 and the enzyme-treated rice intake group of Example 6 were measured for boys (mean age 29.9 ⁇ 19.4 years).
  • a crossover test was conducted in which only the ingested rice was crossed and repeated with a gap of 24 hours or more between each period of the enzyme-free rice ingestion group of Comparative Example 3 and the enzyme-treated rice ingestion group of Example 6. An amount equivalent to 50 g of sugar was provided per person.
  • the GI value of the enzyme-free rice intake group of Comparative Example 3 was 81 ⁇ 20 (mean ⁇ standard deviation), and the GI value of the enzyme-treated rice intake group of Example 6 was 70 ⁇ 18 (mean ⁇ standard deviation). )Met.
  • the amount of free glucose at this time is described as "amount of free glucose after the enzymatic reaction”.
  • the substrate (sugar) after the enzymatic reaction excluding free glucose is described as “enzyme-modified dextrin”.
  • the amount obtained by subtracting the "free glucose amount after the enzyme reaction” from the base mass before the enzyme reaction is described as “enzyme-modified dextrin amount”.
  • the amount of free glucose after the enzyme reaction per 1 mL of the reaction solution (the amount of free glucose after the enzyme reaction (mg / mL)) and the amount of the enzyme-modified dextrin per 1 mL of the reaction solution (the amount of the enzyme-modified dextrin (mg / mL)) were calculated. It was used to calculate the decomposition rate of enzyme-modified dextrin.
  • the enzymes in Table 6 are as shown in Table 7.
  • the artificial digestion test is a "quantification method for indigestible components" (Starch Science, Vol. 37, No. 2, p. 107, 1990). According to the improved method of, the following method was used. First, 0.5 mL of the sample (reaction solution of Examples 7 to 12, Comparative Examples 5 to 11 and the solution of Comparative Example 4 obtained in (1)) was added to 10 ⁇ L of 10% ⁇ -amylase (Novozymes: Termamil). It was added and reacted at 95 ° C. for 30 minutes.
  • Amount of free glucose after artificial digestion test per 1 mL of the reaction solutions of Examples 7 to 12, Comparative Examples 5 to 11 and the solution of Comparative Example 4 obtained in (1) (Amount of free glucose after artificial digestion test (mg / mL)) ) was calculated and used to calculate the decomposition rate of the following enzyme-modified dextrin.
  • Comparative Example 12 without enzyme addition, Comparative Example 13 with AG alone, Comparative Examples 14 to 16 with AA (endo-amylase) alone, and Comparison with AA and MTT in combination.
  • Comparative Examples 20 to 22 using MTH (endo-type maltotriohydrolase) alone, and Comparative Examples 23 to 25 using MTH and MTT in combination, AG (exo-type amylase) and MTT were used.
  • Example 13 in combination it was confirmed that the decomposition rate of the enzyme-modified dextrin was low.
  • exo-type amylase can suppress the increase in blood glucose level when used in combination with 4- ⁇ -glucanotransferase (MTT) (food with indigestibility). It was suggested that it is effective in the production of.
  • MTT 4- ⁇ -glucanotransferase
  • exo-type amylase AG, BA
  • 4- ⁇ -glucanotransferase MTT
  • Example 19 Hitomebore (raw rice) from Miyagi prefecture was used as a raw material.
  • the brown rice was harvested from one producer on the same day, and the rice polished on the same day was placed in a light-shielding vacuum pack containing an oxygen scavenger and refrigerated at 5 ° C. until the test.
  • the polished rice was returned to room temperature 30 minutes before weighing on the day of cooking. Polished rice was weighed using an electronic balance (US6002S, METTLER TOLEDO Co., Ltd.).
  • the polished rice in the colander was gently stirred clockwise 10 times in tap water stored in a bowl. The tap water was replaced and the same work was repeated 5 times.
  • the rice was leveled flat, lightly opened, wrapped, and then heated at room temperature for 15 minutes.
  • the rice was frozen in a deep freezer at -80 ° C.
  • the next day, the rice was freeze-dried using a freeze-dryer (FDU-2100: Tokyo Rika Kikai Co., Ltd.) to obtain rice (freeze-dried products) of Example 19 and Comparative Examples 33 and 34.
  • the enzymes in Table 10 are as shown in Table 7.
  • Test Example 7 Animal test (in vivo) Effect of suppressing increase in blood glucose level by enzyme-treated rice The blood glucose level after administration of rice was measured using rats by the following method, and the effect of suppressing the increase in blood glucose level was evaluated.
  • rice (lyophilized) of Examples 19 and Comparative Examples 33 and 34 was crushed using a mixer mill (MM301: Verder sientific), dispensed into a standing pouch, sealed with a seal, and at room temperature. It was stored and subjected to animal testing.
  • Total sugar mass spectrometry of enzyme-treated rice was outsourced to the Japan Food Research Laboratories and measured using the phenol-sulfuric acid method.
  • the test substance was prepared as a solution with distilled water on the day of the blood glucose measurement test. According to the following blood glucose measurement method and the test schedule of FIG. 1, the blood glucose levels were measured on an empty stomach, 15 minutes, 30 minutes, 60 minutes, 90 minutes, and 120 minutes after administration.
  • the test substance was administered orally when the total sugar content of the test substance was 1.3 g / 20 mL / kg.
  • the evaluation items were calculated as follows.
  • the fasting blood glucose level was defined as the blood glucose level at 0 minutes.
  • the value obtained by subtracting the blood glucose level of 0 minutes from the blood glucose level at each measurement time was defined as " ⁇ blood glucose level (mg / dL)".
  • the highest value among the ⁇ blood glucose levels at each measurement time was defined as “ ⁇ Cmax (mg / dL)” of each individual.
  • the value obtained by calculating the lower area of the ⁇ blood glucose level rise curve was defined as “ ⁇ blood glucose level AUC (mg / dL ⁇ min)”.
  • the calculation method was based on the method of the Japan Glycemic index study group.
  • Comparative Example 33 is rice rice to which no enzyme is added, and is generally a food having a high GI value.
  • Comparative Example 34 is rice with only MTT added as an enzyme. In Example 19 in which MTT and AG were used in combination as an enzyme, the ⁇ blood glucose level AUC was lower than in Comparative Examples 33 and 34, and a high blood glucose elevation inhibitory effect was confirmed.
  • rice that can suppress an increase in blood glucose level, particularly rice that has a lowered glycemic index, as compared with rice that does not contain an enzyme.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Cereal-Derived Products (AREA)

Abstract

Provided are: a method for producing a cooked rice food product/rice processed article, the method being able to suppress an increase in blood sugar levels; and a method for producing a cooked rice food product/rice processed article in which the glycemic index (GI) has been reduced. The present invention includes: a method for producing a cooked rice food product and the like configured to suppress an increase in blood sugar levels, the method including a step for adding (1) α-glucosidase (AG) and a branching enzyme (BE), (2) AG, BE and 4-α-glucanotransferase, or (3) an exo-type amylase and 4-α-glucanotransferase, to a raw rice starting material; a method for imparting, to a cooked rice food product and the like, the effect of suppressing an increase in blood sugar levels; and an enzymatic preparation for imparting, to a cooked rice food product and the like, the effect of suppressing an increase in blood sugar levels. The present invention also includes: a method for producing a cooked rice food product/rice processed article in which the glycemic index (GI) has been reduced, the method including a step for adding the foregoing (1), (2) or (3) to a raw rice starting material; a method for reducing the GI of a cooked rice food product and the like; and an enzymatic preparation for reducing the GI of a cooked rice food product and the like.

Description

血糖値上昇が抑制された米飯Rice with suppressed blood sugar elevation
 本発明は、血糖値上昇が抑制された米飯の製造方法、米飯に血糖値上昇を抑制する効果を付与する方法、米飯に血糖値上昇を抑制する効果を付与するための酵素製剤、グリセミックインデックスが低下した米飯の製造方法、米飯のグリセミックインデックスを低下させる方法、及び米飯のグリセミックインデックスを低下させるための酵素製剤に関する。 The present invention includes a method for producing rice in which an increase in blood glucose level is suppressed, a method for imparting an effect of suppressing an increase in blood glucose level to rice, an enzyme preparation for imparting an effect of suppressing an increase in blood glucose level to rice, and a glycemic index. The present invention relates to a method for producing reduced rice, a method for lowering the glycemic index of rice, and an enzyme preparation for lowering the glycemic index of rice.
 血糖値の上昇は肥満や糖尿病の原因である。日本人が主食とする白米やパン等のデンプン含有食品は食後の血糖値が上昇しやすく、一般に、GI(グリセミックインデックス)が高いとされている食品である。米飯の食後の血糖値を低下させる方法は種々開発されている。例えば、白米に玄米、食物繊維、難消化性デキストリン等を添加する方法が知られているが、食味や色味が悪化する問題がある。また、高アミロース米が開発されているが、食味の問題があることに加え、生産量が限定され、コストがかかる問題がある。 Elevated blood sugar levels are the cause of obesity and diabetes. Starch-containing foods such as white rice and bread, which are the staple foods of the Japanese, tend to increase the blood glucose level after meals, and are generally considered to have a high GI (glycemic index). Various methods have been developed to lower the postprandial blood glucose level of chelow. For example, a method of adding brown rice, dietary fiber, indigestible dextrin, or the like to white rice is known, but there is a problem that the taste and color are deteriorated. In addition, high amylose rice has been developed, but in addition to having a problem of taste, there is a problem that the production amount is limited and the cost is high.
 特許文献1は、マルトトリオシル転移酵素を糖質に作用させる工程を行うことを特徴とする、難消化性糖質の製造方法を開示する。特許文献2はブランチングエンザイムとエキソ型アミラーゼを糖質に作用させる工程を行うことを特徴とする、GI値を変化させない消化遅延糖質の製造方法を開示する。非特許文献1はブランチングエンザイムとアミロマルターゼを糖質に作用させる工程を行うことを特徴とする、難消化性糖質の製造方法を開示する。特許文献3は、アミロース含量が25%以上である、血糖値上昇抑制米を開示する。特許文献4は、ブランチングエンザイム及びα-グルコシダーゼを原料に添加することを特徴とするデンプン含有食品の老化抑制効果を示す製造方法を開示する。
 しかし、上記のいずれの文献にも、米飯の炊飯工程の酵素反応により、消化性に影響する構造変化が付与できる知見は報告されていない。
Patent Document 1 discloses a method for producing an indigestible sugar, which comprises performing a step of causing a maltotriosyltransferase to act on a sugar. Patent Document 2 discloses a method for producing a digestion-delayed sugar that does not change the GI value, which comprises performing a step of causing a blanching enzyme and an exo-type amylase to act on the sugar. Non-Patent Document 1 discloses a method for producing an indigestible sugar, which comprises performing a step of causing a blanching enzyme and amylomaltase to act on a sugar. Patent Document 3 discloses rice that suppresses an increase in blood glucose level and has an amylose content of 25% or more. Patent Document 4 discloses a production method showing an aging-suppressing effect of a starch-containing food, which comprises adding a blanching enzyme and α-glucosidase to a raw material.
However, neither of the above documents reports the finding that a structural change affecting digestibility can be imparted by an enzymatic reaction in the rice cooking process.
特開2016-214255号公報Japanese Unexamined Patent Publication No. 2016-214255 国際公開第2018/123901号International Publication No. 2018/12391 特開2005-328776号公報Japanese Unexamined Patent Publication No. 2005-328767 国際公開第2014/115894号International Publication No. 2014/115894
 本発明は、血糖値上昇を抑制することができる米飯食品又は米加工品、特にグリセミックインデックスが低下した米飯食品又は米加工品の製造方法を提供することを課題とする。 An object of the present invention is to provide a method for producing a rice food or a processed rice product capable of suppressing an increase in blood glucose level, particularly a rice food or a processed rice product having a lowered glycemic index.
 本発明者らは、上記課題の解決のために鋭意検討をしたところ、米飯の炊飯時に、特定の酵素を添加して、米中のデンプンと反応させることで、血糖値上昇を抑制することができる米飯食品又は米加工品、特にグリセミックインデックスが低下した米飯食品又は米加工品を製造できることを見出した。該知見に基づいて、本発明者らは、さらに鋭意検討をして、本発明を完成させた。 As a result of diligent studies to solve the above problems, the present inventors have found that when cooking rice, a specific enzyme is added and reacted with starch in the rice to suppress an increase in blood glucose level. It has been found that it is possible to produce a possible rice food or processed rice product, particularly a rice food or processed rice product having a reduced glycemic index. Based on the findings, the present inventors further studied and completed the present invention.
 すなわち、本発明は、下記を提供する。
[1]生米である原料に、エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程を含む、血糖値上昇が抑制された米飯食品又は米加工品(又は、難消化性が付与された米飯食品又は米加工品)の製造方法。
[2]4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、上記[1]記載の製造方法。
[3]前記エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程に続いて、炊飯工程を含む、上記[1]又は[2]に記載の製造方法。
That is, the present invention provides the following.
[1] Rice foods or processed rice products (or indigestible) in which the rise in blood glucose level is suppressed, which includes a step of adding exo-type amylase and 4-α-glucanotransferase to the raw material of raw rice, are imparted. (Rice rice food or processed rice product) manufacturing method.
[2] The production method according to the above [1], wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
[3] The production method according to the above [1] or [2], which comprises a step of adding the exo-type amylase and 4-α-glucanotransferase and then a step of cooking rice.
[4]生米である原料に、エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程を含む、米飯食品又は米加工品に、血糖値上昇を抑制する効果を付与する方法(又は、米飯食品又は米加工品に難消化性を付与する方法)。
[5]4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、上記[4]記載の方法。
[6]前記エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程に続いて、炊飯工程を含む、上記[4]又は[5]に記載の方法。
[4] A method (or method) for imparting an effect of suppressing an increase in blood glucose level to a rice food or a processed rice product, which comprises a step of adding an exo-type amylase and a 4-α-glucanotransferase to a raw material of raw rice. A method of imparting indigestibility to rice foods or processed rice products).
[5] The method according to [4] above, wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
[6] The method according to [4] or [5] above, which comprises a step of adding the exo-type amylase and 4-α-glucanotransferase and then a step of cooking rice.
[7]エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを含有する、米飯食品又は米加工品に血糖値上昇を抑制する効果を付与するための(又は、米飯食品又は米加工品に難消化性を付与するための)酵素製剤。
[8]4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、上記[7]記載の酵素製剤。
[9]炊飯工程で使用するための、上記[7]又は[8]に記載の酵素製剤。
[7] To impart the effect of suppressing the increase in blood glucose level to rice foods or processed rice products containing exo-type amylases and 4-α-glucanotransferase (or to make the rice foods or processed rice products indigestible). Enzyme preparation (for imparting).
[8] The enzyme preparation according to the above [7], wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
[9] The enzyme preparation according to the above [7] or [8] for use in the rice cooking step.
[10]生米である原料に、エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程を含む、グリセミックインデックスが低下した米飯食品又は米加工品の製造方法。
[11]4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、上記[10]記載の製造方法。
[12]前記エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程に続いて、炊飯工程を含む、上記[10]又は[11]に記載の製造方法。
[10] A method for producing a rice food or a processed rice product having a reduced glycemic index, which comprises a step of adding exo-type amylase and 4-α-glucanotransferase to a raw material of raw rice.
[11] The production method according to the above [10], wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
[12] The production method according to the above [10] or [11], which comprises a step of adding the exo-type amylase and 4-α-glucanotransferase and then a step of cooking rice.
[13]生米である原料に、エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程を含む、米飯食品又は米加工品のグリセミックインデックスを低下させる方法。
[14]4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、上記[13]記載の方法。
[15]前記エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程に続いて、炊飯工程を含む、上記[13]又は[14]に記載の方法。
[13] A method for lowering the glycemic index of a rice food or processed rice product, which comprises a step of adding exo-type amylase and 4-α-glucanotransferase to a raw material of raw rice.
[14] The method according to [13] above, wherein the 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
[15] The method according to [13] or [14] above, which comprises a step of adding the exo-type amylase and 4-α-glucanotransferase and then a step of cooking rice.
[16]エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを含有する、米飯食品又は米加工品のグリセミックインデックスを低下させるための酵素製剤。
[17]4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、上記[16]記載の酵素製剤。
[18]炊飯工程で使用するための、上記[16]又は[17]に記載の酵素製剤。
[16] An enzyme preparation containing exo-type amylase and 4-α-glucanotransferase for lowering the glycemic index of rice foods or processed rice products.
[17] The enzyme preparation according to the above [16], wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
[18] The enzyme preparation according to the above [16] or [17] for use in the rice cooking step.
[19]生米である原料に、下記(1)又は(2)の酵素を添加する工程を含む、血糖値上昇が抑制された米飯食品又は米加工品(又は、難消化性が付与された米飯食品又は米加工品)の製造方法。
(1)α-グルコシダーゼ及びブランチングエンザイム
(2)α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ
[20]4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、上記[19]記載の製造方法。
[21]前記酵素を添加する工程に続いて、炊飯工程を含む、上記[19]又は[20]に記載の製造方法。
[19] A rice food or processed rice product (or resistant to digestion) in which an increase in blood glucose level is suppressed, which comprises a step of adding the following enzymes (1) or (2) to a raw material of raw rice, has been imparted. Manufacturing method of rice food or processed rice.
(1) α-Glucosidase and blanching enzyme (2) α-Glucosidase, blanching enzyme and 4-α-glucanotransferase [20] 4-α-glucanotransferase consists of maltotriosyltransferase and amylomaltase. The production method according to the above [19], which is at least one selected from the group.
[21] The production method according to the above [19] or [20], which comprises a step of adding the enzyme and then a step of cooking rice.
[22]生米である原料に、下記(1)又は(2)の酵素を添加する工程を含む、米飯食品又は米加工品に、血糖値上昇を抑制する効果を付与する方法(又は、米飯食品又は米加工品に難消化性を付与する方法)。
(1)α-グルコシダーゼ及びブランチングエンザイム
(2)α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ
[23]4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、上記[22]記載の方法。
[24]前記酵素を添加する工程に続いて、炊飯工程を含む、上記[22]又は[23]に記載の方法。
[22] A method (or rice) for imparting an effect of suppressing an increase in blood glucose level to a rice food or a processed rice product, which comprises a step of adding the following enzymes (1) or (2) to a raw material of raw rice. Method of imparting indigestibility to food or processed rice products).
(1) α-glucosidase and blanching enzyme (2) α-glucosidase, blanching enzyme and 4-α-glucanotransferase [23] 4-α-glucanotransferase consists of maltotriosyltransferase and amylomaltase. The method according to [22] above, which is at least one selected from the group.
[24] The method according to [22] or [23] above, which comprises a step of adding the enzyme and then a step of cooking rice.
[25]下記(1)又は(2)の酵素を含有する、米飯食品又は米加工品に血糖値上昇を抑制する効果を付与するための(又は、米飯食品又は米加工品に難消化性を付与するための)酵素製剤。
(1)α-グルコシダーゼ及びブランチングエンザイム
(2)α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ
[26]4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、上記[25]記載の酵素製剤。
[27]炊飯工程で使用するための、上記[25]又は[26]に記載の酵素製剤。
[25] To impart the effect of suppressing an increase in blood glucose level to rice foods or processed rice products containing the following enzymes (1) or (2) (or to make rice foods or processed rice products indigestible). Enzyme preparation (for granting).
(1) α-Glucosidase and branching enzyme (2) α-Glucosidase, branching enzyme and 4-α-glucanotransferase [26] 4-α-glucanotransferase consists of maltotriosyltransferase and amylomaltase. The enzyme preparation according to the above [25], which is at least one selected from the group.
[27] The enzyme preparation according to the above [25] or [26] for use in the rice cooking step.
[28]生米である原料に、下記(1)又は(2)の酵素を添加する工程を含む、グリセミックインデックスが低下した米飯食品又は米加工品の製造方法。
(1)α-グルコシダーゼ及びブランチングエンザイム
(2)α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ
[29]4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、上記[28]記載の製造方法。
[30]前記酵素を添加する工程に続いて、炊飯工程を含む、上記[28]又は[29]に記載の製造方法。
[28] A method for producing a rice food or a processed rice product having a reduced glycemic index, which comprises a step of adding the enzyme of (1) or (2) below to a raw material of raw rice.
(1) α-glucosidase and blanching enzyme (2) α-glucosidase, blanching enzyme and 4-α-glucanotransferase [29] 4-α-glucanotransferase consists of maltotriosyltransferase and amylomaltase. The production method according to the above [28], which is at least one selected from the group.
[30] The production method according to the above [28] or [29], which comprises a step of adding the enzyme and then a step of cooking rice.
[31]生米である原料に、下記(1)又は(2)の酵素を添加する工程を含む、米飯食品又は米加工品のグリセミックインデックスを低下させる方法。
(1)α-グルコシダーゼ及びブランチングエンザイム
(2)α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ
[32]4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、上記[31]記載の方法。
[33]前記酵素を添加する工程に続いて、炊飯工程を含む、上記[31]又は[32]に記載の方法。
[31] A method for lowering the glycemic index of rice foods or processed rice products, which comprises a step of adding the enzyme of (1) or (2) below to a raw material of raw rice.
(1) α-glucosidase and blanching enzyme (2) α-glucosidase, blanching enzyme and 4-α-glucanotransferase [32] 4-α-glucanotransferase consists of maltotriosyltransferase and amylomaltase. The method according to [31] above, which is at least one selected from the group.
[33] The method according to [31] or [32] above, which comprises a step of adding the enzyme and then a step of cooking rice.
[34]下記(1)又は(2)の酵素を含有する、米飯食品又は米加工品のグリセミックインデックスを低下させるための酵素製剤。
(1)α-グルコシダーゼ及びブランチングエンザイム
(2)α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ
[35]4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、上記[34]記載の酵素製剤。
[36]炊飯工程で使用するための、上記[34]又は[35]に記載の酵素製剤。
[34] An enzyme preparation for lowering the glycemic index of rice foods or processed rice products, which contains the following enzymes (1) or (2).
(1) α-Glucosidase and branching enzyme (2) α-Glucosidase, branching enzyme and 4-α-glucanotransferase [35] 4-α-glucanotransferase consists of maltotriosyltransferase and amylomaltase. The enzyme preparation according to the above [34], which is at least one selected from the group.
[36] The enzyme preparation according to the above [34] or [35] for use in the rice cooking step.
[37]血糖値上昇の抑制を必要とする対象に、生米である原料にエキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程を含む方法により製造された、米飯食品又は米加工品を投与することを含む、該対象における血糖値上昇を抑制する方法。
[38]4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、上記[37]記載の方法。
[39]前記米飯食品又は米加工品が、前記エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程に続いて、炊飯工程を含む方法により製造された、上記[37]又は[38]に記載の方法。
[37] Rice food or processed rice produced by a method including a step of adding exo-type amylase and 4-α-glucanotransferase to a raw material of raw rice for a target requiring suppression of an increase in blood glucose level. A method of suppressing an increase in blood glucose level in a subject, which comprises administering.
[38] The method according to [37] above, wherein the 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
[39] The above-mentioned [37] or [38], wherein the rice food or processed rice product is produced by a method including a rice cooking step following the step of adding the exo-type amylase and 4-α-glucanotransferase. The method described in.
[40]血糖値上昇の抑制における使用のための、生米である原料にエキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程を含む方法により製造された、米飯食品又は米加工品。
[41]4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、上記[40]記載の米飯食品又は米加工品。
[42]前記エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程に続いて、炊飯工程を含む方法により製造された、上記[40]又は[41]に記載の米飯食品又は米加工品。
[40] A rice food or processed rice product produced by a method comprising a step of adding exo-type amylase and 4-α-glucanotransferase to a raw material of raw rice for use in suppressing an increase in blood glucose level.
[41] The rice food or processed rice product according to the above [40], wherein the 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
[42] The rice food or processed rice product according to the above [40] or [41], which is produced by a method including a rice cooking step following the step of adding the exo-type amylase and 4-α-glucanotransferase. ..
[43]生米を原料として血糖値上昇を抑制するための米飯食品又は米加工品を製造するための、エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼの使用。
[44]4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、上記[43]記載の使用。
[45]エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼが炊飯工程で使用される、上記[43]又は[44]に記載の使用。
[43] Use of exo-type amylase and 4-α-glucanotransferase for producing rice foods or processed rice products for suppressing an increase in blood glucose level using raw rice as a raw material.
[44] The use according to [43] above, wherein the 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
[45] The use according to [43] or [44] above, wherein the exo-type amylase and 4-α-glucanotransferase are used in the rice cooking step.
[46]血糖値上昇の抑制を必要とする対象に、生米である原料に下記(1)又は(2)の酵素を添加する工程を含む方法により製造された、米飯食品又は米加工品を投与することを含む、該対象における血糖値上昇を抑制する方法。
(1)α-グルコシダーゼ及びブランチングエンザイム
(2)α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ
[47]4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、上記[46]記載の方法。
[48]前記米飯食品又は米加工品が、前記酵素を添加する工程に続いて、炊飯工程を含む方法により製造された、上記[46]又は[47]に記載の方法。
[46] Rice foods or processed rice products produced by a method including the steps of adding the following enzymes (1) or (2) to a raw material of raw rice for a target requiring suppression of an increase in blood glucose level. A method of suppressing an increase in blood glucose level in a subject, which comprises administration.
(1) α-Glucosidase and blanching enzyme (2) α-Glucosidase, blanching enzyme and 4-α-glucanotransferase [47] 4-α-glucanotransferase consists of maltotriosyltransferase and amylomaltase. The method according to [46] above, which is at least one selected from the group.
[48] The method according to [46] or [47] above, wherein the rice food or processed rice product is produced by a method including a rice cooking step following the step of adding the enzyme.
[49]血糖値上昇の抑制における使用のための、生米である原料に下記(1)又は(2)の酵素を添加する工程を含む方法により製造された、米飯食品又は米加工品。
(1)α-グルコシダーゼ及びブランチングエンザイム
(2)α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ
[50]4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、上記[49]記載の米飯食品又は米加工品。
[51]前記酵素を添加する工程に続いて、炊飯工程を含む方法により製造された、上記[49]又は[50]に記載の米飯食品又は米加工品。
[49] A rice food or processed rice product produced by a method including a step of adding the enzyme of (1) or (2) below to a raw material of raw rice for use in suppressing an increase in blood glucose level.
(1) α-Glucosidase and blanching enzyme (2) α-Glucosidase, blanching enzyme and 4-α-glucanotransferase [50] 4-α-glucanotransferase consists of maltotriosyltransferase and amylomaltase. The blanched food or processed rice product according to the above [49], which is at least one selected from the group.
[51] The rice food or processed rice product according to the above [49] or [50], which is produced by a method including a rice cooking step following the step of adding the enzyme.
[52]生米を原料として血糖値上昇を抑制するための米飯食品又は米加工品を製造するための、下記(1)又は(2)の酵素の使用。
(1)α-グルコシダーゼ及びブランチングエンザイム
(2)α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ
[53]4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、上記[52]記載の使用。
[54]前記酵素が炊飯工程で使用される、上記[52]又は[53]に記載の使用。
[52] Use of the following enzymes (1) or (2) for producing rice foods or processed rice products for suppressing an increase in blood glucose level using raw rice as a raw material.
(1) α-glucosidase and blanching enzyme (2) α-glucosidase, blanching enzyme and 4-α-glucanotransferase [53] 4-α-glucanotransferase consists of maltotriosyltransferase and amylomaltase. The use according to [52] above, which is at least one selected from the group.
[54] The use according to the above [52] or [53], wherein the enzyme is used in the rice cooking step.
 本発明によれば、米飯の製造時に、特定の酵素を添加して、米中のデンプンと反応させることで、酵素無添加の米飯と比べて、食後の血糖値上昇を抑制することができる米飯を製造することができる。本発明によれば、該製造方法により、酵素無添加の米飯と比べて、グリセミックインデックスが低下した米飯を製造することができる。 According to the present invention, by adding a specific enzyme during the production of rice and reacting it with starch in the rice, it is possible to suppress an increase in blood glucose level after meals as compared with rice without an enzyme. Can be manufactured. According to the present invention, it is possible to produce rice with a lower glycemic index than rice with no enzyme added by the production method.
図1は、試験例1の試験日程を示す。FIG. 1 shows the test schedule of Test Example 1. 図2は、試験例2の結果を示す。FIG. 2 shows the results of Test Example 2. 図3は、試験例7の結果を示す。FIG. 3 shows the results of Test Example 7.
 以下に、本発明を詳細に説明する。
 本発明に用いられるブランチングエンザイム(酵素番号EC2.4.1.18)は、1,4-α-D-グルカン鎖の一部を受容体1,4-α-Dグルカンの6-OH基に転移させ、アミロペクチン又はグリコーゲンのようなα-1,6結合の枝分かれ構造を生成する酵素である。長瀬産業(株)で製造している食品用酵素「ブランチングエンザイム」(例えば、「ブランチングエンザイムA」(商品名)長瀬産業(株))が一例である。
 ブランチングエンザイムの酵素活性については、以下のように定義した。0.08Mリン酸バッファー(pH7.0)に溶解させた0.1%アミロースB(ナカライテスク)50μlに0.1Mリン酸バッファー(pH7.0)に溶解させた酵素溶液50μlを加え、50℃、30分間反応後にヨウ素試薬(0.26g Iと0.26g KIを10ml超純水にて溶解した液0.5mlと1N HCl 0.5mlを混ぜ、130mlに希釈した液)2mlを添加し、660nm吸光度を測定する。本反応系で反応1分間に660nm吸光度を1%低下させる酵素量を1U(ユニット)と定義した。
Hereinafter, the present invention will be described in detail.
The blanching enzyme (enzyme number EC2.4.1.18) used in the present invention has a part of the 1,4-α-D-glucan chain as a 6-OH group of the acceptor 1,4-α-D glucan. It is an enzyme that translocates to and produces a branched structure of α-1,6 bonds such as amylopectin or glycogen. An example is the food enzyme "Blanching Enzyme" (for example, "Blanching Enzyme A" (trade name) Nagase & Co., Ltd.) manufactured by Nagase & Co., Ltd.
The enzymatic activity of the blanching enzyme was defined as follows. To 50 μl of 0.1% amylose B (Nakalitesk) dissolved in 0.08 M phosphate buffer (pH 7.0), 50 μl of an enzyme solution dissolved in 0.1 M phosphate buffer (pH 7.0) was added, and the temperature was 50 ° C. After the reaction for 30 minutes , add 2 ml of iodine reagent (0.5 ml of 0.26 g I 2 and 0.26 g KI dissolved in 10 ml ultrapure water and 0.5 ml of 1N HCl mixed and diluted to 130 ml). , 660 nm Absorption is measured. The amount of enzyme that reduces the absorbance at 660 nm by 1% in 1 minute of the reaction in this reaction system was defined as 1 U (unit).
 本発明において、エキソ型アミラーゼは、澱粉の非還元性末端からα-1,4グリコシド結合を逐次分解する酵素のことを示す。
 本発明において、エキソ型アミラーゼとしては、例えば、α-グルコシダーゼ、β-アミラーゼが挙げられる。これらの酵素は1又は2以上を組合せて用いることができる。
In the present invention, the exo-type amylase refers to an enzyme that sequentially decomposes α-1,4 glycosidic bonds from the non-reducing end of starch.
In the present invention, examples of the exo-type amylase include α-glucosidase and β-amylase. These enzymes can be used in combination of 1 or 2 or more.
 本発明に用いられるα-グルコシダーゼ(EC3.2.1.20)は、非還元末端α-1,4-グルコシド結合を加水分解し、α-グルコースを生成する酵素である。α-グルコシダーゼのうち、トランスグルコシダーゼが好ましい。尚、「トランスグルコシダーゼ「アマノ」」、「α-グルコシダーゼ「アマノ」」という商品名で天野エンザイム(株)より市販されている酵素が、α-グルコシダーゼの一例である。
 α-グルコシダーゼの酵素活性については1mM α-メチル-D-グルコシド1mlに0.02M酢酸バッファー(pH5.0)1mlを加え、酵素溶液0.5ml添加して、40℃で60分間作用させたときに、反応液2.5ml中に1μgのブドウ糖を生成する酵素量を1U(ユニット)と定義した。
The α-glucosidase (EC 3.2.1.20) used in the present invention is an enzyme that hydrolyzes the non-reducing terminal α-1,4-glucoside bond to produce α-glucose. Of the α-glucosidase, transglucosidase is preferable. An enzyme commercially available from Amano Enzyme Co., Ltd. under the trade names of "transglucosidase" Amano "" and "α-glucosidase" Amano "" is an example of α-glucosidase.
Regarding the enzymatic activity of α-glucosidase, when 1 ml of 0.02 M acetate buffer (pH 5.0) was added to 1 ml of 1 mM α-methyl-D-glucoside, 0.5 ml of the enzyme solution was added, and the mixture was allowed to act at 40 ° C. for 60 minutes. The amount of enzyme that produces 1 μg of glucose in 2.5 ml of the reaction solution was defined as 1 U (unit).
 本発明に用いられるβ-アミラーゼは、デンプンのα-1,4-グルコシド結合を、非還元性末端から一つおきに(マルトース単位で)加水分解する活性を有するエキソ型酵素であり、例えば、微生物由来のもの、植物由来のもの等、種々の起源のものが知られているが、本発明において用いられるβ-アミラーゼは、上述の活性を有すればその起源は特に制限されず、いかなる起源のβ-アミラーゼであっても使用でき、また組み換え酵素を使用してもよい。本発明において用いられるβ-アミラーゼは市販品であってもよく、具体例としては、ハイマルトシンGL、ハイマルトシンGLH(いずれもエイチビィアイ社製)、β-アミラーゼF「アマノ」(天野エンザイム社製)等が挙げられる。
 本発明においてβ-アミラーゼの活性単位は、次のように測定され、かつ、定義される。
 p-ニトロフェニル-β-D-マルトトリオシド(PNP-β)を基質としてβ-アミラーゼを作用させる。その後、生成したp-ニトロフェノール(PNP)の量を400nmの吸光度で測定する。1分間に1μモルのPNPを解離させる酵素量を1U(ユニット)と定義する。
The β-amylase used in the present invention is an exo-type enzyme having an activity of hydrolyzing the α-1,4-glucoside bond of starch every other (in maltose units) from the non-reducing terminal, for example. Various origins such as those derived from microorganisms and those derived from plants are known, but the origin of β-amylase used in the present invention is not particularly limited as long as it has the above-mentioned activity, and any origin. Β-amylase can also be used, or a recombinant enzyme may be used. The β-amylase used in the present invention may be a commercially available product, and specific examples thereof include hymaltocin GL, hymaltocin GLH (all manufactured by HBI), β-amylase F “Amano” (manufactured by Amano Enzyme), and the like. Can be mentioned.
In the present invention, the active unit of β-amylase is measured and defined as follows.
β-amylase is allowed to act on p-nitrophenyl-β-D-maltotrioside (PNP-β) as a substrate. Then, the amount of p-nitrophenol (PNP) produced is measured by the absorbance at 400 nm. The amount of enzyme that dissociates 1 μmol of PNP per minute is defined as 1 U (unit).
 本発明において4-α-グルカノトランスフェラーゼは、供与体分子の非還元末端からグルコシル基又は2個以上のグルコースからなるユニットを受容体分子に転移する酵素である。
 本発明において4-α-グルカノトランスフェラーゼとしては、例えば、マルトトリオシル転移酵素及びアミロマルターゼが挙げられる。これらの酵素は1又は2以上を組合せて用いることができる。
In the present invention, 4-α-glucanotransferase is an enzyme that transfers a unit consisting of a glucosyl group or two or more glucoses to a receptor molecule from the non-reducing end of the donor molecule.
Examples of 4-α-glucanotransferase in the present invention include maltotriosyltransferase and amylomaltase. These enzymes can be used in combination of 1 or 2 or more.
 本発明においてマルトトリオシル転移酵素(EC2.4.1.25)は、結合様式としてα-1,4グルコシド結合を有する多糖類及びオリゴ糖類に作用し、マルトトリオース単位を糖類に転移させる酵素である。
 本発明に用いられるマルトトリオシル転移酵素の酵素活性は、4-α-グルカノトランスフェラーゼ力試験法により測定することができ、pH=6.5、40℃で60分間反応させた際に、マルトテトラオースから1分間に1μmolのブドウ糖を生成する酵素量が、1U(ユニット)と定義される。尚、「グライコトランスフェラーゼ」、「グライコトランスフェラーゼ「アマノ」L」という商品名で天野エンザイム(株)より市販されている酵素が、マルトトリオシル転移酵素の一例である。
In the present invention, maltotriose transferase (EC 2.4.1.25) is an enzyme that acts on polysaccharides and oligosaccharides having an α-1,4 glucosidic bond as a binding mode to transfer maltotriose units to saccharides. Is.
The enzymatic activity of the maltotriosyltransferase used in the present invention can be measured by the 4-α-glucanotransferase force test method, and when reacted at pH = 6.5 and 40 ° C. for 60 minutes, malt The amount of enzyme that produces 1 μmol of glucose from tetraose per minute is defined as 1 U (unit). An enzyme commercially available from Amano Enzyme Co., Ltd. under the trade names of "Glycotransferase" and "Glycotransferase" Amano "L" is an example of maltotriosyltransferase.
 本発明においてアミロマルターゼ(EC2.4.1.25)は、α-グルカン(例、アミロース、アミロペクチン、デンプン等)の非還元末端からα-グルカン鎖の一部を、別のα-グルカン(又はグルコース)の非還元末端に転移させる化学反応を触媒する酵素をいう。α-グルカン鎖の供与体分子と受容体分子とは同一であってよく、その場合、分子内転移が生じ、生成物は環状構造となる。
 本発明においてアミロマルターゼの活性単位は、Srisimatratらの方法(Srisimatrat et al.,Journal of Inclusion Phenomena and Macrocyclic Chemistry、2011、vol.70、p.369)又はそれに準ずる方法により測定される。具体的には、次のように測定され、かつ、定義される。0.05%可溶化デンプン、0.05%マルトース、30mM酢酸ナトリウム緩衝液(pH5.5)及び酵素液0.01mLの反応液1mLを70℃で5分間反応を行った後、96℃で5分間加熱し反応を停止する。その後0.1mLの反応液を1mLのヨウ素溶液(0.02%I、0.2%KI)と混合し600nmにおける吸光度を測定する。酵素を用いなかった場合(コントロール)の測定値から酵素を用いた場合の測定値を減じた値を活性値とし、600nmにおける吸光度を1分間に1減ずる酵素量を1U(ユニット)と定義する。
 本発明において、アミロマルターゼには、コリネ菌由来アミロマルターゼ等が含まれる。
In the present invention, amylomaltase (EC 2.4.1.25) removes a part of the α-glucan chain from the non-reducing end of α-glucan (eg, amylose, amylopectin, starch, etc.) to another α-glucan (or another α-glucan (or). An enzyme that catalyzes a chemical reaction that transfers to the non-reducing end of glucose). The donor molecule and the acceptor molecule of the α-glucan chain may be the same, in which case an intramolecular transition occurs and the product has a cyclic structure.
In the present invention, the active unit of amylomaltase is measured by the method of Srisimatrat et al. (Srisimatrat et al., Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, vol.70, p.369) or quasi. Specifically, it is measured and defined as follows. After reacting 1 mL of a reaction solution of 0.05% solubilized starch, 0.05% maltose, 30 mM sodium acetate buffer (pH 5.5) and 0.01 mL of enzyme solution at 70 ° C. for 5 minutes, 5 at 96 ° C. Heat for minutes to stop the reaction. Then, 0.1 mL of the reaction solution is mixed with 1 mL of iodine solution (0.02% I 2 , 0.2% KI), and the absorbance at 600 nm is measured. The value obtained by subtracting the measured value when the enzyme is used from the measured value when the enzyme is not used (control) is defined as the activity value, and the amount of the enzyme which reduces the absorbance at 600 nm by 1 minute is defined as 1 U (unit).
In the present invention, the amylomaltase includes corynebacterium-derived amylomaltase and the like.
 本発明は、生米である原料に、下記(1)、(2)又は(3)の酵素を添加する工程を含む、血糖値上昇が抑制された米飯食品又は米加工品の製造方法に関する。
(1)α-グルコシダーゼ及びブランチングエンザイム(本明細書で、酵素(1)と記載することがある。)
(2)α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ(本明細書で、酵素(2)と記載することがある。)
(3)エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼ(本明細書で、酵素(3)と記載することがある。)
The present invention relates to a method for producing a rice food or a processed rice product in which an increase in blood glucose level is suppressed, which comprises a step of adding the following enzymes (1), (2) or (3) to a raw material of raw rice.
(1) α-Glucosidase and blanching enzyme (in this specification, it may be referred to as enzyme (1)).
(2) α-Glucosidase, blanching enzyme and 4-α-glucanotransferase (may be referred to as enzyme (2) in the present specification).
(3) Exo-type amylase and 4-α-glucanotransferase (in this specification, it may be referred to as enzyme (3)).
 本発明において、酵素(2)としては、下記(2-i)~(2-iii)が挙げられる。
(2-i)α-グルコシダーゼ、ブランチングエンザイム及びマルトトリオシル転移酵素
(2-ii)α-グルコシダーゼ、ブランチングエンザイム及びアミロマルターゼ
(2-iii)α-グルコシダーゼ、ブランチングエンザイム、マルトトリオシル転移酵素及びアミロマルターゼ
In the present invention, examples of the enzyme (2) include the following (2-i) to (2-iii).
(2-i) α-Glucosidase, Blanching Enzyme and Maltotriosyl Translocation Enzyme (2-ii) α-Glucosidase, Blanching Enzyme and Amylomaltase (2-iii) α-Glucosidase, Blanching Enzyme, Maltotriosyl Translocation Enzymes and amylomaltase
 本発明において、酵素(3)としては、下記(3-i)~(3-ix)が挙げられる。
(3-i)α-グルコシダーゼ及びマルトトリオシル転移酵素
(3-ii)α-グルコシダーゼ及びアミロマルターゼ
(3-iii)α-グルコシダーゼ、マルトトリオシル転移酵素及びアミロマルターゼ
(3-iv)β-アミラーゼ及びマルトトリオシル転移酵素
(3-v)β-アミラーゼ及びアミロマルターゼ
(3-vi)β-アミラーゼ、マルトトリオシル転移酵素及びアミロマルターゼ
(3-vii)α-グルコシダーゼ、β-アミラーゼ及びマルトトリオシル転移酵素
(3-viii)α-グルコシダーゼ、β-アミラーゼ及びアミロマルターゼ
(3-ix)α-グルコシダーゼ、β-アミラーゼ、マルトトリオシル転移酵素及びアミロマルターゼ
In the present invention, examples of the enzyme (3) include the following (3-i) to (3-ix).
(3-i) α-Glucosidase and maltotriosyl transferase (3-ii) α-glucosidase and amylomaltase (3-iii) α-glucosidase, maltotriosyl transferase and amylomaltase (3-iv) β-amylase And maltotriosyl transferase (3-v) β-amylase and amylomaltase (3-vi) β-amylase, maltotriosyl transferase and amylomaltase (3-vii) α-glucosidase, β-amylase and maltotriosyl Transtransferase (3-viii) α-glucosidase, β-amylase and amylomaltase (3-ix) α-glucosidase, β-amylase, maltotriosyl transtransferase and amylomaltase
 本発明に用いられる原料は、生米である。生米は、米の品種、精米の有無は特に限定されず、例えば、精白米、玄米、発芽玄米、高アミロース米、低アミロース米等が挙げられる。
 本発明において、米飯食品としては、例えば、炊飯米(白飯、玄米、発芽玄米、高アミロース米、低アミロース米、大麦添加米、もち麦添加米、雑穀添加米、難消化性糖質添加米)、酢飯(寿司飯)、赤飯、ピラフ、炒飯、炊き込みご飯、おこわ、お粥、リゾット、おにぎり、寿司、弁当が挙げられる。本発明において、米加工品としては、例えば、煎餅、おかき、和菓子、餅が挙げられる。また、これらの冷凍品、無菌包装品、レトルト品、乾燥品、缶詰品も含まれる。
 本明細書において、食品とは、経口摂取し得るもの(医薬品を除く)を広く包含する概念であり、いわゆる「食べ物」のみならず飲料、健康補助食品、保健機能食品(例えば、特定保健用食品、機能性表示食品、栄養機能食品)、サプリメント等を含む。
The raw material used in the present invention is raw rice. The raw rice is not particularly limited in the variety of rice and the presence or absence of polished rice, and examples thereof include polished rice, brown rice, germinated brown rice, high amylose rice, and low amylose rice.
In the present invention, the rice food includes, for example, cooked rice (white rice, brown rice, germinated brown rice, high amylose rice, low amylose rice, barley-added rice, glutinous wheat-added rice, miscellaneous grain-added rice, resistant sugar-added rice). , Vinegar rice (sushi rice), red rice, pilaf, fried rice, cooked rice, okowa, porridge, risotto, rice balls, sushi, lunch. In the present invention, examples of processed rice products include rice crackers, okaki, Japanese sweets, and rice cakes. In addition, these frozen products, sterile packaged products, retort products, dried products, and canned products are also included.
In the present specification, food is a concept that broadly includes foods that can be taken orally (excluding pharmaceuticals), and is not only so-called "food" but also beverages, dietary supplements, and foods with health claims (for example, foods for specified health use). , Functional foods, nutritionally functional foods), supplements, etc.
 本発明の米飯(米飯食品又は米加工品)の製造方法においては、酵素を、原料生米に炊飯前に添加し、炊飯工程で米中のデンプンと反応させる。酵素の原料生米への添加は、炊飯前であれば、どの段階で行ってもよい。吸水のため原料生米を浸漬させる浸漬液にこれらの酵素を添加してもよいが、浸漬後、炊飯前に酵素を添加することが好ましい。また、本発明では複数の酵素を組合せて用いるが、これらの酵素を米に添加する順序は特に問わず、いずれかの1種を先に添加した後、残りの酵素を添加してもよいが、複数の酵素を同時に添加するのが好ましい。さらに、通常食品に用いられる原料を併用しても構わない。 In the method for producing rice (rice food or processed rice) of the present invention, an enzyme is added to the raw rice before cooking and reacted with starch in the rice in the rice cooking process. The enzyme may be added to the raw rice at any stage as long as it is before the rice is cooked. These enzymes may be added to the dipping solution in which the raw rice is immersed for water absorption, but it is preferable to add the enzymes after the immersion and before the rice is cooked. Further, although a plurality of enzymes are used in combination in the present invention, the order in which these enzymes are added to rice is not particularly limited, and one of them may be added first and then the remaining enzymes may be added. , It is preferable to add a plurality of enzymes at the same time. Further, raw materials usually used for foods may be used in combination.
酵素(1):α-グルコシダーゼ及びブランチングエンザイム
 本発明において、酵素(1)を使用する場合、α-グルコシダーゼの添加量は、原料生米1gに対して酵素活性が、好ましくは0.0005~100U、より好ましくは0.001~30U、さらに好ましくは0.005~10U、特に好ましくは0.01~3Uである。
 本発明において、酵素(1)を使用する場合、ブランチングエンザイムの添加量は、原料生米1gに対して酵素活性が、好ましくは0.001~3000U、より好ましくは0.05~2000U、さらに好ましくは0.1~1000U、特に好ましくは1~600Uである。
 また、α-グルコシダーゼとブランチングエンザイムの添加量の比率(α-グルコシダーゼ:ブランチングエンザイム)は、好ましくは1U:1×10-3~6×10U、より好ましくは1U:1×10-2~6×10U、さらに好ましくは1U:1×10-1~6×10U、特に好ましくは1U:1~6×10Uである。
Enzyme (1): α-glucosidase and blanching enzyme When the enzyme (1) is used in the present invention, the amount of α-glucosidase added is such that the enzyme activity is preferably 0.0005 to 1 g of raw rice. It is 100 U, more preferably 0.001 to 30 U, still more preferably 0.005 to 10 U, and particularly preferably 0.01 to 3 U.
In the present invention, when the enzyme (1) is used, the amount of the blanching enzyme added is preferably 0.001 to 3000 U, more preferably 0.05 to 2000 U, and further, the enzyme activity is preferably 0.001 to 3000 U, more preferably 0.05 to 2000 U, with respect to 1 g of raw rice. It is preferably 0.1 to 1000 U, particularly preferably 1 to 600 U.
Furthermore, alpha-glucosidase and the ratio of the amount of branching enzyme (alpha-glucosidase: branching enzyme) is preferably 1U: 1 × 10 -3 ~ 6 × 10 7 U, more preferably 1U: 1 × 10 - It is 2 to 6 × 10 6 U, more preferably 1 U: 1 × 10 -1 to 6 × 10 5 U, and particularly preferably 1 U: 1 to 6 × 10 4 U.
酵素(2):α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ
 本発明において、酵素(2)を使用する場合、α-グルコシダーゼの添加量は、原料生米1gに対して酵素活性が、好ましくは0.0005~100U、より好ましくは0.001~30U、さらに好ましくは0.005~10U、特に好ましくは0.01~3Uである。
 本発明において、酵素(2)を使用する場合、ブランチングエンザイムの添加量は、原料生米1gに対して酵素活性が、好ましくは0.001~3000U、より好ましくは0.05~2000U、さらに好ましくは0.1~1000U、特に好ましくは1~600Uである。
 本発明において、酵素(2)を使用する場合、4-α-グルカノトランスフェラーゼ(例えば、マルトトリオシル転移酵素、アミロマルターゼ)の添加量は、原料生米1gに対して酵素活性が、好ましくは0.00005~100U、より好ましくは0.0001~30U、さらに好ましくは0.005~10U、特に好ましくは0.01~4Uである。
 また、α-グルコシダーゼとブランチングエンザイムと4-α-グルカノトランスフェラーゼ(例えば、マルトトリオシル転移酵素、アミロマルターゼ)の添加量の比率(α-グルコシダーゼ:ブランチングエンザイム:4-α-グルカノトランスフェラーゼ)は、好ましくは1U:1×10-3~6×10U:1×10-5~4×10U、より好ましくは1U:1×10-2~6×10U:1×10-4~4×10U、さらに好ましくは1U:1×10-1~6×10U:1×10-3~4×10U、特に好ましくは1U:1~6×10U:1×10-2~4×10Uである。
 酵素(2)において、4-α-グルカノトランスフェラーゼは、1種のみを用いてもよく、複数種の4-α-グルカノトランスフェラーゼを組み合わせて用いてもよい。
 酵素(2)において、複数種の4-α-グルカノトランスフェラーゼを組み合わせて使用する場合の添加量は、複数種の4-α-グルカノトランスフェラーゼの「各酵素の添加量」が、上記記載の範囲であればよい。
Enzyme (2): α-glucosidase, branching enzyme and 4-α-glucanotransferase When enzyme (2) is used in the present invention, the amount of α-glucosidase added is the enzyme activity with respect to 1 g of raw rice. However, it is preferably 0.0005 to 100 U, more preferably 0.001 to 30 U, still more preferably 0.005 to 10 U, and particularly preferably 0.01 to 3 U.
In the present invention, when the enzyme (2) is used, the amount of the blanching enzyme added is such that the enzyme activity is preferably 0.001 to 3000 U, more preferably 0.05 to 2000 U, with respect to 1 g of raw rice. It is preferably 0.1 to 1000 U, particularly preferably 1 to 600 U.
In the present invention, when the enzyme (2) is used, the amount of 4-α-glucanotransferase (for example, maltotriosyltransferase, amylomaltase) added is preferably the enzyme activity with respect to 1 g of raw rice. It is 0.00005 to 100U, more preferably 0.0001 to 30U, still more preferably 0.005 to 10U, and particularly preferably 0.01 to 4U.
In addition, the ratio of the amount of α-glucosidase, blanching enzyme, and 4-α-glucanotransferase (for example, maltotriosyltransferase, amylomaltase) added (α-glucosidase: blanching enzyme: 4-α-glucanotransferase). ) Is preferably 1U: 1 × 10 -3 to 6 × 10 7 U: 1 × 10 -5 to 4 × 10 5 U, and more preferably 1U: 1 × 10 -2 to 6 × 10 6 U: 1 ×. 10 -4 to 4 × 10 4 U, more preferably 1 U: 1 × 10 -1 to 6 × 10 5 U: 1 × 10 -3 to 4 × 10 3 U, particularly preferably 1 U: 1 to 6 × 10 4 U: 1 × 10 -2 to 4 × 10 2 U.
In the enzyme (2), only one type of 4-α-glucanotransferase may be used, or a plurality of types of 4-α-glucanotransferase may be used in combination.
In the enzyme (2), when a plurality of types of 4-α-glucanotransferase are used in combination, the amount of addition is described above in the "addition amount of each enzyme" of the plurality of types of 4-α-glucanotransferase. It may be in the range.
酵素(3):エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼ
 本発明において、酵素(3)を使用する場合、エキソ型アミラーゼ(例えば、α-グルコシダーゼ、β-アミラーゼ)の添加量は、原料生米1gに対して酵素活性が、好ましくは0.0005~100U、より好ましくは0.001~30U、さらに好ましくは0.005~10U、特に好ましくは0.01~3Uである。
 本発明において、酵素(3)を使用する場合、4-α-グルカノトランスフェラーゼ(例えば、マルトトリオシル転移酵素、アミロマルターゼ)の添加量は、原料生米1gに対して酵素活性が、好ましくは0.001~100U、より好ましくは0.1~30U、さらに好ましくは1~20U、特に好ましくは3~10Uである。
 またエキソ型アミラーゼ(例えば、α-グルコシダーゼ、β-アミラーゼ)と4-α-グルカノトランスフェラーゼ(例えば、マルトトリオシル転移酵素、アミロマルターゼ)との添加量の比率(エキソ型アミラーゼ:4-α-グルカノトランスフェラーゼ)は、好ましくは1U:0.005~500U、より好ましくは1U:0.5~150U、さらに好ましくは1U:5~100U、特に好ましくは1U:15~50Uである。
 酵素(3)において、エキソ型アミラーゼ、4-α-グルカノトランスフェラーゼは、それぞれ、1種のみを用いてもよく、複数種を組み合わせて用いてもよい。
 酵素(3)において、複数種のエキソ型アミラーゼを組み合わせて使用する場合の添加量は、複数種のエキソ型アミラーゼの「各酵素の添加量」が、上記記載の範囲であればよく、また、複数種の4-α-グルカノトランスフェラーゼを組み合わせて使用する場合の添加量は、複数種の4-α-グルカノトランスフェラーゼの「各酵素の添加量」が、上記記載の範囲であればよい。
Enzyme (3): Exo-type amylase and 4-α-glucanotransferase When the enzyme (3) is used in the present invention, the amount of exo-type amylase (for example, α-glucosidase, β-amylase) added is the raw material raw material. The enzyme activity is preferably 0.0005 to 100 U, more preferably 0.001 to 30 U, still more preferably 0.005 to 10 U, and particularly preferably 0.01 to 3 U with respect to 1 g of rice.
In the present invention, when the enzyme (3) is used, the amount of 4-α-glucanotransferase (for example, maltotriosyltransferase, amylomaltase) added is preferably the enzyme activity with respect to 1 g of raw rice. It is 0.001 to 100 U, more preferably 0.1 to 30 U, still more preferably 1 to 20 U, and particularly preferably 3 to 10 U.
In addition, the ratio of the amount of exo-type amylase (for example, α-glucosidase, β-amylase) to 4-α-glucanotransferase (for example, maltotriosyltransferase, amylomaltase) added (exo-type amylase: 4-α- Glucanotransferase) is preferably 1U: 0.005 to 500U, more preferably 1U: 0.5 to 150U, still more preferably 1U: 5 to 100U, and particularly preferably 1U: 15 to 50U.
In the enzyme (3), only one type of exo-type amylase and 4-α-glucanotransferase may be used, or a plurality of types may be used in combination.
In the enzyme (3), when a plurality of types of exo-type amylase are used in combination, the addition amount may be as long as the "addition amount of each enzyme" of the plurality of types of exo-type amylase is within the above-mentioned range. When a plurality of types of 4-α-glucanotransferase are used in combination, the amount of addition may be such that the “addition amount of each enzyme” of the plurality of types of 4-α-glucanotransferase is within the above-mentioned range.
 各酵素の反応時間は、酵素が基質物質である米中のデンプンに作用することが可能な時間であれば特に限定されないが、現実的な作用時間としては5分~24時間が好ましい。また、反応温度に関しても酵素が活性を保つ範囲であれば特に限定されないが、現実的な温度としては0~100℃で作用させることが好ましい。すなわち、これらの酵素を通常の炊飯工程で用いることで、本発明の効果を達成するために十分な反応時間、反応温度が得られる。
 本発明において、炊飯工程では、酵素反応時間を考慮すると、酵素添加後、室温から100℃に達温するまでに、好ましくは5~60分、より好ましくは10~50分、さらに好ましくは10~30分、よりさらに好ましくは10分程度かけて昇温する工程を含むことが好ましい。100℃に到達すると酵素は失活し、酵素反応は終了する。その後、通常は、沸騰継続工程(例えば15~30分、好ましくは15~20分程度)、蒸らし工程(例えば10~40分、好ましくは10~20分程度)を行って、本発明の血糖値上昇が抑制された米飯(グリセミックインデックスが低下した米飯)を製造できる。
 本発明において、炊飯工程は、酵素添加後、例えば3時間以下好ましくは2時間以下、より好ましくは1時間程度(50~60分程度)である。本発明においては、炊飯工程を酵素添加後、短時間(例えば1時間程度)で完了させた場合でも効果が得られる点で、本発明は従来技術に対して有利である。
 本発明において、炊飯工程は、市販の炊飯器を使用して行ってもよい。
The reaction time of each enzyme is not particularly limited as long as the enzyme can act on starch in rice, which is a substrate substance, but the practical action time is preferably 5 minutes to 24 hours. The reaction temperature is not particularly limited as long as the enzyme maintains its activity, but it is preferable to allow the enzyme to act at 0 to 100 ° C. as a realistic temperature. That is, by using these enzymes in a normal rice cooking step, a sufficient reaction time and reaction temperature can be obtained to achieve the effect of the present invention.
In the present invention, in the rice cooking step, considering the enzyme reaction time, it takes preferably 5 to 60 minutes, more preferably 10 to 50 minutes, and further preferably 10 to 10 to reach the temperature from room temperature to 100 ° C. after the addition of the enzyme. It is preferable to include a step of raising the temperature over 30 minutes, more preferably about 10 minutes. When the temperature reaches 100 ° C., the enzyme is inactivated and the enzyme reaction is completed. Then, usually, a boiling step (for example, about 15 to 30 minutes, preferably about 15 to 20 minutes) and a steaming step (for example, about 10 to 40 minutes, preferably about 10 to 20 minutes) are performed to carry out the blood glucose level of the present invention. It is possible to produce rice rice whose rise is suppressed (rice rice whose glycemic index is lowered).
In the present invention, the rice cooking step is, for example, 3 hours or less, preferably 2 hours or less, more preferably about 1 hour (about 50 to 60 minutes) after the addition of the enzyme. In the present invention, the present invention is advantageous over the prior art in that the effect can be obtained even when the rice cooking step is completed in a short time (for example, about 1 hour) after the addition of the enzyme.
In the present invention, the rice cooking step may be performed using a commercially available rice cooker.
 本発明の製造方法は、本発明の効果を損なわない限り、上記工程以外の工程(例えば、乾燥工程、凍結乾燥工程)を含んでいてもよい。 The production method of the present invention may include steps other than the above steps (for example, a drying step and a freeze-drying step) as long as the effects of the present invention are not impaired.
 上記した本発明の製造方法により、血糖値上昇が抑制された米飯(グリセミックインデックスが低下した米飯)を製造することができる。
 本発明において、血糖値上昇の抑制効果は、例えば後述の試験例1、試験例7の方法又はこれに準じた方法で、投与後(摂取後)2時間の血糖値を経時的に測定し、Δ血糖値AUCの値を算出し、対照(酵素無添加)のΔ血糖値AUCの値と比較して評価することができる。
 本発明の製造方法により製造された米飯は、Δ血糖値AUCの値が、対照(酵素無添加)のΔ血糖値AUCを100とした時、100未満、好ましくは95以下、さらに好ましくは90以下、より好ましくは85以下である。
By the above-mentioned production method of the present invention, it is possible to produce rice rice (rice rice having a lowered glycemic index) in which an increase in blood glucose level is suppressed.
In the present invention, for the effect of suppressing an increase in blood glucose level, for example, the blood glucose level for 2 hours after administration (after ingestion) is measured over time by the method of Test Example 1 and Test Example 7 described later or a method similar thereto. The Δ blood glucose level AUC value can be calculated and evaluated by comparing it with the Δ blood glucose level AUC value of the control (without enzyme addition).
The rice rice produced by the production method of the present invention has a Δ blood glucose level AUC of less than 100, preferably 95 or less, more preferably 90 or less, when the Δ blood glucose level AUC of the control (without enzyme addition) is 100. , More preferably 85 or less.
 上記した本発明の製造方法により製造された米飯食品又は米加工食品は、摂取(投与)した対象(例えば、ヒト)において、酵素無添加の米飯食品又は米加工食品を摂取(投与)した場合に比べて、血糖値上昇を抑制する効果を有する。
 本発明は、一態様として、「血糖値上昇の抑制を必要とする対象に、生米である原料に、酵素(1)、酵素(2)又は酵素(3)を添加する工程を含む方法により製造された、米飯食品又は米加工品を投与することを含む、該対象における血糖値上昇を抑制する方法」、「血糖値上昇の抑制における使用のための、生米である原料に酵素(1)、酵素(2)又は酵素(3)を添加する工程を含む方法により製造された、米飯食品又は米加工品」、「生米を原料として血糖値上昇を抑制するための米飯食品又は米加工品を製造するための、酵素(1)、酵素(2)又は酵素(3)の使用」にも関する。
The rice food or processed rice food produced by the above-mentioned production method of the present invention is obtained when the subject (for example, human) ingested (administered) ingests (administers) the rice food or processed rice food containing no enzyme. In comparison, it has the effect of suppressing the rise in blood glucose level.
One aspect of the present invention is a method including a step of adding an enzyme (1), an enzyme (2) or an enzyme (3) to a raw material which is raw rice to a target requiring suppression of an increase in blood glucose level. A method for suppressing an increase in blood glucose level in the subject, which comprises administering a produced rice food or processed rice product, and "an enzyme (1) as a raw material of raw rice for use in suppressing an increase in blood glucose level. ), Enzyme (2) or Rice processed product produced by a method including the step of adding the enzyme (3) "," Rice food or rice processing for suppressing the rise in blood glucose level using raw rice as a raw material. It also relates to "use of enzyme (1), enzyme (2) or enzyme (3) to produce goods".
 本発明は、生米である原料に、酵素(1)、酵素(2)又は酵素(3)を添加する工程を含む、米飯食品又は米加工品に、血糖値上昇を抑制する効果を付与する方法に関する。
 本発明の血糖値上昇を抑制する効果を付与する方法において、酵素(1)、酵素(2)及び酵素(3)の添加量、添加量の比率、添加方法は、上記本発明の米飯食品又は米加工品の製造方法において説明した添加量、添加量の比率、添加方法と同様である。
The present invention imparts an effect of suppressing an increase in blood glucose level to a rice food or a processed rice product, which comprises a step of adding an enzyme (1), an enzyme (2) or an enzyme (3) to a raw material which is raw rice. Regarding the method.
In the method for imparting the effect of suppressing an increase in blood glucose level of the present invention, the addition amount of the enzyme (1), the enzyme (2) and the enzyme (3), the ratio of the addition amount, and the addition method are the rice foods of the present invention or the above-mentioned method. It is the same as the addition amount, the ratio of the addition amount, and the addition method described in the method for producing the processed rice product.
 本発明は、酵素(1)、酵素(2)又は酵素(3)を含有する、米飯食品又は米加工品に血糖値上昇を抑制する効果を付与するための酵素製剤に関する。
 本発明の酵素製剤において、酵素の含有比率は、上記本発明の米飯食品又は米加工品の製造方法において説明した酵素の添加量の比率と同様である。
 本発明の酵素製剤は、上記本発明の米飯食品又は米加工品の製造方法において説明した方法に準じて、原料生米に添加して反応させることで、米飯食品又は米加工品に血糖値上昇を抑制する効果を付与することができる。
The present invention relates to an enzyme preparation containing an enzyme (1), an enzyme (2) or an enzyme (3) for imparting an effect of suppressing an increase in blood glucose level to a rice food or a processed rice product.
In the enzyme preparation of the present invention, the content ratio of the enzyme is the same as the ratio of the addition amount of the enzyme described in the above-mentioned method for producing the rice food or processed rice product of the present invention.
The enzyme preparation of the present invention increases the blood glucose level in the rice food or the processed rice product by adding and reacting with the raw rice according to the method described in the method for producing the rice food or the processed rice product of the present invention. It is possible to impart the effect of suppressing.
 本発明の酵素製剤は、酵素(1)、酵素(2)、酵素(3)の他に、さらに、デキストリン、デンプン、加工デンプン、難消化性デキストリン、還元麦芽糖等の賦形剤、畜肉エキス等の調味料、植物蛋白、グルテン、卵白、ゼラチン、カゼイン等の蛋白質、蛋白加水分解物、蛋白部分分解物、乳化剤、クエン酸塩、重合リン酸塩等のキレート剤、グルタチオン、システイン等の還元剤、アルギン酸、かんすい、油脂、色素、酸味料、香料等その他の食品添加物等を含有してもよい。本発明の酵素製剤は液体状、ペースト状、顆粒状、粉末状のいずれの形態でも構わない。 In addition to the enzyme (1), enzyme (2), and enzyme (3), the enzyme preparation of the present invention further includes excipients such as dextrin, starch, processed starch, indigestible dextrin, reduced maltose, and livestock meat extract. Seasoning, plant protein, gluten, egg white, gelatin, casein and other proteins, protein hydrolyzate, protein partial decomposition product, emulsifier, citrate, polymerized phosphate and other chelating agents, glutathione, cysteine and other reducing agents , Alginic acid, enzyme, fats and oils, pigments, acidulants, fragrances and other other food additives may be contained. The enzyme preparation of the present invention may be in any form of liquid, paste, granule or powder.
 本発明はまた、生米である原料に、酵素(1)、酵素(2)又は酵素(3)を添加する工程を含む、グリセミックインデックスが低下した米飯食品又は米加工品の製造方法;生米である原料に、酵素(1)、酵素(2)又は酵素(3)を添加する工程を含む、米飯食品又は米加工品のグリセミックインデックスを低下させる方法;に関する。
 本発明のグリセミックインデックスが低下した米飯食品又は米加工品の製造方法;米飯食品又は米加工品のグリセミックインデックスを低下させる方法;において、酵素(1)、酵素(2)、酵素(3)の添加量、添加量の比率、添加方法は、上記本発明の米飯食品又は米加工品の製造方法において説明した添加量、添加量の比率、添加方法と同様である。
The present invention also comprises a step of adding an enzyme (1), an enzyme (2) or an enzyme (3) to a raw material which is raw rice, and a method for producing a rice food or a processed rice product having a reduced glycemic index; The present invention relates to a method for lowering the glycemic index of a rice food or a processed rice product, which comprises a step of adding an enzyme (1), an enzyme (2) or an enzyme (3) to the raw material.
Addition of enzymes (1), enzymes (2), and enzymes (3) in the method for producing a rice food or processed rice product having a reduced glycemic index of the present invention; the method for lowering the glycemic index of a rice food or processed rice product; The amount, the ratio of the addition amount, and the addition method are the same as the addition amount, the ratio of the addition amount, and the addition method described in the above-mentioned method for producing the rice food or processed rice product of the present invention.
 本発明はまた、酵素(1)、酵素(2)又は酵素(3)を含有する、米飯食品又は米加工品のグリセミックインデックスを低下させるための酵素製剤に関する。
 本発明の米飯食品又は米加工品のグリセミックインデックスを低下させるための酵素製剤において、酵素の含有比率は、上記本発明の米飯食品又は米加工品の製造方法において説明した酵素の添加量の比率と同様である。
 本発明の酵素製剤は、上記本発明の米飯食品又は米加工品の製造方法において説明した方法に準じて、原料生米に添加して反応させることで、米飯食品又は米加工品のグリセミックインデックスを低下させることができる。
 本発明の酵素製剤は、酵素(1)、酵素(2)、酵素(3)の他に、さらに、上記した食品添加物等を含有してもよい。本発明の酵素製剤は液体状、ペースト状、顆粒状、粉末状のいずれの形態でも構わない。
The present invention also relates to an enzyme preparation containing an enzyme (1), an enzyme (2) or an enzyme (3) for lowering the glycemic index of a rice food or processed rice product.
In the enzyme preparation for lowering the glycemic index of the rice food or processed rice product of the present invention, the content ratio of the enzyme is the ratio of the amount of the enzyme added described in the method for producing the rice food or processed rice product of the present invention. The same is true.
The enzyme preparation of the present invention is added to raw rice and reacted according to the method described in the method for producing a rice food or processed rice product of the present invention to obtain a glycemic index of the rice food or processed rice product. Can be lowered.
The enzyme preparation of the present invention may further contain the above-mentioned food additives and the like in addition to the enzyme (1), the enzyme (2) and the enzyme (3). The enzyme preparation of the present invention may be in any form of liquid, paste, granule or powder.
 本発明において、グリセミックインデックスの値(GI値)の算出、及び基準食の調製は、下記に従って行うことができる。
[GI値の算出方法]
1回目の基準食摂取:糖質50g相当の米飯を摂取し、空腹時、並びに摂取後15、30、45、60、90、120分後に指先採血にて血糖値を測定する。
2回目の基準食摂取:糖質50g相当の米飯を摂取し、1回目と同様に血糖値測定を行う。
基準値の設定:2回の基準食の血糖曲線下面積(IAUC)を算出し、面積の差が25%以内の者を被験者として選抜し、血糖曲線下面積(IAUC)を平均し基準値とする。
試験食の摂取:空腹時、並びに摂取後15、30、45、60、90、120分後に指先採血にて血糖値を測定する。
GI値の算出:試験食の血糖曲線下面積(IAUC)を算出し、基準値に占める割合をGI値とする。
 その他の規定は「日本Glycemic Index研究会」が定めるプロトコルに則り実施する。(http://www.gikenkyukai.com/protocol.html)
[基準食の調製]
 基準食は、白米(うるち米)を、加水率135%にて調製した生米を炊飯し、米飯は1人当たり糖質50g相当の量を提供する。
In the present invention, the calculation of the glycemic index value (GI value) and the preparation of the reference diet can be performed according to the following.
[Calculation method of GI value]
First standard meal intake: Rice equivalent to 50 g of sugar is ingested, and the blood glucose level is measured by fingertip blood sampling on an empty stomach and 15, 30, 45, 60, 90, 120 minutes after ingestion.
Second standard diet intake: Ingest rice equivalent to 50 g of sugar, and measure the blood glucose level in the same manner as the first intake.
Setting the reference value: Calculate the area under the blood glucose curve (IAUC) of the two reference meals, select those with an area difference of 25% or less as subjects, and average the area under the blood glucose curve (IAUC) to use the reference value. do.
Ingestion of test meal: Blood glucose level is measured by fingertip blood sampling on an empty stomach and 15, 30, 45, 60, 90, 120 minutes after ingestion.
Calculation of GI value: The area under the blood glucose curve (IAUC) of the test meal is calculated, and the ratio to the reference value is defined as the GI value.
Other regulations will be implemented in accordance with the protocol established by the "Japan Glycemic Index Study Group". (Http://www.gikenkyukai.com/protocol.html)
[Preparation of standard diet]
As a standard diet, white rice (Uruchi rice) is cooked with raw rice prepared at a water content of 135%, and rice is provided in an amount equivalent to 50 g of sugar per person.
 本明細書において、グリセミックインデックスの「低下」とは、酵素を添加せずに製造した米飯食品又は米加工品のグリセミックインデックスの値と比較して、グリセミックインデックスの値が低いことをいう。
 本発明の製造方法により製造された米飯(例えば、白米の米飯、白米と玄米との混合米の米飯)は、グリセミックインデックスの値が、対照(酵素無添加)のグリセミックインデックスの値を100とした時、100未満、好ましくは95以下、より好ましくは90以下、さらに好ましくは87以下、86以下、85以下、84以下、83以下、82以下、81以下、80以下、79以下、78以下、77以下、76以下、75以下、74以下、73以下、72以下、又は71以下である。
As used herein, the term "decreased" in the glycemic index means that the value of the glycemic index is lower than the value of the glycemic index of a rice food or processed rice product produced without adding an enzyme.
The rice produced by the production method of the present invention (for example, white rice, rice mixed with white rice and brown rice) had a glycemic index value of 100 as a control (without enzyme addition). When less than 100, preferably 95 or less, more preferably 90 or less, still more preferably 87 or less, 86 or less, 85 or less, 84 or less, 83 or less, 82 or less, 81 or less, 80 or less, 79 or less, 78 or less, 77 Below, 76 or less, 75 or less, 74 or less, 73 or less, 72 or less, or 71 or less.
 以下、実施例、比較例、試験例に基づいて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, Comparative Examples, and Test Examples, but the present invention is not limited thereto.
[実施例1~3、比較例1、2]
 原料として宮城県産ひとめぼれ(生米)を使用した。玄米は一つの生産元で同一日に収穫されたものを確保し、同一日に精米したものを、脱酸素剤を入れた遮光真空パックに入れ、試験まで5℃にて冷蔵保存した。
 精白米は、炊飯当日の秤量30分前までに室温に戻した。電子天秤(US6002S、メトラー・トレド株式会社)を使用し、精白米を秤量した。ザルに入れた精白米を、ボウルに溜めた水道水中にてやさしく時計回りに10回かき混ぜた。水道水を取り換え、同じ作業を5回繰り返した。洗米後、水道水に一時間浸漬した。米をザルに取り上げ、炊飯釜に移した後、電子天秤上で150%の加水率になるように水道水を添加し、ミニ炊飯器(コイズミ社:KSC-1511/W)に釜をセットし、表1-1、表1-2に示す量の酵素を添加して炊飯し、実施例1~3の米飯を得た。酵素を添加しない以外は実施例1等と同じ方法で、比較例1(比較例1-1、比較例1-2)の米飯を得た。原料の宮城県産ひとめぼれをほしゆたか(高アミロース米)に変更した以外は比較例1と同じ方法で、比較例2(比較例2-1、比較例2-2)の米飯を得た。
 得られた実施例1~3及び比較例1、2の米飯を、炊飯直後、バット上に炊飯釜を転倒させ、米飯を取り出した。釜壁に近い米飯は取り除き、バットの端によけた。米飯を平らに均し、軽く隙間を開け、ラップをした後、室温で15分粗熱をとった。米飯は-80℃のディープフリーザーで凍結した。翌日、凍結乾燥機(FDU-2100:東京理化機器株式会社)を使用して凍結乾燥し、実施例1~3及び比較例1、2の米飯(凍結乾燥品)を得た。なお、表1-1、表1-2に示す調製1、2は調製日が異なるのみで、同じ方法で調製した。表1-1、表1-2中の酵素は表2に示す通りである。
[Examples 1 to 3, Comparative Examples 1 and 2]
Hitomebore (raw rice) from Miyagi prefecture was used as a raw material. The brown rice was harvested from one producer on the same day, and the rice polished on the same day was placed in a light-shielding vacuum pack containing an oxygen scavenger and refrigerated at 5 ° C. until the test.
The polished rice was returned to room temperature 30 minutes before weighing on the day of cooking. Polished rice was weighed using an electronic balance (US6002S, METTLER TOLEDO Co., Ltd.). The polished rice in the colander was gently stirred clockwise 10 times in tap water stored in a bowl. The tap water was replaced and the same work was repeated 5 times. After washing the rice, it was immersed in tap water for 1 hour. After picking up the rice in a colander and transferring it to a rice cooker, add tap water on an electronic balance so that the water content is 150%, and set the pot in a mini rice cooker (Koizumi: KSC-151 / W). , Table 1-1 and Table 1-2 were added to cook rice to obtain rice rice of Examples 1 to 3. The rice of Comparative Example 1 (Comparative Example 1-1, Comparative Example 1-2) was obtained by the same method as in Example 1 except that no enzyme was added. The rice of Comparative Example 2 (Comparative Example 2-1 and Comparative Example 2-2) was obtained by the same method as in Comparative Example 1 except that the raw material Hitomebore produced in Miyagi Prefecture was changed to Hoshino Yutaka (high amylose rice).
Immediately after cooking the obtained rice rice of Examples 1 to 3 and Comparative Examples 1 and 2, the rice cooker was turned over on the vat and the rice rice was taken out. The rice near the wall of the kettle was removed and moved to the edge of the bat. The rice was leveled flat, lightly opened, wrapped, and then heated at room temperature for 15 minutes. The rice was frozen in a deep freezer at -80 ° C. The next day, the rice was freeze-dried using a freeze-dryer (FDU-2100: Tokyo Rika Kikai Co., Ltd.) to obtain rice (freeze-dried products) of Examples 1 to 3 and Comparative Examples 1 and 2. Preparations 1 and 2 shown in Tables 1-1 and 1-2 were prepared by the same method except that the preparation dates were different. The enzymes in Table 1-1 and Table 1-2 are as shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[試験例1]動物試験(in vivo)酵素処理米による血糖値上昇抑制効果
 以下の方法で、ラットを用いて、米飯投与後の血糖値を測定し、血糖値上昇抑制効果を評価した。
 被験物質には実施例1~3及び比較例1、2の米飯(凍結乾燥品)を、ミキサーミル(MM301:Verder sientific)を用いて粉砕し、スタンディングパウチに分注してシールで密閉し、室温で保管、動物試験に供した。
 尚、下記表3-1に示す実験1(比較例1-1、比較例2-1、実施例1)及び下記表3-2に示す実験2(比較例1-2、比較例2-2、実施例2、実施例3)は実施日や試験施設が異なる以外はすべて同じ条件で実施した。
[Test Example 1] Animal test (in vivo) Effect of suppressing increase in blood glucose level by enzyme-treated rice The blood glucose level after administration of rice was measured using rats by the following method, and the effect of suppressing the increase in blood glucose level was evaluated.
As the test substance, rice (lyophilized) of Examples 1 to 3 and Comparative Examples 1 and 2 was crushed using a mixer mill (MM301: Verder sientific), dispensed into a standing pouch, and sealed with a seal. Stored at room temperature and subjected to animal testing.
Experiment 1 (Comparative Example 1-1, Comparative Example 2-1 and Example 1) shown in Table 3-1 below and Experiment 2 (Comparative Example 1-2, Comparative Example 2-2) shown in Table 3-2 below. , Examples 2 and 3) were all carried out under the same conditions except that the dates and test facilities were different.
 酵素処理米飯の全糖質量分析は一般財団法人日本食品分析センターに委託し、フェノール硫酸法を用いて測定した。
 被験物質は血糖値測定試験当日に、蒸留水にて溶液調製した。下記の血糖値の測定方法及び図1の試験日程に従って、空腹時、投与15分後、30分後、60分後、120分後の血糖値を測定した。被験物質投与は、被験物質の全糖量が2g/20mL/kgの量で、経口投与で行った。
Total sugar mass spectrometry of enzyme-treated rice was outsourced to the Japan Food Research Laboratories and measured using the phenol-sulfuric acid method.
The test substance was prepared as a solution with distilled water on the day of the blood glucose measurement test. According to the following blood glucose measurement method and the test schedule of FIG. 1, the blood glucose levels were measured on an empty stomach, 15 minutes, 30 minutes, 60 minutes, and 120 minutes after administration. The test substance was administered orally when the total sugar content of the test substance was 2 g / 20 mL / kg.
(血糖値の測定方法)
 ラットへの糖負荷試験は種々行われているが、本試験では特開2005-328776号公報(特許文献3)を改変し、行った。
[動物]
動物種及び系統:ラット、Slc:Wistar(SPF)
生産者:日本エスエルシー(株)
性別:雄性
入荷時週齢:6週齢
検疫・馴化:動物は入荷から群分けまで馴化する。ただし、入荷日を0日として7日までの期間は検疫を行う。一般状態観察は毎日行う。
[飼育環境]
温度:22±3℃
湿度:50±20%
照明時間:12時間/日
[飼料]
種類:ラボMRストック固型飼料(日本農産工業(株))もしくはCRF-1(オリエンタル酵母工業(株))
給餌法:絶食期間を除き自由に与える。
[飲料水]
種類:水道水
給水法:試験期間を通じ自由に与える。
[動物の選択及び群分け]
 検疫・馴化期間中において、一般状態観察に異常のみられなかった動物より試験に使用する動物を選択する。動物は7週齢で使用する。検疫・馴化終了日に体重を測定し,得られた体重を指標として、層別連続無作為化法を用いて6~10匹/群に割り付ける。
[絶食処置]
 糖負荷試験実施日の前日夕方より一晩絶食を開始する。
[血糖値の測定]
 尾の先端の静脈を無麻酔下でメス刃を用いて切開する。切開面より漏出する血液を用いて検査(血糖値)を実施する。自己検査用グルコース測定器「アキュチェック」又は「グルテストNeo」を用いて測定し、測定器に表示された血糖値を記録する。これを空腹時血糖値とする。なお、同一日の試験には同じグルコース測定器を用いた。
(Measurement method of blood sugar level)
Various sugar load tests have been performed on rats, but in this test, Japanese Patent Application Laid-Open No. 2005-328767 (Patent Document 3) was modified.
[animal]
Animal species and lineage: rat, Slc: Wistar (SPF)
Producer: Nippon SLC Co., Ltd.
Gender: Male Week of arrival: 6 weeks of age Quarantine / acclimatization: Animals acclimatize from arrival to grouping. However, quarantine will be carried out for the period up to 7 days, with the arrival date as 0 days. General condition observation is performed daily.
[Breeding environment]
Temperature: 22 ± 3 ° C
Humidity: 50 ± 20%
Lighting time: 12 hours / day [feed]
Type: Lab MR Stock Solid Feed (Nippon Agricultural Industry Co., Ltd.) or CRF-1 (Oriental Yeast Co., Ltd.)
Feeding method: Give freely except during the fasting period.
[Drinking water]
Type: Tap water supply method: Give freely throughout the test period.
[Animal selection and grouping]
During the quarantine / acclimatization period, select the animals to be used for the test from the animals that did not show any abnormalities in the general condition observation. Animals are used at 7 weeks of age. Body weight is measured on the end of quarantine and acclimation, and the weight obtained is used as an index to assign to 6 to 10 animals / group using a stratified continuous randomization method.
[Fasting]
Start fasting overnight from the evening of the day before the glucose load test.
[Measurement of blood sugar level]
An incision is made in the vein at the tip of the tail using a scalpel blade without anesthesia. A test (blood glucose level) is performed using blood leaking from the incised surface. The glucose level for self-examination is measured using the glucose measuring device "Accucheck" or "Glutest Neo", and the blood glucose level displayed on the measuring device is recorded. Let this be the fasting blood glucose level. The same glucose measuring device was used for the test on the same day.
 評価項目の算出は以下のように行った。
 空腹時血糖値を0分の血糖値とした。
 各測定時間の血糖値から、0分の血糖値を差し引いた値を、「Δ血糖値(mg/dL)」とした。
 各測時間のΔ血糖値の中でもっとも高い値を各個体の「ΔCmax(mg/dL)」とした。
 Δ血糖値上昇曲線の下面積を算出した値を「Δ血糖値AUC(mg/dL・min)」とした。算出方法は日本Glycemic index研究会の方法に準じた。
 対照群のΔ血糖値AUCを100とした時の被験物質投与群のΔ血糖値AUCの値から、血糖値上昇抑制効果を評価した。
 試験結果を、表3-1、表3-2に示す。
The evaluation items were calculated as follows.
The fasting blood glucose level was defined as the blood glucose level at 0 minutes.
The value obtained by subtracting the blood glucose level of 0 minutes from the blood glucose level at each measurement time was defined as "Δ blood glucose level (mg / dL)".
The highest value among the Δ blood glucose levels at each measurement time was defined as “ΔC max (mg / dL)” of each individual.
The value obtained by calculating the lower area of the Δ blood glucose level rise curve was defined as “Δ blood glucose level AUC (mg / dL · min)”. The calculation method was based on the method of the Japan Glycemic index study group.
The effect of suppressing the increase in blood glucose level was evaluated from the Δ blood glucose level AUC value of the test substance administration group when the Δ blood glucose level AUC of the control group was set to 100.
The test results are shown in Table 3-1 and Table 3-2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 比較例1(比較例1-1、比較例1-2)は、酵素を添加しない米飯であり、一般にGI値が高い食品である。比較例2(比較例2-1、比較例2-2)は、特開2005-328776号公報(特許文献3)にGI値が低いと記載されている高アミロース米を原料とした炊飯米である。
 比較例1(比較例1-1、比較例1-2)と比べ、比較例2(比較例2-1、比較例2-2)はΔ血糖値AUCが低く、血糖値上昇抑制が確認された。
 実施例1~3は比較例1(比較例1-1、比較例1-2)と比べてΔ血糖値AUCが低く、血糖値上昇抑制が確認された。さらに、実施例2、3は比較例2(比較例2-2)と比べてΔ血糖値AUCが低く、既存技術よりも血糖上昇抑制効果が高いことが確認出来た。
Comparative Example 1 (Comparative Example 1-1, Comparative Example 1-2) is a rice rice to which no enzyme is added, and is generally a food having a high GI value. Comparative Example 2 (Comparative Example 2-1 and Comparative Example 2-2) is a cooked rice made from high amylose rice, which is described in JP-A-2005-328767 (Patent Document 3) as having a low GI value. be.
Compared with Comparative Example 1 (Comparative Example 1-1, Comparative Example 1-2), Comparative Example 2 (Comparative Example 2-1 and Comparative Example 2-2) had a lower Δ blood glucose level AUC, and suppression of blood glucose elevation was confirmed. rice field.
In Examples 1 to 3, the Δ blood glucose level AUC was lower than that in Comparative Example 1 (Comparative Example 1-1, Comparative Example 1-2), and suppression of blood glucose elevation was confirmed. Further, it was confirmed that Examples 2 and 3 had a lower Δ blood glucose level AUC than Comparative Example 2 (Comparative Example 2-2), and had a higher blood glucose elevation suppressing effect than the existing technique.
 上記試験結果により、本発明の特定の酵素の組み合わせの添加により、米飯に難消化性が付与され、米飯の血糖値上昇抑制効果が期待できることが示唆された。 From the above test results, it was suggested that the addition of the combination of the specific enzymes of the present invention imparts indigestibility to rice and can be expected to have an effect of suppressing the increase in blood glucose level of rice.
[実施例4及び5]
 宮城県産ひとめぼれの精白米を必要量秤量し、ザルに入れた後、ボウルに溜めた水道水中にてやさしく時計回りに20回かき混ぜた。水道水を取り換え、同じ作業を5回繰り返した。
 洗米後、精白米を炊飯釜に移し、生米重量に対して235%重量となるまで水道水を加え(加水率:対生米135%)、一時間浸漬した。家庭用炊飯器(三菱IHジャー炊飯器 NJ-HS06)に釜をセットし、表4に示す量の酵素を添加し、酵素が均一になるよう軽く攪拌した後、炊飯モード(「白米」「炊き込み・ふつう」)にて炊飯し、実施例4及び5の酵素処理米飯を調製した。表4中の酵素は表5に示す通りである。
[Examples 4 and 5]
The required amount of polished rice from Miyagi prefecture was weighed, placed in a colander, and then gently stirred clockwise 20 times in tap water stored in a bowl. The tap water was replaced and the same work was repeated 5 times.
After washing the rice, the polished rice was transferred to a rice cooker, tap water was added until the weight became 235% of the weight of the raw rice (hydration ratio: 135% of the raw rice), and the rice was immersed for 1 hour. Set the pot in a household rice cooker (Mitsubishi IH jar rice cooker NJ-HS06), add the amount of enzyme shown in Table 4, lightly stir so that the enzyme becomes uniform, and then cook rice in the rice cooking mode ("white rice""cooking".・ Normal ”) was cooked to prepare the enzyme-treated rice cookers of Examples 4 and 5. The enzymes in Table 4 are as shown in Table 5.
[実施例6及び比較例3]
 精白米(宮城県産ひとめぼれ)を、精白米(宮城県産ひとめぼれ)75%と玄米(宮城県産「ひとめぼれ玄米」)25%との混合米に変更した以外は、実施例4及び5と同じ方法で、実施例6の酵素処理米飯を調製した。
 酵素を添加しない以外は実施例6と同じ方法で、比較例3の酵素無添加米飯を調製した。
[Example 6 and Comparative Example 3]
Same as Examples 4 and 5 except that the polished rice (Hitomebore produced in Miyagi prefecture) is changed to a mixed rice of 75% polished rice (Hitomebore produced in Miyagi prefecture) and 25% brown rice (“Hitomebore brown rice” produced in Miyagi prefecture). By the method, the enzyme-treated rice of Example 6 was prepared.
The enzyme-free rice of Comparative Example 3 was prepared by the same method as in Example 6 except that no enzyme was added.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 後述の試験例2及び3において、グリセミックインデックスの値(GI値)の算出、及び基準食の調製は、下記に従って行った。
[GI値の算出方法]
1回目の基準食摂取:糖質50g相当の米飯を摂取し、空腹時、並びに摂取後15、30、45、60、90、120分後に指先採血にて血糖値を測定した。
2回目の基準食摂取:糖質50g相当の米飯を摂取し、1回目と同様に血糖値測定を行った。
基準値の設定:2回の基準食の血糖曲線下面積(IAUC)を算出し、面積の差が25%以内の者を被験者として選抜し、血糖曲線下面積(IAUC)を平均し基準値とした。
試験食の摂取:空腹時、並びに摂取後15、30、45、60、90、120分後に指先採血にて血糖値を測定した。
GI値の算出:試験食の血糖曲線下面積(IAUC)を算出し、基準値に占める割合をGI値とした。
 その他の規定は「日本Glycemic Index研究会」が定めるプロトコルに則り実施した。(http://www.gikenkyukai.com/protocol.html)
[基準食の調製]
 基準食は、宮城県産「ひとめぼれ」白米(うるち米)を、加水率135%にて調製した生米を炊飯し、米飯は1人当たり糖質50g相当の量を提供した。
In Test Examples 2 and 3 described later, the glycemic index value (GI value) was calculated and the reference diet was prepared according to the following.
[Calculation method of GI value]
First standard dietary intake: Rice equivalent to 50 g of sugar was ingested, and the blood glucose level was measured by fingertip blood sampling on an empty stomach and 15, 30, 45, 60, 90, 120 minutes after the ingestion.
Second standard diet intake: Rice equivalent to 50 g of sugar was ingested, and the blood glucose level was measured in the same manner as the first intake.
Setting the reference value: Calculate the area under the blood glucose curve (IAUC) of the two reference meals, select those with an area difference of 25% or less as subjects, and average the area under the blood glucose curve (IAUC) to use the reference value. bottom.
Ingestion of test meal: Blood glucose level was measured by fingertip blood sampling on an empty stomach and 15, 30, 45, 60, 90, 120 minutes after ingestion.
Calculation of GI value: The area under the blood glucose curve (IAUC) of the test meal was calculated, and the ratio to the reference value was taken as the GI value.
Other regulations were implemented in accordance with the protocol established by the "Japan Glycemic Index Study Group". (Http://www.gikenkyukai.com/protocol.html)
[Preparation of standard diet]
As a standard diet, raw rice prepared from "Hitomebore" white rice (Uruchi rice) produced in Miyagi prefecture at a water content of 135% was cooked, and the amount of rice rice provided was equivalent to 50 g of sugar per person.
[試験例2]酵素処理米飯(白米)でのGI値測定
 基準食摂取で2回の曲線下面積(IAUC)の差が25%以内の10名の健康な成人男子(平均年齢33.9±6.9歳)を対象に、実施例4及び5の酵素処理米飯を用いてGI値を測定した。また実施例4の酵素処理米飯、実施例5の酵素処理米飯の各期の間は24時間以上空け、摂取する酵素処理米飯のみ交叉させて繰り返すクロスオーバー試験で行い、酵素処理米飯は1人当たり糖質50g相当の量を提供した。
 その結果、実施例4の酵素処理米飯摂取群のGI値は、90±29(平均値±標準偏差)、実施例5の酵素処理米飯摂取群のGI値は87±33(平均値±標準偏差)であった。
 更に、基準食の摂取のバラツキの少ない被験者(基準食摂取1回目に対して、2回目での最高血糖値(Cmax)のバラツキの割合が少なかった者上位半分:N=5,平均年齢34.2±5.3歳)で層別解析を行ったところ、実施例4の酵素処理米飯摂取群のGI値は79±38(平均値±標準偏差)、実施例5の酵素処理米飯摂取群のGI値は71±31(平均値±標準偏差)となった(図2)。
[Test Example 2] Measurement of GI value with enzyme-treated rice (polished rice) 10 healthy adult males (mean age 33.9 ±) with a difference of 25% or less in the area under the curve (IAUC) between two times of standard diet intake For 6.9 years old), the GI value was measured using the enzyme-treated rice of Examples 4 and 5. In addition, a crossover test was conducted in which only the enzyme-treated rice to be ingested was crossed and repeated with a gap of 24 hours or more between each period of the enzyme-treated rice of Example 4 and the enzyme-treated rice of Example 5, and the enzyme-treated rice was sugar per capita. An amount equivalent to 50 g of quality was provided.
As a result, the GI value of the enzyme-treated rice intake group of Example 4 was 90 ± 29 (mean ± standard deviation), and the GI value of the enzyme-treated rice intake group of Example 5 was 87 ± 33 (mean ± standard deviation). )Met.
Furthermore, the subjects with little variation in the standard diet intake (the top half of those who had a small variation in the maximum blood glucose level (Cmax) in the second intake of the standard diet: N = 5, mean age 34. When stratified analysis was performed at 2 ± 5.3 years old), the GI value of the enzyme-treated rice intake group of Example 4 was 79 ± 38 (mean ± standard deviation), and that of the enzyme-treated rice intake group of Example 5 was The GI value was 71 ± 31 (mean ± standard deviation) (Fig. 2).
[試験例3]酵素処理混合米飯(白米75%、玄米25%)のGI値測定
 基準食摂取で2回の曲線下面積(IAUC)の差が25%以内に収まった10名の健康な成人男子(平均年齢29.9±19.4歳)を対象に、比較例3の酵素無添加米飯摂取群、実施例6の酵素処理米飯摂取群のそれぞれのGI値を測定した。また比較例3の酵素無添加米飯摂取群、実施例6の酵素処理米飯摂取群の各期の間は24時間以上空け、摂取する米飯のみ交叉させて繰り返すクロスオーバー試験で行い、いずれも米飯は1人当たり糖質50g相当の量を提供した。
 その結果、比較例3の酵素無添加米飯摂取群のGI値は81±20(平均値±標準偏差)、実施例6の酵素処理米飯摂取群のGI値は70±18(平均値±標準偏差)であった。
[Test Example 3] Glycemic index measurement of enzyme-treated mixed rice (white rice 75%, brown rice 25%) 10 healthy adults whose difference in the area under the curve (IAUC) between two times was within 25% after ingestion of the standard diet. The GI values of the enzyme-free rice intake group of Comparative Example 3 and the enzyme-treated rice intake group of Example 6 were measured for boys (mean age 29.9 ± 19.4 years). In addition, a crossover test was conducted in which only the ingested rice was crossed and repeated with a gap of 24 hours or more between each period of the enzyme-free rice ingestion group of Comparative Example 3 and the enzyme-treated rice ingestion group of Example 6. An amount equivalent to 50 g of sugar was provided per person.
As a result, the GI value of the enzyme-free rice intake group of Comparative Example 3 was 81 ± 20 (mean ± standard deviation), and the GI value of the enzyme-treated rice intake group of Example 6 was 70 ± 18 (mean ± standard deviation). )Met.
 試験例2及び3において、本発明の酵素組成物を添加した白米、本発明の酵素組成物を添加した玄米と白米(玄米25%:白米75%)の混合米で、GI値の低下が認められたことから、本発明の酵素組成物(酵素製剤)について、米飯食品又は米加工品のGI値の低下効果が示唆された。 In Test Examples 2 and 3, a decrease in GI value was observed in white rice to which the enzyme composition of the present invention was added and mixed rice of brown rice and white rice (brown rice 25%: white rice 75%) to which the enzyme composition of the present invention was added. Therefore, it was suggested that the enzyme composition (enzyme preparation) of the present invention has an effect of lowering the GI value of rice foods or processed rice products.
[試験例4]人工消化試験
 下記の方法で、デンプン加水分解物(デキストリン)(基質)を表6に示す酵素で処理し、得られた糖質について、人工消化試験を行い、基質への難消化性付与の有無を検討した。
(1)酵素による糖質の調製
 下記表6に示す量の酵素を、デンプン加水分解物(パインデックス#100(松谷化学工業製)、終濃度4%(w/v))50mmol/Lりん酸緩衝液(pH6.0)に添加した。50℃で終夜(17時間)反応させた後、沸騰水浴中で15分間煮沸することにより反応を停止し、実施例7~12、比較例5~11の反応液を得た。また、酵素を添加しない以外は実施例7等と同じ方法で、比較例4(コントロール)の液を得た。得られた実施例7~12、比較例5~11の反応液、及び比較例4の液を、冷却して、下記(2)の人工消化試験の試料とした。
 また別途、得られた実施例7~12、比較例5~11の反応液、及び比較例4の液の遊離グルコース量をグルコース・オキシダーゼ法(富士フイルム和光純薬社:ラボアッセイTMグルコース)により求めた。このときの遊離グルコース量を「酵素反応後遊離グルコース量」と記載する。
 酵素反応後の基質(糖質)であって、遊離グルコースを除いたものを「酵素修飾デキストリン」と記載する。酵素反応前の基質量から「酵素反応後遊離グルコース量」を差し引いた量を、「酵素修飾デキストリン量」と記載する。
 反応液1mL当たりの酵素反応後遊離グルコース量(酵素反応後遊離グルコース量(mg/mL))、反応液1mL当たりの酵素修飾デキストリン量(酵素修飾デキストリン量(mg/mL))を算出し、以下の酵素修飾デキストリンの分解率の計算に用いた。
 表6中の酵素は表7に示す通りである。
[Test Example 4] Artificial digestion test The starch hydrolyzate (dextrin) (substrate) was treated with the enzyme shown in Table 6 by the following method, and the obtained sugar was subjected to an artificial digestion test to make the substrate difficult. The presence or absence of digestibility was examined.
(1) Preparation of sugar by enzyme The amount of enzyme shown in Table 6 below was added to starch hydrolyzate (Paindex # 100 (manufactured by Matsutani Chemical Industry Co., Ltd.), final concentration 4% (w / v)) 50 mmol / L phosphoric acid. It was added to a buffer (pH 6.0). After reacting at 50 ° C. overnight (17 hours), the reaction was stopped by boiling in a boiling water bath for 15 minutes to obtain reaction solutions of Examples 7 to 12 and Comparative Examples 5 to 11. Further, the liquid of Comparative Example 4 (control) was obtained by the same method as in Example 7 and the like except that no enzyme was added. The obtained reaction solutions of Examples 7 to 12, Comparative Examples 5 to 11 and Comparative Example 4 were cooled to prepare a sample for the artificial digestion test of (2) below.
Separately, the amount of free glucose in the obtained reaction solutions of Examples 7 to 12, Comparative Examples 5 to 11 and Comparative Example 4 was determined by the glucose oxidase method (Fujifilm Wako Pure Chemical Industries, Ltd .: Lab Assay TM Glucose). I asked. The amount of free glucose at this time is described as "amount of free glucose after the enzymatic reaction".
The substrate (sugar) after the enzymatic reaction excluding free glucose is described as "enzyme-modified dextrin". The amount obtained by subtracting the "free glucose amount after the enzyme reaction" from the base mass before the enzyme reaction is described as "enzyme-modified dextrin amount".
The amount of free glucose after the enzyme reaction per 1 mL of the reaction solution (the amount of free glucose after the enzyme reaction (mg / mL)) and the amount of the enzyme-modified dextrin per 1 mL of the reaction solution (the amount of the enzyme-modified dextrin (mg / mL)) were calculated. It was used to calculate the decomposition rate of enzyme-modified dextrin.
The enzymes in Table 6 are as shown in Table 7.
(2)人工消化試験方法、及び酵素修飾デキストリンの分解率の算出方法
 人工消化試験は、「難消化性成分の定量法」(澱粉科学、第37巻、第2号、107頁平成2年)の改良法によって、以下の方法で行った。
 まず、試料((1)で得られた実施例7~12、比較例5~11の反応液、及び比較例4の液)0.5mLを10%α-アミラーゼ(ノボザイムズ社:ターマミル)10μLを添加し、95℃で30分間反応させた。冷却後、0.1%アミログルコシダーゼ(シグマ製)10μLを添加し、60℃で30分間反応させ、沸騰水浴中で15分間煮沸することにより反応を停止し、消化試験反応液を得た。
 得られた消化試験反応液の遊離グルコース量をグルコース・オキシダーゼ法(富士フイルム和光純薬社:ラボアッセイTMグルコース)により求めた。このときの遊離グルコース量を「人工消化試験後遊離グルコース量」と記載する。
 (1)で得られた実施例7~12、比較例5~11の反応液、比較例4の液1mL当たりの人工消化試験後遊離グルコース量(人工消化試験後遊離グルコース量(mg/mL))を算出し、以下の酵素修飾デキストリンの分解率の計算に用いた。
(2) Artificial digestion test method and calculation method of decomposition rate of enzyme-modified dextrin The artificial digestion test is a "quantification method for indigestible components" (Starch Science, Vol. 37, No. 2, p. 107, 1990). According to the improved method of, the following method was used.
First, 0.5 mL of the sample (reaction solution of Examples 7 to 12, Comparative Examples 5 to 11 and the solution of Comparative Example 4 obtained in (1)) was added to 10 μL of 10% α-amylase (Novozymes: Termamil). It was added and reacted at 95 ° C. for 30 minutes. After cooling, 10 μL of 0.1% amyloglucosidase (manufactured by Sigma) was added, reacted at 60 ° C. for 30 minutes, and boiled in a boiling water bath for 15 minutes to stop the reaction to obtain a digestion test reaction solution.
The amount of free glucose in the obtained digestion test reaction solution was determined by the glucose oxidase method (Fujifilm Wako Pure Chemical Industries, Ltd .: Lab Assay TM Glucose). The amount of free glucose at this time is described as "the amount of free glucose after the artificial digestion test".
Amount of free glucose after artificial digestion test per 1 mL of the reaction solutions of Examples 7 to 12, Comparative Examples 5 to 11 and the solution of Comparative Example 4 obtained in (1) (Amount of free glucose after artificial digestion test (mg / mL)) ) Was calculated and used to calculate the decomposition rate of the following enzyme-modified dextrin.
 (1)で得られた実施例7~12、比較例5~11の反応液、比較例4の液における、酵素修飾デキストリンの分解率を、以下の計算式により算出した。結果を表6に示す。
(計算式)
酵素修飾デキストリンの分解率(重量%)={人工消化試験後遊離グルコース量(mg/mL)-酵素反応後遊離グルコース量(mg/mL)}/酵素修飾デキストリン量(mg/mL)
The decomposition rate of the enzyme-modified dextrin in the reaction solutions of Examples 7 to 12, Comparative Examples 5 to 11 and the solution of Comparative Example 4 obtained in (1) was calculated by the following formula. The results are shown in Table 6.
(a formula)
Degradation rate of enzyme-modified dextrin (% by weight) = {Amount of free glucose after artificial digestion test (mg / mL) -Amount of free glucose after enzyme reaction (mg / mL)} / Amount of enzyme-modified dextrin (mg / mL)
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表6に示されるように、酵素無添加の比較例4、AG単独で用いた比較例5、及びMTT単独で用いた比較例6~11と比較して、AGとMTTとを併用した、実施例7~12では、酵素修飾デキストリンの分解率が低いことが確認された。
 この結果より、エキソ型アミラーゼ(AG)と4-α-グルカノトランスフェラーゼ(MTT)との併用が、酵素無添加の食品又は単独で酵素を用いた食品に比べて、血糖値上昇を抑制することができる食品(難消化性が付与された食品)の製造に有効であることが示唆された。
As shown in Table 6, AG and MTT were used in combination as compared with Comparative Example 4 in which no enzyme was added, Comparative Example 5 in which AG was used alone, and Comparative Examples 6 to 11 in which MTT was used alone. In Examples 7 to 12, it was confirmed that the decomposition rate of the enzyme-modified dextrin was low.
From this result, the combined use of exo-type amylase (AG) and 4-α-glucanotransferase (MTT) suppresses the increase in blood glucose level as compared with foods without enzyme addition or foods with enzyme alone. It was suggested that it is effective in the production of foods that can produce (foods with indigestibility).
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[試験例5]人工消化試験
 試験例4と同じの方法で、デンプン加水分解物(デキストリン)(基質)を、表8に示す酵素で処理して得られた糖質について、人工消化試験を行い、基質への難消化性付与の有無を検討した。
 表8中の酵素は上記表7に示す通りである。
[Test Example 5] Artificial digestion test An artificial digestion test was performed on the sugar obtained by treating the starch hydrolyzate (dextrin) (substrate) with the enzyme shown in Table 8 by the same method as in Test Example 4. , The presence or absence of indigestibility was examined on the substrate.
The enzymes in Table 8 are as shown in Table 7 above.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表8に示されるように、酵素無添加の比較例12、AG単独で用いた比較例13、AA(エンド型アミラーゼ)単独で用いた比較例14~16、及びAAとMTTとを併用した比較例17~19、MTH(エンド型マルトトリオヒドロラーゼ)単独で用いた比較例20~22、MTHとMTTとを併用した比較例23~25に比較して、AG(エキソ型アミラーゼ)とMTTとを併用した実施例13では、酵素修飾デキストリンの分解率が低いことが確認された。
 この結果より、アミラーゼの中でもエキソ型アミラーゼ(AG)が、4-α-グルカノトランスフェラーゼ(MTT)との併用で、血糖値上昇を抑制することができる食品(難消化性が付与された食品)の製造に有効であることが示唆された。
As shown in Table 8, Comparative Example 12 without enzyme addition, Comparative Example 13 with AG alone, Comparative Examples 14 to 16 with AA (endo-amylase) alone, and Comparison with AA and MTT in combination. Compared with Examples 17 to 19, Comparative Examples 20 to 22 using MTH (endo-type maltotriohydrolase) alone, and Comparative Examples 23 to 25 using MTH and MTT in combination, AG (exo-type amylase) and MTT were used. In Example 13 in combination, it was confirmed that the decomposition rate of the enzyme-modified dextrin was low.
From this result, among amylase, exo-type amylase (AG) can suppress the increase in blood glucose level when used in combination with 4-α-glucanotransferase (MTT) (food with indigestibility). It was suggested that it is effective in the production of.
[試験例6]人工消化試験
 試験例4における「50℃で終夜(17時間)反応させた後、沸騰水浴中で15分間煮沸することにより反応を停止」の工程を、「50℃で4時間反応させた後、沸騰水浴中で15分間煮沸することにより反応を停止」に変更した以外は試験例4と同じの方法で、デンプン加水分解物(デキストリン)(基質)を、表9に示す酵素で処理して得られた糖質について、人工消化試験を行い、基質への難消化性付与の有無を検討した。
 表9中の酵素は上記表7に示す通りである。
[Test Example 6] Artificial digestion test The step of "reacting overnight (17 hours) at 50 ° C. and then stopping the reaction by boiling in a boiling water bath for 15 minutes" in Test Example 4 was performed for "4 hours at 50 ° C." After the reaction, the enzyme shown in Table 9 was used to prepare the starch hydrolyzate (dextrin) (substrate) in the same manner as in Test Example 4 except that the reaction was stopped by boiling in a boiling water bath for 15 minutes. An artificial digestion test was carried out on the sugar obtained by the treatment with the above-mentioned method, and the presence or absence of indigestibility was examined on the substrate.
The enzymes in Table 9 are as shown in Table 7 above.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表9に示されるように、酵素無添加の比較例26、AG単独で用いた比較例27、28、及びMTT単独で用いた比較例29と比較して、AGとMTTとを併用した、実施例14、15では、酵素修飾デキストリンの分解率が低いことが確認された。
 また、酵素無添加の比較例26、BA単独で用いた比較例30~32、及びMTT単独で用いた比較例29と比較して、BAとMTTとを併用した、実施例16~18では、酵素修飾デキストリンの分解率が低いことが確認された。
 この結果より、エキソ型アミラーゼ(AG、BA)と4-α-グルカノトランスフェラーゼ(MTT)との併用が、酵素無添加の食品又は単独で酵素を用いた食品に比べて、血糖値上昇を抑制することができる食品(難消化性が付与された食品)の製造に有効であることが示唆された。
As shown in Table 9, AG and MTT were used in combination as compared with Comparative Example 26 in which no enzyme was added, Comparative Examples 27 and 28 in which AG was used alone, and Comparative Example 29 in which MTT was used alone. In Examples 14 and 15, it was confirmed that the decomposition rate of the enzyme-modified dextrin was low.
Further, in Examples 16 to 18 in which BA and MTT were used in combination, compared with Comparative Example 26 in which no enzyme was added, Comparative Examples 30 to 32 in which BA alone was used, and Comparative Example 29 in which MTT was used alone, It was confirmed that the decomposition rate of enzyme-modified dextrin was low.
From this result, the combined use of exo-type amylase (AG, BA) and 4-α-glucanotransferase (MTT) suppresses the increase in blood glucose level as compared with foods without enzyme or foods with enzyme alone. It was suggested that it is effective in the production of foods that can be treated (foods imparted with indigestibility).
[実施例19、比較例33及び34]
 原料として宮城県産ひとめぼれ(生米)を使用した。玄米は一つの生産元で同一日に収穫されたものを確保し、同一日に精米したものを、脱酸素剤を入れた遮光真空パックに入れ、試験まで5℃にて冷蔵保存した。
 精白米は、炊飯当日の秤量30分前までに室温に戻した。電子天秤(US6002S、メトラー・トレド株式会社)を使用し、精白米を秤量した。ザルに入れた精白米を、ボウルに溜めた水道水中にてやさしく時計回りに10回かき混ぜた。水道水を取り換え、同じ作業を5回繰り返した。洗米後、水道水に一時間浸漬した。米をザルに取り上げ、炊飯釜に移した後、電子天秤上で135%の加水率になるように水道水を添加し、家庭用炊飯器(三菱:NJ―LH064)に釜をセットし、表10に示す量の酵素を添加して炊飯し、実施例19、比較例34の米飯を得た。酵素を添加しない以外は実施例19と同じ方法で、比較例33の米飯を得た。
 得られた実施例19及び比較例33、34の米飯を、炊飯直後、バット上に炊飯釜を転倒させ、米飯を取り出した。釜壁に近い米飯は取り除き、バットの端によけた。米飯を平らに均し、軽く隙間を開け、ラップをした後、室温で15分粗熱をとった。米飯は-80℃のディープフリーザーで凍結した。翌日、凍結乾燥機(FDU-2100:東京理化機器株式会社)を使用して凍結乾燥し、実施例19及び比較例33、34の米飯(凍結乾燥品)を得た。
 表10中の酵素は表7に示す通りである。
[Example 19, Comparative Examples 33 and 34]
Hitomebore (raw rice) from Miyagi prefecture was used as a raw material. The brown rice was harvested from one producer on the same day, and the rice polished on the same day was placed in a light-shielding vacuum pack containing an oxygen scavenger and refrigerated at 5 ° C. until the test.
The polished rice was returned to room temperature 30 minutes before weighing on the day of cooking. Polished rice was weighed using an electronic balance (US6002S, METTLER TOLEDO Co., Ltd.). The polished rice in the colander was gently stirred clockwise 10 times in tap water stored in a bowl. The tap water was replaced and the same work was repeated 5 times. After washing the rice, it was immersed in tap water for 1 hour. After picking up the rice in a colander and transferring it to a rice cooker, add tap water on an electronic balance so that the water content is 135%, set the rice cooker (Mitsubishi: NJ-LH064) in the rice cooker, and set the pot on the table. Rice was cooked by adding the amount of enzyme shown in 10 to obtain rice rice of Example 19 and Comparative Example 34. The rice of Comparative Example 33 was obtained in the same manner as in Example 19 except that no enzyme was added.
Immediately after cooking the obtained rice rice of Example 19 and Comparative Examples 33 and 34, the rice cooker was turned over on the vat and the rice rice was taken out. The rice near the wall of the kettle was removed and moved to the edge of the bat. The rice was leveled flat, lightly opened, wrapped, and then heated at room temperature for 15 minutes. The rice was frozen in a deep freezer at -80 ° C. The next day, the rice was freeze-dried using a freeze-dryer (FDU-2100: Tokyo Rika Kikai Co., Ltd.) to obtain rice (freeze-dried products) of Example 19 and Comparative Examples 33 and 34.
The enzymes in Table 10 are as shown in Table 7.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
[試験例7]動物試験(in vivo)酵素処理米による血糖値上昇抑制効果
 以下の方法で、ラットを用いて、米飯投与後の血糖値を測定し、血糖値上昇抑制効果を評価した。
 被験物質には実施例19、比較例33及び34の米飯(凍結乾燥品)を、ミキサーミル(MM301:Verder sientific)を用いて粉砕し、スタンディングパウチに分注してシールで密閉し、室温で保管、動物試験に供した。
[Test Example 7] Animal test (in vivo) Effect of suppressing increase in blood glucose level by enzyme-treated rice The blood glucose level after administration of rice was measured using rats by the following method, and the effect of suppressing the increase in blood glucose level was evaluated.
As the test substance, rice (lyophilized) of Examples 19 and Comparative Examples 33 and 34 was crushed using a mixer mill (MM301: Verder sientific), dispensed into a standing pouch, sealed with a seal, and at room temperature. It was stored and subjected to animal testing.
 酵素処理米飯の全糖質量分析は一般財団法人日本食品分析センターに委託し、フェノール硫酸法を用いて測定した。
 被験物質は血糖値測定試験当日に、蒸留水にて溶液調製した。下記の血糖値の測定方法及び図1の試験日程に従って、空腹時、投与15分後、30分後、60分後、90分後、120分後の血糖値を測定した。被験物質投与は、被験物質の全糖量が1.3g/20mL/kgの量で、経口投与で行った。
Total sugar mass spectrometry of enzyme-treated rice was outsourced to the Japan Food Research Laboratories and measured using the phenol-sulfuric acid method.
The test substance was prepared as a solution with distilled water on the day of the blood glucose measurement test. According to the following blood glucose measurement method and the test schedule of FIG. 1, the blood glucose levels were measured on an empty stomach, 15 minutes, 30 minutes, 60 minutes, 90 minutes, and 120 minutes after administration. The test substance was administered orally when the total sugar content of the test substance was 1.3 g / 20 mL / kg.
(血糖値の測定方法)
 ラットへの糖負荷試験は種々行われているが、本試験では特開2005-328776号公報を改変し、行った。
[動物]
動物種及び系統:ラット、Crl:WI(Han)
性別:雄性
入荷時週齢:7週齢
[飼育環境]
温度:22±3℃
湿度:50±5%
照明時間:12時間/日
[飼料]
種類:CRF-1(オリエンタル酵母工業(株))
給餌法:絶食期間を除き自由に与える。
[飲料水]
種類:水道水
給水法:試験期間を通じ自由に与える。
[動物の選択及び群分け]
 検疫・馴化期間中において、一般状態観察に異常のみられなかった動物より試験に使用する動物を選択する。動物は9~13週齢で使用する.検疫・馴化終了日に体重を測定し,得られた体重を指標として、層別連続無作為化法を用いて6匹/群に割り付ける。
[絶食処置]
 糖負荷試験実施日の前日夕方より一晩絶食を開始する。
[血糖値の測定]
 尾の先端の静脈を無麻酔下でメス刃を用いて切開する。切開面より漏出する血液を用いて検査(血糖値)を実施する。自己検査用グルコース測定器「アキュチェック」を用いて測定し、測定器に表示された血糖値を記録する。これを空腹時血糖値とする。なお、同一日の試験には同じグルコース測定器を用いた。
(Measurement method of blood sugar level)
Various sugar loading tests on rats have been carried out, but in this test, Japanese Patent Application Laid-Open No. 2005-328767 was modified.
[animal]
Animal species and lineage: rat, Crl: WI (Han)
Gender: Male Week age at arrival: 7 weeks old [Breeding environment]
Temperature: 22 ± 3 ° C
Humidity: 50 ± 5%
Lighting time: 12 hours / day [feed]
Type: CRF-1 (Oriental Yeast Co., Ltd.)
Feeding method: Give freely except during the fasting period.
[Drinking water]
Type: Tap water supply method: Give freely throughout the test period.
[Animal selection and grouping]
During the quarantine / acclimatization period, select the animals to be used for the test from the animals that did not show any abnormalities in the general condition observation. Animals are used at 9 to 13 weeks of age. Body weight is measured on the end of quarantine and acclimation, and the weight obtained is used as an index to assign to 6 animals / group using a stratified continuous randomization method.
[Fasting]
Start fasting overnight from the evening of the day before the glucose load test.
[Measurement of blood sugar level]
An incision is made in the vein at the tip of the tail using a scalpel blade without anesthesia. A test (blood glucose level) is performed using blood leaking from the incised surface. The glucose level for self-examination is measured using the glucose measuring device "Accucheck", and the blood glucose level displayed on the measuring device is recorded. Let this be the fasting blood glucose level. The same glucose measuring device was used for the test on the same day.
 評価項目の算出は以下のように行った。
 空腹時血糖値を0分の血糖値とした。
 各測定時間の血糖値から、0分の血糖値を差し引いた値を、「Δ血糖値(mg/dL)」とした。
 各測時間のΔ血糖値の中でもっとも高い値を各個体の「ΔCmax(mg/dL)」とした。
 Δ血糖値上昇曲線の下面積を算出した値を「Δ血糖値AUC(mg/dL・min)」とした。算出方法は日本Glycemic index研究会の方法に準じた。
 対照群(比較例33)のΔ血糖値AUCを100とした時の被験物質投与群(実施例19、比較例34)のΔ血糖値AUCの値から、血糖値上昇抑制効果を評価した。
 試験結果を、表11及び図3に示す。
The evaluation items were calculated as follows.
The fasting blood glucose level was defined as the blood glucose level at 0 minutes.
The value obtained by subtracting the blood glucose level of 0 minutes from the blood glucose level at each measurement time was defined as "Δ blood glucose level (mg / dL)".
The highest value among the Δ blood glucose levels at each measurement time was defined as “ΔCmax (mg / dL)” of each individual.
The value obtained by calculating the lower area of the Δ blood glucose level rise curve was defined as “Δ blood glucose level AUC (mg / dL · min)”. The calculation method was based on the method of the Japan Glycemic index study group.
The effect of suppressing the increase in blood glucose level was evaluated from the Δ blood glucose level AUC value of the test substance administration group (Example 19, Comparative Example 34) when the Δ blood glucose level AUC of the control group (Comparative Example 33) was set to 100.
The test results are shown in Table 11 and FIG.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 比較例33は、酵素を添加しない米飯であり、一般にGI値が高い食品である。比較例34は、酵素としてMTTのみを添加した米飯である。
 酵素としてMTTとAGを併用した実施例19は、比較例33、34と比べてΔ血糖値AUCが低く、高い血糖上昇抑制効果が確認された。
Comparative Example 33 is rice rice to which no enzyme is added, and is generally a food having a high GI value. Comparative Example 34 is rice with only MTT added as an enzyme.
In Example 19 in which MTT and AG were used in combination as an enzyme, the Δ blood glucose level AUC was lower than in Comparative Examples 33 and 34, and a high blood glucose elevation inhibitory effect was confirmed.
 上記試験結果により、本発明の特定の酵素の組み合わせの添加により、米飯に難消化性が付与され、米飯の血糖値上昇抑制効果が期待できることが示唆された。 From the above test results, it was suggested that the addition of the combination of the specific enzymes of the present invention imparts indigestibility to rice and can be expected to have an effect of suppressing the increase in blood glucose level of rice.
 本発明によれば、酵素無添加の米飯と比べて、血糖値上昇を抑制することができる米飯、特に、グリセミックインデックスが低下した米飯を製造することができる。 According to the present invention, it is possible to produce rice that can suppress an increase in blood glucose level, particularly rice that has a lowered glycemic index, as compared with rice that does not contain an enzyme.
 本出願は、日本で出願された特願2020-073513を基礎としており、その内容は本出願にすべて包含されるものである。 This application is based on Japanese Patent Application No. 2020-073513 filed in Japan, the contents of which are all included in this application.

Claims (54)

  1.  生米である原料に、エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程を含む、血糖値上昇が抑制された米飯食品又は米加工品の製造方法。 A method for producing a rice food or a processed rice product in which an increase in blood glucose level is suppressed, which comprises a step of adding exo-type amylase and 4-α-glucanotransferase to a raw material of raw rice.
  2.  4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、請求項1記載の製造方法。 The production method according to claim 1, wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  3.  前記エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程に続いて、炊飯工程を含む、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, which comprises a step of adding the exo-type amylase and 4-α-glucanotransferase followed by a step of cooking rice.
  4.  生米である原料に、エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程を含む、米飯食品又は米加工品に、血糖値上昇を抑制する効果を付与する方法。 A method for imparting an effect of suppressing an increase in blood glucose level to a rice food or a processed rice product, which comprises a step of adding exo-type amylase and 4-α-glucanotransferase to a raw material of raw rice.
  5.  4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、請求項4記載の方法。 The method according to claim 4, wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  6.  前記エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程に続いて、炊飯工程を含む、請求項4又は5に記載の方法。 The method according to claim 4 or 5, which comprises a step of adding the exo-type amylase and 4-α-glucanotransferase followed by a step of cooking rice.
  7.  エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを含有する、米飯食品又は米加工品に血糖値上昇を抑制する効果を付与するための酵素製剤。 An enzyme preparation containing exo-type amylase and 4-α-glucanotransferase to impart the effect of suppressing the rise in blood glucose level to rice foods or processed rice products.
  8.  4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、請求項7記載の酵素製剤。 The enzyme preparation according to claim 7, wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  9.  炊飯工程で使用するための、請求項7又は8に記載の酵素製剤。 The enzyme preparation according to claim 7 or 8, for use in the rice cooking process.
  10.  生米である原料に、エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程を含む、グリセミックインデックスが低下した米飯食品又は米加工品の製造方法。 A method for producing a rice food or a processed rice product having a lowered glycemic index, which comprises a step of adding exo-type amylase and 4-α-glucanotransferase to a raw material of raw rice.
  11.  4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、請求項10記載の製造方法。 The production method according to claim 10, wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  12.  前記エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程に続いて、炊飯工程を含む、請求項10又は11に記載の製造方法。 The production method according to claim 10 or 11, further comprising a rice cooking step following the step of adding the exo-type amylase and 4-α-glucanotransferase.
  13.  生米である原料に、エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程を含む、米飯食品又は米加工品のグリセミックインデックスを低下させる方法。 A method for lowering the glycemic index of rice foods or processed rice products, which comprises a step of adding exo-type amylase and 4-α-glucanotransferase to the raw material of raw rice.
  14.  4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、請求項13記載の方法。 13. The method of claim 13, wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  15.  前記エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程に続いて、炊飯工程を含む、請求項13又は14に記載の方法。 The method according to claim 13 or 14, which comprises a step of adding the exo-type amylase and 4-α-glucanotransferase followed by a step of cooking rice.
  16.  エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを含有する、米飯食品又は米加工品のグリセミックインデックスを低下させるための酵素製剤。 An enzyme preparation containing exo-type amylase and 4-α-glucanotransferase for lowering the glycemic index of rice foods or processed rice products.
  17.  4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、請求項16記載の酵素製剤。 The enzyme preparation according to claim 16, wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  18.  炊飯工程で使用するための、請求項16又は17に記載の酵素製剤。 The enzyme preparation according to claim 16 or 17, for use in the rice cooking process.
  19.  生米である原料に、下記(1)又は(2)の酵素を添加する工程を含む、血糖値上昇が抑制された米飯食品又は米加工品の製造方法。
    (1)α-グルコシダーゼ及びブランチングエンザイム
    (2)α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ
    A method for producing a rice food or a processed rice product in which an increase in blood glucose level is suppressed, which comprises a step of adding the enzyme (1) or (2) below to a raw material which is raw rice.
    (1) α-Glucosidase and blanching enzyme (2) α-Glucosidase, blanching enzyme and 4-α-glucanotransferase
  20.  4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、請求項19記載の製造方法。 The production method according to claim 19, wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  21.  前記酵素を添加する工程に続いて、炊飯工程を含む、請求項19又は20に記載の製造方法。 The production method according to claim 19 or 20, which comprises a step of adding the enzyme and then a step of cooking rice.
  22.  生米である原料に、下記(1)又は(2)の酵素を添加する工程を含む、米飯食品又は米加工品に、血糖値上昇を抑制する効果を付与する方法。
    (1)α-グルコシダーゼ及びブランチングエンザイム
    (2)α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ
    A method for imparting an effect of suppressing an increase in blood glucose level to a rice food or a processed rice product, which comprises a step of adding the enzyme of (1) or (2) below to a raw material of raw rice.
    (1) α-Glucosidase and blanching enzyme (2) α-Glucosidase, blanching enzyme and 4-α-glucanotransferase
  23.  4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、請求項22記載の方法。 22. The method of claim 22, wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  24.  前記酵素を添加する工程に続いて、炊飯工程を含む、請求項22又は23に記載の方法。 The method according to claim 22 or 23, which comprises a step of adding the enzyme and then a step of cooking rice.
  25.  下記(1)又は(2)の酵素を含有する、米飯食品又は米加工品に血糖値上昇を抑制する効果を付与するための酵素製剤。
    (1)α-グルコシダーゼ及びブランチングエンザイム
    (2)α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ
    An enzyme preparation containing the enzyme (1) or (2) below for imparting an effect of suppressing an increase in blood glucose level to a rice food or a processed rice product.
    (1) α-Glucosidase and blanching enzyme (2) α-Glucosidase, blanching enzyme and 4-α-glucanotransferase
  26.  4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、請求項25記載の酵素製剤。 The enzyme preparation according to claim 25, wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  27.  炊飯工程で使用するための、請求項25又は26に記載の酵素製剤。 The enzyme preparation according to claim 25 or 26 for use in the rice cooking process.
  28.  生米である原料に、下記(1)又は(2)の酵素を添加する工程を含む、グリセミックインデックスが低下した米飯食品又は米加工品の製造方法。
    (1)α-グルコシダーゼ及びブランチングエンザイム
    (2)α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ
    A method for producing a rice food or a processed rice product having a reduced glycemic index, which comprises a step of adding the enzyme (1) or (2) below to a raw material which is raw rice.
    (1) α-Glucosidase and blanching enzyme (2) α-Glucosidase, blanching enzyme and 4-α-glucanotransferase
  29.  4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、請求項28記載の製造方法。 28. The production method according to claim 28, wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  30.  前記酵素を添加する工程に続いて、炊飯工程を含む、請求項28又は29に記載の製造方法。 The production method according to claim 28 or 29, which comprises a step of adding the enzyme and then a step of cooking rice.
  31.  生米である原料に、下記(1)又は(2)の酵素を添加する工程を含む、米飯食品又は米加工品のグリセミックインデックスを低下させる方法。
    (1)α-グルコシダーゼ及びブランチングエンザイム
    (2)α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ
    A method for lowering the glycemic index of a rice food or processed rice product, which comprises a step of adding the enzyme (1) or (2) below to a raw material which is raw rice.
    (1) α-Glucosidase and blanching enzyme (2) α-Glucosidase, blanching enzyme and 4-α-glucanotransferase
  32.  4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、請求項31記載の方法。 31. The method of claim 31, wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  33.  前記酵素を添加する工程に続いて、炊飯工程を含む、請求項31又は32に記載の方法。 The method according to claim 31 or 32, which comprises a step of adding the enzyme and then a step of cooking rice.
  34.  下記(1)又は(2)の酵素を含有する、米飯食品又は米加工品のグリセミックインデックスを低下させるための酵素製剤。
    (1)α-グルコシダーゼ及びブランチングエンザイム
    (2)α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ
    An enzyme preparation for lowering the glycemic index of rice foods or processed rice products, which contains the following enzymes (1) or (2).
    (1) α-Glucosidase and blanching enzyme (2) α-Glucosidase, blanching enzyme and 4-α-glucanotransferase
  35.  4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、請求項34記載の酵素製剤。 The enzyme preparation according to claim 34, wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  36.  炊飯工程で使用するための、請求項34又は35に記載の酵素製剤。 The enzyme preparation according to claim 34 or 35 for use in the rice cooking process.
  37.  血糖値上昇の抑制を必要とする対象に、生米である原料にエキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程を含む方法により製造された、米飯食品又は米加工品を投与することを含む、該対象における血糖値上昇を抑制する方法。 To a subject who needs to suppress an increase in blood glucose level, a rice food or a processed rice product produced by a method including a step of adding exo-type amylase and 4-α-glucanotransferase to a raw material of raw rice is administered. A method for suppressing an increase in blood glucose level in the subject, which comprises the above.
  38.  4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、請求項37記載の方法。 37. The method of claim 37, wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  39.  前記米飯食品又は米加工品が、前記エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程に続いて、炊飯工程を含む方法により製造された、請求項37又は38に記載の方法。 The method according to claim 37 or 38, wherein the rice food or processed rice product is produced by a method including a rice cooking step following the step of adding the exo-type amylase and 4-α-glucanotransferase.
  40.  血糖値上昇の抑制における使用のための、生米である原料にエキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程を含む方法により製造された、米飯食品又は米加工品。 A rice food or processed rice product produced by a method including a step of adding exo-type amylase and 4-α-glucanotransferase to a raw material of raw rice for use in suppressing an increase in blood glucose level.
  41.  4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、請求項40記載の米飯食品又は米加工品。 The rice food or processed rice product according to claim 40, wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  42.  前記エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼを添加する工程に続いて、炊飯工程を含む方法により製造された、請求項40又は41に記載の米飯食品又は米加工品。 The rice food or processed rice product according to claim 40 or 41, which is produced by a method including a rice cooking step following the step of adding the exo-type amylase and 4-α-glucanotransferase.
  43.  生米を原料として血糖値上昇を抑制するための米飯食品又は米加工品を製造するための、エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼの使用。 Use of exo-type amylase and 4-α-glucanotransferase to produce rice foods or processed rice products from raw rice as a raw material to suppress the rise in blood glucose level.
  44.  4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、請求項43記載の使用。 The use according to claim 43, wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  45.  エキソ型アミラーゼ及び4-α-グルカノトランスフェラーゼが炊飯工程で使用される、請求項43又は44に記載の使用。 The use according to claim 43 or 44, wherein the exo-type amylase and 4-α-glucanotransferase are used in the rice cooking step.
  46.  血糖値上昇の抑制を必要とする対象に、生米である原料に下記(1)又は(2)の酵素を添加する工程を含む方法により製造された、米飯食品又は米加工品を投与することを含む、該対象における血糖値上昇を抑制する方法。
    (1)α-グルコシダーゼ及びブランチングエンザイム
    (2)α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ
    To administer rice foods or processed rice products produced by a method including the steps of adding the following enzymes (1) or (2) to raw rice raw materials that require suppression of blood glucose elevation. A method for suppressing an increase in blood glucose level in the subject, which comprises.
    (1) α-Glucosidase and blanching enzyme (2) α-Glucosidase, blanching enzyme and 4-α-glucanotransferase
  47.  4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、請求項46記載の方法。 46. The method of claim 46, wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  48.  前記米飯食品又は米加工品が、前記酵素を添加する工程に続いて、炊飯工程を含む方法により製造された、請求項46又は47に記載の方法。 The method according to claim 46 or 47, wherein the rice food or processed rice product is produced by a method including a rice cooking step following the step of adding the enzyme.
  49.  血糖値上昇の抑制における使用のための、生米である原料に下記(1)又は(2)の酵素を添加する工程を含む方法により製造された、米飯食品又は米加工品。
    (1)α-グルコシダーゼ及びブランチングエンザイム
    (2)α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ
    A rice food or processed rice product produced by a method including the step of adding the enzyme (1) or (2) below to a raw material which is raw rice for use in suppressing an increase in blood glucose level.
    (1) α-Glucosidase and blanching enzyme (2) α-Glucosidase, blanching enzyme and 4-α-glucanotransferase
  50.  4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、請求項49記載の米飯食品又は米加工品。 The rice food or processed rice product according to claim 49, wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  51.  前記酵素を添加する工程に続いて、炊飯工程を含む方法により製造された、請求項49又は50に記載の米飯食品又は米加工品。 The rice food or processed rice product according to claim 49 or 50, which is produced by a method including a rice cooking step following the step of adding the enzyme.
  52.  生米を原料として血糖値上昇を抑制するための米飯食品又は米加工品を製造するための、下記(1)又は(2)の酵素の使用。
    (1)α-グルコシダーゼ及びブランチングエンザイム
    (2)α-グルコシダーゼ、ブランチングエンザイム及び4-α-グルカノトランスフェラーゼ
    Use of the following enzymes (1) or (2) for producing rice foods or processed rice products from raw rice as a raw material for suppressing an increase in blood glucose level.
    (1) α-Glucosidase and blanching enzyme (2) α-Glucosidase, blanching enzyme and 4-α-glucanotransferase
  53.  4-α-グルカノトランスフェラーゼが、マルトトリオシル転移酵素及びアミロマルターゼからなる群より選択される少なくとも一つである、請求項52の使用。 Use of claim 52, wherein 4-α-glucanotransferase is at least one selected from the group consisting of maltotriosyltransferase and amylomaltase.
  54.  前記酵素が炊飯工程で使用される、請求項52又は53に記載の使用。 The use according to claim 52 or 53, wherein the enzyme is used in the rice cooking process.
PCT/JP2021/015525 2020-04-16 2021-04-15 Cooked rice configured to suppress increase in blood sugar levels WO2021210626A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022515424A JPWO2021210626A1 (en) 2020-04-16 2021-04-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020073513 2020-04-16
JP2020-073513 2020-04-16

Publications (1)

Publication Number Publication Date
WO2021210626A1 true WO2021210626A1 (en) 2021-10-21

Family

ID=78084562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015525 WO2021210626A1 (en) 2020-04-16 2021-04-15 Cooked rice configured to suppress increase in blood sugar levels

Country Status (3)

Country Link
JP (1) JPWO2021210626A1 (en)
TW (1) TW202203782A (en)
WO (1) WO2021210626A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001722A1 (en) * 2009-07-01 2011-01-06 天野エンザイム株式会社 Maltotriocil transferase, process for production thereof, and use thereof
WO2014115894A1 (en) * 2013-01-24 2014-07-31 味の素株式会社 Method for manufacturing starch-containing food product, and enzyme preparation for modifying starch-containing food product
JP2015228798A (en) * 2014-06-03 2015-12-21 宝酒造株式会社 Processed boiled rice, processed boiled rice product, processed boiled rice texture improver, and texture improvement method for processed boiled rice
WO2019189065A1 (en) * 2018-03-26 2019-10-03 味の素株式会社 Method for manufacturing starch-containing food
JP2020110121A (en) * 2019-01-15 2020-07-27 味の素株式会社 Cereal food product production method and quality deterioration suppressing method, and cereal food product quality deterioration suppressing agent
JP2020141606A (en) * 2019-03-07 2020-09-10 オリエンタル酵母工業株式会社 Quality preserving agent for cooked rice, and quality preserving method for cooked rice

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001722A1 (en) * 2009-07-01 2011-01-06 天野エンザイム株式会社 Maltotriocil transferase, process for production thereof, and use thereof
WO2014115894A1 (en) * 2013-01-24 2014-07-31 味の素株式会社 Method for manufacturing starch-containing food product, and enzyme preparation for modifying starch-containing food product
JP2015228798A (en) * 2014-06-03 2015-12-21 宝酒造株式会社 Processed boiled rice, processed boiled rice product, processed boiled rice texture improver, and texture improvement method for processed boiled rice
WO2019189065A1 (en) * 2018-03-26 2019-10-03 味の素株式会社 Method for manufacturing starch-containing food
JP2020110121A (en) * 2019-01-15 2020-07-27 味の素株式会社 Cereal food product production method and quality deterioration suppressing method, and cereal food product quality deterioration suppressing agent
JP2020141606A (en) * 2019-03-07 2020-09-10 オリエンタル酵母工業株式会社 Quality preserving agent for cooked rice, and quality preserving method for cooked rice

Also Published As

Publication number Publication date
TW202203782A (en) 2022-02-01
JPWO2021210626A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
Giuberti et al. Gluten free rice cookies with resistant starch ingredients from modified waxy rice starches: Nutritional aspects and textural characteristics
Hasjim et al. Characterization of a novel resistant‐starch and its effects on postprandial plasma‐glucose and insulin responses
Homayouni et al. Resistant starch in food industry: A changing outlook for consumer and producer
Singh et al. Starch digestibility in food matrix: a review
Tovar et al. Starch content and. alpha.-amylolysis rate in precooked legume flours
Visnapuu et al. Levansucrases of a Pseudomonas syringae pathovar as catalysts for the synthesis of potentially prebiotic oligo-and polysaccharides
Niba et al. Resistant starch and β-glucan levels in grain sorghum (Sorghum bicolor M.) are influenced by soaking and autoclaving
US20210068432A1 (en) Method for manufacturing starch-containing food
Bornet et al. Glycaemic index concept and metabolic diseases
US10820599B2 (en) Enzyme exhibiting fructan hydrolase activity
MXPA05008000A (en) Use of a chemically modified starch product.
AU784726B2 (en) Cereal grains with high dietary fiber and/or resistant starch content and their preparation thereof
Öztürk et al. Physicochemical properties, modifications, and applications of resistant starches
KR102244586B1 (en) Method for preparing oat powder
Lin et al. The digestion of complementary feeding starches in the young child
Shinde et al. Maltooligosaccharide forming amylases and their applications in food and pharma industry
Li Resistant starch and its applications
KR20040065237A (en) Animal feed
RU2318403C2 (en) Method for controlling glucose level and providing its regulated delivery for mammal
Bai et al. A review of the design and architecture of starch-based dietary foods
Mohammadi et al. Application of inulin in bread: A review of technological properties and factors affecting its stability
Losoya‐Sifuentes et al. Development and characterization of Pleurotus ostreatus mushroom—Wheat bread
TWI491361B (en) Process for enhancing thermostabilization of retrogradation preventing agent for food
WO2020145371A1 (en) Method for manufacturing starch-containing food
WO2021210626A1 (en) Cooked rice configured to suppress increase in blood sugar levels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21789097

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022515424

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21789097

Country of ref document: EP

Kind code of ref document: A1