WO2021210274A1 - Power conversion system and method for controlling power conversion system - Google Patents

Power conversion system and method for controlling power conversion system Download PDF

Info

Publication number
WO2021210274A1
WO2021210274A1 PCT/JP2021/006994 JP2021006994W WO2021210274A1 WO 2021210274 A1 WO2021210274 A1 WO 2021210274A1 JP 2021006994 W JP2021006994 W JP 2021006994W WO 2021210274 A1 WO2021210274 A1 WO 2021210274A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
voltage vector
output
axis
voltage
Prior art date
Application number
PCT/JP2021/006994
Other languages
French (fr)
Japanese (ja)
Inventor
隆一 小川
昌司 滝口
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Publication of WO2021210274A1 publication Critical patent/WO2021210274A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a current control method in a power conversion system that outputs a voltage using a power converter.
  • current control may be used to obtain the desired value of the output current.
  • ACR Auto Current Regulator
  • PWM Pulse Width Modulation
  • MPC Model Predictive Control: model prediction control
  • the MPC predicts the change in current with respect to each assumed output voltage, and adopts a voltage as the actual output so that the locus of the output current follows the command current most.
  • the feature of MPC is that the discrete output voltage is considered in advance and the instantaneous current can be predicted.
  • Non-Patent Document 1 describes a basic control configuration of MPC, a method of predicting current using a motor state equation, and a method of evaluating predicted current and voltage vector.
  • the evaluation method by considering items such as the deviation between the command current and each predicted current, the maximum value of the total deviation, and the number of changes in the voltage vector, an output current close to the command current can be obtained and the number of voltage changes. The output voltage with a small (number of switchings) can be determined.
  • Patent Document 1 describes an MPC control method for performing current prediction calculation up to i (n + 2).
  • the detection time is set to n, and the current change during the calculation time is predicted to obtain i (n + 1).
  • i (n + 2) is calculated from i (n + 1) in consideration of the voltage vector branch of the inverter, and the voltage vector is determined by the evaluation of i (n + 2).
  • Non-Patent Document 1 does not consider the change in current during the calculation time.
  • the detected current is i (n), and the current change during the calculation time is predicted from the detected current to calculate the current i (n + 1). Then, i (n + 2) is calculated using i (n + 1). In this way, the predicted current of the previous current is obtained.
  • a general and specific calculation method such as a case where a voltage vector for a plurality of cycles is determined by one calculation when predicting n + 2 or later.
  • the present invention has been devised in view of the above-mentioned conventional problems, and one aspect thereof is an upper control unit that generates a command current based on a command value and each output cycle during the prediction period by model prediction control.
  • a plurality of assumed voltage vectors are set in, the predicted current of the assumed voltage vector is calculated based on the correction current value obtained by adding the amount of change in the current during the calculation cycle to the detected current, and the assumed voltage vector and the predicted current are evaluated.
  • the function is calculated, the combination of the assumed voltage vectors whose evaluation function is the highest is determined from the combination of the assumed voltage vectors in the prediction period, and the combination of the assumed voltage vectors whose evaluation function is the highest is determined.
  • a predictor that outputs the assumed voltage vector that is actually output from, as a command voltage vector, a gate signal determination unit that outputs a gate signal for outputting the voltage expressed by the command voltage vector from the power converter, and a gate signal. It is characterized by being equipped with a power converter that is driven and controlled based on the above.
  • the amount of change in current during the calculation cycle is calculated by the following equation (5).
  • ⁇ idc Current change amount during calculation cycle (d-axis)
  • ⁇ iqc Current change amount during calculation cycle (q-axis)
  • id Detected d-axis current
  • iq Detected q-axis current
  • vdz d-axis voltage vector
  • Previous value vqz: q-axis voltage vector
  • R Winding resistance
  • Ld d-axis inductance
  • Lq q-axis inductance
  • ⁇ r Detected electrical angular velocity
  • Permanent magnet interlinkage magnetic flux number.
  • a plurality of output cycles during the prediction period are provided by a host control unit that generates a command current based on the command value and model prediction control that determines voltage vectors of a plurality of output cycles in one calculation cycle.
  • the assumed voltage vector is set, the predicted current of the assumed voltage vector is calculated based on the correction current value obtained by adding the amount of change in the current during the calculation cycle to the detected current, and the evaluation function of the assumed voltage vector and the predicted current is calculated. Then, from the prediction unit that outputs the combination of the assumed voltage vectors having the highest evaluation function as the command voltage vector matrix from the combinations of the assumed voltage vectors in the prediction period, and the command voltage vector matrix having a plurality of output cycles.
  • a read unit that selects the voltage vector of the output cycle and outputs it as an output voltage vector
  • a gate signal determination unit that outputs a gate signal for outputting the voltage expressed by the output voltage vector from the power converter, and a gate. It is characterized by being equipped with a power converter that is driven and controlled based on a signal.
  • the current change amount during the calculation cycle is calculated by calculating the current change amount during each output cycle by the following equation (21), and adding the current change amounts of all the output cycles during the calculation cycle. It is characterized in that the value is set to the value.
  • ⁇ idc Current change amount during output cycle (d-axis)
  • ⁇ iqc Current change amount during output cycle (q-axis)
  • Tc Output cycle id': Detected d-axis current or d-axis current
  • iq' Detected q-axis current or q-axis current
  • vdz d-axis voltage vector Previous value
  • vqz q-axis voltage vector Previous value
  • R Winding Resistance
  • Ld d-axis inductance
  • Lq q-axis inductance
  • ⁇ r Detected electric angular velocity
  • Permanent magnet interlinkage magnetic flux number.
  • the correction current value is characterized by adding the amount of change in the current during the calculation cycle and the amount of change in the current in the timing shift period of the output voltage change with respect to the current detection to the detected current. do.
  • the amount of current change in the timing shift period of the output voltage change with respect to the current detection is calculated by the following equation (17).
  • ⁇ iddel Current change amount (d-axis) during the timing shift period of the output voltage change with respect to the current detection
  • ⁇ iqdel Current change amount (q-axis) during the timing shift period of the output voltage change with respect to the current detection
  • Tdel Timing shift period of output voltage change with respect to current detection
  • id Detected d-axis current
  • iq Detected q-axis current
  • vdzz d-axis voltage vector
  • Pre-previous value vqz q-axis voltage vector
  • R Winding resistance
  • Ld d-axis inductance
  • Lq q-axis inductance
  • ⁇ r detected electric angular velocity
  • permanent magnet interlinkage magnetic flux number.
  • the block diagram of the power conversion system in Embodiments 1 to 4. The figure which shows the relationship between the voltage vector of a two-level inverter and a phase voltage. The figure which shows the relationship between the detected current and the predicted current.
  • the block diagram which shows the MPC in Embodiment 1. FIG. The flowchart which shows the processing of the prediction part in Embodiment 1.
  • the block diagram which shows the MPC in Embodiment 2. The flowchart which shows the action of the prediction part in Embodiment 2.
  • the block diagram which shows the MPC in Embodiment 4. The flowchart which shows the processing of the prediction part in Embodiment 4.
  • FIG. 1 shows a configuration diagram of the power conversion system according to the first embodiment.
  • the upper control unit 1 indicates a control existing upstream of the MPC 2. For example, a speed control calculation is performed using a speed command and a detection speed based on information such as the operation amount of the panel / panel and the accelerator opening, and the command is given. Generates current i *.
  • the command current i * , the detection current i, and the detection phase ⁇ output from the upper control unit 1 are input to the MPC (model prediction control unit) 2.
  • the detection phase ⁇ is an electric angle.
  • the conversion is appropriately performed using the number of pole pairs.
  • MPC2 performs an operation to predict the current from the next time onward based on the model parameters, and determines the voltage vector based on the result.
  • a gate signal g for outputting according to the determined voltage vector is output from the MPC 2, and the power converter (for example, an inverter, hereinafter referred to as an inverter) 3 is driven by the gate signal g.
  • the inverter 3 is connected to a load 4 such as a motor, and a voltage corresponding to the gate signal g is applied to the load 4.
  • FIG. 1 is a typical system configuration example of a power conversion system using MPC, and the application target of the present invention is not limited to this.
  • a DC / AC converter that regenerates a power source may have a configuration in which current control is performed based on model prediction, a configuration in which an electric angle is estimated by a PLL (Phase Locked Loop) and used in an MPC, or a single-phase configuration may be used.
  • PLL Phase Locked Loop
  • Predicted step Predicted step time of current (time width from time i (n) to time i (n + 1))
  • Prediction period Time width of the earliest time for predicting current and time of i (n)
  • Output cycle Cycle for switching voltage output
  • Calculation cycle Cycle for performing prediction calculation.
  • the prediction step and the output cycle are treated as the same time width below. Further, in the first embodiment, the calculation cycle and the output cycle are the same.
  • the voltage vector of the inverter 3 is assumed, the predicted current when the assumed voltage vector is output is obtained, and the voltage vector that gives the optimum prediction result is adopted and used as the actual output.
  • the current prediction operation is based on the equation of state.
  • PMSM Permanent Magnet Synchronous Motor
  • Ld is the d-axis inductance
  • Lq is the q-axis inductance
  • R is the winding resistance
  • is the number of permanent magnet interlinkage magnetic fluxes
  • ⁇ r is the detected electric angular velocity.
  • the equation (1) that is, PMSM will be used as a reference, but from the essence of the present invention, the present invention may be applied to other than the case where the equation of state is the equation (1).
  • Equation (1) is a continuous equation of state, but if it is made into a discrete equation of state in order to handle it in a discrete control system, it becomes equation (2).
  • Equation I in Eq. (2) represents an identity matrix.
  • the product of the slope and the output period Tc may be simply taken and treated as an approximate amount of change, and the equation (3) may be used.
  • the current id (n), iq (n) and voltage corresponding to the current time are used to predict the current id (n + 1) and iq (n + 1) one cycle ahead of the output cycle.
  • vd (n) and vq (n) are required.
  • the voltage vectors assumed in the previous stage of the prediction calculation are used.
  • the voltage vector is shown in FIG. 2, so that the assumed voltage vector can be converted into a voltage on the dq axis by the calculation of Eq. (4).
  • ⁇ (n) is the motor phase. The phase may be advanced and compensated according to the angular frequency, but detailed calculation will be described later.
  • the detected values are used as a reference for the currents id (n) and iq (n).
  • the n + a-th predicted value can be used for the calculation of obtaining the current id (n + a + 1) and iq (n + a + 1) from the current id (n + a) and iq (n + a) in the middle of prediction, but the n-th predicted value is the prediction start point.
  • the currents id (n) and iq (n) cannot be assumed and must be based on the detected value.
  • Figure 3 shows the relationship between the detected current and the predicted current.
  • the solid line shows the output current
  • the dotted line shows the predicted current.
  • Tc is the output cycle.
  • the predicted current i (n) is the d-axis and q-axis currents, but the notation of d and q is omitted because it shows the property of being applicable to both the d-axis and q-axis currents.
  • the current after the third cycle is predicted based on the voltage vector assumed to be the current detected at the end of the first cycle. Moreover, since there are a plurality of types of voltage vectors to be assumed, the predicted current of the dotted line is branched into a plurality of types.
  • FIG. 3A shows a case where the detected value is used for i (n). Looking at FIG. 3, there is a time difference of the output cycle Tc between the detection time and the time of i (n). This time difference is the calculation time from the detected value to the determination of the output voltage from the next time onward, and it is impossible to make the detection time and the time of i (n) the same time.
  • the voltage vector determined in the previous output cycle is output, and the current changes from the detected value from the detection time to the time of i (n). Therefore, if the detected value is used for i (n), the value of i (n) used in the control and the value of the actual output current at the time of i (n) will be different. As a result, there is a concern that the current prediction accuracy will decrease. If the current prediction accuracy is lowered, the validity of the subsequent current evaluation is also lowered, which causes an increase in current ripple and an increase in switching frequency.
  • FIG. 3B shows a case where the value obtained by adding the amount of change in current during the calculation time to the detected value is used as i (n).
  • the current prediction calculation from the detection time to the time i (n) is performed using the voltage vector determined in the previous cycle, and the current change during the calculation time is predicted.
  • the broken line shows the change in current.
  • the current prediction accuracy can be improved, and effects such as reduction of current ripple and reduction of switching frequency can be obtained.
  • FIG. 4 shows a configuration diagram of MPC2 according to the first embodiment.
  • the command current i * is divided into a command d-axis current id * and a command q-axis current iq *.
  • the three-phase two-phase conversion unit 5 converts the three-phase detection current i into UVW / dq based on the detection phase ⁇ , and converts it into the detection d-axis current id and the detection q-axis current iq.
  • the differentiator 6 outputs the detected electric angular velocity ⁇ r by differentiating the detection phase ⁇ or pseudo-differentiating processing.
  • the command d-axis current id * , command q-axis current iq * , detected d-axis current id, detected q-axis current iq, detected phase ⁇ , detected electric angular velocity ⁇ r, and command voltage vector previous value Vz * are input to the prediction unit 7. ..
  • the prediction unit 7 performs a current prediction calculation and evaluates the prediction result, and outputs a command voltage vector V * which is an output voltage vector from the next time onward.
  • the command voltage vector V * is input to the prediction unit 7 as the command voltage vector previous value Vz * after one delay, and is used for the next prediction calculation.
  • the gate signal determination unit 8 determines the gate signal g for outputting the voltage represented by the command voltage vector V * from the inverter based on the circuit configuration of the system, and inserts the dead time. Then, the gate signal g becomes the output of MPC2.
  • the configuration of the gate signal determination unit 8 is not particularly limited as long as the voltage according to the command voltage vector V * is output.
  • the prediction unit 7 dynamically performs the current prediction calculation, and the configuration is not limited to FIG. For example, a configuration in which the estimated electric angular velocity is used without using the detected electric angular velocity ⁇ r is also allowed.
  • FIG. 5 is a flowchart showing the processing of the prediction unit 7.
  • the prediction unit 7 performs the following processing.
  • (A) Predict the change in current during the calculation time.
  • (B) Assuming the voltage vector of the output cycle from the next time onward, the predicted current in that case is obtained.
  • (C) Evaluate the voltage vector assumed to be the predicted current.
  • (D) A voltage vector with a good evaluation result is adopted and used as an output.
  • the process (A) is the essence of the present invention, and the processes (B), (C), and (D) are basic processes in the MPC.
  • the command d-axis current id * , the command q-axis current iq * , the detected d-axis current id, the detected q-axis current iq, the detected phase ⁇ , the detected electric angular velocity ⁇ r, and the command voltage vector previous value Vz * are input. ..
  • the calculation time is obtained from the command voltage vector previous value Vz * , the detected d-axis current id, and the detected q-axis current iq, and here, the current changes ⁇ idc and ⁇ iqc during the output cycle Tc are obtained.
  • This operation may be performed as in Eq. (5) based on Eq. (3).
  • the matrices A and B and the vector e ⁇ are the same as in Eq. (1)
  • vdz and vqz are values obtained by converting the command voltage vector previous value Vz * into the dq axis voltage.
  • the current change amounts ⁇ idc and ⁇ iqc during the calculation time obtained in 1-2 are added to the detected d-axis current id and the detected q-axis current iq, and these are added to the id (n), which is the starting point of the prediction calculation. Let it be iq (n). Let these id (n) and iq (n) be the correction current values.
  • the setting method is not particularly limited. That is, it may be a voltage vector that changes with little switching according to the output up to the previous time, or one may be selected from all the voltage vectors that can be output.
  • 1-5 is a prediction of the amount of current change when the assumed voltage vector is output. From the hypothetical voltage vectors V'(n + a), id (n + a), and iq (n + a), the current change amounts ⁇ id and ⁇ iq during the output period Tc are obtained. id (n + a) and iq (n + a) are correction current values when a is 0, and predicted currents when a is 1 or more. Similar to 1-2, the calculation may be as shown in Eq. (6).
  • vd'(n + a) and vq'(n + a) are obtained by converting the assumed voltage vector v'(n + a) into a voltage on the dq axis.
  • the phase lead compensation may be performed for the motor phase according to the angular velocity. In this case, the calculation is in Eq. (7).
  • is the detection phase
  • ⁇ r is the detected electrical angular velocity
  • Tc is the output period.
  • the adjustment term K ⁇ and the adjustment term K ⁇ are added.
  • K ⁇ is determined by Eq. (8).
  • the current change amounts ⁇ id and ⁇ iq during the calculation time obtained in 1-5 are added to id (n + a) and iq (n + a), and the predicted current id (1 cycle ahead, that is, the output cycle Tc ahead) ( n + a + 1) and iq (n + a + 1) are calculated. If there is a previous branch, this current is used to obtain the next n + a + second predicted current.
  • the first embodiment evaluates the assumed voltage vector V'(n + a), the predicted current id (n + a + 1), and iq (n + a + 1).
  • the first embodiment can be applied to any evaluation method, and may be evaluated as follows, for example.
  • the evaluation function J is calculated using the assumed voltage vector V'(n + a), the predicted current id (n + a + 1), and the iq (n + a + 1).
  • the evaluation function J is a loss function that becomes a large value when it is an undesired prediction, and is calculated by weighting a plurality of evaluation criteria. Equations (9) and (10) on condition that the deviation between the predicted current and the command current is small, equations (11) and (12) for preventing the deviation between the predicted current and the command current from exceeding a certain level, switching. Eq. (13), which gives a penalty to the voltage vector change so that the number of times does not increase, is each evaluation standard.
  • idmax and iqmax are the maximum tolerances of the d-axis current and the q-axis current, respectively.
  • the evaluation function J is obtained by the equation (14) using the weighting coefficients Wid, Wiq, Widmax, Wiqmax, and Wv.
  • the evaluation function described above is an example, and is not limited to the calculation method of the first embodiment. Even with the same evaluation content, for example, Qd and Qq in Eqs. (11) and (12) may not be set to two values of 0 and 1, but continuous values may be given so that the larger the deviation from the command, the larger the value. .. Further, in the case of PMSM, from the derivation of the motor torque T of the equation (15), the equation (16) may be used as an evaluation standard instead of the equation (9). However, Pn in Eq. (15) is the pole logarithm, and T * in Eq. (16) is the command torque.
  • control performance can be changed by adjusting the weighting factor. For example, if Wv is made smaller, the current control performance can be improved instead of increasing the switching frequency, and if Wiq is made larger than Wid, the ripple of iq can be made smaller instead of increasing the ripple of id.
  • the process of 1-7 corresponds to the above (C).
  • 1-8 is a branching process of whether or not the calculation is performed assuming all the voltage vectors.
  • the voltage vector to be considered is up to V'(n + N-1), so if prediction calculation and evaluation are performed for all V'(n + N-1) to be considered, all branches are considered. If so, proceed to 1-9. If there is still a voltage vector to consider, go back to 1-4 and assume the next voltage vector.
  • the evaluation results are compared to determine the best combination of voltage vectors.
  • the evaluation function J is defined as in Eq. (14), V (n) to V (n + N-1), which is the minimum J, is the best combination of voltage vectors V (n) to V (n + N-1). ).
  • FIG. 5 is an example of voltage vector determination based on model prediction.
  • the detailed calculation procedure of the prediction unit 7 of the first embodiment is not limited to the flowchart of FIG. What is important is that the current values id (n) and iq (n), which are the starting points of the predicted current calculation / evaluation, are not the detected values, but the current values obtained by adding the current change amount during the calculation cycle to the detected values.
  • control that achieves high current control performance and low switching frequency by performing MPC that predicts the current change during the calculation time based on FIGS. 4 and 5. It can be performed.
  • the current id (n) and iq (n), which are the starting points of the prediction calculation, are set in consideration of the current change during the calculation time, and the current prediction accuracy is improved.
  • the current detection interrupt may be set at a timing shifted from the output cycle interrupt.
  • the timing of the detected current and the predicted current may be different. Although this deviation is due to a plurality of reasons as described above, in the present specification, it is collectively referred to as a delay time Tdel.
  • the delay in this case is the delay of the predicted current change with respect to the detection timing, but the predicted current change timing can be regarded as the change timing of the output voltage. That is, the timing shift period of the output voltage change with respect to the current detection is the delay time Tdel.
  • FIG. 6 shows a configuration diagram of MPC2 according to the second embodiment. Since the voltage determined two times before is output instead of the voltage determined last time during the delay time Tdel, the command voltage vector two times before the previous value Vzz * is added to the input of the prediction unit 7. Other configurations are the same as those in the first embodiment.
  • FIG. 7 shows a flowchart of the prediction unit 7 in the second embodiment.
  • Current obtained by adding not only the amount of current change during the calculation cycle but also the amount of current change during the timing shift period (delay time Tdel) of the output voltage change with respect to current detection to id (n) and iq (n), which are the starting points of the prediction calculation.
  • the process is the same as in FIG. 5 except that the value is used.
  • the added process is the prediction of the amount of current change during the delay time Tdel.
  • the current change amounts ⁇ iddel and ⁇ iqdel in the delay time Tdel are calculated from the command voltage vector pre-previous value Vzz * , the detected d-axis current id, and the detected q-axis current iq. Based on the equation (3), the calculation may be performed as in the equation (17). However, vdzz and vqzz are conversion values of the command voltage vector pre-previous value Vzz * to the dq-axis voltage.
  • the current change amounts ⁇ iddel and ⁇ iqdel are added to the detected d-axis current id and the detected q-axis current iq to obtain the current values id'and iq'.
  • phase lead correction The phase lead for the delay time Tdel is taken into consideration by using Eq. (18) for the correction motor phase ⁇ 'used for 2-4 and 2-7 and Eq. (19) for the motor phase ⁇ (n + a) used for 2-7. be able to.
  • the MPC is performed based on FIGS. 6 and 7 in which the current change during the calculation time is predicted and the timing difference between the current detection and the output voltage change is taken into consideration. Therefore, it is possible to perform control that achieves high current control performance, low switching frequency, and current detection at a timing that is not affected by ringing.
  • the prior literature has the advantage of considering the difference between the detection time and the output voltage change time, which is applicable when the prediction period is general.
  • FIG. 8 shows a configuration diagram of MPC2 according to the third embodiment.
  • the prediction unit 7 determines a voltage vector having a plurality of output cycles and uses it as a command. Therefore, unlike the first embodiment, V *, which is the output of the prediction unit 7, is not a single voltage vector but a command voltage vector matrix. Similarly, the previous value Vz * is also the previous value of the command voltage vector matrix.
  • a reading unit 9 is provided between the prediction unit 7 and the gate signal determination unit 8.
  • the reading unit 9 selects the voltage vector of the output cycle this time from the command voltage vector matrix V * for a plurality of output cycles, and determines the output voltage vector V **.
  • the input of the reading unit 9 is the command voltage vector matrix V * and the counter previous value Cz, and the output is the output voltage vector V ** and the counter value C.
  • the one-time delay block also means one-time delay in each cycle of the input destination.
  • An important point of the third embodiment is that a mechanism for determining and reading out voltage vectors for a plurality of cycles is provided for the first embodiment, and the detailed mounting configuration is not limited to FIG.
  • the first and second embodiments describe a current prediction calculation method when the calculation cycle and the output cycle are equal, that is, when the output voltage of the inverter 3 does not change during the calculation time.
  • shortening the output cycle is expected to improve the current control performance, and considering the calculation load of the current prediction calculation, shortening the calculation cycle may make it impossible to implement. It is desirable to be able to support configurations that determine voltage vectors with multiple output cycles.
  • the output of the prediction unit 7 is used as the matrix information of the plurality of voltage vectors as shown in FIG. It is necessary to add a mechanism to read one. In addition, consideration of the current change during the calculation time, which is the essence of the present invention, must be taken for the voltage vector for a plurality of cycles.
  • FIG. 9 shows a flowchart of the prediction unit 7 in the third embodiment.
  • the output of the prediction unit 7 is a voltage vector for a plurality of output cycles, and the method of predicting the current change during the calculation time is also different accordingly.
  • FIG. 9 operates at the calculation cycle Tcalc.
  • 3-1 is the same as 1-1 in FIG. However, the command voltage vector previous value Vz * is changed to the command voltage vector matrix previous value Vz *.
  • the b-th of the command voltage vector matrix previous value Vz * is Vz'.
  • the command voltage vector matrix previous value Vz * has voltage vectors from the first to the Ncalc th, and the reading unit 9 outputs the command voltage vector matrix previous value Vz * in order from the first.
  • the current change amounts ⁇ idc and ⁇ iqc during the output cycle Tc are obtained from Vz', id'and iq'.
  • the calculation may be performed as in the equation (21).
  • vdz'and vqz' are converted values of Vz'to the dq axis voltage.
  • ⁇ idc and ⁇ iqc which are the amounts of current changes during the output cycle Tc, are added to id'and iq'.
  • the correction current values id'and iq' which are obtained by adding the current change amounts ⁇ idc and ⁇ iqc for all the output cycles during the calculation time, are substituted into the currents id (n) and iq (n) which are the starting points of the prediction calculation.
  • 3-9 to 3-14 are the same processes as 1-4 to 1-9 of the first embodiment, and determine the assumption of the voltage vector and the prediction / evaluation of the current.
  • FIG. 10 shows a flowchart of the reading unit 9 in the third embodiment.
  • a counter is used to determine the output voltage vector V ** , which is the voltage vector of the current output cycle, from the command voltage vector matrix V * having voltage vector information for a plurality of cycles.
  • the configuration is not limited to FIG. 10 as long as the voltage vector of the current output cycle can be read from the voltage vectors of a plurality of cycles.
  • FIG. 10 operates with an output cycle Tc.
  • R-1 the command voltage vector matrix V * and the counter previous value Cz are input.
  • the counter previous value Cz is substituted for the counter value C.
  • R-3 the voltage vector V * [C] of the counter value C (Cth) in the command voltage vector matrix V * is substituted into the output voltage vector V **.
  • R-4 is a branch process based on the counter value C. If the counter value C has reached the number of output cycles Ncalc in the calculation cycle, the counter value C is returned to 1 by R-5. If the counter value C is not Ncalc, the counter value C is incremented by 1 at R-6.
  • the output voltage vector V ** and the counter value C are output by R-7.
  • the current change during the calculation time is predicted based on FIGS. 8, 9 and 10, and the voltage vector for a plurality of cycles is determined by one prediction calculation.
  • the MPC it is possible to perform control that achieves high current control performance, low switching frequency, and securement of a calculation time longer than that of the first and second embodiments.
  • FIG. 11 shows a configuration diagram of MPC2 according to the fourth embodiment.
  • the third embodiment has a configuration corresponding to the case where the voltage vector for a plurality of cycles is handled in the first embodiment.
  • the third embodiment can be used in combination with the second embodiment, which is referred to as the fourth embodiment.
  • the output of the prediction unit 7 is set to a command voltage vector matrix V * which is a voltage vector for a plurality of output cycles, a read-out unit 9 is provided in the subsequent stage, and the prediction unit 7 has a value two times before the command voltage vector matrix. Vzz * is substituted. It is assumed that the reading unit 9 operates in the same manner as in FIG. 10 of the third embodiment.
  • FIG. 12 shows a flowchart of the prediction unit 7 in the fourth embodiment.
  • FIG. 12 is a combination of the functions of the flowcharts of FIGS. 7 and 9, that is, the second and third embodiments.
  • the current change amounts ⁇ iddel and ⁇ iqdel in the delay time Tdel are obtained for the Ncalcth voltage vector which is the final output cycle of the command voltage vector matrix two times before the previous value Vzz *.
  • the calculation may be performed as in the equation (22).
  • vdzz1 and vqzz1 are conversion values of the command voltage vector matrix two times before the previous value Vzz * [Ncalc] to the dq-axis voltage.
  • the current id'and iq' which are the sums of the detected d-axis current id and the detected q-axis current iq and the current changes ⁇ iddel and ⁇ iqdel, are set as the initial values of repetition in consideration of the current change during the calculation time. .. This means that the delay time Tdel of the output change from the detection is taken into consideration.
  • the delay time Tdel is equal to or less than the output cycle Tc, and only the Ncalcth from the command voltage vector matrix pre-previous value Vzz * is used.
  • only the Ncalcth value may be input instead of all the command voltage vector matrix pre-previous value Vzz *.
  • the processing may be divided into a plurality of processes as in the case of repeating the current change amount calculation during the calculation time.
  • the current change amounts ⁇ iddel and ⁇ iqdel in the delay time Tdel can be considered.
  • vdzz2 and vqzz2 are conversion values of Vzz * [Ncalc-1] to the dq-axis voltage.
  • 4-4 to 4-17 are the same as 3-3 to 3-16 in FIG.
  • the second and third embodiments are combined, that is, the amount of change in current during the calculation time is predicted and the amount of change during the calculation time is predicted based on FIGS. 10, 11, and 12.
  • High current control performance, low switching frequency, Embodiments 1 and 2 by determining the voltage vector for a plurality of cycles with one prediction calculation and performing MPC in consideration of the timing difference between current detection and output voltage change. It is possible to secure a longer calculation time and perform control that achieves current detection at a timing that is not affected by ringing.

Abstract

In a prediction unit (7), a plurality of tentative voltage vectors are set for each output cycle during a prediction period, and predicted currents for the tentative voltage vectors are calculated on the basis of a correction current value obtained by adding a current variation amount (Δidc, Δiqc) to the detected current during a calculation cycle. The prediction unit (7): calculates the tentative voltage vectors and an evaluation function (J) for the predicted current; determines a combination of tentative voltage vectors for which the evaluation function (J) is at a maximum level from among the combinations of the tentative voltage vectors of the prediction period; and outputs, as a command voltage vector (V*), the tentative voltage vector to actually be outputted, from among the combinations of tentative voltage vectors for which the evaluation function (J) is at the maximum level. A gate signal determination unit (8) outputs a gate signal (g) for outputting the voltage represented by the command voltage vector (V*) from a power converter (3). A control having high current control performance and low switching frequency is thereby performed in a power conversion system using a model prediction control (MPC).

Description

電力変換システムおよび電力変換システムの制御方法Power conversion system and control method of power conversion system
 本発明は、電力変換器を用いて電圧を出力する電力変換システムにおける電流制御法に関する。 The present invention relates to a current control method in a power conversion system that outputs a voltage using a power converter.
 入力された三相交流電圧をレクティファイア(交流-直流変換器)で直流電圧に変換し、直流電圧をインバータ(電力変換器)によって所望の周波数,振幅の交流電圧として出力するシステムを考える。インバータは半導体素子のスイッチングによって出力電圧を制御する。このとき、インバータの出力可能な電圧は離散的な値となる。 Consider a system in which the input three-phase AC voltage is converted into a DC voltage by a rectifier (AC-DC converter), and the DC voltage is output as an AC voltage with a desired frequency and amplitude by an inverter (power converter). The inverter controls the output voltage by switching the semiconductor element. At this time, the voltage that can be output by the inverter becomes a discrete value.
 このようなシステムでは、出力電流を所望の値とするために電流制御を用いることがある。電流制御の一般的な構成では、まず、ACR(Auto Current Regulator:電流制御器)が連続的な値で指令電圧を決定する。しかし、連続的な電圧値は実際には出力不可能である。そのため、三角波比較PWM(Pulse Width Modulation)を行い、指令電圧を平均的に達成できる離散的な出力電圧を確定する。 In such a system, current control may be used to obtain the desired value of the output current. In a general configuration of current control, first, an ACR (Auto Current Regulator) determines a command voltage with a continuous value. However, continuous voltage values cannot actually be output. Therefore, a triangular wave comparison PWM (Pulse Width Modulation) is performed to determine a discrete output voltage that can achieve the command voltage on average.
 しかし、ACRと三角波比較PWMを用いた構成以外にも電流制御の方法は存在する。その一例が、本願の対象とするMPC(Model Predictive Control:モデル予測制御)である。MPCでは、仮定した出力電圧それぞれに対する電流の変化を予測し、出力電流の軌跡が最も指令電流に追従するような電圧を実際の出力として採用する。離散的な出力電圧をあらかじめ考慮しており、瞬時電流を予測できるのがMPCの特長である。 However, there are current control methods other than the configuration using ACR and triangular wave comparison PWM. An example of this is the MPC (Model Predictive Control: model prediction control) that is the subject of the present application. The MPC predicts the change in current with respect to each assumed output voltage, and adopts a voltage as the actual output so that the locus of the output current follows the command current most. The feature of MPC is that the discrete output voltage is considered in advance and the instantaneous current can be predicted.
 MPCに関しては、非特許文献1、特許文献1が開示されている。非特許文献1においては、MPCの基本的な制御構成、モータの状態方程式を用いた電流の予測方法、そして予測電流と電圧ベクトルの評価方法が述べられている。評価方法に関して、指令電流と各予測電流の偏差、全偏差のうちの最大値、電圧ベクトルの変化回数、といった項目を考慮することで、指令電流と近い出力電流を得られ、かつ、電圧変化回数(スイッチング回数)の少ない出力電圧を決定できる。 Regarding MPC, Non-Patent Document 1 and Patent Document 1 are disclosed. Non-Patent Document 1 describes a basic control configuration of MPC, a method of predicting current using a motor state equation, and a method of evaluating predicted current and voltage vector. Regarding the evaluation method, by considering items such as the deviation between the command current and each predicted current, the maximum value of the total deviation, and the number of changes in the voltage vector, an output current close to the command current can be obtained and the number of voltage changes. The output voltage with a small (number of switchings) can be determined.
 特許文献1では、電流の予測演算をi(n+2)まで行うMPCの制御法が述べられている。この特許文献1においては、検出の時刻をnとし、演算時間中の電流変化を予測してi(n+1)を得ている。その後、i(n+1)からインバータの電圧ベクトル分岐を考えてi(n+2)を算出し、i(n+2)の評価で電圧ベクトルを定めている。 Patent Document 1 describes an MPC control method for performing current prediction calculation up to i (n + 2). In Patent Document 1, the detection time is set to n, and the current change during the calculation time is predicted to obtain i (n + 1). After that, i (n + 2) is calculated from i (n + 1) in consideration of the voltage vector branch of the inverter, and the voltage vector is determined by the evaluation of i (n + 2).
 非特許文献1は、演算時間中の電流変化を考慮していない。 Non-Patent Document 1 does not consider the change in current during the calculation time.
 特許文献1では、検出電流をi(n)とし、そこから演算時間中の電流変化を予測して電流i(n+1)を算出する。そして、i(n+1)を用いてi(n+2)を算出する。このようにして先の電流の予測電流を得ている。しかし、n+2以降の予測を行う場合、1回の演算で複数周期分の電圧ベクトルを定める場合などの一般的かつ具体的な演算方法について言及していない。 In Patent Document 1, the detected current is i (n), and the current change during the calculation time is predicted from the detected current to calculate the current i (n + 1). Then, i (n + 2) is calculated using i (n + 1). In this way, the predicted current of the previous current is obtained. However, it does not mention a general and specific calculation method such as a case where a voltage vector for a plurality of cycles is determined by one calculation when predicting n + 2 or later.
 以上示したようなことから、モデル予測制御(MPC)を用いた電力変換システムにおいて、高い電流制御性能、低いスイッチング周波数の制御を行うことが課題となる。 From the above, it is an issue to control high current control performance and low switching frequency in a power conversion system using model predictive control (MPC).
特開2010-252433号公報JP-A-2010-252433
 本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、 指令値に基づいて指令電流を生成する上位制御部と、モデル予測制御により、予測期間中の各出力周期に複数の仮定電圧ベクトルを設定し、検出電流に演算周期中の電流変化量を加算した補正電流値に基づいて前記仮定電圧ベクトルの予測電流を算出し、前記仮定電圧ベクトルと前記予測電流の評価関数を算出し、前記予測期間における前記仮定電圧ベクトルの組み合わせの中から前記評価関数が最上位の前記仮定電圧ベクトルの組み合わせを決定し、前記評価関数が最上位の前記仮定電圧ベクトルの組み合わせの中から実際に出力する仮定電圧ベクトルを指令電圧ベクトルとして出力する予測部と、前記指令電圧ベクトルで表現される電圧を電力変換器から出力するためのゲート信号を出力するゲート信号決定部と、ゲート信号に基づいて駆動制御される電力変換器と、を備えたことを特徴とする。 The present invention has been devised in view of the above-mentioned conventional problems, and one aspect thereof is an upper control unit that generates a command current based on a command value and each output cycle during the prediction period by model prediction control. A plurality of assumed voltage vectors are set in, the predicted current of the assumed voltage vector is calculated based on the correction current value obtained by adding the amount of change in the current during the calculation cycle to the detected current, and the assumed voltage vector and the predicted current are evaluated. The function is calculated, the combination of the assumed voltage vectors whose evaluation function is the highest is determined from the combination of the assumed voltage vectors in the prediction period, and the combination of the assumed voltage vectors whose evaluation function is the highest is determined. A predictor that outputs the assumed voltage vector that is actually output from, as a command voltage vector, a gate signal determination unit that outputs a gate signal for outputting the voltage expressed by the command voltage vector from the power converter, and a gate signal. It is characterized by being equipped with a power converter that is driven and controlled based on the above.
 また、その一態様として、前記演算周期中の電流変化量は、以下の(5)式により算出することを特徴とする。 Further, as one aspect thereof, the amount of change in current during the calculation cycle is calculated by the following equation (5).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Δidc:演算周期中の電流変化量(d軸)
Δiqc:演算周期中の電流変化量(q軸)
Tc:出力周期(=演算周期)
id:検出d軸電流
iq:検出q軸電流
vdz:d軸電圧ベクトル前回値
vqz:q軸電圧ベクトル前回値
R:巻線抵抗
Ld:d軸インダクタンス
Lq:q軸インダクタンス
ωr:検出電気角速度
ψ:永久磁石鎖交磁束数。
Figure JPOXMLDOC01-appb-M000008
Δidc: Current change amount during calculation cycle (d-axis)
Δiqc: Current change amount during calculation cycle (q-axis)
Tc: Output cycle (= calculation cycle)
id: Detected d-axis current iq: Detected q-axis current vdz: d-axis voltage vector Previous value vqz: q-axis voltage vector Previous value R: Winding resistance Ld: d-axis inductance Lq: q-axis inductance ωr: Detected electrical angular velocity ψ: Permanent magnet interlinkage magnetic flux number.
 また、他の態様として、指令値に基づいて指令電流を生成する上位制御部と、1演算周期に複数出力周期の電圧ベクトルを決定するモデル予測制御により、予測期間中の各出力周期に複数の仮定電圧ベクトルを設定し、検出電流に演算周期中の電流変化量を加算した補正電流値に基づいて前記仮定電圧ベクトルの予測電流を算出し、前記仮定電圧ベクトルと前記予測電流の評価関数を算出し、前記予測期間における前記仮定電圧ベクトルの組み合わせの中から前記評価関数が最上位の前記仮定電圧ベクトルの組み合わせを指令電圧ベクトル行列として出力する予測部と、複数出力周期の前記指令電圧ベクトル行列から今回出力周期の電圧ベクトルを選択し、出力電圧ベクトルとして出力する読み出し部と、前記出力電圧ベクトルで表現される電圧を電力変換器から出力するためのゲート信号を出力するゲート信号決定部と、ゲート信号に基づいて駆動制御される電力変換器と、を備えたことを特徴とする。 Further, as another aspect, a plurality of output cycles during the prediction period are provided by a host control unit that generates a command current based on the command value and model prediction control that determines voltage vectors of a plurality of output cycles in one calculation cycle. The assumed voltage vector is set, the predicted current of the assumed voltage vector is calculated based on the correction current value obtained by adding the amount of change in the current during the calculation cycle to the detected current, and the evaluation function of the assumed voltage vector and the predicted current is calculated. Then, from the prediction unit that outputs the combination of the assumed voltage vectors having the highest evaluation function as the command voltage vector matrix from the combinations of the assumed voltage vectors in the prediction period, and the command voltage vector matrix having a plurality of output cycles. This time, a read unit that selects the voltage vector of the output cycle and outputs it as an output voltage vector, a gate signal determination unit that outputs a gate signal for outputting the voltage expressed by the output voltage vector from the power converter, and a gate. It is characterized by being equipped with a power converter that is driven and controlled based on a signal.
 また、その一態様として、前記演算周期中の電流変化量は、各出力周期中の電流変化量を以下の(21)式により算出し、演算周期中のすべての出力周期の電流変化量を加算した値とすることを特徴とする。 Further, as one aspect thereof, the current change amount during the calculation cycle is calculated by calculating the current change amount during each output cycle by the following equation (21), and adding the current change amounts of all the output cycles during the calculation cycle. It is characterized in that the value is set to the value.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Δidc:出力周期中の電流変化量(d軸)
Δiqc:出力周期中の電流変化量(q軸)
Tc:出力周期
id':検出d軸電流、または、d軸電流
iq':検出q軸電流、または、q軸電流
vdz:d軸電圧ベクトル前回値
vqz:q軸電圧ベクトル前回値
R:巻線抵抗
Ld:d軸インダクタンス
Lq:q軸インダクタンス
ωr:検出電気角速度
ψ:永久磁石鎖交磁束数。
Figure JPOXMLDOC01-appb-M000010
Δidc: Current change amount during output cycle (d-axis)
Δiqc: Current change amount during output cycle (q-axis)
Tc: Output cycle id': Detected d-axis current or d-axis current iq': Detected q-axis current or q-axis current vdz: d-axis voltage vector Previous value vqz: q-axis voltage vector Previous value R: Winding Resistance Ld: d-axis inductance Lq: q-axis inductance ωr: Detected electric angular velocity ψ: Permanent magnet interlinkage magnetic flux number.
 また、その一態様として、前記補正電流値は、検出電流に演算周期中の電流変化量、および、電流検出に対する出力電圧変化のタイミングずれ期間における電流変化量を加算した値とすることを特徴とする。 Further, as one aspect thereof, the correction current value is characterized by adding the amount of change in the current during the calculation cycle and the amount of change in the current in the timing shift period of the output voltage change with respect to the current detection to the detected current. do.
 また、その一態様として、前記電流検出に対する出力電圧変化のタイミングずれ期間における電流変化量は、以下の(17)式により算出することを特徴とする。 Further, as one aspect thereof, the amount of current change in the timing shift period of the output voltage change with respect to the current detection is calculated by the following equation (17).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Δiddel:電流検出に対する出力電圧変化のタイミングずれ期間における電流変化量(d軸)
Δiqdel:電流検出に対する出力電圧変化のタイミングずれ期間における電流変化量(q軸)
Tdel:電流検出に対する出力電圧変化のタイミングずれ期間
id:検出d軸電流
iq:検出q軸電流
vdzz:d軸電圧ベクトル前々回値
vqz:q軸電圧ベクトル前々回値
R:巻線抵抗
Ld:d軸インダクタンス
Lq:q軸インダクタンス
ωr:検出電気角速度
ψ:永久磁石鎖交磁束数。
Figure JPOXMLDOC01-appb-M000012
Δiddel: Current change amount (d-axis) during the timing shift period of the output voltage change with respect to the current detection
Δiqdel: Current change amount (q-axis) during the timing shift period of the output voltage change with respect to the current detection
Tdel: Timing shift period of output voltage change with respect to current detection id: Detected d-axis current iq: Detected q-axis current vdzz: d-axis voltage vector Pre-previous value vqz: q-axis voltage vector Pre-previous value R: Winding resistance Ld: d-axis inductance Lq: q-axis inductance ωr: detected electric angular velocity ψ: permanent magnet interlinkage magnetic flux number.
 本発明によれば、モデル予測制御(MPC)を用いた電力変換システムにおいて、高い電流制御性能、低いスイッチング周波数の制御を行うことが可能となる。 According to the present invention, in a power conversion system using model predictive control (MPC), it is possible to control high current control performance and low switching frequency.
実施形態1~4における電力変換システムの構成図。The block diagram of the power conversion system in Embodiments 1 to 4. 2レベルインバータの電圧ベクトルと相電圧の関係を示す図。The figure which shows the relationship between the voltage vector of a two-level inverter and a phase voltage. 検出電流と予測電流の関係を示す図。The figure which shows the relationship between the detected current and the predicted current. 実施形態1におけるMPCを示すブロック図。The block diagram which shows the MPC in Embodiment 1. FIG. 実施形態1における予測部の処理を示すフローチャート。The flowchart which shows the processing of the prediction part in Embodiment 1. 実施形態2におけるMPCを示すブロック図。The block diagram which shows the MPC in Embodiment 2. 実施形態2における予測部の処置を示すフローチャート。The flowchart which shows the action of the prediction part in Embodiment 2. 実施形態3におけるMPCを示すブロック図。The block diagram which shows MPC in Embodiment 3. 実施形態3における予測部の処理を示すフローチャート。The flowchart which shows the processing of the prediction part in Embodiment 3. 実施形態3における読み出し部の処理を示すフローチャート。The flowchart which shows the processing of the reading part in Embodiment 3. 実施形態4におけるMPCを示すブロック図。The block diagram which shows the MPC in Embodiment 4. 実施形態4における予測部の処理を示すフローチャート。The flowchart which shows the processing of the prediction part in Embodiment 4.
 以下、本願発明におけるモデル予測制御(MPC)を用いた電力変換システムの実施形態1~4を図1~図12に基づいて詳述する。 Hereinafter, embodiments 1 to 4 of the power conversion system using the model predictive control (MPC) in the present invention will be described in detail with reference to FIGS. 1 to 12.
 [実施形態1]
 図1に本実施形態1における電力変換システムの構成図を示す。上位制御部1はMPC2より上流に存在する制御を示しており、例えば、盤・パネルの操作量やアクセル開度などの情報に基づく速度指令と検出速度とを用いて速度制御演算を行い、指令電流i*を生成する。
[Embodiment 1]
FIG. 1 shows a configuration diagram of the power conversion system according to the first embodiment. The upper control unit 1 indicates a control existing upstream of the MPC 2. For example, a speed control calculation is performed using a speed command and a detection speed based on information such as the operation amount of the panel / panel and the accelerator opening, and the command is given. Generates current i *.
 上位制御部1から出力された指令電流i*と、検出電流iと、検出位相θはMPC(モデル予測制御部)2へと入力される。ただし、検出位相θは電気角であり、例えば検出値がモータの機械的な位置である場合、適宜極対数を用いて変換を行うものとする。 The command current i * , the detection current i, and the detection phase θ output from the upper control unit 1 are input to the MPC (model prediction control unit) 2. However, the detection phase θ is an electric angle. For example, when the detected value is the mechanical position of the motor, the conversion is appropriately performed using the number of pole pairs.
 MPC2ではモデルパラメータをもとに次回以降の電流を予測する演算を行い、その結果をもとに電圧ベクトルを決定する。MPC2からは決定した電圧ベクトルの通りに出力するためのゲート信号gが出力され、ゲート信号gにより電力変換器(例えばインバータ、以下インバータと称する)3が駆動される。 MPC2 performs an operation to predict the current from the next time onward based on the model parameters, and determines the voltage vector based on the result. A gate signal g for outputting according to the determined voltage vector is output from the MPC 2, and the power converter (for example, an inverter, hereinafter referred to as an inverter) 3 is driven by the gate signal g.
 インバータ3はモータなどの負荷4に接続されており、負荷4にはゲート信号gに応じた電圧が印加される。 The inverter 3 is connected to a load 4 such as a motor, and a voltage corresponding to the gate signal g is applied to the load 4.
 図1はMPCによる電力変換システムの代表的なシステム構成例であり、本願発明の適用対象はこれに限らない。例えば、電源に回生を行うDC/AC変換器においてモデル予測に基づき電流制御を行う構成,電気角をPLL(Phase Locked Loop)で推定してMPCで用いる構成,単相の構成,などでもよい。重要なのは、モデル予測制御によって電流予測結果をもとに電圧ベクトルを決定し、その電圧ベクトルで電力変換器を駆動することである。 FIG. 1 is a typical system configuration example of a power conversion system using MPC, and the application target of the present invention is not limited to this. For example, a DC / AC converter that regenerates a power source may have a configuration in which current control is performed based on model prediction, a configuration in which an electric angle is estimated by a PLL (Phase Locked Loop) and used in an MPC, or a single-phase configuration may be used. What is important is that the voltage vector is determined based on the current prediction result by the model prediction control, and the power converter is driven by the voltage vector.
 本明細書での制御に関連する周期・期間などの定義を以下に記す。
予測刻み:電流の予測刻み時間(i(n)の時刻からi(n+1)の時刻までの時間幅)
予測期間:電流を予測する最も先の時刻とi(n)の時刻の時間幅
出力周期:電圧の出力を切り替える周期
演算周期:予測演算を行う周期。
Definitions of cycles, periods, etc. related to control in this specification are described below.
Predicted step: Predicted step time of current (time width from time i (n) to time i (n + 1))
Prediction period: Time width of the earliest time for predicting current and time of i (n) Output cycle: Cycle for switching voltage output Calculation cycle: Cycle for performing prediction calculation.
 出力周期ごとにスイッチングするかどうかの選択がなされるため、以下では予測刻みと出力周期を同じ時間幅として扱う。また、本実施形態1では演算周期と出力周期を同じとする。 Since it is selected whether to switch for each output cycle, the prediction step and the output cycle are treated as the same time width below. Further, in the first embodiment, the calculation cycle and the output cycle are the same.
 MPC2では、インバータ3の電圧ベクトルを仮定し、その仮定電圧ベクトルを出力した場合の予測電流を求め、最適な予測結果となる電圧ベクトルを採用し、実際の出力とする。 In MPC2, the voltage vector of the inverter 3 is assumed, the predicted current when the assumed voltage vector is output is obtained, and the voltage vector that gives the optimum prediction result is adopted and used as the actual output.
 MPC2は予測電流を評価して出力電圧を決定するため、電流の予測精度が重要となる。電流予測演算は状態方程式に基づく。例えば、負荷にPMSM(永久磁石同期電動機)が用いられる場合には(1)式の状態方程式となる。ここで、Ldはd軸インダクタンス、Lqはq軸インダクタンス、Rは巻線抵抗、ψは永久磁石鎖交磁束数、ωrは検出電気角速度である。以下では(1)式、つまりPMSMを基準に説明するが、本願発明の本質から、本願発明は状態方程式が(1)式の場合以外に適用しても構わない。 Since MPC2 evaluates the predicted current to determine the output voltage, the current prediction accuracy is important. The current prediction operation is based on the equation of state. For example, when PMSM (Permanent Magnet Synchronous Motor) is used for the load, the equation of state in Eq. (1) is obtained. Here, Ld is the d-axis inductance, Lq is the q-axis inductance, R is the winding resistance, ψ is the number of permanent magnet interlinkage magnetic fluxes, and ωr is the detected electric angular velocity. In the following, the equation (1), that is, PMSM will be used as a reference, but from the essence of the present invention, the present invention may be applied to other than the case where the equation of state is the equation (1).
Figure JPOXMLDOC01-appb-M000013
 (1)式は連続的な状態方程式であるが、これを離散的な制御系で扱うために離散状態方程式にすると(2)式になる。(2)式のIは単位行列を示す。また、単に傾きと出力周期Tcの積をとって近似的に変化量として扱い、(3)式としてもよい。
Figure JPOXMLDOC01-appb-M000013
Equation (1) is a continuous equation of state, but if it is made into a discrete equation of state in order to handle it in a discrete control system, it becomes equation (2). Equation I in Eq. (2) represents an identity matrix. Alternatively, the product of the slope and the output period Tc may be simply taken and treated as an approximate amount of change, and the equation (3) may be used.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 (2)式,(3)式より、出力周期1周期先の電流id(n+1),iq(n+1)を予測するために、現在時刻に相当する電流id(n),iq(n)と電圧vd(n),vq(n)が必要となる。
Figure JPOXMLDOC01-appb-M000015
From equations (2) and (3), the current id (n), iq (n) and voltage corresponding to the current time are used to predict the current id (n + 1) and iq (n + 1) one cycle ahead of the output cycle. vd (n) and vq (n) are required.
 電圧vd(n),vq(n)については予測演算の前段で仮定した電圧ベクトルを用いる。例えば、直流電圧vdcの2レベルインバータでは電圧ベクトルは図2になるため、(4)式の計算で仮定電圧ベクトルをdq軸上の電圧に変換できる。ここで、θ(n)はモータ位相である。位相は角周波数に応じて進み補償を行ってもよいが、詳細な演算は後述する。 For the voltages vd (n) and vq (n), the voltage vectors assumed in the previous stage of the prediction calculation are used. For example, in a two-level inverter with a DC voltage vdc, the voltage vector is shown in FIG. 2, so that the assumed voltage vector can be converted into a voltage on the dq axis by the calculation of Eq. (4). Here, θ (n) is the motor phase. The phase may be advanced and compensated according to the angular frequency, but detailed calculation will be described later.
Figure JPOXMLDOC01-appb-M000016
 一方、電流id(n),iq(n)については検出値を基準とする。予測途中の電流id(n+a),iq(n+a)から電流id(n+a+1),iq(n+a+1)を求める演算であればn+a番目の予測値を用いることができるが、予測開始点であるn番目の電流id(n),iq(n)に関しては仮定することはできず、検出値を基準にしなければならない。検出値基準の電流id(n),iq(n)を用いるのではなく推定値を用いる構成もあり得るが、実用上、検出値を用いた補正や、複数周期ごとに検出値基準の電流を用いる構成を必要とする。つまり、いずれにしても検出値を基準とすることになる。
Figure JPOXMLDOC01-appb-M000016
On the other hand, the detected values are used as a reference for the currents id (n) and iq (n). The n + a-th predicted value can be used for the calculation of obtaining the current id (n + a + 1) and iq (n + a + 1) from the current id (n + a) and iq (n + a) in the middle of prediction, but the n-th predicted value is the prediction start point. The currents id (n) and iq (n) cannot be assumed and must be based on the detected value. Although there may be a configuration in which an estimated value is used instead of using the detected value-based currents id (n) and iq (n), in practice, correction using the detected value or a detected value-based current is applied every multiple cycles. Requires the configuration to be used. That is, in any case, the detected value is used as a reference.
 ただし、電流id(n),iq(n)には検出値を基準とした値を用いるが、検出値そのものを用いてしまうと予測精度の低下につながる。 However, although the values based on the detected values are used for the currents id (n) and iq (n), if the detected values themselves are used, the prediction accuracy will be lowered.
 図3に検出電流と予測電流の関係を示す。実線で出力電流、点線で予測電流を示した。Tcは出力周期である。予測電流i(n)はd軸,q軸電流であるが、d軸,q軸電流どちらにも当てはまる性質を示しているためd,qの表記を省略した。 Figure 3 shows the relationship between the detected current and the predicted current. The solid line shows the output current, and the dotted line shows the predicted current. Tc is the output cycle. The predicted current i (n) is the d-axis and q-axis currents, but the notation of d and q is omitted because it shows the property of being applicable to both the d-axis and q-axis currents.
 2周期目において、1周期目の終わりで検出した電流と仮定した電圧ベクトルをもとに、3周期目以降の電流を予測している。また、仮定する電圧ベクトルは複数種類のため、点線の予測電流は複数に分岐している。 In the second cycle, the current after the third cycle is predicted based on the voltage vector assumed to be the current detected at the end of the first cycle. Moreover, since there are a plurality of types of voltage vectors to be assumed, the predicted current of the dotted line is branched into a plurality of types.
 図3(a)は、i(n)に検出値を用いる場合である。図3を見ると、検出時刻とi(n)の時刻に出力周期Tcだけの時間差がある。この時間差は検出値から次回以降の出力電圧を決定するまでの演算時間であり、検出時刻とi(n)の時刻を同時刻とすることは不可能である。 FIG. 3A shows a case where the detected value is used for i (n). Looking at FIG. 3, there is a time difference of the output cycle Tc between the detection time and the time of i (n). This time difference is the calculation time from the detected value to the determination of the output voltage from the next time onward, and it is impossible to make the detection time and the time of i (n) the same time.
 だが、演算時間中には前回出力周期に決定した電圧ベクトルを出力しており、電流は検出時刻からi(n)の時刻までに検出値から変化する。したがって、i(n)に検出値を用いると制御内で用いたi(n)の値とi(n)の時刻の実際の出力電流の値が異なってしまう。これにより、電流予測精度の低下が懸念される。電流予測精度が低下すると、その後の電流評価の妥当性も低下してしまうので、電流リプルの増大やスイッチング周波数上昇の原因となる。 However, during the calculation time, the voltage vector determined in the previous output cycle is output, and the current changes from the detected value from the detection time to the time of i (n). Therefore, if the detected value is used for i (n), the value of i (n) used in the control and the value of the actual output current at the time of i (n) will be different. As a result, there is a concern that the current prediction accuracy will decrease. If the current prediction accuracy is lowered, the validity of the subsequent current evaluation is also lowered, which causes an increase in current ripple and an increase in switching frequency.
 図3(b)は、検出値に演算時間中の電流変化量を加算した値をi(n)として用いる場合である。前回周期に決定した電圧ベクトルを用いて検出時刻からi(n)の時刻までの電流予測演算を行い、演算時間中の電流変化を予測している。破線がその電流変化を示している。これを行うことで正確なi(n)を得ており、電流予測精度が図3(a)よりも向上している。 FIG. 3B shows a case where the value obtained by adding the amount of change in current during the calculation time to the detected value is used as i (n). The current prediction calculation from the detection time to the time i (n) is performed using the voltage vector determined in the previous cycle, and the current change during the calculation time is predicted. The broken line shows the change in current. By doing this, accurate i (n) is obtained, and the current prediction accuracy is improved as compared with FIG. 3 (a).
 以上のように、演算時間中の電流変化を予測することで電流予測精度を向上し、電流リプル低減、スイッチング周波数低減といった効果を得られる。 As described above, by predicting the current change during the calculation time, the current prediction accuracy can be improved, and effects such as reduction of current ripple and reduction of switching frequency can be obtained.
 以下では、演算時間中の電流変化を予測するための構成を述べる。図4に本実施形態1におけるMPC2の構成図を示す。指令電流i*は便宜上、指令d軸電流id*、指令q軸電流iq*に分割する。三相二相変換部5は、三相の検出電流iを検出位相θに基づいて、UVW/dq変換し、検出d軸電流id、検出q軸電流iqに変換する。 In the following, the configuration for predicting the current change during the calculation time will be described. FIG. 4 shows a configuration diagram of MPC2 according to the first embodiment. For convenience, the command current i * is divided into a command d-axis current id * and a command q-axis current iq *. The three-phase two-phase conversion unit 5 converts the three-phase detection current i into UVW / dq based on the detection phase θ, and converts it into the detection d-axis current id and the detection q-axis current iq.
 微分器6は、検出位相θを微分処理、あるいは疑似微分処理して検出電気角速度ωrを出力する。 The differentiator 6 outputs the detected electric angular velocity ωr by differentiating the detection phase θ or pseudo-differentiating processing.
 指令d軸電流id*,指令q軸電流iq*,検出d軸電流id,検出q軸電流iq,検出位相θ,検出電気角速度ωr,指令電圧ベクトル前回値Vz*は予測部7に入力される。予測部7は電流の予測演算と予測結果の評価を行い、次回以降の出力電圧ベクトルである指令電圧ベクトルV*を出力する。指令電圧ベクトルV*は1回遅延を経て指令電圧ベクトル前回値Vz*として予測部7に入力され、次回の予測演算に用いられる。 The command d-axis current id * , command q-axis current iq * , detected d-axis current id, detected q-axis current iq, detected phase θ, detected electric angular velocity ωr, and command voltage vector previous value Vz * are input to the prediction unit 7. .. The prediction unit 7 performs a current prediction calculation and evaluates the prediction result, and outputs a command voltage vector V * which is an output voltage vector from the next time onward. The command voltage vector V * is input to the prediction unit 7 as the command voltage vector previous value Vz * after one delay, and is used for the next prediction calculation.
 ゲート信号決定部8ではシステムの回路構成に基づき指令電圧ベクトルV*で表現される電圧をインバータから出力するためのゲート信号gの決定、およびデッドタイムの挿入を行う。そして、ゲート信号gはMPC2の出力となる。本実施形態1では、指令電圧ベクトルV*の通りの電圧が出力される範囲内であればゲート信号決定部8の構成は特に限定しない。 The gate signal determination unit 8 determines the gate signal g for outputting the voltage represented by the command voltage vector V * from the inverter based on the circuit configuration of the system, and inserts the dead time. Then, the gate signal g becomes the output of MPC2. In the first embodiment, the configuration of the gate signal determination unit 8 is not particularly limited as long as the voltage according to the command voltage vector V * is output.
 図4で重要なのは、予測部7では動的に電流予測演算を行うことであり構成は図2に限らない。例えば、検出電気角速度ωrを用いず推定電気角速度を用いる構成も許容される。 What is important in FIG. 4 is that the prediction unit 7 dynamically performs the current prediction calculation, and the configuration is not limited to FIG. For example, a configuration in which the estimated electric angular velocity is used without using the detected electric angular velocity ωr is also allowed.
 図5は、予測部7の処理を示すフローチャートである。予測部7は、以下の処理を行う。
(A)演算時間中の電流変化を予測する。
(B)次回以降の出力周期の電圧ベクトルを仮定し、その場合の予測電流を得る。
(C)予測電流と仮定した電圧ベクトルを評価する。
(D)評価結果の良い電圧ベクトルを採用し、出力とする。
(A)の処理は本願発明の本質であり、(B),(C),(D)はMPCにおいて基本的な処理である。
FIG. 5 is a flowchart showing the processing of the prediction unit 7. The prediction unit 7 performs the following processing.
(A) Predict the change in current during the calculation time.
(B) Assuming the voltage vector of the output cycle from the next time onward, the predicted current in that case is obtained.
(C) Evaluate the voltage vector assumed to be the predicted current.
(D) A voltage vector with a good evaluation result is adopted and used as an output.
The process (A) is the essence of the present invention, and the processes (B), (C), and (D) are basic processes in the MPC.
 1-1において、指令d軸電流id*,指令q軸電流iq*,検出d軸電流id,検出q軸電流iq,検出位相θ,検出電気角速度ωr,指令電圧ベクトル前回値Vz*を入力する。 In 1-1, the command d-axis current id * , the command q-axis current iq * , the detected d-axis current id, the detected q-axis current iq, the detected phase θ, the detected electric angular velocity ωr, and the command voltage vector previous value Vz * are input. ..
 1-2において、採用された指令電圧ベクトル前回値Vz*、検出d軸電流id,検出q軸電流iqから演算時間、ここでは出力周期Tc中の電流変化量Δidc,Δiqcを求める。この演算は、(3)式に基づき(5)式のように行えばよい。ただし、行列A,Bとベクトルeψは(1)式と同様であり、vdz,vqzは指令電圧ベクトル前回値Vz*をdq軸電圧に変換した値である。 In 1-2, the calculation time is obtained from the command voltage vector previous value Vz * , the detected d-axis current id, and the detected q-axis current iq, and here, the current changes Δidc and Δiqc during the output cycle Tc are obtained. This operation may be performed as in Eq. (5) based on Eq. (3). However, the matrices A and B and the vector eψ are the same as in Eq. (1), and vdz and vqz are values obtained by converting the command voltage vector previous value Vz * into the dq axis voltage.
Figure JPOXMLDOC01-appb-M000017
 1-3では、検出d軸電流id,検出q軸電流iqに1-2で求めた演算時間中の電流変化量Δidc,Δiqcを加算し、これを予測演算の始点であるid(n),iq(n)とする。このid(n),iq(n)を補正電流値とする。
Figure JPOXMLDOC01-appb-M000017
In 1-3, the current change amounts Δidc and Δiqc during the calculation time obtained in 1-2 are added to the detected d-axis current id and the detected q-axis current iq, and these are added to the id (n), which is the starting point of the prediction calculation. Let it be iq (n). Let these id (n) and iq (n) be the correction current values.
 1-2,1-3は上記の(A)に相当し、これらの処理により検出時刻からid(n),iq(n)の時刻までの電流変化が考慮され、電流予測演算の精度が向上する。 1-2 and 1-3 correspond to the above (A), and the current change from the detection time to the id (n) and iq (n) times is taken into consideration by these processes, and the accuracy of the current prediction calculation is improved. do.
 1-4は予測期間中の各出力周期に仮定電圧ベクトルV’(n+a)を設定する。aは予測開始から何番目の出力周期を考慮しているかを示すカウンタ値であり、演算の進行に合わせて0からN-1まで増大する。Nは予測期間中の出力周期数である。本実施形態1では設定の仕方を特に限定しない。つまり、前回までの出力に応じてスイッチングの少ない変化となる電圧ベクトルとしてもよいし、出力可能なすべての電圧ベクトルの中から1つを選んでもよい。 1-4 sets the assumed voltage vector V'(n + a) for each output cycle during the prediction period. a is a counter value indicating which output cycle is considered from the start of prediction, and increases from 0 to N-1 as the calculation progresses. N is the number of output cycles during the prediction period. In the first embodiment, the setting method is not particularly limited. That is, it may be a voltage vector that changes with little switching according to the output up to the previous time, or one may be selected from all the voltage vectors that can be output.
 1-5は仮定電圧ベクトルを出力した場合の電流変化量の予測である。仮定電圧ベクトルV’(n+a),id(n+a),iq(n+a)から出力周期Tc中の電流変化量Δid,Δiqを求める。id(n+a),iq(n+a)は、aが0の時は補正電流値であり、aが1以上の時は予測電流である。1-2と同様に(6)式のような演算とすればよい。 1-5 is a prediction of the amount of current change when the assumed voltage vector is output. From the hypothetical voltage vectors V'(n + a), id (n + a), and iq (n + a), the current change amounts Δid and Δiq during the output period Tc are obtained. id (n + a) and iq (n + a) are correction current values when a is 0, and predicted currents when a is 1 or more. Similar to 1-2, the calculation may be as shown in Eq. (6).
Figure JPOXMLDOC01-appb-M000018
 ここで、vd’(n+a),vq’(n+a)は仮定電圧ベクトルv’(n+a)をdq軸上の電圧に変換したものである。ただし、dq軸電圧を得るにはモータ位相が必要となるが、モータ位相については角速度に応じた位相進み補償を行ってもよい。この場合、(7)式の演算となる。
Figure JPOXMLDOC01-appb-M000018
Here, vd'(n + a) and vq'(n + a) are obtained by converting the assumed voltage vector v'(n + a) into a voltage on the dq axis. However, although the motor phase is required to obtain the dq-axis voltage, the phase lead compensation may be performed for the motor phase according to the angular velocity. In this case, the calculation is in Eq. (7).
Figure JPOXMLDOC01-appb-M000019
 θは検出位相、ωrは検出電気角速度、Tcは出力周期である。また、1+a+Kθは、演算時間(=出力周期)を表す1と、n番目からいくつ先の周期であるかを表すaと、出力周期中の任意の時刻の位相を電圧の基準に用いるための位相調整項Kθと、を加算したものである。なお、Kθは(8)式で定まる。Kθ=Tc/2で出力周期の中間の時刻がdq座標変換の基準となる。
Figure JPOXMLDOC01-appb-M000019
θ is the detection phase, ωr is the detected electrical angular velocity, and Tc is the output period. Further, 1 + a + Kθ are 1 indicating the calculation time (= output cycle), a indicating how many cycles ahead from the nth cycle, and a phase for using the phase at an arbitrary time in the output cycle as a voltage reference. The adjustment term Kθ and the adjustment term Kθ are added. Kθ is determined by Eq. (8). When Kθ = Tc / 2, the time in the middle of the output cycle becomes the reference for the dq coordinate conversion.
Figure JPOXMLDOC01-appb-M000020
 1-6では、id(n+a),iq(n+a)に1-5で求めた演算時間中の電流変化量Δid,Δiqを加算し、1周期先、つまり出力周期Tcだけ先の予測電流id(n+a+1),iq(n+a+1)を算出している。先の分岐がある場合、この電流は次のn+a+2番目の予測電流を得るために用いられる。
Figure JPOXMLDOC01-appb-M000020
In 1-6, the current change amounts Δid and Δiq during the calculation time obtained in 1-5 are added to id (n + a) and iq (n + a), and the predicted current id (1 cycle ahead, that is, the output cycle Tc ahead) ( n + a + 1) and iq (n + a + 1) are calculated. If there is a previous branch, this current is used to obtain the next n + a + second predicted current.
 1-4~1-6は上記の(B)の処理に相当する。 1-4 to 1-6 correspond to the above process (B).
 1-7は仮定電圧ベクトルV’(n+a)および予測電流id(n+a+1),iq(n+a+1)の評価を行う。本実施形態1は任意の評価方法に適用できるが、例えば以下のように評価すればよい。 1-7 evaluates the assumed voltage vector V'(n + a), the predicted current id (n + a + 1), and iq (n + a + 1). The first embodiment can be applied to any evaluation method, and may be evaluated as follows, for example.
 仮定電圧ベクトルV’(n+a),予測電流id(n+a+1),iq(n+a+1)を用いて評価関数Jを算出する。評価関数Jは望ましくない予測である場合に大きい値となる損失関数であり、複数の評価基準に重みをつけて算出される。予測電流と指令電流との偏差が小さいことを条件とする(9)式、(10)式、予測電流と指令電流の偏差が一定以上とならないための(11)式、(12)式、スイッチング回数が多くならないよう電圧ベクトル変化にペナルティを与える(13)式がそれぞれの評価基準である。ただし、idmax,iqmaxはそれぞれd軸電流、q軸電流の最大許容誤差である。最終的に重み係数Wid、Wiq、Widmax、Wiqmax、Wvを用いて(14)式によって評価関数Jを求める。 The evaluation function J is calculated using the assumed voltage vector V'(n + a), the predicted current id (n + a + 1), and the iq (n + a + 1). The evaluation function J is a loss function that becomes a large value when it is an undesired prediction, and is calculated by weighting a plurality of evaluation criteria. Equations (9) and (10) on condition that the deviation between the predicted current and the command current is small, equations (11) and (12) for preventing the deviation between the predicted current and the command current from exceeding a certain level, switching. Eq. (13), which gives a penalty to the voltage vector change so that the number of times does not increase, is each evaluation standard. However, idmax and iqmax are the maximum tolerances of the d-axis current and the q-axis current, respectively. Finally, the evaluation function J is obtained by the equation (14) using the weighting coefficients Wid, Wiq, Widmax, Wiqmax, and Wv.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
 実際の1-7の演算では前回までの評価関数値を保持しておき、今回分である仮定電圧ベクトルV’(n+a),予測電流id(n+a+1),iq(n+a+1)に関する演算のみを行って重みづけして加算すればよい。
Figure JPOXMLDOC01-appb-M000026
In the actual 1-7 calculation, the evaluation function values up to the previous time are retained, and only the calculations related to the assumed voltage vector V'(n + a), predicted current id (n + a + 1), and iq (n + a + 1) for this time are performed. It may be weighted and added.
 上述した評価関数は一例であり、本実施形態1の演算法に限らない。同じ評価内容でも、例えば(11)式、(12)式のQd、Qqを0,1の2値にせず、指令との偏差が大きいほど大きい値になるよう連続的な値を与えてもよい。また、PMSMの場合、(15)式のモータトルクTの導出から、(9)式の代わりに(16)式を評価基準としてもよい。ただし、(15)式のPnは極対数、(16)式のT*は指令トルクである。 The evaluation function described above is an example, and is not limited to the calculation method of the first embodiment. Even with the same evaluation content, for example, Qd and Qq in Eqs. (11) and (12) may not be set to two values of 0 and 1, but continuous values may be given so that the larger the deviation from the command, the larger the value. .. Further, in the case of PMSM, from the derivation of the motor torque T of the equation (15), the equation (16) may be used as an evaluation standard instead of the equation (9). However, Pn in Eq. (15) is the pole logarithm, and T * in Eq. (16) is the command torque.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
 以上の評価基準では、予測電流と指令電流との誤差が小さいだけでなく、電圧ベクトルの変更回数、つまりスイッチング回数の少ない電圧ベクトルについて評価関数が小さくなる。したがって、この評価基準によればスイッチング周波数を低減しつつ電流制御を行うことができる。
Figure JPOXMLDOC01-appb-M000028
In the above evaluation criteria, not only the error between the predicted current and the command current is small, but also the evaluation function becomes small for the voltage vector in which the number of times the voltage vector is changed, that is, the number of times of switching is small. Therefore, according to this evaluation standard, current control can be performed while reducing the switching frequency.
 また、重み係数を調整することで、制御性能を変更できる。例えば、Wvを小さくすればスイッチング周波数を増加する代わりに電流制御性能を向上でき、WidよりもWiqを大きくすればidのリプルを大きくする代わりにiqのリプルを小さくできる。1-7の処理は、上記の(C)に相当する。 Also, the control performance can be changed by adjusting the weighting factor. For example, if Wv is made smaller, the current control performance can be improved instead of increasing the switching frequency, and if Wiq is made larger than Wid, the ripple of iq can be made smaller instead of increasing the ripple of id. The process of 1-7 corresponds to the above (C).
 1-8は電圧ベクトルをすべて仮定し、演算したかどうかの分岐処理である。予測期間中の出力周期数がNのとき、考慮する電圧ベクトルはV’(n+N-1)までなので、考慮したいV’(n+N-1)すべてについて予測演算と評価を行ったなら分岐をすべて考慮したとして1-9へ進む。まだ考慮すべき電圧ベクトルが残っている場合は1-4へ戻り、次の電圧ベクトルを仮定する。 1-8 is a branching process of whether or not the calculation is performed assuming all the voltage vectors. When the number of output cycles during the prediction period is N, the voltage vector to be considered is up to V'(n + N-1), so if prediction calculation and evaluation are performed for all V'(n + N-1) to be considered, all branches are considered. If so, proceed to 1-9. If there is still a voltage vector to consider, go back to 1-4 and assume the next voltage vector.
 1-9では、評価結果を比較して最良の電圧ベクトルの組み合わせを定める。(14)式のように評価関数Jを定める場合は、最小のJとなるV’(n)~V’(n+N-1)が最良の電圧ベクトルの組み合わせV(n)~V(n+N-1)となる。 In 1-9, the evaluation results are compared to determine the best combination of voltage vectors. When the evaluation function J is defined as in Eq. (14), V (n) to V (n + N-1), which is the minimum J, is the best combination of voltage vectors V (n) to V (n + N-1). ).
 1-10では、最良の電圧ベクトルの組み合わせV(n)~V(n+N-1)から実際に出力する電圧を指令電圧ベクトルV*に代入する。ここでは演算時間中の出力周期数を1としており、1-10ではV(n)のみを代入している。
1-9,1-10は、上記の(D)の処理に相当する。
In 1-10, the voltage actually output from the best combination of voltage vectors V (n) to V (n + N-1) is substituted into the command voltage vector V *. Here, the number of output cycles during the calculation time is set to 1, and in 1-10, only V (n) is substituted.
1-9 and 1-10 correspond to the above-mentioned process (D).
 1-11では、指令電圧ベクトルV*を出力する。以上が図5のフローチャートの動作である。 In 1-11, the command voltage vector V * is output. The above is the operation of the flowchart of FIG.
 図5はモデル予測にもとづく電圧ベクトル決定の一例である。本実施形態1の予測部7の詳細な演算手順は図5のフローチャートに限らない。重要なのは、予測電流演算・評価の始点となる電流値id(n),iq(n)に検出値ではなく、検出値に演算周期中の電流変化量を加算した電流値を用いる点である。 FIG. 5 is an example of voltage vector determination based on model prediction. The detailed calculation procedure of the prediction unit 7 of the first embodiment is not limited to the flowchart of FIG. What is important is that the current values id (n) and iq (n), which are the starting points of the predicted current calculation / evaluation, are not the detected values, but the current values obtained by adding the current change amount during the calculation cycle to the detected values.
 以上示したように、本実施形態1によれば、図4,5に基づいて、演算時間中の電流変化を予測するMPCを行うことで、高い電流制御性能、低いスイッチング周波数、を達成した制御を行うことができる。 As shown above, according to the first embodiment, control that achieves high current control performance and low switching frequency by performing MPC that predicts the current change during the calculation time based on FIGS. 4 and 5. It can be performed.
 また、先行文献に対しては、予測期間が一般の場合に適用可能であるという利点がある。 In addition, there is an advantage that the forecast period can be applied to the prior literature when the prediction period is general.
 [実施形態2]
 実施形態1では、演算時間中の電流変化を考慮して予測演算の始点となる電流id(n),iq(n)を設定し、電流の予測精度を向上させた。
[Embodiment 2]
In the first embodiment, the current id (n) and iq (n), which are the starting points of the prediction calculation, are set in consideration of the current change during the calculation time, and the current prediction accuracy is improved.
 しかし、現実にはゲート信号gを決定してから実際にインバータ3から電圧が出力されるまでには通信等のタイムラグがある。 However, in reality, there is a time lag such as communication between the determination of the gate signal g and the actual output of the voltage from the inverter 3.
 また、インバータ3のスイッチングの瞬間には高速な電流振動(リンギング)が生じるため、電圧ベクトルの切り替わりである出力周期の割り込みで検出を行うと振動途中の電流を検出する可能性がある。この対策のために電流検出割り込みを出力周期の割り込みからずらしたタイミングに設定する場合がある。 Further, since high-speed current vibration (ringing) occurs at the moment of switching of the inverter 3, there is a possibility that the current in the middle of vibration is detected if the detection is performed by the interrupt of the output cycle which is the switching of the voltage vector. As a countermeasure, the current detection interrupt may be set at a timing shifted from the output cycle interrupt.
 以上の理由から、検出電流と予測電流のタイミングにずれが生じることがある。このずれは上記のように複数の理由からなるが、本明細書では遅れ時間Tdelとしてまとめて呼称する。この場合の遅れとは、検出タイミングに対する予測電流変化の遅れであるが、予測電流変化タイミングは出力電圧の変化タイミングとみなせる。すなわち、電流検出に対する出力電圧変化のタイミングずれ期間が遅れ時間Tdelとなる。 For the above reasons, the timing of the detected current and the predicted current may be different. Although this deviation is due to a plurality of reasons as described above, in the present specification, it is collectively referred to as a delay time Tdel. The delay in this case is the delay of the predicted current change with respect to the detection timing, but the predicted current change timing can be regarded as the change timing of the output voltage. That is, the timing shift period of the output voltage change with respect to the current detection is the delay time Tdel.
 瞬時電流を高度に予測することが求められるMPC2では、遅れ時間Tdelが数μs程度でも電流予測精度が低下するため、本実施形態2ではこの時間中の電流変化の考慮を行う。 In MPC2, which is required to highly predict the instantaneous current, the current prediction accuracy is lowered even if the delay time Tdel is about several μs. Therefore, in the second embodiment, the current change during this time is taken into consideration.
 図6に本実施形態2におけるMPC2の構成図を示す。遅れ時間Tdel中は前回決定した電圧ではなく前々回決定した電圧が出力されるため、指令電圧ベクトル前々回値Vzz*を予測部7の入力に追加した。それ以外の構成は実施形態1と同等である。 FIG. 6 shows a configuration diagram of MPC2 according to the second embodiment. Since the voltage determined two times before is output instead of the voltage determined last time during the delay time Tdel, the command voltage vector two times before the previous value Vzz * is added to the input of the prediction unit 7. Other configurations are the same as those in the first embodiment.
 なお、前々回の電圧ベクトルと前回の電圧ベクトルがわかるならば、指令電圧ベクトル前々回値Vzz*と指令電圧ベクトル前回値Vz*でなくても、指令電圧ベクトル前々回値Vzz*と指令電圧ベクトル前々回値Vzz*から指令電圧ベクトル前回値Vz*への変化パターンなど、異なる入力を用いても構わない。 It should be noted that, if it is understood that the voltage vector and the previous voltage vector of the last but one, even without a command voltage vector the second preceding value Vzz * and the command voltage vector previous value Vz *, the command voltage vector the second preceding value Vzz * and the command voltage vector before last value Vzz Different inputs may be used, such as a pattern of change from * to the command voltage vector previous value Vz *.
 図7に本実施形態2における予測部7のフローチャートを示す。予測演算の始点であるid(n),iq(n)に演算周期中の電流変化量だけでなく電流検出に対する出力電圧変化のタイミングずれ期間(遅れ時間Tdel)中の電流変化量を加算した電流値を用いる点以外は図5と同様の処理である。 FIG. 7 shows a flowchart of the prediction unit 7 in the second embodiment. Current obtained by adding not only the amount of current change during the calculation cycle but also the amount of current change during the timing shift period (delay time Tdel) of the output voltage change with respect to current detection to id (n) and iq (n), which are the starting points of the prediction calculation. The process is the same as in FIG. 5 except that the value is used.
 すなわち、図5の1-1と1-2の間に新たに2つの処理2-2,2-3が追加されている。ただし、2-4,2-5は追加した2-2,2-3に応じて一部変更している。追加した処理は遅れ時間Tdel中の電流変化量の予測である。 That is, two new processes 2-2 and 2-3 have been added between 1-1 and 1-2 in FIG. However, 2-4 and 2-5 are partially changed according to the added 2-2 and 2-3. The added process is the prediction of the amount of current change during the delay time Tdel.
 2-2では、指令電圧ベクトル前々回値Vzz*、検出d軸電流id,検出q軸電流iqから遅れ時間Tdel中の電流変化量Δiddel,Δiqdelを演算する。(3)式に基づいて、(17)式のように計算すればよい。ただし、vdzz,vqzzは指令電圧ベクトル前々回値Vzz*のdq軸電圧への変換値である。 In 2-2, the current change amounts Δiddel and Δiqdel in the delay time Tdel are calculated from the command voltage vector pre-previous value Vzz * , the detected d-axis current id, and the detected q-axis current iq. Based on the equation (3), the calculation may be performed as in the equation (17). However, vdzz and vqzz are conversion values of the command voltage vector pre-previous value Vzz * to the dq-axis voltage.
Figure JPOXMLDOC01-appb-M000029
 2-3では、検出d軸電流id,検出q軸電流iqに電流変化量Δiddel,Δiqdelを加算し、電流値id’,iq’を得る。
Figure JPOXMLDOC01-appb-M000029
In 2-3, the current change amounts Δiddel and Δiqdel are added to the detected d-axis current id and the detected q-axis current iq to obtain the current values id'and iq'.
 2-2,2-3の補正により、検出と出力のタイミングが揃えられたため、2-4,2-5ではこの電流値id’,iq’を用いて演算時間中の電流変化量Δidc,Δiqcおよび予測の始点id(n),iq(n)の算出を行う。 Since the timing of detection and output was aligned by the correction of 2-2, 2-3, the current values Δidc, Δiqc during the calculation time were used in 2-4 and 2-5 using these current values id'and iq'. And the start points id (n) and iq (n) of the prediction are calculated.
 2-4以降は実施形態1の図5と同様に電圧ベクトルの仮定、電流予測演算・評価、最良の電圧ベクトルの採用を行う。以上が図7のフローチャートの動作となる。すなわち、本実施形態2では、検出電流に演算周期中の電流変化量Δidc,Δiqc、および、電流検出に対する出力電圧変化のタイミングずれ期間における電流変化量Δiddel,Δiqdelを加算した値を補正電流値としている。 From 2-4 onward, the assumption of the voltage vector, the current prediction calculation / evaluation, and the adoption of the best voltage vector are performed in the same manner as in FIG. 5 of the first embodiment. The above is the operation of the flowchart of FIG. That is, in the second embodiment, the value obtained by adding the current change amounts Δidc and Δiqc during the calculation cycle and the current change amounts Δiddel and Δiqdel during the timing shift period of the output voltage change with respect to the current detection as the correction current value is used as the correction current value. There is.
 ところで、位相の進み補正について下記のような修正を行ってもよい。2-4,2-7に用いる補正モータ位相θ’について(18)式、2-7に用いるモータ位相θ(n+a)について(19)式とすることで遅れ時間Tdel分の位相進みを考慮することができる。 By the way, the following corrections may be made to the phase lead correction. The phase lead for the delay time Tdel is taken into consideration by using Eq. (18) for the correction motor phase θ'used for 2-4 and 2-7 and Eq. (19) for the motor phase θ (n + a) used for 2-7. be able to.
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000031
 以上示したように、本実施形態2によれば、図6,7に基づいて、演算時間中の電流変化を予測し、かつ、電流検出と出力電圧変化のタイミングずれを考慮したMPCを行うことで、高い電流制御性能、低いスイッチング周波数、リンギングの影響を受けないタイミングでの電流検出を達成した制御を行うことができる。
Figure JPOXMLDOC01-appb-M000031
As shown above, according to the second embodiment, the MPC is performed based on FIGS. 6 and 7 in which the current change during the calculation time is predicted and the timing difference between the current detection and the output voltage change is taken into consideration. Therefore, it is possible to perform control that achieves high current control performance, low switching frequency, and current detection at a timing that is not affected by ringing.
 また、先行文献に対しては、予測期間が一般の場合に適用可能である、検出時刻と出力電圧変化時刻の差を考慮しているという利点がある。 In addition, the prior literature has the advantage of considering the difference between the detection time and the output voltage change time, which is applicable when the prediction period is general.
 [実施形態3]
 図8に本実施形態3におけるMPC2の構成図を示す。本実施形態3は予測部7で複数出力周期の電圧ベクトルを決定し、指令とする。そのため、実施形態1と異なり予測部7の出力であるV*は単一の電圧ベクトルではなく指令電圧ベクトル行列となる。同様に前回値であるVz*も指令電圧ベクトル行列前回値となる。
[Embodiment 3]
FIG. 8 shows a configuration diagram of MPC2 according to the third embodiment. In the third embodiment, the prediction unit 7 determines a voltage vector having a plurality of output cycles and uses it as a command. Therefore, unlike the first embodiment, V *, which is the output of the prediction unit 7, is not a single voltage vector but a command voltage vector matrix. Similarly, the previous value Vz * is also the previous value of the command voltage vector matrix.
 また、予測部7とゲート信号決定部8の間に読み出し部9を設けている。読み出し部9は、複数出力周期分の指令電圧ベクトル行列V*から今回出力周期の電圧ベクトルを選択し、出力電圧ベクトルV**を決定する。読み出し部9の入力は、指令電圧ベクトル行列V*、カウンタ前回値Czであり、出力は出力電圧ベクトルV**、カウンタ値Cである。 Further, a reading unit 9 is provided between the prediction unit 7 and the gate signal determination unit 8. The reading unit 9 selects the voltage vector of the output cycle this time from the command voltage vector matrix V * for a plurality of output cycles, and determines the output voltage vector V **. The input of the reading unit 9 is the command voltage vector matrix V * and the counter previous value Cz, and the output is the output voltage vector V ** and the counter value C.
 ここで注意すべき点として、予測部7は演算周期、読み出し部9は出力周期で動作を行う点がある。1回遅延ブロックも入力先であるそれぞれの周期での1回遅延を意味する。 It should be noted here that the prediction unit 7 operates in the calculation cycle and the reading unit 9 operates in the output cycle. The one-time delay block also means one-time delay in each cycle of the input destination.
 本実施形態3の重要な点は、実施形態1に対して複数周期分の電圧ベクトルを決定し、読み出す機構を設けた点であり、詳細な実装構成は図8に限らない。 An important point of the third embodiment is that a mechanism for determining and reading out voltage vectors for a plurality of cycles is provided for the first embodiment, and the detailed mounting configuration is not limited to FIG.
 実施形態1,実施形態2は演算周期と出力周期が等しい場合、つまり演算時間中にインバータ3の出力電圧が変わらない場合の電流予測演算法を述べた。 The first and second embodiments describe a current prediction calculation method when the calculation cycle and the output cycle are equal, that is, when the output voltage of the inverter 3 does not change during the calculation time.
 だが、MPC2では出力周期を短くした方が電流制御性能の向上が見込め、かつ、電流予測演算の演算負荷を考えると演算周期を短くすると実装不可能になる恐れがあるため、1回の演算で複数出力周期の電圧ベクトルを決定する構成に対応できることが望ましい。 However, in MPC2, shortening the output cycle is expected to improve the current control performance, and considering the calculation load of the current prediction calculation, shortening the calculation cycle may make it impossible to implement. It is desirable to be able to support configurations that determine voltage vectors with multiple output cycles.
 本実施形態3では、演算周期中の出力周期数がNcalcである場合に演算時間中の電流変化を予測する構成を検討する。Ncalcは予測期間中の出力周期数N以下に設定するので、(20)式の関係がある。 In the third embodiment, a configuration for predicting a current change during the calculation time when the number of output cycles during the calculation cycle is Ncal is examined. Since Ncalc is set to the number of output cycles N or less during the prediction period, there is a relationship of equation (20).
Figure JPOXMLDOC01-appb-M000032
 複数周期分の電圧ベクトルを扱うにあたっては、図8に示すように予測部7の出力を複数電圧ベクトルの行列情報とし、予測部7の後段に複数周期分の電圧ベクトル情報から出力周期ごとに1つを読み出す機構を追加する必要がある。また、本願発明の本質である演算時間中の電流変化の考慮も複数周期分の電圧ベクトルに対して行わなければならない。
Figure JPOXMLDOC01-appb-M000032
In handling the voltage vectors for a plurality of cycles, the output of the prediction unit 7 is used as the matrix information of the plurality of voltage vectors as shown in FIG. It is necessary to add a mechanism to read one. In addition, consideration of the current change during the calculation time, which is the essence of the present invention, must be taken for the voltage vector for a plurality of cycles.
 図9に本実施形態3における予測部7のフローチャートを示す。実施形態1の図5と比べると、予測部7の出力を複数出力周期分の電圧ベクトルとしている点が異なり、それにともない演算時間中の電流変化予測の方法も異なっている。図9は演算周期Tcalcで動作する。 FIG. 9 shows a flowchart of the prediction unit 7 in the third embodiment. Compared with FIG. 5 of the first embodiment, the output of the prediction unit 7 is a voltage vector for a plurality of output cycles, and the method of predicting the current change during the calculation time is also different accordingly. FIG. 9 operates at the calculation cycle Tcalc.
 3-1は、図5の1-1と同様である。ただし、指令電圧ベクトル前回値Vz*を指令電圧ベクトル行列前回値Vz*に変更している。 3-1 is the same as 1-1 in FIG. However, the command voltage vector previous value Vz * is changed to the command voltage vector matrix previous value Vz *.
 3-2において、演算時間中の電流変化を考慮する繰り返し演算の初期値を定める。繰り返しを管理する変数bは1を、dq軸電流の一時的な値id’,iq’は検出d軸流id,検出q軸電流iqを初期値とする。 In 3-2, determine the initial value of the repetitive calculation considering the current change during the calculation time. The variable b that manages the repetition is 1, and the temporary values id'and iq'of the dq-axis current are the detected d-axis flow id and the detected q-axis current iq as initial values.
 3-3では、指令電圧ベクトル行列前回値Vz*のb番目をVz’とする。ここで、指令電圧ベクトル行列前回値Vz*には1~Ncalc番目までの電圧ベクトルがあり、読み出し部9では指令電圧ベクトル行列前回値Vz*を1番目から順に出力するものとしている。 In 3-3, the b-th of the command voltage vector matrix previous value Vz * is Vz'. Here, the command voltage vector matrix previous value Vz * has voltage vectors from the first to the Ncalc th, and the reading unit 9 outputs the command voltage vector matrix previous value Vz * in order from the first.
 3-4では、Vz’,id’,iq’から出力周期Tc中の電流変化量Δidc,Δiqcを求める。(3)式に基づいて、(21)式のように計算すればよい。ただし、vdz’,vqz’はVz’のdq軸電圧への変換値である。id’iq’はb=1の時、検出d軸電流,検出q軸電流であり、b=2~Ncalcの時、前回のサイクルにおいて3-5で算出したd軸電流,q軸電流である。 In 3-4, the current change amounts Δidc and Δiqc during the output cycle Tc are obtained from Vz', id'and iq'. Based on the equation (3), the calculation may be performed as in the equation (21). However, vdz'and vqz' are converted values of Vz'to the dq axis voltage. id'iq'is the detected d-axis current and detected q-axis current when b = 1, and the d-axis current and q-axis current calculated in 3-5 in the previous cycle when b = 2 to Ncalc. ..
Figure JPOXMLDOC01-appb-M000033
 3-5では、id’,iq’に出力周期Tc中の電流変化量であるΔidc,Δiqcを加算する。
Figure JPOXMLDOC01-appb-M000033
In 3-5, Δidc and Δiqc, which are the amounts of current changes during the output cycle Tc, are added to id'and iq'.
 3-6は演算時間中の出力周期をすべて考慮したかどうかの分岐である。bが演算周期中の出力周期数Ncalcに到達していれば、演算周期中の電流変化をすべて加算したということであり3-8へ移行する。bが出力周期数Ncalc未満ならば3-7でbを1だけ増やして3-3に戻り、次の出力周期の電流変化量Δidc,Δiqcを演算する。すなわち、b=1~Ncalcにおいて、各出力周期Tc中の電流変化量Δidc,Δiqcを算出し、演算周期中のすべての出力周期の電流変化量を加算した値が演算周期中の電流変化量となる。また、b=Ncalcの時の3-5で算出したid’iq’が補正電流値となる。 3-6 is a branch of whether or not all output cycles during the calculation time are taken into consideration. If b has reached the number of output cycles Ncalc in the calculation cycle, it means that all the current changes in the calculation cycle have been added, and the process proceeds to 3-8. If b is less than the number of output cycles Ncalc, b is incremented by 1 at 3-7 to return to 3-3, and the current change amounts Δidc and Δiqc of the next output cycle are calculated. That is, when b = 1 to Ncalc, the current change amounts Δidc and Δiqc in each output cycle Tc are calculated, and the value obtained by adding the current change amounts in all the output cycles in the calculation cycle is the current change amount in the calculation cycle. Become. Further, id'iq'calculated in 3-5 when b = Ncalc is the correction current value.
 3-8では予測演算の始点である電流id(n),iq(n)に演算時間中の出力周期すべてについて電流変化量Δidc,Δiqcを加算した補正電流値id’,iq’を代入する。 In 3-8, the correction current values id'and iq', which are obtained by adding the current change amounts Δidc and Δiqc for all the output cycles during the calculation time, are substituted into the currents id (n) and iq (n) which are the starting points of the prediction calculation.
 3-9~3-14は、実施形態1の1-4~1-9と同様の処理であり、電圧ベクトルの仮定、電流の予測・評価を決定する。 3-9 to 3-14 are the same processes as 1-4 to 1-9 of the first embodiment, and determine the assumption of the voltage vector and the prediction / evaluation of the current.
 3-15は、実施形態1から変更される。採用した電圧ベクトルから1番目のV(n)のみを代入するのではなく、演算時間中の出力周期数Ncalc番目までの電圧ベクトルを指令電圧ベクトル行列V*に代入する。以上が、図9のフローチャートの動作である。 3-15 is modified from the first embodiment. Instead of substituting only the first V (n) from the adopted voltage vector, the voltage vectors up to the Ncalth number of output cycles during the calculation time are substituted into the command voltage vector matrix V * . The above is the operation of the flowchart of FIG.
 図10に本実施形態3における読み出し部9のフローチャートを示す。図10ではカウンタを用いて、複数周期分の電圧ベクトル情報を持つ指令電圧ベクトル行列V*から今回の出力周期の電圧ベクトルである出力電圧ベクトルV**を決定する。複数周期分の電圧ベクトルから今回の出力周期の電圧ベクトルを読み出すことができれば、構成は図10に限らない。 FIG. 10 shows a flowchart of the reading unit 9 in the third embodiment. In FIG. 10, a counter is used to determine the output voltage vector V ** , which is the voltage vector of the current output cycle, from the command voltage vector matrix V * having voltage vector information for a plurality of cycles. The configuration is not limited to FIG. 10 as long as the voltage vector of the current output cycle can be read from the voltage vectors of a plurality of cycles.
 図10の読み出し部9のフローチャートについて説明する。図10は出力周期Tcで動作する。 The flowchart of the reading unit 9 of FIG. 10 will be described. FIG. 10 operates with an output cycle Tc.
 R-1では、指令電圧ベクトル行列V*,カウンタ前回値Czを入力する。R-2では、カウンタ値Cにカウンタ前回値Czを代入している。R-3では、指令電圧ベクトル行列V*のうちカウンタ値C(C番目)の電圧ベクトルV*[C]を出力電圧ベクトルV**に代入する。 In R-1, the command voltage vector matrix V * and the counter previous value Cz are input. In R-2, the counter previous value Cz is substituted for the counter value C. In R-3, the voltage vector V * [C] of the counter value C (Cth) in the command voltage vector matrix V * is substituted into the output voltage vector V **.
 R-4はカウンタ値Cに基づく分岐処理である。カウンタ値Cが演算周期中の出力周期数Ncalcに達していれば、R-5でカウンタ値Cを1に戻す。カウンタ値CがNcalcでなければR-6にてカウンタ値Cを1だけ増加する。 R-4 is a branch process based on the counter value C. If the counter value C has reached the number of output cycles Ncalc in the calculation cycle, the counter value C is returned to 1 by R-5. If the counter value C is not Ncalc, the counter value C is incremented by 1 at R-6.
 R-7で出力電圧ベクトルV**とカウンタ値Cを出力する。 The output voltage vector V ** and the counter value C are output by R-7.
 このようにカウンタ値をループさせつつ指令電圧ベクトル行列のカウンタ値Cの箇所を出力電圧ベクトルV*に設定することで複数周期分の電圧ベクトルから1つの電圧ベクトルを読み出すことができる。 By setting the counter value C of the command voltage vector matrix to the output voltage vector V * while looping the counter values in this way, one voltage vector can be read out from the voltage vectors for a plurality of cycles.
 ただし、入力のカウンタ前回値Czが1であるタイミングと指令電圧ベクトル行列V*が更新されるタイミングは同期しているものとする。これを守れない場合、予測部7が想定するのと異なる出力電圧となり予測誤差につながるので注意する。 However, it is assumed that the timing when the input counter previous value Cz is 1 and the timing when the command voltage vector matrix V * is updated are synchronized. Note that if this cannot be observed, the output voltage will be different from what the prediction unit 7 assumes, which will lead to a prediction error.
 以上示したように、本実施形態3によれば、図8,9,10に基づいて、演算時間中の電流変化を予測し、かつ、1度の予測演算で複数周期分の電圧ベクトルを決定するMPCを行うことで、高い電流制御性能、低いスイッチング周波数、実施形態1,2よりも長い演算時間の確保を達成した制御を行うことができる。 As shown above, according to the third embodiment, the current change during the calculation time is predicted based on FIGS. 8, 9 and 10, and the voltage vector for a plurality of cycles is determined by one prediction calculation. By performing the MPC, it is possible to perform control that achieves high current control performance, low switching frequency, and securement of a calculation time longer than that of the first and second embodiments.
 また、先行文献に対しては、予測期間が一般の場合に適用可能である、電流予測演算により複数周期分の電圧ベクトルを決定する場合を考慮しているという利点がある。 In addition, there is an advantage that the prior literature considers the case where the voltage vector for a plurality of cycles is determined by the current prediction calculation, which is applicable when the prediction period is general.
 [実施形態4]
 図11に本実施形態4におけるMPC2の構成図を示す。本実施形態4は電流検出に対する出力電圧変化のタイミングずれ期間を考慮する構成と、予測部7にて複数周期分の電圧ベクトルを出力する構成を合わせたものである。すなわち、実施形態2の図6、実施形態3の図8を合わせたものである。
[Embodiment 4]
FIG. 11 shows a configuration diagram of MPC2 according to the fourth embodiment. In the fourth embodiment, a configuration in which the timing shift period of the output voltage change with respect to the current detection is taken into consideration and a configuration in which the prediction unit 7 outputs voltage vectors for a plurality of cycles are combined. That is, FIG. 6 of the second embodiment and FIG. 8 of the third embodiment are combined.
 実施形態3は実施形態1を複数周期分の電圧ベクトルを扱う場合に対応した構成であった。実施形態3は実施形態2と組み合わせて用いることができ、これを本実施形態4とする。 The third embodiment has a configuration corresponding to the case where the voltage vector for a plurality of cycles is handled in the first embodiment. The third embodiment can be used in combination with the second embodiment, which is referred to as the fourth embodiment.
 図11に示すように、予測部7の出力を複数出力周期分の電圧ベクトルである指令電圧ベクトル行列V*にして後段に読み出し部9を設け、かつ、予測部7に指令電圧ベクトル行列前々回値Vzz*を代入している。読み出し部9については実施形態3の図10と同様に動作するものとする。 As shown in FIG. 11, the output of the prediction unit 7 is set to a command voltage vector matrix V * which is a voltage vector for a plurality of output cycles, a read-out unit 9 is provided in the subsequent stage, and the prediction unit 7 has a value two times before the command voltage vector matrix. Vzz * is substituted. It is assumed that the reading unit 9 operates in the same manner as in FIG. 10 of the third embodiment.
 図12に本実施形態4における予測部7のフローチャートを示す。図12は図7と図9、つまり実施形態2,実施形態3のフローチャートの機能を合わせたものである。 FIG. 12 shows a flowchart of the prediction unit 7 in the fourth embodiment. FIG. 12 is a combination of the functions of the flowcharts of FIGS. 7 and 9, that is, the second and third embodiments.
 図12に示す予測部7のフローチャートの動作を述べる。図12では演算時間中の電流変化量Δidc,Δiqcを算出する前に遅れ時間Tdel中の電流変化量Δiddel,Δiqdelを考慮する。 The operation of the flowchart of the prediction unit 7 shown in FIG. 12 will be described. In FIG. 12, before calculating the current change amounts Δidc and Δiqc during the calculation time, the current change amounts Δiddel and Δiqdel during the delay time Tdel are considered.
 4-1では、図9の3-1に対して、指令電圧ベクトル行列前々回値Vzz*を追加して入力している。 In 4-1 the command voltage vector matrix two times before the previous value Vzz * is added and input to 3-1 in FIG.
 4-2では指令電圧ベクトル行列前々回値Vzz*の最終出力周期であるNcalc番目の電圧ベクトルに関して遅れ時間Tdel中の電流変化量Δiddel,Δiqdelを求めている。(3)式に基づいて、(22)式のように計算すればよい。ただし、vdzz1,vqzz1は指令電圧ベクトル行列前々回値Vzz*[Ncalc]のdq軸電圧への変換値である。 In 4-2, the current change amounts Δiddel and Δiqdel in the delay time Tdel are obtained for the Ncalcth voltage vector which is the final output cycle of the command voltage vector matrix two times before the previous value Vzz *. Based on the equation (3), the calculation may be performed as in the equation (22). However, vdzz1 and vqzz1 are conversion values of the command voltage vector matrix two times before the previous value Vzz * [Ncalc] to the dq-axis voltage.
Figure JPOXMLDOC01-appb-M000034
 4-3では検出d軸電流id,検出q軸電流iqに電流変化量Δiddel,Δiqdelを加算した電流id’,iq’を演算時間中の電流変化を考慮した繰り返しの初期値に設定している。これで、検出からの出力変化の遅れ時間Tdelを考慮したことになる。
Figure JPOXMLDOC01-appb-M000034
In 4-3, the current id'and iq', which are the sums of the detected d-axis current id and the detected q-axis current iq and the current changes Δiddel and Δiqdel, are set as the initial values of repetition in consideration of the current change during the calculation time. .. This means that the delay time Tdel of the output change from the detection is taken into consideration.
 ところで、遅れ時間Tdelは出力周期Tc以下であると仮定しており、指令電圧ベクトル行列前々回値Vzz*からはNcalc番目のみを使用した。これに関し、入力情報を減らすために指令電圧ベクトル行列前々回値Vzz*すべてではなくNcalc番目のみを入力としてもよい。 By the way, it is assumed that the delay time Tdel is equal to or less than the output cycle Tc, and only the Ncalcth from the command voltage vector matrix pre-previous value Vzz * is used. In this regard, in order to reduce the input information, only the Ncalcth value may be input instead of all the command voltage vector matrix pre-previous value Vzz *.
 また、遅れ時間Tdelが出力周期Tc以上である場合には、演算時間中の電流変化量演算の繰り返しと同様に、処理を複数に分ければよい。例えば(23)式の条件ならば、(24)式~(29)式について式番号の順で処理を行えば遅れ時間Tdel中の電流変化量Δiddel,Δiqdelを考慮することができる。ただし、vdzz2,vqzz2はVzz*[Ncalc-1]のdq軸電圧への変換値である。 Further, when the delay time Tdel is equal to or longer than the output cycle Tc, the processing may be divided into a plurality of processes as in the case of repeating the current change amount calculation during the calculation time. For example, in the case of the condition of the equation (23), if the equations (24) to (29) are processed in the order of the equation numbers, the current change amounts Δiddel and Δiqdel in the delay time Tdel can be considered. However, vdzz2 and vqzz2 are conversion values of Vzz * [Ncalc-1] to the dq-axis voltage.
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000041
 4-4~4-17は図9の3-3~3-16と同様である。
Figure JPOXMLDOC01-appb-M000041
4-4 to 4-17 are the same as 3-3 to 3-16 in FIG.
 以上示したように、本実施形態4によれば、実施形態2,3を合わせた、つまり、図10,図11,図12に基づいて、演算時間中の電流変化量を予測し、かつ、1度の予測演算で複数周期分の電圧ベクトルを決定し、かつ、電流検出と出力電圧変化のタイミングずれを考慮したMPCを行うことで、高い電流制御性能、低いスイッチング周波数、実施形態1,2よりも長い演算時間の確保、リンギングの影響を受けないタイミングでの電流検出を達成した制御を行うことができる。 As shown above, according to the fourth embodiment, the second and third embodiments are combined, that is, the amount of change in current during the calculation time is predicted and the amount of change during the calculation time is predicted based on FIGS. 10, 11, and 12. High current control performance, low switching frequency, Embodiments 1 and 2 by determining the voltage vector for a plurality of cycles with one prediction calculation and performing MPC in consideration of the timing difference between current detection and output voltage change. It is possible to secure a longer calculation time and perform control that achieves current detection at a timing that is not affected by ringing.
 また、先行文献に対しては、予測期間が一般の場合に適用可能である、検出時刻と出力電圧変化時刻の差を考慮している、電流予測演算により複数周期分の電圧ベクトルを決定する場合を考慮しているという利点がある。 Further, for the prior art, when the voltage vector for a plurality of cycles is determined by the current prediction calculation, which is applicable when the prediction period is general, the difference between the detection time and the output voltage change time is taken into consideration. There is an advantage that it considers.
 以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。 Although the above description has been made in detail only with respect to the specific examples described in the present invention, it is clear to those skilled in the art that various modifications and modifications can be made within the scope of the technical idea of the present invention. It goes without saying that such modifications and modifications fall within the scope of the claims.

Claims (8)

  1.  指令値に基づいて指令電流を生成する上位制御部と、
     モデル予測制御により、予測期間中の各出力周期に複数の仮定電圧ベクトルを設定し、検出電流に演算周期中の電流変化量を加算した補正電流値に基づいて前記仮定電圧ベクトルの予測電流を算出し、前記仮定電圧ベクトルと前記予測電流の評価関数を算出し、前記予測期間における前記仮定電圧ベクトルの組み合わせの中から前記評価関数が最上位の前記仮定電圧ベクトルの組み合わせを決定し、前記評価関数が最上位の前記仮定電圧ベクトルの組み合わせの中から実際に出力する仮定電圧ベクトルを指令電圧ベクトルとして出力する予測部と、
     前記指令電圧ベクトルで表現される電圧を電力変換器から出力するためのゲート信号を出力するゲート信号決定部と、
     ゲート信号に基づいて駆動制御される電力変換器と、
     を備えた電力変換システム。
    A host control unit that generates a command current based on the command value,
    By model prediction control, a plurality of assumed voltage vectors are set for each output cycle during the prediction period, and the predicted current of the assumed voltage vector is calculated based on the correction current value obtained by adding the amount of current change during the calculation cycle to the detected current. Then, the evaluation function of the assumed voltage vector and the predicted current is calculated, and the combination of the assumed voltage vector having the highest evaluation function is determined from the combination of the assumed voltage vectors in the prediction period. Is a predictor that outputs the assumed voltage vector that is actually output from the combination of the assumed voltage vectors at the highest level as the command voltage vector, and
    A gate signal determination unit that outputs a gate signal for outputting the voltage represented by the command voltage vector from the power converter, and a gate signal determination unit.
    A power converter that is driven and controlled based on the gate signal,
    Power conversion system with.
  2.  前記演算周期中の電流変化量は、以下の(5)式により算出する請求項1記載の電力変換システム。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Δidc:演算周期中の電流変化量(d軸)
    Δiqc:演算周期中の電流変化量(q軸)
    Tc:出力周期(=演算周期)
    id:検出d軸電流
    iq:検出q軸電流
    vdz:d軸電圧ベクトル前回値
    vqz:q軸電圧ベクトル前回値
    R:巻線抵抗
    Ld:d軸インダクタンス
    Lq:q軸インダクタンス
    ωr:検出電気角速度
    ψ:永久磁石鎖交磁束数
    The power conversion system according to claim 1, wherein the amount of change in current during the calculation cycle is calculated by the following equation (5).
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Δidc: Current change amount during calculation cycle (d-axis)
    Δiqc: Current change amount during calculation cycle (q-axis)
    Tc: Output cycle (= calculation cycle)
    id: Detected d-axis current iq: Detected q-axis current vdz: d-axis voltage vector Previous value vqz: q-axis voltage vector Previous value R: Winding resistance Ld: d-axis inductance Lq: q-axis inductance ωr: Detected electrical angular velocity ψ: Permanent magnet interlinkage magnetic flux number
  3.  指令値に基づいて指令電流を生成する上位制御部と、
     1演算周期に複数出力周期の電圧ベクトルを決定するモデル予測制御により、予測期間中の各出力周期に複数の仮定電圧ベクトルを設定し、検出電流に演算周期中の電流変化量を加算した補正電流値に基づいて前記仮定電圧ベクトルの予測電流を算出し、前記仮定電圧ベクトルと前記予測電流の評価関数を算出し、前記予測期間における前記仮定電圧ベクトルの組み合わせの中から前記評価関数が最上位の前記仮定電圧ベクトルの組み合わせを指令電圧ベクトル行列として出力する予測部と、
     複数出力周期の前記指令電圧ベクトル行列から今回出力周期の電圧ベクトルを選択し、出力電圧ベクトルとして出力する読み出し部と、
     前記出力電圧ベクトルで表現される電圧を電力変換器から出力するためのゲート信号を出力するゲート信号決定部と、
     ゲート信号に基づいて駆動制御される電力変換器と、
     を備えた電力変換システム。
    A host control unit that generates a command current based on the command value,
    By model prediction control that determines the voltage vector of multiple output cycles in one calculation cycle, multiple assumed voltage vectors are set for each output cycle during the prediction period, and the correction current is added to the detected current by the amount of current change during the calculation cycle. The predicted current of the assumed voltage vector is calculated based on the value, the evaluation function of the assumed voltage vector and the predicted current is calculated, and the evaluation function is the highest among the combinations of the assumed voltage vectors in the prediction period. A predictor that outputs the combination of the assumed voltage vectors as a command voltage vector matrix, and
    A reading unit that selects the voltage vector of the output cycle this time from the command voltage vector matrix of multiple output cycles and outputs it as an output voltage vector.
    A gate signal determination unit that outputs a gate signal for outputting the voltage represented by the output voltage vector from the power converter, and a gate signal determination unit.
    A power converter that is driven and controlled based on the gate signal,
    Power conversion system with.
  4.  前記演算周期中の電流変化量は、各出力周期中の電流変化量を以下の(21)式により算出し、演算周期中のすべての出力周期の電流変化量を加算した値とする請求項3記載の電力変換システム。
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    Δidc:出力周期中の電流変化量(d軸)
    Δiqc:出力周期中の電流変化量(q軸)
    Tc:出力周期
    id’:検出d軸電流、または、d軸電流
    iq’:検出q軸電流、または、q軸電流
    vdz:d軸電圧ベクトル前回値
    vqz:q軸電圧ベクトル前回値
    R:巻線抵抗
    Ld:d軸インダクタンス
    Lq:q軸インダクタンス
    ωr:検出電気角速度
    ψ:永久磁石鎖交磁束数
    The current change amount during the calculation cycle is a value obtained by calculating the current change amount during each output cycle by the following equation (21) and adding the current change amounts of all the output cycles during the calculation cycle. The power conversion system described.
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    Δidc: Current change amount during output cycle (d-axis)
    Δiqc: Current change amount during output cycle (q-axis)
    Tc: Output cycle id': Detected d-axis current or d-axis current iq': Detected q-axis current or q-axis current vdz: d-axis voltage vector Previous value vqz: q-axis voltage vector Previous value R: Winding Resistance Ld: d-axis inductance Lq: q-axis inductance ωr: Detected electrical angular velocity ψ: Permanent magnet interlinkage magnetic flux number
  5.  前記補正電流値は、検出電流に演算周期中の電流変化量、および、電流検出に対する出力電圧変化のタイミングずれ期間における電流変化量を加算した値とする請求項1または3に記載の電力変換システム。 The power conversion system according to claim 1 or 3, wherein the correction current value is a value obtained by adding the amount of change in the current during the calculation cycle and the amount of change in the current in the timing shift period of the output voltage change with respect to the current detection to the detected current. ..
  6.  前記電流検出に対する出力電圧変化のタイミングずれ期間における電流変化量は、以下の(17)式により算出する請求項5記載の電力変換システム。
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
    Δiddel:電流検出に対する出力電圧変化のタイミングずれ期間における電流変化量(d軸)
    Δiqdel:電流検出に対する出力電圧変化のタイミングずれ期間における電流変化量(q軸)
    Tdel:電流検出に対する出力電圧変化のタイミングずれ期間
    id:検出d軸電流
    iq:検出q軸電流
    vdzz:d軸電圧ベクトル前々回値
    vqz:q軸電圧ベクトル前々回値
    R:巻線抵抗
    Ld:d軸インダクタンス
    Lq:q軸インダクタンス
    ωr:検出電気角速度
    ψ:永久磁石鎖交磁束数
    The power conversion system according to claim 5, wherein the amount of current change in the timing shift period of the output voltage change with respect to the current detection is calculated by the following equation (17).
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
    Δiddel: Current change amount (d-axis) during the timing shift period of the output voltage change with respect to the current detection
    Δiqdel: Current change amount (q-axis) during the timing shift period of the output voltage change with respect to the current detection
    Tdel: Timing shift period of output voltage change with respect to current detection id: Detected d-axis current iq: Detected q-axis current vdzz: d-axis voltage vector Pre-previous value vqz: q-axis voltage vector Pre-previous value R: Winding resistance Ld: d-axis inductance Lq: q-axis inductance ωr: detected electric angular velocity ψ: permanent magnet interlinkage magnetic flux number
  7.  ゲート信号に基づいて駆動制御される電力変換器を備えた電力変換システムの制御方法であって、
     上位制御部において、指令値に基づいて指令電流を生成し、
     予測部において、モデル予測制御により、予測期間中の各出力周期に複数の仮定電圧ベクトルを設定し、検出電流に演算周期中の電流変化量を加算した補正電流値に基づいて前記仮定電圧ベクトルの予測電流を算出し、前記仮定電圧ベクトルと前記予測電流の評価関数を算出し、前記予測期間における前記仮定電圧ベクトルの組み合わせの中から前記評価関数が最上位の前記仮定電圧ベクトルの組み合わせを決定し、前記評価関数が最上位の前記仮定電圧ベクトルの組み合わせの中から実際に出力する仮定電圧ベクトルを指令電圧ベクトルとして出力し、
     ゲート信号決定部において、前記指令電圧ベクトルで表現される電圧を前記電力変換器から出力するためのゲート信号を出力する
     電力変換システムの制御方法。
    A control method for a power conversion system equipped with a power converter that is driven and controlled based on a gate signal.
    In the upper control unit, a command current is generated based on the command value,
    In the prediction unit, a plurality of assumed voltage vectors are set for each output cycle during the prediction period by model prediction control, and the assumed voltage vector is calculated based on the correction current value obtained by adding the amount of change in the current during the calculation cycle to the detected current. The predicted current is calculated, the assumed voltage vector and the evaluation function of the predicted current are calculated, and the combination of the assumed voltage vector having the highest evaluation function is determined from the combinations of the assumed voltage vectors in the predicted period. , The assumed voltage vector actually output from the combination of the assumed voltage vectors at which the evaluation function is the highest is output as the command voltage vector.
    A control method of a power conversion system that outputs a gate signal for outputting a voltage represented by the command voltage vector from the power converter in the gate signal determination unit.
  8.  ゲート信号に基づいて駆動制御される電力変換器を備えた電力変換システムの制御方法であって、
     上位制御部において、指令値に基づいて指令電流を生成し、
     予測部において、1演算周期に複数出力周期の電圧ベクトルを決定するモデル予測制御により、予測期間中の各出力周期に複数の仮定電圧ベクトルを設定し、検出電流に演算周期中の電流変化量を加算した補正電流値に基づいて前記仮定電圧ベクトルの予測電流を算出し、前記仮定電圧ベクトルと前記予測電流の評価関数を算出し、前記予測期間における前記仮定電圧ベクトルの組み合わせの中から前記評価関数が最上位の前記仮定電圧ベクトルの組み合わせを指令電圧ベクトル行列として出力し、
     読み出し部において、複数出力周期の前記指令電圧ベクトル行列から今回出力周期の電圧ベクトルを選択し、出力電圧ベクトルとして出力し、
     ゲート信号決定部において、前記出力電圧ベクトルで表現される電圧を前記電力変換器から出力するためのゲート信号を出力する
     電力変換システムの制御方法。
    A control method for a power conversion system equipped with a power converter that is driven and controlled based on a gate signal.
    In the upper control unit, a command current is generated based on the command value,
    In the prediction unit, a plurality of assumed voltage vectors are set for each output cycle during the prediction period by model prediction control that determines voltage vectors for multiple output cycles in one calculation cycle, and the amount of current change during the calculation cycle is set as the detection current. The predicted current of the assumed voltage vector is calculated based on the added correction current value, the evaluation function of the assumed voltage vector and the predicted current is calculated, and the evaluation function is selected from the combination of the assumed voltage vectors in the prediction period. Outputs the combination of the assumed voltage vectors at the highest order as a command voltage vector matrix.
    In the reading unit, the voltage vector of the output cycle this time is selected from the command voltage vector matrix of a plurality of output cycles and output as an output voltage vector.
    A control method of a power conversion system that outputs a gate signal for outputting a voltage represented by the output voltage vector from the power converter in the gate signal determination unit.
PCT/JP2021/006994 2020-04-16 2021-02-25 Power conversion system and method for controlling power conversion system WO2021210274A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-073366 2020-04-16
JP2020073366A JP6885489B1 (en) 2020-04-16 2020-04-16 Power conversion system and control method of power conversion system

Publications (1)

Publication Number Publication Date
WO2021210274A1 true WO2021210274A1 (en) 2021-10-21

Family

ID=76310131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006994 WO2021210274A1 (en) 2020-04-16 2021-02-25 Power conversion system and method for controlling power conversion system

Country Status (2)

Country Link
JP (1) JP6885489B1 (en)
WO (1) WO2021210274A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114157171A (en) * 2021-12-07 2022-03-08 中国矿业大学(北京) Improved model prediction current control method based on thermal management

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08317699A (en) * 1995-05-12 1996-11-29 Nippon Soken Inc Controller for induction motor
JP2012070469A (en) * 2010-09-21 2012-04-05 Denso Corp Controller of rotary machine
JP2012236531A (en) * 2011-05-12 2012-12-06 Jtekt Corp Electric power steering device
JP2012253943A (en) * 2011-06-03 2012-12-20 Denso Corp Rotary machine controller
JP2020031485A (en) * 2018-08-22 2020-02-27 サンデンホールディングス株式会社 Power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08317699A (en) * 1995-05-12 1996-11-29 Nippon Soken Inc Controller for induction motor
JP2012070469A (en) * 2010-09-21 2012-04-05 Denso Corp Controller of rotary machine
JP2012236531A (en) * 2011-05-12 2012-12-06 Jtekt Corp Electric power steering device
JP2012253943A (en) * 2011-06-03 2012-12-20 Denso Corp Rotary machine controller
JP2020031485A (en) * 2018-08-22 2020-02-27 サンデンホールディングス株式会社 Power converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114157171A (en) * 2021-12-07 2022-03-08 中国矿业大学(北京) Improved model prediction current control method based on thermal management

Also Published As

Publication number Publication date
JP2021170882A (en) 2021-10-28
JP6885489B1 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
US8421386B2 (en) Control apparatus for multi-phase rotary machine
JP5177195B2 (en) Rotating machine control device
JP5056817B2 (en) Rotating machine control device
US9559630B2 (en) System and method for controlling modulation of an inverter
US8922143B2 (en) Control system for a rotary machiine
US20130063057A1 (en) Control system for a rotary machine
CN108966683B (en) Inverter control device
WO2021210274A1 (en) Power conversion system and method for controlling power conversion system
Wendel et al. Cascaded continuous and finite model predictive speed control for electrical drives
Tarusan et al. The simulation analysis of torque ripple reduction by using optimal voltage vector in DTC fed by five-level CHB inverter
JP5857689B2 (en) Rotating machine control device
Koutsogiannis et al. Direct torque control using space vector modulation and dynamic performance of the drive, via a fuzzy logic controller for speed regulation
JP2012253943A (en) Rotary machine controller
Kiani et al. Predictive torque control of induction motor drive with reduction of torque and flux ripple
JP6977837B1 (en) Power conversion system and control method of power conversion system
Jidin et al. A novel overmodulation and field weakening strategy for direct torque control of induction machines
Cheng et al. Model Predictive Direct Torque Control of Permanent Magnet Synchronous Motor for Torque Ripple Reduction
Kawai et al. Servo brake control based on finite control set–model predictive control with a voltage smoother
Kim et al. Zero voltage vector-based predictive direct torque control for PMSM
Reddy et al. Robust sliding mode speed controller for hybrid SVPWM based direct torque control of induction motor
Tripathi Control of ac motor drives: Performance evaluation of industrial state of art and new technique
JP2014003745A (en) Controller of rotary machine
JP7189075B2 (en) MOTOR DRIVE CONTROL APPARATUS AND METHOD, AND MOTOR DRIVE CONTROL SYSTEM
JP5659971B2 (en) Rotating machine control device
Jonnala et al. Performance Analysis of DTC-IM Drive with Hybrid SVC Modulated ASCHB-MLI

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21787662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21787662

Country of ref document: EP

Kind code of ref document: A1