WO2021210158A1 - Ignition system - Google Patents

Ignition system Download PDF

Info

Publication number
WO2021210158A1
WO2021210158A1 PCT/JP2020/016849 JP2020016849W WO2021210158A1 WO 2021210158 A1 WO2021210158 A1 WO 2021210158A1 JP 2020016849 W JP2020016849 W JP 2020016849W WO 2021210158 A1 WO2021210158 A1 WO 2021210158A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
circuit
resonance frequency
control circuit
converter
Prior art date
Application number
PCT/JP2020/016849
Other languages
French (fr)
Japanese (ja)
Inventor
中川 光
貴裕 井上
民田 太一郎
棚谷 公彦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020555069A priority Critical patent/JP6840301B1/en
Priority to PCT/JP2020/016849 priority patent/WO2021210158A1/en
Publication of WO2021210158A1 publication Critical patent/WO2021210158A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T15/00Circuits specially adapted for spark gaps, e.g. ignition circuits

Definitions

  • This application relates to an ignition system.
  • a lean combustion method for burning a lean mixture As a method for improving the fuel efficiency of an internal combustion engine mounted on a vehicle, a lean combustion method for burning a lean mixture, an exhaust gas recirculation method for recirculating exhaust gas in a combustion chamber, or a high compression ratio in the combustion chamber.
  • the method etc. are being developed. However, both methods have a problem that it is difficult to ignite the fuel, and improvement in ignitability is required.
  • an ignition system In response to the demand for improved ignitability of ignition devices, an ignition system has been proposed that generates chemically active species by dielectric barrier discharge, which is a non-equilibrium plasma, and promotes flammability after ignition or directly ignites fuel.
  • Patent Document 1 In flammability promotion, before the ignition timing, a non-equilibrium plasma having energy that does not ignite is generated, and many chemically active species are generated. In direct ignition, the fuel is directly burned by inputting high energy at the ignition timing.
  • the discharge energy of a dielectric barrier discharge is generally the load capacity determined by the structure of a spark plug and the environment between electrodes, the maximum value of the load applied voltage, the discharge maintenance voltage, the frequency of the load applied voltage, and the voltage to the load. Determined by the application time.
  • the load capacity and discharge maintenance voltage are naturally determined by the device structure and operating environment. Therefore, the parameters that can be used to adjust the discharge energy are the maximum value and frequency of the load applied voltage and the voltage application time to the load.
  • Patent Document 2 proposes adjusting the discharge energy by controlling the voltage value of the output AC voltage or the wave number in an ignition device using a predetermined spark plug.
  • the wave number is determined from the AC voltage frequency and the voltage application time.
  • Patent Document 2 does not describe a specific configuration of an electric circuit, it is considered that a transformer with a very large turn ratio and a large number of semiconductor switches are required for an AC power supply with a high voltage output, and a space for a vehicle or the like. It is difficult to install it in a place with large restrictions.
  • Patent Document 3 As a power supply system for configuring an AC power supply with a high voltage output in a relatively small size, a system using a resonance circuit as in Patent Document 3 has been proposed.
  • the frequency of the AC power supply to be supplied is set to the series resonance frequency of the coil and the capacitor of the load or its vicinity, and a large series resonance voltage is generated in the electrode by the resonance of the load.
  • the frequency that the AC power supply can apply to the load is only the pressure near the resonance frequency, when applied to the dielectric barrier ignition device, the discharge energy cannot be adjusted by the frequency unless the configuration of the load resonance circuit is changed. ..
  • the discharge energy adjustment of the dielectric barrier discharge is adjusted only by the application time of the AC voltage to the spark plug and the maximum value of the applied voltage.
  • Increasing the applied voltage requires an increase in the insulation distance and an improvement in the power supply output, which causes a problem of increasing the volume of the device. Therefore, the increase / decrease in the voltage application time is mainly used for adjusting the discharge energy. In that case, if the application time is long, a large discharge energy is input between the electrodes, and if the application period is short, a small discharge energy is input between the electrodes. Therefore, for example, it is not possible to output discharge energy with a high degree of freedom, such as inputting a large amount of discharge energy in a short time. As a result, direct ignition, which requires a local high energy input, may not be possible.
  • a dielectric barrier discharge type capable of changing the frequency of the AC voltage applied to the spark plug and changing the discharge energy density while amplifying the AC voltage applied to the spark plug by the resonance of the resonance circuit. It is intended to provide an ignition system.
  • the ignition system is A DC / AC converter with a switch that converts DC power supplied from a DC power supply to AC power,
  • a spark plug having a pair of electrodes and a dielectric arranged between the pair of electrodes and arranged in the combustion chamber of an internal combustion engine.
  • a frequency change connection circuit that connects between the DC / AC converter and the spark plug and has a frequency change circuit that changes the resonance frequency of the entire circuit from the DC / AC converter to the spark plug. It is provided with a control circuit that controls the on / off of the switch of the DC / AC converter, causes the DC / AC converter to output an AC voltage of an AC frequency, and supplies the AC voltage to the spark plug.
  • the control circuit controls the frequency change circuit of the frequency change connection circuit to change the resonance frequency and change the AC frequency.
  • a frequency changing circuit for changing the resonance frequency is provided in the connection circuit connecting the DC / AC converter and the spark plug. Then, the control circuit controls the frequency changing circuit to change the resonance frequency and change the AC frequency. Therefore, the resonance frequency and the AC frequency are changed, and the AC voltage applied to the ignition plug is amplified by the resonance of the resonance circuit. At the same time, the AC frequency of the AC voltage applied to the ignition plug can be changed to change the discharge energy density.
  • FIG. 5 is a schematic cross-sectional view of the barrier spark plug according to the first embodiment.
  • It is a hardware block diagram of the control circuit which concerns on Embodiment 1.
  • FIG. It is a timing chart for demonstrating the processing of the control circuit which concerns on Embodiment 1.
  • FIG. It is a figure for demonstrating the setting of the resonance frequency and the AC frequency which concerns on Embodiment 1.
  • FIG. It is a schematic circuit diagram of the frequency change connection circuit which concerns on Embodiment 2.
  • FIG. It It is a figure explaining the on / off pattern of the switch which concerns on Embodiment 2.
  • FIG. It is a figure for demonstrating the setting of the resonance frequency and the AC frequency which concerns on Embodiment 2.
  • FIG. It is a timing chart for demonstrating the processing of the control circuit which concerns on Embodiment 3.
  • FIG. 1 is a schematic circuit diagram of the ignition system of the first embodiment.
  • the ignition system includes a DC / AC converter 2, a spark plug 4, a frequency change connection circuit 3, and a control circuit 6.
  • the internal combustion engine 1 is a reciprocating gasoline engine in which the piston 12 moves up and down in the cylinder 11.
  • the space inside the cylinder 11 and the piston 12 is a combustion chamber 13, and the spark plug 4 is arranged at the top of the cylinder 11.
  • an intake valve 15 for adjusting the amount of intake air taken into the combustion chamber 13 from the intake pipe 14 and an exhaust valve for adjusting the amount of exhaust gas discharged from the combustion chamber 13 to the exhaust pipe 16 17 and are provided at the top of the cylinder 11.
  • an injector 18 for injecting fuel into the combustion chamber 13 is provided at the top of the cylinder 11.
  • the intake pipe 14 may be provided with an injector 18.
  • the internal combustion engine 1 is controlled by the control circuit 6.
  • the internal combustion engine 1 is a four-stroke engine in which an intake stroke, a compression stroke, a combustion stroke, and an exhaust stroke are combined into one combustion cycle.
  • the intake stroke the intake valve 15 is opened and the exhaust valve 17 is closed, and the piston 12 is lowered to suck air from the intake pipe 14 into the combustion chamber 13.
  • Fuel is injected from the injector 18 in the intake stroke, and a mixture of fuel and air is formed in the combustion chamber 13.
  • the compression stroke the air-fuel mixture in the combustion chamber 13 is compressed by raising the piston 12 with the intake valve 15 and the exhaust valve 17 closed. Combustion of the air-fuel mixture starts due to the barrier discharge of the spark plug 4 near the end of the compression stroke (top dead center of the piston 12).
  • spark plug 4 The spark plug 4 has a pair of electrodes (first electrode 41 and second electrode 42) and a dielectric 43 arranged between the first electrode 41 and the second electrode 42, and has a combustion chamber 13 of the internal combustion engine 1. Is placed in. At least one electrode is covered with the dielectric 43. Whereas conventional spark plugs apply a high voltage between metal electrodes to generate arc discharge, spark plugs 4 have a dielectric material between the first and second electrodes 42. 43 is arranged, and by applying an AC voltage, a dielectric barrier discharge (hereinafter, also referred to as a barrier discharge) is generated between the electrodes. The barrier discharge ignites the air-fuel mixture in the combustion chamber 13 and generates chemically active species (radicals) for promoting combustion.
  • a dielectric barrier discharge hereinafter, also referred to as a barrier discharge
  • FIG. 3 shows a cross-sectional view of the spark plug 4 attached to the combustion chamber 13 of the internal combustion engine 1.
  • the cylindrical plug outer wall 44 is made of metal, and the outer peripheral surface is threaded and attached to the partition wall 19 (cylinder head) of the combustion chamber 13. Therefore, the plug outer wall 44 is grounded via the internal combustion engine 1.
  • a cylindrical second electrode 42 is formed on the combustion chamber 13 side of the plug outer wall 44.
  • a rod-shaped first electrode 41 is arranged at the center of the plug outer wall 44.
  • a dielectric 43 (for example, ceramic) is arranged and insulated in the cylindrical space between the plug outer wall 44 and the first electrode 41.
  • the thickness of the dielectric 43 covering the first electrode 41 is thin, and a gap is provided between the dielectric 43 and the second electrode 42. .. This gap becomes a discharge gap 45 in which a barrier discharge occurs.
  • the shapes of the first electrode 41, the second electrode 42, and the dielectric 43 at the inner end of the combustion chamber 13 of the spark plug 4 are not limited to the example of FIG. 3, and may be various shapes.
  • the first electrode 41 is not covered with the dielectric 43 and is connected to one output terminal of the frequency change connection circuit 3.
  • the second electrode 42 is connected to the other output terminal of the frequency change connection circuit 3 via the internal combustion engine 1.
  • the DC / AC converter 2 is a power converter having a switch 21 that converts the DC power supplied from the DC power source 7 into AC power.
  • the DC power source 7 connected to the DC / AC converter 2 is a storage battery such as a lead battery, and supplies DC power to the connected DC / AC converter 2.
  • the DC power supply 7 may be any device as long as it has a function of outputting a DC voltage.
  • the DC power supply 7 may be provided with a DC / DC converter that boosts or lowers the DC voltage and outputs the voltage.
  • a DC / DC converter may be provided on the input side of the DC / AC converter 2, and the switch of the DC / DC converter may be controlled by the control circuit 6.
  • the DC / AC converter 2 includes a switch 21 that is on / off controlled by the control circuit 6.
  • the DC / AC converter 2 is a full-bridge circuit including two series circuits in which two switches 21 are connected in series.
  • the switch 21a on the positive electrode side connected to the positive electrode side of the DC power supply 7 and the switch 21b on the negative electrode side connected to the negative electrode side of the DC power supply 7 are connected in series.
  • the switch 21c on the positive electrode side connected to the positive electrode side of the DC power supply 7 and the switch 21d on the negative electrode side connected to the negative electrode side of the DC power supply 7 are connected in series.
  • the DC / AC converter 2 may use various conversion circuits such as a half-bridge circuit or a circuit composed of one switch. The midpoint of the two switches 21 of each series circuit is connected to the frequency change connection circuit 3.
  • a semiconductor switch such as a MOS-FET (Metal-Oxide-Semiconductor Field-Effect Transistor) or an IGBT (Insulated-Gate Bipolar Transistor) in which diodes are connected in antiparallel is used. Be done.
  • the drive signal output from the control circuit 6 is input to the gate terminal of the switch 21.
  • the switch 21 of the DC / AC converter 2 may be any switch 21 as long as it can conduct and cut off the electric circuit by turning it on and off. It may be composed of the switches of.
  • Frequency change connection circuit 3 The frequency change connection circuit 3 connects between the DC / AC converter 2 and the ignition plug 4, and sets the resonance frequency fr of the entire circuit (referred to as a load resonance circuit) from the DC / AC converter 2 to the ignition plug 4. It is a connection circuit having a frequency change circuit 32 to change.
  • the frequency change connection circuit 3 has two or more inductors, and as the frequency change circuit 32, one or more switches 32 that change the connection relationship of the inductor to the load resonance circuit, and is a switch of the frequency change connection circuit 3. By turning 32 on or off, the inductance of the load resonance circuit changes, and the resonance frequency fr changes.
  • the frequency change connection circuit 3 can be composed of two or more inductors and one or more switches 32, and the frequency change connection circuit 3 can be simplified and miniaturized.
  • the frequency change connection circuit 3 has the first inductor 31, the leakage inductance of the primary winding 33a and the secondary winding 33b of the transformer 33, and the second inductor 34 as inductors. ..
  • the first inductor 31 is connected in series on the connection path between the DC / AC converter 2 and the transformer 33. Specifically, one terminal of the first inductor 31 is connected to one output terminal of the DC / AC converter 2 (in this example, the midpoint of the second series circuit), and the other terminal of the first inductor 31. The terminal is connected to one terminal of the primary winding 33a of the transformer 33. The other terminal of the primary winding 33a of the transformer 33 is connected to the other output terminal of the DC / AC converter 2 (in this example, the midpoint of the first series circuit).
  • the second inductor 34 is connected in series on the connection path between the transformer 33 and the spark plug 4. Specifically, one terminal of the second inductor 34 is connected to one terminal of the secondary winding 33b of the transformer 33, and the other terminal of the second inductor 34 is connected to the first electrode 41 of the spark plug 4. Has been done. The other terminal of the secondary winding 33b of the transformer 33 is connected to the second electrode 42 of the spark plug 4. The second electrode 42 of the spark plug 4 is also connected to the ground.
  • the frequency change connection circuit 3 includes a first switch circuit 321 connected in parallel to the first inductor 31 as the switch 32.
  • the first switch circuit 321 is a bidirectional switch in which two switches 32a and 32b are connected in series.
  • a MOS-FET, an IGBT in which diodes are connected in antiparallel, and the like are used for the two switches 32a and 32b.
  • the drain terminals of the two switches 32a and 32b are connected to each other.
  • the drive signal output from the control circuit 6 is input to the gate terminals of the two switches 32a and 32b.
  • the switch 32 of the frequency change connection circuit 3 may be any switch as long as it can conduct and cut off the electric circuit in both directions by turning it on and off. As described above, it may be composed of switches other than semiconductors.
  • the frequency change connection circuit 3 supplies the AC power output from the DC / AC converter 2 to the spark plug 4 even when all the switches 32 are turned off.
  • an electric variable inductance inductor, an electric variable capacitance capacitor, or the like is provided, and the inductance or capacitance is changed by the drive signal of the control circuit 6, and the resonance frequency fr of the load resonance circuit fr. May be changed.
  • the components constituting the load resonance circuit may include not only elements such as inductors and capacitors, but also distributed constant components such as parasitic inductance of wiring and parasitic capacitance generated between them and peripheral metals. ..
  • the transformer 33 is wound by a primary winding 33a connected to the DC / AC converter 2 side, a secondary winding 33b connected to the spark plug 4 side, a primary winding 33a, and a secondary winding 33b. It has an iron core to be dressed.
  • the step-up ratio of the transformer 33 is determined by the ratio of the number of turns of the secondary winding 33b to the number of turns of the primary winding 33a.
  • the transformer 33 may not be provided if the AC voltage required for discharging can be secured without the transformer 33.
  • Control circuit 6 The control circuit 6 controls the DC / AC converter 2 and the frequency change connection circuit 3. In this embodiment, the control circuit 6 also controls the internal combustion engine 1. Each function of the control circuit 6 is realized by a processing circuit provided in the control circuit 6. Specifically, as shown in FIG. 4, the control circuit 6 is a storage device 61 that exchanges data with an arithmetic processing unit 60 (computer) such as a CPU (Central Processing Unit) and an arithmetic processing unit 60 as a processing circuit. An input circuit 62 for inputting an external signal to the arithmetic processing unit 60, an output circuit 63 for outputting a signal from the arithmetic processing unit 60 to the outside, and the like are provided.
  • arithmetic processing unit 60 computer
  • An input circuit 62 for inputting an external signal to the arithmetic processing unit 60, an output circuit 63 for outputting a signal from the arithmetic processing unit 60 to the outside, and the like are provided.
  • the arithmetic processing device 60 is provided with an ASIC (Application Specific Integrated Circuit), an IC (Integrated Circuit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), various logic circuits, various signal processing circuits, and the like. You may. Further, as the arithmetic processing unit 60, a plurality of the same type or different types may be provided, and each processing may be shared and executed.
  • the storage device 61 includes a RAM (Random Access Memory) configured to be able to read and write data from the arithmetic processing unit 60, a ROM (Read Only Memory) configured to be able to read data from the arithmetic processing unit 60, and the like. Has been done.
  • Various sensors 57 of the internal combustion engine are connected to the input circuit 62, and their outputs are output. It is equipped with an A / D converter or the like that inputs a signal to the arithmetic processing device 60.
  • the output circuit 63 includes a switch 21 of the DC / AC converter 2, a switch 32 of the frequency change connection circuit 3, and various electric loads 58 (injector, electric throttle valve, electric EGR valve, intake / exhaust VVT, etc.) of the internal combustion engine. It is connected and is provided with a drive circuit or the like that outputs a control signal from the arithmetic processing device 60.
  • the input circuit 62 may include an operational amplifier and a buffer for amplifying a signal, and a photocoupler and an isolator for insulating the signal.
  • the output circuit 63 may include a drive circuit for driving a semiconductor switch, an isolator for insulating the signal, and the like, such as an operational amplifier and a buffer for amplifying the signal.
  • the arithmetic processing unit 60 executes software (program) stored in the storage device 61 such as ROM, and controls the storage device 61, the input circuit 62, the output circuit 63, and the like. It is realized by cooperating with other hardware of the circuit 6.
  • the setting data such as the reference value used by the control circuit 6 is stored in a storage device 61 such as a ROM as a part of software (program).
  • a storage device 61 such as a ROM as a part of software (program).
  • the processing of the control circuit 6 will be described with reference to the timing chart of FIG.
  • the horizontal axis shows time, and the vertical axis shows each signal, frequency state, voltage, and energy per ignition. When the signal is 1, it means that it is high, and when it is 0, it means that it is low.
  • the control circuit 6 controls the internal combustion engine 1.
  • the control circuit 6 has a crank angle, a combustion cycle stroke, a rotation speed, an intake air amount, a filling efficiency, an air-fuel ratio, a cooling water temperature, and an intake air based on the output signals of various input sensors. It detects the operating state of various internal combustion engines such as temperature, exhaust gas recirculation rate (EGR rate), combustion state, and presence / absence of combustion misfire.
  • the control circuit 6 calculates the target air-fuel ratio, fuel injection amount, fuel injection timing, target throttle opening, target EGR opening, target intake / exhaust VVT phase angle, etc. based on the operating state of the internal combustion engine, and determines the injector and electric motor. It drives and controls various electric loads 58 of an internal combustion engine such as a throttle valve, an electric EGR valve, and an intake / exhaust VVT.
  • the discharge start signal S1 in FIG. 5 is a signal indicating the discharge start time.
  • the control circuit 6 determines the discharge start timing (ignition crank angle) of each combustion cycle based on the operating state of the internal combustion engine, and generates the discharge start signal S1.
  • the operating states of the internal combustion engine include, for example, the rotation speed of the internal combustion engine, pressure information in the combustion chamber (for example, filling efficiency or pressure in the cylinder), compression ratio in the combustion chamber (when a variable compression ratio mechanism is provided), and air-fuel ratio. , And at least one or more of the exhaust gas recirculation rate (EGR rate) is used.
  • the discharge start time is the discharge start time for ignition, and after the discharge start time, the dielectric barrier discharge for ignition is performed.
  • control circuit 6 sets the discharge start signal S1 to high (1) before a predetermined time of the discharge start time, and sets the discharge start signal S1 to low (0) at the discharge start time.
  • An external control device may control the internal combustion engine.
  • an external control device may transmit information on the operating state of the internal combustion engine to the control circuit 6 via communication, and the external control device may transmit high and low signals such as the discharge start signal S1. May be generated and output to the control circuit 6.
  • the discharge period signal S2 is a signal indicating a period during which the DC / AC converter 2 is made to output AC power.
  • the control circuit 6 determines the discharge time based on the operating state of the internal combustion engine and the resonance frequency fr and the AC frequency fsw described later.
  • the control circuit 6 sets the period from the discharge start time to the elapse of the discharge time as the discharge period.
  • the control circuit 6 sets the discharge period signal S2 to high (1) during the discharge period, and sets the discharge period signal S2 to low (0) during other periods.
  • the operating states of the internal combustion engine include, for example, the rotation speed of the internal combustion engine, pressure information in the combustion chamber (for example, filling efficiency or pressure in the cylinder), compression ratio in the combustion chamber (when a variable compression ratio mechanism is provided), and air-fuel ratio. , And at least one or more of the exhaust gas recirculation rate (EGR rate) is used.
  • EGR rate exhaust gas recirculation rate
  • the control circuit 6 determines the total amount of discharge energy required based on the operating state of the internal combustion engine, and divides the total amount of required discharge energy by the instantaneous power W of the discharge determined according to the resonance frequency fr and the AC frequency fsw. Then, the discharge time may be determined. For example, when the required amount of discharge energy is 400 mJ and the instantaneous power W of discharge is 200 W, 2 ms obtained by dividing 400 mJ by 200 W is set as the discharge period. According to this configuration, it is possible to supply the total amount of discharge energy suitable for the operating state of the internal combustion engine, suppress the deterioration of the combustion state due to insufficient discharge energy, and suppress the increase in unnecessary power consumption due to excessive discharge energy. It is possible to improve the combustion state and reduce the power consumption.
  • the control circuit 6 controls the switch 21 of the DC / AC converter 2 on and off by a known PWM (Pulse Width Modulation) control during the discharge period when the discharge period signal S2 is high (1), and DC / AC.
  • the converter 2 is made to output an AC voltage having an AC frequency fsw, and is supplied to the ignition plug 4.
  • the control circuit 6 stops the on / off control of the DC / AC converter 2 when the discharge period signal S2 is low (0), and does not cause the DC / AC converter 2 to output AC power.
  • the control circuit 6 changes the AC frequency fsw of the AC power. The change in the AC frequency fsw will be described later.
  • the switch 21a on the positive electrode side of the first series circuit and the switch 21d on the negative electrode side of the second series circuit are turned on, and the switch on the negative electrode side of the first series circuit is turned on.
  • the first pattern that turns off the switch 21c on the positive electrode side of the 21b and the second series circuit, and the switch 21a on the positive electrode side of the first series circuit and the switch 21d on the negative electrode side of the second series circuit are turned off.
  • the switch 21b on the negative electrode side of the first series circuit and the second pattern for turning on the switch 21c on the positive electrode side of the second series circuit are switched at the AC frequency fsw.
  • the control circuit 6 turns off the four switches 21a to 21c of the DC / AC converter 2 when it is not in the discharge period.
  • the control circuit 6 may use another PWM control method, or may change the amplitude of the AC voltage.
  • the control circuit 6 controls the frequency change circuit 32 of the frequency change connection circuit 3 to change the resonance frequency fr.
  • the control circuit 6 changes the resonance frequency fr by turning on or on the first switch circuit 321 (two switches 32a and 32b) as the frequency changing circuit 32. The change in the resonance frequency fr will be described later.
  • the control circuit 6 outputs a high (1) or low (0) switch drive signal S3 to the first switch circuit 321.
  • the switch drive signal S3 is high (1)
  • the two switches 32a and 32b of the first switch circuit 321 are turned on, the electric circuit is conducting, and the switch drive signal S3 is low (0).
  • the two switches 32a and 32b of the switch circuit 321 are turned off, and the electric circuit is cut off.
  • the resonance frequency fr is the resonance frequency of the load resonance circuit including the DC / AC converter 2, the frequency change connection circuit 3, and the ignition plug 4.
  • the resonance frequency fr changes.
  • the resonance frequency fr is set in the range of, for example, 10 kHz to 500 kHz.
  • the resonance frequency fr can be expressed by the equation (1).
  • L is the combined inductance of the load resonance circuit
  • Cp is the combined capacitance of the spark plug 4.
  • N1 is the number of turns of the primary winding 33a of the transformer 33
  • N2 is the number of turns of the secondary winding 33b of the transformer 33
  • L1 is the inductance of the first inductor 31
  • Lleak1 is the leakage inductance of the primary winding 33a of the transformer 33
  • Lleak2 is the leakage inductance of the secondary winding 33b of the transformer 33
  • L2 is the inductance of the second inductor 34.
  • the resonance frequency fr1 (hereinafter referred to as the first resonance frequency fr1) when the first switch circuit 321 is off is the resonance frequency fr2 (hereinafter referred to as the second resonance frequency) when the first switch circuit 321 is on.
  • the frequency is lower than fr2).
  • the equations (1) to (3) may include the wiring inductance and the parasitic capacitance distributed in each part.
  • FIG. 6 shows a conceptual diagram of the interlocking change of the frequency.
  • the horizontal axis represents the frequency
  • the vertical axis represents the gain (ratio) of the amplitude of the AC voltage applied to the spark plug 4 with respect to the amplitude of the AC voltage output from the DC / AC converter 2.
  • the amplification gain is larger than 1, it indicates that the amplification is performed by the load resonance circuit.
  • FIG. 6 fsw1 is a first AC frequency set corresponding to the first resonance frequency fr1, and fsw2 is a second AC frequency fsw set corresponding to the second resonance frequency fr2.
  • the control circuit 6 changes the AC frequency fsw within the amplification frequency band in which the applied voltage of the spark plug is amplified with respect to the output voltage of the DC / AC converter by resonance.
  • the amplification frequency band is a frequency band in which the amplification gain is larger than 1.
  • the control circuit 6 also changes the AC frequency fsw to a frequency within the amplification frequency band and equal to or higher than the resonance frequency fr.
  • the first AC frequency fsw1 is set to a frequency within the amplification frequency band of the first resonance frequency fr1 and equal to or higher than the first resonance frequency fr1.
  • the second AC frequency fsw2 is set to a frequency within the amplification frequency band of the second resonance frequency fr2 and equal to or higher than the second resonance frequency fr2.
  • the first AC frequency fsw1 and the second AC frequency fsw2 are stored in advance in the storage device 61 in correspondence with the first resonance frequency fr1 and the second resonance frequency fr2.
  • the AC frequency fsw is changed in the amplification frequency band in conjunction with the change of the resonance frequency fr. Therefore, even if the resonance frequency fr changes, the AC voltage is amplified by the load resonance circuit. It can be supplied to the ignition plug 4 and can efficiently generate a barrier discharge.
  • the control circuit 6 can prevent the switch 21 of the DC / AC converter 2 from suddenly generating heat by controlling the AC frequency fsw to be equal to or higher than the resonance frequency fr, and has a large cooling mechanism such as a heat sink. It is possible to prevent the conversion.
  • the control circuit 6 may bring the AC frequency fsw closer to the resonance frequency fr. .. As a result, the amplitude of the applied voltage of the spark plug 4 can be increased to generate a dielectric barrier discharge.
  • the control circuit 6 may match the AC frequency fsw with the resonance frequency fr, or may change the AC frequency fsw by the change width ⁇ fsw to gradually approach the resonance frequency fr.
  • the control circuit 6 is set so that the AC frequency fsw matches the amplification frequency band near the resonance frequency fr or the resonance frequency fr, so that there is no delay from the ignition command by the discharge start signal S1. Dielectric barrier discharge can be generated.
  • the amplitude Vp of the actual applied voltage gradually increases after the output of the AC power of the DC / AC converter 2 starts. After the output is completed, it gradually decreases.
  • the amplitude Vp of the applied voltage V of the spark plug 4 is equal to or greater than the amplitude of the output voltage of the DC power supply 7 multiplied by the turns ratio of the transformer, and is, for example, a high voltage of 1 kV or more.
  • the amplitude Vp of the applied voltage V of the spark plug 4 is set to be equal to or higher than the dielectric breakdown voltage between the electrodes of the spark plug 4, that is, equal to or higher than the voltage capable of generating the dielectric barrier discharge.
  • the instantaneous power W of the discharge of the spark plug 4 is the discharge energy per unit time of the dielectric barrier discharge generated between the electrodes of the spark plug 4.
  • the instantaneous power W of the dielectric barrier discharge can be expressed by the equation (4).
  • Cg is the capacitance of the spark plug 4 dielectric
  • C0 is the capacitance between the electrodes of the spark plug 4
  • V * is the discharge maintenance applied between the electrodes of the spark plug 4 during discharge. It is a voltage
  • Vp is an amplitude of the applied voltage V of the spark plug 4.
  • the control circuit 6 cannot adjust this to an arbitrary value. Since the capacitance C0 between the electrodes of the spark plug 4 is determined by the structure, the gas state between the electrodes, and the like, the control circuit 6 cannot adjust this to an arbitrary value. Since the discharge maintenance voltage V * during discharge is determined by the structure and the discharge state, the control circuit 6 cannot be adjusted arbitrarily. Therefore, the control circuit 6 can adjust the instantaneous power W of the discharge by the AC frequency fsw and the amplitude Vp of the applied voltage V of the spark plug 4.
  • control circuit 6 needs to adjust the amplitude Vp of the applied voltage V of the spark plug 4 within the range of the dielectric strength of the spark plug 4 or less and the discharge start voltage of the dielectric barrier discharge or more, and the discharge energy.
  • the adjustment range of is small.
  • the changeable range of the AC frequency fsw is large, the adjustment range of the discharge energy by increasing or decreasing the AC frequency fsw is large.
  • the frequency change connection circuit 3 is configured so that the resonance frequency fr can be changed, and the control circuit 6 changes the AC frequency fsw and the resonance frequency fr in conjunction with each other to change the load resonance circuit.
  • the amplification gain of is kept high.
  • the instantaneous power W of the discharge can be increased or decreased by increasing or decreasing the AC frequency fsw while maintaining the amplitude Vp of the applied voltage V of the spark plug 4 at an appropriate voltage.
  • the instantaneous power W of the discharge that is, the energy density is doubled.
  • the resonance frequency fr and the AC frequency fsw are increased by about 1/2 times in conjunction with each other, the instantaneous power W of the discharge, that is, the energy density can be reduced by about 1/2 times.
  • the total amount of discharge energy can be adjusted by increasing or decreasing the discharge period, but the instantaneous power of discharge cannot be changed. For example, when it is necessary to generate a large discharge energy in a short period of time, energy adjustment by interlocking changes of the resonance frequency fr and the AC frequency fsw is effective.
  • W1 in the timing chart of FIG. 5 is the instantaneous power of the discharge when it is changed to the first AC frequency fsw1 and the first resonance frequency fr1
  • W2 is the second AC frequency fsw2 and the second resonance frequency. It is the instantaneous power of the discharge when it is changed to fr2.
  • the control circuit 6 changes the AC frequency fsw and the resonance frequency fr based on the operating state of the internal combustion engine. According to this configuration, the AC frequency fsw and the resonance frequency fr can be appropriately changed so that the discharge energy density is suitable for the operating state of the internal combustion engine, and the combustion state can be improved or the power consumption can be reduced. ..
  • the control circuit 6 is provided with the rotation speed of the internal combustion engine, pressure information in the combustion chamber (for example, filling efficiency or pressure in the cylinder), and the compression ratio of the combustion chamber (variable compression ratio mechanism) as the operating state of the internal combustion engine. Case), the air-fuel ratio, the exhaust gas recirculation rate (EGR rate), and the presence or absence of misfire, at least one or more is used. According to this configuration, the AC frequency fsw and the resonance frequency fr can be changed accurately and appropriately based on the operating state of the internal combustion engine related to the combustion state.
  • the control circuit 6 determines whether or not an increase in the instantaneous power of the discharge is necessary based on the operating state of the internal combustion engine, and if it is determined that an increase in the instantaneous power of the discharge is necessary, the instantaneous power of the discharge is determined.
  • the AC frequency fsw and the resonance frequency fr are made higher than when it is determined that the increase is not necessary.
  • the control circuit 6 changes the AC frequency fsw and the resonance frequency fr to the second AC frequency fsw2 and the second resonance frequency fr2 when it is determined that the instantaneous power of the discharge needs to be increased.
  • the AC frequency fsw and the resonance frequency fr are changed to the first AC frequency fsw1 and the first resonance frequency fr1.
  • the frequency switching signal S_flag in FIG. 5 is a signal representing a determination result of the necessity of increasing the instantaneous power of discharge.
  • the control circuit 6 determines that the instantaneous power of the discharge needs to be increased, the frequency switching signal S_flag is set to high (1), and when it is determined that the instantaneous power of the discharge does not need to be increased, the frequency is set.
  • the switching signal S_flag is set to low (0).
  • the instantaneous power of discharge when it is necessary to increase the instantaneous power of discharge, the instantaneous power of discharge can be increased and the ignitability by barrier discharge can be improved.
  • the discharge period cannot be increased, a large amount of discharge energy can be input to the air-fuel mixture, so that the ignitability can be improved.
  • the amount of chemically active species generated can be increased by increasing the discharge energy, which contributes to the promotion of combustion after ignition.
  • the instantaneous power of discharge when it is not necessary to increase the instantaneous power of discharge, the instantaneous power of discharge can be reduced to reduce the power consumption.
  • control circuit 6 determines the necessity of increasing the instantaneous power of the discharge based on the signal input from the external device to the control circuit 6. You may.
  • the control circuit 6 detects a misfire of the internal combustion engine
  • the AC frequency fsw and the resonance frequency fr are set higher than when the misfire is not detected.
  • the presence or absence of misfire is determined based on the fluctuation information of the crank angle, the detection information of the in-cylinder pressure sensor, the detection information of the ion current detection sensor, and the like. According to this configuration, when a misfire is detected, the ignitability of the air-fuel mixture can be improved and the occurrence of misfire can be suppressed by increasing the instantaneous power of the discharge.
  • control circuit 6 When the control circuit 6 detects a misfire of the internal combustion engine, it changes the AC frequency fsw and the resonance frequency fr to the second AC frequency fsw2 and the second resonance frequency fr2, and does not detect the misfire of the internal combustion engine. Changes the AC frequency fsw and the resonance frequency fr to the first AC frequency fsw1 and the first resonance frequency fr1.
  • control circuit 6 determines whether or not the condition is difficult to ignite based on the operating state of the internal combustion engine, and when it is determined that the condition is difficult to ignite, the AC frequency fsw and the resonance frequency fr are set. Set it higher than when it is judged that it is not difficult to ignite.
  • the control circuit 6 determines whether or not it is difficult to ignite by comparing each of the operating states of the internal combustion engine with the determination value of each operating state.
  • the control circuit 6 has an EGR rate when the rotation speed is lower than the judgment value of the rotation speed, when the filling efficiency is lower than the judgment value of the filling efficiency, and when the compression ratio is lower than the judgment value of the compression ratio. , If it is higher than the judgment value of the EGR rate, or if the air-fuel ratio is higher than the judgment value of the air-fuel ratio, it is judged that it is difficult to ignite, and in other cases, it is judged that it is not difficult to ignite. do.
  • Each determination value is set at the boundary between an operating state in which the possibility of misfire is high and an operating state in which the possibility of misfire is not high unless the instantaneous power of discharge is increased. It should be noted that a plurality of operating states may be determined in a complex manner. For example, the control circuit 6 determines that ignition is difficult when the rotation speed is lower than the determination value of the rotation speed and the filling efficiency is lower than the determination value of the filling efficiency.
  • the AC frequency fsw and the resonance frequency fr are changed to the second AC frequency fsw2 and the second resonance frequency fr2, and it is determined that the ignition is not difficult.
  • the AC frequency fsw and the resonance frequency fr are changed to the first AC frequency fsw1 and the first resonance frequency fr1.
  • control circuit 6 determines whether or not the ignition is easy to ignite based on the operating state of the internal combustion engine, and when it is determined that the ignition is easy to ignite, the AC frequency and the resonance frequency are set to the AC frequency and the resonance frequency. It may be lower than when it is judged that the condition is not easy to ignite.
  • the control circuit 6 determines whether or not it is in an easily ignited state by comparing each of the operating states of the internal combustion engine with the determination value of each operating state.
  • the control circuit 6 has an EGR rate when the rotation speed is within the judgment range of the rotation speed, when the filling efficiency is higher than the judgment value of the filling efficiency, and when the compression ratio is higher than the judgment value of the compression ratio. , If it is lower than the judgment value of the EGR rate, or if the air-fuel ratio is within the judgment range of the air-fuel ratio, it is judged that the state is easy to ignite, and in other cases, it is judged that the state is not easy to ignite. do.
  • Each determination value is set at the boundary between an operating state in which a misfire is unlikely to occur and an operating state in which a misfire is likely to occur even if the instantaneous power of the discharge is reduced. A part of the operating state may be determined.
  • the control circuit 6 determines that the ignition is easy to ignite, the control circuit 6 changes the AC frequency fsw and the resonance frequency fr to the first AC frequency fsw1 and the first resonance frequency fr1 and determines that the ignition is not easy to ignite. In this case, the AC frequency fsw and the resonance frequency fr are changed to the second AC frequency fsw2 and the second resonance frequency fr2.
  • the control circuit 6 increases the AC frequency fsw and then increases the resonance frequency fr when increasing the resonance frequency fr and the AC frequency fsw during the output of the AC voltage of the DC / AC converter 2.
  • the delay time from increasing the AC frequency fsw to increasing the resonance frequency fr is set to a time during which the AC frequency fsw does not become lower than the resonance frequency fr.
  • control circuit 6 increases the AC frequency fsw from the first AC frequency fsw1 to the second AC frequency fsw2, and then turns the first switch circuit 321 from off to on to set the resonance frequency fr.
  • the first resonance frequency fr1 is increased to the second resonance frequency fr2.
  • control circuit 6 lowers the resonance frequency fr and then lowers the AC frequency fsw when lowering the resonance frequency fr and the AC frequency fsw during the output of the AC voltage of the DC / AC converter 2. ..
  • the delay time from lowering the resonance frequency fr to lowering the AC frequency fsw is set to a time during which the AC frequency fsw does not become lower than the resonance frequency fr.
  • control circuit 6 turns the first switch circuit 321 from on to off, lowers the resonance frequency fr from the second resonance frequency fr2 to the first resonance frequency fr1, and then sets the AC frequency fsw.
  • the second AC frequency fsw2 is reduced to the first AC frequency fsw1.
  • control circuit 6 stops the output of the AC voltage of the DC / AC converter 2 when changing the AC frequency fsw and the resonance frequency fr, and changes the resonance frequency fr while the output of the AC voltage is stopped.
  • the AC frequency fsw may be changed when the output of the AC voltage is restarted.
  • the resonance frequency fr is already lower than the AC frequency fsw, so that the AC frequency fsw is increased. It is possible to prevent a period of time lower than the resonance frequency fr. Therefore, it is possible to prevent the AC frequency fsw from becoming lower than the resonance frequency fr and the output current of the DC / AC converter 2 leading to the output voltage and becoming a phase.
  • each switch 21 of the DC / AC converter 2 is turned on and off, it is possible to prevent a recovery current from flowing through a diode connected in antiparallel to each switch 21 to generate heat. Therefore, it is possible to prevent the switch 21 of the DC / AC converter 2 from generating heat, and it is possible to prevent the cooling mechanism such as the heat sink from becoming large in size.
  • control circuit 6 sets the frequency switching signal S_flag to low (0), sets the switch drive signal S3 to low (0), turns off the first switch circuit 321 and sets the resonance frequency fr. The first resonance frequency is changed to fr1. Further, the control circuit 6 sets the AC frequency fsw to the first AC frequency fsw1.
  • the control circuit 6 switches the discharge start signal S1 from 0 to 1 at a time t0 before a predetermined time of the discharge start time, and switches the discharge start signal S1 from 1 to 0 at the time t1 of the discharge start time.
  • the control circuit 6 switches the discharge period signal S2 from 0 to 1.
  • the control circuit 6 switches the discharge period signal S2 from 1 to 0 at the time t2 when the discharge time determined based on the operating state of the internal combustion engine has elapsed.
  • the control circuit 6 controls the switch 21 of the DC / AC converter 2 on and off during the period from time t1 to time t2 when the discharge period signal S2 is 1, and causes the DC / AC converter 2 to operate.
  • the AC voltage of the first AC frequency fsw1 is output and supplied to the ignition plug 4. Since the first AC frequency fsw1 is set in the amplification frequency band near the first resonance frequency fr1, the AC voltage V amplified by the frequency change connection circuit 3 is applied to the spark plug 4. A dielectric barrier discharge is generated in the spark plug 4, and the air-fuel mixture is ignited.
  • the control circuit 6 stops the on / off control of the switch 21 of the DC / AC converter 2 and stops the output of the AC power during the period when the discharge period signal S2 is 0.
  • the control circuit 6 switches the discharge start time, discharge period, and frequency of the next combustion cycle based on the operating state of the internal combustion engine.
  • Determine control parameters such as signal S_flag.
  • the control circuit 6 detects a misfire of the internal combustion engine in the previous combustion, or determines that it is difficult to ignite based on the operating state of the internal combustion engine, so that the instantaneous power of the discharge increases. It is determined that it is necessary, and the frequency switching signal S_flag is set to 1.
  • the control circuit 6 sets the AC frequency fsw and the resonance frequency fr based on the frequency switching signal S_flag. Since the frequency switching signal S_flag is set to 1, the control circuit 6 sets the AC frequency fsw to the second AC frequency fsw2, switches the switch drive signal S3 from 0 to 1, and turns on the first switch circuit 321. The resonance frequency fr is changed to the second resonance frequency fr2.
  • the control circuit 6 switches the discharge start signal S1 from 0 to 1 at a time t5 before a predetermined time of the discharge start time, and switches the discharge start signal S1 from 1 to 0 at the time t6 of the discharge start time.
  • the control circuit 6 switches the discharge period signal S2 from 0 to 1.
  • the control circuit 6 switches the discharge period signal S2 from 1 to 0 at the time t7 when the discharge time has elapsed.
  • the control circuit 6 controls the switch 21 of the DC / AC converter 2 on and off during the period from time t6 to time t7 when the discharge period signal S2 is 1, and causes the DC / AC converter 2 to operate.
  • the AC voltage of the second AC frequency fsw2 is output and supplied to the ignition plug 4. Since the second AC frequency fsw2 is set in the amplification frequency band near the second resonance frequency fr2, the AC voltage V amplified by the frequency change connection circuit 3 is applied to the spark plug 4.
  • a dielectric barrier discharge is generated in the spark plug 4, and the air-fuel mixture is ignited. Since the resonance frequency fr is increased, the instantaneous power of the discharge is increased, and the ignitability of the air-fuel mixture can be improved in a state where ignition is difficult.
  • the determination timing of the control parameter of the ignition control of the next combustion cycle has come, so that the control circuit 6 switches the discharge start time, discharge period, and frequency of the next combustion cycle based on the operating state of the internal combustion engine.
  • Determine control parameters such as signal S_flag.
  • the control circuit 6 did not detect the misfire of the internal combustion engine in the previous combustion, and determined that it was not in a state where it was difficult to ignite based on the operating state of the internal combustion engine. It is determined that it is not necessary, and the frequency switching signal S_flag is set to 0.
  • the control circuit 6 sets the AC frequency fsw and the resonance frequency fr based on the frequency switching signal S_flag. Since the frequency switching signal S_flag is set to 0 in the control circuit 6, the AC frequency fsw is set to the first AC frequency fsw1, the switch drive signal S3 is switched from 1 to 0, and the first switch circuit 321 is turned off. The resonance frequency fr is changed to the first resonance frequency fr1.
  • the control circuit 6 switches the discharge start signal S1 from 0 to 1 at a time t10 before a predetermined time of the discharge start time, and switches the discharge start signal S1 from 1 to 0 at the time t11 of the discharge start time.
  • the control circuit 6 switches the discharge period signal S2 from 0 to 1.
  • the control circuit 6 switches the discharge period signal S2 from 1 to 0 at the time t12 when the discharge time has elapsed.
  • the control circuit 6 controls the switch 21 of the DC / AC converter 2 on and off during the period from time t11 to time t12 when the discharge period signal S2 is 1, and causes the DC / AC converter 2 to perform on / off control.
  • the AC voltage of the first AC frequency fsw1 is output and supplied to the ignition plug 4. Since the first AC frequency fsw1 is set in the amplification frequency band near the first resonance frequency fr1, the AC voltage amplified by the frequency change connection circuit 3 is applied to the spark plug 4. A dielectric barrier discharge is generated in the spark plug 4, and the air-fuel mixture is ignited. Since it is not in a state where it is difficult to ignite, the resonance frequency fr is lowered and the instantaneous power of discharge is lowered. Therefore, the discharge energy can be reduced and the power consumption can be reduced.
  • the control circuit 6 changed the AC frequency fsw and the resonance frequency fr for each combustion cycle, but it does not have to change for each combustion cycle.
  • the control circuit 6 may change the AC frequency fsw and the resonance frequency fr during the discharge period.
  • the control circuit 6 does not change the resonance frequency fr during the discharge period, the AC frequency fsw may be changed within the amplification frequency band of the resonance frequency fr.
  • the frequency change connection circuit 3 does not have to be provided with the transformer 33.
  • the full bridge circuit cannot be used for the DC / AC converter 2. .. Therefore, a half-bridge circuit or the like is used for the DC / AC converter 2.
  • the DC / AC converter 2 has a potential floating from the ground, so that the DC / AC converter 2 A full bridge circuit is used for 2.
  • the ignition system according to the second embodiment will be described with reference to the drawings. The description of the same components as in the first embodiment will be omitted.
  • the basic configuration and processing of the ignition system according to the present embodiment are the same as those of the first embodiment.
  • the frequency change connection circuit 3 changes the resonance frequency fr in two steps, but in the present embodiment, the frequency change connection circuit 3 changes the resonance frequency fr in three or more steps. It is different from the first embodiment.
  • FIG. 7 is a schematic circuit diagram of the frequency change connection circuit 3 according to the present embodiment. Similar to the first embodiment, the frequency change connection circuit 3 includes a first inductor 31, a transformer 33, and a second inductor 34. In the present embodiment, the frequency change connection circuit 3 includes a second switch circuit 322 and an impedance element 35 connected in parallel to the first inductor 31 in addition to the first switch circuit 321 connected in parallel to the first inductor 31. I have. The second switch circuit 322 and the impedance element 35 are connected in series. The impedance element 35 has an inductance or a capacitance. Hereinafter, a case where the impedance element 35 has an inductance L1 equivalent to that of the first inductor 31 will be described.
  • the second switch circuit 322 may be a bidirectional switch or a mechanical switch in which two semiconductor switches are connected in series, similarly to the first switch circuit 321. The second switch circuit 322 is turned on or off by the control circuit 6 in the same manner as the first switch circuit 321.
  • the entire parallel connection circuit of the first inductor 31, the first switch circuit 321 and the second switch circuit 322 is turned on or off by combining the first switch circuit 321 and the second switch circuit 322.
  • the inductor can be changed in three stages, and the resonance frequency fr can be changed in three stages.
  • the inductor of the entire parallel connection circuit becomes the inductance L1 of the first inductor 31, and the resonance frequency fr is the same as that of the first embodiment.
  • the same first resonance frequency fr1 is obtained.
  • the inductor of the entire parallel connection circuit becomes 0, and the resonance frequency fr becomes the same second resonance as in the first embodiment.
  • the frequency becomes fr2.
  • the inductor of the entire parallel connection circuit becomes L1 / 2, which is a combination of the first inductor 31 and the impedance element 35, and the resonance frequency fr. Is the third resonance frequency fr3.
  • the third resonance frequency fr3 becomes a frequency between the first resonance frequency fr1 and the second resonance frequency fr2 (fr1 ⁇ fr3 ⁇ fr2).
  • FIG. 9 shows a conceptual diagram of the interlocking change of the frequency.
  • the horizontal axis represents the frequency, and the vertical axis represents the gain of the amplitude of the AC voltage applied to the spark plug 4 with respect to the amplitude of the AC voltage output from the DC / AC converter 2.
  • the gain is larger than 1, it indicates that the gain is amplified by the load resonance circuit.
  • the curve A of FIG. 9 shows the characteristics of each frequency and the amplification gain of the load resonance circuit when the load resonance circuit is changed to the first resonance frequency fr1, and the curve B shows the characteristics of the load resonance circuit of the second resonance circuit.
  • fsw1 is a first AC frequency set corresponding to the first resonance frequency fr1
  • fsw2 is a second AC frequency fsw set corresponding to the second resonance frequency fr2.
  • fsw3 is a third AC frequency fsw that is set corresponding to the third resonance frequency fr3.
  • the control circuit 6 changes the AC frequency fsw within the amplification frequency band in the vicinity of each resonance frequency fr. Further, the control circuit 6 changes the AC frequency fsw to a frequency within the amplification frequency band and equal to or higher than the resonance frequency fr.
  • the first AC frequency fsw1 is set to a frequency within the amplification frequency band of the first resonance frequency fr1 and equal to or higher than the first resonance frequency fr1.
  • the second AC frequency fsw2 is set to a frequency within the amplification frequency band of the second resonance frequency fr2 and equal to or higher than the second resonance frequency fr2.
  • the third AC frequency fsw3 is set to a frequency within the amplification frequency band of the third resonance frequency fr3 and equal to or higher than the third resonance frequency fr3.
  • the first AC frequency fsw1, the second AC frequency fsw2, and the third AC frequency fsw3 correspond to the first resonance frequency fr1, the second resonance frequency fr2, and the third resonance frequency fr3. It is stored in advance in the storage device 61.
  • the instantaneous power W3 of the third discharge when the third AC frequency fsw3 and the third resonance frequency fr3 is the instantaneous power W1 of the first discharge when the first AC frequency fsw1 and the first resonance frequency fr1. Greater than, and less than the instantaneous power W2 of the second discharge at the second AC frequency fsw2 and the second resonance frequency fr2 (W1 ⁇ W3 ⁇ W2).
  • control circuit 6 determines the required instantaneous power of the discharge in three stages based on the operating state of the internal combustion engine, and determines the AC frequency fsw and the resonance frequency fr in three stages based on the determination result. Change to. It is possible to finely improve the combustion state and reduce the power consumption.
  • the AC frequency fsw and the resonance frequency fr are set to the second AC frequency fsw2 and the second AC frequency fsw2.
  • the resonance frequency fr2 is changed to 2 and the control circuit 6 determines that the ignition frequency is easy to ignite based on the operating state of the internal combustion engine
  • the AC frequency fsw and the resonance frequency fr are changed to the first AC frequency fsw1 and the first AC frequency fsw1.
  • the resonance frequency fr1 is changed to 1, and in other cases, the AC frequency fsw and the resonance frequency fr are changed to the third AC frequency fsw3 and the third resonance frequency fr3.
  • the frequency change connection circuit 3 may include a switch circuit connected in parallel with other inductance elements, or may change the resonance frequency fr in three or more steps.
  • a switch circuit may be connected in parallel to the primary winding 33a of the transformer 33, the secondary winding 33b of the transformer 33, the second inductor 34, and the spark plug 4.
  • a switch connected in series with the first inductor 31 may be provided, and the control circuit 6 may be turned on and off as necessary.
  • the ignition system according to the third embodiment will be described with reference to the drawings. The description of the same components as in the first embodiment will be omitted.
  • the basic configuration and processing of the ignition system according to the present embodiment are the same as those of the first embodiment.
  • the control circuit 6 generates a dielectric barrier discharge for ignition, but in the present embodiment, the control circuit 6 is a dielectric for generating a chemically active species (radical). It differs from the first embodiment in that a barrier discharge is also generated.
  • the molecules contained in the air-fuel mixture receive discharge energy when flowing in the vicinity of the spark plug 4. Therefore, the discharge energy given to each molecule of the air-fuel mixture is increased or decreased by increasing or decreasing the instantaneous power of discharge (discharging energy density) of the spark plug 4.
  • barrier discharge in addition to generating radicals to promote combustion after ignition, barrier discharge can directly ignite the fuel by locally generating strong radicals and reacting with the fuel.
  • control circuit 6 determines whether to generate radicals as combustion support to promote combustion after ignition or to directly ignite the fuel according to the operating state of the internal combustion engine, and based on the determination result, the alternating current The frequency fsw and the resonance frequency fr are changed to change the instantaneous power of the discharge.
  • control circuit 6 has a DC / DC / The AC converter 2 is made to output AC power. Then, the control circuit 6, the AC frequency fsw and the resonance frequency fr in the pre-ignition period, and the AC frequency fsw and the resonance frequency fr in the ignition period are changed.
  • the exhaust gas recirculation rate is high, or the like, the ignitability of the air-fuel mixture is poor. Can be improved.
  • the control circuit 6 makes the AC frequency fsw and the resonance frequency fr of the ignition period higher than the AC frequency fsw and the resonance frequency fr of the pre-ignition period.
  • control circuit 6 changes the AC frequency fsw and the resonance frequency fr in the pre-ignition period to the first AC frequency fsw1 and the first resonance frequency fr1, and changes the AC frequency fsw and the resonance frequency in the ignition period.
  • the fr is changed to the second AC frequency fsw2 and the second resonance frequency fr2.
  • the horizontal axis shows time
  • the vertical axis shows each signal, frequency state, voltage, and energy per ignition.
  • the signal is 1, it means that it is high, and when it is 0, it means that it is low.
  • the control circuit 6 switches the discharge start signal S1 from 0 to 1 at a time t10 before a predetermined time of the discharge start time, and switches the discharge start signal S1 from 1 to 0 at the time t11 of the discharge start time.
  • the control circuit 6 switches the discharge period signal S2 from 0 to 1.
  • the control circuit 6 determines the pre-ignition period based on the operating state of the internal combustion engine, and sets the start time of the pre-ignition period to the discharge start time. Then, the control circuit 6 switches the discharge period signal S2 from 1 to 0 at the time t12 of the end time of the pre-ignition period.
  • the control circuit 6 sets the frequency switching signal S_flag to low (0), sets the switch drive signal S3 to low (0), turns off the first switch circuit 321 and resonates frequency fr. Is changed to the first resonance frequency fr1.
  • the control circuit 6 controls the switch 21 of the DC / AC converter 2 on and off during the pre-ignition period from time t11 to time t12 when the discharge period signal S2 is 1, and controls the DC / AC converter 2.
  • 2 is made to output the AC voltage of the first AC frequency fsw1 and is supplied to the ignition plug 4. Since the first AC frequency fsw1 is set in the amplification frequency band near the first resonance frequency fr1, the AC voltage amplified by the frequency change connection circuit 3 is applied to the spark plug 4.
  • a dielectric barrier discharge of relatively low instantaneous discharge power is generated in the spark plug 4, and radicals are generated in air or a mixture of air and fuel.
  • the control circuit 6 changes the frequency switching signal S_flag from 0 to 1 due to the barrier discharge during the ignition period.
  • the control circuit 6 sets the frequency switching signal S_flag to 1, so the AC frequency fsw is set to the second AC frequency fsw2, and the switch drive signal S3 is changed from 0 to 1. Switching, the first switch circuit 321 is turned on, and the resonance frequency fr is changed to the second resonance frequency fr2.
  • the control circuit 6 determines the ignition period based on the operating state of the internal combustion engine. The ignition period may be extended when a misfire is detected.
  • the control circuit 6 controls the switch 21 of the DC / AC converter 2 to be turned on and off during the ignition period from time t15 to time t16 when the discharge period signal S2 is 1, and causes the DC / AC converter 2 to have a second alternating current.
  • An AC voltage having a frequency of fsw2 is output and supplied to the ignition plug 4. Since the second AC frequency fsw2 is set in the amplification frequency band near the second resonance frequency fr2, the AC voltage amplified by the frequency change connection circuit 3 is applied to the spark plug 4.
  • a dielectric barrier discharge of relatively high instantaneous discharge power is generated in the spark plug 4, and the air-fuel mixture is ignited.
  • the control circuit 6 repeatedly executes the process from the time t10 to the time t16 for each combustion cycle.
  • the output of the AC voltage of the DC / AC converter 2 is stopped during the period from time t12 to time t15 between the pre-ignition period and the ignition period. That is, the control circuit 6 stops the output of the AC voltage of the DC / AC converter 2 when changing the AC frequency fsw and the resonance frequency fr, and changes the resonance frequency fr while the output of the AC voltage is stopped. When the output of the AC voltage is restarted, the AC frequency fsw is changed.
  • the AC voltage output stop period should be set to the period until the current flowing in the load resonance circuit before the stop is attenuated to 1/10 or less.
  • the control circuit 6 sets the AC frequency fsw when increasing the resonance frequency fr and the AC frequency fsw during the output of the AC voltage of the DC / AC converter 2. After increasing, the resonance frequency fr may be increased.
  • control circuit 6 changes the AC frequency fsw from the first AC frequency fsw1 to the second AC frequency fsw2 immediately before the ignition timing, and changes the resonance frequency fr from the first resonance frequency fr1 to the second at the ignition timing.
  • the resonance frequency is changed to fr2.

Abstract

Provided is a dielectric barrier discharge type ignition system capable of changing the frequency of an AC voltage applied to a spark plug and changing a discharge energy density while amplifying the AC voltage applied to the spark plug via resonance of a resonance circuit. The ignition system comprises a frequency change connection circuit (3) that has a frequency change circuit (32), which changes a resonance frequency fr of the entire circuit, and that connects a DC/AC converter (2) and a spark plug (4). The ignition system outputs an AC voltage of an AC frequency (fsw) to the DC/AC converter (2), changes a resonance frequency (fr) by controlling the frequency change circuit (32), and changes an AC frequency (fr).

Description

点火システムIgnition system
 本願は、点火システムに関するものである。 This application relates to an ignition system.
 車両等に搭載される内燃機関の燃費を向上させる手法として、希薄混合気を燃焼させる希薄燃焼方式、排気ガスを燃焼室内に再循環させる排気ガス再循環方式、又は燃焼室を高圧縮比にする方式などが開発されている。しかし、いずれの方式も燃料への点火が難しいという課題があり、着火性の向上が要求されている。 As a method for improving the fuel efficiency of an internal combustion engine mounted on a vehicle, a lean combustion method for burning a lean mixture, an exhaust gas recirculation method for recirculating exhaust gas in a combustion chamber, or a high compression ratio in the combustion chamber. The method etc. are being developed. However, both methods have a problem that it is difficult to ignite the fuel, and improvement in ignitability is required.
 点火装置の着火性向上要求に対して、非平衡プラズマである誘電体バリア放電で化学的活性種を発生させ、着火後の燃焼性促進、又は燃料への直接点火を実現する点火システム提案されている(特許文献1)。燃焼性促進では、点火時期の前において、点火しない程度のエネルギーを持つ非平衡プラズマを発生させ、多くの化学的活性種を発生させる。直接点火では、点火時期おいて、高エネルギーを投入することによって、燃料を直接的に燃焼させる。 In response to the demand for improved ignitability of ignition devices, an ignition system has been proposed that generates chemically active species by dielectric barrier discharge, which is a non-equilibrium plasma, and promotes flammability after ignition or directly ignites fuel. (Patent Document 1). In flammability promotion, before the ignition timing, a non-equilibrium plasma having energy that does not ignite is generated, and many chemically active species are generated. In direct ignition, the fuel is directly burned by inputting high energy at the ignition timing.
特許第6482684号Patent No. 64826284 特許第4924275号Patent No. 4924275 特開平9-172788号公報Japanese Unexamined Patent Publication No. 9-172788
 上述の通り、誘電体バリア放電を用いた点火装置は、目的によって放電に必要な放電エネルギーが異なるため、目的、タイミングに合わせて放電エネルギーを調整することが望ましい。誘電体バリア放電の放電エネルギーは、一般的に、点火プラグなどの構造及び電極間の環境等で定まる負荷容量、負荷印加電圧の最大値、放電維持電圧、負荷印加電圧の周波数、負荷への電圧印加時間によって定まる。負荷容量と放電維持電圧は、装置構造及び動作環境によって自ずと決定される。そのため、放電エネルギーの調整に使用可能なパラメータは、負荷印加電圧の最大値と周波数、及び負荷への電圧印加時間となる。 As described above, since the discharge energy required for discharge differs depending on the purpose of the ignition device using the dielectric barrier discharge, it is desirable to adjust the discharge energy according to the purpose and timing. The discharge energy of a dielectric barrier discharge is generally the load capacity determined by the structure of a spark plug and the environment between electrodes, the maximum value of the load applied voltage, the discharge maintenance voltage, the frequency of the load applied voltage, and the voltage to the load. Determined by the application time. The load capacity and discharge maintenance voltage are naturally determined by the device structure and operating environment. Therefore, the parameters that can be used to adjust the discharge energy are the maximum value and frequency of the load applied voltage and the voltage application time to the load.
 特許文献2では、所定の点火プラグを使用した点火装置において、出力交流電圧の電圧値、又は波数を制御することによって、放電エネルギーを調整することが提案されている。ここで波数は、交流電圧周波数と電圧印加時間から定まる。特許文献2には具体的な電気回路の構成は記述されていないが、高電圧出力の交流電源には非常に大きな巻き数比のトランス、多数の半導体スイッチが必要と考えられ、車両等の空間的制約の大きい場所への搭載は困難である。 Patent Document 2 proposes adjusting the discharge energy by controlling the voltage value of the output AC voltage or the wave number in an ignition device using a predetermined spark plug. Here, the wave number is determined from the AC voltage frequency and the voltage application time. Although Patent Document 2 does not describe a specific configuration of an electric circuit, it is considered that a transformer with a very large turn ratio and a large number of semiconductor switches are required for an AC power supply with a high voltage output, and a space for a vehicle or the like. It is difficult to install it in a place with large restrictions.
 高電圧出力の交流電源を比較的小型に構成する電源システムとして、特許文献3のように共振回路を利用したものが提案されている。この電源システムでは、供給する交流電源の周波数を、負荷のコイル及びコンデンサの直列共振周波数またはその近傍に設定し、負荷の共振によって電極に大きな直列共振電圧を発生させている。しかし、交流電源が負荷に印加可能な周波数は共振周波数近傍圧のみとなるため、誘電体バリア点火装置に適用した場合には負荷共振回路の構成を変更しない限り、周波数による放電エネルギーの調整ができない。その結果、誘電体バリア放電の放電エネルギー調整は、点火プラグへの交流電圧の印加時間と印加電圧の最大値によってのみ調整される。印加電圧の高電圧化は、絶縁距離拡大、電源出力向上が必要であり、装置体積の増大要因となるという問題がある。したがって、放電エネルギーの調整には、主に、電圧印加時間の増減が用いられる。その場合は、印加時間が長ければ電極間に大きい放電エネルギーが投入され、印加期間が短ければ電極間に小さい放電エネルギーが投入される。そのため、例えば、短時間に大きな放電エネルギーを投入する等の自由度の高い放電エネルギー出力ができない。その結果、局所的な高エネルギー投入を必要とする直接点火が不可能となる可能性がある。 As a power supply system for configuring an AC power supply with a high voltage output in a relatively small size, a system using a resonance circuit as in Patent Document 3 has been proposed. In this power supply system, the frequency of the AC power supply to be supplied is set to the series resonance frequency of the coil and the capacitor of the load or its vicinity, and a large series resonance voltage is generated in the electrode by the resonance of the load. However, since the frequency that the AC power supply can apply to the load is only the pressure near the resonance frequency, when applied to the dielectric barrier ignition device, the discharge energy cannot be adjusted by the frequency unless the configuration of the load resonance circuit is changed. .. As a result, the discharge energy adjustment of the dielectric barrier discharge is adjusted only by the application time of the AC voltage to the spark plug and the maximum value of the applied voltage. Increasing the applied voltage requires an increase in the insulation distance and an improvement in the power supply output, which causes a problem of increasing the volume of the device. Therefore, the increase / decrease in the voltage application time is mainly used for adjusting the discharge energy. In that case, if the application time is long, a large discharge energy is input between the electrodes, and if the application period is short, a small discharge energy is input between the electrodes. Therefore, for example, it is not possible to output discharge energy with a high degree of freedom, such as inputting a large amount of discharge energy in a short time. As a result, direct ignition, which requires a local high energy input, may not be possible.
 そこで、本願では、共振回路の共振により点火プラグに印加する交流電圧を増幅させつつ、点火プラグに印加する交流電圧の周波数を変化させ、放電エネルギー密度を変化させることができる誘電体バリア放電型の点火システムを提供することを目的としている。 Therefore, in the present application, a dielectric barrier discharge type capable of changing the frequency of the AC voltage applied to the spark plug and changing the discharge energy density while amplifying the AC voltage applied to the spark plug by the resonance of the resonance circuit. It is intended to provide an ignition system.
 本願に係る点火システムは、
 直流電源から供給された直流電力を交流電力に変換する、スイッチを有するDC/AC変換器と、
 一対の電極、及び前記一対の電極の間に配置された誘電体を有し、内燃機関の燃焼室に配置される点火プラグと、
 前記DC/AC変換器と前記点火プラグとの間を接続し、前記DC/AC変換器から前記点火プラグまでの回路全体の共振周波数を変化させる周波数変更回路を有する周波数変更接続回路と、
 前記DC/AC変換器のスイッチをオンオフ制御して、前記DC/AC変換器に交流周波数の交流電圧を出力させ、前記点火プラグに供給させる制御回路と、を備え、
 前記制御回路は、前記周波数変更接続回路の前記周波数変更回路を制御して前記共振周波数を変化させ、前記交流周波数を変化させるものである。
The ignition system according to the present application is
A DC / AC converter with a switch that converts DC power supplied from a DC power supply to AC power,
A spark plug having a pair of electrodes and a dielectric arranged between the pair of electrodes and arranged in the combustion chamber of an internal combustion engine.
A frequency change connection circuit that connects between the DC / AC converter and the spark plug and has a frequency change circuit that changes the resonance frequency of the entire circuit from the DC / AC converter to the spark plug.
It is provided with a control circuit that controls the on / off of the switch of the DC / AC converter, causes the DC / AC converter to output an AC voltage of an AC frequency, and supplies the AC voltage to the spark plug.
The control circuit controls the frequency change circuit of the frequency change connection circuit to change the resonance frequency and change the AC frequency.
 本願に係る点火システムによれば、DC/AC変換器と点火プラグとの間を接続する接続回路に、共振周波数を変化させる周波数変更回路が設けられている。そして、制御回路は、周波数変更回路を制御して共振周波数を変化させ、交流周波数を変化させるので、共振周波数及び交流周波数を変化させ、共振回路の共振により点火プラグに印加する交流電圧を増幅させつつ、点火プラグに印加する交流電圧の交流周波数を変化させ、放電エネルギー密度を変化させることができる。 According to the ignition system according to the present application, a frequency changing circuit for changing the resonance frequency is provided in the connection circuit connecting the DC / AC converter and the spark plug. Then, the control circuit controls the frequency changing circuit to change the resonance frequency and change the AC frequency. Therefore, the resonance frequency and the AC frequency are changed, and the AC voltage applied to the ignition plug is amplified by the resonance of the resonance circuit. At the same time, the AC frequency of the AC voltage applied to the ignition plug can be changed to change the discharge energy density.
実施の形態1に係る点火システムの概略回路図である。It is a schematic circuit diagram of the ignition system which concerns on Embodiment 1. FIG. 実施の形態1に係る内燃機関に取り付けられた点火プラグの模式図である。It is a schematic diagram of the spark plug attached to the internal combustion engine which concerns on Embodiment 1. FIG. 実施の形態1に係るバリア点火プラグの概略的な断面図である。FIG. 5 is a schematic cross-sectional view of the barrier spark plug according to the first embodiment. 実施の形態1に係る制御回路のハードウェア構成図である。It is a hardware block diagram of the control circuit which concerns on Embodiment 1. FIG. 実施の形態1に係る制御回路の処理を説明するためのタイミングチャートである。It is a timing chart for demonstrating the processing of the control circuit which concerns on Embodiment 1. FIG. 実施の形態1に係る共振周波数及び交流周波数の設定を説明するための図である。It is a figure for demonstrating the setting of the resonance frequency and the AC frequency which concerns on Embodiment 1. FIG. 実施の形態2に係る周波数変更接続回路の概略回路図である。It is a schematic circuit diagram of the frequency change connection circuit which concerns on Embodiment 2. FIG. 実施の形態2に係るスイッチのオンオフパターンを説明する図である。It is a figure explaining the on / off pattern of the switch which concerns on Embodiment 2. FIG. 実施の形態2に係る共振周波数及び交流周波数の設定を説明するための図である。It is a figure for demonstrating the setting of the resonance frequency and the AC frequency which concerns on Embodiment 2. FIG. 実施の形態3に係る制御回路の処理を説明するためのタイミングチャートである。It is a timing chart for demonstrating the processing of the control circuit which concerns on Embodiment 3.
 以下、本願の点火システムについて、図を参照して詳細に説明する。なお、各図中、同一符号は、同一または相当部分を示すものとする。 Hereinafter, the ignition system of the present application will be described in detail with reference to the drawings. In each figure, the same reference numerals indicate the same or corresponding parts.
1.実施の形態1
 実施の形態1にかかる点火システムについて、図面を参照して説明する。図1は、実施の形態1の点火システムの概略回路図である。点火システムは、DC/AC変換器2、点火プラグ4、周波数変更接続回路3、及び制御回路6を備えている。
1. 1. Embodiment 1
The ignition system according to the first embodiment will be described with reference to the drawings. FIG. 1 is a schematic circuit diagram of the ignition system of the first embodiment. The ignition system includes a DC / AC converter 2, a spark plug 4, a frequency change connection circuit 3, and a control circuit 6.
1-1.内燃機関1
 図2に示すように、内燃機関1は、シリンダ11内をピストン12が上下運動するレシプロ型のガソリンエンジンとされている。シリンダ11及びピストン12内の空間が燃焼室13とされており、シリンダ11の頂部に点火プラグ4が配置されている。また、シリンダ11の頂部に、吸気管14から燃焼室13内に吸入される吸入空気量を調節する吸気バルブ15と、燃焼室13から排気管16に排出される排気ガス量を調節する排気バルブ17と、が設けられている。本実施の形態では、シリンダ11の頂部に、燃料を燃焼室13内に噴射するインジェクタ18が備えられている。なお、吸気管14にインジェクタ18が備えられてもよい。後述するように、内燃機関1は、制御回路6により制御される。
1-1. Internal combustion engine 1
As shown in FIG. 2, the internal combustion engine 1 is a reciprocating gasoline engine in which the piston 12 moves up and down in the cylinder 11. The space inside the cylinder 11 and the piston 12 is a combustion chamber 13, and the spark plug 4 is arranged at the top of the cylinder 11. Further, at the top of the cylinder 11, an intake valve 15 for adjusting the amount of intake air taken into the combustion chamber 13 from the intake pipe 14 and an exhaust valve for adjusting the amount of exhaust gas discharged from the combustion chamber 13 to the exhaust pipe 16 17 and are provided. In the present embodiment, an injector 18 for injecting fuel into the combustion chamber 13 is provided at the top of the cylinder 11. The intake pipe 14 may be provided with an injector 18. As will be described later, the internal combustion engine 1 is controlled by the control circuit 6.
 内燃機関1は、吸気行程、圧縮行程、燃焼行程、及び排気行程を1つの燃焼サイクルとした4ストローク機関とされている。吸気行程では、吸気バルブ15が開き、排気バルブ17が閉じた状態で、ピストン12が下降することによって、吸気管14から燃焼室13に空気が吸引される。吸気行程でインジェクタ18から燃料が噴射され、燃焼室13内に燃料と空気の混合気が形成される。圧縮行程では、吸気バルブ15及び排気バルブ17が閉じた状態で、ピストン12が上昇することによって、燃焼室13内の混合気が圧縮される。圧縮行程の終了時点(ピストン12の上死点)付近で点火プラグ4のバリア放電によって、混合気の燃焼が開始する。燃焼行程では、吸気バルブ15及び排気バルブ17が閉じた状態で、混合気の燃焼により燃焼室内の気体の圧力が上昇し、ピストン12が押し下げられる。排気行程では、吸気バルブ15が閉じ、排気バルブ17が開いた状態で、ピストン12が上昇することによって、燃焼室13から排気管16に燃焼後の既燃ガスが排出される。 The internal combustion engine 1 is a four-stroke engine in which an intake stroke, a compression stroke, a combustion stroke, and an exhaust stroke are combined into one combustion cycle. In the intake stroke, the intake valve 15 is opened and the exhaust valve 17 is closed, and the piston 12 is lowered to suck air from the intake pipe 14 into the combustion chamber 13. Fuel is injected from the injector 18 in the intake stroke, and a mixture of fuel and air is formed in the combustion chamber 13. In the compression stroke, the air-fuel mixture in the combustion chamber 13 is compressed by raising the piston 12 with the intake valve 15 and the exhaust valve 17 closed. Combustion of the air-fuel mixture starts due to the barrier discharge of the spark plug 4 near the end of the compression stroke (top dead center of the piston 12). In the combustion stroke, with the intake valve 15 and the exhaust valve 17 closed, the pressure of the gas in the combustion chamber rises due to the combustion of the air-fuel mixture, and the piston 12 is pushed down. In the exhaust stroke, the burnt gas after combustion is discharged from the combustion chamber 13 to the exhaust pipe 16 by raising the piston 12 in a state where the intake valve 15 is closed and the exhaust valve 17 is open.
1-2.点火プラグ4
 点火プラグ4は、一対の電極(第1電極41及び第2電極42)、及び第1電極41と第2電極42の間に配置された誘電体43を有し、内燃機関1の燃焼室13に配置される。少なくとも一方の電極が誘電体43で覆われる。従来の火花点火プラグが、金属電極と金属電極の間に高電圧を印加してアーク放電を生じさせるのに対して、点火プラグ4は、第1電極41と第2電極42の間に誘電体43が配置されており、交流電圧を印加することにより、電極間で誘電体バリア放電(以下、バリア放電とも称す)を発生させる。バリア放電により、燃焼室13内の混合気を点火したり、燃焼を促進するための化学的活性種(ラジカル)を生成したりする。
1-2. Spark plug 4
The spark plug 4 has a pair of electrodes (first electrode 41 and second electrode 42) and a dielectric 43 arranged between the first electrode 41 and the second electrode 42, and has a combustion chamber 13 of the internal combustion engine 1. Is placed in. At least one electrode is covered with the dielectric 43. Whereas conventional spark plugs apply a high voltage between metal electrodes to generate arc discharge, spark plugs 4 have a dielectric material between the first and second electrodes 42. 43 is arranged, and by applying an AC voltage, a dielectric barrier discharge (hereinafter, also referred to as a barrier discharge) is generated between the electrodes. The barrier discharge ignites the air-fuel mixture in the combustion chamber 13 and generates chemically active species (radicals) for promoting combustion.
 点火プラグ4の一例として、図3に、内燃機関1の燃焼室13に取り付けられた状態の点火プラグ4の断面図を示す。従来のSIプラグと同様に、円筒状のプラグ外壁44は金属で形成されており、外周面にネジが切られ、燃焼室13の隔壁19(シリンダヘッド)に取り付けられる。よって、プラグ外壁44が、内燃機関1を介して接地される。プラグ外壁44の燃焼室13側に円筒状の第2電極42が形成されている。プラグ外壁44の中心には棒状の第1電極41が配置されている。プラグ外壁44と第1電極41との間の円筒状の空間には、誘電体43(例えば、セラミック)が配置され、絶縁されている。燃焼室13内に配置される下端部において、第1電極41を覆う誘電体43の肉厚が薄くなっており、誘電体43と第2電極42との間には、間隙が設けられている。この間隙が、バリア放電が発生する放電ギャップ45になる。点火プラグ4の燃焼室13内側の端部における第1電極41、第2電極42、誘電体43の形状は、図3の例に限定されず、様々な形状にされてもよい。 As an example of the spark plug 4, FIG. 3 shows a cross-sectional view of the spark plug 4 attached to the combustion chamber 13 of the internal combustion engine 1. Similar to the conventional SI plug, the cylindrical plug outer wall 44 is made of metal, and the outer peripheral surface is threaded and attached to the partition wall 19 (cylinder head) of the combustion chamber 13. Therefore, the plug outer wall 44 is grounded via the internal combustion engine 1. A cylindrical second electrode 42 is formed on the combustion chamber 13 side of the plug outer wall 44. A rod-shaped first electrode 41 is arranged at the center of the plug outer wall 44. A dielectric 43 (for example, ceramic) is arranged and insulated in the cylindrical space between the plug outer wall 44 and the first electrode 41. At the lower end portion arranged in the combustion chamber 13, the thickness of the dielectric 43 covering the first electrode 41 is thin, and a gap is provided between the dielectric 43 and the second electrode 42. .. This gap becomes a discharge gap 45 in which a barrier discharge occurs. The shapes of the first electrode 41, the second electrode 42, and the dielectric 43 at the inner end of the combustion chamber 13 of the spark plug 4 are not limited to the example of FIG. 3, and may be various shapes.
 燃焼室13外側の端部において、第1電極41が誘電体43に覆われておらず、周波数変更接続回路3の一方の出力端子に接続される。第2電極42は、内燃機関1を介して、周波数変更接続回路3の他方の出力端子に接続される。 At the outer end of the combustion chamber 13, the first electrode 41 is not covered with the dielectric 43 and is connected to one output terminal of the frequency change connection circuit 3. The second electrode 42 is connected to the other output terminal of the frequency change connection circuit 3 via the internal combustion engine 1.
1-3.DC/AC変換器2
 DC/AC変換器2は、直流電源7から供給された直流電力を交流電力に変換する、スイッチ21を有する電力変換器である。
1-3. DC / AC converter 2
The DC / AC converter 2 is a power converter having a switch 21 that converts the DC power supplied from the DC power source 7 into AC power.
 DC/AC変換器2に接続される直流電源7は、例えば鉛バッテリ等の蓄電池であり、接続されたDC/AC変換器2に直流電力を供給する。直流電源7には、直流電圧を出力する機能を有するものであれば、どのような装置であってもよい。直流電源7に、直流電圧を昇圧又は降圧して出力するDC/DC変換器が設けられてもよい。或いは、DC/AC変換器2の入力側に、DC/DC変換器が設けられ、DC/DC変換器のスイッチは、制御回路6に制御されてもよい。 The DC power source 7 connected to the DC / AC converter 2 is a storage battery such as a lead battery, and supplies DC power to the connected DC / AC converter 2. The DC power supply 7 may be any device as long as it has a function of outputting a DC voltage. The DC power supply 7 may be provided with a DC / DC converter that boosts or lowers the DC voltage and outputs the voltage. Alternatively, a DC / DC converter may be provided on the input side of the DC / AC converter 2, and the switch of the DC / DC converter may be controlled by the control circuit 6.
 DC/AC変換器2は、制御回路6によりオンオフ制御されるスイッチ21を備えている。DC/AC変換器2は、スイッチ21が2つ直列に接続された直列回路を2つ備えたフルブリッジ回路とされている。第1の直列回路では、直流電源7の正極側に接続される正極側のスイッチ21aと、直流電源7の負極側に接続される負極側のスイッチ21bと、が直列に接続されている。第2の直列回路では、直流電源7の正極側に接続される正極側のスイッチ21cと、直流電源7の負極側に接続される負極側のスイッチ21dと、が直列に接続されている。 The DC / AC converter 2 includes a switch 21 that is on / off controlled by the control circuit 6. The DC / AC converter 2 is a full-bridge circuit including two series circuits in which two switches 21 are connected in series. In the first series circuit, the switch 21a on the positive electrode side connected to the positive electrode side of the DC power supply 7 and the switch 21b on the negative electrode side connected to the negative electrode side of the DC power supply 7 are connected in series. In the second series circuit, the switch 21c on the positive electrode side connected to the positive electrode side of the DC power supply 7 and the switch 21d on the negative electrode side connected to the negative electrode side of the DC power supply 7 are connected in series.
 なお、DC/AC変換器2には、ハーフブリッジ回路、又は1つのスイッチから構成される回路等の各種の変換回路が用いられてもよい。各直列回路の2つのスイッチ21の中点が、周波数変更接続回路3に接続されている。 Note that the DC / AC converter 2 may use various conversion circuits such as a half-bridge circuit or a circuit composed of one switch. The midpoint of the two switches 21 of each series circuit is connected to the frequency change connection circuit 3.
 DC/AC変換器2のスイッチ21には、例えば、MOS-FET(Metal-Oxide-Semiconductor Field-Effect Transistor)、ダイオードが逆並列接続されたIGBT(Insulated-Gate Bipolar Transistor)等の半導体スイッチが用いられる。制御回路6から出力された駆動信号は、スイッチ21のゲート端子に入力される。駆動信号がハイ(1)のときは、スイッチ21がオン状態になり、駆動信号がロー(0)のときはスイッチ21がオフ状態になる。DC/AC変換器2のスイッチ21は、オン及びオフすることによって電路の導通と遮断ができればどのようなものでもよく、例えば電極の接触、非接触でオンオフする機械的スイッチのように、半導体以外のスイッチで構成されていてもよい。 For the switch 21 of the DC / AC converter 2, for example, a semiconductor switch such as a MOS-FET (Metal-Oxide-Semiconductor Field-Effect Transistor) or an IGBT (Insulated-Gate Bipolar Transistor) in which diodes are connected in antiparallel is used. Be done. The drive signal output from the control circuit 6 is input to the gate terminal of the switch 21. When the drive signal is high (1), the switch 21 is turned on, and when the drive signal is low (0), the switch 21 is turned off. The switch 21 of the DC / AC converter 2 may be any switch 21 as long as it can conduct and cut off the electric circuit by turning it on and off. It may be composed of the switches of.
1-4.周波数変更接続回路3
 周波数変更接続回路3は、DC/AC変換器2と点火プラグ4との間を接続し、DC/AC変換器2から点火プラグ4までの回路全体(負荷共振回路と称す)の共振周波数frを変化させる周波数変更回路32を有する接続回路である。
1-4. Frequency change connection circuit 3
The frequency change connection circuit 3 connects between the DC / AC converter 2 and the ignition plug 4, and sets the resonance frequency fr of the entire circuit (referred to as a load resonance circuit) from the DC / AC converter 2 to the ignition plug 4. It is a connection circuit having a frequency change circuit 32 to change.
 周波数変更接続回路3は、2つ以上のインダクタと、周波数変更回路32として、負荷共振回路に対するインダクタの接続関係を変化させる1つ以上のスイッチ32と、を有し、周波数変更接続回路3のスイッチ32のオン又はオフにより、負荷共振回路のインダクタンスが変化し、共振周波数frが変化する。 The frequency change connection circuit 3 has two or more inductors, and as the frequency change circuit 32, one or more switches 32 that change the connection relationship of the inductor to the load resonance circuit, and is a switch of the frequency change connection circuit 3. By turning 32 on or off, the inductance of the load resonance circuit changes, and the resonance frequency fr changes.
 この構成によれば、周波数変更接続回路3を、2つ以上のインダクタと1つ以上のスイッチ32とにより構成することができ、周波数変更接続回路3を簡素で小型することができる。 According to this configuration, the frequency change connection circuit 3 can be composed of two or more inductors and one or more switches 32, and the frequency change connection circuit 3 can be simplified and miniaturized.
 本実施の形態では、周波数変更接続回路3は、インダクタとして、第1インダクタ31、トランス33の1次巻線33a及び2次巻線33bの漏れインダクタンスと、第2インダクタ34とを有している。第1インダクタ31は、DC/AC変換器2とトランス33との間の接続経路上に直列に接続されている。詳細には、第1インダクタ31の一方の端子は、DC/AC変換器2の一方の出力端子(本例では、第2の直列回路の中点)に接続され、第1インダクタ31の他方の端子は、トランス33の1次巻線33aの一方の端子に接続されている。トランス33の1次巻線33aの他方の端子は、DC/AC変換器2の他方の出力端子(本例では、第1の直列回路の中点)に接続されている。 In the present embodiment, the frequency change connection circuit 3 has the first inductor 31, the leakage inductance of the primary winding 33a and the secondary winding 33b of the transformer 33, and the second inductor 34 as inductors. .. The first inductor 31 is connected in series on the connection path between the DC / AC converter 2 and the transformer 33. Specifically, one terminal of the first inductor 31 is connected to one output terminal of the DC / AC converter 2 (in this example, the midpoint of the second series circuit), and the other terminal of the first inductor 31. The terminal is connected to one terminal of the primary winding 33a of the transformer 33. The other terminal of the primary winding 33a of the transformer 33 is connected to the other output terminal of the DC / AC converter 2 (in this example, the midpoint of the first series circuit).
 第2インダクタ34は、トランス33と点火プラグ4との間の接続経路上に直列に接続されている。詳細には、第2インダクタ34の一方の端子は、トランス33の2次巻線33bの一方の端子に接続され、第2インダクタ34の他方の端子は、点火プラグ4の第1電極41に接続されている。トランス33の2次巻線33bの他方の端子は、点火プラグ4の第2電極42に接続されている。点火プラグ4の第2電極42は、グランドにも接続されている。 The second inductor 34 is connected in series on the connection path between the transformer 33 and the spark plug 4. Specifically, one terminal of the second inductor 34 is connected to one terminal of the secondary winding 33b of the transformer 33, and the other terminal of the second inductor 34 is connected to the first electrode 41 of the spark plug 4. Has been done. The other terminal of the secondary winding 33b of the transformer 33 is connected to the second electrode 42 of the spark plug 4. The second electrode 42 of the spark plug 4 is also connected to the ground.
 本実施の形態では、周波数変更接続回路3は、スイッチ32として、第1インダクタ31に並列接続された第1スイッチ回路321を備えている。第1スイッチ回路321は、2つのスイッチ32a、32bが直列に接続された双方向スイッチとされている。2つのスイッチ32a、32bには、MOS-FET、ダイオードが逆並列接続されたIGBT等が用いられる。2つのスイッチ32a、32bのドレイン端子は互いに接続されている。制御回路6から出力された駆動信号は、2つのスイッチ32a、32bのゲート端子に入力される。駆動信号がハイ(1)のときは、2つのスイッチ32a、32bがオン状態になり、駆動信号がロー(0)のときは2つのスイッチ32a、32bがオフ状態になる。周波数変更接続回路3のスイッチ32は、オン及びオフすることによって電路の双方向の導通と遮断ができればどのようなものでもよく、例えば電極の接触、非接触でオンオフするリレー等の機械的スイッチのように、半導体以外のスイッチで構成されていてもよい。 In the present embodiment, the frequency change connection circuit 3 includes a first switch circuit 321 connected in parallel to the first inductor 31 as the switch 32. The first switch circuit 321 is a bidirectional switch in which two switches 32a and 32b are connected in series. For the two switches 32a and 32b, a MOS-FET, an IGBT in which diodes are connected in antiparallel, and the like are used. The drain terminals of the two switches 32a and 32b are connected to each other. The drive signal output from the control circuit 6 is input to the gate terminals of the two switches 32a and 32b. When the drive signal is high (1), the two switches 32a and 32b are turned on, and when the drive signal is low (0), the two switches 32a and 32b are turned off. The switch 32 of the frequency change connection circuit 3 may be any switch as long as it can conduct and cut off the electric circuit in both directions by turning it on and off. As described above, it may be composed of switches other than semiconductors.
 第1スイッチ回路321(2つのスイッチ32a、32b)がオンされ導通状態になると、第1インダクタ31の両端子が短絡され、負荷共振回路における第1インダクタ31のインダクタンスが0になる。一方、第1スイッチ回路321(2つのスイッチ32a、32b)がオフされ遮断状態になると、負荷共振回路における第1インダクタ31のインダクタンスは、そのままのインダクタンスになる。よって、第1スイッチ回路321のオン又はオフにより、負荷共振回路に対する第1インダクタ31の接続関係が変化し、後述するように負荷共振回路の共振周波数frが変化する。 When the first switch circuit 321 (two switches 32a and 32b) is turned on and becomes conductive, both terminals of the first inductor 31 are short-circuited, and the inductance of the first inductor 31 in the load resonance circuit becomes zero. On the other hand, when the first switch circuit 321 (two switches 32a and 32b) is turned off and is in a cutoff state, the inductance of the first inductor 31 in the load resonance circuit becomes the same inductance. Therefore, when the first switch circuit 321 is turned on or off, the connection relationship of the first inductor 31 to the load resonance circuit changes, and the resonance frequency fr of the load resonance circuit changes as described later.
 周波数変更接続回路3は、全てのスイッチ32がオフになった状態でも、DC/AC変換器2から出力された交流電力を点火プラグ4に供給する。 The frequency change connection circuit 3 supplies the AC power output from the DC / AC converter 2 to the spark plug 4 even when all the switches 32 are turned off.
 よって、ノイズ又は故障等によって、スイッチ32のオンオフを正常に行えない場合でも、DC/AC変換器2から点火プラグ4に交流電力を供給でき、誘電体バリア放電を発生させることができる。 Therefore, even if the switch 32 cannot be turned on and off normally due to noise or failure, AC power can be supplied from the DC / AC converter 2 to the spark plug 4 and a dielectric barrier discharge can be generated.
 なお、周波数変更回路として、電動の可変インダクタンスのインダクタ、又は電動の可変容量のコンデンサ等が備えられ、制御回路6の駆動信号によりインダクタンス、又は静電容量が変化され、負荷共振回路の共振周波数frが変化されてもよい。 As the frequency changing circuit, an electric variable inductance inductor, an electric variable capacitance capacitor, or the like is provided, and the inductance or capacitance is changed by the drive signal of the control circuit 6, and the resonance frequency fr of the load resonance circuit fr. May be changed.
 負荷共振回路を構成する成分には、インダクタ、コンデンサのような素子だけではなく、配線等の持つ寄生インダクタンス、周辺金属との間に発生する寄生容量のような分布定数成分が含まれてもよい。 The components constituting the load resonance circuit may include not only elements such as inductors and capacitors, but also distributed constant components such as parasitic inductance of wiring and parasitic capacitance generated between them and peripheral metals. ..
 トランス33は、DC/AC変換器2側に接続される1次巻線33aと、点火プラグ4側に接続される2次巻線33bと、1次巻線33a及び2次巻線33bが巻装される鉄心とを備えている。トランス33の昇圧比は、1次巻線33aの巻数に対する2次巻線33bの巻数の比により定まる。なお、トランス33は、放電に必要な交流電圧をトランス33なしで確保できる場合には備えられなくてもよい。 The transformer 33 is wound by a primary winding 33a connected to the DC / AC converter 2 side, a secondary winding 33b connected to the spark plug 4 side, a primary winding 33a, and a secondary winding 33b. It has an iron core to be dressed. The step-up ratio of the transformer 33 is determined by the ratio of the number of turns of the secondary winding 33b to the number of turns of the primary winding 33a. The transformer 33 may not be provided if the AC voltage required for discharging can be secured without the transformer 33.
1-5.制御回路6
 制御回路6は、DC/AC変換器2及び周波数変更接続回路3を制御する。本実施の形態では、制御回路6は、内燃機関1も制御する。制御回路6の各機能は、制御回路6が備えた処理回路により実現される。具体的には、制御回路6は、図4に示すように、処理回路として、CPU(Central Processing Unit)等の演算処理装置60(コンピュータ)、演算処理装置60とデータのやり取りをする記憶装置61、演算処理装置60に外部の信号を入力する入力回路62、及び演算処理装置60から外部に信号を出力する出力回路63等を備えている。
1-5. Control circuit 6
The control circuit 6 controls the DC / AC converter 2 and the frequency change connection circuit 3. In this embodiment, the control circuit 6 also controls the internal combustion engine 1. Each function of the control circuit 6 is realized by a processing circuit provided in the control circuit 6. Specifically, as shown in FIG. 4, the control circuit 6 is a storage device 61 that exchanges data with an arithmetic processing unit 60 (computer) such as a CPU (Central Processing Unit) and an arithmetic processing unit 60 as a processing circuit. An input circuit 62 for inputting an external signal to the arithmetic processing unit 60, an output circuit 63 for outputting a signal from the arithmetic processing unit 60 to the outside, and the like are provided.
 演算処理装置60として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路等が備えられてもよい。また、演算処理装置60として、同じ種類のもの又は異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置61として、演算処理装置60からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)、演算処理装置60からデータを読み出し可能に構成されたROM(Read Only Memory)等が備えられている。 The arithmetic processing device 60 is provided with an ASIC (Application Specific Integrated Circuit), an IC (Integrated Circuit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), various logic circuits, various signal processing circuits, and the like. You may. Further, as the arithmetic processing unit 60, a plurality of the same type or different types may be provided, and each processing may be shared and executed. The storage device 61 includes a RAM (Random Access Memory) configured to be able to read and write data from the arithmetic processing unit 60, a ROM (Read Only Memory) configured to be able to read data from the arithmetic processing unit 60, and the like. Has been done.
 入力回路62は、内燃機関の各種センサ57(クランク角度センサ、カム角センサ、吸気量検出センサ、水温センサ、吸気温センサ、筒内圧力センサ、イオン電流検出センサ等)が接続され、これらの出力信号を演算処理装置60に入力するA/D変換器等を備えている。出力回路63は、DC/AC変換器2のスイッチ21及び周波数変更接続回路3のスイッチ32、及び内燃機関の各種の電気負荷58(インジェクタ、電動スロットルバルブ、電動EGRバルブ、吸排気VVT等)が接続され、これらに演算処理装置60から制御信号を出力する駆動回路等を備えている。 Various sensors 57 of the internal combustion engine (crank angle sensor, cam angle sensor, intake air amount detection sensor, water temperature sensor, intake air temperature sensor, in-cylinder pressure sensor, ion current detection sensor, etc.) are connected to the input circuit 62, and their outputs are output. It is equipped with an A / D converter or the like that inputs a signal to the arithmetic processing device 60. The output circuit 63 includes a switch 21 of the DC / AC converter 2, a switch 32 of the frequency change connection circuit 3, and various electric loads 58 (injector, electric throttle valve, electric EGR valve, intake / exhaust VVT, etc.) of the internal combustion engine. It is connected and is provided with a drive circuit or the like that outputs a control signal from the arithmetic processing device 60.
 入力回路62には、信号を増幅するオペアンプ及びバッファ等、及び信号を絶縁するフォトカプラ及びアイソレータ等が含まれてもよい。出力回路63には、信号を増幅するオペアンプ及びバッファ等、半導体スイッチを駆動するためのドライブ回路、信号を絶縁するアイソレータ等が含まれてもよい。 The input circuit 62 may include an operational amplifier and a buffer for amplifying a signal, and a photocoupler and an isolator for insulating the signal. The output circuit 63 may include a drive circuit for driving a semiconductor switch, an isolator for insulating the signal, and the like, such as an operational amplifier and a buffer for amplifying the signal.
 そして、制御回路6が備える各機能は、演算処理装置60が、ROM等の記憶装置61に記憶されたソフトウェア(プログラム)を実行し、記憶装置61、入力回路62、及び出力回路63等の制御回路6の他のハードウェアと協働することにより実現される。なお、制御回路6が用いる基準値等の設定データは、ソフトウェア(プログラム)の一部として、ROM等の記憶装置61に記憶されている。以下、制御回路6の各機能について詳細に説明する。 Then, in each function provided in the control circuit 6, the arithmetic processing unit 60 executes software (program) stored in the storage device 61 such as ROM, and controls the storage device 61, the input circuit 62, the output circuit 63, and the like. It is realized by cooperating with other hardware of the circuit 6. The setting data such as the reference value used by the control circuit 6 is stored in a storage device 61 such as a ROM as a part of software (program). Hereinafter, each function of the control circuit 6 will be described in detail.
 図5のタイミングチャートを参照して、制御回路6の処理を説明する。横軸は時間を示し、縦軸はそれぞれの信号、周波数の状態、電圧、1点火あたりのエネルギーを示す。信号は、1のときにハイであることを表し、0のときにローであることを表す。 The processing of the control circuit 6 will be described with reference to the timing chart of FIG. The horizontal axis shows time, and the vertical axis shows each signal, frequency state, voltage, and energy per ignition. When the signal is 1, it means that it is high, and when it is 0, it means that it is low.
<内燃機関の制御>
 制御回路6は、内燃機関1の制御を行う。制御回路6は、基本的な制御として、入力された各種センサの出力信号等に基づいて、クランク角度、燃焼サイクルの行程、回転速度、吸入空気量、充填効率、空燃比、冷却水温度、吸気温度、排気ガス再循環率(EGR率)、燃焼状態、燃焼の失火の有無等の各種の内燃機関の運転状態を検出する。制御回路6は、内燃機関の運転状態に基づいて、目標空燃比、燃料噴射量、燃料噴射時期、目標スロットル開度、目標EGR開度、目標吸排気VVT位相角等を算出し、インジェクタ、電動スロットルバルブ、電動EGRバルブ、吸排気VVT等の内燃機関の各種の電気負荷58を駆動制御する。
<Control of internal combustion engine>
The control circuit 6 controls the internal combustion engine 1. As basic control, the control circuit 6 has a crank angle, a combustion cycle stroke, a rotation speed, an intake air amount, a filling efficiency, an air-fuel ratio, a cooling water temperature, and an intake air based on the output signals of various input sensors. It detects the operating state of various internal combustion engines such as temperature, exhaust gas recirculation rate (EGR rate), combustion state, and presence / absence of combustion misfire. The control circuit 6 calculates the target air-fuel ratio, fuel injection amount, fuel injection timing, target throttle opening, target EGR opening, target intake / exhaust VVT phase angle, etc. based on the operating state of the internal combustion engine, and determines the injector and electric motor. It drives and controls various electric loads 58 of an internal combustion engine such as a throttle valve, an electric EGR valve, and an intake / exhaust VVT.
<放電開始時期の設定>
 図5の放電開始信号S1は、放電開始時期を示す信号である。制御回路6は、内燃機関の運転状態に基づいて、各燃焼サイクルの放電開始時期(点火クランク角度)を決定し、放電開始信号S1を生成する。内燃機関の運転状態として、例えば、内燃機関の回転速度、燃焼室内の圧力情報(例えば、充填効率又は気筒内の圧力)、燃焼室の圧縮比(可変圧縮比機構が設けられる場合)、空燃比、及び排気ガス再循環率(EGR率)の少なくとも1つ以上が用いられる。
<Setting the discharge start time>
The discharge start signal S1 in FIG. 5 is a signal indicating the discharge start time. The control circuit 6 determines the discharge start timing (ignition crank angle) of each combustion cycle based on the operating state of the internal combustion engine, and generates the discharge start signal S1. The operating states of the internal combustion engine include, for example, the rotation speed of the internal combustion engine, pressure information in the combustion chamber (for example, filling efficiency or pressure in the cylinder), compression ratio in the combustion chamber (when a variable compression ratio mechanism is provided), and air-fuel ratio. , And at least one or more of the exhaust gas recirculation rate (EGR rate) is used.
 本実施の形態では、放電開始時期は、点火のための放電開始時期とされており、放電開始時期の後、点火のための誘電体バリア放電が行われる。 In the present embodiment, the discharge start time is the discharge start time for ignition, and after the discharge start time, the dielectric barrier discharge for ignition is performed.
 本実施の形態では、制御回路6は、放電開始時期の所定時間前に放電開始信号S1をハイ(1)にし、放電開始時期で、放電開始信号S1をロー(0)にする。 In the present embodiment, the control circuit 6 sets the discharge start signal S1 to high (1) before a predetermined time of the discharge start time, and sets the discharge start signal S1 to low (0) at the discharge start time.
 なお、外部の制御装置が、内燃機関の制御を行ってもよい。この場合は、外部の制御装置が、内燃機関の運転状態の情報を、通信を介して、制御回路6に伝達してもよく、外部の制御装置が、放電開始信号S1等のハイ、ロー信号を生成し、制御回路6に出力してもよい。 An external control device may control the internal combustion engine. In this case, an external control device may transmit information on the operating state of the internal combustion engine to the control circuit 6 via communication, and the external control device may transmit high and low signals such as the discharge start signal S1. May be generated and output to the control circuit 6.
<DC/AC変換器2のオンオフ制御>
 放電期間信号S2は、DC/AC変換器2に交流電力を出力させる期間を示す信号である。制御回路6は、内燃機関の運転状態、及び後述する共振周波数fr及び交流周波数fswに基づいて、放電時間を決定する。制御回路6は、放電開始時期後、放電時間が経過するまでの期間を放電期間に設定する。制御回路6は、放電期間では、放電期間信号S2をハイ(1)にし、放電期間以外では、放電期間信号S2をロー(0)にする。内燃機関の運転状態として、例えば、内燃機関の回転速度、燃焼室内の圧力情報(例えば、充填効率又は気筒内の圧力)、燃焼室の圧縮比(可変圧縮比機構が設けられる場合)、空燃比、及び排気ガス再循環率(EGR率)の少なくとも1つ以上が用いられる。この構成によれば、共振周波数fr及び交流周波数fswにより、単位時間当たりの放電エネルギーである放電の瞬時電力がわかるため、内燃機関の運転状態に適した放電エネルギー総量になるように、放電時間を決定することができる。よって、放電エネルギー不足による燃焼状態の悪化を抑制し、放電エネルギー過多による不要な消費電力の増大を抑制することができ、燃焼状態の向上及び消費電力の低減を行うことができる。
<On / off control of DC / AC converter 2>
The discharge period signal S2 is a signal indicating a period during which the DC / AC converter 2 is made to output AC power. The control circuit 6 determines the discharge time based on the operating state of the internal combustion engine and the resonance frequency fr and the AC frequency fsw described later. The control circuit 6 sets the period from the discharge start time to the elapse of the discharge time as the discharge period. The control circuit 6 sets the discharge period signal S2 to high (1) during the discharge period, and sets the discharge period signal S2 to low (0) during other periods. The operating states of the internal combustion engine include, for example, the rotation speed of the internal combustion engine, pressure information in the combustion chamber (for example, filling efficiency or pressure in the cylinder), compression ratio in the combustion chamber (when a variable compression ratio mechanism is provided), and air-fuel ratio. , And at least one or more of the exhaust gas recirculation rate (EGR rate) is used. According to this configuration, since the instantaneous power of discharge, which is the discharge energy per unit time, can be known from the resonance frequency fr and the AC frequency fsw, the discharge time is set so that the total amount of discharge energy is suitable for the operating state of the internal combustion engine. Can be decided. Therefore, deterioration of the combustion state due to insufficient discharge energy can be suppressed, unnecessary increase in power consumption due to excessive discharge energy can be suppressed, and the combustion state can be improved and power consumption can be reduced.
 或いは、制御回路6は、内燃機関の運転状態に基づいて、必要な放電エネルギー総量を決定し、必要な放電エネルギー総量を、共振周波数fr及び交流周波数fswに応じて定まる放電の瞬時電力Wで除算して、放電時間を決定してもよい。例えば、必要な放電エネルギー量が400mJであり、放電の瞬時電力Wが200Wのとき、400mJを200Wで除算した2msが放電期間に設定される。この構成によれば、内燃機関の運転状態に適した放電エネルギー総量を供給することができ、放電エネルギー不足による燃焼状態の悪化を抑制し、放電エネルギー過多による不要な消費電力の増大を抑制することができ、燃焼状態の向上及び消費電力の低減を行うことができる。 Alternatively, the control circuit 6 determines the total amount of discharge energy required based on the operating state of the internal combustion engine, and divides the total amount of required discharge energy by the instantaneous power W of the discharge determined according to the resonance frequency fr and the AC frequency fsw. Then, the discharge time may be determined. For example, when the required amount of discharge energy is 400 mJ and the instantaneous power W of discharge is 200 W, 2 ms obtained by dividing 400 mJ by 200 W is set as the discharge period. According to this configuration, it is possible to supply the total amount of discharge energy suitable for the operating state of the internal combustion engine, suppress the deterioration of the combustion state due to insufficient discharge energy, and suppress the increase in unnecessary power consumption due to excessive discharge energy. It is possible to improve the combustion state and reduce the power consumption.
 制御回路6は、放電期間信号S2がハイ(1)である放電期間中に、DC/AC変換器2のスイッチ21を、公知のPWM(Pulse Width Modulation)制御によりオンオフ制御して、DC/AC変換器2に交流周波数fswの交流電圧を出力させ、点火プラグ4に供給させる。一方、制御回路6は、放電期間信号S2がロー(0)のときに、DC/AC変換器2のオンオフ制御を停止し、DC/AC変換器2に交流電力を出力させない。制御回路6は、交流電力の交流周波数fswを変化させる。なお、交流周波数fswの変化については後述する。 The control circuit 6 controls the switch 21 of the DC / AC converter 2 on and off by a known PWM (Pulse Width Modulation) control during the discharge period when the discharge period signal S2 is high (1), and DC / AC. The converter 2 is made to output an AC voltage having an AC frequency fsw, and is supplied to the ignition plug 4. On the other hand, the control circuit 6 stops the on / off control of the DC / AC converter 2 when the discharge period signal S2 is low (0), and does not cause the DC / AC converter 2 to output AC power. The control circuit 6 changes the AC frequency fsw of the AC power. The change in the AC frequency fsw will be described later.
 例えば、制御回路6は、放電期間中は、第1の直列回路の正極側のスイッチ21a及び第2の直列回路の負極側のスイッチ21dをオンにすると共に第1の直列回路の負極側のスイッチ21b及び第2の直列回路の正極側のスイッチ21cをオフにする第1パターンと、第1の直列回路の正極側のスイッチ21a及び第2の直列回路の負極側のスイッチ21dをオフにすると共に第1の直列回路の負極側のスイッチ21b及び第2の直列回路の正極側のスイッチ21cをオンにする第2パターンと、を交流周波数fswで切り替える。一方、制御回路6は、放電期間中でない場合は、DC/AC変換器2の4つのスイッチ21a~21cをオフにする。なお、制御回路6は、他のPWM制御の方法を用いてもよく、交流電圧の振幅を変化させてもよい。 For example, in the control circuit 6, during the discharge period, the switch 21a on the positive electrode side of the first series circuit and the switch 21d on the negative electrode side of the second series circuit are turned on, and the switch on the negative electrode side of the first series circuit is turned on. The first pattern that turns off the switch 21c on the positive electrode side of the 21b and the second series circuit, and the switch 21a on the positive electrode side of the first series circuit and the switch 21d on the negative electrode side of the second series circuit are turned off. The switch 21b on the negative electrode side of the first series circuit and the second pattern for turning on the switch 21c on the positive electrode side of the second series circuit are switched at the AC frequency fsw. On the other hand, the control circuit 6 turns off the four switches 21a to 21c of the DC / AC converter 2 when it is not in the discharge period. The control circuit 6 may use another PWM control method, or may change the amplitude of the AC voltage.
<スイッチのオンオフによる共振周波数frの変化>
 制御回路6は、周波数変更接続回路3の周波数変更回路32を制御して共振周波数frを変化させる。本実施の形態では、制御回路6は、周波数変更回路32としての第1スイッチ回路321(2つのスイッチ32a、32b)をオン又はオンにして、共振周波数frを変化させる。なお、共振周波数frの変化については後述する。
<Change in resonance frequency fr due to switch on / off>
The control circuit 6 controls the frequency change circuit 32 of the frequency change connection circuit 3 to change the resonance frequency fr. In the present embodiment, the control circuit 6 changes the resonance frequency fr by turning on or on the first switch circuit 321 (two switches 32a and 32b) as the frequency changing circuit 32. The change in the resonance frequency fr will be described later.
 制御回路6は、ハイ(1)又はロー(0)のスイッチ駆動信号S3を第1スイッチ回路321に出力する。スイッチ駆動信号S3がハイ(1)の場合に、第1スイッチ回路321の2つのスイッチ32a、32bがオンになり、電路が導通し、スイッチ駆動信号S3がロー(0)の場合に、第1スイッチ回路321の2つのスイッチ32a、32bがオフになり、電路が遮断される。 The control circuit 6 outputs a high (1) or low (0) switch drive signal S3 to the first switch circuit 321. When the switch drive signal S3 is high (1), the two switches 32a and 32b of the first switch circuit 321 are turned on, the electric circuit is conducting, and the switch drive signal S3 is low (0). The two switches 32a and 32b of the switch circuit 321 are turned off, and the electric circuit is cut off.
 共振周波数frは、DC/AC変換器2と周波数変更接続回路3と点火プラグ4とから構成される負荷共振回路の共振周波数である。周波数変更接続回路3のスイッチ32をオン又はオフさせることで、共振周波数frが変化する。共振周波数frは、例えば10kHzから500kHzまでの範囲に設定される。トランス33の励磁インダクタンスが漏れインダクタンスに対して非常に大きいとき、共振周波数frは、式(1)で表すことができる。ここで、Lは、負荷共振回路の合成インダクタンスであり、Cpは、点火プラグ4の合成容量である。
Figure JPOXMLDOC01-appb-M000001
The resonance frequency fr is the resonance frequency of the load resonance circuit including the DC / AC converter 2, the frequency change connection circuit 3, and the ignition plug 4. By turning on or off the switch 32 of the frequency change connection circuit 3, the resonance frequency fr changes. The resonance frequency fr is set in the range of, for example, 10 kHz to 500 kHz. When the exciting inductance of the transformer 33 is very large with respect to the leakage inductance, the resonance frequency fr can be expressed by the equation (1). Here, L is the combined inductance of the load resonance circuit, and Cp is the combined capacitance of the spark plug 4.
Figure JPOXMLDOC01-appb-M000001
 第1スイッチ回路321がオフのときの合成インダクタンスLoffは、式(2)で表される。ここで、N1は、トランス33の1次巻線33aの巻数であり、N2は、トランス33の2次巻線33bの巻数であり、L1は、第1インダクタ31のインダクタンスであり、Lleak1は、トランス33の1次巻線33aの漏れインダクタンスであり、Lleak2は、トランス33の2次巻線33bの漏れインダクタンスであり、L2は、第2インダクタ34のインダクタンスである。
Figure JPOXMLDOC01-appb-M000002
The combined inductance Loop when the first switch circuit 321 is off is represented by the equation (2). Here, N1 is the number of turns of the primary winding 33a of the transformer 33, N2 is the number of turns of the secondary winding 33b of the transformer 33, L1 is the inductance of the first inductor 31, and Lleak1 is. The leakage inductance of the primary winding 33a of the transformer 33, Lleak2 is the leakage inductance of the secondary winding 33b of the transformer 33, and L2 is the inductance of the second inductor 34.
Figure JPOXMLDOC01-appb-M000002
 第1スイッチ回路321がオンのとき、第1インダクタ31の両端が短絡されるため、負荷共振回路における第1インダクタ31のインダクタンスL1が0になる。よって、第1スイッチ回路321がオフのときの合成インダクタンスLonは、式(3)で表され、Loffよりもインダクタンスが小さくなる。
Figure JPOXMLDOC01-appb-M000003
When the first switch circuit 321 is on, both ends of the first inductor 31 are short-circuited, so that the inductance L1 of the first inductor 31 in the load resonance circuit becomes 0. Therefore, the combined inductance Lon when the first switch circuit 321 is off is represented by the equation (3), and the inductance is smaller than that of Loff.
Figure JPOXMLDOC01-appb-M000003
 従って、第1スイッチ回路321がオフのときの共振周波数fr1(以下、第1の共振周波数fr1と称す)は、第1スイッチ回路321がオンのときの共振周波数fr2(以下、第2の共振周波数fr2と称す)よりも低い周波数となる。なお、式(1)から式(3)には、配線インダクタンス、及び各部に分布する寄生容量を含めてもよい。 Therefore, the resonance frequency fr1 (hereinafter referred to as the first resonance frequency fr1) when the first switch circuit 321 is off is the resonance frequency fr2 (hereinafter referred to as the second resonance frequency) when the first switch circuit 321 is on. The frequency is lower than fr2). The equations (1) to (3) may include the wiring inductance and the parasitic capacitance distributed in each part.
<共振周波数frと交流周波数fswとの連動変化>
 制御回路6は、共振周波数frの変化に連動して、交流周波数fswを変化させる。図6に、周波数の連動変化の概念図を示す。横軸は周波数を示し、縦軸は、DC/AC変換器2から出力される交流電圧の振幅に対する点火プラグ4に印加される交流電圧の振幅のゲイン(比)を示す。増幅ゲインが1より大きい場合に、負荷共振回路により増幅されていることを示す。図6の曲線Aは、負荷共振回路が第1の共振周波数fr1に変化されているときの、各周波数と負荷共振回路の増幅ゲインとの特性であり、曲線Bは、負荷共振回路が第2の共振周波数fr2に変化されているときの、各周波数と負荷共振回路の増幅ゲインとの特性である。
<Interlocking change between resonance frequency fr and AC frequency fsw>
The control circuit 6 changes the AC frequency fsw in conjunction with the change in the resonance frequency fr. FIG. 6 shows a conceptual diagram of the interlocking change of the frequency. The horizontal axis represents the frequency, and the vertical axis represents the gain (ratio) of the amplitude of the AC voltage applied to the spark plug 4 with respect to the amplitude of the AC voltage output from the DC / AC converter 2. When the amplification gain is larger than 1, it indicates that the amplification is performed by the load resonance circuit. The curve A in FIG. 6 shows the characteristics of each frequency and the amplification gain of the load resonance circuit when the load resonance circuit is changed to the first resonance frequency fr1, and the curve B shows the characteristics of the load resonance circuit in the second resonance circuit. It is a characteristic of each frequency and the amplification gain of the load resonance circuit when it is changed to the resonance frequency fr2 of.
 図6のfsw1は、第1の共振周波数fr1に対応して設定される第1の交流周波数であり、fsw2は、第2の共振周波数fr2に対応して設定される第2の交流周波数fswである。図6に示すように、制御回路6は、交流周波数fswを、共振によりDC/AC変換器の出力電圧に対して点火プラグの印加電圧が増幅される増幅周波数帯内に変化させる。なお、増幅周波数帯は、図6の例では、増幅ゲインが1よりも大きい周波数帯になる。本実施の形態では、また、制御回路6は、交流周波数fswを、増幅周波数帯内であって、共振周波数fr以上の周波数に変化させる。 FIG. 6 fsw1 is a first AC frequency set corresponding to the first resonance frequency fr1, and fsw2 is a second AC frequency fsw set corresponding to the second resonance frequency fr2. be. As shown in FIG. 6, the control circuit 6 changes the AC frequency fsw within the amplification frequency band in which the applied voltage of the spark plug is amplified with respect to the output voltage of the DC / AC converter by resonance. In the example of FIG. 6, the amplification frequency band is a frequency band in which the amplification gain is larger than 1. In the present embodiment, the control circuit 6 also changes the AC frequency fsw to a frequency within the amplification frequency band and equal to or higher than the resonance frequency fr.
 詳細には、第1の交流周波数fsw1は、第1の共振周波数fr1の増幅周波数帯内であって、第1の共振周波数fr1以上の周波数に設定されている。第2の交流周波数fsw2は、第2の共振周波数fr2の増幅周波数帯内であって、第2の共振周波数fr2以上の周波数に設定されている。なお、第1の交流周波数fsw1及び第2の交流周波数fsw2は、第1の共振周波数fr1及び第2の共振周波数fr2に対応させて記憶装置61に予め記憶されている。 Specifically, the first AC frequency fsw1 is set to a frequency within the amplification frequency band of the first resonance frequency fr1 and equal to or higher than the first resonance frequency fr1. The second AC frequency fsw2 is set to a frequency within the amplification frequency band of the second resonance frequency fr2 and equal to or higher than the second resonance frequency fr2. The first AC frequency fsw1 and the second AC frequency fsw2 are stored in advance in the storage device 61 in correspondence with the first resonance frequency fr1 and the second resonance frequency fr2.
 この構成によれば、共振周波数frの変化に連動して、増幅周波数帯内に交流周波数fswが変化されるので、共振周波数frが変化しても、負荷共振回路により交流電圧を増幅させて、点火プラグ4に供給することができ、バリア放電を効率よく発生させることができる。 According to this configuration, the AC frequency fsw is changed in the amplification frequency band in conjunction with the change of the resonance frequency fr. Therefore, even if the resonance frequency fr changes, the AC voltage is amplified by the load resonance circuit. It can be supplied to the ignition plug 4 and can efficiently generate a barrier discharge.
 図6の設定とは逆に、交流周波数fswが、共振周波数frよりも低い周波数に設定されると、DC/AC変換器2の出力電流が出力電圧に対して進み位相になる。DC/AC変換器2の出力電流が出力電圧に対して進み位相の状態で、DC/AC変換器2のスイッチ21がオンオフされれば、各スイッチ21に対して逆並列接続されたダイオードが急峻に逆回復してリカバリ電流が流れ、急激な発熱を発生させる可能性がある。したがって、制御回路6は、交流周波数fswを共振周波数fr以上になるように制御することで、DC/AC変換器2のスイッチ21の急激な発熱を防ぐことができ、ヒートシンク等の冷却機構の大型化を防ぐことができる。 Contrary to the setting in FIG. 6, when the AC frequency fsw is set to a frequency lower than the resonance frequency fr, the output current of the DC / AC converter 2 advances with respect to the output voltage and becomes the phase. If the switch 21 of the DC / AC converter 2 is turned on and off while the output current of the DC / AC converter 2 is in phase with the output voltage, the diode connected in antiparallel to each switch 21 becomes steep. There is a possibility that the recovery current will flow and sudden heat generation will occur. Therefore, the control circuit 6 can prevent the switch 21 of the DC / AC converter 2 from suddenly generating heat by controlling the AC frequency fsw to be equal to or higher than the resonance frequency fr, and has a large cooling mechanism such as a heat sink. It is possible to prevent the conversion.
 なお、点火プラグ4の印加電圧Vの振幅Vpが、電極間の絶縁破壊電圧に達せず、誘電体バリア放電が発生しないとき、制御回路6は、交流周波数fswを共振周波数frに近づけてもよい。これにより、点火プラグ4の印加電圧の振幅を増大させ、誘電体バリア放電を発生させることができる。このとき、制御回路6は、交流周波数fswを共振周波数frに一致させてもよいし、交流周波数fswを、変化幅Δfswずつ変化させて徐々に共振周波数frに近づけてもよい。この際、制御回路6は、交流周波数fswを、共振周波数frの近傍の増幅周波数帯内、又は共振周波数frと一致するように設定しておくことで、放電開始信号S1による点火指令から遅延なく誘電体バリア放電を発生させることができる。 When the amplitude Vp of the applied voltage V of the spark plug 4 does not reach the dielectric breakdown voltage between the electrodes and the dielectric barrier discharge does not occur, the control circuit 6 may bring the AC frequency fsw closer to the resonance frequency fr. .. As a result, the amplitude of the applied voltage of the spark plug 4 can be increased to generate a dielectric barrier discharge. At this time, the control circuit 6 may match the AC frequency fsw with the resonance frequency fr, or may change the AC frequency fsw by the change width Δfsw to gradually approach the resonance frequency fr. At this time, the control circuit 6 is set so that the AC frequency fsw matches the amplification frequency band near the resonance frequency fr or the resonance frequency fr, so that there is no delay from the ignition command by the discharge start signal S1. Dielectric barrier discharge can be generated.
<周波数の変化による放電の瞬時電力の変化>
 点火プラグ4の電極間に印加される交流電圧Vは、共振現象で増幅されるため、実際の印加電圧の振幅Vpは、DC/AC変換器2の交流電力の出力開始後に、徐々に増大していき、出力終了後は、徐々に減少していく。ここで、点火プラグ4の印加電圧Vの振幅Vpは、直流電源7の出力電圧の振幅を、トランスの巻き数比倍したもの以上になっており、例えば1kV以上の高電圧である。点火プラグ4の印加電圧Vの振幅Vpは、点火プラグ4の電極間の絶縁破壊電圧以上、すなわち誘電体バリア放電を発生させることができる電圧以上になるように設定される。
<Change in instantaneous power of discharge due to change in frequency>
Since the AC voltage V applied between the electrodes of the ignition plug 4 is amplified by the resonance phenomenon, the amplitude Vp of the actual applied voltage gradually increases after the output of the AC power of the DC / AC converter 2 starts. After the output is completed, it gradually decreases. Here, the amplitude Vp of the applied voltage V of the spark plug 4 is equal to or greater than the amplitude of the output voltage of the DC power supply 7 multiplied by the turns ratio of the transformer, and is, for example, a high voltage of 1 kV or more. The amplitude Vp of the applied voltage V of the spark plug 4 is set to be equal to or higher than the dielectric breakdown voltage between the electrodes of the spark plug 4, that is, equal to or higher than the voltage capable of generating the dielectric barrier discharge.
 点火プラグ4の放電の瞬時電力Wは、点火プラグ4の電極間に発生する誘電体バリア放電の単位時間あたりの放電エネルギーである。ここで、誘電体バリア放電の瞬時電力Wは、式(4)で表すことができる。Cgは点火プラグ4の誘電体の静電容量であり、C0は、点火プラグ4の電極間の静電容量であり、V*は、放電中の点火プラグ4の電極間に印加される放電維持電圧であり、Vpは、点火プラグ4の印加電圧Vの振幅である。
Figure JPOXMLDOC01-appb-M000004
The instantaneous power W of the discharge of the spark plug 4 is the discharge energy per unit time of the dielectric barrier discharge generated between the electrodes of the spark plug 4. Here, the instantaneous power W of the dielectric barrier discharge can be expressed by the equation (4). Cg is the capacitance of the spark plug 4 dielectric, C0 is the capacitance between the electrodes of the spark plug 4, and V * is the discharge maintenance applied between the electrodes of the spark plug 4 during discharge. It is a voltage, and Vp is an amplitude of the applied voltage V of the spark plug 4.
Figure JPOXMLDOC01-appb-M000004
 式(4)において、点火プラグ4の誘電体の静電容量Cgは、構造及び材質に依存するため、制御回路6はこれを任意の値に調整できない。点火プラグ4の電極間の静電容量C0は、構造及び電極間の気体状態等で定まるため、制御回路6はこれを任意の値に調整できない。放電中の放電維持電圧V*は、構造及び放電状態で定まるため、制御回路6は任意に調整できない。よって、制御回路6は交流周波数fswと、点火プラグ4の印加電圧Vの振幅Vpとにより、放電の瞬時電力Wを調整できる。 In the formula (4), since the capacitance Cg of the dielectric of the spark plug 4 depends on the structure and the material, the control circuit 6 cannot adjust this to an arbitrary value. Since the capacitance C0 between the electrodes of the spark plug 4 is determined by the structure, the gas state between the electrodes, and the like, the control circuit 6 cannot adjust this to an arbitrary value. Since the discharge maintenance voltage V * during discharge is determined by the structure and the discharge state, the control circuit 6 cannot be adjusted arbitrarily. Therefore, the control circuit 6 can adjust the instantaneous power W of the discharge by the AC frequency fsw and the amplitude Vp of the applied voltage V of the spark plug 4.
 しかし、制御回路6は、点火プラグ4の印加電圧Vの振幅Vpを、点火プラグ4の絶縁耐圧以下で、且つ誘電体バリア放電の放電開始電圧以上の範囲内で調整する必要があり、放電エネルギーの調整幅は小さい。一方、交流周波数fswの変更可能幅は大きいため、交流周波数fswの増減による放電エネルギーの調整幅は大きい。 However, the control circuit 6 needs to adjust the amplitude Vp of the applied voltage V of the spark plug 4 within the range of the dielectric strength of the spark plug 4 or less and the discharge start voltage of the dielectric barrier discharge or more, and the discharge energy. The adjustment range of is small. On the other hand, since the changeable range of the AC frequency fsw is large, the adjustment range of the discharge energy by increasing or decreasing the AC frequency fsw is large.
 しかし、交流周波数fswが、共振周波数frから離れれば、負荷共振回路の増幅ゲインが低下し、点火プラグ4の印加電圧の振幅Vpが大きく低下し、誘電体バリア放電を発生させることができない。そこで、上述したように、周波数変更接続回路3は、共振周波数frを変更可能なように構成され、制御回路6は、交流周波数fswと共振周波数frとを連動して変化させて、負荷共振回路の増幅ゲインを高い状態に維持している。 However, if the AC frequency fsw is separated from the resonance frequency fr, the amplification gain of the load resonance circuit is lowered, the amplitude Vp of the applied voltage of the ignition plug 4 is greatly lowered, and the dielectric barrier discharge cannot be generated. Therefore, as described above, the frequency change connection circuit 3 is configured so that the resonance frequency fr can be changed, and the control circuit 6 changes the AC frequency fsw and the resonance frequency fr in conjunction with each other to change the load resonance circuit. The amplification gain of is kept high.
 これにより、点火プラグ4の印加電圧Vの振幅Vpを適切な電圧に維持した状態で、交流周波数fswの増減により、放電の瞬時電力Wを増減させることができる。例えば、印加電圧Vの振幅Vpが一定電圧に維持されるように、交流周波数fsw及び共振周波数frが連動して約2倍にされると、放電の瞬時電力W、すなわちエネルギー密度を約2倍に増大させることができる。逆に、共振周波数fr及び交流周波数fswが、連動して約1/2倍にされると、放電の瞬時電力W、すなわちエネルギー密度を約1/2倍に低減させることができる。 As a result, the instantaneous power W of the discharge can be increased or decreased by increasing or decreasing the AC frequency fsw while maintaining the amplitude Vp of the applied voltage V of the spark plug 4 at an appropriate voltage. For example, when the AC frequency fsw and the resonance frequency fr are interlocked and doubled so that the amplitude Vp of the applied voltage V is maintained at a constant voltage, the instantaneous power W of the discharge, that is, the energy density is doubled. Can be increased to. On the contrary, when the resonance frequency fr and the AC frequency fsw are increased by about 1/2 times in conjunction with each other, the instantaneous power W of the discharge, that is, the energy density can be reduced by about 1/2 times.
 放電期間の増減により、放電エネルギー総量を調整できるが、放電の瞬時電力を変えることができない。例えば、短期間に大きな放電エネルギーを発生させる必要がある場合は、共振周波数fr及び交流周波数fswの連動変化による、エネルギー調整が有効である。 The total amount of discharge energy can be adjusted by increasing or decreasing the discharge period, but the instantaneous power of discharge cannot be changed. For example, when it is necessary to generate a large discharge energy in a short period of time, energy adjustment by interlocking changes of the resonance frequency fr and the AC frequency fsw is effective.
 図5のタイミングチャートのW1は、第1の交流周波数fsw1及び第1の共振周波数fr1に変化されたときの放電の瞬時電力であり、W2は、第2の交流周波数fsw2及び第2の共振周波数fr2に変化されたときの放電の瞬時電力である。 W1 in the timing chart of FIG. 5 is the instantaneous power of the discharge when it is changed to the first AC frequency fsw1 and the first resonance frequency fr1, and W2 is the second AC frequency fsw2 and the second resonance frequency. It is the instantaneous power of the discharge when it is changed to fr2.
<内燃機関の運転状態に応じた周波数の変化>
 制御回路6は、内燃機関の運転状態に基づいて、交流周波数fsw及び共振周波数frを変化させる。この構成によれば、内燃機関の運転状態に適した放電エネルギー密度になるように、適切に交流周波数fsw及び共振周波数frを変化させて、燃焼状態の向上又は消費電力の低減を行うことができる。
<Frequency change according to the operating condition of the internal combustion engine>
The control circuit 6 changes the AC frequency fsw and the resonance frequency fr based on the operating state of the internal combustion engine. According to this configuration, the AC frequency fsw and the resonance frequency fr can be appropriately changed so that the discharge energy density is suitable for the operating state of the internal combustion engine, and the combustion state can be improved or the power consumption can be reduced. ..
 制御回路6は、内燃機関の運転状態として、内燃機関の回転速度と、燃焼室内の圧力情報(例えば、充填効率又は気筒内の圧力)と、燃焼室の圧縮比(可変圧縮比機構が設けられる場合)と、空燃比と、排気ガス再循環率(EGR率)と、失火の有無とのうち少なくとも1つ以上を用いる。この構成によれば、燃焼状態に関係する内燃機関の運転状態に基づいて、精度よく適切に交流周波数fsw及び共振周波数frを変化させることができる。 The control circuit 6 is provided with the rotation speed of the internal combustion engine, pressure information in the combustion chamber (for example, filling efficiency or pressure in the cylinder), and the compression ratio of the combustion chamber (variable compression ratio mechanism) as the operating state of the internal combustion engine. Case), the air-fuel ratio, the exhaust gas recirculation rate (EGR rate), and the presence or absence of misfire, at least one or more is used. According to this configuration, the AC frequency fsw and the resonance frequency fr can be changed accurately and appropriately based on the operating state of the internal combustion engine related to the combustion state.
 制御回路6は、内燃機関の運転状態に基づいて、放電の瞬時電力の増加が必要か否かを判定し、放電の瞬時電力の増加が必要であると判定した場合は、放電の瞬時電力の増加が必要でないと判定している場合よりも、交流周波数fsw及び共振周波数frを高くする。 The control circuit 6 determines whether or not an increase in the instantaneous power of the discharge is necessary based on the operating state of the internal combustion engine, and if it is determined that an increase in the instantaneous power of the discharge is necessary, the instantaneous power of the discharge is determined. The AC frequency fsw and the resonance frequency fr are made higher than when it is determined that the increase is not necessary.
 本実施の形態では、制御回路6は、放電の瞬時電力の増加が必要であると判定した場合は、交流周波数fsw及び共振周波数frを第2の交流周波数fsw2及び第2の共振周波数fr2に変化させ、放電の瞬時電力の増加が必要でないと判定した場合は、交流周波数fsw及び共振周波数frを第1の交流周波数fsw1及び第1の共振周波数fr1に変化させる。 In the present embodiment, the control circuit 6 changes the AC frequency fsw and the resonance frequency fr to the second AC frequency fsw2 and the second resonance frequency fr2 when it is determined that the instantaneous power of the discharge needs to be increased. When it is determined that the increase in the instantaneous power of the discharge is not necessary, the AC frequency fsw and the resonance frequency fr are changed to the first AC frequency fsw1 and the first resonance frequency fr1.
 図5の周波数切換信号S_flagは、放電の瞬時電力の増加の必要性の判定結果を表す信号である。制御回路6は、放電の瞬時電力の増加が必要であると判定した場合は、周波数切換信号S_flagをハイ(1)に設定し、放電の瞬時電力の増加が必要ないと判定した場合は、周波数切換信号S_flagをロー(0)に設定する。 The frequency switching signal S_flag in FIG. 5 is a signal representing a determination result of the necessity of increasing the instantaneous power of discharge. When the control circuit 6 determines that the instantaneous power of the discharge needs to be increased, the frequency switching signal S_flag is set to high (1), and when it is determined that the instantaneous power of the discharge does not need to be increased, the frequency is set. The switching signal S_flag is set to low (0).
 この構成によれば、放電の瞬時電力の増加が必要である場合は、放電の瞬時電力を増大させ、バリア放電による着火性を向上させることができる。特に、放電期間を増加できない場合でも、大きな放電エネルギーを混合気に投入できるため、着火性を向上させることができる。また、誘電体バリア放電によって混合気を直接的に着火しない場合においても、放電エネルギーの増加によって化学的活性種の発生量を増加できるため、着火後の燃焼の促進に寄与する。一方、放電の瞬時電力の増加が必要でない場合は、放電の瞬時電力を減少させ、消費電力を低減させることができる。 According to this configuration, when it is necessary to increase the instantaneous power of discharge, the instantaneous power of discharge can be increased and the ignitability by barrier discharge can be improved. In particular, even when the discharge period cannot be increased, a large amount of discharge energy can be input to the air-fuel mixture, so that the ignitability can be improved. Further, even when the air-fuel mixture is not directly ignited by the dielectric barrier discharge, the amount of chemically active species generated can be increased by increasing the discharge energy, which contributes to the promotion of combustion after ignition. On the other hand, when it is not necessary to increase the instantaneous power of discharge, the instantaneous power of discharge can be reduced to reduce the power consumption.
 なお、外部の制御装置が、内燃機関の制御を行う場合は、制御回路6は、外部の装置から制御回路6に入力される信号に基づいて、放電の瞬時電力の増加の必要性を判定してもよい。 When the external control device controls the internal combustion engine, the control circuit 6 determines the necessity of increasing the instantaneous power of the discharge based on the signal input from the external device to the control circuit 6. You may.
 特に、制御回路6は、内燃機関の失火を検知した場合は、交流周波数fsw及び共振周波数frを、失火を検出していない場合よりも高くする。失火の有無は、クランク角度の変動情報、筒内圧力センサの検出情報、イオン電流検出センサの検出情報等に基づいて判定される。この構成によれば、失火を検知した場合に、放電の瞬時電力を増加させることにより、混合気の着火性を向上させ、失火の発生を抑制することができる。 In particular, when the control circuit 6 detects a misfire of the internal combustion engine, the AC frequency fsw and the resonance frequency fr are set higher than when the misfire is not detected. The presence or absence of misfire is determined based on the fluctuation information of the crank angle, the detection information of the in-cylinder pressure sensor, the detection information of the ion current detection sensor, and the like. According to this configuration, when a misfire is detected, the ignitability of the air-fuel mixture can be improved and the occurrence of misfire can be suppressed by increasing the instantaneous power of the discharge.
 制御回路6は、内燃機関の失火を検知した場合は、交流周波数fsw及び共振周波数frを第2の交流周波数fsw2及び第2の共振周波数fr2に変化させ、内燃機関の失火を検知していない場合は、交流周波数fsw及び共振周波数frを第1の交流周波数fsw1及び第1の共振周波数fr1に変化させる。 When the control circuit 6 detects a misfire of the internal combustion engine, it changes the AC frequency fsw and the resonance frequency fr to the second AC frequency fsw2 and the second resonance frequency fr2, and does not detect the misfire of the internal combustion engine. Changes the AC frequency fsw and the resonance frequency fr to the first AC frequency fsw1 and the first resonance frequency fr1.
 また、制御回路6は、内燃機関の運転状態に基づいて、着火しにくい状態であるか否かを判定し、着火しにくい状態であると判定した場合に、交流周波数fsw及び共振周波数frを、着火しにくい状態でないと判定している場合よりも高くする。 Further, the control circuit 6 determines whether or not the condition is difficult to ignite based on the operating state of the internal combustion engine, and when it is determined that the condition is difficult to ignite, the AC frequency fsw and the resonance frequency fr are set. Set it higher than when it is judged that it is not difficult to ignite.
 この構成によれば、着火しにくい状態である場合に、放電の瞬時電力を増加させることにより、混合気の着火性を向上させ、燃焼状態の向上及び失火発生の抑制を行うことができる。 According to this configuration, when it is difficult to ignite, by increasing the instantaneous power of the discharge, the ignitability of the air-fuel mixture can be improved, the combustion state can be improved, and the occurrence of misfire can be suppressed.
 例えば、制御回路6は、内燃機関の運転状態のそれぞれと、各運転状態の判定値と比較することにより、着火しにくい状態であるか否かを判定する。制御回路6は、回転速度が、回転速度の判定値よりも低い場合、充填効率が、充填効率の判定値よりも低い場合、圧縮比が、圧縮比の判定値よりも低い場合、EGR率が、EGR率の判定値よりも高い場合、又は空燃比が、空燃比の判定値よりも高い場合に、着火しにくい状態であると判定し、それ以外の場合は、着火しにくい状態でないと判定する。各判定値は、放電の瞬時電力を増加させないと、失火が発生する可能性が高くなる運転状態と、失火が発生する可能性が高くならない運転状態との境界に設定される。なお、複数の運転状態が複合的に判定されてもよい。例えば、制御回路6は、回転速度が、回転速度の判定値よりも低く、且つ充填効率が、充填効率の判定値よりも低い場合に、着火しにくい状態であると判定する。 For example, the control circuit 6 determines whether or not it is difficult to ignite by comparing each of the operating states of the internal combustion engine with the determination value of each operating state. The control circuit 6 has an EGR rate when the rotation speed is lower than the judgment value of the rotation speed, when the filling efficiency is lower than the judgment value of the filling efficiency, and when the compression ratio is lower than the judgment value of the compression ratio. , If it is higher than the judgment value of the EGR rate, or if the air-fuel ratio is higher than the judgment value of the air-fuel ratio, it is judged that it is difficult to ignite, and in other cases, it is judged that it is not difficult to ignite. do. Each determination value is set at the boundary between an operating state in which the possibility of misfire is high and an operating state in which the possibility of misfire is not high unless the instantaneous power of discharge is increased. It should be noted that a plurality of operating states may be determined in a complex manner. For example, the control circuit 6 determines that ignition is difficult when the rotation speed is lower than the determination value of the rotation speed and the filling efficiency is lower than the determination value of the filling efficiency.
 制御回路6は、着火しにくい状態であると判定した場合は、交流周波数fsw及び共振周波数frを第2の交流周波数fsw2及び第2の共振周波数fr2に変化させ、着火しにくい状態でないと判定した場合は、交流周波数fsw及び共振周波数frを第1の交流周波数fsw1及び第1の共振周波数fr1に変化させる。 When the control circuit 6 determines that the ignition is difficult, the AC frequency fsw and the resonance frequency fr are changed to the second AC frequency fsw2 and the second resonance frequency fr2, and it is determined that the ignition is not difficult. In this case, the AC frequency fsw and the resonance frequency fr are changed to the first AC frequency fsw1 and the first resonance frequency fr1.
 或いは、制御回路6は、内燃機関の運転状態に基づいて、着火しやすい状態であるか否かを判定し、着火しやすい状態であると判定したときに、前記交流周波数及び前記共振周波数を、着火しやすい状態でないと判定している場合よりも低くしてもよい。 Alternatively, the control circuit 6 determines whether or not the ignition is easy to ignite based on the operating state of the internal combustion engine, and when it is determined that the ignition is easy to ignite, the AC frequency and the resonance frequency are set to the AC frequency and the resonance frequency. It may be lower than when it is judged that the condition is not easy to ignite.
 この構成によれば、着火しやすい状態である場合に、放電の瞬時電力を減少させることにより、燃焼状態の悪化及び失火の発生が生じない範囲で、消費電力の低減を行うことができる。 According to this configuration, it is possible to reduce the power consumption within a range in which the combustion state is not deteriorated and misfire does not occur by reducing the instantaneous power of the discharge when the state is easily ignited.
 例えば、制御回路6は、内燃機関の運転状態のそれぞれと、各運転状態の判定値と比較することにより、着火しやすい状態であるか否かを判定する。制御回路6は、回転速度が、回転速度の判定範囲内にある場合、充填効率が、充填効率の判定値よりも高い場合、圧縮比が、圧縮比の判定値よりも高い場合、EGR率が、EGR率の判定値よりも低い場合、及び空燃比が、空燃比の判定範囲内にある場合に、着火しやすい状態であると判定し、それ以外の場合は、着火しやすい状態でないと判定する。各判定値は、放電の瞬時電力を低下させても、失火が発生する可能性が生じない運転状態と、失火が発生する可能性が生じる運転状態との境界に設定される。なお、一部の運転状態が判定されてもよい。 For example, the control circuit 6 determines whether or not it is in an easily ignited state by comparing each of the operating states of the internal combustion engine with the determination value of each operating state. The control circuit 6 has an EGR rate when the rotation speed is within the judgment range of the rotation speed, when the filling efficiency is higher than the judgment value of the filling efficiency, and when the compression ratio is higher than the judgment value of the compression ratio. , If it is lower than the judgment value of the EGR rate, or if the air-fuel ratio is within the judgment range of the air-fuel ratio, it is judged that the state is easy to ignite, and in other cases, it is judged that the state is not easy to ignite. do. Each determination value is set at the boundary between an operating state in which a misfire is unlikely to occur and an operating state in which a misfire is likely to occur even if the instantaneous power of the discharge is reduced. A part of the operating state may be determined.
 制御回路6は、着火しやすい状態であると判定した場合は、交流周波数fsw及び共振周波数frを第1の交流周波数fsw1及び第1の共振周波数fr1に変化させ、着火しやすい状態でないと判定した場合は、交流周波数fsw及び共振周波数frを第2の交流周波数fsw2及び第2の共振周波数fr2に変化させる。 When the control circuit 6 determines that the ignition is easy to ignite, the control circuit 6 changes the AC frequency fsw and the resonance frequency fr to the first AC frequency fsw1 and the first resonance frequency fr1 and determines that the ignition is not easy to ignite. In this case, the AC frequency fsw and the resonance frequency fr are changed to the second AC frequency fsw2 and the second resonance frequency fr2.
<周波数の変化時の制御>
 制御回路6は、DC/AC変換器2の交流電圧の出力中に、共振周波数fr及び交流周波数fswを増加させる際に、交流周波数fswを増加させた後、共振周波数frを増加させる。
<Control when frequency changes>
The control circuit 6 increases the AC frequency fsw and then increases the resonance frequency fr when increasing the resonance frequency fr and the AC frequency fsw during the output of the AC voltage of the DC / AC converter 2.
 この構成によれば、交流周波数fswが共振周波数frよりも先に増加されるので、交流周波数fswが、共振周波数frよりも低くなる期間が生じないようにできる。よって、交流周波数fswが、共振周波数frよりも低い周波数になり、DC/AC変換器2の出力電流が出力電圧に対して進み位相になることを抑制できる。これにより、DC/AC変換器2の各スイッチ21がオンオフされたときに、各スイッチ21に対して逆並列接続されたダイオードにリカバリ電流が流れて発熱することを防止できる。よって、DC/AC変換器2のスイッチ21の発熱を防ぐことができ、ヒートシンク等の冷却機構の大型化を防ぐことができる。 According to this configuration, since the AC frequency fsw is increased before the resonance frequency fr, it is possible to prevent a period in which the AC frequency fsw becomes lower than the resonance frequency fr. Therefore, it is possible to prevent the AC frequency fsw from becoming lower than the resonance frequency fr and the output current of the DC / AC converter 2 leading to the output voltage and becoming a phase. As a result, when each switch 21 of the DC / AC converter 2 is turned on and off, it is possible to prevent a recovery current from flowing through a diode connected in antiparallel to each switch 21 to generate heat. Therefore, it is possible to prevent the switch 21 of the DC / AC converter 2 from generating heat, and it is possible to prevent the cooling mechanism such as the heat sink from becoming large in size.
 交流周波数fswを増加させた後、共振周波数frを増加させるまでの遅れ時間は、交流周波数fswが、共振周波数frよりも低くなる期間が生じないような時間に設定される。 The delay time from increasing the AC frequency fsw to increasing the resonance frequency fr is set to a time during which the AC frequency fsw does not become lower than the resonance frequency fr.
 本実施の形態では、制御回路6は、交流周波数fswを第1の交流周波数fsw1から第2の交流周波数fsw2に増加させた後、第1スイッチ回路321をオフからオンにして、共振周波数frを第1の共振周波数fr1から第2の共振周波数fr2に増加させる。 In the present embodiment, the control circuit 6 increases the AC frequency fsw from the first AC frequency fsw1 to the second AC frequency fsw2, and then turns the first switch circuit 321 from off to on to set the resonance frequency fr. The first resonance frequency fr1 is increased to the second resonance frequency fr2.
 逆に、制御回路6は、DC/AC変換器2の交流電圧の出力中に、共振周波数fr及び交流周波数fswを低下させる際に、共振周波数frを低下させた後、交流周波数fswを低下させる。 On the contrary, the control circuit 6 lowers the resonance frequency fr and then lowers the AC frequency fsw when lowering the resonance frequency fr and the AC frequency fsw during the output of the AC voltage of the DC / AC converter 2. ..
 この構成によれば、共振周波数frが交流周波数fswよりも先に低下されるので、交流周波数fswが、共振周波数frよりも低くなる期間が生じないようにできる。よって、交流周波数fswが、共振周波数frよりも低い周波数になり、DC/AC変換器2の出力電流が出力電圧に対して進み位相になることを抑制できる。これにより、DC/AC変換器2の各スイッチ21がオンオフされたときに、各スイッチ21に対して逆並列接続されたダイオードにリカバリ電流が流れて発熱することを防止できる。よって、DC/AC変換器2のスイッチ21の発熱を防ぐことができ、ヒートシンク等の冷却機構の大型化を防ぐことができる。 According to this configuration, since the resonance frequency fr is lowered before the AC frequency fsw, it is possible to prevent a period in which the AC frequency fsw becomes lower than the resonance frequency fr. Therefore, it is possible to prevent the AC frequency fsw from becoming lower than the resonance frequency fr and the output current of the DC / AC converter 2 leading to the output voltage and becoming a phase. As a result, when each switch 21 of the DC / AC converter 2 is turned on and off, it is possible to prevent a recovery current from flowing through a diode connected in antiparallel to each switch 21 to generate heat. Therefore, it is possible to prevent the switch 21 of the DC / AC converter 2 from generating heat, and it is possible to prevent the cooling mechanism such as the heat sink from becoming large in size.
 共振周波数frを低下させた後、交流周波数fswを低下させるまでの遅れ時間は、交流周波数fswが、共振周波数frよりも低くなる期間が生じないような時間に設定される。 The delay time from lowering the resonance frequency fr to lowering the AC frequency fsw is set to a time during which the AC frequency fsw does not become lower than the resonance frequency fr.
 本実施の形態では、制御回路6は、第1スイッチ回路321をオンからオフにして、共振周波数frを第2の共振周波数fr2から第1の共振周波数fr1に低下させた後、交流周波数fswを第2の交流周波数fsw2から第1の交流周波数fsw1に低下させる。 In the present embodiment, the control circuit 6 turns the first switch circuit 321 from on to off, lowers the resonance frequency fr from the second resonance frequency fr2 to the first resonance frequency fr1, and then sets the AC frequency fsw. The second AC frequency fsw2 is reduced to the first AC frequency fsw1.
 或いは、制御回路6は、交流周波数fsw及び共振周波数frを変化させる際に、DC/AC変換器2の交流電圧の出力を停止し、交流電圧の出力停止中に、共振周波数frを変化させ、交流電圧の出力再開時に、交流周波数fswを変化させてもよい。 Alternatively, the control circuit 6 stops the output of the AC voltage of the DC / AC converter 2 when changing the AC frequency fsw and the resonance frequency fr, and changes the resonance frequency fr while the output of the AC voltage is stopped. The AC frequency fsw may be changed when the output of the AC voltage is restarted.
 この構成によれば、交流電力の出力停止後、DC/AC変換器2の交流電力の出力再開時には、既に、共振周波数frが、交流周波数fswよりも低くなっているので、交流周波数fswが、共振周波数frよりも低くなる期間が生じないようにできる。よって、交流周波数fswが、共振周波数frよりも低い周波数になり、DC/AC変換器2の出力電流が出力電圧に対して進み位相になることを抑制できる。これにより、DC/AC変換器2の各スイッチ21がオンオフされたときに、各スイッチ21に対して逆並列接続されたダイオードにリカバリ電流が流れて発熱することを防止できる。よって、DC/AC変換器2のスイッチ21の発熱を防ぐことができ、ヒートシンク等の冷却機構の大型化を防ぐことができる。 According to this configuration, when the output of the AC power of the DC / AC converter 2 is restarted after the output of the AC power is stopped, the resonance frequency fr is already lower than the AC frequency fsw, so that the AC frequency fsw is increased. It is possible to prevent a period of time lower than the resonance frequency fr. Therefore, it is possible to prevent the AC frequency fsw from becoming lower than the resonance frequency fr and the output current of the DC / AC converter 2 leading to the output voltage and becoming a phase. As a result, when each switch 21 of the DC / AC converter 2 is turned on and off, it is possible to prevent a recovery current from flowing through a diode connected in antiparallel to each switch 21 to generate heat. Therefore, it is possible to prevent the switch 21 of the DC / AC converter 2 from generating heat, and it is possible to prevent the cooling mechanism such as the heat sink from becoming large in size.
<制御挙動の説明>
 次に、図5のタイミングチャートを用いて、制御挙動について説明する。初期状態として、制御回路6は、周波数切換信号S_flagをロー(0)に設定しており、スイッチ駆動信号S3をロー(0)に設定し、第1スイッチ回路321をオフにし、共振周波数frを第1の共振周波数fr1に変化させている。また、制御回路6は、交流周波数fswを第1の交流周波数fsw1に設定している。
<Explanation of control behavior>
Next, the control behavior will be described with reference to the timing chart of FIG. In the initial state, the control circuit 6 sets the frequency switching signal S_flag to low (0), sets the switch drive signal S3 to low (0), turns off the first switch circuit 321 and sets the resonance frequency fr. The first resonance frequency is changed to fr1. Further, the control circuit 6 sets the AC frequency fsw to the first AC frequency fsw1.
 制御回路6は、放電開始時期の所定時間前の時刻t0で、放電開始信号S1を0から1に切り替え、放電開始時期の時刻t1で、放電開始信号S1を1から0に切り替える。放電開始信号S1が1から0に切り替わったときに、制御回路6は、放電期間信号S2を0から1に切り替える。上述したように、制御回路6は、内燃機関の運転状態に基づいて決定した放電時間が経過した時刻t2で、放電期間信号S2を1から0に切り替える。 The control circuit 6 switches the discharge start signal S1 from 0 to 1 at a time t0 before a predetermined time of the discharge start time, and switches the discharge start signal S1 from 1 to 0 at the time t1 of the discharge start time. When the discharge start signal S1 is switched from 1 to 0, the control circuit 6 switches the discharge period signal S2 from 0 to 1. As described above, the control circuit 6 switches the discharge period signal S2 from 1 to 0 at the time t2 when the discharge time determined based on the operating state of the internal combustion engine has elapsed.
 制御回路6は、放電期間信号S2が1である時刻t1から時刻t2までの期間において、上述したように、DC/AC変換器2のスイッチ21をオンオフ制御して、DC/AC変換器2に第1の交流周波数fsw1の交流電圧を出力させ、点火プラグ4に供給させる。第1の交流周波数fsw1は、第1の共振周波数fr1の近傍の増幅周波数帯内に設定されているので、周波数変更接続回路3により増幅された交流電圧Vが点火プラグ4に印加される。点火プラグ4に誘電バリア放電が発生し、混合気が点火される。 As described above, the control circuit 6 controls the switch 21 of the DC / AC converter 2 on and off during the period from time t1 to time t2 when the discharge period signal S2 is 1, and causes the DC / AC converter 2 to operate. The AC voltage of the first AC frequency fsw1 is output and supplied to the ignition plug 4. Since the first AC frequency fsw1 is set in the amplification frequency band near the first resonance frequency fr1, the AC voltage V amplified by the frequency change connection circuit 3 is applied to the spark plug 4. A dielectric barrier discharge is generated in the spark plug 4, and the air-fuel mixture is ignited.
 制御回路6は、放電期間信号S2が0である期間では、DC/AC変換器2のスイッチ21のオンオフ制御を停止し、交流電力の出力を停止させる。 The control circuit 6 stops the on / off control of the switch 21 of the DC / AC converter 2 and stops the output of the AC power during the period when the discharge period signal S2 is 0.
 時刻t3で、次の燃焼サイクルの点火制御の制御パラメータの判定タイミングになったので、制御回路6は、内燃機関の運転状態に基づいて、次の燃焼サイクルの放電開始時期、放電期間、周波数切換信号S_flag等の制御パラメータを決定する。本例では、制御回路6は、前回の燃焼において内燃機関の失火を検知した、又は、内燃機関の運転状態に基づいて、着火しにくい状態であると判定したので、放電の瞬時電力の増加が必要であると判定し、周波数切換信号S_flagを1に設定している。 At time t3, the determination timing of the control parameter of the ignition control of the next combustion cycle has come, so that the control circuit 6 switches the discharge start time, discharge period, and frequency of the next combustion cycle based on the operating state of the internal combustion engine. Determine control parameters such as signal S_flag. In this example, the control circuit 6 detects a misfire of the internal combustion engine in the previous combustion, or determines that it is difficult to ignite based on the operating state of the internal combustion engine, so that the instantaneous power of the discharge increases. It is determined that it is necessary, and the frequency switching signal S_flag is set to 1.
 そして、時刻t4で、制御回路6は、周波数切換信号S_flagに基づいて、交流周波数fsw及び共振周波数frを設定する。制御回路6は、周波数切換信号S_flagが1に設定されているので、交流周波数fswを第2の交流周波数fsw2に設定し、スイッチ駆動信号S3を0から1に切り替え、第1スイッチ回路321をオンさせ、共振周波数frを第2の共振周波数fr2に変化させる。 Then, at time t4, the control circuit 6 sets the AC frequency fsw and the resonance frequency fr based on the frequency switching signal S_flag. Since the frequency switching signal S_flag is set to 1, the control circuit 6 sets the AC frequency fsw to the second AC frequency fsw2, switches the switch drive signal S3 from 0 to 1, and turns on the first switch circuit 321. The resonance frequency fr is changed to the second resonance frequency fr2.
 制御回路6は、放電開始時期の所定時間前の時刻t5で、放電開始信号S1を0から1に切り替え、放電開始時期の時刻t6で、放電開始信号S1を1から0に切り替える。放電開始信号S1が1から0に切り替わったときに、制御回路6は、放電期間信号S2を0から1に切り替える。制御回路6は、放電時間が経過した時刻t7で、放電期間信号S2を1から0に切り替える。 The control circuit 6 switches the discharge start signal S1 from 0 to 1 at a time t5 before a predetermined time of the discharge start time, and switches the discharge start signal S1 from 1 to 0 at the time t6 of the discharge start time. When the discharge start signal S1 is switched from 1 to 0, the control circuit 6 switches the discharge period signal S2 from 0 to 1. The control circuit 6 switches the discharge period signal S2 from 1 to 0 at the time t7 when the discharge time has elapsed.
 制御回路6は、放電期間信号S2が1である時刻t6から時刻t7までの期間において、上述したように、DC/AC変換器2のスイッチ21をオンオフ制御して、DC/AC変換器2に第2の交流周波数fsw2の交流電圧を出力させ、点火プラグ4に供給させる。第2の交流周波数fsw2は、第2の共振周波数fr2の近傍の増幅周波数帯内に設定されているので、周波数変更接続回路3により増幅された交流電圧Vが点火プラグ4に印加される。点火プラグ4に誘電バリア放電が発生し、混合気が点火される。共振周波数frが増加されているので、放電の瞬時電力が増加され、着火しにくい状態で混合気の着火性を向上させることができる。 As described above, the control circuit 6 controls the switch 21 of the DC / AC converter 2 on and off during the period from time t6 to time t7 when the discharge period signal S2 is 1, and causes the DC / AC converter 2 to operate. The AC voltage of the second AC frequency fsw2 is output and supplied to the ignition plug 4. Since the second AC frequency fsw2 is set in the amplification frequency band near the second resonance frequency fr2, the AC voltage V amplified by the frequency change connection circuit 3 is applied to the spark plug 4. A dielectric barrier discharge is generated in the spark plug 4, and the air-fuel mixture is ignited. Since the resonance frequency fr is increased, the instantaneous power of the discharge is increased, and the ignitability of the air-fuel mixture can be improved in a state where ignition is difficult.
 時刻t8で、次の燃焼サイクルの点火制御の制御パラメータの判定タイミングになったので、制御回路6は、内燃機関の運転状態に基づいて、次の燃焼サイクルの放電開始時期、放電期間、周波数切換信号S_flag等の制御パラメータを決定する。本例では、制御回路6は、前回の燃焼において内燃機関の失火を検知しておらず、内燃機関の運転状態に基づいて、着火しにくい状態でないと判定したので、放電の瞬時電力の増加が必要でないと判定し、周波数切換信号S_flagを0に設定している。 At time t8, the determination timing of the control parameter of the ignition control of the next combustion cycle has come, so that the control circuit 6 switches the discharge start time, discharge period, and frequency of the next combustion cycle based on the operating state of the internal combustion engine. Determine control parameters such as signal S_flag. In this example, the control circuit 6 did not detect the misfire of the internal combustion engine in the previous combustion, and determined that it was not in a state where it was difficult to ignite based on the operating state of the internal combustion engine. It is determined that it is not necessary, and the frequency switching signal S_flag is set to 0.
 そして、時刻t9で、制御回路6は、周波数切換信号S_flagに基づいて、交流周波数fsw及び共振周波数frを設定する。制御回路6は、周波数切換信号S_flagが0に設定されているので、交流周波数fswを第1の交流周波数fsw1に設定し、スイッチ駆動信号S3を1から0に切り替え、第1スイッチ回路321をオフさせ、共振周波数frを第1の共振周波数fr1に変化させる。 Then, at time t9, the control circuit 6 sets the AC frequency fsw and the resonance frequency fr based on the frequency switching signal S_flag. Since the frequency switching signal S_flag is set to 0 in the control circuit 6, the AC frequency fsw is set to the first AC frequency fsw1, the switch drive signal S3 is switched from 1 to 0, and the first switch circuit 321 is turned off. The resonance frequency fr is changed to the first resonance frequency fr1.
 制御回路6は、放電開始時期の所定時間前の時刻t10で、放電開始信号S1を0から1に切り替え、放電開始時期の時刻t11で、放電開始信号S1を1から0に切り替える。放電開始信号S1が1から0に切り替わったときに、制御回路6は、放電期間信号S2を0から1に切り替える。制御回路6は、放電時間が経過した時刻t12で、放電期間信号S2を1から0に切り替える。 The control circuit 6 switches the discharge start signal S1 from 0 to 1 at a time t10 before a predetermined time of the discharge start time, and switches the discharge start signal S1 from 1 to 0 at the time t11 of the discharge start time. When the discharge start signal S1 is switched from 1 to 0, the control circuit 6 switches the discharge period signal S2 from 0 to 1. The control circuit 6 switches the discharge period signal S2 from 1 to 0 at the time t12 when the discharge time has elapsed.
 制御回路6は、放電期間信号S2が1である時刻t11から時刻t12までの期間において、上述したように、DC/AC変換器2のスイッチ21をオンオフ制御して、DC/AC変換器2に第1の交流周波数fsw1の交流電圧を出力させ、点火プラグ4に供給させる。第1の交流周波数fsw1は、第1の共振周波数fr1の近傍の増幅周波数帯内に設定されているので、周波数変更接続回路3により増幅された交流電圧が点火プラグ4に印加される。点火プラグ4に誘電バリア放電が発生し、混合気が点火される。着火しにくい状態でないので、共振周波数frが低下され、放電の瞬時電力が低下されている。よって、放電エネルギーの低減することができ、消費電力を低減することができる。 As described above, the control circuit 6 controls the switch 21 of the DC / AC converter 2 on and off during the period from time t11 to time t12 when the discharge period signal S2 is 1, and causes the DC / AC converter 2 to perform on / off control. The AC voltage of the first AC frequency fsw1 is output and supplied to the ignition plug 4. Since the first AC frequency fsw1 is set in the amplification frequency band near the first resonance frequency fr1, the AC voltage amplified by the frequency change connection circuit 3 is applied to the spark plug 4. A dielectric barrier discharge is generated in the spark plug 4, and the air-fuel mixture is ignited. Since it is not in a state where it is difficult to ignite, the resonance frequency fr is lowered and the instantaneous power of discharge is lowered. Therefore, the discharge energy can be reduced and the power consumption can be reduced.
 図5の例では、制御回路6は、燃焼サイクル毎に、交流周波数fsw及び共振周波数frを変化していたが、燃焼サイクル毎に変化しなくてもよい。例えば、制御回路6は、放電期間中に、交流周波数fsw及び共振周波数frを変化してもよい。また、制御回路6は、放電期間中に、共振周波数frを変化させないが、交流周波数fswを共振周波数frの増幅周波数帯内で変化させてもよい。 In the example of FIG. 5, the control circuit 6 changed the AC frequency fsw and the resonance frequency fr for each combustion cycle, but it does not have to change for each combustion cycle. For example, the control circuit 6 may change the AC frequency fsw and the resonance frequency fr during the discharge period. Further, although the control circuit 6 does not change the resonance frequency fr during the discharge period, the AC frequency fsw may be changed within the amplification frequency band of the resonance frequency fr.
 また、周波数変更接続回路3はトランス33を備えなくてもよい。この場合は、グランドに接続された点火プラグ4の第2電極42とDC/AC変換器2の他方の出力端子が接続されるため、DC/AC変換器2にフルブリッジ回路を用いることができない。そのため、DC/AC変換器2には、ハーフブリッジ回路等が用いられる。ただし、直流電源7又はDC/AC変換器2の入力側に絶縁型のDC/DCコンバータが用いられる場合は、DC/AC変換器2がグランドから浮いた電位になるため、DC/AC変換器2にフルブリッジ回路が用いられる。 Further, the frequency change connection circuit 3 does not have to be provided with the transformer 33. In this case, since the second electrode 42 of the spark plug 4 connected to the ground and the other output terminal of the DC / AC converter 2 are connected, the full bridge circuit cannot be used for the DC / AC converter 2. .. Therefore, a half-bridge circuit or the like is used for the DC / AC converter 2. However, when an isolated DC / DC converter is used on the input side of the DC power supply 7 or the DC / AC converter 2, the DC / AC converter 2 has a potential floating from the ground, so that the DC / AC converter 2 A full bridge circuit is used for 2.
2.実施の形態2
 次に、実施の形態2に係る点火システムについて図面を参照して説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る点火システムの基本的な構成及び処理は実施の形態1と同様である。実施の形態1では、周波数変更接続回路3は、2段階に共振周波数frを変化させたが、本実施の形態では、周波数変更接続回路3は、3段階以上に共振周波数frを変化させる点が実施の形態1と異なる。
2. Embodiment 2
Next, the ignition system according to the second embodiment will be described with reference to the drawings. The description of the same components as in the first embodiment will be omitted. The basic configuration and processing of the ignition system according to the present embodiment are the same as those of the first embodiment. In the first embodiment, the frequency change connection circuit 3 changes the resonance frequency fr in two steps, but in the present embodiment, the frequency change connection circuit 3 changes the resonance frequency fr in three or more steps. It is different from the first embodiment.
 図7は、本実施の形態に係る周波数変更接続回路3の概略回路図である。実施の形態1と同様に、周波数変更接続回路3は、第1インダクタ31、トランス33、及び第2インダクタ34を備えている。本実施の形態では、周波数変更接続回路3は、第1インダクタ31に並列接続された第1スイッチ回路321に加えて、第1インダクタ31に並列接続された第2スイッチ回路322及びインピーダンス要素35を備えている。第2スイッチ回路322とインピーダンス要素35とは直列に接続されている。インピーダンス要素35は、インダクタンス又はキャパシタンスを有している。以下では、インピーダンス要素35が、第1インダクタ31と同等のインダクタンスL1を有する場合を説明する。第2スイッチ回路322は、第1スイッチ回路321と同様に、2つの半導体のスイッチが直列に接続された双方向スイッチ又は機械的スイッチであってもよい。第2スイッチ回路322は、第1スイッチ回路321と同様に、制御回路6によりオン又はオフにされる。 FIG. 7 is a schematic circuit diagram of the frequency change connection circuit 3 according to the present embodiment. Similar to the first embodiment, the frequency change connection circuit 3 includes a first inductor 31, a transformer 33, and a second inductor 34. In the present embodiment, the frequency change connection circuit 3 includes a second switch circuit 322 and an impedance element 35 connected in parallel to the first inductor 31 in addition to the first switch circuit 321 connected in parallel to the first inductor 31. I have. The second switch circuit 322 and the impedance element 35 are connected in series. The impedance element 35 has an inductance or a capacitance. Hereinafter, a case where the impedance element 35 has an inductance L1 equivalent to that of the first inductor 31 will be described. The second switch circuit 322 may be a bidirectional switch or a mechanical switch in which two semiconductor switches are connected in series, similarly to the first switch circuit 321. The second switch circuit 322 is turned on or off by the control circuit 6 in the same manner as the first switch circuit 321.
 図8に示すように、第1スイッチ回路321及び第2スイッチ回路322を組み合わせてオン又はオフにすることにより、第1インダクタ31、第1スイッチ回路321及び第2スイッチ回路322の並列接続回路全体のインダクタを、3段階に変化させることができ、共振周波数frを、3段階に変化させることができる。 As shown in FIG. 8, the entire parallel connection circuit of the first inductor 31, the first switch circuit 321 and the second switch circuit 322 is turned on or off by combining the first switch circuit 321 and the second switch circuit 322. The inductor can be changed in three stages, and the resonance frequency fr can be changed in three stages.
 詳細には、第1スイッチ回路321及び第2スイッチ回路322をオフにすることで、並列接続回路全体のインダクタが、第1インダクタ31のインダクタンスL1になり、共振周波数frは、実施の形態1と同様の第1の共振周波数fr1になる。第1スイッチ回路321をオンにし、第2スイッチ回路322をオフ又はオンにすることで、並列接続回路全体のインダクタが0になり、共振周波数frは、実施の形態1と同様の第2の共振周波数fr2になる。第1スイッチ回路321をオフにし、第2スイッチ回路322をオンにすることで、並列接続回路全体のインダクタが、第1インダクタ31及びインピーダンス要素35を合成した、L1/2になり、共振周波数frは、第3の共振周波数fr3になる。第3の共振周波数fr3は、第1の共振周波数fr1と第2の共振周波数fr2の間の周波数になる(fr1<fr3<fr2)。 Specifically, by turning off the first switch circuit 321 and the second switch circuit 322, the inductor of the entire parallel connection circuit becomes the inductance L1 of the first inductor 31, and the resonance frequency fr is the same as that of the first embodiment. The same first resonance frequency fr1 is obtained. By turning on the first switch circuit 321 and turning off or on the second switch circuit 322, the inductor of the entire parallel connection circuit becomes 0, and the resonance frequency fr becomes the same second resonance as in the first embodiment. The frequency becomes fr2. By turning off the first switch circuit 321 and turning on the second switch circuit 322, the inductor of the entire parallel connection circuit becomes L1 / 2, which is a combination of the first inductor 31 and the impedance element 35, and the resonance frequency fr. Is the third resonance frequency fr3. The third resonance frequency fr3 becomes a frequency between the first resonance frequency fr1 and the second resonance frequency fr2 (fr1 <fr3 <fr2).
 実施の形態1と同様に、制御回路6は、共振周波数frの変化に連動して、交流周波数fswを変化させる。図9に、周波数の連動変化の概念図を示す。横軸は周波数を示し、縦軸は、DC/AC変換器2から出力される交流電圧の振幅に対する点火プラグ4に印加される交流電圧の振幅のゲインを示す。ゲインが1より大きい場合に、負荷共振回路により増幅されていることを示す。図9の曲線Aは、負荷共振回路が第1の共振周波数fr1に変化されているときの、各周波数と負荷共振回路の増幅ゲインとの特性であり、曲線Bは、負荷共振回路が第2の共振周波数fr2に変化されているときの、各周波数と負荷共振回路の増幅ゲインとの特性であり、曲線Cは、負荷共振回路が第3の共振周波数fr3に変化されているときの、各周波数と負荷共振回路の増幅ゲインとの特性である。 Similar to the first embodiment, the control circuit 6 changes the AC frequency fsw in conjunction with the change in the resonance frequency fr. FIG. 9 shows a conceptual diagram of the interlocking change of the frequency. The horizontal axis represents the frequency, and the vertical axis represents the gain of the amplitude of the AC voltage applied to the spark plug 4 with respect to the amplitude of the AC voltage output from the DC / AC converter 2. When the gain is larger than 1, it indicates that the gain is amplified by the load resonance circuit. The curve A of FIG. 9 shows the characteristics of each frequency and the amplification gain of the load resonance circuit when the load resonance circuit is changed to the first resonance frequency fr1, and the curve B shows the characteristics of the load resonance circuit of the second resonance circuit. It is a characteristic of each frequency and the amplification gain of the load resonance circuit when it is changed to the resonance frequency fr2 of, and the curve C is each when the load resonance circuit is changed to the third resonance frequency fr3. This is a characteristic of the frequency and the amplification gain of the load resonance circuit.
 図9のfsw1は、第1の共振周波数fr1に対応して設定される第1の交流周波数であり、fsw2は、第2の共振周波数fr2に対応して設定される第2の交流周波数fswであり、fsw3は、第3の共振周波数fr3に対応して設定される第3の交流周波数fswである。図9に示すように、制御回路6は、交流周波数fswを、各共振周波数frの近傍の増幅周波数帯内に変化させる。また、制御回路6は、交流周波数fswを、増幅周波数帯内であって、共振周波数fr以上の周波数に変化させる。 In FIG. 9, fsw1 is a first AC frequency set corresponding to the first resonance frequency fr1, and fsw2 is a second AC frequency fsw set corresponding to the second resonance frequency fr2. Yes, fsw3 is a third AC frequency fsw that is set corresponding to the third resonance frequency fr3. As shown in FIG. 9, the control circuit 6 changes the AC frequency fsw within the amplification frequency band in the vicinity of each resonance frequency fr. Further, the control circuit 6 changes the AC frequency fsw to a frequency within the amplification frequency band and equal to or higher than the resonance frequency fr.
 詳細には、第1の交流周波数fsw1は、第1の共振周波数fr1の増幅周波数帯内であって、第1の共振周波数fr1以上の周波数に設定されている。第2の交流周波数fsw2は、第2の共振周波数fr2の増幅周波数帯内であって、第2の共振周波数fr2以上の周波数に設定されている。第3の交流周波数fsw3は、第3の共振周波数fr3の増幅周波数帯内であって、第3の共振周波数fr3以上の周波数に設定されている。なお、第1の交流周波数fsw1、第2の交流周波数fsw2、及び第3の交流周波数fsw3は、第1の共振周波数fr1、第2の共振周波数fr2、及び第3の共振周波数fr3に対応させて記憶装置61に予め記憶されている。 Specifically, the first AC frequency fsw1 is set to a frequency within the amplification frequency band of the first resonance frequency fr1 and equal to or higher than the first resonance frequency fr1. The second AC frequency fsw2 is set to a frequency within the amplification frequency band of the second resonance frequency fr2 and equal to or higher than the second resonance frequency fr2. The third AC frequency fsw3 is set to a frequency within the amplification frequency band of the third resonance frequency fr3 and equal to or higher than the third resonance frequency fr3. The first AC frequency fsw1, the second AC frequency fsw2, and the third AC frequency fsw3 correspond to the first resonance frequency fr1, the second resonance frequency fr2, and the third resonance frequency fr3. It is stored in advance in the storage device 61.
 第3の交流周波数fsw3及び第3の共振周波数fr3のときの第3の放電の瞬時電力W3は、第1の交流周波数fsw1及び第1の共振周波数fr1のときの第1の放電の瞬時電力W1よりも大きく、第2の交流周波数fsw2及び第2の共振周波数fr2のときの第2の放電の瞬時電力W2よりも小さい(W1<W3<W2)。 The instantaneous power W3 of the third discharge when the third AC frequency fsw3 and the third resonance frequency fr3 is the instantaneous power W1 of the first discharge when the first AC frequency fsw1 and the first resonance frequency fr1. Greater than, and less than the instantaneous power W2 of the second discharge at the second AC frequency fsw2 and the second resonance frequency fr2 (W1 <W3 <W2).
 本実施の形態では、制御回路6は、内燃機関の運転状態に基づいて、必要となる放電の瞬時電力を3段階に判定し、判定結果に基づいて、交流周波数fsw及び共振周波数frを3段階に変化させる。燃焼状態の向上及び消費電力の低減を、細かく行うことができる。 In the present embodiment, the control circuit 6 determines the required instantaneous power of the discharge in three stages based on the operating state of the internal combustion engine, and determines the AC frequency fsw and the resonance frequency fr in three stages based on the determination result. Change to. It is possible to finely improve the combustion state and reduce the power consumption.
 例えば、制御回路6は、失火を検出した場合、又は内燃機関の運転状態に基づいて着火しにくい状態であると判定した場合は、交流周波数fsw及び共振周波数frを第2の交流周波数fsw2及び第2の共振周波数fr2に変化させ、制御回路6は、内燃機関の運転状態に基づいて着火しやすい状態であると判定した場合は、交流周波数fsw及び共振周波数frを第1の交流周波数fsw1及び第1の共振周波数fr1に変化させ、それ以外の場合は、交流周波数fsw及び共振周波数frを第3の交流周波数fsw3及び第3の共振周波数fr3に変化させる。 For example, when the control circuit 6 detects a misfire or determines that it is difficult to ignite based on the operating state of the internal combustion engine, the AC frequency fsw and the resonance frequency fr are set to the second AC frequency fsw2 and the second AC frequency fsw2. When the resonance frequency fr2 is changed to 2 and the control circuit 6 determines that the ignition frequency is easy to ignite based on the operating state of the internal combustion engine, the AC frequency fsw and the resonance frequency fr are changed to the first AC frequency fsw1 and the first AC frequency fsw1. The resonance frequency fr1 is changed to 1, and in other cases, the AC frequency fsw and the resonance frequency fr are changed to the third AC frequency fsw3 and the third resonance frequency fr3.
 なお、周波数変更接続回路3は、他のインダクタンス要素に対して、並列に接続されたスイッチ回路を備えてもよく、3段階以上に共振周波数frを変化させてもよい。例えば、トランス33の1次巻線33a、トランス33の2次巻線33b、第2インダクタ34、点火プラグ4に対して並列にスイッチ回路が接続されてもよい。 The frequency change connection circuit 3 may include a switch circuit connected in parallel with other inductance elements, or may change the resonance frequency fr in three or more steps. For example, a switch circuit may be connected in parallel to the primary winding 33a of the transformer 33, the secondary winding 33b of the transformer 33, the second inductor 34, and the spark plug 4.
 或いは、第1インダクタ31に直列に接続されたスイッチを備え、制御回路6は必要に応じてオンオフしてもよい。 Alternatively, a switch connected in series with the first inductor 31 may be provided, and the control circuit 6 may be turned on and off as necessary.
3.実施の形態3
 次に、実施の形態3に係る点火システムについて図面を参照して説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る点火システムの基本的な構成及び処理は実施の形態1と同様である。実施の形態1では、制御回路6は、点火のための誘電体バリア放電を発生させたが、本実施の形態では、制御回路6は、化学的活性種(ラジカル)を発生させるための誘電体バリア放電も発生させる点が実施の形態1と異なる。
3. 3. Embodiment 3
Next, the ignition system according to the third embodiment will be described with reference to the drawings. The description of the same components as in the first embodiment will be omitted. The basic configuration and processing of the ignition system according to the present embodiment are the same as those of the first embodiment. In the first embodiment, the control circuit 6 generates a dielectric barrier discharge for ignition, but in the present embodiment, the control circuit 6 is a dielectric for generating a chemically active species (radical). It differs from the first embodiment in that a barrier discharge is also generated.
 燃料と空気の混合気は、燃焼室内を流動しているため、混合気に含まれる分子は、点火プラグ4の近傍を流れるときに放電エネルギーを受ける。そのため、混合気の個々の分子に対して与えられる放電エネルギーは、点火プラグ4の放電の瞬時電力(放電のエネルギー密度)を増加又は減少させることで、増加又は減少される。 Since the air-fuel mixture flows in the combustion chamber, the molecules contained in the air-fuel mixture receive discharge energy when flowing in the vicinity of the spark plug 4. Therefore, the discharge energy given to each molecule of the air-fuel mixture is increased or decreased by increasing or decreasing the instantaneous power of discharge (discharging energy density) of the spark plug 4.
 特許文献1によれば、バリア放電はラジカルを生成して着火後の燃焼を促進するほか、局所的に強いラジカルを発生させて燃料と反応させることで燃料に直接点火することが可能である。 According to Patent Document 1, in addition to generating radicals to promote combustion after ignition, barrier discharge can directly ignite the fuel by locally generating strong radicals and reacting with the fuel.
 そこで、制御回路6は、内燃機関の運転状態に応じて、着火後の燃焼を促進する燃焼支援としてのラジカル生成及び燃料への直接点火のいずれを行うか判定し、判定結果に基づいて、交流周波数fsw及び共振周波数frを変化させ、放電の瞬時電力を変化させる。 Therefore, the control circuit 6 determines whether to generate radicals as combustion support to promote combustion after ignition or to directly ignite the fuel according to the operating state of the internal combustion engine, and based on the determination result, the alternating current The frequency fsw and the resonance frequency fr are changed to change the instantaneous power of the discharge.
 本実施の形態では、制御回路6は、燃焼室内への空気の流入が開始してから、点火を開始するまでの期間に設定された点火前期間と、点火を行う点火期間とにおいて、DC/AC変換器2に交流電力を出力させる。そして、制御回路6、点火前期間の交流周波数fsw及び共振周波数frと、点火期間の交流周波数fsw及び共振周波数frと、を変化させる。 In the present embodiment, the control circuit 6 has a DC / DC / The AC converter 2 is made to output AC power. Then, the control circuit 6, the AC frequency fsw and the resonance frequency fr in the pre-ignition period, and the AC frequency fsw and the resonance frequency fr in the ignition period are changed.
 この構成によれば、点火前期間においてラジカルを生成するために適した周波数及び放電の瞬時電力と、点火期間において点火をするために適した周波数及び放電の瞬時電力と、設定することができる。 According to this configuration, it is possible to set the frequency and the instantaneous power of the discharge suitable for generating radicals in the pre-ignition period and the instantaneous power of the frequency and the discharge suitable for igniting in the ignition period.
 特に、空燃比がリーンである場合、排気ガス再循環率が高い場合等の混合気の着火性が悪い運転状態において、点火前期間を設け、バリア放電を行い、ラジカルを生成すれば、着火性を向上させることができる。 In particular, in an operating state where the air-fuel ratio is lean, the exhaust gas recirculation rate is high, or the like, the ignitability of the air-fuel mixture is poor. Can be improved.
 制御回路6は、点火期間の交流周波数fsw及び共振周波数frを、点火前期間の交流周波数fsw及び共振周波数frよりも高くする。 The control circuit 6 makes the AC frequency fsw and the resonance frequency fr of the ignition period higher than the AC frequency fsw and the resonance frequency fr of the pre-ignition period.
 本実施の形態では、制御回路6は、点火前期間の交流周波数fsw及び共振周波数frを、第1の交流周波数fsw1及び第1の共振周波数fr1に変化させ、点火期間の交流周波数fsw及び共振周波数frを、第2の交流周波数fsw2及び第2の共振周波数fr2に変化させる。 In the present embodiment, the control circuit 6 changes the AC frequency fsw and the resonance frequency fr in the pre-ignition period to the first AC frequency fsw1 and the first resonance frequency fr1, and changes the AC frequency fsw and the resonance frequency in the ignition period. The fr is changed to the second AC frequency fsw2 and the second resonance frequency fr2.
 この構成によれば、点火前期間では、ラジカルを生成するが点火には至らない、比較的に低い放電の瞬時電力を発生させ、点火期間では、点火に至る比較底に高い放電の瞬時電力を発生させることができる。 According to this configuration, in the pre-ignition period, a relatively low discharge instantaneous power that generates radicals but does not reach ignition is generated, and in the ignition period, a high discharge instantaneous power that reaches ignition is generated. Can be generated.
 図10のタイミングチャートを参照して、本実施の形態に係る制御回路6の処理の一例を説明する。横軸は時間を示し、縦軸はそれぞれの信号、周波数の状態、電圧、1点火あたりのエネルギーを示す。信号は、1のときにハイであることを表し、0のときにローであることを表す。 An example of the processing of the control circuit 6 according to the present embodiment will be described with reference to the timing chart of FIG. The horizontal axis shows time, and the vertical axis shows each signal, frequency state, voltage, and energy per ignition. When the signal is 1, it means that it is high, and when it is 0, it means that it is low.
 制御回路6は、放電開始時期の所定時間前の時刻t10で、放電開始信号S1を0から1に切り替え、放電開始時期の時刻t11で、放電開始信号S1を1から0に切り替える。放電開始信号S1が1から0に切り替わったときに、制御回路6は、放電期間信号S2を0から1に切り替える。制御回路6は、内燃機関の運転状態に基づいて、点火前期間を決定し、点火前期間の開始時期を放電開始時期に設定する。そして、制御回路6は、点火前期間の終了時期の時刻t12で、放電期間信号S2を1から0に切り替える。点火前期間では、制御回路6は、周波数切換信号S_flagをロー(0)に設定しており、スイッチ駆動信号S3をロー(0)に設定し、第1スイッチ回路321をオフにし、共振周波数frを第1の共振周波数fr1に変化させている。 The control circuit 6 switches the discharge start signal S1 from 0 to 1 at a time t10 before a predetermined time of the discharge start time, and switches the discharge start signal S1 from 1 to 0 at the time t11 of the discharge start time. When the discharge start signal S1 is switched from 1 to 0, the control circuit 6 switches the discharge period signal S2 from 0 to 1. The control circuit 6 determines the pre-ignition period based on the operating state of the internal combustion engine, and sets the start time of the pre-ignition period to the discharge start time. Then, the control circuit 6 switches the discharge period signal S2 from 1 to 0 at the time t12 of the end time of the pre-ignition period. In the pre-ignition period, the control circuit 6 sets the frequency switching signal S_flag to low (0), sets the switch drive signal S3 to low (0), turns off the first switch circuit 321 and resonates frequency fr. Is changed to the first resonance frequency fr1.
 制御回路6は、放電期間信号S2が1である時刻t11から時刻t12までの点火前期間において、上述したように、DC/AC変換器2のスイッチ21をオンオフ制御して、DC/AC変換器2に第1の交流周波数fsw1の交流電圧を出力させ、点火プラグ4に供給させる。第1の交流周波数fsw1は、第1の共振周波数fr1の近傍の増幅周波数帯内に設定されているので、周波数変更接続回路3により増幅された交流電圧が点火プラグ4に印加される。点火プラグ4に比較的に低い瞬時の放電電力の誘電バリア放電が発生し、空気、又は空気と燃料の混合気にラジカルが生成される。 As described above, the control circuit 6 controls the switch 21 of the DC / AC converter 2 on and off during the pre-ignition period from time t11 to time t12 when the discharge period signal S2 is 1, and controls the DC / AC converter 2. 2 is made to output the AC voltage of the first AC frequency fsw1 and is supplied to the ignition plug 4. Since the first AC frequency fsw1 is set in the amplification frequency band near the first resonance frequency fr1, the AC voltage amplified by the frequency change connection circuit 3 is applied to the spark plug 4. A dielectric barrier discharge of relatively low instantaneous discharge power is generated in the spark plug 4, and radicals are generated in air or a mixture of air and fuel.
 時刻t12の後の時刻t13において、制御回路6は、点火期間のバリア放電のために、周波数切換信号S_flagを0から1に変更する。時刻t13の後の時刻t14において、制御回路6は、周波数切換信号S_flagが1に設定されているので、交流周波数fswを第2の交流周波数fsw2に設定し、スイッチ駆動信号S3を0から1に切り替え、第1スイッチ回路321をオンさせ、共振周波数frを第2の共振周波数fr2に変化させる。 At time t13 after time t12, the control circuit 6 changes the frequency switching signal S_flag from 0 to 1 due to the barrier discharge during the ignition period. At time t14 after time t13, the control circuit 6 sets the frequency switching signal S_flag to 1, so the AC frequency fsw is set to the second AC frequency fsw2, and the switch drive signal S3 is changed from 0 to 1. Switching, the first switch circuit 321 is turned on, and the resonance frequency fr is changed to the second resonance frequency fr2.
 そして、時刻t15で、制御回路6は、点火期間の開始時期になったので、放電期間信号S2を0から1に切り替える。時刻t16で、制御回路6は、点火期間の終了時期になったので、放電期間信号S2を1から0に切り替える。制御回路6は、内燃機関の運転状態に基づいて、点火期間を決定する。点火期間は、失火が検知されたときに、長くされてもよい。 Then, at time t15, the control circuit 6 has reached the start time of the ignition period, so the discharge period signal S2 is switched from 0 to 1. At time t16, the control circuit 6 has reached the end time of the ignition period, so the discharge period signal S2 is switched from 1 to 0. The control circuit 6 determines the ignition period based on the operating state of the internal combustion engine. The ignition period may be extended when a misfire is detected.
 制御回路6は、放電期間信号S2が1である時刻t15から時刻t16までの点火期間において、DC/AC変換器2のスイッチ21をオンオフ制御して、DC/AC変換器2に第2の交流周波数fsw2の交流電圧を出力させ、点火プラグ4に供給させる。第2の交流周波数fsw2は、第2の共振周波数fr2の近傍の増幅周波数帯内に設定されているので、周波数変更接続回路3により増幅された交流電圧が点火プラグ4に印加される。点火プラグ4に比較的に高い瞬時の放電電力の誘電バリア放電が発生し、混合気が点火される。 The control circuit 6 controls the switch 21 of the DC / AC converter 2 to be turned on and off during the ignition period from time t15 to time t16 when the discharge period signal S2 is 1, and causes the DC / AC converter 2 to have a second alternating current. An AC voltage having a frequency of fsw2 is output and supplied to the ignition plug 4. Since the second AC frequency fsw2 is set in the amplification frequency band near the second resonance frequency fr2, the AC voltage amplified by the frequency change connection circuit 3 is applied to the spark plug 4. A dielectric barrier discharge of relatively high instantaneous discharge power is generated in the spark plug 4, and the air-fuel mixture is ignited.
 制御回路6は、燃焼サイクル毎に、時刻t10から時刻t16までの処理を繰り返し実行する。 The control circuit 6 repeatedly executes the process from the time t10 to the time t16 for each combustion cycle.
 図10の例では、点火前期間と点火期間の間の時刻t12から時刻t15までの期間で、DC/AC変換器2の交流電圧の出力が停止されている。すなわち、制御回路6は、交流周波数fsw及び共振周波数frを変化させる際に、DC/AC変換器2の交流電圧の出力を停止し、交流電圧の出力停止中に、共振周波数frを変化させ、交流電圧の出力再開時に、交流周波数fswを変化させている。 In the example of FIG. 10, the output of the AC voltage of the DC / AC converter 2 is stopped during the period from time t12 to time t15 between the pre-ignition period and the ignition period. That is, the control circuit 6 stops the output of the AC voltage of the DC / AC converter 2 when changing the AC frequency fsw and the resonance frequency fr, and changes the resonance frequency fr while the output of the AC voltage is stopped. When the output of the AC voltage is restarted, the AC frequency fsw is changed.
 この構成によれば、実施の形態1で説明したように、DC/AC変換器2の出力電流が出力電圧に対して進み位相になることを抑制できる。これにより、DC/AC変換器2の各スイッチ21がオンオフされたときに、各スイッチ21に対して逆並列接続されたダイオードにリカバリ電流が流れて発熱することを防止できる。よって、DC/AC変換器2のスイッチ21の発熱を防ぐことができ、ヒートシンク等の冷却機構の大型化を防ぐことができる。 According to this configuration, as described in the first embodiment, it is possible to prevent the output current of the DC / AC converter 2 from being in phase with respect to the output voltage. As a result, when each switch 21 of the DC / AC converter 2 is turned on and off, it is possible to prevent a recovery current from flowing through a diode connected in antiparallel to each switch 21 to generate heat. Therefore, it is possible to prevent the switch 21 of the DC / AC converter 2 from generating heat, and it is possible to prevent the cooling mechanism such as the heat sink from becoming large in size.
 交流電圧の出力停止期間は、停止前に負荷共振回路に流れていた電流が1/10以下に減衰するまでの期間に設定されるとよい。電流が十分に減衰した後に、交流電圧の出力を再開すると、リカバリ電流を確実に低減でき、発熱を確実に低減できる。 The AC voltage output stop period should be set to the period until the current flowing in the load resonance circuit before the stop is attenuated to 1/10 or less. By restarting the output of the AC voltage after the current is sufficiently attenuated, the recovery current can be reliably reduced and the heat generation can be reliably reduced.
 或いは、点火前期間と点火期間の間に、DC/AC変換器2の交流電圧の出力を停止する出力停止期間を設けなくてもよい。この場合は、実施の形態1で説明したように、制御回路6は、DC/AC変換器2の交流電圧の出力中に、共振周波数fr及び交流周波数fswを増加させる際に、交流周波数fswを増加させた後、共振周波数frを増加させてもよい。 Alternatively, it is not necessary to provide an output stop period for stopping the output of the AC voltage of the DC / AC converter 2 between the pre-ignition period and the ignition period. In this case, as described in the first embodiment, the control circuit 6 sets the AC frequency fsw when increasing the resonance frequency fr and the AC frequency fsw during the output of the AC voltage of the DC / AC converter 2. After increasing, the resonance frequency fr may be increased.
 例えば、制御回路6は、点火時期の直前に、交流周波数fswを第1の交流周波数fsw1から第2の交流周波数fsw2に変化させ、点火時期で、共振周波数frを第1の共振周波数fr1から第2の共振周波数fr2に変化させる。 For example, the control circuit 6 changes the AC frequency fsw from the first AC frequency fsw1 to the second AC frequency fsw2 immediately before the ignition timing, and changes the resonance frequency fr from the first resonance frequency fr1 to the second at the ignition timing. The resonance frequency is changed to fr2.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。 Although the present application describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are applications of a particular embodiment. It is not limited to, but can be applied to embodiments alone or in various combinations. Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
1 内燃機関、2 DC/AC変換器、3 周波数変更接続回路、4 点火プラグ、6 制御回路、7 直流電源、13 燃焼室、21 DC/AC変換器のスイッチ、31 第1インダクタ、32 周波数変更回路(スイッチ)、33 トランス、41 第1電極、42 第2電極、43 誘電体、321 第1スイッチ回路、322 第2スイッチ回路、fr 共振周波数、fr1 第1の共振周波数、fr2 第2の共振周波数、fr3 第3の共振周波数、fsw 交流周波数、fsw1 第1の交流周波数、fsw2 第2の交流周波数、fsw3 第3の交流周波数 1 internal combustion engine, 2 DC / AC converter, 3 frequency change connection circuit, 4 ignition plug, 6 control circuit, 7 DC power supply, 13 combustion chamber, 21 DC / AC converter switch, 31 1st inductor, 32 frequency change Circuit (switch), 33 transformer, 41 1st electrode, 42 2nd electrode, 43 dielectric, 321 1st switch circuit, 322 2nd switch circuit, fr resonance frequency, fr1 1st resonance frequency, fr2 2nd resonance Frequency, fr3 third resonance frequency, fsw AC frequency, fsw1 first AC frequency, fsw2 second AC frequency, fsw3 third AC frequency

Claims (15)

  1.  直流電源から供給された直流電力を交流電力に変換する、スイッチを有するDC/AC変換器と、
     一対の電極、及び前記一対の電極の間に配置された誘電体を有し、内燃機関の燃焼室に配置される点火プラグと、
     前記DC/AC変換器と前記点火プラグとの間を接続し、前記DC/AC変換器から前記点火プラグまでの回路全体の共振周波数を変化させる周波数変更回路を有する周波数変更接続回路と、
     前記DC/AC変換器のスイッチをオンオフ制御して、前記DC/AC変換器に交流周波数の交流電圧を出力させ、前記点火プラグに供給させる制御回路と、を備え、
     前記制御回路は、前記周波数変更接続回路の前記周波数変更回路を制御して前記共振周波数を変化させ、前記交流周波数を変化させる点火システム。
    A DC / AC converter with a switch that converts DC power supplied from a DC power supply to AC power,
    A spark plug having a pair of electrodes and a dielectric arranged between the pair of electrodes and arranged in the combustion chamber of an internal combustion engine.
    A frequency change connection circuit that connects between the DC / AC converter and the spark plug and has a frequency change circuit that changes the resonance frequency of the entire circuit from the DC / AC converter to the spark plug.
    It is provided with a control circuit that controls the on / off of the switch of the DC / AC converter, causes the DC / AC converter to output an AC voltage of an AC frequency, and supplies the AC voltage to the spark plug.
    The control circuit is an ignition system that controls the frequency change circuit of the frequency change connection circuit to change the resonance frequency and change the AC frequency.
  2.  前記周波数変更接続回路は、2つ以上のインダクタと、前記周波数変更回路として、前記回路全体に対する前記インダクタの接続関係を変化させる1つ以上のスイッチと、を有し、前記周波数変更接続回路のスイッチのオン又はオフにより、前記回路全体のインダクタンスが変化し、前記共振周波数が変化する請求項1に記載の点火システム。 The frequency change connection circuit includes two or more inductors and, as the frequency change circuit, one or more switches that change the connection relationship of the inductor with respect to the entire circuit, and is a switch of the frequency change connection circuit. The ignition system according to claim 1, wherein the inductance of the entire circuit changes depending on whether the circuit is turned on or off, and the resonance frequency changes.
  3.  前記制御回路は、前記共振周波数の変化に連動して、前記交流周波数を変化させ、前記交流周波数を、共振により前記DC/AC変換器の出力電圧に対して前記点火プラグの印加電圧が増幅される増幅周波数帯内に変化させる請求項1又は2に記載の点火システム。 The control circuit changes the AC frequency in conjunction with the change in the resonance frequency, and the AC frequency is amplified by resonance to amplify the applied voltage of the ignition plug with respect to the output voltage of the DC / AC converter. The ignition system according to claim 1 or 2, wherein the ignition system is changed within the amplified frequency band.
  4.  前記制御回路は、前記交流周波数を、前記増幅周波数帯内であって、前記共振周波数以上の周波数に変化させる請求項3に記載の点火システム。 The ignition system according to claim 3, wherein the control circuit changes the AC frequency to a frequency within the amplification frequency band and equal to or higher than the resonance frequency.
  5.  前記制御回路は、前記内燃機関の運転状態に基づいて、前記交流周波数及び前記共振周波数を変化させる請求項1から4のいずれか一項に記載の点火システム。 The ignition system according to any one of claims 1 to 4, wherein the control circuit changes the AC frequency and the resonance frequency based on the operating state of the internal combustion engine.
  6.  前記制御回路は、前記内燃機関の運転状態として、前記内燃機関の回転速度と、前記燃焼室内の圧力情報と、燃焼室の圧縮比と、空燃比と、排気ガス再循環率と、失火の有無とのうち少なくとも1つ以上を用いる請求項5に記載の点火システム。 In the control circuit, as the operating state of the internal combustion engine, the rotation speed of the internal combustion engine, the pressure information in the combustion chamber, the compression ratio of the combustion chamber, the air-fuel ratio, the exhaust gas recirculation rate, and the presence or absence of misfire. The ignition system according to claim 5, wherein at least one of the above is used.
  7.  前記制御回路は、前記内燃機関の失火を検知した場合に、前記交流周波数及び前記共振周波数を、失火を検出していない場合よりも高くする請求項1から6のいずれか一項に記載の点火システム。 The ignition according to any one of claims 1 to 6, wherein the control circuit raises the AC frequency and the resonance frequency when the misfire of the internal combustion engine is detected, as compared with the case where the misfire is not detected. system.
  8.  前記制御回路は、内燃機関の運転状態に基づいて、着火しにくい状態であるか否かを判定し、着火しにくい状態であると判定した場合に、前記交流周波数及び前記共振周波数を、着火しにくい状態でないと判定している場合よりも高くする請求項1から7のいずれか一項に記載の点火システム。 The control circuit determines whether or not the state is difficult to ignite based on the operating state of the internal combustion engine, and when it is determined that the state is difficult to ignite, the AC frequency and the resonance frequency are ignited. The ignition system according to any one of claims 1 to 7, wherein the ignition system is made higher than when it is determined that the condition is not difficult.
  9.  前記制御回路は、内燃機関の運転状態に基づいて、着火しやすい状態であるか否かを判定し、着火しやすい状態であると判定したときに、前記交流周波数及び前記共振周波数を、着火しやすい状態でないと判定している場合よりも低くする請求項1から8のいずれか一項に記載の点火システム。 The control circuit determines whether or not it is in an easily ignitable state based on the operating state of the internal combustion engine, and when it is determined that it is in an easily ignitable state, it ignites the AC frequency and the resonance frequency. The ignition system according to any one of claims 1 to 8, which is lower than when it is determined that the condition is not easy.
  10.  前記制御回路は、前記DC/AC変換器の交流電圧の出力中に、前記共振周波数及び前記交流周波数を増加させる際に、前記交流周波数を増加させた後、前記共振周波数を増加させる請求項1から9のいずれか一項に記載の点火システム。 The control circuit increases the AC frequency and then increases the resonance frequency when increasing the resonance frequency and the AC frequency during the output of the AC voltage of the DC / AC converter. The ignition system according to any one of 9 to 9.
  11.  前記制御回路は、前記DC/AC変換器の交流電圧の出力中に、前記共振周波数及び前記交流周波数を低下させる際に、前記共振周波数を低下させた後、前記交流周波数を低下させる請求項1から10のいずれか一項に記載の点火システム。 Claim 1 in which the control circuit lowers the resonance frequency and then lowers the AC frequency when lowering the resonance frequency and the AC frequency during the output of the AC voltage of the DC / AC converter. 10. The ignition system according to any one of 10.
  12.  前記制御回路は、前記交流周波数及び前記共振周波数を変化させる際に、前記DC/AC変換器の交流電圧の出力を停止し、交流電圧の出力停止中に、前記共振周波数を変化させ、交流電圧の出力再開時に、前記交流周波数を変化させる請求項1から9のいずれか一項に記載の点火システム。 The control circuit stops the output of the AC voltage of the DC / AC converter when changing the AC frequency and the resonance frequency, and changes the resonance frequency while the output of the AC voltage is stopped, and changes the AC voltage. The ignition system according to any one of claims 1 to 9, wherein the AC frequency is changed when the output of the device is restarted.
  13.  前記周波数変更接続回路は、全てのスイッチがオフになった状態でも、前記DC/AC変換器から出力された交流電力を前記点火プラグに供給する請求項1から12のいずれか一項に記載の点火システム。 The frequency change connection circuit according to any one of claims 1 to 12, wherein the AC power output from the DC / AC converter is supplied to the spark plug even when all the switches are turned off. Ignition system.
  14.  前記制御回路は、前記燃焼室内への空気の流入が開始してから、点火を開始するまでの期間に点火前期間と、点火を行う点火期間とにおいて、前記DC/AC変換器に交流電力を出力させ、前記点火前期間の前記交流周波数及び前記共振周波数と、前記点火期間の前記交流周波数及び前記共振周波数と、を変化させる請求項1から13のいずれか一項に記載の点火システム。 The control circuit supplies AC power to the DC / AC converter during the pre-ignition period and the ignition period during the ignition period from the start of the inflow of air into the combustion chamber to the start of ignition. The ignition system according to any one of claims 1 to 13, which is output and changes the AC frequency and the resonance frequency in the pre-ignition period and the AC frequency and the resonance frequency in the ignition period.
  15.  前記制御回路は、前記点火期間の前記交流周波数及び前記共振周波数を、前記点火前期間の前記交流周波数及び前記共振周波数よりも高くする請求項14に記載の点火システム。 The ignition system according to claim 14, wherein the control circuit makes the AC frequency and the resonance frequency of the ignition period higher than the AC frequency and the resonance frequency of the pre-ignition period.
PCT/JP2020/016849 2020-04-17 2020-04-17 Ignition system WO2021210158A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020555069A JP6840301B1 (en) 2020-04-17 2020-04-17 Ignition system
PCT/JP2020/016849 WO2021210158A1 (en) 2020-04-17 2020-04-17 Ignition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/016849 WO2021210158A1 (en) 2020-04-17 2020-04-17 Ignition system

Publications (1)

Publication Number Publication Date
WO2021210158A1 true WO2021210158A1 (en) 2021-10-21

Family

ID=74845351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016849 WO2021210158A1 (en) 2020-04-17 2020-04-17 Ignition system

Country Status (2)

Country Link
JP (1) JP6840301B1 (en)
WO (1) WO2021210158A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089787A (en) * 2014-11-10 2016-05-23 株式会社日本自動車部品総合研究所 Ignition device for internal combustion engine
WO2019008850A1 (en) * 2017-07-03 2019-01-10 三菱電機株式会社 Power converter device
JP2019085877A (en) * 2017-11-01 2019-06-06 三菱電機株式会社 Ignition device for internal combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100589675C (en) * 2004-03-29 2010-02-10 三菱电机株式会社 Plasma generation power supply apparatus
JP5811119B2 (en) * 2013-03-12 2015-11-11 三菱電機株式会社 Ignition device for spark ignition internal combustion engine
JP2017500480A (en) * 2013-12-12 2017-01-05 フェデラル−モーグル・イグニション・カンパニーFederal−Mogul Ignition Company Control system for corona ignition power supply

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089787A (en) * 2014-11-10 2016-05-23 株式会社日本自動車部品総合研究所 Ignition device for internal combustion engine
WO2019008850A1 (en) * 2017-07-03 2019-01-10 三菱電機株式会社 Power converter device
JP2019085877A (en) * 2017-11-01 2019-06-06 三菱電機株式会社 Ignition device for internal combustion engine

Also Published As

Publication number Publication date
JPWO2021210158A1 (en) 2021-10-21
JP6840301B1 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
US20130199508A1 (en) Method for controlling the ignition point in an internal combustion engine by means of a corona discharge
US20180180014A1 (en) Ignition apparatus
WO2014168248A1 (en) Ignition control device for internal combustion engine
KR20180029059A (en) Electronic ignition system for internal combustion engine and driving method thereof
WO2015156221A1 (en) Control device and control method
JP6773004B2 (en) Ignition system for internal combustion engine
WO2021210158A1 (en) Ignition system
JP6337586B2 (en) Ignition device
JP6392535B2 (en) Control device for internal combustion engine
JP5835570B2 (en) Spark ignition internal combustion engine
US9957945B2 (en) Method for controlling a corona ignition device
JP5988287B2 (en) Control device for internal combustion engine
JP6297899B2 (en) Ignition device
JP6563699B2 (en) Ignition control device
JP2015200255A (en) ignition control device
JP6331615B2 (en) Ignition control device
JP5794814B2 (en) Spark ignition internal combustion engine
JP5954812B2 (en) Control device for spark ignition internal combustion engine
JP7003731B2 (en) Low temperature plasma generation method and compression ignition engine
JP6269270B2 (en) Ignition device
JP6531841B2 (en) Igniter
US20230109264A1 (en) Ignition coil control system
JP7056229B2 (en) Premixed compression ignition engine controller
JP2007262912A (en) Combustion control device of internal combustion engine
JP6331614B2 (en) Ignition control device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020555069

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930745

Country of ref document: EP

Kind code of ref document: A1