WO2021210138A1 - Take-off and landing facility, flight vehicle, flight vehicle system, and landing control method - Google Patents

Take-off and landing facility, flight vehicle, flight vehicle system, and landing control method Download PDF

Info

Publication number
WO2021210138A1
WO2021210138A1 PCT/JP2020/016764 JP2020016764W WO2021210138A1 WO 2021210138 A1 WO2021210138 A1 WO 2021210138A1 JP 2020016764 W JP2020016764 W JP 2020016764W WO 2021210138 A1 WO2021210138 A1 WO 2021210138A1
Authority
WO
WIPO (PCT)
Prior art keywords
landing
takeoff
flying object
fence
aircraft
Prior art date
Application number
PCT/JP2020/016764
Other languages
French (fr)
Japanese (ja)
Inventor
尚志 水本
山下 敏明
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2022514957A priority Critical patent/JP7343046B2/en
Priority to PCT/JP2020/016764 priority patent/WO2021210138A1/en
Publication of WO2021210138A1 publication Critical patent/WO2021210138A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/80Energy efficient operational measures, e.g. ground operations or mission management

Definitions

  • This disclosure relates to takeoff and landing facilities, air vehicles, air vehicle systems, and landing control methods.
  • Patent Document 1 discloses a system using an unmanned aerial vehicle.
  • the current position of the UAV Unmanned Aerial Vehicle
  • GPS Global Positioning System
  • the UAV is aligned with the landing platform based on infrared beacon communication.
  • Patent Document 2 discloses a heliport on which a helicopter lands.
  • the heliport is provided with a tsuitate to prevent noise.
  • a method for properly landing an air vehicle such as an unmanned aerial vehicle is desired.
  • the purpose of the present disclosure is to solve such a problem, and to provide a takeoff and landing facility, an air vehicle, an air vehicle system, and a landing control method capable of appropriately landing and controlling an air vehicle.
  • the takeoff and landing facility is a takeoff and landing facility on which an autonomously capable aircraft takes off and landing, and is described above in order to detect a fence that defines the takeoff and landing location of the air vehicle and the horizontal position and altitude of the air vehicle. It includes a sensor provided on the fence and a communication unit that transmits position information indicating the horizontal position and the altitude to the flying object.
  • the air vehicle according to the present disclosure is an air vehicle capable of autonomous flight, and is for detecting the horizontal position and altitude of the air vehicle on a fence that defines a takeoff and landing location and a drive mechanism that generates lift for flight. From the ground side where the sensor is provided, the aircraft side communication unit that receives the position information indicating the horizontal position and altitude, and the drive mechanism so that the flying object lands at the takeoff and landing place based on the position information. It is equipped with a flight control unit to control.
  • the aircraft body system includes an air vehicle capable of autonomous flight, a fence that defines a takeoff and landing location of the air vehicle, a sensor provided on the fence to detect the horizontal position and altitude of the air vehicle, and the sensor.
  • a communication unit that transmits position information indicating the horizontal position and the altitude detected in the above to the flying object, and the flying object has a driving mechanism that generates lift for flight. It includes an aircraft-side communication unit that receives the position information, and a flight control unit that controls the landing at the takeoff and landing location of the takeoff and landing facility based on the position information.
  • the landing control method is a landing control method for controlling the landing of an autonomously flying aircraft, and the horizontal position of the aircraft is determined by a sensor provided on a fence that defines the takeoff and landing location of the aircraft. And a step of detecting the altitude, and a step of transmitting the position information indicating the horizontal position and the altitude to the flying object.
  • a takeoff and landing facility an air vehicle, an air vehicle system, and a landing control method capable of appropriately landing and controlling an air vehicle.
  • FIG. It is a schematic diagram which shows the flying object system 1 which concerns on Embodiment 1.
  • FIG. It is a control block diagram of an air vehicle system 1. It is a schematic diagram which shows the flying object system 1 which concerns on Embodiment 2.
  • FIG. It is a schematic diagram which shows the flying body system which concerns on other embodiment.
  • FIG. 1 is a diagram schematically showing an air vehicle system 1.
  • FIG. 1 shows an XYZ three-dimensional Cartesian coordinate system for the sake of brevity.
  • Z indicates the altitude (height)
  • the XY plane indicates the horizontal plane. Therefore, the Z coordinate corresponds to the altitude and the XY coordinate corresponds to the horizontal position.
  • the aircraft body system 1 includes an aircraft body 100 and a takeoff and landing facility 200.
  • the takeoff and landing facility 200 includes a fence 201 and a sensor 202.
  • the flying object 100 is a rotary wing aircraft having a rotary wing 101. Lift and thrust are generated by rotationally driving the rotary blade 101.
  • the flying object 100 has four rotor blades 101, but the number of rotor blades is not particularly limited.
  • the flying object 100 can fly autonomously.
  • the aircraft body 100 includes a drone, an unmanned aerial vehicle (UAV), a flying car (car), and the like.
  • the aircraft body 100 may be a vertical take-off and landing aircraft (Vtrol aircraft).
  • the aircraft body 100 may be a tilt rotor aircraft.
  • the aircraft body 100 may be a helicopter.
  • the aircraft body 100 may be an unmanned vehicle carrying luggage or the like, or may be a manned vehicle on which a passenger is on board.
  • Fence 201 defines takeoff and landing location 203.
  • the fence 201 is installed so as to surround the takeoff and landing site 203. That is, the inside of the fence 201 becomes the takeoff and landing place 203.
  • the fence 201 is a soundproof fence and has a soundproof function to reduce noise during takeoff and landing.
  • the fence 201 is made of transparent polycarbonate or the like. The upper part of the fence 201 is open.
  • a part of the fence 201 may have a structure or the like for letting out the wind generated by the rotation of the rotary blade 101.
  • a part of the fence 201 may have a mesh structure.
  • an opening or the like may be provided in a part of the fence 201.
  • the fence 201 has a height of about 10 m.
  • the fence 201 is formed in a circular shape (cylindrical shape) so as to surround the takeoff and landing place 203, but the shape of the fence 201 is not particularly limited.
  • the shape of the fence 201 in the top view may be a rectangle of about several tens of m in the X direction and several tens of m in the Y direction.
  • a fence 201 is attached to the sensor 202.
  • the sensor 202 is, for example, a laser, a camera, a LiDAR (Light Detection and Ringing), a laser sensor, a distance sensor, or the like.
  • the sensor 202 is arranged in the fence 201.
  • the sensor 202 is provided on the fence 201 in order to detect the altitude and horizontal position of the flying object 100 in flight.
  • the sensor 202 detects the position of the flying object 100 in flight within the fence 201. That is, during landing, the sensor 202 tracks the position of the flying object 100.
  • one sensor 202 is arranged on the fence 201, but a plurality of sensors 202 may be arranged.
  • the plurality of sensors may be installed at different positions in the fence 201. Further, different types of sensors may be combined to estimate the position of the flying object 100. By using a plurality of sensors, the position detection accuracy can be improved.
  • the aircraft 100 will land at the landing position 204 within the takeoff and landing site 203.
  • the aircraft 100 moves to just above the takeoff and landing site 203, and then gradually lowers its altitude. Then, the flying object 100 descends to the surface of the earth.
  • the aircraft body 100 stores the position coordinates indicating the landing position 204.
  • the altitude (Z coordinate) of the landing position 204 may be set to 0. Therefore, the aircraft 100 autonomously flies from the takeoff location toward the XY coordinates indicating the takeoff / landing location 203 or the landing position 204.
  • the takeoff location and the landing location may be the same.
  • the takeoff and landing includes at least one of landing and takeoff. Therefore, the takeoff / landing facility 200 and the takeoff / landing place 203 according to the present embodiment may be a landing facility or a landing place that only takes off, or may be a takeoff facility or a takeoff place that only takes off.
  • FIG. 2 shows a control block diagram of the air vehicle system 1.
  • the flight body 100 includes a flight control unit 111, a drive mechanism 112, an airframe side communication unit 113, an airframe side sensor 114, a display unit 115, and a battery 116.
  • the flight control unit 111 controls each component.
  • the drive mechanism 112 includes a rotary wing 101 and a motor thereof, and generates lift and thrust for flight.
  • the flight control unit 111 outputs a drive signal for controlling the drive mechanism 112.
  • the flight control unit 111 controls the drive mechanism 112 so that the drive mechanism 112 drives the four rotors 101 independently.
  • the flight control unit 111 stores the coordinates of the landing position 204 in a memory or the like.
  • the flight control unit 111 controls the drive mechanism 112 so that the flying object 100 autonomously flies over the landing position 204.
  • the aircraft side communication unit 113 wirelessly communicates with the ground side, that is, the takeoff and landing facility 200.
  • the aircraft-side communication unit 113 performs processing in accordance with communication standards such as 5G, 4G, Wi-Fi (registered trademark), and Bluetooth (registered trademark).
  • the aircraft side communication unit 113 transmits a radio signal to the ground side.
  • the aircraft side communication unit 113 receives a radio signal from the ground side. As a result, data and information can be transmitted and received between the aircraft body 100 and the takeoff and landing facility 200.
  • the aircraft side sensor 114 detects information regarding the flight state of the flying object 100.
  • the airframe side sensor 114 includes, for example, a gyro sensor that detects the attitude of the airframe. Further, it may have a position sensor that detects the position of the airframe. As the position sensor, for example, a satellite positioning sensor such as GPS can be used.
  • the flight control unit 111 controls the drive mechanism 112 based on the detection of the airframe side sensor 114. As a result, the aircraft 100 can autonomously fly over the landing position 204. Further, the airframe side sensor 114 may include a camera that images the periphery of the airframe 100.
  • the machine body side sensor 114 is not limited to one, and may include a plurality of sensors.
  • the display unit 115 displays a camera image during flight to passengers and users.
  • the camera may be mounted on the airframe side or may be provided on the ground side.
  • the camera may be included in the airframe side sensor 114 or may be included in the ground side sensor 202.
  • the camera on the airframe side captures an image of the periphery of the airframe 100. For example, at the time of takeoff and landing, the aircraft 100 captures an image of the takeoff and landing facility 200 from the sky.
  • the camera on the ground side captures an image of the flying object 100 during takeoff and landing. That is, the camera on the ground side captures the state of descent of the flying object 100.
  • the display unit 115 displays the descent status to the passenger and the operator.
  • the display unit 115 can also output the descent status by AR (Augmented Reality).
  • the display unit 115 may display not only the camera image but also information for assisting takeoff and landing.
  • the display unit 115 may display position information, a deviation amount, and the like. The position information or the amount of deviation of the sensor 202 is based on the detection result of the sensor 202, as will be described later. Further, the display unit 115 may display the sensor value of the sensor 202 or the machine body side sensor 114.
  • the displayed contents may be changed according to the information about the flying object 100.
  • the display unit 115 may change the display content according to the information on whether the flight is manned or unmanned.
  • the display unit 115 may change the display content according to the information indicating that the vehicle is in automatic operation or manual operation (operation by the operator). In the case of an unmanned aerial vehicle, the display unit 115 can be omitted.
  • the battery 116 supplies power to each device.
  • the takeoff and landing facility 200 is a place where the aircraft 100 lands. Further, the landing facility 200 may be a place where the aircraft 100 takes off. For example, the aircraft 100 takes off from the landing facility 200 after landing at the takeoff and landing facility 200.
  • the landing facility 200 includes a sensor 202, a control unit 211, and a communication unit 213. As described above, the sensor 202 detects the position of the flying object 100 in flight. The sensing range of the sensor 202 is within the takeoff / landing location 203 and above the takeoff / landing location 203. Therefore, the sensor 202 detects the horizontal position and altitude of the flying object 100 during landing.
  • the control unit 211 generates the position information of the flying object 100 based on the detection result of the sensor 202. For example, the control unit 211 estimates the horizontal position and altitude of the flying object 100 based on the detection results of the plurality of sensors 202, and uses them as position information.
  • the communication unit 213 transmits position information indicating the horizontal position and altitude of the aircraft 100 to the aircraft 100.
  • the control unit 211 and the communication unit 213 may be an integrally formed circuit.
  • the communication unit 213 may be installed in the fence 201.
  • the position information is data indicating the altitude and horizontal position of the flying object 100.
  • the control unit 211 calculates the amount of deviation from the landing position 204 in the fence 201 to the flying object 100 based on the detection signal from the sensor 202.
  • the control unit 211 obtains the amount of deviation in each of the X direction and the Y direction. Further, the control unit 211 may obtain a deviation amount (altitude difference) in the Z direction.
  • the communication unit 213 transmits the deviation amount as position information to the flying object 100.
  • the aircraft side communication unit 113 receives the deviation amount which is the position information.
  • the flight control unit 111 controls the drive mechanism 112 based on the position information so that the flight body 100 lands at the landing position 204. For example, the flight control unit 111 controls the drive mechanism 112 so that the amount of deviation is small. By doing so, the aircraft 100 can land at the landing position 204 with high accuracy. Similarly, at the time of takeoff, the aircraft 100 can take off accurately from the landing position 204.
  • the control unit 211 calculates the relative position of the flying object 100 with respect to the fence 201 based on the detection signal from the sensor 202.
  • the control unit 211 obtains the relative position of the flying object 100 with respect to the fence 201 in each of the X direction and the Y direction. That is, the control unit 211 calculates the relative positions of the fence 201 and the flying object 100 in the XY plane. By doing so, the aircraft 100 can descend to the landing position 204 while maintaining a sufficient distance from the fence 201. Therefore, it is possible to prevent the fence 201 from approaching. Therefore, the influence of the wind reflected from the rotary blade 101 by the fence 201 can be reduced.
  • the sensor 202 provided on the fence 201 detects the position information of the flying object 100 during landing. Therefore, the position can be detected with higher accuracy than the case where the position information is detected by using the satellite positioning system. For example, in a satellite positioning system, the position measurement error is large. Further, if the fence 201 is provided so as to surround the takeoff and landing place 203, the satellite signal may not be received. In addition, it is difficult to detect the horizontal position and altitude with high accuracy using a beacon. Furthermore, the sensing range is also limited.
  • the sensor 202 is provided in the fence 201, the horizontal position and altitude of the flying object during takeoff and landing can be accurately detected in the takeoff and landing facility. Further, since the fence 201 is provided so as to surround the takeoff and landing place 203, the noise at the time of takeoff and landing can be reduced. In addition, safety can be enhanced. Since it can take off and land efficiently, fuel consumption can be suppressed.
  • FIG. 3 is a schematic view showing the flying object system 1.
  • the takeoff and landing facility 200 has a takeoff and landing platform 206 and a blower mechanism 207.
  • the configurations other than the blower mechanism 207 and the takeoff and landing platform 206 are the same as those in the first embodiment, and thus the description thereof will be omitted as appropriate.
  • the takeoff and landing platform 206 constitutes the takeoff and landing place 203. That is, the upper surface of the takeoff / landing platform 206 becomes the takeoff / landing place 203.
  • the aircraft 100 lands on the takeoff and landing platform 206.
  • the takeoff and landing platform 206 has a structure that allows air to pass through. For example, at least part of the takeoff and landing platform 206 has a mesh structure. Alternatively, an opening may be provided in a part of the takeoff and landing platform 206.
  • a blower mechanism 207 is provided below the takeoff and landing site 203.
  • the blower mechanism 207 includes a fan and the like, and blows air to the landing aircraft 100. That is, the blower mechanism 207 generates an upward (+ Z direction) wind.
  • the control unit 211 controls the ventilation mechanism 207 based on the position information. By doing so, the landing of the aircraft 100 can be assisted. For example, the rotation speed of the fan is controlled according to the altitude of the flying object 100. The aircraft body 100 can be gradually lowered. In this way, the air blowing mechanism 207 that blows air to the flying object 100 is provided on the landing facility 200 side. Therefore, landing control can be performed more easily and appropriately. Further, the blower mechanism 207 may blow air to the flying object 100 even at the time of takeoff. Takeoff control can be performed more easily and appropriately.
  • FIG. 4 is a diagram showing an air vehicle system 1 having an air vehicle 100 and a takeoff and landing facility 200.
  • the takeoff and landing facility 200 includes a fence 201, a sensor 202, and a communication unit 213.
  • the fence 201 defines the takeoff and landing location 203 of the aircraft 100.
  • the sensor 202 is provided on the fence 201 in order to detect the horizontal position and altitude of the flying object 100.
  • the communication unit 213 transmits position information indicating the horizontal position and altitude to the aircraft body 100.
  • the aircraft 100 is an autonomous flight capable of landing at the takeoff and landing site 203.
  • the aircraft body 100 includes a drive mechanism 112, a flight control unit 111, and an airframe side communication unit 113.
  • the drive mechanism 112 generates lift for flight.
  • the aircraft side communication unit 113 receives position information indicating the horizontal position and altitude from the ground side where the sensor 202 for detecting the horizontal position and altitude of the aircraft 100 is provided on the fence 201 defining the takeoff and landing place 203. ..
  • the flight control unit 111 controls the drive mechanism 112 so that the aircraft lands at the takeoff and landing location 203 based on the position information. With this configuration, landing control can be performed appropriately. With this configuration, landing control can be performed appropriately.
  • control of the flight control unit 111 and the control unit 211 may be realized by the processor executing a computer program.
  • the program can be stored and supplied to a computer using various types of non-transitory computer readable medium.
  • Non-temporary computer-readable media include various types of tangible storage mediums.
  • non-temporary computer-readable media examples include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, It includes a CD-R / W and a semiconductor memory (for example, a mask ROM, a PROM (Programmable ROM), an EPROM (Erasable PROM), a flash ROM, and a RAM (RandomAccessMemory)).
  • the program may also be supplied to the computer by various types of temporary computer readable medium. Examples of temporary computer-readable media include electrical, optical, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • (Appendix 1) It is a takeoff and landing facility where autonomous flying objects take off and land.
  • a fence that defines the takeoff and landing location of the aircraft,
  • a sensor provided on the fence to detect the horizontal position and altitude of the flying object,
  • a takeoff and landing facility including a communication unit that transmits position information indicating the horizontal position and the altitude to the flying object.
  • (Appendix 2) Further provided with a blower mechanism provided below the takeoff and landing site to blow air to the aircraft during landing.
  • a control unit for calculating the amount of deviation from the landing position in the fence to the flying object based on the detection signal from the sensor is provided.
  • An air vehicle capable of autonomous flight A drive mechanism that generates lift for flight, A communication unit on the aircraft side that receives position information indicating the horizontal position and altitude from the ground side provided with a sensor for detecting the horizontal position and altitude of the aircraft on a fence that defines a takeoff and landing location.
  • An air vehicle including a flight control unit that controls the drive mechanism so that the air vehicle lands at the takeoff and landing location based on the position information.
  • Appendix 6 The airframe according to Appendix 5, wherein the airframe-side communication unit receives the amount of deviation from the landing position in the fence to the airframe as the position information.
  • Appendix 7 The flying object according to Appendix 5, which receives the relative position of the flying object with respect to the fence as the position information.
  • Appendix 8 An air vehicle capable of autonomous flight and A fence that defines the takeoff and landing location of the aircraft, A sensor provided on the fence to detect the horizontal position and altitude of the flying object, and A communication unit that transmits position information indicating the horizontal position and the altitude detected by the sensor to the flying object is provided.
  • the flying object A drive mechanism that generates lift for flight, With the communication unit on the aircraft side that receives the location information,
  • An air vehicle system including a flight control unit that controls the drive mechanism so as to land at the takeoff and landing location based on the position information.
  • (Appendix 9) Further provided with a blower mechanism provided below the takeoff and landing site to blow air to the aircraft.
  • (Appendix 10) A control unit for calculating the amount of deviation from the landing position in the fence to the flying object based on the detection signal from the sensor is provided.
  • (Appendix 11) Further provided with a control unit for calculating the relative position of the flying object with respect to the fence.
  • (Appendix 12) It is a landing control method that controls the landing of an autonomous flying object.
  • a landing control method comprising a step of transmitting position information indicating the horizontal position and the altitude to the flying object.
  • a ventilation mechanism provided below the takeoff and landing site further provides a step of blowing air to the aircraft during landing.
  • (Appendix 14) Based on the detection signal from the sensor, the amount of deviation from the landing position in the fence to the flying object is calculated.
  • Aircraft 101 Rotorcraft 111 Flight control unit 112 Drive mechanism 113 Airframe side communication unit 114 Airframe side sensor 115 Display unit 116 Battery 200 Takeoff and landing facility 201 Fence 202 Sensor 203 Takeoff and landing location 204 Landing position 206 Takeoff and landing platform 207 Blower 213 Communication department

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

A take-off and landing facility (200) according to the present embodiment is where a flight vehicle (100) that is capable of autonomous flight lands. The take-off and landing facility (200) is provided with: a fence (201) that defines a take-off and landing place (203) of the flight vehicle (100); a sensor that is provided to the fence (201), for detecting the horizontal position and altitude of the flight vehicle (100); and a communication unit (213) that transmits, to the flight vehicle (100), positional information indicative of the horizontal position and altitude.

Description

離着陸施設、飛行体、飛行体システム、及び着陸制御方法Takeoff and landing facilities, aircraft, aircraft systems, and landing control methods
 本開示は、離着陸施設、飛行体、飛行体システム、及び着陸制御方法に関する。 This disclosure relates to takeoff and landing facilities, air vehicles, air vehicle systems, and landing control methods.
 特許文献1には、無人航空機を使用したシステムが開示されている。特許文献1では、GPS(Global Positioning System)を用いて、UAV(Unmanned Aerial Vehicle)の現在位置が検出されている。また、特許文献1では、赤外線ビーコン通信に基づいてUAVを着陸プラットフォームと位置合わせしている。 Patent Document 1 discloses a system using an unmanned aerial vehicle. In Patent Document 1, the current position of the UAV (Unmanned Aerial Vehicle) is detected using GPS (Global Positioning System). Further, in Patent Document 1, the UAV is aligned with the landing platform based on infrared beacon communication.
 特許文献2には、ヘリコプターが着陸するヘリポートが開示されている。ヘリポートには、騒音防止用のついたてが設けられている。 Patent Document 2 discloses a heliport on which a helicopter lands. The heliport is provided with a tsuitate to prevent noise.
特表2019-502195号公報Special Table 2019-502195 特開平5―195515号公報Japanese Unexamined Patent Publication No. 5-195515
 無人航空機等の飛行体を適切に着陸させる方法が望まれる。 A method for properly landing an air vehicle such as an unmanned aerial vehicle is desired.
 本開示の目的は、このような課題を解決するためになされたものであり、適切に飛行体を着陸制御することができる離着陸施設、飛行体、飛行体システム、及び着陸制御方法を提供する。 The purpose of the present disclosure is to solve such a problem, and to provide a takeoff and landing facility, an air vehicle, an air vehicle system, and a landing control method capable of appropriately landing and controlling an air vehicle.
 本開示にかかる離着陸施設は、自律飛行可能な飛行体が離着陸する離着陸施設であって、前記飛行体の離着陸場所を規定するフェンスと、前記飛行体の水平位置及び高度を検出するために、前記フェンスに設けられたセンサと、前記水平位置及び前記高度を示す位置情報を前記飛行体に送信する通信部と、を備えている。 The takeoff and landing facility according to the present disclosure is a takeoff and landing facility on which an autonomously capable aircraft takes off and landing, and is described above in order to detect a fence that defines the takeoff and landing location of the air vehicle and the horizontal position and altitude of the air vehicle. It includes a sensor provided on the fence and a communication unit that transmits position information indicating the horizontal position and the altitude to the flying object.
 本開示にかかる飛行体は、自律飛行可能な飛行体であって、飛行するための揚力を発生させる駆動機構と、離着陸場所を規定するフェンスに前記飛行体の水平位置及び高度を検出するためのセンサが設けられた地上側から、前記水平位置及び高度を示す位置情報を受信する機体側通信部と、前記位置情報に基づいて、前記離着陸場所に前記飛行体が着陸するように前記駆動機構を制御する飛行制御部と、を備えている。 The air vehicle according to the present disclosure is an air vehicle capable of autonomous flight, and is for detecting the horizontal position and altitude of the air vehicle on a fence that defines a takeoff and landing location and a drive mechanism that generates lift for flight. From the ground side where the sensor is provided, the aircraft side communication unit that receives the position information indicating the horizontal position and altitude, and the drive mechanism so that the flying object lands at the takeoff and landing place based on the position information. It is equipped with a flight control unit to control.
 本開示にかかる飛行体システムは、自律飛行可能な飛行体と、飛行体の離着陸場所を規定するフェンスと、前記フェンスに設けられ、前記飛行体の水平位置及び高度を検出するセンサと、前記センサで検出された前記水平位置及び前記高度を示す位置情報を前記飛行体に送信する通信部と、を備え、前記飛行体は、飛行するための揚力を発生させる駆動機構と、
 前記位置情報を受信する機体側通信部と、前記位置情報に基づいて、前記離着陸施設の離着陸場所に着陸するように制御する飛行制御部と、を備えている。
The aircraft body system according to the present disclosure includes an air vehicle capable of autonomous flight, a fence that defines a takeoff and landing location of the air vehicle, a sensor provided on the fence to detect the horizontal position and altitude of the air vehicle, and the sensor. A communication unit that transmits position information indicating the horizontal position and the altitude detected in the above to the flying object, and the flying object has a driving mechanism that generates lift for flight.
It includes an aircraft-side communication unit that receives the position information, and a flight control unit that controls the landing at the takeoff and landing location of the takeoff and landing facility based on the position information.
 本開示にかかる着陸制御方法は、自律飛行可能な飛行体の着陸を制御する着陸制御方法であって、前記飛行体の離着陸場所を規定するフェンスに設けられたセンサによって、前記飛行体の水平位置及び高度を検出するステップと、前記水平位置及び前記高度を示す位置情報を前記飛行体に送信するステップと、を備えている。 The landing control method according to the present disclosure is a landing control method for controlling the landing of an autonomously flying aircraft, and the horizontal position of the aircraft is determined by a sensor provided on a fence that defines the takeoff and landing location of the aircraft. And a step of detecting the altitude, and a step of transmitting the position information indicating the horizontal position and the altitude to the flying object.
 本開示によれば、適切に飛行体を着陸制御することができる離着陸施設、飛行体、飛行体システム、及び着陸制御方法を提供できる。 According to the present disclosure, it is possible to provide a takeoff and landing facility, an air vehicle, an air vehicle system, and a landing control method capable of appropriately landing and controlling an air vehicle.
実施の形態1にかかる飛行体システム1を示す模式図である。It is a schematic diagram which shows the flying object system 1 which concerns on Embodiment 1. FIG. 飛行体システム1の制御ブロック図である。It is a control block diagram of an air vehicle system 1. 実施の形態2にかかる飛行体システム1を示す模式図である。It is a schematic diagram which shows the flying object system 1 which concerns on Embodiment 2. FIG. その他の実施の形態にかかる飛行体システムを示す模式図である。It is a schematic diagram which shows the flying body system which concerns on other embodiment.
実施の形態1.
 本実施の形態1にかかる離着陸施設、及び飛行体システムについて、図1を用い説明する。図1は、飛行体システム1を模式的に示す図である。なお、図1では、説明の簡略化のため、XYZ3次元直交座標系を示している。Zは高度(高さ)を示し、XY平面は水平面を示す。したがって、Z座標は高度に対応し、XY座標が水平位置に対応する。
Embodiment 1.
The takeoff and landing facility and the air vehicle system according to the first embodiment will be described with reference to FIG. FIG. 1 is a diagram schematically showing an air vehicle system 1. Note that FIG. 1 shows an XYZ three-dimensional Cartesian coordinate system for the sake of brevity. Z indicates the altitude (height), and the XY plane indicates the horizontal plane. Therefore, the Z coordinate corresponds to the altitude and the XY coordinate corresponds to the horizontal position.
 飛行体システム1は、飛行体100と、離着陸施設200を備えている。離着陸施設200は、フェンス201及びセンサ202を備えている。 The aircraft body system 1 includes an aircraft body 100 and a takeoff and landing facility 200. The takeoff and landing facility 200 includes a fence 201 and a sensor 202.
 飛行体100は、回転翼101を有する回転翼機である。回転翼101が回転駆動することで揚力、及び推力が発生する。なお、図1では、飛行体100が4枚の回転翼101を有しているが、回転翼数は特に限定されるものではない。 The flying object 100 is a rotary wing aircraft having a rotary wing 101. Lift and thrust are generated by rotationally driving the rotary blade 101. In FIG. 1, the flying object 100 has four rotor blades 101, but the number of rotor blades is not particularly limited.
 飛行体100は、自律飛行可能である。飛行体100は、ドローン、無人飛行機(UAV:Unmanned Aerial Vehicle)、空飛ぶ車(クルマ)などである。飛行体100は垂直離着陸機(Vertical Take-Off and Landing Aircraft, Vtol機)であってもよい。飛行体100はティルトロータ機であってもよい。飛行体100はヘリコプターであってもよい。飛行体100は、荷物などを搭載する無人機であってもよく、搭乗者が搭乗する有人機であってもよい。 The flying object 100 can fly autonomously. The aircraft body 100 includes a drone, an unmanned aerial vehicle (UAV), a flying car (car), and the like. The aircraft body 100 may be a vertical take-off and landing aircraft (Vtrol aircraft). The aircraft body 100 may be a tilt rotor aircraft. The aircraft body 100 may be a helicopter. The aircraft body 100 may be an unmanned vehicle carrying luggage or the like, or may be a manned vehicle on which a passenger is on board.
 フェンス201は離着陸場所203を規定する。フェンス201は、離着陸場所203を囲むように設置されている。つまり、フェンス201の内側が離着陸場所203となる。フェンス201を防音フェンスであり、離着陸時の騒音を軽減する防音機能を有している。フェンス201は、透明なポリカーボネイトなどで形成されている。フェンス201の上方は開放している。 Fence 201 defines takeoff and landing location 203. The fence 201 is installed so as to surround the takeoff and landing site 203. That is, the inside of the fence 201 becomes the takeoff and landing place 203. The fence 201 is a soundproof fence and has a soundproof function to reduce noise during takeoff and landing. The fence 201 is made of transparent polycarbonate or the like. The upper part of the fence 201 is open.
 フェンス201の一部には、回転翼101の回転で発生する風を逃がすための構造等を有していてもよい。例えば、フェンス201の一部がメッシュ構造となっていてもよい。あるいは、フェンス201の一部に開口部など設けられていてもよい。 A part of the fence 201 may have a structure or the like for letting out the wind generated by the rotation of the rotary blade 101. For example, a part of the fence 201 may have a mesh structure. Alternatively, an opening or the like may be provided in a part of the fence 201.
 フェンス201は、高さ10m程度となっている。図1では、フェンス201が離着陸場所203を囲むように、円形状(円筒状)に形成されているが、フェンス201の形状は特に限定されるものではない。例えば、上面視におけるフェンス201の形状は、X方向に数十m、Y方向に数十m程度の矩形となっていてもよい。 The fence 201 has a height of about 10 m. In FIG. 1, the fence 201 is formed in a circular shape (cylindrical shape) so as to surround the takeoff and landing place 203, but the shape of the fence 201 is not particularly limited. For example, the shape of the fence 201 in the top view may be a rectangle of about several tens of m in the X direction and several tens of m in the Y direction.
 センサ202には、フェンス201が取り付けられている。センサ202は、例えば、レーザ、カメラ、LiDAR(Light Detection and Ranging)、レーザセンサ、距離センサ等である。センサ202は、フェンス201内に配置されている。センサ202は、飛行中の飛行体100の高度及び水平位置を検出するために、フェンス201に設けられている。センサ202は、フェンス201内を飛行中の飛行体100の位置を検出する。つまり、着陸中において、センサ202は、飛行体100の位置をトラッキングしている。 A fence 201 is attached to the sensor 202. The sensor 202 is, for example, a laser, a camera, a LiDAR (Light Detection and Ringing), a laser sensor, a distance sensor, or the like. The sensor 202 is arranged in the fence 201. The sensor 202 is provided on the fence 201 in order to detect the altitude and horizontal position of the flying object 100 in flight. The sensor 202 detects the position of the flying object 100 in flight within the fence 201. That is, during landing, the sensor 202 tracks the position of the flying object 100.
 また、図1では、フェンス201には、1つのセンサ202が配置されているが、複数のセンサ202が配置されていてもよい。複数のセンサは、フェンス201内の異なる位置に設置されていてもよい。さらに、異なるタイプのセンサを組み合わせて、飛行体100の位置を推定してもよい。複数のセンサを用いることで、位置の検出精度を向上することができる。 Further, in FIG. 1, one sensor 202 is arranged on the fence 201, but a plurality of sensors 202 may be arranged. The plurality of sensors may be installed at different positions in the fence 201. Further, different types of sensors may be combined to estimate the position of the flying object 100. By using a plurality of sensors, the position detection accuracy can be improved.
 飛行体100は、離着陸場所203内の着陸位置204に着陸する。例えば、飛行体100は、離着陸場所203の真上まで移動した後、徐々に高度を下げていく。そして、飛行体100が地表まで下降していく。飛行体100は着陸位置204を示す位置座標を記憶している。着陸位置204の高度(Z座標)を0としてもよい。したがって、飛行体100は、離陸場所から離着陸場所203又は着陸位置204を示すXY座標に向けて自律飛行する。もちろん、離陸場所と着陸場所は同じであってもよい。なお、本実施の形態において、離着陸とは、着陸又は離陸の少なくとも一方を含むものである。よって、本実施の形態にかかる離着陸施設200、離着陸場所203は、着陸のみを行う着陸施設又は着陸場所であってもよく、離陸のみを行う離陸施設又は離陸場所であってもよい。 The aircraft 100 will land at the landing position 204 within the takeoff and landing site 203. For example, the aircraft 100 moves to just above the takeoff and landing site 203, and then gradually lowers its altitude. Then, the flying object 100 descends to the surface of the earth. The aircraft body 100 stores the position coordinates indicating the landing position 204. The altitude (Z coordinate) of the landing position 204 may be set to 0. Therefore, the aircraft 100 autonomously flies from the takeoff location toward the XY coordinates indicating the takeoff / landing location 203 or the landing position 204. Of course, the takeoff location and the landing location may be the same. In the present embodiment, the takeoff and landing includes at least one of landing and takeoff. Therefore, the takeoff / landing facility 200 and the takeoff / landing place 203 according to the present embodiment may be a landing facility or a landing place that only takes off, or may be a takeoff facility or a takeoff place that only takes off.
 図2は、飛行体システム1の制御ブロック図を示す。飛行体100は、飛行制御部111、駆動機構112、機体側通信部113、機体側センサ114、表示部115、バッテリ116を備えている。 FIG. 2 shows a control block diagram of the air vehicle system 1. The flight body 100 includes a flight control unit 111, a drive mechanism 112, an airframe side communication unit 113, an airframe side sensor 114, a display unit 115, and a battery 116.
 飛行制御部111は、各構成要素を制御する。例えば、駆動機構112は、回転翼101及びそのモータを備えており、飛行するための揚力や推力を発生させる。飛行制御部111は、駆動機構112を制御するための駆動信号を出力する。図1に示す例では、駆動機構112が4つの回転翼101が独立に駆動するように、飛行制御部111が駆動機構112を制御する。飛行制御部111は、着陸位置204の座標をメモリなどに格納している。飛行制御部111は、飛行体100が着陸位置204の上空まで自律飛行するように、駆動機構112を制御する。 The flight control unit 111 controls each component. For example, the drive mechanism 112 includes a rotary wing 101 and a motor thereof, and generates lift and thrust for flight. The flight control unit 111 outputs a drive signal for controlling the drive mechanism 112. In the example shown in FIG. 1, the flight control unit 111 controls the drive mechanism 112 so that the drive mechanism 112 drives the four rotors 101 independently. The flight control unit 111 stores the coordinates of the landing position 204 in a memory or the like. The flight control unit 111 controls the drive mechanism 112 so that the flying object 100 autonomously flies over the landing position 204.
 機体側通信部113は、地上側、つまり、離着陸施設200と無線通信を行う。機体側通信部113は、例えば、5G、4G、Wi-Fi(登録商標)、BlueTooth(登録商標)等の通信規格に沿った処理を行う。機体側通信部113は、無線信号を地上側に送信する。機体側通信部113は、地上側から無線信号を受信する。これにより、飛行体100と離着陸施設200との間でデータや情報の送受信が可能となる。 The aircraft side communication unit 113 wirelessly communicates with the ground side, that is, the takeoff and landing facility 200. The aircraft-side communication unit 113 performs processing in accordance with communication standards such as 5G, 4G, Wi-Fi (registered trademark), and Bluetooth (registered trademark). The aircraft side communication unit 113 transmits a radio signal to the ground side. The aircraft side communication unit 113 receives a radio signal from the ground side. As a result, data and information can be transmitted and received between the aircraft body 100 and the takeoff and landing facility 200.
 機体側センサ114は、飛行体100の飛行状態に関する情報を検出する。機体側センサ114は、例えば、機体の姿勢を検出するジャイロセンサなどを有している。さらに、機体の位置を検出する位置センサを有していてもよい。位置センサとしては、例えば、GPS等の衛星測位センサなどを用いることができる。飛行制御部111は、機体側センサ114の検出に基づいて、駆動機構112を制御する。これにより、飛行体100が着陸位置204の上空まで自律飛行することができる。また、機体側センサ114は、飛行体100の周辺を撮像するカメラを含んでいてもよい。機体側センサ114は、一つに限られるものでなく、複数のセンサを含んでいてもよい。 The aircraft side sensor 114 detects information regarding the flight state of the flying object 100. The airframe side sensor 114 includes, for example, a gyro sensor that detects the attitude of the airframe. Further, it may have a position sensor that detects the position of the airframe. As the position sensor, for example, a satellite positioning sensor such as GPS can be used. The flight control unit 111 controls the drive mechanism 112 based on the detection of the airframe side sensor 114. As a result, the aircraft 100 can autonomously fly over the landing position 204. Further, the airframe side sensor 114 may include a camera that images the periphery of the airframe 100. The machine body side sensor 114 is not limited to one, and may include a plurality of sensors.
 表示部115は、搭乗者やユーザに対して、飛行中のカメラ画像を表示する。なお、カメラは、機体側に搭載されていてもよく、地上側に設けられていてもよい。カメラは、機体側センサ114に含まれていてもよく、地上側のセンサ202に含まれていてもよい。機体側のカメラが飛行体100の周辺の画像を撮像する。例えば、離着陸時において飛行体100は上空から、離着陸施設200の画像を撮像する。 The display unit 115 displays a camera image during flight to passengers and users. The camera may be mounted on the airframe side or may be provided on the ground side. The camera may be included in the airframe side sensor 114 or may be included in the ground side sensor 202. The camera on the airframe side captures an image of the periphery of the airframe 100. For example, at the time of takeoff and landing, the aircraft 100 captures an image of the takeoff and landing facility 200 from the sky.
 あるいは、地上側のカメラが離着陸中の飛行体100の画像を撮像する。つまり、地上側のカメラが飛行体100の降下の状況を撮像する。そして、降下の状況を搭乗者や操縦者に対して、表示部115は表示する。表示部115は、AR(Augmented Reality)により降下の状況を出力させることも可能である。また、表示部115は、カメラ画像だけではなく、離着陸をアシストするための情報を表示してもよい。例えば、表示部115は、位置情報やずれ量等を表示してもよい。センサ202は、位置情報又はずれ量は、後述するように、センサ202の検出結果に基づくものである。また、表示部115は、センサ202又は機体側センサ114のセンサ値などを表示してもよい。さらに、飛行体100に関する情報に応じて、表示内容が変わってもよい。例えば、有人飛行か無人飛行かであるか否かの情報に応じて、表示部115が表示内容を変えてもよい。あるいは、自動運転中又は手動運転中(操縦者による運転)を示す情報に応じて、表示部115が表示内容を変えてもよい。なお、無人機の場合、表示部115は省略可能である。バッテリ116は各機器に電力を供給する。 Alternatively, the camera on the ground side captures an image of the flying object 100 during takeoff and landing. That is, the camera on the ground side captures the state of descent of the flying object 100. Then, the display unit 115 displays the descent status to the passenger and the operator. The display unit 115 can also output the descent status by AR (Augmented Reality). Further, the display unit 115 may display not only the camera image but also information for assisting takeoff and landing. For example, the display unit 115 may display position information, a deviation amount, and the like. The position information or the amount of deviation of the sensor 202 is based on the detection result of the sensor 202, as will be described later. Further, the display unit 115 may display the sensor value of the sensor 202 or the machine body side sensor 114. Further, the displayed contents may be changed according to the information about the flying object 100. For example, the display unit 115 may change the display content according to the information on whether the flight is manned or unmanned. Alternatively, the display unit 115 may change the display content according to the information indicating that the vehicle is in automatic operation or manual operation (operation by the operator). In the case of an unmanned aerial vehicle, the display unit 115 can be omitted. The battery 116 supplies power to each device.
 離着陸施設200は、飛行体100が着陸する場所である。また、着陸施設200は飛行体100が離陸する場所でもよい。例えば、飛行体100は離着陸施設200に着陸した後、着陸施設200から離陸する。着陸施設200は、センサ202、制御部211、通信部213を備えている。センサ202は、上記の通り、飛行中の飛行体100の位置を検出する。センサ202は、離着陸場所203内及び離着陸場所203の上空がセンシング範囲となっている。したがって、センサ202は、着陸中の飛行体100の水平位置及び高度を検出する。 The takeoff and landing facility 200 is a place where the aircraft 100 lands. Further, the landing facility 200 may be a place where the aircraft 100 takes off. For example, the aircraft 100 takes off from the landing facility 200 after landing at the takeoff and landing facility 200. The landing facility 200 includes a sensor 202, a control unit 211, and a communication unit 213. As described above, the sensor 202 detects the position of the flying object 100 in flight. The sensing range of the sensor 202 is within the takeoff / landing location 203 and above the takeoff / landing location 203. Therefore, the sensor 202 detects the horizontal position and altitude of the flying object 100 during landing.
 制御部211は、センサ202の検出結果に基づいて、飛行体100の位置情報を生成する。例えば、制御部211は、複数のセンサ202の検出結果に基づいて、飛行体100の水平位置及び高度を推定して、位置情報とする。通信部213は、飛行体100の水平位置及び高度を示す位置情報を飛行体100に送信する。制御部211と通信部213は一体的に形成された回路であってもよい。通信部213は、フェンス201内に設置されていてもよい。 The control unit 211 generates the position information of the flying object 100 based on the detection result of the sensor 202. For example, the control unit 211 estimates the horizontal position and altitude of the flying object 100 based on the detection results of the plurality of sensors 202, and uses them as position information. The communication unit 213 transmits position information indicating the horizontal position and altitude of the aircraft 100 to the aircraft 100. The control unit 211 and the communication unit 213 may be an integrally formed circuit. The communication unit 213 may be installed in the fence 201.
 位置情報は、飛行体100の高度、及び水平位置を示すデータである。例えば、制御部211は、センサ202からの検出信号に基づいて、フェンス201内の着陸位置204から飛行体100までのずれ量を算出する。制御部211は、X方向、Y方向のそれぞれについて、ずれ量を求める。また、制御部211は、Z方向について、ずれ量(高度差)を求めてもよい。そして、通信部213は、ずれ量を位置情報として、飛行体100に送信する。機体側通信部113は、位置情報であるずれ量を受信する。 The position information is data indicating the altitude and horizontal position of the flying object 100. For example, the control unit 211 calculates the amount of deviation from the landing position 204 in the fence 201 to the flying object 100 based on the detection signal from the sensor 202. The control unit 211 obtains the amount of deviation in each of the X direction and the Y direction. Further, the control unit 211 may obtain a deviation amount (altitude difference) in the Z direction. Then, the communication unit 213 transmits the deviation amount as position information to the flying object 100. The aircraft side communication unit 113 receives the deviation amount which is the position information.
 飛行制御部111は、飛行体100が着陸位置204に着陸するように、位置情報に基づいて、駆動機構112を制御する。例えば、飛行制御部111は、ずれ量が小さくなるように駆動機構112を制御する。このようにすることで、飛行体100が着陸位置204に精度よく着陸することができる。また、離陸時においても同様に、飛行体100が着陸位置204から精度よく離陸することができる。 The flight control unit 111 controls the drive mechanism 112 based on the position information so that the flight body 100 lands at the landing position 204. For example, the flight control unit 111 controls the drive mechanism 112 so that the amount of deviation is small. By doing so, the aircraft 100 can land at the landing position 204 with high accuracy. Similarly, at the time of takeoff, the aircraft 100 can take off accurately from the landing position 204.
 あるいは、制御部211は、センサ202からの検出信号に基づいて、フェンス201に対する飛行体100の相対位置を算出する。制御部211は、X方向、Y方向のそれぞれについて、フェンス201に対する飛行体100の相対位置を求める。つまり、制御部211は、XY平面内において、フェンス201と飛行体100の相対位置を算出する。このようにすることで、飛行体100がフェンス201と十分な距離を保ちながら、着陸位置204に降下することができる。よってフェンス201に近づくことを防ぐことができる。よって、回転翼101からフェンス201で反射した風の影響を軽減することができる。 Alternatively, the control unit 211 calculates the relative position of the flying object 100 with respect to the fence 201 based on the detection signal from the sensor 202. The control unit 211 obtains the relative position of the flying object 100 with respect to the fence 201 in each of the X direction and the Y direction. That is, the control unit 211 calculates the relative positions of the fence 201 and the flying object 100 in the XY plane. By doing so, the aircraft 100 can descend to the landing position 204 while maintaining a sufficient distance from the fence 201. Therefore, it is possible to prevent the fence 201 from approaching. Therefore, the influence of the wind reflected from the rotary blade 101 by the fence 201 can be reduced.
 このようにすることで、自律飛行可能な飛行体100を適切に着陸することができる。具体的には、フェンス201に設けられたセンサ202が着陸中の飛行体100の位置情報を検出している。よって、衛星測位システムを用いて位置情報を検出する場合よりも高精度に位置を検出することができる。例えば、衛星測位システムでは位置の測定誤差が大きい。さらに、離着陸場所203を囲むようにフェンス201がある場合、衛星信号を受信できないおそれがある。また、ビーコンでは水平位置及び高度を高い精度で検出することが困難である。さらに、センシング範囲も限定される。 By doing so, it is possible to properly land the flying object 100 capable of autonomous flight. Specifically, the sensor 202 provided on the fence 201 detects the position information of the flying object 100 during landing. Therefore, the position can be detected with higher accuracy than the case where the position information is detected by using the satellite positioning system. For example, in a satellite positioning system, the position measurement error is large. Further, if the fence 201 is provided so as to surround the takeoff and landing place 203, the satellite signal may not be received. In addition, it is difficult to detect the horizontal position and altitude with high accuracy using a beacon. Furthermore, the sensing range is also limited.
 本実施の形態では、フェンス201内にセンサ202が設けられているため、離着陸施設内に離着陸中の飛行体の水平位置及び高度を精度よく検出することができる。さらに、離着陸場所203を囲むようにフェンス201が設けられているため、離着陸時の騒音を低減することができる。また、安全性を高めることができる。効率よく離着陸できるため、燃料消費を抑制することができる。 In the present embodiment, since the sensor 202 is provided in the fence 201, the horizontal position and altitude of the flying object during takeoff and landing can be accurately detected in the takeoff and landing facility. Further, since the fence 201 is provided so as to surround the takeoff and landing place 203, the noise at the time of takeoff and landing can be reduced. In addition, safety can be enhanced. Since it can take off and land efficiently, fuel consumption can be suppressed.
実施の形態2.
 実施の形態2にかかる飛行体システム1について図3を用いて説明する。図3は飛行体システム1を示す模式図である。図3では、離着陸施設200が、離着陸台206、及び送風機構207を有している。送風機構207及び離着陸台206以外の構成については、実施の形態1と同様であるため、適宜説明を省略する。
Embodiment 2.
The flying object system 1 according to the second embodiment will be described with reference to FIG. FIG. 3 is a schematic view showing the flying object system 1. In FIG. 3, the takeoff and landing facility 200 has a takeoff and landing platform 206 and a blower mechanism 207. The configurations other than the blower mechanism 207 and the takeoff and landing platform 206 are the same as those in the first embodiment, and thus the description thereof will be omitted as appropriate.
 離着陸台206は、離着陸場所203を構成している。つまり、離着陸台206の上面が離着陸場所203となる。飛行体100は離着陸台206の上に着陸する。離着陸台206は、風を通す構造を有している。例えば、離着陸台206の少なくとも一部はメッシュ構造を有している。あるいは、離着陸台206の一部に開口部が設けられていてもよい。 The takeoff and landing platform 206 constitutes the takeoff and landing place 203. That is, the upper surface of the takeoff / landing platform 206 becomes the takeoff / landing place 203. The aircraft 100 lands on the takeoff and landing platform 206. The takeoff and landing platform 206 has a structure that allows air to pass through. For example, at least part of the takeoff and landing platform 206 has a mesh structure. Alternatively, an opening may be provided in a part of the takeoff and landing platform 206.
 離着陸場所203の下側には、送風機構207が設けられている。送風機構207は、ファン等を備えており、着陸中の飛行体100に送風する。すなわち、送風機構207は上向き(+Z方向)の風を発生する。 A blower mechanism 207 is provided below the takeoff and landing site 203. The blower mechanism 207 includes a fan and the like, and blows air to the landing aircraft 100. That is, the blower mechanism 207 generates an upward (+ Z direction) wind.
 制御部211は、位置情報に基づいて、送風機構207を制御する。このようにすることで、飛行体100の着陸をアシストすることができる。例えば、飛行体100の高度に応じて、ファンの回転速度を制御する。飛行体100を徐々に下降させることができる。このように、着陸施設200側に、飛行体100に対して送風する送風機構207が設けられている。よって、着陸制御をより簡便かつ適切に行うことができる。また、送風機構207は、離陸時においても、飛行体100に対して送風してもよい。離陸制御をより簡便かつ適切に行うことができる。 The control unit 211 controls the ventilation mechanism 207 based on the position information. By doing so, the landing of the aircraft 100 can be assisted. For example, the rotation speed of the fan is controlled according to the altitude of the flying object 100. The aircraft body 100 can be gradually lowered. In this way, the air blowing mechanism 207 that blows air to the flying object 100 is provided on the landing facility 200 side. Therefore, landing control can be performed more easily and appropriately. Further, the blower mechanism 207 may blow air to the flying object 100 even at the time of takeoff. Takeoff control can be performed more easily and appropriately.
その他の実施の形態.
 その他の実施の形態にかかる飛行体100及び離着陸施設200について、図4を用いて説明する。図4は、飛行体100及び離着陸施設200を有する飛行体システム1を示す図である。
Other embodiments.
The flight object 100 and the takeoff and landing facility 200 according to the other embodiments will be described with reference to FIG. FIG. 4 is a diagram showing an air vehicle system 1 having an air vehicle 100 and a takeoff and landing facility 200.
 離着陸施設200は、自律飛行可能な飛行体が離着陸する。離着陸施設200は、フェンス201と、センサ202と、通信部213とを備えている。フェンス201は飛行体100の離着陸場所203を規定する。センサ202は、飛行体100の水平位置及び高度を検出するために、フェンス201に設けられている。通信部213は、水平位置及び高度を示す位置情報を飛行体100に送信する。 At the takeoff and landing facility 200, an air vehicle capable of autonomous flight takes off and landing. The takeoff and landing facility 200 includes a fence 201, a sensor 202, and a communication unit 213. The fence 201 defines the takeoff and landing location 203 of the aircraft 100. The sensor 202 is provided on the fence 201 in order to detect the horizontal position and altitude of the flying object 100. The communication unit 213 transmits position information indicating the horizontal position and altitude to the aircraft body 100.
 飛行体100は、離着陸場所203に着陸する自律飛行可能な飛行体である。飛行体100は、駆動機構112と、飛行制御部111と、機体側通信部113とを備えている。駆動機構112は飛行するための揚力を発生させる。機体側通信部113は、離着陸場所203を規定するフェンス201に飛行体100の水平位置及び高度を検出するためのセンサ202が設けられた地上側から、水平位置及び高度を示す位置情報を受信する。飛行制御部111は、位置情報に基づいて、離着陸場所203に飛行体が着陸するように駆動機構112を制御する。この構成により、適切に着陸制御することができる。この構成により、適切に着陸制御することができる。 The aircraft 100 is an autonomous flight capable of landing at the takeoff and landing site 203. The aircraft body 100 includes a drive mechanism 112, a flight control unit 111, and an airframe side communication unit 113. The drive mechanism 112 generates lift for flight. The aircraft side communication unit 113 receives position information indicating the horizontal position and altitude from the ground side where the sensor 202 for detecting the horizontal position and altitude of the aircraft 100 is provided on the fence 201 defining the takeoff and landing place 203. .. The flight control unit 111 controls the drive mechanism 112 so that the aircraft lands at the takeoff and landing location 203 based on the position information. With this configuration, landing control can be performed appropriately. With this configuration, landing control can be performed appropriately.
 なお、飛行制御部111、及び制御部211の少なくとも一部の制御は、プロセッサがコンピュータプログラムを実行することにより、実現されていてもよい。上述の例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 Note that at least a part of the control of the flight control unit 111 and the control unit 211 may be realized by the processor executing a computer program. In the above example, the program can be stored and supplied to a computer using various types of non-transitory computer readable medium. Non-temporary computer-readable media include various types of tangible storage mediums. Examples of non-temporary computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, It includes a CD-R / W and a semiconductor memory (for example, a mask ROM, a PROM (Programmable ROM), an EPROM (Erasable PROM), a flash ROM, and a RAM (RandomAccessMemory)). The program may also be supplied to the computer by various types of temporary computer readable medium. Examples of temporary computer-readable media include electrical, optical, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the invention of the present application has been described above with reference to the embodiments, the invention of the present application is not limited to the above. Various changes that can be understood by those skilled in the art can be made within the scope of the invention in the configuration and details of the invention of the present application.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 自律飛行可能な飛行体が離着陸する離着陸施設であって、
 前記飛行体の離着陸場所を規定するフェンスと、
 前記飛行体の水平位置及び高度を検出するために、前記フェンスに設けられたセンサと、
 前記水平位置及び前記高度を示す位置情報を前記飛行体に送信する通信部と、を備えた離着陸施設。
 (付記2)
 前記離着陸場所の下側に設けられ、着陸中の前記飛行体に送風する送風機構をさらに備え、
 前記位置情報に基づいて、前記送風機構が制御されている付記1に記載の離着陸施設。
 (付記3)
 前記センサからの検出信号に基づいて、前記フェンス内の着陸位置から前記飛行体までのずれ量を算出する制御部を備え、
 前記通信部は、前記ずれ量を前記位置情報として送信する付記1、又は2に記載の離着陸施設。
 (付記4)
 前記フェンスに対する前記飛行体の相対位置を算出する制御部をさらに備え、
 前記通信部は、前記相対位置を前記位置情報として送信する付記1、又は2に記載の離着陸施設。
 (付記5)
 自律飛行可能な飛行体であって、
 飛行するための揚力を発生させる駆動機構と、
 離着陸場所を規定するフェンスに前記飛行体の水平位置及び高度を検出するためのセンサが設けられた地上側から、前記水平位置及び高度を示す位置情報を受信する機体側通信部と、
 前記位置情報に基づいて、前記離着陸場所に前記飛行体が着陸するように前記駆動機構を制御する飛行制御部と、を備えた飛行体。
 (付記6)
 前記機体側通信部は、前記フェンス内の着陸位置から前記飛行体までのずれ量を前記位置情報として受信する付記5に記載の飛行体。
 (付記7)
 前記フェンスに対する前記飛行体の相対位置を前記位置情報として受信する付記5に記載の飛行体。
 (付記8)
 自律飛行可能な飛行体と、
 飛行体の離着陸場所を規定するフェンスと、
 前記フェンスに設けられ、前記飛行体の水平位置及び高度を検出するセンサと、
 前記センサで検出された前記水平位置及び前記高度を示す位置情報を前記飛行体に送信する通信部と、を備え、
 前記飛行体は、
 飛行するための揚力を発生させる駆動機構と、
 前記位置情報を受信する機体側通信部と、
 前記位置情報に基づいて、前記離着陸場所に着陸するように前記駆動機構を制御する飛行制御部と、を備えた飛行体システム。
 (付記9)
 前記離着陸場所の下側に設けられ、前記飛行体に送風する送風機構をさらに備え、
 前記位置情報に基づいて、前記送風機構を制御する付記8に記載の飛行体システム。
 (付記10)
 前記センサからの検出信号に基づいて、前記フェンス内の着陸位置から前記飛行体までのずれ量を算出する制御部を備え、
 前記通信部は、前記ずれ量を前記位置情報として送信する付記8、又は9に記載の飛行体システム。
 (付記11)
 前記フェンスに対する前記飛行体の相対位置を算出する制御部をさらに備え、
 前記通信部は、前記相対位置を前記位置情報として送信する付記8、又は9に記載の飛行体システム。
 (付記12)
 自律飛行可能な飛行体の着陸を制御する着陸制御方法であって、
 前記飛行体の離着陸場所を規定するフェンスに設けられたセンサによって、前記飛行体の水平位置及び高度を検出するステップと、
 前記水平位置及び前記高度を示す位置情報を前記飛行体に送信するステップと、を備えた着陸制御方法。
 (付記13)
 前記離着陸場所の下側に設けられた送風機構によって、着陸中の前記飛行体に送風するステップをさらに備え、
 前記位置情報に基づいて、前記送風機構が制御されている付記12に記載の着陸制御方法。
 (付記14)
 前記センサからの検出信号に基づいて、前記フェンス内の着陸位置から前記飛行体までのずれ量を算出し、
 前記ずれ量が前記位置情報として送信される付記12、又は13に記載の着陸制御方法。
 (付記15)
 前記フェンスに対する前記飛行体の相対位置を算出し
 前記相対位置が前記位置情報として送信される付記12、又は13に記載の着陸制御方法。
Some or all of the above embodiments may also be described, but not limited to:
(Appendix 1)
It is a takeoff and landing facility where autonomous flying objects take off and land.
A fence that defines the takeoff and landing location of the aircraft,
A sensor provided on the fence to detect the horizontal position and altitude of the flying object,
A takeoff and landing facility including a communication unit that transmits position information indicating the horizontal position and the altitude to the flying object.
(Appendix 2)
Further provided with a blower mechanism provided below the takeoff and landing site to blow air to the aircraft during landing.
The takeoff and landing facility according to Appendix 1, wherein the ventilation mechanism is controlled based on the position information.
(Appendix 3)
A control unit for calculating the amount of deviation from the landing position in the fence to the flying object based on the detection signal from the sensor is provided.
The takeoff and landing facility according to Appendix 1 or 2, wherein the communication unit transmits the deviation amount as the position information.
(Appendix 4)
Further provided with a control unit for calculating the relative position of the flying object with respect to the fence.
The takeoff and landing facility according to Appendix 1 or 2, wherein the communication unit transmits the relative position as the position information.
(Appendix 5)
An air vehicle capable of autonomous flight
A drive mechanism that generates lift for flight,
A communication unit on the aircraft side that receives position information indicating the horizontal position and altitude from the ground side provided with a sensor for detecting the horizontal position and altitude of the aircraft on a fence that defines a takeoff and landing location.
An air vehicle including a flight control unit that controls the drive mechanism so that the air vehicle lands at the takeoff and landing location based on the position information.
(Appendix 6)
The airframe according to Appendix 5, wherein the airframe-side communication unit receives the amount of deviation from the landing position in the fence to the airframe as the position information.
(Appendix 7)
The flying object according to Appendix 5, which receives the relative position of the flying object with respect to the fence as the position information.
(Appendix 8)
An air vehicle capable of autonomous flight and
A fence that defines the takeoff and landing location of the aircraft,
A sensor provided on the fence to detect the horizontal position and altitude of the flying object, and
A communication unit that transmits position information indicating the horizontal position and the altitude detected by the sensor to the flying object is provided.
The flying object
A drive mechanism that generates lift for flight,
With the communication unit on the aircraft side that receives the location information,
An air vehicle system including a flight control unit that controls the drive mechanism so as to land at the takeoff and landing location based on the position information.
(Appendix 9)
Further provided with a blower mechanism provided below the takeoff and landing site to blow air to the aircraft.
The flying object system according to Appendix 8, which controls the blowing mechanism based on the position information.
(Appendix 10)
A control unit for calculating the amount of deviation from the landing position in the fence to the flying object based on the detection signal from the sensor is provided.
The flying object system according to Appendix 8 or 9, wherein the communication unit transmits the deviation amount as the position information.
(Appendix 11)
Further provided with a control unit for calculating the relative position of the flying object with respect to the fence.
The flying object system according to Appendix 8 or 9, wherein the communication unit transmits the relative position as the position information.
(Appendix 12)
It is a landing control method that controls the landing of an autonomous flying object.
A step of detecting the horizontal position and altitude of the aircraft by a sensor provided on a fence that defines the takeoff and landing location of the aircraft, and
A landing control method comprising a step of transmitting position information indicating the horizontal position and the altitude to the flying object.
(Appendix 13)
A ventilation mechanism provided below the takeoff and landing site further provides a step of blowing air to the aircraft during landing.
The landing control method according to Appendix 12, wherein the ventilation mechanism is controlled based on the position information.
(Appendix 14)
Based on the detection signal from the sensor, the amount of deviation from the landing position in the fence to the flying object is calculated.
The landing control method according to Appendix 12 or 13, wherein the deviation amount is transmitted as the position information.
(Appendix 15)
The landing control method according to Appendix 12 or 13, wherein the relative position of the flying object with respect to the fence is calculated and the relative position is transmitted as the position information.
 100 飛行体
 101 回転翼
 111 飛行制御部
 112 駆動機構
 113 機体側通信部
 114 機体側センサ
 115 表示部
 116 バッテリ
 200 離着陸施設
 201 フェンス
 202 センサ
 203 離着陸場所
 204 着陸位置
 206 離着陸台
 207 送風機構
 211 制御部
 213 通信部
100 Aircraft 101 Rotorcraft 111 Flight control unit 112 Drive mechanism 113 Airframe side communication unit 114 Airframe side sensor 115 Display unit 116 Battery 200 Takeoff and landing facility 201 Fence 202 Sensor 203 Takeoff and landing location 204 Landing position 206 Takeoff and landing platform 207 Blower 213 Communication department

Claims (10)

  1.  自律飛行可能な飛行体が離着陸する離着陸施設であって、
     前記飛行体の離着陸場所を規定するフェンスと、
     前記飛行体の水平位置及び高度を検出するために、前記フェンスに設けられたセンサと、
     前記水平位置及び前記高度を示す位置情報を前記飛行体に送信する通信部と、を備えた離着陸施設。
    It is a takeoff and landing facility where autonomous flying objects take off and land.
    A fence that defines the takeoff and landing location of the aircraft,
    A sensor provided on the fence to detect the horizontal position and altitude of the flying object,
    A takeoff and landing facility including a communication unit that transmits position information indicating the horizontal position and the altitude to the flying object.
  2.  前記離着陸場所の下側に設けられ、着陸中の前記飛行体に送風する送風機構をさらに備え、
     前記位置情報に基づいて、前記送風機構が制御されている請求項1に記載の離着陸施設。
    Further provided with a blower mechanism provided below the takeoff and landing site to blow air to the aircraft during landing.
    The takeoff and landing facility according to claim 1, wherein the ventilation mechanism is controlled based on the position information.
  3.  前記センサからの検出信号に基づいて、前記フェンス内の着陸位置から前記飛行体までのずれ量を算出する制御部を備え、
     前記通信部は、前記ずれ量を前記位置情報として送信する請求項1、又は2に記載の離着陸施設。
    A control unit for calculating the amount of deviation from the landing position in the fence to the flying object based on the detection signal from the sensor is provided.
    The takeoff and landing facility according to claim 1 or 2, wherein the communication unit transmits the deviation amount as the position information.
  4.  前記フェンスに対する前記飛行体の相対位置を算出する制御部をさらに備え、
     前記通信部は、前記相対位置を前記位置情報として送信する請求項1、又は2に記載の離着陸施設。
    Further provided with a control unit for calculating the relative position of the flying object with respect to the fence.
    The takeoff and landing facility according to claim 1 or 2, wherein the communication unit transmits the relative position as the position information.
  5.  自律飛行可能な飛行体であって、
     飛行するための揚力を発生させる駆動機構と、
     離着陸場所を規定するフェンスに前記飛行体の水平位置及び高度を検出するためのセンサが設けられた地上側から、前記水平位置及び高度を示す位置情報を受信する機体側通信部と、
     前記位置情報に基づいて、前記離着陸場所に前記飛行体が着陸するように前記駆動機構を制御する飛行制御部と、を備えた飛行体。
    An air vehicle capable of autonomous flight
    A drive mechanism that generates lift for flight,
    A communication unit on the aircraft side that receives position information indicating the horizontal position and altitude from the ground side provided with a sensor for detecting the horizontal position and altitude of the aircraft on a fence that defines a takeoff and landing location.
    An air vehicle including a flight control unit that controls the drive mechanism so that the air vehicle lands at the takeoff and landing location based on the position information.
  6.  自律飛行可能な飛行体と、
     飛行体の離着陸場所を規定するフェンスと、
     前記フェンスに設けられ、前記飛行体の水平位置及び高度を検出するセンサと、
     前記センサで検出された前記水平位置及び前記高度を示す位置情報を前記飛行体に送信する通信部と、を備え、
     前記飛行体は、
     飛行するための揚力を発生させる駆動機構と、
     前記位置情報を受信する機体側通信部と、
     前記位置情報に基づいて、前記離着陸場所に着陸するように前記駆動機構を制御する飛行制御部と、を備えた飛行体システム。
    An air vehicle capable of autonomous flight and
    A fence that defines the takeoff and landing location of the aircraft,
    A sensor provided on the fence to detect the horizontal position and altitude of the flying object, and
    A communication unit that transmits position information indicating the horizontal position and the altitude detected by the sensor to the flying object is provided.
    The flying object
    A drive mechanism that generates lift for flight,
    With the communication unit on the aircraft side that receives the location information,
    An air vehicle system including a flight control unit that controls the drive mechanism so as to land at the takeoff and landing location based on the position information.
  7.  前記離着陸場所の下側に設けられ、前記飛行体に送風する送風機構をさらに備え、
     前記位置情報に基づいて、前記送風機構を制御する請求項6に記載の飛行体システム。
    Further provided with a blower mechanism provided below the takeoff and landing site to blow air to the aircraft.
    The flying object system according to claim 6, wherein the blowing mechanism is controlled based on the position information.
  8.  前記センサからの検出信号に基づいて、前記フェンス内の着陸位置から前記飛行体までのずれ量を算出する制御部を備え、
     前記通信部は、前記ずれ量を前記位置情報として送信する請求項6、又は7に記載の飛行体システム。
    A control unit for calculating the amount of deviation from the landing position in the fence to the flying object based on the detection signal from the sensor is provided.
    The flying object system according to claim 6 or 7, wherein the communication unit transmits the deviation amount as the position information.
  9.  前記フェンスに対する前記飛行体の相対位置を算出する制御部をさらに備え、
     前記通信部は、前記相対位置を前記位置情報として送信する請求項6、又は7に記載の飛行体システム。
    Further provided with a control unit for calculating the relative position of the flying object with respect to the fence.
    The flying object system according to claim 6 or 7, wherein the communication unit transmits the relative position as the position information.
  10.  自律飛行可能な飛行体の着陸を制御する着陸制御方法であって、
     前記飛行体の離着陸場所を規定するフェンスに設けられたセンサによって、前記飛行体の水平位置及び高度を検出するステップと、
     前記水平位置及び前記高度を示す位置情報を前記飛行体に送信するステップと、を備えた着陸制御方法。
    It is a landing control method that controls the landing of an autonomous flying object.
    A step of detecting the horizontal position and altitude of the aircraft by a sensor provided on a fence that defines the takeoff and landing location of the aircraft, and
    A landing control method comprising a step of transmitting position information indicating the horizontal position and the altitude to the flying object.
PCT/JP2020/016764 2020-04-16 2020-04-16 Take-off and landing facility, flight vehicle, flight vehicle system, and landing control method WO2021210138A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022514957A JP7343046B2 (en) 2020-04-16 2020-04-16 Takeoff and landing facilities, aircraft systems, and landing control methods
PCT/JP2020/016764 WO2021210138A1 (en) 2020-04-16 2020-04-16 Take-off and landing facility, flight vehicle, flight vehicle system, and landing control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/016764 WO2021210138A1 (en) 2020-04-16 2020-04-16 Take-off and landing facility, flight vehicle, flight vehicle system, and landing control method

Publications (1)

Publication Number Publication Date
WO2021210138A1 true WO2021210138A1 (en) 2021-10-21

Family

ID=78084472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016764 WO2021210138A1 (en) 2020-04-16 2020-04-16 Take-off and landing facility, flight vehicle, flight vehicle system, and landing control method

Country Status (2)

Country Link
JP (1) JP7343046B2 (en)
WO (1) WO2021210138A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4201820A1 (en) 2021-12-24 2023-06-28 Rakuten Group, Inc. Information processing system, method for setting release place, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170050749A1 (en) * 2015-08-17 2017-02-23 Skyyfish, LLC Autonomous system for unmanned aerial vehicle landing, charging and takeoff
KR101796698B1 (en) * 2015-05-08 2017-11-24 주식회사 스카이드론 Flying training and game for small unmanned aerial vehicle
JP2019006238A (en) * 2017-06-23 2019-01-17 東芝キヤリア株式会社 Takeoff and landing device and heat source machine
KR20190090512A (en) * 2018-01-25 2019-08-02 정규영 Structure for airfield of drone for parcel service
JP2019211272A (en) * 2018-06-01 2019-12-12 国立大学法人京都大学 Measurement device, power receiving device, power transmitting device, flying object and flying system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101796698B1 (en) * 2015-05-08 2017-11-24 주식회사 스카이드론 Flying training and game for small unmanned aerial vehicle
US20170050749A1 (en) * 2015-08-17 2017-02-23 Skyyfish, LLC Autonomous system for unmanned aerial vehicle landing, charging and takeoff
JP2019006238A (en) * 2017-06-23 2019-01-17 東芝キヤリア株式会社 Takeoff and landing device and heat source machine
KR20190090512A (en) * 2018-01-25 2019-08-02 정규영 Structure for airfield of drone for parcel service
JP2019211272A (en) * 2018-06-01 2019-12-12 国立大学法人京都大学 Measurement device, power receiving device, power transmitting device, flying object and flying system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4201820A1 (en) 2021-12-24 2023-06-28 Rakuten Group, Inc. Information processing system, method for setting release place, and program

Also Published As

Publication number Publication date
JP7343046B2 (en) 2023-09-12
JPWO2021210138A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
US11873091B2 (en) Landing and payload loading structures
CN110621250B (en) Electrical system for unmanned aerial vehicle
US9840339B1 (en) Sensors embedded within aerial vehicle control surfaces
CN112262076A (en) Loading structure with tether guide for unmanned aerial vehicle
CN112638770B (en) Safe unmanned aerial vehicle
WO2021210138A1 (en) Take-off and landing facility, flight vehicle, flight vehicle system, and landing control method
JP7525013B2 (en) Power supply information determination device, power supply information determination method, and program
WO2021210136A1 (en) Landing facility, aircraft system, and landing control method
KR20180085207A (en) Apparatus and Control Method for Flight Vehicle Landing
CN116710360A (en) Flight body, processor, flight control method, program, and flight assistance device
AU2022203829B2 (en) Stereo abort of unmanned aerial vehicle deliveries
US20230316740A1 (en) Method for Controlling an Unmanned Aerial Vehicle to Avoid Obstacles
US20240019876A1 (en) Tether-Based Wind Estimation
WO2022020600A1 (en) Fold-out propeller tip extensions
AU2022450406A1 (en) Method for controlling an unmanned aerial vehicle to avoid obstacles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931258

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514957

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931258

Country of ref document: EP

Kind code of ref document: A1