WO2021209899A1 - Aeronave no tripulada - Google Patents

Aeronave no tripulada Download PDF

Info

Publication number
WO2021209899A1
WO2021209899A1 PCT/IB2021/053045 IB2021053045W WO2021209899A1 WO 2021209899 A1 WO2021209899 A1 WO 2021209899A1 IB 2021053045 W IB2021053045 W IB 2021053045W WO 2021209899 A1 WO2021209899 A1 WO 2021209899A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
wind
fixed
segments
nose
Prior art date
Application number
PCT/IB2021/053045
Other languages
English (en)
French (fr)
Inventor
Carlos BERNABEU GONZALEZ
Original Assignee
Arborea Intellbird Sl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arborea Intellbird Sl filed Critical Arborea Intellbird Sl
Priority to EP21787885.9A priority Critical patent/EP4137908A4/en
Publication of WO2021209899A1 publication Critical patent/WO2021209899A1/es

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • B64C3/40Varying angle of sweep
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • B64C3/54Varying in area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C5/00Stabilising surfaces
    • B64C5/10Stabilising surfaces adjustable
    • B64C5/14Varying angle of sweep
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C5/00Stabilising surfaces
    • B64C5/10Stabilising surfaces adjustable
    • B64C5/18Stabilising surfaces adjustable in area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • B64U30/12Variable or detachable wings, e.g. wings with adjustable sweep
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/40Empennages, e.g. V-tails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U40/00On-board mechanical arrangements for adjusting control surfaces or rotors; On-board mechanical arrangements for in-flight adjustment of the base configuration
    • B64U40/10On-board mechanical arrangements for adjusting control surfaces or rotors; On-board mechanical arrangements for in-flight adjustment of the base configuration for adjusting control surfaces or rotors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0005Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with arrangements to save energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/25UAVs specially adapted for particular uses or applications for manufacturing or servicing
    • B64U2101/26UAVs specially adapted for particular uses or applications for manufacturing or servicing for manufacturing, inspections or repairs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]

Definitions

  • the invention belongs to the field of unmanned aircraft (Unmaned Aerial Vehicles UAV or drones) and its object is an aircraft that comprises means that allow it to keep its nose oriented against the prevailing wind, which optimizes its ability to passive lift, which is further increased by means of varying its wing loading.
  • multirotor drones used in inspection tasks can only perform flights of relatively short duration. This low flight autonomy is sufficient when the inspection requires little time, for example, because the drone has to operate in a small area (thus, inspection of a wind turbine). However, sometimes a high flight autonomy is required, either due to the longer time required in a complex inspection or because it is carried out in a very wide area, as would be the case of the inspection of power lines, which can involve displacements of up to 100 kilometers a day.
  • US9964960B2 (SIKORSKY AIRCRAFT CORP.), April 6, 2017 describes a fixed-wing, vertical take-off and landing UAV.
  • the fuselage, wings and tail rotor are equipped with surfaces (such as spoilers, ailerons and fins) that can be controlled automatically by the flight computer, which is connected to a wind direction sensor, so that the plane of the wings is oriented. according to said direction, thus enabling vertical landing in unfavorable wind conditions.
  • the first two documents refer to aircraft equipped with variable lift planes, capable of varying the wing loading of the aircraft, but which operate at the time of take-off or landing, not during flight.
  • the means of variation of the wing load operate in the flight phase, since it is here where precisely, due to the type of use of the aircraft, a high lift capacity is required. to save energy. Otherwise, the aircraft in these documents fly with their nose facing in the direction desired, as is normal in known aircraft, not directing its nose against the prevailing wind.
  • the subject of the invention is an unmanned aircraft, also referred to as a drone or with the acronym UAV (Unmanned Aerial Vehicle). Both autonomous and remotely piloted aircraft are included here. Also included in the scope of the invention are fixed-wing drones and multirotor drones, that is, those that mount several driving arms.
  • the unmanned aircraft object of this patent is equipped with means to take advantage of the natural lift force provided by the wind, which allows to substantially reduce its energy consumption and therefore increase its flight autonomy, making it especially suitable for tasks. inspection of long duration or involving long journeys.
  • the unmanned aircraft is a multirotor UAV that does not differ from known ones in terms of its basic mechanical and electronic configuration.
  • the aircraft object of this patent is equipped with means of orientation against the wind (6) and with at least one variable lift plane (7, 8, 9).
  • a front part or nose of the aircraft must be defined.
  • the very configuration of the aircraft similar in design to a traditional aircraft, indicates where the nose is.
  • multirotor drones in which the invention is preferably carried out, usually have a central body of approximately prismatic or circular shape, and their multirotor configuration allows them all the possibilities of movement along the three spatial axes.
  • This design and functionality do not properly speak of a front or nose of the drone.
  • nose of the aircraft is understood to be a point located at the north end of an imaginary longitudinal axis that intersects the drone in a north-south direction.
  • the orientation means comprise at least one wind speed and direction sensor, or at least one wind speed sensor and at least one wind direction sensor, which will be referred to interchangeably as “wind sensor” (6 ).
  • the wind sensor (6) transmits the captured quantities to the aircraft's automatic flight control unit (autopilot or autopilot) (3), which in turn sends the corresponding instructions to the engines to keep the aircraft running. its nose oriented against the wind.
  • the aircraft will move with its nose (5) oriented against the wind, and this even though the direction from which the wind comes does not coincide with the direction of travel of the aircraft.
  • the aircraft will orient its nose (5) to the north and in this position it will fly to the west, thus making a lateral flight with respect to the position of its nose. (5).
  • variable lift plane (7, 8, 9) is understood to be any element that offers the aircraft means of support in the air in addition to those provided by ordinary elements (such as wings or propellers), and that can adopt at least two deployment positions with respect to the central body of the aircraft.
  • the aircraft comprises three planes of variable lift (7, 8, 9) like the wings and tail of a bird.
  • Each of these planes (7, 8, 9) is made up of segments (10, 11, 12, 13) like bird feathers.
  • Each variable support plane (7, 8, 9) is driven by a gear mechanism, which is in turn driven by a servo motor.
  • the autopilot (3) transmits instructions to the servomotor, which causes the moving segments (11, 13) to unfold or retract, so that the wing loading of the aircraft will vary as the wind changes, being greater in lower wind conditions, and vice versa.
  • the orientation of the aircraft with the nose (5) against the wind and the regulation of its wing loading by means of the at least one variable lift plane (7, 8, 9) provide the aircraft with a passive lift that the maintained in a neutral equilibrium position. In this way, the aircraft being sustained in the air primarily by the force of the opposing wind, the force of the propellers (4) will be used substantially to drive the aircraft, with the consequent energy savings and increased flight autonomy. .
  • FIG. 1 Top view of an aircraft in flight, with three lift planes deployed.
  • FIG. 2 Detail perspective view of a gear mechanism for driving a first support plane.
  • FIG. 3 Side detail view of the same gear set.
  • FIG. 4 Top view of a gear mechanism for driving a third support plane.
  • FIG. 1 shows a multirotor UAV with four power arms.
  • the UAV consists of a central body (1) from which the drive arms (2) emerge.
  • the central body covered by a housing, houses the autopilot or autopilot (3), made up of the usual hardware and software components in this type of device, and comprising at least one microcontroller that houses a processing unit and memory units in which software is stored with blocks of instructions executable by its processing unit.
  • Each drive arm (2) comprises at least one motor associated with at least one propeller (4).
  • the propeller motors (4) are driven by electronic speed controllers type ESC (“Electronic Speed Control”) associated with the autopilot (3).
  • the autopilot (3) is connected to the sensors normally carried by this type of aircraft, such as gyroscopes, accelerometers, barometer, magnetometer and link systems for receiving satellite positioning signals from various constellations, such as GPS, Glonass, Beidou or Galileo.
  • the nose of the aircraft is located at a point (5) of the central body (1) that corresponds to the north end of a longitudinal axis that cuts the aircraft in a north-south direction. Therefore, for these purposes it must be assumed that the UAV represented in figure 1 is in flight, oriented with its nose pointing north, and that the prevailing wind is from the north.
  • the UAV comprises wind guidance means.
  • said means comprise a wind sensor (6) comprising two different sensors: wind speed sensor and wind direction sensor, both with the characteristics known in the state of the art. .
  • this wind sensor (6) is connected to the autopilot (3). Therefore, the wind guidance means comprise blocks of instructions in the software housed in the memory unit of the microcontroller, to be processed by the processing unit, so that the aircraft reacts to the information received by the wind sensor. (6).
  • the wind orientation means are complemented by at least one variable lift plane.
  • the aircraft has three variable lift planes (7, 8, 9) located symmetrically with respect to the nose (5) of the drone.
  • a first variable support plane (7) extends to the right of the central body (1)
  • a second plane (8) is located to the left of the central body (1)
  • a third plane (9) is located in the part rear of the central body (1), always bearing in mind that the front part is where the nose (5) of the aircraft is located.
  • Each of the support planes (7, 8, 9) is composed of at least two superimposed segments: specifically, in the embodiment shown in figure 1, there are five superimposed segments in each of the three variable lift planes (7, 8, 9).
  • first and second support planes (7, 8) there are two upper segments (10), which are fixed, and four other lower segments (11), which move with respect to the fixed ones (10).
  • third support plane (9) there is a central segment (12), which is fixed and four lateral segments (13), mobile with respect to the central one (12).
  • Figure 1 represents the UAV with its mobile segments (11,13) fully deployed with respect to the respective fixed segments (10, 12).
  • Each support plane (7, 8, 9) is driven by a gear mechanism.
  • each segment (10, 11, 12, 13) of said planes (7, 8, 9) It has on its longitudinal axis reinforcing rods (14, 15) integral with the gear mechanism.
  • Figure 2 represents one of the gear mechanisms, in conjunction with the reinforcing rods (14, 15), specifically the mechanism that operates the first support plane (7), which is the same as the mechanism that operates the second support plane (8).
  • a first rod (14) longitudinally reinforces the fixed upper segment (10).
  • Said rod (14) is integral with an upper plate (16), fixed to the structure of the aircraft. Between said upper plate (16) and a lower plate (17), also fixed to the structure of the aircraft, a first mobile shaft (18) and a second fixed shaft (19) are coupled. In these shafts (18, 19) cylindrical toothed wheels with different numbers of parallel teeth are inserted.
  • first column of fixed gear wheels (20) which are fixedly attached to the moving shaft (18) and a second column of moving gear wheels (21), which rotate on the fixed shaft (19).
  • Each sprocket of the first column (20) is meshed with a sprocket of the second column (21).
  • the other rods (15) are integral with respective mobile toothed wheels of the second column (21) and therefore move with the rotation of said wheels (21), which allows folding and unfolding with respect to the fixed rod (14).
  • a driving wheel (22) is arranged, in turn meshed with the gear wheel of a servomotor.
  • servomotors in UAVs in order to control the position of certain mobile elements (such as ailerons, or in the present invention, the mobile segments (11, 13) is known in the state of the art.
  • US9964960B2 describes a servo control element 72 conjugated with the moving surfaces 85 of the aircraft, to move them up or down.
  • Figure 3 represents a side view of the same gear mechanism object of figure 2.
  • the first shaft (18) is provided with two separate bearings (23) at its ends, while its toothed wheels (20) are fixed on the shaft (18).
  • the second shaft (19) has a bearing (24) at the height of each of its toothed wheels (21), while at its ends it is fixedly attached to the plates (16, 17).
  • the rotation of the driving wheel (22) is transmitted to one of the fixed gear wheels (20), which makes the shaft (18) rotate and therefore the rest of the fixed gear wheels (20), producing the shaft rotation (18) thanks to the end bearings (23). In this way, the angular velocity of the fixed gear wheels of the first column (20) is constant.
  • the rotation of each of said wheels (20) is transmitted to its corresponding mobile toothed wheel of the second column (21), which will rotate independently thanks to their respective bearings
  • Figure 4 represents a top view of the mechanism for actuating the third support plane (9), that is, the one located at the rear of the central body of the aircraft (1) and comprising a fixed segment (12) and two mobile segments (13) on each side thereof, the fixed segment (12) being longitudinally reinforced by a rod (14) and the mobile segments (13), by rods (15), all as shown described above in relation to figure 1.
  • the fixed rod (14) is integral with an upper plate (25), which is fixed to the structure of the aircraft. Of this upper deck
  • the movable rods (15) are integral with respective toothed wheels that are part of a second column of toothed wheels (28) inserted in the second fixed axis (27) and each one of them having its own bearing on said fixed axis (27) .
  • This second column of toothed wheels (28) meshes with a first column of toothed wheels (29) inserted in the first movable shaft (26).
  • the first column of sprockets (29) is connected to a drive sprocket (30) driven by the sprocket of a servo motor.
  • the mechanism is therefore substantially the same as that represented in Figures 2 and 3.
  • Figure 1 shows the position of total unfolding, and between that position and that of total folding of the mobile segments (11, 13) on the fixed ones (10, 12) all the intermediate degrees fit, depending on the number of teeth of the gear wheels (20, 21, 22, 28, 29, 30) and the information that the autopilot (3) receives from the wind sensor (6) and transmits to the servomotor.
  • take-off is understood as the phase that elapses from start-up until the UAV reaches a programmed height of the appropriate altitude.
  • the lift planes (7, 8, 9) are constantly kept in the position of maximum retraction, offering less resistance and, therefore, facilitating the vertical take-off typical of multi-rotor UAVs.
  • the information on the wind direction captured by the wind sensor (6) is processed by the autopilot (3), which transmits instructions to the engine speed controllers, which by means of a differential action (rotation at a different speed) will position the aircraft with its nose (5) facing the direction of the wind.
  • This differential action of the engines based on the information captured by the different sensors and processed by the autopilot or based on the instructions received from the remote pilot, is the basic principle of the operation of these aircraft and is therefore known to the expert. in the matter.
  • the take-off phase ends and the flight phase begins, that is, the phase in which the aircraft remains stationary in the air or travels in one direction or the other.
  • the wind direction is constantly monitored by the wind sensor (6), so that a variation in direction will be captured by the sensor (6) and transmitted to the autopilot (3), which will process it and send the orders to the speed controllers of the motors, which will be translated in a variation of the orientation of the aircraft, so that its nose (5) remains positioned against the wind.
  • the information on the wind speed is also constantly monitored by the wind sensor (6) and processed by the autopilot (3), which transmits instructions to the servomotors connected to the respective driving gear wheels (20, 21, 22), which by action of the gear mechanisms described will cause the movement of the mobile segments (11, 13) of the support planes (7 , 8, 9), so that the degree of opening of said mobile segments (11, 13) will vary as a function of the wind speed, according to the principle that the lower the wind, the greater the deployment. As the wind increases, the deployment of the mobile segments (11, 13) will be reduced to the maximum degree of retraction programmed.
  • the software of the microcontroller (3) is programmed to assign a certain degree of deployment of the segments (11, 13) to a certain value of wind speed. It is an operation for calculating the wing loading of an aircraft as a function of wind speed, which is known to those skilled in the art.
  • the autopilot software (3) is programmed so that when the wind speed captured by the wind sensor (6) is lower than the aircraft's displacement speed, the nose (5 ) of the aircraft is oriented in the direction of travel, rather than upwind.
  • This exception has been foreseen because the scarce wind would hardly contribute to the lift of the aircraft, even if it has its planes of lift (7, 8, 9) fully deployed, so it is more efficient to orient it towards its direction of travel and take advantage of the wind to help glide, which also saves energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Toys (AREA)
  • Wind Motors (AREA)

Abstract

Aeronave no tripulada, preferentemente un dron multirrotor, dotada de medios de orientación contra el viento, que comprenden un sensor de viento (6), para mantenerla en despegue y vuelo con su morro (5) orientado en contra del viento dominante, independientemente de la dirección de desplazamiento de la aeronave. Dichos medios se conjugan con al menos un plano de sustentación variable (7, 8, 9) constituido por segmentos fijos (10, 12) y móviles (11, 13), pudiendo los segmentos móviles (11, 13) adoptar diferentes grados de despliegue con respecto a los fijos (11, 12). La acción conjunta de los medios de orientación contra el viento (6) y del al menos un plano de sustentación variable (7, 8, 9) permite optimizar la fuerza de sustentación natural proporcionada por el viento, lo que redunda en un ahorro de energía y por tanto en un aumento de la autonomía de vuelo.

Description

Descripción
AERONAVE NO TRIPULADA Campo de la invención
[0001] La invención pertenece al campo de las aeronaves no tripuladas (Unmaned Aerial Vehicles UAV o drones) y tiene por objeto una aeronave que comprende medios que le permiten mantenerse con el morro orientado en contra del viento predominante, lo que optimiza su capacidad de sustentación pasiva, que se ve además aumentada por medios de variación de su carga alar.
Antecedentes de la invención
[0002] Uno de los numerosos usos de las aeronaves no tripuladas es la inspección de infraestructuras, ámbito de aplicación preferente de la presente invención. Para realizar las operaciones de inspección (que implican toma de fotografías u otros datos) el aparato ha de ser capaz de mantenerse estático en el aire, por lo cual los drones tipo multirrotor, debido a su capacidad de sustentación, son los habitualmente escogidos para estos fines, frente a los drones de ala fija, que han de estar en movimiento constante.
[0003] Debido a que mantenerse estático en el aire consume mucha energía, los drones multirrotor empleados en tareas de inspección solo pueden realizar vuelos de duración relativamente corta. Esta escasa autonomía de vuelo es suficiente cuando la inspección requiere poco tiempo, por ejemplo, porque el dron ha de operar en un área pequeña (así, inspección de un aerogenerador). Sin embargo, en ocasiones se requiere una elevada autonomía de vuelo, bien por el mayor tiempo requerido en una inspección compleja o por realizarse en un área muy amplia, como sería el caso de la inspección de tendidos eléctricos, que puede suponer desplazamientos de hasta 100 kilómetros al día.
[0004] En este último ejemplo de inspección de tendidos eléctricos, o en general en aquellos usos que requieran elevada autonomía de vuelo, los drones conocidos no pueden cumplir su cometido satisfactoriamente: los multirrotor, si bien tienen la capacidad de sustentación requerida, carecen de autonomía suficiente; y los drones de ala fija tienen dificultades para el vuelo estacionario. Por ello, en la actualidad, la inspección de líneas eléctricas se realiza con helicópteros convencionales, que tienen la autonomía y capacidad de sustentación requeridas, pero su empleo es muy costoso y siempre existe un riesgo de accidente que puede causar pérdida de vidas de la tripulación. [0005] El estado de la técnica comprende aeronaves dotadas de medios para la mejora de su capacidad de sustentación. Así, US 5312070A (GRUMMAN AEROSPACE CORP), 17 mayo 1994 “Ala de aeronave en flecha y segmentada” describe una aeronave pilotada cuyas alas en flecha están construidas a base de segmentos articuladamente unidos al fuselaje. Estos segmentos, por la operación de medios mecánicos activados por el piloto, pueden adoptar distintas posiciones entre sí y con respecto al fuselaje: en el momento del despegue o aterrizaje están separados entre sí y en perpendicular al fuselaje; mientras que en posición de crucero se acoplan formando un ala continua y adoptan una posición de flecha con respecto al fuselaje. De este modo, el avión puede variar su carga alar optimizando el rendimiento de la aeronave. Por lo demás, al tratarse de un avión convencional, su morro se orienta en la dirección de desplazamiento, que puede o no coincidir con la dirección del viento predominante.
[0006] US2016347446A1 (VETTER E H et al), 1 diciembre 2016, tiene por objeto una aeronave híbrida dotada de palas tipo helicóptero y de alas convencionales. Las palas se despliegan para permitir el despegue y aterrizaje verticales, pero se pliegan para permitir un vuelo de alta velocidad mediante las alas convencionales. Por tanto, en los momentos del despegue y aterrizaje se incrementa la capacidad de sustentación de la aeronave mediante planos de sustentación desplegables, pero esos medios dejan de operar durante el vuelo.
[0007] US9964960B2 (SIKORSKY AIRCRAFT CORP.), 6 April 2017 describe un UAV de despegue y aterrizaje vertical, de ala fija. El fuselaje, alas y rotor de cola están dotados de superficies (tales como spoilers, alerones y aletas) controlables automáticamente por el ordenador de vuelo, que está conectado a un sensor de dirección del viento, de modo que el plano de las alas se oriente de acuerdo con dicha dirección, posibilitando de este modo el aterrizaje vertical en condiciones de viento desfavorable.
[0008] Los dos primeros documentos se refieren a aeronaves dotadas de planos de sustentación variable, aptos para variar la carga alar de la aeronave, pero que operan en el momento del despegue o del aterrizaje, no durante el vuelo. Por el contrario, en la invención propuesta en la presente patente, los medios de variación de la carga alar operan en la fase de vuelo, pues es aquí donde precisamente, por el tipo de uso de la aeronave, se requiere una elevada capacidad de sustentación que permita ahorrar energía. Por lo demás, las aeronaves de dichos documentos vuelan orientando su morro hacia la dirección deseada, como es lo normal en las aeronaves conocidas, no orientando su morro contra el viento dominante.
[0009] El último de los documentos describe una aeronave dotada de medios capaces de orientar su posición con respecto al viento, comprendiendo medios de variación de la superficie alar. Pero dichos medios de orientación operan en el momento del aterrizaje, nunca durante el vuelo, pues este tiene lugar con el morro dirigido hacia la dirección deseada, independientemente de la dirección del viento.
Explicación de la invención
[0010] La invención tiene por objeto una aeronave no tripulada, también designada como dron o con el acrónimo UAV (del inglés Unmanned Aerial Vehicle). Se incluyen aquí tanto las aeronaves de vuelo autónomo como las remotamente pilotadas. Quedan asimismo incluidos en el ámbito de la invención tanto los drones de ala fija como los drones multirrotor, esto es, los que montan varios brazos motrices.
[0011] La aeronave no tripulada objeto de esta patente está dotada de medios para aprovechar la fuerza de sustentación natural proporcionada por el viento, lo que permite reducir sustancialmente su consumo de energía y por tanto incrementar su autonomía de vuelo, haciéndola especialmente apta para tareas de inspección de larga duración o que impliquen largos desplazamientos.
[0012] En un modo de realización preferente, la aeronave no tripulada es un UAV multirrotor que no se diferencia de los conocidos en cuanto a su configuración básica mecánica y electrónica.
[0013] Para optimizar el aprovechamiento de la fuerza de sustentación natural proporcionada por el viento, la aeronave objeto de esta patente está dotada de medios de orientación contra el viento (6) y de al menos un plano de sustentación variable (7, 8, 9).
[0014] Para explicar el concepto de orientación contra el viento debe definirse una parte delantera o morro de la aeronave (5). En los drones de ala fija, la propia configuración de la aeronave, asimilable en diseño a un avión tradicional, indica dónde está el morro. En cambio, los drones multirrotor, en los que preferentemente se realiza la invención, suelen tener un cuerpo central de forma aproximadamente prismática o circular, y su configuración multirrotor les permite todas las posibilidades de desplazamiento a lo largo de los tres ejes espaciales. Este diseño y esta funcionalidad no permiten propiamente hablar de una parte delantera o morro del dron. A los efectos de esta patente, se entiende por “morro de la aeronave” a un punto situado en el extremo norte de un eje longitudinal imaginario que cortase al dron en dirección norte-sur. [0015] Se entiende por medios de orientación de la aeronave contra el viento (6) a aquellos medios que orientan el morro de la aeronave de manera que apunte hacia la dirección de la que provenga el viento dominante.
[0016] Los medios de orientación comprenden al menos un sensor de velocidad y dirección del viento, o al menos un sensor de velocidad del viento y al menos un sensor de dirección del viento, que se referirán indistintamente como “sensor de viento” (6). El sensor de viento (6) transmite las magnitudes captadas a la unidad de control automático de vuelo (piloto automático o autopiloto) (3) de la aeronave, la cual a su vez envía las correspondientes instrucciones a los motores para mantener a la aeronave con su morro orientado contra el viento.
[0017] Para optimizar la fuerza de sustentación que proporciona el viento contrario, la aeronave se desplazará con su morro (5) orientado contra el viento, y ello aunque la dirección de la que provenga el viento no coincida con la dirección de desplazamiento de la aeronave. Así, si el viento sopla del norte y la aeronave debe desplazarse en dirección oeste, la aeronave orientará su morro (5) al norte y en esta posición volará hacia el oeste, realizando por tanto un vuelo lateral con respecto a la posición de su morro (5).
[0018] Los medios de orientación contra el viento (6), con el mismo fin de optimización de la fuerza de sustentación proporcionada por el viento contrario, están complementados por al menos un plano de sustentación variable (7, 8, 9). Se entiende por plano de sustentación variable (7, 8, 9) a todo elemento que ofrezca a la aeronave medios de sustentación en el aire adicionales a los que le proporcionan los elementos ordinarios (como alas o hélices), y que pueda adoptar al menos dos posiciones de despliegue con respecto al cuerpo central de la aeronave.
[0019] En un modo de realización preferente, la aeronave comprende tres planos de sustentación variable (7, 8, 9) a modo de alas y cola de un ave. Cada uno de estos planos (7, 8, 9) está compuesto de segmentos (10, 11, 12, 13) a modo de plumas de ave. Cada plano de sustentación variable (7, 8, 9) está accionado por un mecanismo de engranaje, el cual es a su vez accionado mediante un servomotor. En reacción a las magnitudes de velocidad y dirección del viento captadas por el sensor de viento (6), el autopiloto (3) transmite instrucciones al servomotor, el cual hace que los segmentos móviles (11, 13) se desplieguen o retraigan, de modo que la carga alar de la aeronave variará conforme lo haga el viento, siendo mayor en condiciones de menor viento, y viceversa. [0020] La orientación de la aeronave con el morro (5) en contra del viento y la regulación de su carga alar mediante el al menos un plano de sustentación variable (7, 8, 9) proporcionan a la aeronave una sustentación pasiva que la mantiene en una posición de equilibrio neutro. De este modo, sustentándose la aeronave en el aire primordialmente por efecto de la fuerza del viento contrario, la fuerza de las hélices (4) se destinará sustancialmente al impulso de la aeronave, con el consiguiente ahorro de energía y aumento de la autonomía de vuelo.
Breve descripción de las figuras
[0021] FIG. 1 : Vista superior de una aeronave en vuelo, con tres planos de sustentación desplegados.
[0022] FIG. 2: Vista de detalle en perspectiva de un mecanismo de engranajes para el accionamiento de un primer plano de sustentación.
[0023] FIG. 3: Vista de detalle lateral del mismo juego de engranajes.
[0024] FIG. 4: Vista superior de un mecanismo de engranajes para el accionamiento de un tercer plano de sustentación.
Realización preferente de la invención
[0025] En la figura 1 se representa un UAV multirrotor con cuatro brazos motrices. Tal y como es conocido en el estado de la técnica, el UAV consta de un cuerpo central (1) del que emergen los brazos motrices (2). En el cuerpo central, recubierto por una carcasa, se aloja el piloto automático o autopiloto (3), integrado por los componentes de hardware y software habituales en este tipo de dispositivos, y que comprenden al menos un microcontrolador que aloja una unidad de procesamiento y unidades de memoria en las que se almacena un software con bloques de instrucciones ejecutables por su unidad de procesamiento.
[0026] Cada brazo motriz (2) comprende al menos un motor asociado a al menos una hélice (4). Los motores de las hélices (4) se accionan mediante controladores de velocidad electrónicos tipo ESC (“Electronic Speed Control”) asociados al autopiloto (3). El autopiloto (3) está conectado a los sensores que habitualmente portan este tipo de aeronaves, tales como giróscopos, acelerómetros, barómetro, magnetómetro y sistemas de enlace para recepción de señales de posicionamiento satelital de diversas constelaciones, tales como GPS, Glonass, Beidou o Galileo. [0027] El morro de la aeronave está situado en un punto (5) del cuerpo central (1) que se corresponde con el extremo norte de un eje longitudinal que corta a la aeronave en dirección norte-sur. Por tanto, a estos efectos debe asumirse que el UAV representado en la figura 1 está en vuelo, orientado con su morro apuntando hacia el norte, y que el viento predominante es del norte.
[0028] El UAV comprende medios de orientación contra el viento. En el modo de realización preferente que se está describiendo, dichos medios comprenden un sensor de viento (6) que comprende dos sensores diferentes: sensor de velocidad del viento y sensor de dirección del viento, ambos con las características conocidas en el estado de la técnica. Al igual que los otros sensores que porta la aeronave, este sensor de viento (6) está conectado al piloto automático (3). Por ello, los medios de orientación contra el viento comprenden bloques de instrucciones en el software alojado en la unidad de memoria del microcontrolador, para ser procesados por la unidad de procesamiento, de modo que la aeronave reaccione a la información recibida por el sensor de viento (6).
[0029] Los medios de orientación contra el viento están complementados por al menos un plano de sustentación variable. En el modo de realización preferente mostrado en la figura 1, la aeronave tiene tres planos de sustentación variable (7, 8, 9) situados simétricamente con respecto al morro (5) del dron. Un primer plano de sustentación variable (7) se extiende a la derecha del cuerpo central (1), un segundo plano (8) está ubicado a la izquierda del cuerpo central (1) y un tercer plano (9) se sitúa en la parte posterior del cuerpo central (1), siempre teniendo en cuenta que la parte anterior es donde se localiza el morro (5) de la aeronave.
[0030] Cada uno de los planos de sustentación (7, 8, 9) está compuesto de al menos dos segmentos superpuestos: en concreto, en el modo de realización mostrado en la figura 1 , existen cinco segmentos superpuestos en cada uno de los tres planos de sustentación variable (7, 8, 9). En el primer y segundo planos de sustentación (7, 8) se disponen sendos segmentos superiores (10), que son fijos, y otros cuatro segmentos inferiores (11), que se mueven con respecto a los fijos (10). En el tercer plano de sustentación (9) se dispone un segmento central (12), que es fijo y cuatro segmentos laterales (13), móviles con respecto al central (12). La figura 1 representa al UAV con sus segmentos móviles (11,13) completamente desplegados con respecto a los respectivos segmentos fijos (10, 12).
[0031] Cada plano de sustentación (7, 8, 9) es accionado por un mecanismo de engranaje. A tal efecto, cada segmento (10, 11, 12, 13) de dichos planos (7, 8, 9) presenta en su eje longitudinal unas varillas de refuerzo (14, 15) solidarias del mecanismo de engranaje.
[0032] La figura 2 representa uno de los mecanismos de engranaje, en conjunción con las varillas de refuerzo (14, 15), en concreto el mecanismo que acciona el primer plano de sustentación (7), que es igual al mecanismo que acciona el segundo plano de sustentación (8). Una primera varilla (14) refuerza longitudinalmente el segmento superior fijo (10). Dicha varilla (14) es solidaria de una pletina superior (16), fijada a la estructura de la aeronave. Entre dicha pletina superior (16) y una pletina inferior (17), también fijada a la estructura de la aeronave, se acoplan un primer eje móvil (18) y un segundo eje fijo (19). En estos ejes (18, 19) se insertan ruedas dentadas cilindricas con distinto número de dientes paralelos. En concreto, se disponen una primera columna de ruedas dentadas fijas (20), las cuales están fijamente unidas al eje móvil (18) y una segunda columna de ruedas dentadas móviles (21), que giran sobre el eje fijo (19). Cada rueda dentada de la primera columna (20) está engranada con una rueda dentada de la segunda columna (21).
[0033] Mientras que la varilla superior (14) es solidaria de la pletina superior (16) y por tanto permanece fija (al estar la pletina superior (16) fijada a la estructura de la aeronave), las otras varillas (15) son solidarias de sendas ruedas dentadas móviles de la segunda columna (21) y por tanto se mueven con el giro de dichas ruedas (21), lo que permite el pliegue y despliegue con respecto a la varilla fija (14).
[0034] En conexión con una de las ruedas dentadas fijas de la primera columna (20) se dispone una rueda motriz (22), a su vez engranada con la rueda dentada de un servomotor. El uso de servomotores en UAVs con el fin de controlar la posición de ciertos elementos móviles (como puedan ser alerones, o en la presente invención, los segmentos móviles (11 , 13) es conocido en el estado de la técnica. A título de ejemplo, el documento US9964960B2 antes citado describe un elemento de servocomando 72 conjugado con las superficies móviles 85 de la aeronave, para moverlas hacia arriba o hacia abajo.
[0035] La figura 3 representa una vista lateral del mismo mecanismo de engranaje objeto de la figura 2. Para facilidad de referencia, todas las varillas de refuerzo (14, 15) se muestran en la misma posición. El primer eje (18) está dotado de sendos rodamientos (23) en sus extremos, mientras que sus ruedas dentadas (20) están fijas en el eje (18). El segundo eje (19) tiene un rodamiento (24) a la altura de cada una de sus ruedas dentadas (21), mientras que en sus extremos está unido fijamente a las pletinas (16, 17). [0036] El giro de la rueda motriz (22) se transmite a una de las ruedas dentadas fijas (20), la cual hace girar al eje (18) y por tanto al resto de las ruedas dentadas fijas (20), produciéndose el giro de eje (18) merced a los rodamientos extremos (23). De este modo, la velocidad angular de las ruedas dentadas fijas de la primera columna (20) es constante. El giro de cada una de dichas ruedas (20) es transmitido a su correspondiente rueda dentada móvil de la segunda columna (21 ), las cuales girarán independientemente merced a sus respectivos rodamientos
(24), con una velocidad angular determinada por su número de dientes y por el número de dientes de su correspondiente rueda de la primera columna (20). Como puede apreciarse en la figura 1 , los segmentos móviles (11 , 13) que se encuentran más alejados de sus correspondientes segmentos fijos (10, 12) precisan de un rango de movimiento más amplio, con tal del alcanzar la posición de despliegue total. El experto en la materia puede diseñar un mecanismo de engranaje como el descrito, dotando a sus ruedas (20, 21, 22) del número de dientes necesario para conseguir el rango de movimiento de los segmentos móviles (11, 13) que se desee.
[0037] La figura 4 representa una vista superior del mecanismo para el accionamiento del tercer plano de sustentación (9), esto es, el que se ubica en la parte posterior del cuerpo central de la aeronave (1) y que comprende un segmento fijo (12) y dos segmentos móviles (13) a cada lado de aquel, estando el segmento fijo (12) reforzado longitudinalmente por una varilla (14) y los segmentos móviles (13), por sendas varillas (15), todo ello como se ha descrito anteriormente en relación con la figura 1. En la figura 4 se aprecia que la varilla fija (14) es solidaria de una pletina superior (25), la cual se fija a la estructura de la aeronave. De esta pletina superior
(25) parten un primer eje móvil (26) y un segundo eje fijo (27). Las varillas móviles (15) son solidarias de sendas ruedas dentadas que forman parte de una segunda columna de ruedas dentadas (28) insertadas en el segundo eje fijo (27) y teniendo cada una de ellas su propio rodamiento en dicho eje fijo (27). Esta segunda columna de ruedas dentadas (28) engrana con una primera columna de ruedas dentadas (29) insertadas en el primer eje móvil (26). La primera columna de ruedas dentadas (29) está conectada a una rueda dentada motriz (30) accionada por la rueda dentada de un servomotor. El mecanismo es, pues, sustancialmente igual al representado en las figuras 2 y 3.
[0038] Finalmente, en el cuerpo central (1) de la aeronave se disponen unas piezas de anclaje (31) a cuyos respectivos centros se fijan los extremos superiores de los ejes fijos (19, 27) de los mecanismos de engranajes que accionan los correspondientes planos de sustentación variable (7, 8, 9).
[0039] Debido al mecanismo descrito, los planos de sustentación (7, 8, 9) pueden adoptar distintas posiciones de despliegue respecto del cuerpo central (1) de la aeronave. La figura 1 muestra la posición de despliegue total, y entre esa posición y la de pliegue total de los segmentos móviles (11, 13) sobre los fijos (10, 12) caben todos los grados intermedios, en función del número de dientes de las ruedas dentadas (20, 21 , 22, 28, 29, 30) y de la información que el autopiloto (3) reciba del sensor de viento (6) y transmita al servomotor.
[0040] A continuación, se explica el funcionamiento de los medios de orientación contra el viento (6) y los planos de sustentación (7, 8, 9) durante el despegue y vuelo de la aeronave multirrotor objeto del presente modo de realización.
[0041] En la operación del dron cabe distinguir dos fases: despegue y vuelo. Se entiende por despegue la fase que transcurre desde la puesta en marcha hasta que el UAV alcanza una cota de altura adecuada programada.
[0042] Durante el despegue, los planos de sustentación (7, 8, 9) se mantienen constantemente en la posición de máxima retracción, ofreciendo menos resistencia y, por tanto, facilitando el despegue vertical propio de los UAVs multirrotor. Desde el momento en que se inicia el despegue, la información sobre la dirección del viento captada por el sensor de viento (6) es procesada por el autopiloto (3), el cual transmite instrucciones a los controladores de velocidad de los motores, que mediante una acción diferencial (rotación a diferente velocidad) posicionarán la aeronave con su morro (5) enfrentado a la dirección del viento. Esta acción diferencial de los motores en función de la información captada por los diferentes sensores y procesada por el autopiloto o en función de las instrucciones recibidas del piloto remoto, es el principio básico de la operatividad de estas aeronaves y es por tanto conocida por el experto en la materia.
[0043] Cuando la aeronave ha alcanzado una determinada cota de altura adecuada programada en el software del autopiloto (3), finaliza la fase de despegue y comienza la fase de vuelo, esto es, la fase en que la aeronave se mantiene estacionaria en el aire o se desplaza en una u otra dirección.
[0044] Durante la fase de vuelo, la dirección del viento es monitorizada constantemente por el sensor de viento (6), de modo que una variación en la dirección será captada por el sensor (6) y transmitida al piloto automático (3), que la procesará y enviará las órdenes a los controladores de velocidad de los motores, lo que se traducirá en una variación de la orientación de la aeronave, para que su morro (5) se mantenga posicionado contra el viento.
[0045] Asimismo y simultáneamente a la descrita monitorización de la dirección del viento y consiguiente orientación de la aeronave, la información sobre la velocidad del viento es igualmente monitorizada constantemente por el sensor de viento (6) y procesada por el autopiloto (3), el cual transmite instrucciones a los servomotores conectados a las respectivas ruedas dentadas motrices (20, 21 , 22), que por acción de los mecanismos de engranaje descritos causarán el movimiento de los segmentos móviles (11, 13) de los planos de sustentación (7, 8, 9), de modo que el grado de apertura de dichos segmentos móviles (11, 13) variará en función de la velocidad del viento, conforme al principio de que, a menor viento, mayor despliegue. Conforme aumente el viento se irá reduciendo el despliegue de los segmentos móviles (11, 13) hasta el grado máximo de retracción programado.
[0046] A tal fin, el software del microcontrolador (3) está programado para asignar un determinado grado de despliegue de los segmentos (11, 13) a un determinado valor de velocidad del viento. Se trata de una operación de cálculo de la carga alar de una aeronave en función de la velocidad del viento, lo que es conocido por el experto en la materia.
[0047] Una vez la aeronave está en vuelo estacionario en el punto en que debe comenzar la inspección, asumiendo que impera un viento de dirección norte, con una velocidad escasa y que la aeronave debe desplazarse a lo largo de un tendido eléctrico que discurre en dirección oeste, la aeronave se encontraría en este momento con el morro (5) orientado hacia el norte y con sus planos de sustentación (7, 8, 9) totalmente desplegados. A partir de este momento, la aeronave se desplazaría en la dirección oeste, pero sin alterarse la orientación de su morro (5), porque, como se ha indicado, el software del piloto automático (3) está programado para mantenerla en contra del viento conforme a la información recibida del sensor de viento (6). Por ello, la aeronave, al desplazarse hacia el oeste a lo largo de la línea eléctrica, realizaría un vuelo lateral con respecto a la orientación de su morro (5).
[0048] Como excepción a lo anterior, el software del piloto automático (3) está programado para que cuando la velocidad del viento captada por el sensor de viento (6) sea inferior a la velocidad de desplazamiento de la aeronave, el morro (5) de la aeronave se oriente en la dirección de desplazamiento, en vez de contra el viento. Se ha previsto esta excepción porque el escaso viento apenas contribuiría a la sustentación de la aeronave, aunque esta tenga sus planos de sustentación (7, 8, 9) totalmente desplegados, por lo que es más eficiente orientarla hacia su dirección de desplazamiento y aprovechar el viento para ayudar al planeo, lo que también supone un ahorro de energía.

Claims

Reivindicaciones
1. Aeronave no tripulada caracterizada porque comprende medios de orientación contra el viento (6) dispuestos para que la aeronave se mantenga con su morro (5) orientado hacia la dirección del viento dominante independientemente de cuál sea la dirección de desplazamiento de la aeronave.
2. La aeronave de la reivindicación 1 , caracterizada porque los medios de orientación contra el viento (6) están configurados para entrar en funcionamiento en la fase de despegue y mantenerse en funcionamiento durante la fase de vuelo.
3. La aeronave de la reivindicación 1 , caracterizada porque sus medios de orientación contra el viento (6) están configurados para que, cuando la velocidad del viento dominante sea inferior a la velocidad de desplazamiento de la aeronave, el morro (5) de la aeronave se oriente en la dirección de desplazamiento.
4. La aeronave de la reivindicación 1 , caracterizada porque comprende además al menos un plano de sustentación variable (7, 8, 9).
5. La aeronave de la reivindicación 4, caracterizada porque el al menos un plano de sustentación variable (7, 8, 9) está constituido por al menos dos segmentos superpuestos (10, 11, 12, 13).
6. La aeronave de la reivindicación 5, caracterizada porque uno (10, 12) de los al menos dos segmentos superpuestos (10, 11, 12, 13) es fijo y el otro (11, 13) de los al menos dos segmentos superpuestos (10, 11, 12, 13) es móvil con respecto al al menos un segmento fijo (10, 12).
7. La aeronave de la reivindicación 6, caracterizada porque el al menos un segmento móvil (11, 13) puede adoptar al menos dos posiciones de plegado con respecto al al menos un segmento fijo (10, 12).
8. La aeronave de la reivindicación 6, caracterizada porque el al menos un segmento móvil (11 , 13) es solidario de un mecanismo de engranajes que comprende un primer eje móvil (18, 26) y un segundo eje fijo (19, 27) en los que se insertan respectivamente una primera columna de ruedas dentadas fijas (20, 29) y una segunda columna de ruedas dentadas móviles (21, 28).
PCT/IB2021/053045 2020-04-15 2021-04-13 Aeronave no tripulada WO2021209899A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21787885.9A EP4137908A4 (en) 2020-04-15 2021-04-13 UNMANNED AERIAL VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202030307A ES2866226A1 (es) 2020-04-15 2020-04-15 Aeronave no tripulada
ESP202030307 2020-04-15

Publications (1)

Publication Number Publication Date
WO2021209899A1 true WO2021209899A1 (es) 2021-10-21

Family

ID=78084744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/053045 WO2021209899A1 (es) 2020-04-15 2021-04-13 Aeronave no tripulada

Country Status (3)

Country Link
EP (1) EP4137908A4 (es)
ES (1) ES2866226A1 (es)
WO (1) WO2021209899A1 (es)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312070A (en) 1992-04-02 1994-05-17 Grumman Aerospace Corporation Segmented variable sweep wing aircraft
US20120232721A1 (en) * 2011-03-07 2012-09-13 Engblom William A Dual-aircraft atmospheric platform
CN203889066U (zh) * 2014-01-17 2014-10-22 刘晓琳 具有翼膜的可倾转旋翼的四旋翼飞行器
US20150331420A1 (en) * 2013-12-19 2015-11-19 Google Inc. Methods and Systems for Conserving Power During Hover Flight
US20160347446A1 (en) 2015-05-28 2016-12-01 Eugene H. Vetter Devices and methods for in flight transition vtol/fixed wing hybrid aircraft structures and flight modes
US20170199527A1 (en) * 2016-01-08 2017-07-13 Microsoft Technology Licensing, Llc Exploiting or avoiding air drag for an aerial vehicle
US20170300066A1 (en) * 2016-04-18 2017-10-19 Latitude Engineering, LLC Wind finding and compensation for unmanned aircraft systems
US9964960B2 (en) 2015-08-19 2018-05-08 Sikorsky Aircraft Corporation Hover attitude trim for vehicle
WO2018163159A1 (en) * 2017-03-07 2018-09-13 Colugo Systems Ltd Folded wing multi rotor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060144992A1 (en) * 2004-12-07 2006-07-06 Jha Akhllesh K Transformable fluid foil with pivoting spars
KR20210054565A (ko) * 2018-09-07 2021-05-13 플라이길디 이에이치에프. 로봇 새

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312070A (en) 1992-04-02 1994-05-17 Grumman Aerospace Corporation Segmented variable sweep wing aircraft
US20120232721A1 (en) * 2011-03-07 2012-09-13 Engblom William A Dual-aircraft atmospheric platform
US20150331420A1 (en) * 2013-12-19 2015-11-19 Google Inc. Methods and Systems for Conserving Power During Hover Flight
CN203889066U (zh) * 2014-01-17 2014-10-22 刘晓琳 具有翼膜的可倾转旋翼的四旋翼飞行器
US20160347446A1 (en) 2015-05-28 2016-12-01 Eugene H. Vetter Devices and methods for in flight transition vtol/fixed wing hybrid aircraft structures and flight modes
US9964960B2 (en) 2015-08-19 2018-05-08 Sikorsky Aircraft Corporation Hover attitude trim for vehicle
US20170199527A1 (en) * 2016-01-08 2017-07-13 Microsoft Technology Licensing, Llc Exploiting or avoiding air drag for an aerial vehicle
US20170300066A1 (en) * 2016-04-18 2017-10-19 Latitude Engineering, LLC Wind finding and compensation for unmanned aircraft systems
WO2018163159A1 (en) * 2017-03-07 2018-09-13 Colugo Systems Ltd Folded wing multi rotor

Also Published As

Publication number Publication date
ES2866226A1 (es) 2021-10-19
EP4137908A4 (en) 2023-09-06
EP4137908A1 (en) 2023-02-22

Similar Documents

Publication Publication Date Title
US11390381B1 (en) In-flight reconfigurable hybrid unmanned aerial vehicle with swing arm for engaging or disengaging items
ES2933378T3 (es) Conjunto de rotor de paso variable para aplicaciones de aeronave de empuje vectorizado accionada eléctricamente
US20220219820A1 (en) Unmanned Flying Device
ES2953004T3 (es) Sistema de accionamiento de inclinación de las alas para aeronaves eléctricas de despegue y aterrizaje en vertical (VTOL)
EP3439951B1 (en) Rotating wing assemblies for tailsitter aircraft
ES2732717T3 (es) Aerodino VTOL con uno o más ventiladores axiales portantes
US10144509B2 (en) High performance VTOL aircraft
CN105473443B (zh) 采用新空气动力和技术方案的多用途且安全的垂直起降飞机
US20200010182A1 (en) Pivoting wing system for vtol aircraft
AU2001248608B2 (en) Ring-wing aircraft
CN112334384B (zh) 推进单元和包括其的飞行器
ES2332921T3 (es) Metodo de gobierno de una aeronave convertible.
CN110641693A (zh) 垂直起飞和着陆无人驾驶飞行器
US20110042510A1 (en) Lightweight Vertical Take-Off and Landing Aircraft and Flight Control Paradigm Using Thrust Differentials
US10875626B2 (en) Foldable wings for UAS having a geared interface
ES2912732T3 (es) Vehículos aéreos con grados de libertad desacoplados
AU2001248608A1 (en) Ring-wing aircraft
EP1666356A1 (en) Small unmanned aircraft
JP2012111475A (ja) Wing−Rotorによる垂直離着陸無人航空機
WO2005086563A2 (es) Rotor para aeronaves convertibles y aeronave convertible que lo incorpora
KR20180116849A (ko) 가변 피치 프로펠러를 이용한 고정익 드론
WO2022067401A1 (pt) Veículo aéreo de decolagem vertical com fuselagem e asas integradas em aerofólio
WO2021209899A1 (es) Aeronave no tripulada
JP4702882B2 (ja) 小型回転翼機
ES2675179T3 (es) Misil no tripulado

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21787885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021787885

Country of ref document: EP

Effective date: 20221115