WO2021209027A1 - 物理上行共享信道传输方法、网络设备及终端设备 - Google Patents

物理上行共享信道传输方法、网络设备及终端设备 Download PDF

Info

Publication number
WO2021209027A1
WO2021209027A1 PCT/CN2021/087711 CN2021087711W WO2021209027A1 WO 2021209027 A1 WO2021209027 A1 WO 2021209027A1 CN 2021087711 W CN2021087711 W CN 2021087711W WO 2021209027 A1 WO2021209027 A1 WO 2021209027A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs resource
srs
target
resources
srs resources
Prior art date
Application number
PCT/CN2021/087711
Other languages
English (en)
French (fr)
Inventor
宋扬
刘昊
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021209027A1 publication Critical patent/WO2021209027A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present invention claims the priority of a Chinese patent application filed with the Chinese Patent Office on April 17, 2020, the application number is 202010307490.5, and the invention title is "Physical Uplink Shared Channel Transmission Method, Network Equipment and Terminal Equipment", the entire content of the application Incorporated in the present invention by reference.
  • the present invention relates to the field of communication, in particular to a physical uplink shared channel (PUSCH) transmission method, network equipment and terminal equipment.
  • PUSCH physical uplink shared channel
  • the downlink control information can schedule the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) or the authorization-free (configured grant) Schedule PUSCH.
  • DCI format (format) 0_0 can only schedule single-layer PUSCH transmission.
  • SRS Sounding Reference Signal
  • the SRS Resource Indicator (SRI) in the DCI can be used to indicate the precoding used for PUSCH ( precoder) and rank (transmission rank) (that is, the number of layers).
  • the SRS resource set (SRS resource set) containing SRS resources can be configured by high-level parameters in SRS-config.
  • the high-level parameter usage (usage) of the SRS resource set is configured as "nonCodebook”
  • only one SRS resource set can be configured, and each resource set contains a maximum of 4 SRS resources, and only one SRS port can be configured in each SRS resource ( SRS port).
  • the UE may calculate the precoding of each SRS resource according to the measurement of the non-zero power channel state information reference signal (Channel-State Information reference Signal, CSI-RS) resource (NZP CSI-RS resource) associated with the SRS resource set.
  • CSI-RS Channel state information reference Signal
  • NZP CSI-RS resource the purpose of the SRS resource set
  • the above-mentioned one SRS resource set can only be associated with one NZP CSI-RS resource.
  • the bits of the SRI field included in the DCI are determined by the maximum number of uplink transmission layers supported by the UE, Lmax, and the number of SRS resources included in one SRS resource set, N SRS .
  • Tables 1 to 4 show the SRS resources corresponding to each value of the SRI field in the DCI when the Lmax is 1 to 4 and the N SRS is 2 to 3, respectively.
  • the purpose of the embodiments of the present invention is to provide a PUSCH transmission method, network equipment, and terminal equipment, so that the UE can be configured for non-codebook uplink transmission, and there are multiple non-codebook SRS resource sets configured. Next, determine how to transmit PUSCH, which improves the reliability of the communication system.
  • a PUSCH transmission method which is applied to a terminal device, and the method includes: obtaining downlink control information DCI; if the terminal device is configured in a non-codebook uplink transmission mode, and configured for non-codebook uplink transmission mode If there are N sounding reference signal SRS resource sets, one or more first SRS resources indicated by the DCI are acquired, and one or more SRS resource sets where the first SRS resources are located are determined, where N is greater than An integer of 1; determine the target SRS resource corresponding to each PUSCH transmission in multiple PUSCH transmissions according to the SRS resource set to which one or more of the first SRS resources belong, wherein each PUSCH transmission corresponds to the target SRS The resource is one or more SRS resources belonging to the same SRS resource set among the one or more first SRS resources; each PUSCH transmission is performed according to the target SRS resource corresponding to each PUSCH transmission.
  • a DCI transmission method is provided, which is applied to a network device, and the method includes: if the terminal device is configured in a non-codebook uplink transmission mode, and there are N SRS resource sets configured for the non-codebook, Then determine the target SRS resource corresponding to each PUSCH transmission in the multiple PUSCH transmissions of the terminal device, where the target SRS resource corresponding to each PUSCH transmission is one of the SRS resource sets belonging to the same SRS resource set.
  • N is an integer greater than 1; according to the SRS resource set where one or more SRS resources in the target SRS resource are located, the downlink control information DCI is sent to the terminal device, and the DCI indicates one or A plurality of first SRS resources, where the target SRS resource is one or more of the one or more first SRS resources.
  • a terminal device including a first acquisition module for acquiring downlink control information DCI; a second acquisition module for if the terminal device is configured in a non-codebook uplink transmission mode, and the configuration is used If there are N sounding reference signal SRS resource sets in a non-codebook, one or more first SRS resources indicated by the DCI are acquired, and the SRS resource set in which one or more first SRS resources are located is determined, where , N is an integer greater than 1.
  • the determining module is configured to determine the target SRS resource corresponding to each PUSCH transmission in multiple PUSCH transmissions according to the SRS resource set to which one or more of the first SRS resources belong, where each The target SRS resource corresponding to each PUSCH transmission is one or more SRS resources belonging to the same SRS resource set among the one or more first SRS resources; the transmission module is configured to follow the target corresponding to each PUSCH transmission The SRS resource is used for each PUSCH transmission.
  • a network device including: a determining module, configured to determine if the terminal device is configured in a non-codebook uplink transmission mode and there are N SRS resource sets configured for non-codebook The target SRS resource corresponding to each PUSCH transmission in multiple PUSCH transmissions of the terminal device, wherein the target SRS resource corresponding to each PUSCH transmission is one or more SRS belonging to the same SRS resource set Resource, N is an integer greater than 1.
  • the sending module is used to send downlink control information DCI to the terminal device according to the SRS resource set in which one or more SRS resources in the target SRS resource are located, and indicate through the DCI One or more first SRS resources, where the target SRS resource is one or more SRS resources in the one or more first SRS resources.
  • a terminal device including: a memory, a processor, and a computer program that is stored on the memory and can run on the processor.
  • the computer program is executed by the processor, the following The steps of the method described in one aspect.
  • a network device including: a memory, a processor, and a computer program that is stored on the memory and can run on the processor.
  • the computer program is executed by the processor, the following The steps of the method described in the second aspect.
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the steps of the method according to the first aspect or the second aspect are implemented .
  • the UE is configured with a non-codebook uplink transmission mode and the set of SRS resources configured for the non-codebook is N, then one or more first SRS resources indicated by the DCI are acquired, and Determine the SRS resource set where one or more of the first SRS resources are located, and determine the target SRS resource corresponding to each PUSCH transmission in multiple PUSCH transmissions according to the SRS resource set to which one or more of the first SRS resources belong . Then, each PUSCH transmission is performed according to the target SRS resource corresponding to each PUSCH transmission.
  • FIG. 1 is a schematic flowchart of a PUSCH transmission method provided by an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a DCI sending method provided by an embodiment of the present invention
  • Figure 3 is a schematic structural diagram of a terminal device provided by an embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of a network device provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of a network device provided by an embodiment of the present invention.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • GSM Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • NR New Radio
  • the user equipment can be connected to one or more cores via a radio access network (for example, RAN, Radio Access Network)
  • the user equipment can be a mobile terminal, such as a mobile phone (or “cellular” phone) and a computer with a mobile terminal.
  • a mobile terminal such as a mobile phone (or “cellular” phone) and a computer with a mobile terminal.
  • a mobile terminal such as a mobile phone (or “cellular” phone) and a computer with a mobile terminal.
  • it can be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device. , They exchange language and/or data with the wireless access network.
  • the base station can be a base station (BTS, Base Transceiver Station) in GSM or CDMA, a base station (NodeB) in WCDMA, or an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE, TRP and 5G base stations (gNB), the present invention is not limited, but for the convenience of description, the following embodiments take gNB as an example for description.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB or e-NodeB, evolutional Node B evolutional Node B
  • LTE Long Term Evolution
  • FIG. 1 is a schematic flowchart of a PUSCH transmission method provided in an embodiment of the present invention.
  • the method 100 may be executed by a terminal device.
  • the method can be executed by software or hardware installed on the terminal device.
  • the method may include the following steps.
  • the DCI carries downlink control information configured by the network side for the terminal device.
  • the DCI may adopt the DCI format 0_1 or the DCI format 0_2 format.
  • S112 If the terminal device is configured in the non-codebook uplink transmission mode and the set of SRS resources configured for the non-codebook is N, acquire one or more first SRS resources indicated by the DCI, and determine One or more SRS resource sets where the first SRS resource is located, where N is an integer greater than 1.
  • the SRS resource set used for non-codebooks can be configured through high-level parameters, for example, high-level parameters in SRS-config.
  • the CSI-RS associated with each of the SRS resource sets are different, that is, different SRS resource sets are associated with different CSI-RS, and each CSI-RS corresponds to a beam, thereby realizing multiple SRS resources
  • the set corresponds to multiple TRPs or different beams of one TRP.
  • the UE calculates the precoding of each SRS resource according to the measurement of the CSI-RS associated with each SRS resource set.
  • the CSI-RS associated with each of the SRS resource sets may also be the same, that is, the N SRS resource sets are associated with the same CSI-RS. In this way, multiple SRS resource sets correspond to one beam.
  • one or more first SRS resources may be indicated through the SRI field in the DCI.
  • SRS resources can be numbered, and the corresponding relationship between the SRS resource index (that is, the bit field mapping index in Table 1 to Table 3 in the related art) and one or more SRS resources can be set in advance.
  • An SRS resource index is indicated in the field. According to the SRS resource index, the UE can determine the SRS resource indicated by the network side.
  • the DCI may include multiple SRI domains, and the corresponding relationship between the SRI domain and the SRS resource set can be set in advance, and each SRI domain indicates one or more first SRS resources in the corresponding SRS resource set. . Therefore, in this possible implementation manner, determining the SRS resource set in which one or more of the first SRS resources are located includes: determining one or more indications of each of the SRI domains according to the corresponding relationship between the SRI domain and the SRS resource set. The SRS resource set where the multiple first SRS resources are located.
  • the SRS resources in each SRS resource set can be coded separately. For example, suppose there are 2 SRS resource sets.
  • the first SRS resource set includes two SRS resources numbered 0 and 1, and the second SRS resource set includes three SRS resources numbered 0, 1, and 2.
  • An SRI field indicates one or more first SRS resources included in the first SRS resource set.
  • the second SRI field indicates one or more first SRS resources included in the second SRS resource set, assuming two SRS resources numbered 0 and 2, if the numbers are 0 and 1.
  • the corresponding index is 4, and the index indicated by the second SRI field is 4.
  • the DCI includes an SRI field
  • obtaining the SRS resource indication in the DCI one or more first SRS resources indicated by the SRI field may include: obtaining the target indicated by the SRI field SRS resource index; obtaining one or more first SRS resources corresponding to the target SRS resource index according to the preset correspondence between the SRS resource index and the SRS resource number; wherein, the SRS resource number is used to indicate N
  • the SRS resources in the SRS resource set, and the SRS resources in the N SRS resource sets are uniformly numbered in order in advance.
  • all SRS resources in the N SRS resource sets are uniformly numbered, and the SRS resource index corresponds to one or more SRS resources that have been uniformly numbered, and the corresponding SRS resource index is used to indicate the corresponding SRS resources.
  • the UE can determine that the first SRS resource includes SRS resources of 0 and 2 according to Table 5, and combined with the configuration information of each SRS resource set, it can be determined that the SRS resource numbered 0 belongs to the first SRS resource Set, the SRS resource numbered 2 belongs to the second SRS resource set.
  • S114 Determine the target SRS resource corresponding to each PUSCH transmission in multiple PUSCH transmissions according to the SRS resource set to which one or more of the first SRS resources belong, where the target SRS resource corresponding to each PUSCH transmission is One or more SRS resources belonging to the same SRS resource set among the one or more first SRS resources.
  • multiple PUSCH transmissions may be multiple PUSCH repeated transmissions, where the number of repeated transmissions may be network configuration, or may also be dynamically indicated by DCI.
  • multiple PUSCH transmissions may also be periodic multiple PUSCH transmissions configured with uplink grants.
  • the alternate mapping refers to mapping one or more of the first SRS resources in the first SRS resource set to the first PUSCH transmission, and mapping one or more of the first SRS resources in the second SRS resource set.
  • the first SRS resource is mapped to the second PUSCH transmission until one or more of the first SRS resources in the M-th SRS resource set are mapped to the M-th PUSCH transmission, and then the first SRS One or more of the first SRS resources in the resource set are mapped to the M+1th PUSCH transmission, and so alternately until all the PUSCH transmissions are mapped.
  • the number M of SRS resource sets in which one or more of the first SRS resources are located is greater than 1, it is also possible to map one or more of the M SRS resources in a continuous mapping manner. A plurality of the first SRS resources are mapped to each PUSCH transmission.
  • the continuous mapping refers to mapping one or more of the first SRS resources in the first SRS resource set to the previous n PUSCH transmissions, and mapping one or more of the first SRS resources in the second SRS resource set
  • the first SRS resource is mapped to the n+1th to the 2nth PUSCH transmission until one or more of the first SRS resources in the Mth SRS resource set are mapped to the (n*(M-1)+th 1)
  • the PUSCH transmission from the time to the M*nth time, and then one or more of the first SRS resources in the first SRS resource set are mapped to the (M*n+1)th to (M+1)th *n times of the PUSCH transmission, and repeat this until all the PUSCH transmissions are mapped, where n is an integer greater than 1.
  • the value of n may be determined according to the number of PUSCH transmissions and M, and may be determined according to actual applications, which is not limited in the specific embodiment of the present invention.
  • each PUSCH transmission in multiple PUSCH transmissions can be sent to different TRPs, which improves the possibility of system communication.
  • each PUSCH transmission corresponds to all the first SRS resources indicated by the SRI field.
  • the dynamic switching between multiple PUSCH transmissions of multiple TRPs and multiple PUSCH transmissions of a single TRP can be realized according to the number of SRS resource sets to which one or more first SRS resources are indicated by the SRI field. .
  • one PUSCH transmission may be actual PUSCH transmission or nominal PUSCH transmission.
  • the nominal PUSCH transmission refers to the multiple PUSCH repetitions indicated in the network equipment scheduling instruction.
  • the actual PUSCH transmission is because the multiple repeated PUSCHs in the scheduling instruction encounter the time slot boundary or the uplink and downlink switching points, and the nominal PUSCH transmission is divided Multiple PUSCH transmissions.
  • one of the first SRS resources included in the target SRS resource corresponds to one target precoding and one layer
  • the target SRS resource may include one or more of the first SRS resources. Therefore, in a possible implementation manner, in S116, for any PUSCH transmission, performing the PUSCH transmission may include: performing the PUSCH transmission according to the target precoding and the target number of layers, wherein the target precoding The precoding corresponding to the target SRS resource corresponding to this PUSCH transmission, and the target layer number is the number of layers corresponding to the target SRS resource corresponding to this PUSCH transmission.
  • a target layer number is for a demodulation reference signal (Demodulation Reference Signal, DMRS) port. Therefore, for any PUSCH transmission, when performing this PUSCH transmission, K said targets can be used. Precoding, the PUSCH transmission is sent through K DMRS ports, where K is the number of SRS resources contained in the target SRS resource corresponding to the PUSCH transmission, and one DMRS port uses one target preamble coding.
  • DMRS Demodulation Reference Signal
  • the mapping rule of the first SRS resource for multiple PUSCH repeated transmissions is configured to alternate alternately.
  • Set 1 This configuration can be understood as SRS resource set 0 corresponds to TRP0, and SRS resource set 1 corresponds to TRP1.
  • the meaning of the SRI value corresponding to the bit index of the SRI in the DCI is shown in Table 6 below (wherein, the index of the bit field mapping may be different).
  • Table 6 can be expanded to add the content in Table 7.
  • the SRI mapping rule for multiple PUSCH repeated transmissions is configured to alternate.
  • SRS resource group 0 has 2 SRS resources
  • SRS resource group 2 has 1 SRS resource.
  • This configuration can be understood as SRS resource group 0 corresponds to TRP0, and SRS resource group 1 corresponds to TRP1.
  • the meaning of the SRI value corresponding to the bit index of the SRI in the DCI is represented by the following Table 8 (wherein, the index of the bit field mapping may be different).
  • the method may further include: determining M power control values, where , M is the number of SRS resource sets where one or more of the first SRS resources are located; according to the manner in which the first SRS resources are mapped to each of the PUSCH transmissions, the M power control values are respectively mapped to Each time of the PUSCH transmission to determine the transmission power of each time of the PUSCH transmission.
  • the mapping relationship between M power control values and each PUSCH transmission is the same as the mapping relationship between one or more first SRS resources in the M SRS resource set and each PUSCH transmission. .
  • the M power control values are also alternately mapped to each PUSCH transmission.
  • determining the M power control values may include: respectively determining M first power values according to the configured M groups of power control parameters, where the M groups of power control parameters are M of the SRS One or more power control parameters of the first SRS resource configuration in the resource set; acquiring the PUSCH transmit power control signaling field in the DCI indicating one or more second power values; according to the M first power values and /Or the second power value, determining M power control values.
  • each SRS resource set corresponds to a group of power control parameters, where a group of power control parameters may include preset power control parameters for open-loop power control.
  • each group of power control parameters may be the network side sending configuration signaling to the terminal device to configure a group of PUCCH power control parameters corresponding to each SRS resource set (for example, the parameters P 0 , ⁇ , Pathloss RS, etc. in the power formula) .
  • the second power value is one or more second power values indicated by the transmission power control signaling (TPC command for scheduled PUSCH) field of the PUCCH in the DCI.
  • the second power value indicated in the transmission power control signaling field of the PUSCH may be a dynamic adjustment value of the transmission power of the PUSCH. For example, increase by 1dB, or decrease by 1dB, etc. Therefore, when determining M power control values, the M first power values can be added to or subtracted from one or more second power values, which is not limited in the specific embodiment of the present invention.
  • the PUSCH transmit power control signaling field in DCI can indicate a second power value or M second power values.
  • determining the M power control values according to the M first power values and/or the second power values may include: if the PUSCH transmit power control signaling field indicates If the second power value is one, then M power control values are determined according to the M first power values and the second power values, where one of the second power values is based on preset power control If the target value is determined, the preset power control target value is the first power value of one or more first SRS resource configurations included in a preset SRS resource set, and the preset SRS resource set is M One of the SRS resource sets, or the preset power control target value is the maximum value or the minimum value among the M first power values.
  • the first power value corresponding to one of the SRS resources is used as the reference power value to determine the relative value of the transmission power of each PUCCH transmission with respect to the reference power value.
  • the maximum value or the minimum value among the first power values of the M SRS resources is used as the reference power value, and the relative value of the transmission power of each PUCCH transmission with respect to the reference power value is determined.
  • determining the M power control values according to the M first power values and/or the second power values may include: if the PUSCH transmit power control signaling field indicates The second power values are M, and the M power control values are determined according to the corresponding relationship according to the M first power values and the M second power values.
  • the first power control value is the sum or difference between the first first power value and the first second power value.
  • the maximum number of layers (that is, the first preset parameter) of each PUSCH transmission may be determined according to any one of the following:
  • the first preset parameter is L'max, where L'max is the maximum number of layers that the terminal device supports for the second uplink transmission.
  • the first preset parameter is Lmax, where Lmax is the maximum number of layers supported by the terminal device for the first uplink transmission .
  • the UE may report the first uplink transmission maximum layer number Lmax and the second uplink transmission maximum layer number L'max to the network side, where the first uplink transmission maximum layer number Lmax may be the SRS resource set When the number is 1, the maximum number of uplink transmission layers supported by the UE, and the second maximum number of uplink transmission layers L'max may be the maximum number of uplink transmission layers supported by the UE when the number of SRS resource sets is greater than one.
  • the first preset parameter is Lmax/M, where Lmax is the maximum value of the first uplink transmission supported by the terminal device. Number of layers.
  • the first preset parameter corresponding to the mth PUSCH transmission is Km, where Km is the number of SRS resources included in the target SRS resource set corresponding to the mth PUSCH transmission is Km, and the target SRS resource The set is the SRS resource set where the target SRS resource corresponding to the mth PUSCH transmission is located, or the first preset parameter corresponding to the mth PUSCH transmission is the minimum of Km and L'max, where Km is greater than An integer equal to 1.
  • the maximum number of layers of this PUSCH transmission is determined according to the number of target SRS resource sets corresponding to each PUSCH transmission, that is, the maximum number of layers of this PUSCH transmission is equal to this PUSCH transmission.
  • the maximum value of the first preset parameter can be set to 2, that is, the number of PUSCH layers is limited to reduce UE complexity.
  • a second preset parameter is added to the configured multiple SRS resource sets, and the value of the second preset parameter may be the first predetermined value or the second predetermined value.
  • the SRS resource where the one or more first SRS resources are located may be determined according to the second preset parameter set. For example, if the second preset parameter is the first predetermined value, then one or more of the first SRS resources belong to a first SRS resource set.
  • the maximum number of layers of each PUSCH transmission may be Is Lmax; or, if the second preset parameter is a second predetermined value, then one or more of the first SRS resources belong to a plurality of second SRS resource sets, in this case, each PUSCH transmission
  • the maximum number of layers may be the first preset parameter, that is, determined according to the above-mentioned method of determining the first preset parameter.
  • the first SRS resource set may be one of a plurality of the second SRS resource sets, or the first SRS resource set may also be a plurality of the second SRS resource sets SRS resource set outside.
  • the multiple SRS resource sets are divided into a first SRS resource set (only one SRS resource set) and a second SRS resource set (including multiple SRS resource sets).
  • the one or more first SRS resources indicated by the SRI in the DCI belong to the SRS resources of the first SRS resource set; when the second preset parameter is the second predetermined value, The multiple first SRS resources indicated by the SRI in the DCI belong to different SRS resources of the second SRS resource set.
  • N SRS is the number (in this embodiment, 2) indicated by the first preset parameter in SRS resource set 1 SRS resources and SRS in SRS resource set 2
  • the sum of the number of resources is 4. Refer to Table 6 to obtain the meaning indicated by each SRI field.
  • the value indicated by the SRI field in the DCI corresponds to the first two SRS resources in SRS resource set 1 and the two SRS resources in SRS resource set 2.
  • N SRS is the sum of the number of SRS resources in SRS resource set 2 and the number of SRS resources in SRS resource set 3, that is, 4.
  • SRI value corresponds to 2 SRS resources in SRS resource set 2 and 2 SRS resources in SRS resource set 3.
  • the value of the second preset parameter may be configured by higher layer signaling or indicated by the DCI.
  • the non-codebook PUSCH repeated transmission of multiple TRPs is supported on the basis of the SRI indication, and the precoding indication for different TRPs can be supported, and the signaling changes are small. And it can realize the dynamic switching between the non-codebook multiple PUSCH transmissions of a single TRP and the multiple non-codebook PUSCH transmissions of multiple TRPs.
  • FIG. 2 is a schematic flowchart of a DCI sending method provided by an embodiment of the present invention.
  • the method 200 may be executed by a network device.
  • the method can be executed by software or hardware installed on a network device.
  • the method may include the following steps.
  • S210 If the terminal device is configured in the non-codebook uplink transmission mode, and the SRS resource set configured for the non-codebook is N, determine the corresponding PUSCH transmission of the multiple PUSCH transmissions of the terminal device The target SRS resource, wherein the target SRS resource corresponding to each PUSCH transmission is one or more SRS resources belonging to the same SRS resource set, and N is an integer greater than 1.
  • S212 Send downlink control information DCI to the terminal device according to the SRS resource set where one or more SRS resources in the target SRS resource are located, and indicate one or more first SRS resources through the DCI, where the The target SRS resource is one or more SRS resources in the one or more first SRS resources.
  • Method 200 is a network-side behavior corresponding to method 100.
  • the network device can determine the target SRS resource corresponding to each PUSCH transmission and the first SRS resource indicated in the DCI in a manner corresponding to method 100. For details, refer to method 100 Related description in.
  • the CSI-RSs associated with different SRS resource sets may be different or the same.
  • indicating the first SRS resource through the DCI includes: indicating one or more first SRS resources through an SRI field in the DCI.
  • the DCI includes multiple SRI fields; indicating one or more first SRS resources through the SRI field in the DCI, including: according to each SRI field in the DCI and N
  • the corresponding relationship of the SRS resource set indicates the target SRS resource in the SRS resource set corresponding to the SRI in each of the SRI fields.
  • the DCI includes an SRI field; indicating one or more first SRS resources through the SRI field in the DCI, including: according to the correspondence between a preset SRS resource index and an SRS resource number Relationship, obtain the target SRS resource index corresponding to the SRS resource number of the target SRS resource, where the SRS resource number is used to indicate the SRS resources in the N SRS resource sets, and the N SRS resource sets are SRS resources are uniformly numbered in order in advance.
  • determining the target SRS resource corresponding to each PUSCH transmission in multiple PUSCH transmissions of the terminal device includes: if one or more of the first SRS resources are located in the SRS resource set The number M is greater than 1, and the first SRS resource in the M SRS resource set is mapped to each PUSCH transmission in a alternate mapping or continuous mapping manner to obtain the target SRS resource corresponding to each PUSCH transmission; Alternatively, if the number M of SRS resource sets in which one or more of the first SRS resources are located is 1, it is determined that the target SRS resource corresponding to each PUSCH transmission is one or more of the first SRS resources.
  • the DCI further includes a PUSCH transmit power control signaling field, which is used to indicate the second power value of PUSCH transmission.
  • the PUSCH transmit power control signaling field is used to indicate a second power value, and the second power value is determined according to a preset power control target value, wherein the preset power control target The value is the first power value corresponding to one or more of the first SRS resources included in the preset SRS resource set, the preset SRS resource set is one of the M SRS resource sets, or the preset power
  • the control target value is the maximum value or the minimum value among the first power values of the target SRS resource configuration included in the M SRS resource sets; or, the M second power values indicated by the PUSCH transmission power control signaling field,
  • the network equipment may be configured according to the target SRS resource corresponding to each PUSCH transmission when the UE is configured in the non-codebook uplink transmission mode and the set of SRS resources configured for the non-codebook is N. , Send DCI to the UE to indicate the first SRS resource, so that the UE can determine the target SRS resource corresponding to each PUSCH transmission according to the indication of the DCI, and realize the transmission of each PUSCH, thereby supporting multiple TRP non-codebook PUSCH repeated transmissions .
  • FIG. 3 is a schematic structural diagram of a terminal device provided by an embodiment of the present invention.
  • the terminal device 300 includes: a first acquiring module 310 for acquiring downlink control information DCI; a second acquiring module 320 for acquiring downlink control information DCI; If the terminal device is configured in a non-codebook uplink transmission mode, and there are N sounding reference signal SRS resource sets configured for non-codebook, then one or more first SRS resources indicated by the DCI are acquired, And determine the SRS resource set where one or more of the first SRS resources are located, where N is an integer greater than 1.
  • the determining module 330 is configured to determine according to the SRS resource set to which one or more of the first SRS resources belong The target SRS resource corresponding to each PUSCH transmission in multiple PUSCH transmissions, wherein the target SRS resource corresponding to each PUSCH transmission is one or more of the one or more first SRS resources belonging to the same SRS resource set.
  • Multiple SRS resources; the transmission module 340 is configured to perform each PUSCH transmission according to the target SRS resource corresponding to each PUSCH transmission.
  • channel state information reference signals CSI-RSs associated with different SRS resource sets are different.
  • the CSI-RSs associated with the N SRS resource sets are the same.
  • acquiring one or more first SRS resources indicated by the DCI includes: acquiring the SRS resource in the DCI indicates one or more first SRS resources indicated by an SRI field.
  • the DCI includes an SRI field; obtaining the SRS resource in the DCI indicates one or more first SRS resources indicated by the SRI field, including: obtaining the target SRS indicated by the SRI field Resource index; obtain one or more first SRS resources corresponding to the target SRS resource index according to the corresponding relationship between the SRS resource index and the SRS resource number; wherein, the SRS resource number is used to indicate the N SRS resources Centralized SRS resources, and the SRS resources in the N SRS resource sets are uniformly numbered in order in advance.
  • determining the target SRS resource corresponding to each PUSCH transmission in multiple PUSCH transmissions according to the SRS resource set where the one or more first SRS resources are located includes: according to one or more In the SRS resource set where the first SRS resource is located, one or more of the first SRS resources are mapped to each of the PUSCH transmissions to obtain the target SRS resource corresponding to each PUSCH transmission.
  • One or more of the first SRS resources in the SRS resource set are mapped to the same PUSCH transmission.
  • mapping one or more of the first SRS resources to each of the PUSCH transmissions includes: if the number M of SRS resource sets in which one or more of the first SRS resources are located is greater than 1. Map one or more of the first SRS resources to each PUSCH transmission according to one of the following: map the first SRS resource in the M SRS resource set to each PUSCH transmission in a manner of alternate mapping. The second PUSCH transmission; in a continuous mapping manner, one or more of the first SRS resources in the M SRS resource set are mapped to each of the PUSCH transmissions.
  • mapping one or more of the first SRS resources to each of the PUSCH transmissions includes: if the number M of SRS resource sets in which one or more of the first SRS resources are located is 1. It is determined that the target SRS resource corresponding to each PUSCH transmission is one or more of the first SRS resources indicated by the SRI field.
  • the determining module 330 is further configured to: determine M power control values, where M is the number of SRS resource sets where one or more of the first SRS resources are located; The manner in which the first SRS resource is mapped to each PUSCH transmission, and the M power control values are respectively mapped to each PUSCH transmission to determine the transmission power of each PUSCH transmission.
  • determining M power control values includes: respectively determining M first power values according to configured M groups of power control parameters, where the M groups of power control parameters are M of the SRS One or more power control parameters of the first SRS resource configuration in the resource set; acquiring the PUSCH transmit power control signaling field in the DCI indicating one or more second power values; according to the M first power values and /Or the second power value, determining M power control values.
  • determining the M power control values according to the M first power values and/or the second power values includes: if the PUSCH transmit power control signaling field indicates the If the second power value is one, then M power control values are determined according to the M first power values and one second power value, where one of the second power values is based on a preset power control target value It is determined that the preset power control target value is the first power value corresponding to one or more of the first SRS resources included in the preset SRS resource set, and the preset SRS resource set is M One of the SRS resource sets, or the preset power control target value is the maximum value or the minimum value among the M first power values; or, if the second power control signaling field indicates the PUSCH transmission power There are M power values, and the M power control values are determined according to the corresponding relationship according to the M first power values and the M second power values.
  • performing the PUSCH transmission includes: performing the PUSCH transmission according to the target precoding and the target number of layers, wherein the target precoding the PUSCH transmission The precoding corresponding to the corresponding target SRS resource, and the target layer number is the number of layers corresponding to the target SRS resource corresponding to this PUSCH transmission.
  • performing this PUSCH transmission according to the target precoding and the number of target layers includes: using K of the target precoding, and sending the PUSCH transmission through K demodulation reference signal DMRS ports , Where K is the number of target SRS resources corresponding to the PUSCH transmission this time, and one DMRS port uses one target precoding.
  • the first preset parameter is Lmax/M; the first preset parameter corresponding to the mth PUSCH transmission is Km, where Km is the number of SRS resources included in the target SRS resource set corresponding to the mth PUSCH transmission Is Km, the target SRS resource set is the SRS resource set where the target SRS resource corresponding to the mth PUSCH transmission is located
  • determining the SRS resource set where the one or more first SRS resources are located includes: determining the SRS resource set where the one or more first SRS resources are located according to a second preset parameter .
  • determining the SRS resource set where one or more of the first SRS resources are located according to the second preset parameter includes: if the second preset parameter is the first predetermined value, one Or a plurality of the first SRS resources belong to a first SRS resource set; or if the second preset parameter is a second predetermined value, one or more of the first SRS resources belong to a plurality of second SRS Resource set.
  • the first SRS resource set is one of the plurality of second SRS resource sets, or the first SRS resource set is one of the plurality of second SRS resource sets SRS resource set.
  • the second preset parameter is configured by higher layer signaling or indicated by the DCI.
  • the terminal device provided by the embodiment of the present invention can implement each process implemented by the terminal device in each method embodiment of FIG. 1 to FIG. 2 and achieve the same effect. In order to avoid repetition, details are not described herein again.
  • FIG. 4 is a schematic structural diagram of a network device provided by an embodiment of the present invention.
  • the network device 400 includes: a determining module 410, configured to configure a non-codebook uplink transmission mode if the terminal device is configured If there are N SRS resource sets used for non-codebooks, the target SRS resource corresponding to each PUSCH transmission among multiple PUSCH transmissions of the terminal device is determined, wherein the target SRS resource corresponding to each PUSCH transmission is determined
  • the SRS resource is one or more SRS resources belonging to the same SRS resource set, and N is an integer greater than 1.
  • the sending module 420 is configured to follow the SRS resource where one or more SRS resources in the target SRS resource are located Set, sending downlink control information DCI to the terminal device, and indicating one or more first SRS resources through the DCI, where the target SRS resource is one or more SRS resources in the first SRS resource.
  • channel state information reference signals CSI-RSs associated with different SRS resource sets are different.
  • the CSI-RSs associated with the N SRS resource sets are the same.
  • indicating the first SRS resource through the DCI includes: indicating one or more first SRS resources through an SRI field in the DCI.
  • the DCI includes multiple SRI fields; indicating one or more first SRS resources through the SRI field in the DCI, including: according to each SRI field in the DCI and N
  • the corresponding relationship of the SRS resource set indicates the target SRS resource in the SRS resource set corresponding to the SRI in each of the SRI fields.
  • the DCI includes an SRI field; indicating one or more first SRS resources through the SRI field in the DCI includes: obtaining according to the correspondence relationship between the SRS resource index and the SRS resource number The target SRS resource index corresponding to the SRS resource number of the target SRS resource, where the SRS resource number is used to indicate the SRS resources in the N SRS resource sets, and the SRS resources in the N SRS resource sets are preset Uniform numbering is carried out in sequence.
  • determining the target SRS resource corresponding to each PUSCH transmission in multiple PUSCH transmissions of the terminal device includes: if one or more of the first SRS resources are located in the SRS resource set If the number M is greater than 1, one or more of the first SRS resources in the set of M SRS resources are mapped to each PUSCH transmission by alternate mapping or continuous mapping to obtain the corresponding PUSCH transmission Target SRS resources; or, if the number M of SRS resource sets in which one or more of the first SRS resources are located is 1, it is determined that the target SRS resources corresponding to each PUSCH transmission are all one or more of the first SRS resources.
  • An SRS resource includes: if one or more of the first SRS resources are located in the SRS resource set If the number M is greater than 1, one or more of the first SRS resources in the set of M SRS resources are mapped to each PUSCH transmission by alternate mapping or continuous mapping to obtain the corresponding PUSCH transmission Target SRS resources; or, if the number M of SRS resource sets in which one or
  • the DCI further includes a PUSCH transmit power control signaling field, which is used to indicate the second power value of PUSCH transmission.
  • the PUSCH transmit power control signaling field is used to indicate a second power value, and the second power value is determined according to a preset power control target value, wherein the preset power control target The value is the first power value corresponding to one or more of the first SRS resources included in the preset SRS resource set, the preset SRS resource set is one of the M SRS resource sets, or the preset power
  • the control target value is the maximum value or the minimum value among the first power values of the target SRS resource configuration included in the M SRS resource sets; or, the M second power values indicated by the PUSCH transmission power control signaling field,
  • the network device provided by the embodiment of the present invention can implement each process implemented by each network device or network side in each method embodiment in FIG. 1 to FIG. 2, and achieve the same effect. To avoid repetition, details are not described herein again.
  • the user interface 503 may include a display, a keyboard, or a pointing device (for example, a mouse, a trackball (trackball), a touch panel, or a touch screen, etc.).
  • a pointing device for example, a mouse, a trackball (trackball), a touch panel, or a touch screen, etc.
  • the memory 502 in the embodiment of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Synchronous DRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM ESDRAM
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus RAM
  • the memory 502 of the system and method described in the embodiment of the present invention is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 502 stores the following elements, executable modules or data structures, or their subsets, or their extended sets: operating system 5021 and application programs 5022.
  • the operating system 5021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 5022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., which are used to implement various application services.
  • the program for implementing the method of the embodiment of the present invention may be included in the application program 5022.
  • the terminal device is configured in the non-codebook uplink transmission mode, and the SRS resource set configured for the non-codebook is N, obtain one or more first SRS resources indicated by the DCI, and Determine one or more SRS resource sets where the first SRS resources are located, where N is an integer greater than 1;
  • the target SRS resource corresponding to each PUSCH transmission in multiple PUSCH transmissions is determined, wherein the target SRS resource corresponding to each PUSCH transmission is one or One or more SRS resources belonging to the same SRS resource set among the plurality of first SRS resources;
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 501 or implemented by the processor 501.
  • the processor 501 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 501 or instructions in the form of software.
  • the aforementioned processor 501 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a computer-readable storage medium that is mature in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the computer-readable storage medium is located in the memory 502, and the processor 501 reads the information in the memory 502, and completes the steps of the foregoing method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 501, each step in the above method 300 is implemented.
  • the embodiments described in the embodiments of the present invention may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in the present invention Electronic unit or its combination.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present invention can be implemented by modules (for example, procedures, functions, etc.) that execute the functions described in the embodiments of the present invention.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the terminal device 500 can implement the various processes implemented by the terminal device in FIG. 1 to FIG.
  • FIG. 6 is a structural diagram of a network device applied in an embodiment of the present invention, which can be used as a base station or a core network to implement various details in the methods 100 to 200, and achieve the same effect.
  • the network device 600 includes: a processor 601, a transceiver 602, a memory 603, a user interface 604, and a bus interface.
  • the network device 600 further includes: a computer program stored in the memory 603 and capable of running on the processor 601, and the computer program is executed by the processor 601 to implement the following steps:
  • the terminal device is configured in the non-codebook uplink transmission mode, and the SRS resource set configured for the non-codebook is N, determine the target SRS corresponding to each of the multiple PUSCH transmissions of the terminal device Resources, wherein the target SRS resource corresponding to each PUSCH transmission is one or more SRS resources belonging to the same SRS resource set, and N is an integer greater than 1;
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 601 and various circuits of the memory represented by the memory 603 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits. These are all known in the art, and therefore, no further descriptions are given here.
  • the bus interface provides the interface.
  • the transceiver 602 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 604 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 601 is responsible for managing the bus architecture and general processing, and the memory 603 can store data used by the processor 601 when performing operations.
  • the network device 600 can implement the various processes implemented by the network devices in FIG. 1 to FIG. 2 and achieve the same effect. To avoid repetition, details are not described herein again.
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is executed by a processor, the network device of each embodiment shown in FIG. 1 to FIG. 2 is realized. Or the terminal device executes each process, and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk, or optical disk, etc.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present invention.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种物理上行共享信道传输方法、网络设备和终端设备。其中,一种PUSCH传输方法,应用于终端设备,方法包括:获取DCI;若终端设备被配置为非码本上行传输模式,且配置用于非码本的SRS资源集为N个,则获取DCI指示的一个或多个第一SRS资源,并确定一个或多个第一SRS资源所在的SRS资源集;按照一个或多个第一SRS资源所属SRS资源集,确定多次PUSCH传输中各次PUSCH传输对应的目标SRS资源,其中,每次PUSCH传输对应的目标SRS资源为一个或多个第一SRS资源中属于同一SRS资源集的一个或多个SRS资源;按照各次PUSCH传输对应的目标SRS资源,进行每次PUSCH传输。

Description

物理上行共享信道传输方法、网络设备及终端设备
交叉引用
本发明要求在2020年04月17日提交中国专利局、申请号为202010307490.5、发明名称为“物理上行共享信道传输方法、网络设备及终端设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本发明涉及通信领域,尤其涉及一种物理上行共享信道(PUSCH)传输方法、网络设备及终端设备。
背景技术
UE在被配置为非码本(Non-Codebook)上行传输模式时,可以由下行控制信息(Downlink Control Information,DCI)调度物理上行共享信道(Physical Uplink Shared Channel,PUSCH)或免授权(configured grant)调度PUSCH。DCI格式(format)0_0只能调度单层PUSCH传输。当配置了多个探测参考信号(Sounding Reference Signal,SRS)资源,使用DCI format 0_1和DCI format 0_2调度,可以通过DCI中的SRS资源指示(SRS Resource Indicator,SRI)指示PUSCH所使用的预编码(precoder)和秩(transmission rank)(即层数)。包含SRS资源的SRS资源集(SRS resource set)可以由SRS-config中的高层参数配置。
当SRS资源集的高层参数用途(usage)被配置为“nonCodebook”时,仅能配置一个SRS资源集,每个资源集最多包含4个SRS资源,每个SRS 资源内只能配置一个SRS端口(SRS port)。UE可以根据SRS资源集关联的非零功率信道状态信息参考信号(Channel-State Information reference Signal,CSI-RS)资源(NZP CSI-RS resource)的测量计算各SRS资源的预编码。当SRS资源集的用途被配置为“nonCodebook”时,上述一个SRS资源集仅能关联一个NZP CSI-RS资源。
DCI中包含的SRI域的比特由UE支持的上行传输最大层数Lmax以及上述的一个SRS资源集中包含的SRS资源数N SRS确定。表1至表4给出了Lmax分别为1至4时,N SRS为2至3的情况下,DCI中的SRI域的各个取值对应的SRS资源。
表1(Lmax=1)
Figure PCTCN2021087711-appb-000001
表2(Lmax=2)
Figure PCTCN2021087711-appb-000002
表3(Lmax=3)
Figure PCTCN2021087711-appb-000003
表4(Lmax=4)
Figure PCTCN2021087711-appb-000004
现有技术中,在UE被配置为非码本上行传输时,由于用于非码本的SRS资源集只有一个,因此,多次PUSCH重复传输使用相同的预编码和层数,且对应的空间发送波束信息相同。即多次PUSCH重复传输向同一个传输节点(TRP)发送,而UE与该TRP之间可能会发生遮挡。因此,需要切换TRP,在这种情况下,需要切换PUSCH传输对应的SRS资源集,但在相关技术中,尚未提出在用于非码本的SRS资源集配置有多个的情况下如何传输PUSCH。
发明内容
本发明实施例的目的是提供一种PUSCH传输方法、网络设备和终端设备,以使得UE可以在被配置为非码本上行传输,且用于非码本的SRS资源集配置有多个的情况下,确定如何传输PUSCH,提高了通信系统的可靠性。
第一方面,提供了一种PUSCH传输方法,应用于终端设备,所述方法包括:获取下行控制信息DCI;若所述终端设备被配置为非码本上行传输模式,且配置用于非码本的探测参考信号SRS资源集为N个,则获取所述DCI指示的一个或多个第一SRS资源,并确定一个或多个所述第一SRS资源所在的SRS资源集,其中,N为大于1的整数;按照一个或多个所述第一SRS资源所属SRS资源集,确定多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源,其中,每次所述PUSCH传输对应的目标SRS资源为一个或多个所述第一SRS资源中属于同一SRS资源集的一个或多个SRS资源;按照各次所述PUSCH传输对应的目标SRS资源,进行每次所述PUSCH传输。
第二方面,提供了一种DCI发送方法,应用于网络设备,所述方法包括:若终端设备被配置为非码本上行传输模式,且配置用于非码本的SRS资源集为N个,则确定所述终端设备的多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源,其中,每次所述PUSCH传输对应的所述目标SRS资源为属于同一个所述SRS资源集中的一个或多个SRS资源,N为大于1的整 数;按照所述目标SRS资源中一个或多个SRS资源所在的SRS资源集,向所述终端设备发送下行控制信息DCI,通过所述DCI指示一个或多个第一SRS资源,其中,所述目标SRS资源为一个或多个所述第一SRS资源中的一个或多个。
第三方面,提供了一种终端设备,包括第一获取模块,用于获取下行控制信息DCI;第二获取模块,用于若所述终端设备被配置为非码本上行传输模式,且配置用于非码本的探测参考信号SRS资源集为N个,则获取所述DCI指示的一个或多个第一SRS资源,并确定一个或多个所述第一SRS资源所在的SRS资源集,其中,N为大于1的整数;确定模块,用于按照一个或多个所述第一SRS资源所属SRS资源集,确定多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源,其中,每次所述PUSCH传输对应的目标SRS资源为一个或多个所述第一SRS资源中属于同一SRS资源集的一个或多个SRS资源;传输模块,用于按照各次所述PUSCH传输对应的目标SRS资源,进行每次所述PUSCH传输。
第四方面,提供了一种网络设备,包括:确定模块,用于若终端设备被配置为非码本上行传输模式,且配置用于非码本的SRS资源集为N个,则确定所述终端设备的多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源,其中,每次所述PUSCH传输对应的所述目标SRS资源为属于同一个所述SRS资源集中的一个或多个SRS资源,N为大于1的整数;发送模块,用于按照所述目标SRS资源中的一个或多个SRS资源所在的SRS资源集,向所述终端设备发送下行控制信息DCI,通过所述DCI指示一个或多个第一SRS资源,其中,所述目标SRS资源为一个或多个所述第一SRS资源中的一个或多个SRS资源。
第五方面,提供一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第一方面或第二方面所述的方法的步骤。
在本发明实施例中,若UE被配置非码本上行传输模式,且配置用于非码本的SRS资源集为N个,则获取所述DCI指示的一个或多个第一SRS资源,并确定一个或多个所述第一SRS资源所在的SRS资源集,按照一个或多个所述第一SRS资源所属SRS资源集,确定多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源。然后按照各次所述PUSCH传输对应的目标SRS资源,进行每次所述PUSCH传输。从而使得UE可以在配置有多个用于非码本的SRS资源集时,确定各次PUSCH传输对应的目标SRS资源,从而使得在UE与某TRP之间的传输链路被遮挡时,切换PUSCH传输对应的SRS资源集,使得UE可以向另一个TRP传输PUSCH,提高了系统的可靠性。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明实施例提供的PUSCH传输方法的一种流程示意图;
图2是本发明实施例提供的DCI发送方法的一种流程示意图;
图3是本发明实施例提供的一种终端设备的结构示意图;
图4是本发明实施例提供的一种网络设备的结构示意图;
图5是本发明实施例提供的一种终端设备的结构示意图;
图6是本发明实施例提供的一种网络设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的技术方案,可以应用于各种通信系统,例如:全球移动通讯系统(GSM,Global System of Mobile communication),码分多址(CDMA,Code Division Multiple Access)系统,宽带码分多址(WCDMA,Wideband Code Division Multiple Access),通用分组无线业务(GPRS,General Packet Radio Service),长期演进(LTE,Long Term Evolution)/增强长期演进(LTE-A,Long Term Evolution Advanced),NR(New Radio)等。
用户设备(UE,User Equipment),也可称之为终端设备、移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
基站,可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B)、TRP及5G基站(gNB),本发明并不限定,但为描述方便,下述实施例以gNB为例进行说明。
以下结合附图,详细说明本发明各实施例提供的技术方案。
图1为本发明实施例中提供的PUSCH传输方法的一种流程示意图,该方法100可以由终端设备执行。换言之,所述方法可以由安装在终端设备上 的软件或硬件来执行。如图1所示,该方法可以包括以下步骤。
S110,获取下行控制信息(DCI)。
其中,DCI中携带有网络侧为终端设备配置的下行控制信息。在本发明实施例中,DCI可以采用DCI format 0_1或DCI format 0_2格式。
S112,若所述终端设备被配置为非码本上行传输模式,且配置用于非码本的SRS资源集为N个,则获取所述DCI指示的一个或多个第一SRS资源,并确定一个或多个所述第一SRS资源所在的SRS资源集,其中,N为大于1的整数。
在本发明实施例中,用于非码本的SRS资源集可以通过高层参数配置,例如,SRS-config中的高层参数。在实际应用中,可以将SRS资源集的高层参数“usage”配置为“nonCodebook”,即在本发明实施例中,高层参数usage被配置为“nonCodebook”的SRS资源集(SRS resource set)数量为N(N>1)个时,其中,每个SRS资源集可以对应一个TRP。N为大于1的整数,例如,N=2。
在一个可能的实现方式中,各个所述SRS资源集关联的CSI-RS不同,即不同的SRS资源集关联不同的CSI-RS,而每个CSI-RS对应一个波束,从而实现多个SRS资源集对应多个TRP或一个TRP的不同波束。UE根据各个SRS资源集关联的CSI-RS的测量,计算各SRS资源的预编码。
或者,在另一个可能的实现方式中,各个所述SRS资源集关联的CSI-RS也可以相同,即N个SRS资源集关联相同的CSI-RS。这样,多个SRS资源集对应一个波束。
在一个可能的实现方式中,可以通过DCI中的SRI域指示一个或多个第一SRS资源。在本发明实施例中,可以对SRS资源进行编号,通过预先设置SRS资源索引(即相关技术中表1-表3中的比特域映射索引)与一个或多个SRS资源的对应关系,在SRI域中指示一个SRS资源索引,根据该SRS资源索引,UE可以确定网络侧指示的SRS资源。
在一个可能的实现方式中,DCI中可以包括多个SRI域,预先可以设置SRI域与SRS资源集的对应关系,每个SRI域指示与其对应的SRS资源集中的一个或多个第一SRS资源。因此,在该可能的实现方式中,确定一个或多个所述第一SRS资源所在的SRS资源集,包括:根据SRI域与SRS资源集的对应关系,确定各个所述SRI域指示的一个或多个第一SRS资源所在的SRS资源集。
在上述可能的实现方式中,各个SRS资源集中的SRS资源可以分别进行编码。例如,假设包括2个SRS资源集,第一个SRS资源集包括编号0和1的两个SRS资源,第二个SRS资源集包括编号为0、1和2的三个SRS资源,则在第一个SRI域中指示第一个SRS资源集中包含的一个或多个第一SRS资源,假设为编号0和1两个SRS资源,若编号为0和1对应的索引为2,则第一个SRI域指示的索引为2,在第二个SRI域中指示第二个SRS资源集中包含的一个或多个第一SRS资源,假设为编号0和2两个SRS资源,若编号为0和1对应的索引为4,则第二个SRI域指示的索引为4。
或者,在另一个可能的实现方式中,DCI中包括一个SRI域,获取所述DCI中的SRS资源指示SRI域指示的一个或多个第一SRS资源可以包括:获取所述SRI域指示的目标SRS资源索引;根据预先设置的SRS资源索引与SRS资源编号的对应关系,获取与所述目标SRS资源索引对应的一个或多个第一SRS资源;其中,所述SRS资源编号用于指示N个所述SRS资源集中的SRS资源,且N个所述SRS资源集中的SRS资源预先按照顺序进行统一编号。也就是说,在该可能的实现方式中,N个所述SRS资源集中的所有SRS资源进行统一编号,SRS资源索引对应于经过统一编号的一个或多个SRS资源,通过SRS资源索引指示对应的SRS资源。
例如,在上述可能的实现方式中,假设包括2个SRS资源集,第一个SRS资源集包括1个SRS资源,第二个SRS资源集中包括2个SRS资源,则第一个资源集中的1个SRS资源的编号为0,第二个SRS资源集包括2个SRS 资源编号分别为1和2。则SRS资源索引与SRS资源的对应关系可以如下表5所示。
表5.
SRS资源索引 对应的资源编号
0 0
1 1
2 2
3 0,1
4 0,2
5 1,2
6 0,1,2
若SRI域指示的索引为4,UE根据表5可以确定第一SRS资源包括0和2的SRS资源,再结合各个SRS资源集的配置信息可以确定编号为0的SRS资源属于第一个SRS资源集,编号为2的SRS资源属于第二个SRS资源集。
S114,按照一个或多个所述第一SRS资源所属SRS资源集,确定多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源,其中,每次所述PUSCH传输对应的目标SRS资源为一个或多个所述第一SRS资源中属于同一SRS资源集的一个或多个SRS资源。
在本发明实施例中,多次PUSCH传输可以为多次PUSCH的重复传输,其中,重复传输的次数可以为网络配置,或者,也可以通过DCI动态指示。
或者,在本发明实施例中,多次PUSCH传输也可以为配置上行授权的周期性多次PUSCH传输。
在一个可能的实现方式中,在S114中,在确定多次PUSCH传输中各次PUSCH传输对应的目标SRS资源时,可以根据一个或多个所述第一SRS资源所在的SRS资源集,将一个或多个所述第一SRS资源映射到各次所述PUSCH传输,得到各次PUSCH传输对应的目标SRS资源,其中,属于同一个所述SRS资源集的一个或多个所述第一SRS资源(即所述目标SRS资源) 映射到同一次所述PUSCH传输。也就是说,在该可能的实现方式中,按照SRS资源集将一个或多个第一SRS资源映射到各次PUSCH传输。
例如,在一个可能的实现方式中,若一个或多个所述第一SRS资源所在的SRS资源集的数量M大于1,则可以以轮流交替映射的方式,将M个SRS资源集中的一个或多个所述第一SRS资源映射到各次所述PUSCH传输。其中,所述轮流交替映射是指将第一个SRS资源集中的一个或多个所述第一SRS资源映射到第一次所述PUSCH传输,将第二个SRS资源集中的一个或多个所述第一SRS资源映射到第二次所述PUSCH传输,直到将第M个SRS资源集中的一个或多个所述第一SRS资源映射到第M次所述PUSCH传输,再将第一个SRS资源集中的一个或多个所述第一SRS资源映射到第M+1次所述PUSCH传输,如此轮流交替,直到映射完所有的所述PUSCH传输。
或者,在另一个可能的实现方式中,若一个或多个所述第一SRS资源所在的SRS资源集的数量M大于1,也可以以连续映射的方式,将M个SRS资源集中的一个或多个所述第一SRS资源映射到各次所述PUSCH传输。其中,所述连续映射是指将第一个SRS资源集中的一个或多个所述第一SRS资源映射到前n次所述PUSCH传输,将第二个SRS资源集中的一个或多个所述第一SRS资源映射到第n+1到第2n次所述PUSCH传输,直到将第M个SRS资源集中的一个或多个所述第一SRS资源映射到第(n*(M-1)+1)次到第M*n次所述PUSCH传输,再将第一个SRS资源集中的一个或多个所述第一SRS资源映射到第(M*n+1)到第(M+1)*n次所述PUSCH传输,如此重复,直到映射完所有的所述PUSCH传输,其中,n为大于1的整数。在该可能的实现方式中,n的取值可以根据PUSCH传输的次数以及M确定,具体可以根据实际应用确定,具体本发明实施例中不作限定。
在上述两个可能的实现方式中,由于不同的SRS资源集对应不同的TRP,因此,可以将多次PUSCH传输中的各次PUSCH传输发送到不同的TRP,提高了系统通信的可能性。
在另一个可能的实现方式中,若一个或多个所述第一SRS资源所在的SRS资源集的数量M为1,则确定各次所述PUSCH传输对应的目标SRS资源均为所述SRI域指示的一个或多个所述第一SRS资源。也就是说,在该可能的实现方式中,每次所述PUSCH传输均对应SRI域指示的所有第一SRS资源。
采用上述各种可能的实现方式,可以根据SRI域指示的一个或多个第一SRS资源所属的SRS资源集的数量,实现多TRP的多次PUSCH传输和单TRP的多次PUSCH传输的动态切换。
S116,按照各次所述PUSCH传输对应的目标SRS资源,进行每次所述PUSCH传输。
在本发明实施例中,一次PUSCH传输可以为实际的PUSCH传输,也可以为名义PUSCH传输。其中,名义PUSCH传输是指网络设备调度指示里指示的多次PUSCH重复次数传输,实际PUSCH传输是由于调度指示的多次重复的PUSCH遇到时隙边界或上下行切换点而将名义PUSCH传输分割成的多个PUSCH传输。
在本发明实施例中,目标SRS资源包括的一个所述第一SRS资源对应一个目标预编码和一层,目标SRS资源可以包括一个或多个所述第一SRS资源。因此,在一个可能的实现方式中,在S116中,对于任意一次PUSCH传输,进行所述PUSCH传输可以包括:按照目标预编码和目标层数,进行该次PUSCH传输,其中,所述目标预编码该次PUSCH传输对应的目标SRS资源对应的预编码,目标层数为该次PUSCH传输对应的目标SRS资源对应的层数。
在一个可能的实现方式中,一个目标层数对于一个解调参考信号(Demodulation Reference Signal,DMRS)端口,因此,对于任意一次PUSCH传输,在进行该次PUSCH传输时,可以使用K个所述目标预编码,通过K个DMRS端口发送该次所述PUSCH传输,其中,K为该次所述PUSCH传 输对应的目标SRS资源包含的SRS资源的个数,一个所述DMRS端口使用一个所述目标预编码。
例如,假设UE被配置为non-codebook传输方式,支持上行传输最大的流数(或层数)Lmax=2。多次PUSCH重复传输的第一SRS资源的映射规则被配置为轮流交替。
如果高层配置的SRS资源集数N=2,即共有2个SRS资源集—SRS资源集0和SRS资源集1。每个SRS资源集均有2个SRS资源。则2个SRS资源集共包含N SRS=4个SRS资源,对应的SRS资源编号为0、1、2、3,其中SRS资源0、1属于SRS资源集0,SRS资源2、3属于SRS资源集1。该配置可以理解为SRS资源集0对应TRP0,SRS资源集1对应TRP1。
则该实施例中,DCI中的SRI的比特索引对应的SRI数值表示的含义如下表6(其中,比特域映射的索引可以不同)。
表6.
Figure PCTCN2021087711-appb-000005
Figure PCTCN2021087711-appb-000006
另外,还可以对表6进行扩展,增加表7中的内容。
表7.
Figure PCTCN2021087711-appb-000007
又例如,假设UE被配置为non-codebook传输方式,支持上行传输最大的流数Lmax=2。多次PUSCH重复传输的SRI映射规则被配置为轮流交替。
如果高层配置的SRS资源组数N=2,即共有2个SRS资源组—SRS资 源组0和SRS资源组1。SRS资源组1有2个SRS资源,SRS资源组2有1个SRS资源。则2个SRS资源组共包含N SRS=3个SRS资源,对应的SRS资源编号为0、1、2,其中SRS资源0、1属于SRS资源组0,SRS资源2属于SRS资源组1。该配置可以理解为SRS资源组0对应TRP0,SRS资源组1对应TRP1。此时使用表中N SRS=3的列。
则该实施例中,DCI中的SRI的比特索引对应的SRI数值表示的含义如下表8(其中,比特域映射的索引可以不同)。
表8.
Figure PCTCN2021087711-appb-000008
在本发明实施例中,由于不同的SRS资源集对应不同的TRP,由于不同的TRP与UE的距离可能不同,因此,向不同TRP传输的PUSCH的功率值可能不同。因此,在一个可能的实现方式中,若一个或多个第一SRS资源所在的SRS资源集的数量M大于1,则在执行S116之前,该方法还可以包括:确定M个功率控制值,其中,M为一个或多个所述第一SRS资源所在的SRS资源集的数量;按照所述第一SRS资源映射到各次所述PUSCH传输的方式,将M个所述功率控制值分别映射到各次所述PUSCH传输,以确定各次所述PUSCH传输的传输功率。也就是说,在该可能的实现方式中,M个功率控制值与各次PUSCH传输的映射关系与M个SRS资源集中的一个或多个第一SRS资源映射与各次PUSCH传输的映射关系相同。例如,如果一个或多个第一SRS资源采用轮流交替映射的方式,映射到各次PUSCH传输,则M个功率控制值也采用轮流交替映射的方式,映射到各次PUSCH传输。
在一个可能的实现方式中,确定M个功率控制值可以包括:分别根据配置的M组功率控制参数,确定M个第一功率值,其中,所述M组功率控制参数为M个所述SRS资源集中的一个或多个第一SRS资源配置的功率控制参数;获取所述DCI中的PUSCH发送功率控制信令域指示一个或多个第二功率值;按照所述M个第一功率值和/或所述第二功率值,确定M个功率控制值。
在该可能的实现方式中,每个所述SRS资源集对应一组功率控制参数,其中,一组功率控制参数中可以包括预设的用于开环功控的功率控制参数。其中,每组功率控制参数可以是网络侧向终端设备发送配置信令,配置与各个SRS资源集对应的一组PUCCH的功率控制参数(例如功率公式中的参数P 0、α、Pathloss RS等)。而第二功率值为DCI中PUCCH的传输功率控制信令(TPC command for scheduled PUSCH)域所指示一个或多个第二功率值。
在具体应用中,PUSCH的传输功率控制信令域中指示的第二功率值,可以是PUSCH传输功率的动态调整值。例如,增加1dB,或减少1dB等。因 此,在确定M个功率控制值时,可以将M个所述第一功率值与一个或多个第二功率值相加或相减,具体本发明实施例不作限定。
在一个可能的实现方式中,DCI中的PUSCH发送功率控制信令域可以指示一个第二功率值,也可以指示M个第二功率值,针对不同的情况,在确定M个功率控制值时,有不同的处理。因此,在一个可能的实现方式中,按照所述M个第一功率值和/或所述第二功率值,确定M个功率控制值,可以包括:若所述PUSCH发送功率控制信令域指示的所述第二功率值为一个,则按照M个所述第一功率值和所述第二功率值,确定M个功率控制值,其中,一个所述第二功率值为根据预设功率控制目标值确定的,所述预设功率控制目标值为预设SRS资源集包含的一个或多个所述第一SRS资源配置的所述第一功率值,所述预设SRS资源集为M个所述SRS资源集中的一个,或者所述预设功率控制目标值为M个所述第一功率值中的最大值或最小值。也就是说,在该可能的实现方式中,以其中一个SRS资源对应的第一功率值为参考功率值,确定各次PUCCH传输的传输功率相对于该参考功率值的相对值。或者,以M个SRS资源的第一功率值中的最大值或最小值为参考功率值,确定各次PUCCH传输的传输功率相对于该参考功率值的相对值。
在另一个可能的实现方式中,按照所述M个第一功率值和/或所述第二功率值,确定M个功率控制值,可以包括:若所述PUSCH发送功率控制信令域指示的所述第二功率值为M个,根据M个第一功率值和M个所述第二功率值,按照对应关系确定M个所述功率控制值。例如,第1个功率控制值为第一个第一功率值与第一个第二功率值之和或之差。
在一个可能的实现方式中,各次所述PUSCH传输的最大层数(即第一预设参数)可以按照以下任一项确定:
(1)所述第一预设参数为L’max,其中,L’max为所述终端设备支持第二上行传输最大层数。
(2)在所述第一SRS资源所在的SRS资源集的数量M=1的情况下,所 述第一预设参数为Lmax,其中,Lmax为所述终端设备支持第一上行传输最大层数。
在本发明实施例中,UE可以向网络侧上报第一上行传输最大层数Lmax和第二上行传输最大层数L’max,其中,第一上行传输最大层数Lmax可以为所述SRS资源集数量为1时,UE支持的上行传输最大层数,第二上行传输最大层数L’max可以为所述SRS资源集数量大于1时,UE支持的上行传输最大层数。
(3)在所述第一SRS资源所在的SRS资源集的数量M大于1的情况下,所述第一预设参数为Lmax/M,其中,Lmax为所述终端设备支持第一上行传输最大层数。
(4)第m次PUSCH传输对应的所述第一预设参数为Km,其中,Km为第m次PUSCH传输对应的目标SRS资源集包含的SRS资源的个数为Km,所述目标SRS资源集为第m次PUSCH传输对应的目标SRS资源所在的SRS资源集,或者,第m次PUSCH传输对应的所述第一预设参数为Km和L’max中的最小值,其中,Km为大于等于1的整数。也就是说,在该可能的实现方式中,根据每次PUSCH传输对应的目标SRS资源集的数量,确定本次PUSCH传输的最大层数,即本次PUSCH传输的最大层数等于本次PUSCH传输对应的目标SRS资源集的数量,或者,本次PUSCH传输对应的目标SRS资源集的数量和第二上行传输最大层数中的最小值。
在另一个可能的实现方式中,第一预设参数的最大值可以设置为2,即限制PUSCH的层数,以降低UE复杂度。
在一个可能的实现方式中,在配置的多个SRS资源集中,增加第二预设参数,该第二预设参数的取值可以为第一预定值或第二预定值。在该可能的实现方式中,在确定一个或多个所述第一SRS资源所在的SRS资源集时,可以按照第二预设参数,确定一个或多个所述第一SRS资源所在的SRS资源集。例如,若所述第二预设参数为第一预定值,则一个或多个所述第一SRS资源 属于一个第一SRS资源集,在这种情况下,各次PUSCH传输的最大层数可以为Lmax;或者,若所述第二预设参数为第二预定值,则一个或多个所述第一SRS资源属于多个的第二SRS资源集,在这种情况下,各次PUSCH传输的最大层数可以为第一预设参数,即按照上述确定第一预设参数的方式确定。
在上述可能的实现方式中,所述第一SRS资源集可以为多个所述第二SRS资源集中的一个,或者,所述第一SRS资源集也可以为多个所述第二SRS资源集之外的SRS资源集。例如,在配置的多个SRS资源集中,将多个SRS资源集分为第一SRS资源集(只有一个SRS资源集)和第二SRS资源集(包括多个SRS资源集)。当第二预设参数为第一预定值时,DCI中的SRI指示的一个或多个第一SRS资源属于第一SRS资源集的SRS资源;当第二预设参数为第二预定值时,DCI中的SRI指示的多个第一SRS资源属于第二SRS资源集的不同SRS资源。
例如,网络侧配置UE的SRS资源集如下表9所示,且Lmax=4,第一预设参数的值为2。
表9.
Figure PCTCN2021087711-appb-000009
当第二预设参数为第一预定值时,参照表4中的(Lmax=4,N SRS=4)的进行解读,且SRI域指示的值对应SRS资源集1中的4个SRS资源。
当第二预设参数为第二预定值时,N SRS为SRS资源集1中的第一预设参数指示的数量(在本实施例中为2)个SRS资源和SRS资源集2中的SRS资源数之和,即为4。参照表6获取各个SRI域所指示的含义,DCI中的SRI域指示的值对应SRS资源集1中的前2个SRS资源和SRS资源集2中的2个SRS资源。
又例如,网络侧配置UE的SRS资源集如表10,且Lmax=4,第一预定参数为2。
表10.
Figure PCTCN2021087711-appb-000010
当第二预设参数为第一预定值时,参照表4中的(Lmax=4,N SRS=4)的进行解读,且SRI值对应SRS资源集1中的4个SRS资源。
当第二预设参数为第二预定值时,N SRS为SRS资源集2中的SRS资源数和SRS资源集3中的SRS资源数之和,即为4。且SRI值对应SRS资源集2中的2个SRS资源和SRS资源集3中的2个SRS资源。
在上述可能的实现方式中,所述第二预设参数的值可以由高层信令配置或由所述DCI指示。
通过本发明实施例提供的上述技术方案,在SRI指示的基础上支持多TRP的非码本PUSCH重复传输,可以支持对不同TRP的预编码指示,且信令改动较小。而且能够实现单TRP的非码本多次PUSCH传输和多TRP的非码本多次PUSCH传输之间的动态切换。
图2为本发明实施例提供的DCI发送方法的一种流程示意图,该方法200可以由网络设备执行。换言之,所述方法可以由安装在网络设备上的软件或硬件来执行。如图2所示,该方法可以包括以下步骤。
S210,若终端设备被配置为非码本上行传输模式,且配置用于非码本的SRS资源集为N个,则确定所述终端设备的多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源,其中,每次所述PUSCH传输对应的所述目标SRS资源为属于同一个所述SRS资源集中的一个或多个SRS资源,N为大于1的整数。
S212,按照所述目标SRS资源中一个或多个SRS资源所在的SRS资源集,向所述终端设备发送下行控制信息DCI,通过所述DCI指示一个或多个第一SRS资源,其中,所述目标SRS资源为一个或多个所述第一SRS资源中的一个或多个SRS资源。
方法200为与方法100对应的网络侧的行为,网络设备可以采用与方法100中对应的方式确定各次PUSCH传输对应的目标SRS资源,以及DCI中指示的第一SRS资源,具体可以参考方法100中的相关描述。
在一个可能的实现方式中,不同的所述SRS资源集关联的CSI-RS可以不同,也可以相同。
在一个可能的实现方式中,通过所述DCI指示第一SRS资源,包括:通过所述DCI中的SRI域指示一个或多个所述第一SRS资源。
在一个可能的实现方式中,所述DCI中包括多个SRI域;通过所述DCI中的SRI域指示一个或多个第一SRS资源,包括:根据所述DCI中的各个SRI域与N个所述SRS资源集的对应关系,在各个所述SRI域指示与该SRI对应SRS资源集中的所述目标SRS资源。
在一个可能的实现方式中,所述DCI中包括一个SRI域;通过所述DCI中的SRI域指示一个或多个第一SRS资源,包括:根据预先设置的SRS资源索引与SRS资源编号的对应关系,获取与所述目标SRS资源的SRS资源编号对应的目标SRS资源索引,其中,所述SRS资源编号用于指示N个所述SRS资源集中的SRS资源,且N个所述SRS资源集中的SRS资源预先按照顺序进行统一编号。
在一个可能的实现方式中,确定所述终端设备的多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源,包括:若一个或多个所述第一SRS资源所在的SRS资源集的数量M大于1,以轮流交替映射或连续映射的方式,将M个SRS资源集中的所述第一SRS资源映射到各次所述PUSCH传输,得到各次所述PUSCH传输对应的目标SRS资源;或者,若一个或多个所述 第一SRS资源所在的SRS资源集的数量M为1,则确定各次所述PUSCH传输对应的目标SRS资源均为一个或多个所述第一SRS资源。
在一个可能的实现方式中,所述DCI中还包括PUSCH发送功率控制信令域,用于指示PUSCH传输的第二功率值。
在一个可能的实现方式中,所述PUSCH发送功率控制信令域用于指示一个第二功率值,所述第二功率值根据预设功率控制目标值确定,其中,所述预设功率控制目标值为预设SRS资源集包含的一个或多个所述第一SRS资源对应的第一功率值,所述预设SRS资源集为M个所述SRS资源集中的一个,或者所述预设功率控制目标值为M个所述SRS资源集包含的目标SRS资源配置的第一功率值中的最大值或最小值;或者,所述PUSCH发送功率控制信令域指示的M个第二功率值,第i个所述第二功率值根据第i个所述SRS资源集中的目标SRS资源配置的第一功率值确定,i=1,2,…,M。
在本发明实施例中,网络设备可以在UE被配置为非码本上行传输模式,且配置用于非码本的SRS资源集为N个的情况下,根据各次PUSCH传输对应的目标SRS资源,向UE发送DCI,指示第一SRS资源,从而使得UE可以根据DCI的指示,确定各次PUSCH传输对应的目标SRS资源,实现各次PUSCH的传输,从而支持多TRP的非码本PUSCH重复传输。
图3是本发明实施例提供的一种终端设备的结构示意图,如图3所示,该终端设备300包括:第一获取模块310,用于获取下行控制信息DCI;第二获取模块320,用于若所述终端设备被配置为非码本上行传输模式,且配置用于非码本的探测参考信号SRS资源集为N个,则获取所述DCI指示的一个或多个第一SRS资源,并确定一个或多个所述第一SRS资源所在的SRS资源集,其中,N为大于1的整数;确定模块330,用于按照一个或多个所述第一SRS资源所属SRS资源集,确定多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源,其中,每次所述PUSCH传输对应的目标SRS资源为一个或多个所述第一SRS资源中属于同一SRS资源集的一个或多个SRS 资源;传输模块340,用于按照各次所述PUSCH传输对应的目标SRS资源,进行每次所述PUSCH传输。
在一个可能的实现方式中,不同的所述SRS资源集关联的信道状态信息参考信号CSI-RS不同。
在一个可能的实现方式中,N个所述SRS资源集关联的CSI-RS相同。
在一个可能的实现方式中,获取所述DCI指示的一个或多个第一SRS资源,包括:获取所述DCI中的SRS资源指示SRI域指示的一个或多个第一SRS资源。
在一个可能的实现方式中,所述DCI中包括多个SRI域;确定一个或多个所述第一SRS资源所在的SRS资源集,包括:根据所述SRI域与所述SRS资源集的对应关系,确定各个所述SRI域指示的一个或多个所述第一SRS资源所在的SRS资源集。
在一个可能的实现方式中,所述DCI中包括一个SRI域;获取所述DCI中的SRS资源指示SRI域指示的一个或多个第一SRS资源,包括:获取所述SRI域指示的目标SRS资源索引;根据SRS资源索引与SRS资源编号的对应关系,获取与所述目标SRS资源索引对应的一个或多个第一SRS资源;其中,所述SRS资源编号用于指示N个所述SRS资源集中的SRS资源,且N个所述SRS资源集中的SRS资源预先按照顺序进行统一编号。
在一个可能的实现方式中,按照一个或多个所述第一SRS资源所在的SRS资源集,确定多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源,包括:根据一个或多个所述第一SRS资源所在的SRS资源集,将一个或多个所述第一SRS资源映射到各次所述PUSCH传输,得到各次PUSCH传输对应的目标SRS资源,其中,属于同一个所述SRS资源集的一个或多个所述第一SRS资源映射到同一次所述PUSCH传输。
在一个可能的实现方式中,将一个或多个所述第一SRS资源映射到各次所述PUSCH传输,包括:若一个或多个所述第一SRS资源所在的SRS资源 集的数量M大于1,则按照以下之一将一个或多个所述第一SRS资源映射到各次所述PUSCH传输:以轮流交替映射的方式,将M个SRS资源集中的所述第一SRS资源映射到各次所述PUSCH传输;以连续映射的方式,将M个SRS资源集中的一个或多个所述第一SRS资源映射到各次所述PUSCH传输。
在一个可能的实现方式中,将一个或多个所述第一SRS资源映射到各次所述PUSCH传输,包括:若一个或多个所述第一SRS资源所在的SRS资源集的数量M为1,则确定各次所述PUSCH传输对应的目标SRS资源均为所述SRI域指示的一个或多个所述第一SRS资源。
在一个可能的实现方式中,确定模块330还用于:确定M个功率控制值,其中,M为一个或多个所述第一SRS资源所在的SRS资源集的数量;按照一个或多个所述第一SRS资源映射到各次所述PUSCH传输的方式,将M个所述功率控制值分别映射到各次所述PUSCH传输,以确定各次所述PUSCH传输的传输功率。
在一个可能的实现方式中,确定M个功率控制值,包括:分别根据配置的M组功率控制参数,确定M个第一功率值,其中,所述M组功率控制参数为M个所述SRS资源集中的一个或多个第一SRS资源配置的功率控制参数;获取所述DCI中的PUSCH发送功率控制信令域指示一个或多个第二功率值;按照所述M个第一功率值和/或所述第二功率值,确定M个功率控制值。
在一个可能的实现方式中,按照所述M个第一功率值和/或所述第二功率值,确定M个功率控制值,包括:若所述PUSCH发送功率控制信令域指示的所述第二功率值为一个,则按照M个所述第一功率值和一个所述第二功率值,确定M个功率控制值,其中,一个所述第二功率值为根据预设功率控制目标值确定的,所述预设功率控制目标值为预设SRS资源集包含的一个或多个所述第一SRS资源对应的所述第一功率值,所述预设SRS资源集为M个所述SRS资源集中的一个,或者所述预设功率控制目标值为M个所述第 一功率值中的最大值或最小值;或者,若所述PUSCH发送功率控制信令域指示的所述第二功率值为M个,根据M个第一功率值和M个所述第二功率值,按照对应关系确定M个所述功率控制值。
在一个可能的实现方式中,对于任意一次所述PUSCH传输,进行所述PUSCH传输,包括:按照目标预编码和目标层数,进行该次PUSCH传输,其中,所述目标预编码该次PUSCH传输对应的目标SRS资源对应的预编码,目标层数为该次PUSCH传输对应的目标SRS资源对应的层数。
在一个可能的实现方式中,按照目标预编码和目标层数,进行该次PUSCH传输,包括:使用K个所述目标预编码,通过K个解调参考信号DMRS端口发送该次所述PUSCH传输,其中,K为该次所述PUSCH传输对应的目标SRS资源的个数,一个所述DMRS端口使用一个所述目标预编码。
在一个可能的实现方式中,按照以下任意一项确定第一预设参数,其中,所述第一预设参数为各次所述PUSCH传输的最大层数:所述第一预设参数为L’max,其中,L’max为所述终端设备支持第二上行传输最大层数;在一个或多个所述第一SRS资源所在的SRS资源集的数量M=1的情况下,所述第一预设参数为Lmax,其中,Lmax为所述终端设备支持第一上行传输最大层数;在一个或多个所述第一SRS资源所在的SRS资源集的数量M大于1的情况下,所述第一预设参数为Lmax/M;第m次PUSCH传输对应的所述第一预设参数为Km,其中,Km为第m次PUSCH传输对应的目标SRS资源集包含的SRS资源的个数为Km,所述目标SRS资源集为第m次PUSCH传输对应的目标SRS资源所在的SRS资源集,或者,第m次PUSCH传输对应的所述第一预设参数为Km和L’max中的最小值,其中,Km为大于等于1的整数。
在一个可能的实现方式中,确定一个或多个所述第一SRS资源所在的SRS资源集,包括:按照第二预设参数,确定一个或多个所述第一SRS资源所在的SRS资源集。
在一个可能的实现方式中,按照第二预设参数,确定一个或多个所述第一SRS资源所在的SRS资源集,包括:若所述第二预设参数为第一预定值,则一个或多个所述第一SRS资源属于一个第一SRS资源集;或者若所述第二预设参数为第二预定值,则一个或多个所述第一SRS资源属于多个的第二SRS资源集。
在一个可能的实现方式中,所述第一SRS资源集为多个所述第二SRS资源集中的一个,或者,所述第一SRS资源集为多个所述第二SRS资源集之外的SRS资源集。
在一个可能的实现方式中,所述第二预设参数由高层信令配置或由所述DCI指示。
本发明实施例提供的终端设备够实现图1至图2的各个方法实施例中终端设备实现的各个过程,并达到相同的效果为避免重复,这里不再赘述。
图4是本发明实施例提供的一种网络设备的结构示意图,如图4所示,该网络设备400包括:确定模块410,用于若终端设备被配置为非码本上行传输模式,且配置用于非码本的SRS资源集为N个,则确定所述终端设备的多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源,其中,每次所述PUSCH传输对应的所述目标SRS资源为属于同一个所述SRS资源集中的一个或多个SRS资源,N为大于1的整数;发送模块420,用于按照所述目标SRS资源中的一个或多个SRS资源所在的SRS资源集,向所述终端设备发送下行控制信息DCI,通过所述DCI指示一个或多个第一SRS资源,其中,所述目标SRS资源为所述第一SRS资源中的一个或多个SRS资源。
在一个可能的实现方式中,不同的所述SRS资源集关联的信道状态信息参考信号CSI-RS不同。
在一个可能的实现方式中,N个所述SRS资源集关联的CSI-RS相同。
在一个可能的实现方式中,通过所述DCI指示第一SRS资源,包括:通过所述DCI中的SRI域指示一个或多个所述第一SRS资源。
在一个可能的实现方式中,所述DCI中包括多个SRI域;通过所述DCI中的SRI域指示一个或多个第一SRS资源,包括:根据所述DCI中的各个SRI域与N个所述SRS资源集的对应关系,在各个所述SRI域指示与该SRI对应SRS资源集中的所述目标SRS资源。
在一个可能的实现方式中,所述DCI中包括一个SRI域;通过所述DCI中的SRI域指示一个或多个第一SRS资源,包括:根据SRS资源索引与SRS资源编号的对应关系,获取与所述目标SRS资源的SRS资源编号对应的目标SRS资源索引,其中,所述SRS资源编号用于指示N个所述SRS资源集中的SRS资源,且N个所述SRS资源集中的SRS资源预先按照顺序进行统一编号。
在一个可能的实现方式中,确定所述终端设备的多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源,包括:若一个或多个所述第一SRS资源所在的SRS资源集的数量M大于1,以轮流交替映射或连续映射的方式,将M个SRS资源集中的一个或多个所述第一SRS资源映射到各次所述PUSCH传输,得到各次所述PUSCH传输对应的目标SRS资源;或者,若一个或多个所述第一SRS资源所在的SRS资源集的数量M为1,则确定各次所述PUSCH传输对应的目标SRS资源均为一个或多个所述第一SRS资源。
在一个可能的实现方式中,所述DCI中还包括PUSCH发送功率控制信令域,用于指示PUSCH传输的第二功率值。
在一个可能的实现方式中,所述PUSCH发送功率控制信令域用于指示一个第二功率值,所述第二功率值根据预设功率控制目标值确定,其中,所述预设功率控制目标值为预设SRS资源集包含的一个或多个所述第一SRS资源对应的第一功率值,所述预设SRS资源集为M个所述SRS资源集中的一个,或者所述预设功率控制目标值为M个所述SRS资源集包含的目标SRS资源配置的第一功率值中的最大值或最小值;或者,所述PUSCH发送功率控制信令域指示的M个第二功率值,第i个所述第二功率值根据第i个所述 SRS资源集中的目标SRS资源配置的第一功率值确定,i=1,2,…,M。
本发明实施例提供的网络设备能够实现上述图1至图2中各个方法实施例中各个网络设备或网络侧实现的各个过程,并达到相同的效果为避免重复,这里不再赘述。
图5是本发明另一个实施例的终端设备的框图。图5所示的终端设备500包括:至少一个处理器501、存储器502、至少一个网络接口504和用户接口503。终端设备500中的各个组件通过总线系统505耦合在一起。可理解,总线系统505用于实现这些组件之间的连接通信。总线系统505除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图5中将各种总线都标为总线系统505。
其中,用户接口503可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本发明实施例中的存储器502可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch Link DRAM,SLDRAM)和 直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本发明实施例描述的系统和方法的存储器502旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器502存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统5021和应用程序5022。
其中,操作系统5021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序5022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本发明实施例方法的程序可以包含在应用程序5022中。
在本发明实施例中,终端设备500还包括:存储在存储器上502并可在处理器501上运行的计算机程序,计算机程序被处理器501执行时实现如下步骤:
获取下行控制信息DCI;
若所述终端设备被配置为非码本上行传输模式,且配置用于非码本的探测参考信号SRS资源集为N个,则获取所述DCI指示的一个或多个第一SRS资源,并确定一个或多个所述第一SRS资源所在的SRS资源集,其中,N为大于1的整数;
按照一个或多个所述第一SRS资源所属SRS资源集,确定多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源,其中,每次所述PUSCH传输对应的目标SRS资源为一个或多个所述第一SRS资源中属于同一SRS资源集的一个或多个SRS资源;
按照各次所述PUSCH传输对应的目标SRS资源,进行每次所述PUSCH传输。
上述本发明实施例揭示的方法可以应用于处理器501中,或者由处理器501实现。处理器501可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器501中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器501可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器502,处理器501读取存储器502中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器501执行时实现如上述方法300中的各步骤。
可以理解的是,本发明实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本发明所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本发明实施例所述功能的模块(例如过程、函数等)来实现本发明实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
终端设备500能够实现前述图1至图2中终端设备实现的各个过程,为避免重复,这里不再赘述。
请参阅图6,图6是本发明实施例应用的网络设备的结构图,能够作为基站或核心网实现方法100至200中的各细节,并达到相同的效果。如图6所示,网络设备600包括:处理器601、收发机602、存储器603、用户接口604和总线接口。
在本发明实施例中,网络设备600还包括:存储在存储器上603并可在处理器601上运行的计算机程序,计算机程序被处理器601、执行时实现如下步骤:
若终端设备被配置为非码本上行传输模式,且配置用于非码本的SRS资源集为N个,则确定所述终端设备的多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源,其中,每次所述PUSCH传输对应的所述目标SRS资源为属于同一个所述SRS资源集中的一个或多个SRS资源,N为大于1的整数;
按照所述目标SRS资源中的一个或多个SRS资源所在的SRS资源集,向所述终端设备发送下行控制信息DCI,通过所述DCI指示一个或多个第一SRS资源,其中,所述目标SRS资源为一个或多个所述第一SRS资源中的一个或多个SRS资源。
在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器601代表的一个或多个处理器和存储器603代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的 各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机602可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口604还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器601负责管理总线架构和通常的处理,存储器603可以存储处理器601在执行操作时所使用的数据。
网络设备600能够实现前述图1至图2中网络设备实现的各个过程,并达到相同的效果为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述图1至图2中所示的各个实施例的网络设备或终端设备执行各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体 现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (33)

  1. 一种物理上行共享信道PUSCH传输方法,应用于终端设备,所述方法包括:
    获取下行控制信息DCI;
    若所述终端设备被配置为非码本上行传输模式,且配置用于非码本的探测参考信号SRS资源集为N个,则获取所述DCI指示的一个或多个第一SRS资源,并确定一个或多个所述第一SRS资源所在的SRS资源集,其中,N为大于1的整数;
    按照一个或多个所述第一SRS资源所属SRS资源集,确定多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源;
    按照各次所述PUSCH传输对应的目标SRS资源,进行每次所述PUSCH传输。
  2. 如权利要求1所述的方法,其中,不同的所述SRS资源集关联的信道状态信息参考信号CSI-RS不同。
  3. 如权利要求1所述的方法,其中,N个所述SRS资源集关联的CSI-RS相同。
  4. 如权利要求1所述的方法,其中,获取所述DCI指示的一个或多个第一SRS资源,包括:获取所述DCI中的SRS资源指示SRI域指示的一个或多个第一SRS资源。
  5. 如权利要求4所述的方法,其中,
    所述DCI中包括多个SRI域;
    确定一个或多个所述第一SRS资源所在的SRS资源集,包括:根据所述SRI域与所述SRS资源集的对应关系,确定各个所述SRI域指示的一个或多个所述第一SRS资源所在的SRS资源集。
  6. 如权利要求4所述的方法,其中,
    所述DCI中包括一个SRI域;
    获取所述DCI中的SRS资源指示SRI域指示的一个或多个第一SRS资源,包括:
    获取所述SRI域指示的目标SRS资源索引;
    根据SRS资源索引与SRS资源编号的对应关系,获取与所述目标SRS资源索引对应的一个或多个第一SRS资源;其中,所述SRS资源编号用于指示N个所述SRS资源集中的SRS资源,且N个所述SRS资源集中的SRS资源预先按照顺序进行统一编号。
  7. 如权利要求1至6任一项所述的方法,其中,按照一个或多个所述第一SRS资源所在的SRS资源集,确定多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源,包括:
    根据一个或多个所述第一SRS资源所在的SRS资源集,将一个或多个所述第一SRS资源映射到各次所述PUSCH传输,得到各次PUSCH传输对应的目标SRS资源,其中,属于同一个所述SRS资源集的一个或多个所述第一SRS资源映射到同一次所述PUSCH传输。
  8. 如权利要求7所述的方法,其中,将一个或多个所述第一SRS资源映射到各次所述PUSCH传输,包括:
    若一个或多个所述第一SRS资源所在的SRS资源集的数量M大于1,则按照以下之一将一个或多个所述第一SRS资源映射到各次所述PUSCH传输:
    以轮流交替映射的方式,将M个SRS资源集中的一个或多个所述第一SRS资源映射到各次所述PUSCH传输;
    以连续映射的方式,将M个SRS资源集中的一个或多个所述第一SRS资源映射到各次所述PUSCH传输。
  9. 如权利要求7所述的方法,其中,将一个或多个所述第一SRS资源映射到各次所述PUSCH传输,包括:
    若一个或多个所述第一SRS资源所在的SRS资源集的数量M为1,则确定各次所述PUSCH传输对应的目标SRS资源均为所述SRI域指示的一个或多个所述第一SRS资源。
  10. 如权利要求7所述的方法,其中,在进行各次PUSCH的传输之前,所述方法还包括:
    确定M个功率控制值,其中,M为一个或多个所述第一SRS资源所在的SRS资源集的数量;
    按照一个或多个所述第一SRS资源映射到各次所述PUSCH传输的方式,将M个所述功率控制值分别映射到各次所述PUSCH传输。
  11. 如权利要求10所述的方法,其中,确定M个功率控制值,包括:
    分别根据配置的M组功率控制参数,确定M个第一功率值,其中,所述M组功率控制参数为M个所述SRS资源集中的一个或多个第一SRS资源配置的功率控制参数;
    获取所述DCI中的PUSCH发送功率控制信令域指示一个或多个第二功率值;
    按照所述M个第一功率值和/或所述第二功率值,确定M个功率控制值。
  12. 如权利要求11所述的方法,其中,按照所述M个第一功率值和/或所述第二功率值,确定M个功率控制值,包括:
    若所述PUSCH发送功率控制信令域指示的所述第二功率值为一个,则按照M个所述第一功率值和一个所述第二功率值,确定M个功率控制值,其中,所述第二功率值为根据预设功率控制目标值确定的,所述预设功率控制目标值为预设SRS资源集包含的一个或多个所述第一SRS资源对应的所述第一功率值,所述预设SRS资源集为M个所述SRS资源集中的一个,或者所述预设功率控制目标值为M个所述第一功率值中的最大值或最小值;或者,
    若所述PUSCH发送功率控制信令域指示的所述第二功率值为M个,根据M个第一功率值和M个所述第二功率值,按照对应关系确定M个所述功率控制值。
  13. 如权利要求1至6任一项所述的方法,其中,对于任意一次所述PUSCH传输,进行所述PUSCH传输,包括:
    按照目标预编码和目标层数,进行该次PUSCH传输,其中,所述目标预编码为该次PUSCH传输对应的目标SRS资源对应的预编码,所述目标层数为该次PUSCH传输对应的层数。
  14. 如权利要求13所述的方法,其中,按照目标预编码和目标层数,进行该次PUSCH传输,包括:使用K个所述目标预编码,通过K个解调 参考信号DMRS端口发送该次所述PUSCH传输,其中,K为该次所述PUSCH传输对应的目标SRS资源的个数,一个所述DMRS端口使用一个所述目标预编码。
  15. 如权利要求1至6任一项所述的方法,其中,按照以下任意一项确定第一预设参数,其中,所述第一预设参数为各次所述PUSCH传输的最大层数:
    所述第一预设参数为L’max,其中,L’max为所述终端设备支持第二上行传输最大层数;
    在一个或多个所述第一SRS资源所在的SRS资源集的数量M=1的情况下,所述第一预设参数为Lmax,其中,Lmax为所述终端设备支持第一上行传输最大层数;
    在一个或多个所述第一SRS资源所在的SRS资源集的数量M大于1的情况下,所述第一预设参数为Lmax/M;
    第m次PUSCH传输对应的所述第一预设参数为Km,其中,Km为第m次PUSCH传输对应的目标SRS资源集包含的SRS资源的个数为Km,所述目标SRS资源集为第m次PUSCH传输对应的目标SRS资源所在的SRS资源集,或者,第m次PUSCH传输对应的所述第一预设参数为Km和L’max中的最小值,其中,Km为大于等于1的整数。
  16. 如权利要求15所述的方法,其中,确定一个或多个所述第一SRS资源所在的SRS资源集,包括:
    按照第二预设参数,确定一个或多个所述第一SRS资源所在的SRS资源集。
  17. 如权利要求16所述的方法,其中,按照第二预设参数,确定一个或多个所述第一SRS资源所在的SRS资源集,包括:
    若所述第二预设参数为第一预定值,则一个或多个所述第一SRS资源属于一个第一SRS资源集;和/或
    若所述第二预设参数为第二预定值,则一个或多个所述第一SRS资源属于多个的第二SRS资源集。
  18. 如权利要求17所述的方法,其中,所述第一SRS资源集为多个 所述第二SRS资源集中的一个,或者,所述第一SRS资源集为多个所述第二SRS资源集之外的SRS资源集。
  19. 如权利要求17所述的方法,其中,所述第二预设参数由高层信令配置或由所述DCI指示。
  20. 一种DCI发送方法,应用于网络设备,所述方法包括:
    若终端设备被配置为非码本上行传输模式,且配置用于非码本的SRS资源集为N个,则确定所述终端设备的多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源,N为大于1的整数;
    按照所述目标SRS资源中的一个或多个SRS资源所在的SRS资源集,向所述终端设备发送下行控制信息DCI,通过所述DCI指示一个或多个第一SRS资源,其中,所述目标SRS资源为一个或多个所述第一SRS资源中的一个或多个SRS资源。
  21. 如权利要求20所述的方法,其中,不同的所述SRS资源集关联的信道状态信息参考信号CSI-RS不同。
  22. 如权利要求20所述的方法,其中,N个所述SRS资源集关联的CSI-RS相同。
  23. 如权利要求20所述的方法,其中,通过所述DCI指示第一SRS资源,包括:通过所述DCI中的SRI域指示一个或多个所述第一SRS资源。
  24. 如权利要求23所述的方法,其中,
    所述DCI中包括多个SRI域;
    通过所述DCI中的SRI域指示一个或多个第一SRS资源,包括:根据所述DCI中的各个SRI域与N个所述SRS资源集的对应关系,在各个所述SRI域指示与该SRI对应SRS资源集中的所述目标SRS资源。
  25. 如权利要求23所述的方法,其中,
    所述DCI中包括一个SRI域;
    通过所述DCI中的SRI域指示一个或多个第一SRS资源,包括:
    根据SRS资源索引与SRS资源编号的对应关系,获取与所述目标SRS资源的SRS资源编号对应的目标SRS资源索引,其中,所述SRS资源编 号用于指示N个所述SRS资源集中的SRS资源,且N个所述SRS资源集中的SRS资源预先按照顺序进行统一编号。
  26. 如权利要求20至25任一项所述的方法,其中,确定所述终端设备的多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源,包括:
    若一个或多个所述第一SRS资源所在的SRS资源集的数量M大于1,以轮流交替映射或连续映射的方式,将M个SRS资源集中的一个或多个所述第一SRS资源映射到各次所述PUSCH传输,得到各次所述PUSCH传输对应的目标SRS资源;或者,
    若一个或多个所述第一SRS资源所在的SRS资源集的数量M为1,则确定各次所述PUSCH传输对应的目标SRS资源均为一个或多个所述第一SRS资源。
  27. 如权利要求26所述的方法,其中,所述DCI中还包括PUSCH发送功率控制信令域,用于指示PUSCH传输的第二功率值。
  28. 如权利要求27所述的方法,其中,
    所述PUSCH发送功率控制信令域用于指示一个第二功率值,所述第二功率值根据预设功率控制目标值确定,其中,所述预设功率控制目标值为预设SRS资源集包含的一个或多个所述第一SRS资源对应的第一功率值,所述预设SRS资源集为M个所述SRS资源集中的一个,或者所述预设功率控制目标值为M个所述SRS资源集包含的目标SRS资源配置的第一功率值中的最大值或最小值;或者,
    所述PUSCH发送功率控制信令域指示的M个第二功率值,第i个所述第二功率值根据第i个所述SRS资源集中的目标SRS资源配置的第一功率值确定,i=1,2,…,M。
  29. 一种终端设备,包括:
    第一获取模块,用于获取下行控制信息DCI;
    第二获取模块,用于若所述终端设备被配置为非码本上行传输模式,且配置用于非码本的探测参考信号SRS资源集为N个,则获取所述DCI指示的一个或多个第一SRS资源,并确定一个或多个所述第一SRS资源 所在的SRS资源集,其中,N为大于1的整数;
    确定模块,用于按照一个或多个所述第一SRS资源所属SRS资源集,确定多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源;
    传输模块,用于按照各次所述PUSCH传输对应的目标SRS资源,进行每次所述PUSCH传输。
  30. 一种网络设备,包括:
    确定模块,用于若终端设备被配置为非码本上行传输模式,且配置用于非码本的SRS资源集为N个,则确定所述终端设备的多次PUSCH传输中各次所述PUSCH传输对应的目标SRS资源,N为大于1的整数;
    发送模块,用于按照所述目标SRS资源中的一个或多个SRS资源所在的SRS资源集,向所述终端设备发送下行控制信息DCI,通过所述DCI指示一个或多个第一SRS资源,其中,所述目标SRS资源为一个或多个所述第一SRS资源中的一个或多个SRS资源。
  31. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至19中任一项所述的方法的步骤。
  32. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求20至28中任一项所述的方法的步骤。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现:
    如权利要求1至19中任一项所述的方法的步骤;或者
    如权利要求20至28中任一项所述的方法的步骤。
PCT/CN2021/087711 2020-04-17 2021-04-16 物理上行共享信道传输方法、网络设备及终端设备 WO2021209027A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010307490.5 2020-04-17
CN202010307490.5A CN113543326A (zh) 2020-04-17 2020-04-17 物理上行共享信道传输方法、网络设备及终端设备

Publications (1)

Publication Number Publication Date
WO2021209027A1 true WO2021209027A1 (zh) 2021-10-21

Family

ID=78083717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087711 WO2021209027A1 (zh) 2020-04-17 2021-04-16 物理上行共享信道传输方法、网络设备及终端设备

Country Status (2)

Country Link
CN (1) CN113543326A (zh)
WO (1) WO2021209027A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024031718A1 (zh) * 2022-08-12 2024-02-15 北京小米移动软件有限公司 支持8Tx的基于非码本的PUSCH传输的预编码指示方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116488780A (zh) * 2022-01-11 2023-07-25 大唐移动通信设备有限公司 Pusch传输方法、装置及存储介质
WO2023141823A1 (zh) * 2022-01-26 2023-08-03 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019032855A1 (en) * 2017-08-11 2019-02-14 Intel IP Corporation CONTROL SIGNALING FOR SURFACE REFERENCE SIGNAL (SRS)
CN109803253A (zh) * 2017-11-17 2019-05-24 维沃移动通信有限公司 一种信号传输方法、终端及网络设备
CN110167168A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 传输探测参考信号的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110601733B (zh) * 2018-06-12 2021-01-15 华为技术有限公司 预编码矩阵的配置方法、装置及计算机可读存储介质
CN110891312B (zh) * 2018-09-10 2023-11-03 华为技术有限公司 一种信息发送方法,信息接收的方法和装置
CN115395994B (zh) * 2019-07-30 2024-03-05 中兴通讯股份有限公司 一种传输方法、装置和计算机可读存储介质
CN110536399A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 功率控制方法、装置和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019032855A1 (en) * 2017-08-11 2019-02-14 Intel IP Corporation CONTROL SIGNALING FOR SURFACE REFERENCE SIGNAL (SRS)
CN109803253A (zh) * 2017-11-17 2019-05-24 维沃移动通信有限公司 一种信号传输方法、终端及网络设备
CN110167168A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 传输探测参考信号的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on multi-beam based operations and enhancements", 3GPP DRAFT; R1-1904209 MULTI-BEAM_FINAL, vol. RAN WG1, 30 March 2019 (2019-03-30), Xi’an, China, pages 1 - 13, XP051691347 *
QUALCOMM INCORPORATED: "Enhancements on Multi-beam Operation", 3GPP DRAFT; R1-1905027 ENHANCEMENTS ON MULTI-BEAM OPERATION, vol. RAN WG1, 30 March 2019 (2019-03-30), Xi’an, China, pages 1 - 26, XP051691944 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024031718A1 (zh) * 2022-08-12 2024-02-15 北京小米移动软件有限公司 支持8Tx的基于非码本的PUSCH传输的预编码指示方法及装置

Also Published As

Publication number Publication date
CN113543326A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
US11509425B2 (en) Method for determining HARQ-ACK feedback time, method for indicating HARQ-ACK feedback time, terminal device and network device
WO2021209027A1 (zh) 物理上行共享信道传输方法、网络设备及终端设备
WO2019095893A1 (zh) 传输配置指示tci的传输方法、网络侧设备和终端设备
WO2021204208A1 (zh) 信道状态信息csi报告的确定方法和通信设备
US11637604B2 (en) Method of transmitting CSI report, terminal device and network device
WO2021159981A1 (zh) 下行控制信息传输方法、终端设备和网络设备
US20210266947A1 (en) Wireless communication method and device
WO2018228535A1 (zh) 传输方法、网络设备和终端
CN110831196A (zh) Csi报告配置方法、终端设备和网络设备
WO2021160149A1 (zh) 信道状态信息csi报告的反馈方法、终端设备和网络设备
WO2021023013A1 (zh) 上行满功率传输方法及设备
US11968699B2 (en) Radio communication method and device
WO2020118574A1 (zh) 一种上行传输的功率控制方法及终端设备
WO2021208958A1 (zh) 一种传输波束报告的方法、移动终端和网络设备
KR20200074970A (ko) 데이터 전송 방법, 단말 기기 및 네트워크 기기
US20220302980A1 (en) Method for reporting information, method for indicating information, terminal device, and network device
WO2020206581A1 (zh) 传输信号的方法、终端设备和网络设备
US20220053427A1 (en) Srs power control method and device
US20200036469A1 (en) Data Transmission Method and Apparatus
WO2021218923A1 (zh) 波束报告方法和设备
WO2018127100A1 (zh) 上行功率控制的方法和通信设备
WO2021013102A1 (zh) 参数确定、信息配置方法和设备
US20230027631A1 (en) Method for transmitting power headroom, terminal device, and network device
US11973710B2 (en) Resource configuration method and device
WO2021197457A1 (zh) 无线通信方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21789154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21789154

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.04.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21789154

Country of ref document: EP

Kind code of ref document: A1