WO2021208880A1 - 用户设备的无线资源控制状态的控制方法及相关装置 - Google Patents

用户设备的无线资源控制状态的控制方法及相关装置 Download PDF

Info

Publication number
WO2021208880A1
WO2021208880A1 PCT/CN2021/086802 CN2021086802W WO2021208880A1 WO 2021208880 A1 WO2021208880 A1 WO 2021208880A1 CN 2021086802 W CN2021086802 W CN 2021086802W WO 2021208880 A1 WO2021208880 A1 WO 2021208880A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
packet data
auxiliary information
small packet
rrc
Prior art date
Application number
PCT/CN2021/086802
Other languages
English (en)
French (fr)
Inventor
张梦晨
徐海博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010688838.XA external-priority patent/CN113543311B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021208880A1 publication Critical patent/WO2021208880A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like

Definitions

  • This application relates to the field of communication technologies, and in particular to a method and related devices for controlling the radio resource control state of user equipment.
  • the communication protocol stack between user equipment (UE) and network equipment may include a radio resource control (radio resource control, RRC) layer.
  • RRC radio resource control
  • data can be transmitted between the UE and the network device.
  • the data packets that a UE in the RRC IDLE state or the RRC INACTIVE state needs to transmit are very small, and such data packets can be called small packets of data, such as instant messaging messages, heartbeat packets, periodic data, and so on.
  • the signaling required for the UE to enter the RRC CONNECTED state from the RRC IDLE state or the RRC INACTIVE state is even larger than the small packet data, resulting in unnecessary power consumption and signaling overhead for the UE.
  • the UE in the RRC IDLE state or the RRC INACTIVE state can transmit small packet data during random access, or can transmit small packet data based on pre-configured uplink resources without entering the RRC CONNECTED state before transmitting the small packet data.
  • the centralized unit of the network equipment cannot know whether the UE has subsequent data transmission requirements, which may cause the UE to enter an inappropriate RRC state under the instruction of the centralized unit. This affects the subsequent data transmission of the UE. For example, if the UE has no subsequent data transmission requirements or the subsequent data packets transmitted by the UE are still small packets, but the UE enters the RRC CONNECTED state under the instruction of the centralized unit, the UE consumes more power.
  • the UE If the UE subsequently has a large number of data packets to be transmitted, but the UE enters the RRC INACTIVE state or the RRC IDLE state under the instruction of the centralized unit, in order to perform normal data transmission, the UE needs to re-initiate the random access process, which leads to Unnecessary power consumption and signaling overhead. Therefore, how to prevent the UE from entering an inappropriate RRC state after completing the transmission of the small packet data and reduce the impact on the subsequent data transmission of the UE is a problem being studied by those skilled in the art.
  • the embodiment of the present application provides a method and related device for controlling the RRC state of the radio resource of the user equipment UE, which can prevent the UE from entering an inappropriate RRC state after completing the transmission of small packet data, and reduce the impact on the subsequent data transmission of the UE.
  • the embodiments of the present application provide a method for controlling the RRC state of a UE, which is applied to a network device.
  • the network device includes a centralized unit and at least one distribution unit.
  • the method includes: the distribution unit receives that the UE is in a non-connected state.
  • the above-mentioned auxiliary information is used to indicate the data transmission requirements of the above-mentioned UE after the above-mentioned UE and the above-mentioned network device complete the transmission of small packet data; the above-mentioned distribution unit obtains the first interface message according to the above-mentioned auxiliary information; the above-mentioned first interface message includes The auxiliary information; the distribution unit sends the first interface message to the centralized unit; the centralized unit obtains an indication message according to the auxiliary information in the first interface message; the indication message is used to instruct the UE and the network device to complete the above The RRC state of the UE after the transmission of the small packet data; the centralized unit sends the indication message to the UE through the distribution unit.
  • a UE in a disconnected state may report auxiliary information while requesting the aforementioned small packet data with the network device.
  • the centralized unit may obtain the data transmission requirements of the UE after the UE and the network device have completed the transmission of the aforementioned small packet data through the auxiliary information.
  • the centralized unit may refer to the data transmission requirements of the UE to determine an indication message for indicating the RRC status of the UE after the UE and the network device have completed the transmission of the small packet data.
  • the aforementioned auxiliary information includes: information about the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the small packet data; or, the aforementioned auxiliary information includes: the first bit; The value of the first bit indicates the aforementioned data transmission requirement; or, the aforementioned auxiliary information includes: information about the RRC status that the aforementioned UE expects to complete the aforementioned small packet data transmission; or, the aforementioned auxiliary information includes: the aforementioned UE completes with the aforementioned network equipment The relationship between the amount of data to be transmitted by the UE after the transmission of the small packet data and the preset threshold.
  • the data amount information includes: a first index value; the first index value corresponds to the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the small packet data.
  • the above-mentioned data volume information includes: the value of the buffer status report BSR.
  • the information included in the auxiliary information may have various forms, which is more flexible in implementation and has a wider range of application scenarios. For example, if the network device cannot effectively identify the auxiliary information of the RRC state that the UE wants after the above-mentioned small packet data transmission is completed, the UE may feed back the auxiliary information including the first index value or the value of the BSR.
  • the method further includes: the network device sends a paging message to the UE; the paging message is used for the network device Indicate that there is downlink data sent to the UE; the distributing unit receiving the auxiliary information sent by the UE in a disconnected state includes: the distributing unit receiving the auxiliary information sent by the UE in response to the paging message.
  • the centralized unit may send the downlink small packet data to the distribution unit after the distribution unit restores the UE context, and send the downlink small packet data to the UE through the distribution unit.
  • the distribution unit receiving the auxiliary information sent by the UE in a disconnected state includes: the distribution unit receiving the auxiliary information sent by the UE when there is uplink small packet data to be sent to the network device.
  • the centralized unit may receive the uplink small packet data sent by the UE through the distribution unit.
  • the uplink small packet data is sent to the distribution unit together when the UE sends the auxiliary information in the unconnected state.
  • the distribution unit receiving the auxiliary information sent by the UE in the disconnected state includes: the distribution unit receiving the first request message sent by the UE in the disconnected state; wherein, the first request message is sent by the UE in the disconnected state;
  • the request message is used by the UE to request data transmission with the network device, the auxiliary information is carried in the first request message, the first interface message is an initial uplink RRC message transfer message, and the first interface message includes the RRC container information element RRC Container IE, the above RRC Container IE includes the above first request message carrying the above auxiliary information.
  • the auxiliary information may be carried in the first request message. Therefore, there is no need to add an additional RRC message between the UE and the distribution unit.
  • the auxiliary information carried in the first request message can be placed in the RRC Container IE of the first interface message. Therefore, the first interface message does not need to add an IE, and the processing logic of the distribution unit is less changed. There are fewer restrictions on the use scenarios of auxiliary information and a wider range of applications.
  • the above-mentioned first request message carries the above-mentioned small packet data;
  • the above-mentioned distribution unit sending the above-mentioned first interface message to the above-mentioned centralized unit includes: the above-mentioned distribution unit sends the above-mentioned auxiliary information and the above-mentioned auxiliary information to the above-mentioned centralized unit.
  • the above-mentioned first interface message of the small packet data includes: the above-mentioned distribution unit sends the above-mentioned auxiliary information and the above-mentioned auxiliary information to the above-mentioned centralized unit.
  • the above method further includes: the distribution unit receives the small packet data sent by the UE in the non-connected state; the distribution unit sends the first interface message to the centralized unit, including: the distribution The unit sends the above-mentioned first interface message carrying the above-mentioned auxiliary information to the above-mentioned centralized unit; receives the restore UE context request message sent by the above-mentioned centralized unit; in response to the above-mentioned restore UE context request message, restores the UE context; The centralized unit sends the aforementioned small packet data.
  • the distribution unit receiving the auxiliary information sent by the UE in the disconnected state includes: the distribution unit receiving the first request message and the auxiliary information sent by the UE in the disconnected state; wherein
  • the above-mentioned first request message is used by the above-mentioned UE to request data transmission with the above-mentioned network device, the above-mentioned first interface message is a UE context establishment response message, and the above-mentioned auxiliary information is carried in the above-mentioned first interface message.
  • the auxiliary information may be sent together with the first request message, and the auxiliary information may also include more information, and the form may be more flexible.
  • the centralized unit can also obtain more comprehensive auxiliary information, thereby further avoiding the problem of instructing the UE to enter an inappropriate RRC state when the centralized unit cannot learn the data transmission requirements of the UE after the above-mentioned small packet data transmission is completed. The impact on the subsequent data transmission of the UE is reduced, and unnecessary power consumption and signaling overhead of the UE are effectively avoided.
  • the above-mentioned first request message carries the above-mentioned small packet data; before the above-mentioned distribution unit sends the above-mentioned first interface message to the above-mentioned centralized unit, the above-mentioned method further includes: the above-mentioned distribution unit sends to the above-mentioned centralized unit carrying the above-mentioned The second interface message of the first request message; receiving the UE context restoration request message sent by the central unit; in response to the UE context restoration request message, restoring the UE context; and the distribution unit sending the first interface message to the central unit includes : Send the first interface message carrying the auxiliary information to the central unit based on the restored UE context.
  • the above method further includes: the distribution unit receives the small packet data sent by the UE in the non-connected state; before the distribution unit sends the first interface message to the centralized unit, the method further The method includes: the distribution unit sends a second interface message carrying the first request message to the centralized unit; receives a restore UE context request message sent by the centralized unit; restores the UE context in response to the restore UE context request message; the distribution unit Sending the above-mentioned first interface message to the above-mentioned centralized unit includes: sending the above-mentioned first interface message carrying the above-mentioned auxiliary information to the above-mentioned centralized unit based on the above-mentioned restored UE context; The centralized unit sends the small packet data.
  • the above-mentioned first interface message is an F1 interface message transmitted between the above-mentioned centralized unit and the above-mentioned distribution unit, and the above-mentioned first request message is an RRC recovery request message or an RRC data early transmission request message.
  • the uplink small packet data is carried in the aforementioned first request message, and the downlink small packet data is carried in the aforementioned indication message.
  • the uplink small packet data is data that the UE sends to the distribution unit together with the first request message in the non-connected state, and the uplink small packet data is the data sent to the distribution unit after the distribution unit restores the UE context.
  • Data sent by the centralized unit; downlink small packet data is data sent by the centralized unit to the UE through the distribution unit after the distribution unit restores the UE context, and the downlink small packet data is sent by the distribution unit together with the indication message to the UE data.
  • the first request message is an RRC message sent by the UE based on resources allocated by the random access response sent by the network device, where the random access response is sent by the network device based on the UE.
  • the first request message is an RRC message that is sent together when the UE sends a random access preamble to the network device; or, the first request message is the UE based on a pre-configured uplink The RRC message sent by the resource to the aforementioned network device.
  • the first request message carrying auxiliary information or the first request message sent together with the auxiliary information may be RRC messages in various application scenarios.
  • the auxiliary information can also be applied to the above-mentioned multiple application scenarios, and the application range is wider.
  • the embodiments of the present application provide yet another method for controlling the RRC state of the UE, which is applied to the UE.
  • the above method includes: the above UE sends auxiliary information to the distribution unit of the network device in the unconnected state; the above auxiliary information is used The data transmission requirements of the UE after instructing the UE and the network equipment to complete the transmission of the small packet data; the UE receives the instruction message sent by the distribution unit; the instruction message is the first message sent by the centralized unit of the network equipment according to the distribution unit The message obtained by the interface message, the first interface message includes the auxiliary information, and the indication message is used to indicate the RRC status of the UE after the UE and the network device have completed the transmission of the small packet data; the UE enters the corresponding RRC state according to the indication message RRC status.
  • a UE in a disconnected state may report auxiliary information while requesting the aforementioned small packet data with the network device.
  • the centralized unit may obtain the data transmission requirements of the UE after the UE and the network device have completed the transmission of the aforementioned small packet data through the auxiliary information.
  • the centralized unit may refer to the data transmission requirements of the UE to determine an indication message for indicating the RRC status of the UE after the UE and the network device have completed the transmission of the small packet data.
  • the auxiliary information includes: data volume information to be transmitted by the UE after the UE and the network device complete the transmission of the small packet data; or, the auxiliary information includes: the first bit; the first bit; The value of one bit is used to indicate the above-mentioned data transmission requirement; or, the above-mentioned auxiliary information includes: information about the RRC state that the above-mentioned UE wants after the completion of the above-mentioned small packet data transmission; or, the above-mentioned auxiliary information includes: the above-mentioned UE and the above-mentioned network equipment The relationship between the amount of data to be transmitted by the UE and the preset threshold after the transmission of the small packet data is completed.
  • the data amount information includes: a first index value; the first index value corresponds to the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the small packet data.
  • the above-mentioned data volume information includes: the value of the buffer status report BSR.
  • the information included in the auxiliary information may have various forms, which is more flexible in implementation and has a wider range of application scenarios. For example, if the network device cannot effectively identify the auxiliary information of the RRC state that the UE wants after the above-mentioned small packet data transmission is completed, the UE may feed back the auxiliary information including the first index value or the value of the BSR.
  • the method before the UE sends the auxiliary information to the distribution unit of the network device in a disconnected state, the method further includes: the UE receives a paging message sent by the network device; the paging message is used for The network device indicates that there is downlink data to send to the UE; the UE sending auxiliary information to the distribution unit of the network device in a disconnected state includes: in response to the paging message, the UE sends the auxiliary information to the distribution unit.
  • the UE may receive the downlink small packet data sent by the centralized unit through the distribution unit.
  • the downlink small packet data is data sent by the centralized unit to the distribution unit after the distribution unit restores the UE context.
  • the UE sending the auxiliary information to the distribution unit of the network device in the disconnected state includes: when there is uplink small packet data sent to the network device, the UE sends the auxiliary information to the network device in the disconnected state.
  • the distribution unit sends the above-mentioned auxiliary information.
  • the UE may send the uplink small packet data to the distribution unit together when sending the auxiliary information in the non-connected state, so that the uplink small packet data is sent to the centralized unit through the distribution unit.
  • the UE sending the auxiliary information to the distribution unit of the network device in the disconnected state includes: the UE sends the first request message to the distribution unit in the disconnected state; wherein, the first request message is sent to the distribution unit in the disconnected state; A request message is used by the UE to request data transmission with the network device, the auxiliary information is carried in the first request message, the first interface message is an initial uplink RRC message transfer message, and the first interface message includes RRC Container IE
  • the foregoing RRC Container IE includes the foregoing first request message carrying the foregoing auxiliary information.
  • the auxiliary information may be carried in the first request message. Therefore, there is no need to add an additional RRC message between the UE and the distribution unit.
  • the auxiliary information carried in the first request message can be placed in the RRC Container IE of the first interface message. Therefore, the first interface message does not need to add an IE, and the processing logic of the distribution unit is less changed. There are fewer restrictions on the use scenarios of auxiliary information and a wider range of applications.
  • sending the auxiliary information to the distribution unit of the network device by the UE in the non-connected state includes: the UE sending the first request message and the auxiliary information to the distribution unit in the non-connected state;
  • the above-mentioned first request message is used for the above-mentioned UE to request data transmission with the above-mentioned network device, the above-mentioned first interface message is a UE context establishment response message, and the above-mentioned auxiliary information is carried in the above-mentioned first interface message.
  • the auxiliary information may be sent together with the first request message, and the auxiliary information may also include more information, and the form may be more flexible.
  • the centralized unit can also obtain more comprehensive auxiliary information, thereby further avoiding the problem of instructing the UE to enter an inappropriate RRC state when the centralized unit cannot learn the data transmission requirements of the UE after the above-mentioned small packet data transmission is completed. The impact on the subsequent data transmission of the UE is reduced, and unnecessary power consumption and signaling overhead of the UE are effectively avoided.
  • the above-mentioned first interface message is an F1 interface message transmitted between the above-mentioned centralized unit and the above-mentioned distribution unit, and the above-mentioned first request message is an RRC recovery request message or an RRC data early transmission request message.
  • the uplink small packet data is carried in the aforementioned first request message, and the downlink small packet data is carried in the aforementioned indication message.
  • the uplink small packet data is the data that the UE sends to the distribution unit together with the first request message in the non-connected state
  • the downlink small packet data is the data that the distribution unit sends to the distribution unit together with the indication message.
  • the first request message is an RRC message sent by the UE based on resources allocated by the random access response sent by the network device, where the random access response is sent by the network device based on the UE.
  • the first request message is an RRC message that is sent together when the UE sends a random access preamble to the network device; or, the first request message is the UE based on a pre-configured uplink The RRC message sent by the resource to the aforementioned network device.
  • the first request message carrying auxiliary information or the first request message sent together with the auxiliary information may be RRC messages in various application scenarios.
  • the auxiliary information can also be applied to the above-mentioned multiple application scenarios, and the application range is wider.
  • the embodiments of the present application provide a network device, including a centralized unit and at least one distribution unit, wherein: the above-mentioned distribution unit is used to receive auxiliary information sent by the UE in a disconnected state; the above-mentioned auxiliary information is used to indicate The data transmission requirements of the UE after the UE and the network equipment have completed the transmission of the small packet data; the distribution unit is configured to obtain the first interface message according to the auxiliary information; the first interface message includes the auxiliary information; the distribution unit uses Sending the first interface message to the centralized unit; the centralized unit is configured to obtain an instruction message according to the auxiliary information in the first interface message; the instruction message is used to instruct the UE and the network device to complete the small packet data The RRC state of the UE after the transmission; the centralized unit is configured to send the indication message to the UE through the distribution unit.
  • a UE in a disconnected state may report auxiliary information while requesting the aforementioned small packet data with the network device.
  • the centralized unit may obtain the data transmission requirements of the UE after the UE and the network device have completed the transmission of the aforementioned small packet data through the auxiliary information.
  • the centralized unit may refer to the data transmission requirements of the UE to determine an indication message for indicating the RRC status of the UE after the UE and the network device have completed the transmission of the small packet data.
  • the aforementioned auxiliary information includes: information about the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the small packet data; or, the aforementioned auxiliary information includes: the first bit; The value of the first bit indicates the aforementioned data transmission requirement; or, the aforementioned auxiliary information includes: information about the RRC status that the aforementioned UE expects to complete the aforementioned small packet data transmission; or, the aforementioned auxiliary information includes: the aforementioned UE completes with the aforementioned network equipment The relationship between the amount of data to be transmitted by the UE after the transmission of the small packet data and the preset threshold.
  • the data amount information includes: a first index value; the first index value corresponds to the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the small packet data. ;
  • the above-mentioned data volume information includes: the value of BSR.
  • the information included in the auxiliary information may have various forms, which is more flexible in implementation and has a wider range of application scenarios. For example, if the network device cannot effectively identify the auxiliary information of the RRC state that the UE wants after the above-mentioned small packet data transmission is completed, the UE may feed back the auxiliary information including the first index value or the value of the BSR.
  • the above-mentioned centralized unit is further used for paging the above-mentioned UE through the above-mentioned distribution unit before the above-mentioned distribution unit receives the auxiliary information sent by the UE in the unconnected state; the above-mentioned paging message is used for
  • the foregoing network device indicates that there is downlink data to be sent to the foregoing UE; when the foregoing distribution unit is configured to receive auxiliary information sent by the UE in a disconnected state, it is specifically configured to: receive the foregoing auxiliary information sent by the UE in response to the foregoing paging message.
  • the centralized unit may send the downlink small packet data to the distribution unit after the distribution unit restores the UE context, and send the downlink small packet data to the UE through the distribution unit.
  • the distribution unit when used to receive the auxiliary information sent by the UE in a disconnected state, it is specifically used to: receive the auxiliary information sent by the UE when there is uplink small packet data to be sent to the network device. .
  • the centralized unit may receive the uplink small packet data sent by the UE through the distribution unit.
  • the uplink small packet data is sent to the distribution unit together when the UE sends the auxiliary information in the unconnected state.
  • the distribution unit when used to receive the auxiliary information sent by the UE in the disconnected state, it is specifically used to: receive the first request message sent by the UE in the disconnected state;
  • the first request message is used by the UE to request data transmission with the network device, the auxiliary information is carried in the first request message, the first interface message is an initial uplink RRC message transfer message, and the first interface message includes RRC Container IE, the foregoing RRC Container IE includes the foregoing first request message carrying the foregoing auxiliary information.
  • the auxiliary information may be carried in the first request message. Therefore, there is no need to add an additional RRC message between the UE and the distribution unit.
  • the auxiliary information carried in the first request message can be placed in the RRC Container IE of the first interface message. Therefore, the first interface message does not need to add an IE, and the processing logic of the distribution unit is less changed. There are fewer restrictions on the use scenarios of auxiliary information and a wider range of applications.
  • the above-mentioned first request message carries the above-mentioned small packet data; when the above-mentioned distribution unit is used to send the above-mentioned first interface message to the above-mentioned centralized unit, it is specifically used to: send the above-mentioned auxiliary information to the above-mentioned centralized unit And the above-mentioned first interface message of the above-mentioned small packet data.
  • the distribution unit is further configured to: receive the small packet data sent by the UE in the non-connected state; the distribution unit is configured to send the first interface message to the centralized unit, specifically Used to: send the first interface message carrying the auxiliary information to the centralized unit; receive the UE context restore request message sent by the centralized unit; restore the UE context in response to the restore UE context request message; based on the restored UE context Send the above-mentioned small packet data to the above-mentioned centralized unit.
  • the distribution unit when configured to receive the auxiliary information sent by the UE in the disconnected state, it is specifically configured to: receive the first request message and the auxiliary information sent by the UE in the disconnected state. ;
  • the first request message is used for the UE to request data transmission with the network device, the first interface message is a UE context establishment response message, and the auxiliary information is carried in the first interface message.
  • the auxiliary information may be sent together with the first request message, and the auxiliary information may also include more information, and the form may be more flexible.
  • the centralized unit can also obtain more comprehensive auxiliary information, thereby further avoiding the problem of instructing the UE to enter an inappropriate RRC state when the centralized unit cannot learn the data transmission requirements of the UE after the above-mentioned small packet data transmission is completed. The impact on the subsequent data transmission of the UE is reduced, and unnecessary power consumption and signaling overhead of the UE are effectively avoided.
  • the above-mentioned first request message carries the above-mentioned small packet data; the above-mentioned distribution unit is further configured to send the above-mentioned first interface message to the above-mentioned centralized unit before the above-mentioned distribution unit sends the above-mentioned first interface message to the above-mentioned centralized unit
  • the second interface message of the first request message receiving the UE context recovery request message sent by the central unit; in response to the UE context recovery request message, recovering the UE context; the distribution unit is configured to send the first interface message to the central unit At this time, it is specifically used to send the first interface message carrying the auxiliary information to the centralized unit based on the restored UE context.
  • the distribution unit is further configured to: receive the small packet data sent by the UE in the non-connected state; the distribution unit is further configured to send, in the distribution unit, the first Before an interface message, send a second interface message carrying the first request message to the centralized unit; receive a UE context recovery request message sent by the centralized unit; and restore the UE context in response to the UE context recovery request message; the distribution unit When used to send the first interface message to the centralized unit, it is specifically used to: send the first interface message carrying the auxiliary information to the centralized unit based on the restored UE context; the distribution unit is further configured to: based on the foregoing The restored UE context sends the small packet data to the centralized unit.
  • the above-mentioned first interface message is an F1 interface message transmitted between the above-mentioned centralized unit and the above-mentioned distribution unit, and the above-mentioned first request message is an RRC recovery request message or an RRC data early transmission request message.
  • the uplink small packet data is carried in the aforementioned first request message, and the downlink small packet data is carried in the aforementioned indication message.
  • the uplink small packet data is data that the UE sends to the distribution unit together with the first request message in the non-connected state, and the uplink small packet data is the data sent to the distribution unit after the distribution unit restores the UE context.
  • Data sent by the centralized unit; downlink small packet data is data sent by the centralized unit to the UE through the distribution unit after the distribution unit restores the UE context, and the downlink small packet data is sent by the distribution unit together with the indication message to the UE data.
  • the first request message is an RRC message sent by the UE based on resources allocated by the random access response sent by the network device, where the random access response is sent by the network device based on the UE.
  • the first request message is an RRC message that is sent together when the UE sends a random access preamble to the network device; or, the first request message is the UE based on a pre-configured uplink The RRC message sent by the resource to the aforementioned network device.
  • the first request message carrying auxiliary information or the first request message sent together with the auxiliary information may be RRC messages in various application scenarios.
  • the auxiliary information can also be applied to the above-mentioned multiple application scenarios, and the application range is wider.
  • an embodiment of the present application provides a user equipment UE, including: a first sending unit, configured to send auxiliary information to a distribution unit of a network device in a non-connected state; and the aforementioned auxiliary information is used to indicate that the aforementioned UE is connected to the aforementioned The data transmission requirements of the UE after the network device completes the transmission of the small packet data; the first receiving unit is configured to receive the instruction message sent by the distribution unit; the instruction message is the first interface sent by the centralized unit of the network device according to the distribution unit The message obtained by the message, the first interface message includes the auxiliary information, and the indication message is used to indicate the RRC status of the UE after the UE and the network device have completed the transmission of the small packet data; the setting status unit is used to set the status unit according to the indication message Enter the corresponding RRC state.
  • a UE in a disconnected state may report auxiliary information while requesting the aforementioned small packet data with the network device.
  • the centralized unit may obtain the data transmission requirements of the UE after the UE and the network device have completed the transmission of the aforementioned small packet data through the auxiliary information.
  • the centralized unit may refer to the data transmission requirements of the UE to determine an indication message for indicating the RRC status of the UE after the UE and the network device have completed the transmission of the small packet data.
  • the auxiliary information includes: data volume information to be transmitted by the UE after the UE and the network device complete the transmission of the small packet data; or, the auxiliary information includes: the first bit; the first bit; The value of one bit is used to indicate the above-mentioned data transmission requirement; or, the above-mentioned auxiliary information includes: information about the RRC state that the above-mentioned UE wants after the completion of the above-mentioned small packet data transmission; or, the above-mentioned auxiliary information includes: the above-mentioned UE and the above-mentioned network equipment The relationship between the amount of data to be transmitted by the UE and the preset threshold after the transmission of the small packet data is completed.
  • the data amount information includes: a first index value; the first index value corresponds to the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the small packet data. ;
  • the above-mentioned data volume information includes: the value of BSR.
  • the information included in the auxiliary information may have various forms, which is more flexible in implementation and has a wider range of application scenarios. For example, if the network device cannot effectively identify the auxiliary information of the RRC state that the UE wants after the above-mentioned small packet data transmission is completed, the UE may feed back the auxiliary information including the first index value or the value of the BSR.
  • the aforementioned UE further includes: a second receiving unit, configured to receive a paging message sent by the aforementioned network device; the aforementioned paging message is used by the aforementioned network device to indicate that there is downlink data to be sent to the aforementioned UE;
  • the first sending unit is specifically configured to send the auxiliary information to the distribution unit by the UE in response to the paging message.
  • the UE may receive the downlink small packet data sent by the centralized unit through the distribution unit.
  • the downlink small packet data is data sent by the centralized unit to the distribution unit after the distribution unit restores the UE context.
  • the above-mentioned first sending unit is specifically configured to send the above-mentioned auxiliary information to the above-mentioned distribution unit in the above-mentioned non-connected state when there is uplink small packet data to be sent to the above-mentioned network device.
  • the UE may send the uplink small packet data to the distribution unit together when sending the auxiliary information in the non-connected state, so that the uplink small packet data is sent to the centralized unit through the distribution unit.
  • the first sending unit is specifically configured to send a first request message to the distribution unit in the disconnected state; wherein, the first request message is used for the UE to request communication with the network device
  • the above-mentioned auxiliary information is carried in the above-mentioned first request message
  • the above-mentioned first interface message is an initial uplink RRC message transmission message
  • the above-mentioned first interface message includes the RRC Container IE
  • the above-mentioned RRC Container IE contains information that carries the above-mentioned auxiliary information.
  • the auxiliary information may be carried in the first request message. Therefore, there is no need to add an additional RRC message between the UE and the distribution unit.
  • the auxiliary information carried in the first request message can be placed in the RRC Container IE of the first interface message. Therefore, the first interface message does not need to add an IE, and the processing logic of the distribution unit is less changed. There are fewer restrictions on the use scenarios of auxiliary information and a wider range of applications.
  • the first sending unit is specifically configured to send the first request message and the auxiliary information to the distribution unit in the disconnected state; wherein, the first request message is used for the UE request For data transmission with the foregoing network device, the foregoing first interface message is a UE context establishment response message, and the foregoing auxiliary information is carried in the foregoing first interface message.
  • the auxiliary information may be sent together with the first request message, and the auxiliary information may also include more information, and the form may be more flexible.
  • the centralized unit can also obtain more comprehensive auxiliary information, thereby further avoiding the problem of instructing the UE to enter an inappropriate RRC state when the centralized unit cannot learn the data transmission requirements of the UE after the above-mentioned small packet data transmission is completed. The impact on the subsequent data transmission of the UE is reduced, and unnecessary power consumption and signaling overhead of the UE are effectively avoided.
  • the above-mentioned first interface message is an F1 interface message transmitted between the above-mentioned centralized unit and the above-mentioned distribution unit, and the above-mentioned first request message is an RRC recovery request message or an RRC data early transmission request message.
  • the uplink small packet data is carried in the aforementioned first request message, and the downlink small packet data is carried in the aforementioned indication message.
  • the uplink small packet data is the data that the UE sends to the distribution unit together with the first request message in the non-connected state
  • the downlink small packet data is the data that the distribution unit sends to the distribution unit together with the indication message.
  • the first request message is an RRC message sent by the UE based on resources allocated by the random access response sent by the network device, where the random access response is sent by the network device based on the UE.
  • the first request message is an RRC message that is sent together when the UE sends a random access preamble to the network device; or, the first request message is the UE based on a pre-configured uplink The RRC message sent by the resource to the aforementioned network device.
  • the first request message carrying auxiliary information or the first request message sent together with the auxiliary information may be RRC messages in various application scenarios.
  • the auxiliary information can also be applied to the above-mentioned multiple application scenarios, and the application range is wider.
  • an embodiment of the present application provides a network device, including a transceiver, a processor, and a memory; the above-mentioned memory is used to store computer program code, the above-mentioned computer program code includes computer instructions, and the above-mentioned processor calls the above-mentioned computer instructions to make
  • the foregoing network device executes the method for controlling the RRC state of the UE provided in the first aspect and any one of the first aspects of the embodiments of the present application.
  • an embodiment of the present application provides a user equipment UE, including a transceiver, a processor, and a memory; the memory is used to store computer program code, the computer program code includes computer instructions, and the processor calls the computer instructions to The foregoing user equipment is allowed to execute the method for controlling the RRC state of the UE provided in the second aspect and any one of the implementation manners of the second aspect of the embodiments of the present application.
  • an embodiment of the present application provides a computer storage medium that stores a computer program.
  • the computer program includes program instructions. When the program instructions are executed by a processor, they are used to execute the first embodiment of the present application.
  • the method for controlling the RRC state of the UE provided by any one of the aspect or the second aspect, the first aspect or the second aspect.
  • the embodiments of the present application provide a computer program product.
  • the communication device executes the first aspect or the second aspect, the first aspect, or the first aspect of the embodiments of the present application.
  • a method for controlling the RRC state of the UE provided by any one of the implementation manners of the second aspect.
  • an embodiment of the present application provides a chip.
  • the chip includes at least one processor and an interface circuit.
  • the chip further includes a memory; the memory, the interface circuit, and the at least one processor are interconnected by wires.
  • a computer program is stored in the foregoing at least one memory; when the foregoing computer program is executed by the foregoing processor, the control of the RRC state of the UE provided by any one of the first aspect or the second aspect, the first aspect or the second aspect is implemented method.
  • an embodiment of the present application provides an electronic device, and the electronic device includes a device that executes the method introduced in any embodiment of the present invention.
  • the electronic device is, for example, a chip.
  • the network equipment provided in the fifth aspect provided above, the user equipment provided in the sixth aspect provided above, the computer storage medium provided in the seventh aspect, the computer program product provided in the eighth aspect, and the chip provided in the ninth aspect are used to implement the method for controlling the RRC state of the UE provided in the first aspect and the second aspect. Therefore, the beneficial effects that can be achieved can refer to the beneficial effects in the method for controlling the RRC state of the UE provided in the first aspect and the second aspect, which will not be repeated here.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the architecture of a new wireless access NR system provided by an embodiment of the present application
  • Fig. 3 is a schematic diagram of the architecture of a communication protocol stack of an NR system
  • FIG. 4 is a schematic diagram of the architecture of another communication protocol stack of the NR system
  • FIG. 5 is a schematic diagram of the transition of the radio resource control RRC state of the user equipment UE
  • 6 to 11 are schematic flowcharts of the transmission process of some small packets provided by the embodiments of the present application.
  • FIG. 12 is a schematic flowchart of a method for controlling the RRC state of a UE according to an embodiment of the present application
  • FIG. 13 is another schematic flowchart of a method for controlling the RRC state of a UE according to an embodiment of the present application
  • FIG. 14 is a schematic flowchart of another method for controlling the RRC state of the UE according to an embodiment of the present application.
  • FIG. 15 is another schematic flowchart of another method for controlling the RRC state of the UE according to an embodiment of the present application.
  • FIG. 16 is a schematic flowchart of another method for controlling the RRC state of a UE according to an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a UE provided by an embodiment of the present application.
  • the network device may be a device for sending or receiving information.
  • the network device may include a centralized unit (CU) and at least one distributed unit (DU).
  • CU centralized unit
  • DU distributed unit
  • a base station is a device deployed in a radio access network (RAN) to provide wireless communication functions.
  • the name of the base station may be different.
  • the base transceiver station in the global system for mobile communications (GSM) or code division multiple access (CDMA), broadband code division multiple Node B (NB) in wideband code division multiple access (WCDMA), evolved node B (eNodeB) in long term evolution (LTE), or fifth-generation mobile Communication technology (5th generation mobile networks, 5G), that is, the next-generation base station (gnode B, gNB) in the new radio (NR), or the base station in other future network systems.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • NB broadband code division multiple Node B
  • WCDMA wideband code division multiple access
  • eNodeB evolved node B
  • LTE long term evolution
  • 5G fifth-generation mobile Communication technology
  • the UE is a device with a communication function, which can be, but is not limited to, a mobile terminal with a wireless communication function.
  • the UE may also be called a terminal, a mobile station, an access terminal, a user agent, and so on.
  • the UE is a terminal in the form of a handheld device, a wearable device, a computing device, a portable device, or a vehicle-mounted device.
  • the UE is specifically a device such as a cellular phone, a smart phone, smart glasses, a laptop computer, a personal digital assistant, or a cordless phone.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • the communication system can be but not limited to GSM, CDMA, wideband code division multiple access (WCDMA), time-division code division multiple access (TD-SCDMA), general mobile communication system (universal mobile telecommunications system, UMTS), LTE, NR, or other future network systems.
  • the communication system may include a core network 110, a base station 120, and a UE 130.
  • the core network 110 can be connected to at least one base station 120, the base station 120 can provide wireless communication services for at least one UE 130, and the UE 130 can be connected to any base station 120 through an air interface.
  • the core network 110 is a key control node in the communication system, and is mainly responsible for signaling processing functions, such as but not limited to implementing functions such as access control, mobility management, and session management.
  • the core network 110 may send downlink data to the UE 130 through the base station 120, and the UE 130 may also send uplink data to the core network 110 through the connected base station 120.
  • the base station 120 may be a distributed base station, and may include a CU and at least one DU.
  • the base station 120 and the UE 130 please refer to the description of the above-mentioned network equipment and the UE, which will not be repeated here.
  • the form and quantity of the core network, base stations, and UEs shown in FIG. 1 are only for example.
  • some base stations in the communication system may not be distributed base stations, which is not limited in the embodiment of the present application.
  • the embodiments of the present application mainly take LTE and/or NR as the application communication system, and the network equipment is the base station as an example for description.
  • the LTE technology is relatively mature, and its system architecture and communication protocol stack and other related descriptions will not be explained in detail.
  • the system architecture and communication protocol stack of NR are mainly explained.
  • the NR system may include a 5G core network (5G Core, 5GC) 210, an NR-RAN node 220, and a UE 230.
  • the NR-RAN node 220 may include at least one gNB2200 connected to the 5GC 210 through an NG interface.
  • 5GC210 corresponds to the core network 110 in FIG. 1
  • gNB2200 corresponds to the base station 120 in FIG. 1
  • UE230 corresponds to the UE130 in FIG. 1.
  • the gNB2200 may include one CU2201 (for easy distinction, referred to as gNB-CU in the following) and at least one DU2202 (for easy distinction, referred to as gNB-DU in the following).
  • the gNB2200 may also include multiple CN2201s, which are not limited in the embodiment of the present application.
  • the gNB-CU2201 and gNB-DU2202 can be connected through the F1 interface.
  • gNB2200 can be connected via Xn-C interface.
  • the UE230 can connect to any gNB-DU2202 in the gNB2200 through the Uu interface, and can communicate with the 5GC210 through the gNB2200.
  • the communication protocol stack between the UE and the base station can be divided into a control plane protocol stack for control information transmission and a user plane protocol stack for data transmission.
  • the architecture of the control plane protocol stack of the LTE system and the NR system is the same, and for the architecture of the user plane protocol stack, the NR system adds a service data adaptation protocol (SDAP) layer to the LTE system.
  • SDAP service data adaptation protocol
  • Fig. 3 is a schematic diagram of the architecture of a user plane protocol stack of an NR system.
  • the user plane protocol stack may include a physical (PHY) layer, a medium access control (MAC) layer, a radio link control (RLC) layer, and a packet data convergence protocol.
  • PHY physical
  • MAC medium access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • FIG. 4 is a schematic diagram of the architecture of a control plane protocol stack of an NR system.
  • the control plane protocol stack may include a PHY layer, a MAC layer, an RLC layer, a PDCP layer, a radio resource control (RRC) layer, and a non-access stratum (NAS).
  • RRC radio resource control
  • NAS non-access stratum
  • the PHY layer can provide data transmission services for higher layers (such as the MAC layer) through physical channels.
  • data can be transmitted through physical channels.
  • the PHY layer can also be connected to the MAC layer through a transmission channel, and data can be transmitted between the MAC layer and the PHY layer through a transmission channel.
  • the MAC layer can provide services to higher layers (such as the RLC layer) via logical channels.
  • MAC can provide the function of mapping multiple logical channels to multiple transmission channels, and it can also provide the function of logical channel multiplexing in which multiple logical channels are mapped to a single transmission channel.
  • logical channels can be classified into control channels used to transmit control information on the control plane and traffic channels used to transmit user data on the user plane.
  • the control channel may include, but is not limited to, a common control channel (CCCH) and a dedicated control channel (DCCH).
  • the service channel may include, but is not limited to, a dedicated traffic channel (dedicated traffic channel, DTCH).
  • the CCCH can always exist, and the UE without an RRC connection with the RAN node can also use the CCCH to transmit information.
  • the DCCH can be used to transmit dedicated control information between the UE and the RAN node.
  • DTCH can be used to transmit user data between UE and RAN node.
  • the DCCH and DTCH will not always exist, but after the base station connected to the UE restores the UE context, the DCCH and DTCH can be used for communication between the UE and the base station.
  • the UE context includes, but is not limited to, the identity of the terminal, radio bearer (RB) related configuration, security encryption related configuration, service quality related configuration, and so on.
  • the RLC layer can provide services for higher layers (such as the PDCP layer), for example, providing retransmission services through automatic repeat request (ARQ), thereby ensuring the reliability of data transmission.
  • the PDCP layer can provide security functions.
  • the PDCP layer can encrypt and protect the integrity of the information carried on the RB.
  • the RB may be a service provided by the RLC layer for a higher layer (such as the RRC layer).
  • the RB may be a set of connection formats between the UE and the RAN node, and may include related configurations of physical channels, transport channels, and logical channels.
  • the RB can be divided into a signaling radio bearer (SRB) used to transmit control information on the control plane and a data radio bearer (DRB) used to transmit user data on the user plane.
  • SRB signaling radio bearer
  • DRB data radio bearer
  • the RRC layer can be used to transmit RRC messages between the UE and the base station.
  • the RRC resume request (RRCResumeRequest) message in the NR can be used for the UE to request to resume the suspended RRC connection, so as to transmit data with the base station.
  • the RRC layer there are currently three RRC states of the UE, namely, the RRC idle (RRC IDLE) state, the RRC inactive (RRC INACTIVE) state, and the RRC connected (RRC CONNECTED) state.
  • RRC idle RRC idle
  • RRC INACTIVE RRC inactive
  • RRC CONNECTED RRC connected
  • FIG. 5 is a schematic diagram of the transition of the RRC state of the UE.
  • the UE when the UE is in the RRC CONNECTED state, there is an RRC connection between the UE and the base station, so that information such as user data can be sent and received.
  • the UE can enter the RRC IDLE state from the RRC CONNECTED state under the instruction of the base station.
  • the UE When the UE is in the RRC IDLE state, there is no RRC connection between the UE and the base station. For example, after the UE receives the RRC connection release message sent by the base station, the RRC connection between the UE and the base station will be stopped, and the RAN node will delete the UE context of the UE.
  • the RRC INACTIVE state is the RRC state newly added in NR.
  • the base station usually keeps the UE in the RRC INACTIVE state.
  • the UE can also enter the RRC INACTIVE state from the RRC CONNECTED state under the instruction of the base station. For example, after the UE receives the RRC connection release message with the suspension indication sent by the base station, the RRC connection between the UE and the base station will be suspended, but at least one RAN node reserves the UE context of the UE. Therefore, compared to entering the RRC CONNECTED state from the RRC IDLE state, the UE enters the RRC CONNECTED state from the RRC INACTIVE state faster.
  • the UE can also enter the RRC IDLE state from the RRC INACTIVE state under the instruction of the base station. The specific process is similar to the above-mentioned entering the RRC IDLE state from the RRC CONNECTED state.
  • the UE in the RRC IDLE state or the RRC INACTIVE state can perform a random access procedure, and then enter the corresponding RRC state under the instruction of the base station.
  • the message sent by the UE to the base station in the third step of the random access procedure may be called message 3, or msg3 for short.
  • the UE is in different RRC states and in different service scenarios, the msg3 (that is, the RRC message) is different.
  • msg3 is an RRCResumeRequest message to request to resume the suspended RRC connection and enter the RRC CONNECTED state to transmit data with the base station.
  • the base station does not only indicate the RRC status of the UE based on the message sent by the UE (such as msg3), but also needs to consider the network conditions such as network congestion, resource scheduling, and resource occupation to determine the indicated RRC status of the UE. .
  • the NAS layer can be used to provide functions such as session management and mobility management.
  • 5GC can include access and mobility management functions (AMF).
  • AMF is used for mobility management functions in the control plane.
  • AMF devices can perform functions such as NAS signaling security and NAS signaling termination.
  • the user plane protocol stack of NR has a newly added SDAP layer, but the architecture of other layers is the same, and the specific description is similar and will not be repeated.
  • the architectures of the LTE control plane protocol stack and the NR control plane protocol stack are the same, and the specific descriptions of each layer are similar, and will not be repeated.
  • the small packet data can be, but not limited to, the data packet whose data volume is less than a preset threshold (for example, the size of the transmission block indicated by the base station), the data label is a data packet of small packet data, and the data type is a data packet of small packet data. Wait.
  • the foregoing data tag and/or the foregoing data type may be negotiated jointly by the UE and the network device.
  • the data tag may include large packet data and small packet data.
  • data whose data type is a heartbeat packet is small packet data, and data whose data type is file, video, or audio is not small packet data.
  • Small packet data for example, but not limited to: instant messaging messages, application push messages and other infrequent prompt messages, application heartbeat packets, step count detection, heart rate detection, smart meter readings and other periodic data.
  • the UE in the RRC IDLE state or the RRC INACTIVE state can transmit small packet data with the network device through the first request message, for example, send an uplink small packet when sending the first request message Data, so that the UE can transmit small packets of data without entering the RRC CONNECTED state.
  • the above-mentioned first request message may be any RRC message in the following three situations.
  • the first request message is an RRC message (that is, the aforementioned msg3) sent by the UE to the base station in the third step of the four-step random access process.
  • the RRC message is a message sent by the UE based on resources allocated by a random access response (RAR) sent by the base station
  • RAR random access response
  • the above RAR is a message sent by the base station based on a random access preamble (random access preamble) sent by the UE.
  • the early data transmission (EDT) of LTE can implement the UE to transmit small packets of data in the RRC IDLE state.
  • FIG. 6 and FIG. 7 for details.
  • FIG. 6 is a schematic flow diagram of the transmission process under the control plane
  • FIG. 7 is a schematic flow diagram of the transmission process under the user plane.
  • the first request message is the RRC message sent by the UE to the base station in the first step of the two-step random access process, which may be referred to as message A in the following, or msgA for short.
  • the RRC message is an RRC message sent together when the UE sends a random access preamble to the base station.
  • Examples of the transmission process of the small packet data in the second case can be specifically referred to FIGS. 8 and 9.
  • FIG. 8 is a schematic flow diagram of the transmission process under the control plane
  • FIG. 9 is a schematic flow diagram of the transmission process under the user plane.
  • the first request message is an RRC message sent by the UE to the base station based on the pre-configured uplink resource.
  • RRC message sent by the UE to the base station based on the pre-configured uplink resource.
  • FIG. 10 is a schematic flow diagram of the transmission process under the control plane
  • FIG. 11 is a schematic flow diagram of the transmission process under the user plane.
  • FIG. 6 is a schematic flowchart of a small packet data transmission process under the control plane provided by an embodiment of the present application
  • FIG. 7 is a small packet data transmission process under the user plane provided by an embodiment of the present application. Schematic diagram of the process.
  • the transmission process under the control plane shown in Fig. 6 includes but is not limited to the following steps:
  • S601 The UE sends a random access preamble to the base station.
  • the base station In response to the random access preamble, the base station sends the RAR to the UE.
  • the UE Based on the resources allocated by the RAR, the UE sends an RRC message carrying uplink small packet data to the base station.
  • S604 The base station sends uplink small packet data to the core network.
  • the base station sends a response message to the UE.
  • the UE when the UE has uplink small packet data to send to the base station, the UE can initiate a four-step random access process, and in the third step of the four-step random access process, send msg3 carrying uplink small packet data to the base station (that is, the above RRC message).
  • the msg3 sent by the UE may be an RRC data early transmission request (RRCEarlyDataRequest) message.
  • the UE is in different RRC states and in different service scenarios, the above-mentioned RRC messages may be different.
  • the msg3 sent by the UE in the RRC IDLE state (optionally, at this time, the UE may store the UE context such as the configuration information used to obtain the key to encrypt the above-mentioned uplink packet data) may be an RRC connection request (RRCConnectionRequest) message, RRC Connection Resume Request (RRCConnectionResumeRequest) message, RRCEarlyDataRequest message, RRCResumeRequest message, RRC Setup Request (RRCSetupRequest) message or other RRC messages with the same function but not standardized by the 3rd Generation Partnership Project (3GPP).
  • the msg3 sent by the UE in the RRC INACTIVE state may also be an RRCConnectionRequest message, an RRCConnectionResumeRequest message, an RRCEarlyDataRequest message, an RRCResumeRequest message, an RRCSetupRequest message, or other RRC messages that have the same function but are not standardized by 3GPP.
  • the foregoing uplink small packet data may be carried in the foregoing RRC message and transmitted on the CCCH.
  • the above-mentioned uplink small packet data may be carried in the NAS layer related IE (such as dedicated Information NAS (dedicated InfoNAS) IE) contained in the RRCEarlyDataRequest message, and transmitted on the CCCH.
  • the base station may send the above-mentioned uplink small packet data to the core network through the above-mentioned msg3 carrying the uplink small packet data.
  • the base station may send the above-mentioned uplink small packet data to the core network by forwarding the IE related to the NAS layer included in the above-mentioned msg3.
  • the base station can send a response message to the UE.
  • the core network may send the downlink small packet data to the base station.
  • the base station may send the downlink small packet data to the UE through a response message carrying the downlink small packet data.
  • the aforementioned downlink small packet data can be carried in the aforementioned response message and transmitted on the CCCH.
  • the above response message is an RRC data early transmission complete (RRCEarlyDataComplete) message
  • the above downlink small packet data can be carried in the NAS layer related IE included in the RRC ArlyDataComplete message and transmitted on the CCCH.
  • the UE If the UE does not receive any response message, it is considered that the above-mentioned uplink small packet data transmission is unsuccessful. If the UE receives the response message sent by the base station, the UE can obtain whether the uplink small packet data is successfully transmitted according to the response message.
  • the response message sent by the base station may be an RRCEarlyDataComplete message or an RRC connection setup (RRCConnectionSetup) message, and the UE may obtain the foregoing uplink small packet data transmission success according to the response message.
  • the above response message may be used to indicate the successful transmission of the above uplink small packet data to the UE, and to instruct the UE to remain in the current disconnected state.
  • the above response message is an RRC ArlyDataComplete message, an RRC connection release (RRCConnectionRelease) message, an RRC release (RRCRelease) message, or other RRC messages that have the same function but are not standardized by 3GPP.
  • the UE may obtain the successful transmission of the uplink small packet data according to the above response message.
  • the core network can trigger the connection establishment instruction process, and the above response message can be used to instruct the UE to fall back to the RRC CONNECTED state.
  • the above response message is an RRCConnectionSetup message, an RRC Connection Resume (RRCConnectionResume) message, an RRC Setup (RRCSetup) message, an RRC Resume (RRCResume) message, or other RRC messages that have the same function but are not standardized by 3GPP.
  • the UE may obtain the successful transmission of the uplink small packet data according to the above response message.
  • the above-mentioned response message is used to indicate that the UE fails to transmit the above-mentioned uplink small packet data and instruct the UE to remain in the current non-connected state.
  • the above response message is an RRC Connection Reject (RRCConnectionReject) message, an RRC Reject (RRCReject) message, or other RRC messages that have the same function but are not standardized by 3GPP.
  • the UE may obtain the failure of the uplink small packet data transmission according to the above response message.
  • the transmission process under the user plane shown in FIG. 7 includes but is not limited to the following steps:
  • S701 The UE sends a random access preamble to the base station.
  • the base station In response to the random access preamble, the base station sends the RAR to the UE.
  • the UE Based on the resources allocated by the RAR, the UE sends the uplink small packet data and the RRC message to the base station.
  • the base station restores the context of the UE and sends uplink small packet data to the core network.
  • S705 The base station sends a response message to the UE.
  • the UE when the UE has uplink small packet data to send to the base station, the UE can initiate a four-step random access procedure, and in the third step of the random access procedure, send msg3 (that is, the above RRC message) and the uplink small packet together to the base station data.
  • the msg3 sent by the UE may be an RRCConnectionResumeRequest message or an RRCResumeRequest message.
  • the above-mentioned RRC messages may be different when the UE is in different RRC states and in different service scenarios. For details, please refer to the example of the RRC message in FIG. 6, which will not be repeated here.
  • the above-mentioned uplink small packet data can be transmitted on DTCH, and the above-mentioned RRC message can be transmitted on CCCH.
  • the base station can restore the UE context and send the received uplink small packet data to the core network.
  • the base station can send a response message to the UE.
  • the core network may send the downlink small packet data to the base station.
  • the base station may send the downlink small packet data to the UE when sending the response message.
  • the downlink small packet data can be transmitted on the DTCH and multiplexed with the response message transmitted on the DCCH.
  • the UE can obtain whether the uplink small packet data is successfully transmitted according to the response message.
  • the response message sent by the base station may be an RRCConnectionRelease message, an RRCConnectionResume message, an RRCConnectionSetup message, an RRCelease message, an RRCResume message, or an RRCSetup message, and the UE can obtain the foregoing uplink small packet data transmission success according to the response message.
  • the description of the above response message please refer to the description of the response message in FIG. 6, which will not be repeated here.
  • FIG. 6 and FIG. 7 are described by taking as an example that the UE executes S601 and/or S701 when there is uplink small packet data to be sent to the base station, that is, the UE actively initiates the transmission of the small packet data.
  • the UE passively initiates a small packet data transmission process under the instruction of the base station.
  • the terminal terminated (MT) EDT MT-EDT for short
  • the transmission process in this case is similar to the transmission process shown in Figure 6 and Figure 7, and the differences are as follows:
  • the core network may send a paging message to the base station.
  • the paging message may carry data volume information of the downlink small packet data.
  • the base station can send a paging message to the UE, so that the UE initiates a four-step random access procedure, that is, executes the above S601-S603.
  • the base station may trigger MT-EDT according to the paging message, and send a paging message carrying an MT-EDT indication to the UE, so that the UE triggers MO-EDT for MT-EDT.
  • the difference from the above-mentioned UE initiatively initiating the transmission of small packet data is that the RRC message sent by the UE to the base station in S603 may not carry the uplink small packet data, and optionally, it may also carry cause information for triggering MT-EDT.
  • S604 can be changed to the base station receiving the downlink small packet data sent by the core network.
  • the response message sent by the base station to the UE carries the downlink small packet data.
  • the core network may send a paging message to the base station.
  • the paging message may carry data volume information of the downlink small packet data.
  • the base station can send a paging message to the UE, so that the UE initiates a four-step random access procedure, that is, the foregoing S701-S703 are performed.
  • the difference from the foregoing UE initiatively initiating the small packet data transmission process is: in S703, the UE may only send an RRC message to the base station without sending uplink small packet data, and optionally, it may also carry information about the cause of triggering MT-EDT.
  • S704 can be changed to the base station receiving the downlink small packet data sent by the core network.
  • S705 can be changed to that the base station sends a response message and downlink small packet data to the UE.
  • FIG. 8 is a schematic flowchart of another packet data transmission process under the control plane provided by an embodiment of the present application. Schematic diagram of the transmission process.
  • the transmission process under the control plane shown in Figure 8 includes but is not limited to the following steps:
  • S801 The UE sends a random access preamble and an RRC message carrying uplink small packet data to the base station.
  • S802 The base station sends uplink small packet data to the core network.
  • S803 The base station sends a response message to the UE.
  • the UE when the UE has uplink small packet data to be sent to the base station, the UE can initiate a two-step random access process, and in the first step of the two-step random access process, send a random access preamble and a packet carrying uplink small packet data to the base station.
  • msgA that is, the above-mentioned RRC message
  • the msgA sent by the UE may be an RRCResumeRequest message.
  • the above-mentioned RRC messages may be different when the UE is in different RRC states and in different service scenarios. For details, please refer to the example of the RRC message in FIG. 6, which will not be repeated here.
  • the RRC message carrying the uplink small packet data may be carried in a physical uplink share channel (PUSCH) load, and the RRC message carrying the uplink small packet data may be transmitted on the CCCH.
  • the base station can send the uplink small packet data to the core network through the RRC message carrying the uplink small packet data.
  • the base station can send the uplink small packet data to the core network by forwarding the RRCResumeRequest message carrying the uplink small packet data.
  • the base station can send a response message to the UE.
  • the core network may send the downlink small packet data to the base station.
  • the base station may send the downlink small packet data to the UE through a response message carrying the downlink small packet data.
  • the downlink small packet data can be carried in the above response message and transmitted on the CCCH.
  • the UE can obtain whether the uplink small packet data is successfully transmitted according to the response message.
  • the response message sent by the base station may be an RRCRelease message, an RRCSetup message, or an RRCResume message, and the UE may obtain the successful transmission of the above-mentioned uplink small packet data according to the response message.
  • the description of the above response message please refer to the description of the response message in FIG. 6, which will not be repeated here.
  • the transmission process under the user plane shown in FIG. 9 includes but is not limited to the following steps:
  • S901 The UE sends a random access preamble, an RRC message and uplink small packet data to the base station.
  • the base station restores the context of the UE and sends uplink small packet data to the core network.
  • S903 The base station sends a response message to the UE.
  • the process of S901 is similar to S801 of FIG. 8. The difference is that in S901, the uplink small packet data is not carried in the RRC message, but is sent together with the RRC message. In addition, in S901, the above-mentioned RRC message and uplink small packet data may be carried in the PUSCH load. The foregoing uplink small packet data may be transmitted on DTCH, and the foregoing RRC message may be transmitted on CCCH.
  • the base station can restore the UE context and send the received uplink small packet data to the core network.
  • the above-mentioned RRC messages may be different when the UE is in different RRC states and in different service scenarios. For details, please refer to the example of the RRC message in FIG. 6, which will not be repeated here.
  • the base station can send a response message to the UE.
  • the core network may send the downlink small packet data to the base station.
  • the base station may send the downlink small packet data to the UE when sending the response message.
  • the downlink small packet data can be transmitted on the DTCH and multiplexed with the response message transmitted on the DCCH.
  • the UE can obtain whether the uplink small packet data is successfully transmitted according to the response message.
  • the response message sent by the base station may be an RRCRelease message, an RRCSetup message, or an RRCResume message, and the UE may obtain the successful transmission of the above-mentioned uplink small packet data according to the response message.
  • the description of the above response message please refer to the description of the response message in FIG. 6, which will not be repeated here.
  • Fig. 8 and Fig. 9 take the case that the UE executes S801 and/or S901 when there is uplink small packet data to be sent to the base station, that is, the UE actively initiates the transmission process of the small packet data as an example. However, in specific implementation, there is also a case where the UE passively initiates the transmission process of small packet data under the instruction of the base station.
  • the transmission process in this case is similar to the transmission process shown in Figure 8 and Figure 9, and the differences are as follows:
  • the core network may send a paging message to the base station.
  • the paging message may carry data volume information of the downlink small packet data.
  • the base station may send a paging message to the UE, so that the UE initiates a two-step random access procedure, that is, the foregoing S801 is performed.
  • the difference from the foregoing UE initiatively initiating the small packet data transmission process is that in S801, the RRC message sent by the UE to the base station may not carry the uplink small packet data.
  • S802 can be changed to the base station receiving the downlink small packet data sent by the core network.
  • the response message sent by the base station to the UE in S803 carries the downlink small packet data.
  • the core network may send a paging message to the base station.
  • the paging message may carry data volume information of the downlink small packet data.
  • the base station may send a paging message to the UE, so that the UE initiates a two-step random access procedure, that is, the foregoing S901 is performed.
  • the difference from the above-mentioned UE initiatively initiating the transmission of small packet data is: in S901, the UE may only send random access preamble and RRC messages to the base station without sending uplink small packet data.
  • S902 can be changed to the base station receiving the downlink small packet data sent by the core network.
  • S903 can be changed to that the base station sends a response message and downlink small packet data to the UE.
  • Figure 10 is a schematic flow chart of another packet data transmission process under the control plane provided by an embodiment of the present application. Schematic diagram of the transmission process.
  • the transmission process under the control plane shown in FIG. 10 includes but is not limited to the following steps:
  • the UE determines that the pre-configured uplink resource can be used.
  • the UE Based on the pre-configured uplink resources, the UE sends an RRC message carrying uplink small packet data to the base station.
  • S103 The base station sends uplink small packet data to the core network.
  • S104 The base station sends a response message to the UE.
  • the above-mentioned pre-configured uplink resource may be, but not limited to, a pre-configured uplink resource (preconfigured uplink resource, PUR) or configured resource type 1 (configured grants type 1, CG Type 1).
  • CG Type 1 may be an uplink resource directly configured by the RRC layer, and may include, but is not limited to, the period of the uplink resource.
  • PUR pre-configured uplink resource
  • the prerequisite process for the UE to determine that PUR can be used can be, but is not limited to: the UE can send a PUR Configuration Request (PURConfigurationRequest) message to the base station when it is in the RRC CONNECTED state, so that the base station instructs the UE to switch from the RRC CONNECTED state to the RRC IDLE state.
  • the sent RRC message (such as the RRCConnectionRelease message) carries detailed PUR configuration information or PUR release indication information.
  • the specific operations for the UE to determine that the PUR can be used, for example but not limited to include: determining that the PUR has been activated in the cell, aligning the effective time, determining the effective timing advance (TA) amount, and so on.
  • the UE may send an RRC message carrying the uplink small packet data to the base station based on the pre-configured uplink resource.
  • the RRC message in S102 and the RRC message in S603 in Figure 6 can be the same RRC message, except that the RRC message in S102 is transmitted based on pre-configured uplink resources, while the RRC message in S603 in Figure 6 is based on RAR allocation. Of the transmission of resources.
  • the RRC message please refer to the description of the RRC message in FIG. 6, which will not be repeated here.
  • the process of S103-S104 is similar to the process of S604-S605 of FIG. 6, and for details, please refer to the description of S603-S605 of FIG. 6.
  • the difference from S605 in Fig. 6 is that in some embodiments, the response message in S104 can also be a layer 1 acknowledgment message (Layer 1 Ack), time advance command MAC control element (Timing Advance Command MAC Control Element) or other Unstandardized response message.
  • Layer 1 Ack and Timing Advance Command MAC Control Element can be used to terminate the current process and update the UE's TA.
  • the transmission situation at this time is also similar to that described in Figure 6 if there is downlink small packet data sent to the UE in the core network. To repeat.
  • the transmission process under the user plane shown in FIG. 11 includes but is not limited to the following steps:
  • S111 The UE determines that the pre-configured uplink resource can be used.
  • the UE Based on the pre-configured uplink resources, the UE sends uplink small packet data and RRC messages to the base station.
  • the base station restores the context of the UE and sends uplink small packet data to the core network.
  • S114 The base station sends a response message to the UE.
  • the relevant description of the pre-configured uplink resources can be referred to the description of FIG. 10, which is not repeated here.
  • the UE may send the uplink small packet data and the RRC message to the base station based on the pre-configured uplink resource.
  • the RRC message in S112 and the RRC message in S703 in Figure 7 can be the same RRC message, except that the RRC message in S112 is transmitted based on pre-configured uplink resources, while the RRC message in S703 in Figure 7 is based on RAR allocation. Of the transmission of resources.
  • the description of the RRC message please refer to the description of the RRC message in FIG. 7, which will not be repeated here.
  • the process of S113-S114 is similar to the process of S704-S705 of FIG. 7, and for details, please refer to the description of S703-S705 of FIG. 7.
  • the response message in S114 may also be Layer 1 Ack, Timing Advance Command MAC Control Element or other unstandardized response messages.
  • Layer 1 Ack and Timing Advance Command MAC Control Element can be used to terminate the current process and update the UE's TA.
  • the transmission situation is similar to the transmission situation described in FIG. 7, and will not be repeated here.
  • FIG. 10 and FIG. 11 are described by taking as an example the UE performing S101 and/or S111 when there is uplink small packet data to be sent to the base station, that is, the UE actively initiates the transmission of the small packet data.
  • the UE passively initiates the transmission process of small packet data under the instruction of the base station.
  • the transmission process in this case is similar to the transmission process shown in FIG. 10 and FIG. 11, and the differences are as follows:
  • the core network may send a paging message to the base station.
  • the paging message may carry data volume information of the downlink small packet data.
  • the base station may send a paging message to the UE, so that the UE executes the foregoing S101-S102.
  • the difference from the foregoing UE initiatively initiating the small packet data transmission process is that the RRC message sent by the UE to the base station in S102 may not carry the uplink small packet data, and optionally, it may also carry cause information for triggering MT-EDT.
  • S103 can be changed to the base station receiving the downlink small packet data sent by the core network.
  • the response message sent by the base station to the UE in S104 carries the downlink small packet data.
  • the core network may send a paging message to the base station.
  • the paging message may carry data volume information of the downlink small packet data.
  • the base station may send a paging message to the UE, so that the UE executes the foregoing S111-S112.
  • the difference from the above-mentioned UE initiatively initiating the transmission of small packet data is: in S112, the UE may only send an RRC message to the base station without sending uplink small packet data, and optionally, it may also carry cause information for triggering MT-EDT.
  • S113 can be changed to the base station receiving the downlink small packet data sent by the core network.
  • S114 can be changed to that the base station sends a response message and downlink small packet data to the UE.
  • the CU cannot know whether the UE has subsequent data transmission requirements. This may cause the UE to enter an inappropriate RRC state under the instruction of the CU, thereby affecting the subsequent data transmission of the UE, and causing unnecessary power consumption and signaling overhead of the UE.
  • the above-mentioned small packet data transmission may be an uplink and/or downlink small packet data transmission.
  • the UE and the base station perform the transmission process described in Figure 6 and Figure 7 once, or the UE and the base station perform the above Figure 8 and Figure 7 once.
  • the transmission process described in FIG. 9 or the UE and the base station perform the transmission process described in FIG. 10 and FIG. 11 once.
  • the embodiment of the present application provides a method for controlling the RRC state of the UE based on the auxiliary information sent by the UE, so as to ensure the subsequent data transmission of the UE.
  • the above method will be described based on some embodiments shown in FIGS. 1 to 11 above.
  • FIG. 12 is a schematic flowchart of a method for controlling the RRC state of a UE according to an embodiment of the present application.
  • Fig. 12 is a schematic flow diagram of the transmission process under the user plane of the method.
  • This method can be applied to the communication system shown in FIG. 1, and the network device in the method may be the base station 120 in the communication system shown in FIG. 1.
  • This method can also be applied to the NR system shown in FIG. 2, and the network device in this method may also be the gNB2200 in the NR system shown in FIG. 2, and it is not limited to this.
  • the network device in the method may include a CU and at least one DU. The method includes but is not limited to the following steps:
  • S1201 The UE sends the first request message carrying the auxiliary information and the uplink small packet data to the DU in the unconnected state.
  • the aforementioned non-connected state may be the RRC INACTIVE state or the RRC IDLE state shown in FIG. 5.
  • the first request message may be used by the UE to request data transmission with the network device.
  • the first request message sent by the UE in the RRC INACTIVE state and the first request message sent by the UE in the RRC IDLE state may be the same.
  • the UE is in the RRC IDLE state (optionally, at this time, the UE may also store the UE context such as configuration information used to obtain the key to encrypt the above-mentioned uplink packet data) and the first request sent by the UE in the RRC INACTIVE state
  • the messages may all be RRCResumeRequest messages.
  • the first request message sent by the UE in the RRC INACTIVE state and the first request message sent by the UE in the RRC IDLE state may also be different.
  • the first request message sent by the UE in the RRC INACTIVE state is an RRCResumeRequest message
  • the first request message sent by the UE in the RRC IDLE state is an RRCConnectionResumeRequest message or a RRCEarlyDataRequest message.
  • the first request message may be an RRC message sent by the UE based on the resources allocated by the RAR sent by the network device.
  • the above RAR is a response message sent by the network device based on the random access preamble sent by the UE.
  • the first request message may also be an RRC message sent together when the UE sends a random access preamble to the network device.
  • the RRC message in S901 in FIG. 9 that is, the foregoing msgA
  • the first request message may also be an RRC message sent by the UE to the network device based on the pre-configured uplink resource.
  • the auxiliary information may be used to indicate the data transmission requirements of the UE after the UE and the network device have completed the transmission of the small packet data.
  • the first request message may include a newly added first information element (information element, IE), the above-mentioned auxiliary information may be placed in the first IE, and the information indicated by the first IE may also be information indicated by the auxiliary information.
  • the auxiliary information may include at least one of the following four situations.
  • the auxiliary information may include: information about the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the small packet data.
  • the data amount information is a first index value (index), and the first index corresponds to the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the small packet data.
  • each index corresponds to a value range of a data volume, for example, each index corresponds to a value range of a buffer status report (BSR).
  • BSR buffer status report
  • Table 1 takes the part of the mapping relationship between index and BSR value in the media access control control unit (MAC CE) as an example for illustration. In specific implementation, there may be other mapping relationships. This application The embodiment does not limit this.
  • Table 1 A mapping relationship between index and BSR value
  • index BSR value index BSR value 0 0 3 Less than or equal to 20 1 Less than or equal to 10 4 Less than or equal to 28 2 Less than or equal to 14 5 Less than or equal to 38 6 Less than or equal to 53 11 Less than or equal to 276 7 Less than or equal to 74 12 Less than or equal to 384 8 Less than or equal to 102 13 Less than or equal to 535 9 Less than or equal to 142 14 Less than or equal to 745 10 Less than or equal to 198 15 Less than or equal to 1038
  • the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the aforementioned small packet data is represented by the BSR as 1024.
  • the value of the BSR is less than or equal to 1038.
  • the first index is 15.
  • the first index of 15 is correspondingly converted into a binary expression, and the first IE is 1111.
  • the length a of the first IE determines the maximum value index max of the first index that can be indicated by the first IE, that is, it determines the maximum value of the BSR that can be indicated by the first IE.
  • the relationship between a and index max is as follows:
  • the data volume information may include the value of the BSR.
  • the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the aforementioned small packet data is represented by the BSR as 1024, the BSR is 1024 correspondingly converted into a binary expression, and the first IE is 10000000000.
  • the data volume information indicated by the first IE is the value of the BSR, but for larger data volume information, the length of the first IE is required to be longer. If the length of the first IE is fixed and the data amount information indicated by the first IE is the first index, the value range of the BSR that can be indicated by the first IE is larger. In fact, the expression mode of the data amount information indicated by the first IE can be selected according to a specific scenario, which is not limited in the embodiment of the present application.
  • the auxiliary information may include a first bit, and the value of the first bit is used to indicate the data transmission requirements of the UE after the UE and the network device have completed the transmission of the small packet data.
  • the value type of the first IE may be an integer type.
  • the value of the first IE is 0 or 1
  • the first IE can be expressed as INTEGER (0..1).
  • the value of the first IE is 0, it means that the UE and the network device have no data transmission requirements after the transmission of the aforementioned small packet data is completed.
  • the value of the first IE is 1, it means that the UE and the network device have completed the transmission of the aforementioned small packet data. Data transmission requirements.
  • the value of the first IE is 0, it means that the UE and the network device have completed the transmission of the aforementioned small packet data.
  • the value of the first IE is 1, it means that the UE and the network device have completed the transmission of the aforementioned small packet data.
  • the UE has no data transmission requirements.
  • the value type of the first IE may be an enumeration type.
  • the first IE may be expressed as ENUMERATED ⁇ true,false ⁇ .
  • the value of the first IE is false, it means that the UE has no data transmission requirements after the UE and the network device have completed the transmission of the aforementioned small packet data.
  • the value of the first IE is true, it means that the UE has no data transmission requirements after the UE and the network device have completed the transmission of the aforementioned small packet data.
  • Data transmission requirements or, when the value of the first IE is false, it means that the UE and the network device have completed the transmission of the aforementioned small packet data.
  • the value of the first IE is true, it means that the UE and the network device have completed the transmission of the aforementioned small packet data.
  • the UE has no data transmission requirements.
  • the auxiliary information may include: information about the RRC state that the UE expects to complete the above-mentioned small packet data transmission.
  • the assistance information may be the Release Preference (Release Preference) IE in the UE Assistance Information (UE Assistance Information) message, and the Release Preference IE may be used to indicate that the UE hopes that the RRC state after completing the above-mentioned small packet data transmission is not in the RRC_CONNECTED state.
  • the ReleasePreference IE may also carry a parameter used to indicate the detailed information of the RRC state that the UE desires after completing the aforementioned small packet data transmission, for example, the parameter is a preferred RRC-State (preferredRRC-State).
  • the content of the preferredRRC-State can be idle, inactive, or connected, which are respectively used to indicate that the UE wants the RRC state to be the RRC_IDLE state, the RRC_INACTIVE state, or the RRC_CONNECTED state after completing the above-mentioned small packet data transmission.
  • the auxiliary information may include: the relationship between the amount of data to be transmitted by the UE and the preset threshold after the UE and the network device complete the transmission of the small packet data.
  • the amount of data to be transmitted by the UE after the UE and the network device complete the transmission of the aforementioned small packet data is greater than, equal to, or less than a preset threshold.
  • the preset threshold is greater than zero.
  • the preset threshold may, but is not limited to, that the network device instructs the UE through a broadcast message, or the network device instructs the UE through an RRC message.
  • the value type of the first IE may be an integer type.
  • the value of the first IE is 0 or 1
  • the first IE can be expressed as INTEGER (0..1).
  • the value of the first IE is 0, it means that the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the above small packet data is less than the preset threshold.
  • the value of the first IE is 1, it means that the UE and the network device have completed the above small packet data.
  • the amount of data to be transmitted by the UE after the transmission is greater than or equal to the preset threshold.
  • the value of the first IE when the value of the first IE is 0, it means that the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the small packet data is greater than or equal to the preset threshold; when the value of the first IE is 1, it means that the UE and the network device The amount of data to be transmitted by the UE after the transmission of the aforementioned small packet data is less than the preset threshold.
  • the value of the first IE is 0, 1, or 2, and the first IE can be expressed as INTEGER (0..2).
  • the value of the first IE is 0, it indicates that the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the small packet data is less than the preset threshold.
  • the value of the first IE is 1, it indicates that the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the small packet data is equal to the preset threshold.
  • the value of the first IE is 2, it indicates that the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the aforementioned small packet data is greater than the preset threshold.
  • the value type of the first IE may be an enumeration type.
  • the first IE may be expressed as ENUMERATED ⁇ true,false ⁇ .
  • the first IE is false, it means that the UE and the network device have completed the transmission of the aforementioned small packet data, and the amount of data to be transmitted by the UE is less than or equal to the preset threshold.
  • the first IE is true, it means that the UE and the network device have completed the transmission of the aforementioned small packet data.
  • the amount of data to be transmitted is greater than the preset threshold.
  • the first IE when the first IE is false, it means that the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the aforementioned small packet data is greater than the preset threshold, and when the first IE is true, it means that the UE and the network device have completed the transmission of the aforementioned small packet data.
  • the amount of data to be transmitted is less than or equal to the preset threshold.
  • the auxiliary information may include: the relationship between the amount of data to be transmitted by the UE and multiple preset thresholds after the UE and the network device complete the transmission of the small packet data.
  • the value type of the first IE may be an integer type.
  • the value of the first IE is 0, 1, or 2, and the first IE can be expressed as INTEGER (0..2).
  • the value of the first IE is 0, it indicates that the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the aforementioned small packet data is less than or equal to the first preset threshold.
  • the value of the first IE is 1, it indicates that the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the small packet data is greater than the first preset threshold but less than the second preset threshold.
  • the value of the first IE is 2, it indicates that the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the small packet data is greater than or equal to the second preset threshold.
  • the first request message may also indicate whether the UE and the network device complete the data transmission requirements of the UE after the above-mentioned small packet data transmission is completed by whether the first request message carries auxiliary information.
  • the first IE can be represented as the enumerated type ENUMERATED ⁇ true ⁇ .
  • the first request message does not carry the first IE with a value of true, it means that the UE has no data transmission requirements after the UE and the network device have completed the transmission of the aforementioned small packet data. Or, when the first request message carries the first IE with a value of true, it indicates that the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the aforementioned small packet data is greater than the preset threshold. When the first request message does not carry the first IE with a value of true, it means that the amount of data to be transmitted by the UE after the UE and the network device have completed the transmission of the aforementioned small packet data is less than the preset threshold. The embodiment of the application does not limit this.
  • the network device may send an indication message to the UE, and the indication message may be used to indicate that the first request message sent by the UE may carry the first IE. After the UE receives the indication message, all subsequent first request messages sent may carry the first IE. Similarly, the indication message may be used to indicate that the first request message sent by the UE cannot carry the first IE. After the UE receives the indication message, the first request message sent subsequently does not carry the first IE.
  • the first request message carrying auxiliary information can be carried by SRB and sent on the logical channel CCCH, and the uplink small packet data can be carried by DRB and sent on the logical channel DTCH, and then the two are multiplexed by the MAC layer. It is a MAC protocol data unit (protocol data unit, PDU) sent to the network device.
  • PDU protocol data unit
  • the DU obtains an initial uplink RRC message transmission (INITIAL UL RRC MESSAGE TRANSFER) message according to the first request message carrying the auxiliary information.
  • the INITIAL UL RRC MESSAGE TRANSFER message is an F1 interface message transmitted between the DU and the CU.
  • the INITIAL UL RRC MESSAGE TRANSFER message can include multiple IEs.
  • the RAN UE identity document (ID) (RAN UE ID) IE can be used to carry the identification information of the UE
  • the RRC container (RRC-Container) IE can be used to carry the uplink (UL).
  • the CCCH message (UL-CCCH-Message for short)
  • the RRC container RRC setup complete (RRC-Container-RRCSetupComplete for short) IE can be used to carry the UL DCCH message (UL-DCCH-Message for short).
  • the UL-CCCH-Message may be an RRC message sent from the UE to the network on the uplink CCCH logical channel.
  • RRCSetupRequest message and RRCResumeRequest message.
  • the UL-DCCH-Message may be an RRC message sent from the UE to the network on the uplink DCCH logical channel.
  • RRC Setup Complete RRCSetupComplete
  • RRCResumeComplete RRC Recovery Complete
  • the RRC-Container IE in the INITIAL UL RRC MESSAGE TRANSFER message can be used to carry the first request message.
  • a request message A request message.
  • the DU After the DU receives the first request message carrying the auxiliary information and the uplink small packet data sent by the UE, on the one hand, the DU can place the first request message carrying the auxiliary information in the RRC-Container IE of the INITIAL UL RRC MESSAGE TRANSFER message.
  • the DU since the user data is carried by the DRB, and the UE context is not restored by the DU at this time, for example, SRB1 and DRB1 related configurations are not restored, the DU can save the uplink small packet data and send it to the CU after the UE context is restored.
  • the DU sends an INITIAL UL RRC MESSAGE TRANSFER message carrying auxiliary information to the CU.
  • the CU may obtain the first request message sent by the UE through the RRC-Container IE in the INITIAL UL RRC MESSAGE TRANSFER message, so as to obtain the auxiliary information carried therein.
  • the CU may also obtain the UE's intention to perform S1201 according to the first request message.
  • the first request message is an RRCResumeRequest message
  • the RRCResumeRequest message is used to instruct the UE to request to resume the suspended RRC connection.
  • the CU can obtain the UE's intention to request to resume the suspended RRC connection according to the RRCResumeRequest message.
  • the first request message is an RRCConnectionResumeRequest message
  • the RRCConnectionResumeRequest message is used to instruct the UE to request user plane EDT.
  • the CU may obtain the UE's intention to request EDT on the user plane according to the RRCConnectionResumeRequest message.
  • the CU sends a UE CONTEXT SETUP REQUEST (UE CONTEXT SETUP REQUEST) message to the DU.
  • UE CONTEXT SETUP REQUEST UE CONTEXT SETUP REQUEST
  • the UE CONTEXT SETUP REQUEST message is an F1 interface message transmitted between the DU and the CU.
  • the UE CONTEXT SETUP REQUEST message may include relevant information of the UE context that needs to be restored, such as but not limited to the SRB ID and DRB ID that need to be restored.
  • the DU sends a UE CONTEXT SETUP RESPONSE (UE CONTEXT SETUP RESPONSE) message to the CU.
  • UE CONTEXT SETUP RESPONSE UE CONTEXT SETUP RESPONSE
  • the DU restores the UE context and sends a UE CONTEXT SETUP RESPONSE message to the CU.
  • the UE CONTEXT SETUP RESPONSE message is a response message sent by the DU to the CU to confirm the restoration of the UE context.
  • the UE CONTEXT SETUP RESPONSE message is also an F1 interface message transmitted between the DU and the CU.
  • the UE CONTEXT SETUP RESPONSE message may include the related configuration of the restored UE context, for example, but not limited to, the RLC layer, MAC layer, and PHY layer related configuration of SRB1 and DRB1.
  • the DU can restore only the part of the UE context requested to be restored in the UE CONTEXT SETUP REQUEST message.
  • the SRB IDs requested to be restored in the UE CONTEXT SETUP REQUEST message are 1 and 2, and the DRB IDs are 1 and 2.
  • the DU can only restore SRB1 and DRB1 according to the actual situation.
  • the UE context restored by the DU can support the transmission of small packet data and/or auxiliary information as an example for description.
  • the DU sends the uplink small packet data to the CU.
  • the DU sends the uplink small packet data to the CU.
  • the network device is a base station, the CU can send the uplink small packet data to the core network device.
  • the CU obtains the indication message according to the auxiliary information in the INITIAL UL RRC MESSAGE TRANSFER message.
  • the CU may obtain the first request message sent by the UE through the RRC-Container IE in the INITIAL UL RRC MESSAGE TRANSFER message.
  • the CU may obtain the auxiliary information carried in the first request message according to the first request message, so as to obtain the data transmission requirements of the UE after the UE and the network device have completed the transmission of the aforementioned small packet data.
  • the CU may obtain an indication message according to the data transmission requirements of the above UE, and the indication message is used to indicate the RRC state of the UE after the UE and the network device have completed the transmission of the above small packet data.
  • the foregoing indication message may not only be used to indicate the RRC status of the UE after the UE and the network device have completed the transmission of the foregoing small packet data, but also may be used to indicate the success of the UE transmission of the foregoing uplink small packet data.
  • the aforementioned auxiliary information specifically indicates that the UE and the network device have no data transmission requirements after the transmission of the aforementioned small packet data is completed (for example, the first request message does not carry the first IE, the value of the first bit is false, and the UE needs to transmit data The amount information BSR is 0, etc.), and the CU can obtain the corresponding indication message according to the auxiliary information.
  • the indication message is used to indicate the successful transmission of the aforementioned small packet data by the UE, and is used to indicate that the RRC state of the UE remains unchanged after the transmission of the aforementioned small packet data is completed by the UE and the network equipment, that is, to instruct the UE to remain in the disconnected state in S1201.
  • the indication message refer to the description of the response message in FIG. 7 for indicating the success of the above-mentioned uplink small packet data transmission of the UE and instructing the UE to remain in the current disconnected state.
  • the core network can trigger the connection establishment instruction process, that is, the network device instructs the UE to fall back to the RRC CONNECTED state. Then, the above indication message is specifically used to indicate that the RRC state of the UE is the RRC CONNECTED state after the UE and the network device have completed the transmission of the small packet data.
  • the indication message may also be used to indicate that the above-mentioned uplink small packet data transmission of the UE is successful.
  • the UE has a need for further data transmission (for example, the amount of data to be transmitted by the UE is greater than a preset threshold, and the UE hopes to complete the transmission of the aforementioned small packet data.
  • the RRC state is RRC CONNECTED state, etc.
  • the CU can obtain the corresponding indication message according to the auxiliary information.
  • the foregoing indication message is specifically used to indicate that the RRC state of the UE is the RRC CONNECTED state after the UE and the network device have completed the transmission of the foregoing small packet data.
  • the indication message may also be used to indicate that the above-mentioned uplink small packet data transmission of the UE is successful.
  • the indication message please refer to the description of the response message used to instruct the UE to fall back to the RRC CONNECTED state in FIG. 7.
  • the foregoing indication message may not only be used to indicate the UE's RRC status after the UE and the network device have completed the transmission of the foregoing small packet data, but also may be used to indicate the failure of the UE's transmission of the foregoing uplink small packet data.
  • the aforementioned auxiliary information specifically indicates that the UE and the network device have no data transmission requirements after the transmission of the aforementioned small packet data is completed (for example, the first request message does not carry the first IE, the value of the first bit is false, and the UE needs to transmit data The amount information BSR is 0, etc.), and the CU can obtain the corresponding indication message according to the auxiliary information.
  • the indication message is used to indicate the failure of the above-mentioned uplink small packet data transmission of the UE, and is used to indicate that the RRC state of the UE remains unchanged after the UE and the network equipment complete the transmission of the above-mentioned small packet data, that is, instruct the UE to remain in the disconnected state in S1201.
  • the indication message please refer to the description of the response message in FIG. 7 for indicating the failure of the above-mentioned uplink small packet data transmission of the UE and instructing the UE to remain in the current disconnected state.
  • the auxiliary information is only used to assist the network device to obtain the instruction message.
  • the network device does not only obtain the indication message based on the auxiliary information, but also needs to comprehensively consider the network conditions such as network congestion, resource scheduling, and resource occupation to obtain the indication message. For example, suppose that due to severe network congestion and high resource occupancy, the network device does not receive the uplink small packet data sent by the UE or the received uplink small packet data is incomplete.
  • the CU can obtain the indication message according to the above-mentioned network conditions.
  • the indication message is used to indicate the failure of the above-mentioned uplink small packet data transmission of the UE, and is used to indicate that the RRC state of the UE remains unchanged after the UE and the network equipment complete the transmission of the above-mentioned small packet data, that is, instruct the UE to remain in the disconnected state in S1201.
  • the indication message refer to the description of the response message used to indicate the failure of the above-mentioned uplink small packet data transmission of the UE in FIG. 7 for details.
  • the method may further include: the CU obtains the scheduling information according to the auxiliary information in the INITIAL UL RRC MESSAGE TRANSFER message, and the CU sends an F1 interface message carrying the scheduling information to the DU.
  • the CU can not only obtain the indication message according to the auxiliary information in the INITIAL UL RRC MESSAGE TRANSFER message, but also obtain the scheduling information according to the auxiliary information in the INITIAL UL RRC MESSAGE TRANSFER message.
  • the CU may be based on the UE to be transmitted.
  • the scheduling information is obtained from the data volume information.
  • the scheduling information can be used to indicate the amount of data to be transmitted by the UE in the DU, and instruct the DU to allocate data transmission resources for the UE.
  • the method may further include: the CU sends an F1 interface message carrying the scheduling information to the DU.
  • the F1 interface message carrying the scheduling information may be, but not limited to, UE Context Management messages (UE Context Management messages).
  • UE Context Management messages UE Context Management messages
  • the F1 interface message carrying the scheduling information is the UE CONTEXT SETUP REQUEST message, the UE CONTEXT MODIFICATION REQUEST message, the UE CONTEXT MODIFICATION CONFIRM message, and the UE context release command (UE CONTEXT RELEASE COMMAND) ) Messages or other F1 interface messages that have the same function but are not standardized by 3GPP.
  • the sending of the F1 interface message carrying the scheduling information by the CU to the DU can be implemented in S1204.
  • S1204 may specifically be: the CU sends a UE CONTEXT SETUP REQUEST message carrying scheduling information to the DU.
  • the DU can obtain the scheduling information through the F1 interface message carrying the scheduling information, thereby obtaining the data volume information to be transmitted by the UE after the UE and the network device have completed the transmission of the small packet data, and the data transmission resources allocated to the UE. instruct.
  • the DU can allocate data transmission resources for the UE.
  • the aforementioned data transmission resource may be a resource allocated by the DU according to the amount of data to be transmitted by the UE, or a resource allocated by the DU according to network conditions, and is not limited to this.
  • the data transmission resource may be used by the UE to send data to the network device after the UE and the network device complete the transmission of the above-mentioned uplink small packet data.
  • the data transmission resource can be used for the UE to send data to the DU before S1209, so as to send data to the CU through the DU.
  • the data is small packet data.
  • the data amount corresponding to the data may be the above-mentioned information about the amount of data to be transmitted by the UE.
  • the amount of data BSR to be transmitted by the UE after the UE and the network equipment specifically indicated by the aforementioned auxiliary information complete the transmission of the aforementioned small packet data is greater than zero. Therefore, the scheduling information obtained by the CU according to the auxiliary information can be used to indicate the BSR of the amount of data to be transmitted by the DU and to instruct the DU to allocate data transmission resources for the UE.
  • the DU can allocate the data transmission resource according to the above-mentioned BSR of the amount of data to be transmitted by the UE.
  • the UE may send data to the network device through the data transmission resource after the UE and the network device complete the transmission of the above-mentioned uplink small packet data, and the data amount corresponding to the data is the data amount BSR to be transmitted by the above-mentioned UE.
  • S1207 may be specifically: the CU obtains the indication message according to the scheduling information and the auxiliary information in the INITIAL UL RRC MESSAGE TRANSFER message.
  • the method may further include: the DU sends information indicating the completion of the scheduling transmission to the CU.
  • the completion of the scheduling transmission may assign the DU to the UE.
  • completion of scheduled transmission may be for the DU to receive data sent by the UE based on the allocated data transmission resources.
  • S1207 may be specifically: the CU obtains an indication message according to the foregoing information and auxiliary information indicating completion of scheduling transmission.
  • S1208 The CU sends a downlink RRC message transfer (DL RRC MESSAGE TRANSFER) message carrying an indication message to the DU.
  • DL RRC MESSAGE TRANSFER downlink RRC message transfer
  • the DL RRC MESSAGE TRANSFER message is an F1 interface message transmitted between the DU and the CU.
  • the CU may place the indication message in the RRC-Container IE of the DL RRC MESSAGE TRANSFER message.
  • the CU may send a DL RRC MESSAGE TRANSFER message carrying the indication message to the DU, thereby sending the indication message to the UE through the DU.
  • S1208 may specifically be: the CU sends a DL RRC MESSAGE TRANSFER message carrying the scheduling information and an indication message to the DU.
  • the DU can obtain the indication message and scheduling information therein through the DL RRC MESSAGE TRANSFER message that carries the scheduling information and the indication message.
  • the DU can obtain the data volume information to be transmitted by the UE after the above-mentioned UE and the network device have completed the transmission of the above-mentioned small packet data through the scheduling information, and an indication of allocating data transmission resources for the UE.
  • the DU can allocate data transmission resources for the UE.
  • the indication message may be sent to the UE after the DU allocates data transmission resources for the UE.
  • the DU may perform S1209 after the UE completes data transmission with the network device through the data transmission resource.
  • S1209 The DU sends an indication message to the UE.
  • the DU may obtain the indication message through the RRC-Container IE in the DL RRC MESSAGE TRANSFER message, and send the indication message to the UE.
  • S1210 The UE enters the corresponding RRC state according to the indication message.
  • the UE if the UE does not receive the instruction message sent by the DU, it considers that the transmission of the above-mentioned uplink small packet data has failed. If the UE receives the indication message sent by the DU, the UE can obtain whether the uplink small packet data is successfully transmitted according to the indication message, and enter the corresponding RRC state according to the indication message.
  • the UE can obtain that the uplink small packet data transmission is successful according to the indication message.
  • the UE can maintain the current RRC state according to the indication message, that is, the RRC INACTIVE state that the UE is in in S1201.
  • the UE can obtain the above-mentioned uplink small packet data transmission success according to the indication message.
  • the UE can fall back to the RRC CONNECTED state according to the indication message.
  • the UE can obtain that the uplink small packet data transmission is unsuccessful according to the indication message.
  • the UE can maintain the current RRC state according to the indication message, that is, the RRC INACTIVE state that the UE is in in S1201.
  • the method may further include:
  • S1211 The UE sends a first response message to the DU.
  • the UE may send a first response message to the DU.
  • the first response message is an RRC connection setup complete (RRCConnectionSetupComplete) message, an RRC connection recovery complete (RRCConnectionResumeComplete) message, an RRCSetupComplete message, a RRCResumeComplete message, or other RRC messages that have the same function but are not standardized by 3GPP.
  • the above indication message is an RRCConnectionSetup message.
  • the first response message sent by the UE to the DU may be an RRCConnectionSetupComplete message.
  • the above indication message is an RRCConnectionResume message.
  • the first response message sent by the UE to the DU may be an RRCConnectionResumeComplete message.
  • the above indication message is an RRCSetup message.
  • the first response message sent by the UE to the DU may be an RRCSetupComplete message.
  • the above indication message is an RRCResume message.
  • the first response message sent by the UE to the DU may be an RRCResumeComplete message.
  • the DU sends an uplink RRC message transfer (UL RRC MESSAGE TRANSFER) message carrying the first response message to the CU.
  • UL RRC MESSAGE TRANSFER uplink RRC message transfer
  • the UL RRC MESSAGE TRANSFER message is an F1 interface message transmitted between the DU and the CU.
  • the CU may obtain the first response message of the UE in response to the indication message through the UL RRC MESSAGE TRANSFER message carrying the first response message.
  • the network device has downlink small packet data to send to the UE.
  • the method may further include: the CU sends the downlink small packet data to the DU based on the UE context restored by the DU.
  • the DU can send the downlink small packet data to the UE when sending the indication message.
  • the downlink small packet data can be transmitted on the DTCH and multiplexed with the indication message transmitted on the DCCH.
  • FIG. 12 uses the UE to perform S1201 when there is uplink small packet data to be sent to the network device, that is, the UE actively initiates the transmission process of the small packet data as an example for illustration.
  • the UE passively initiates the transmission process of small packet data under the instruction of the network device.
  • the transmission process under the user plane in this case is similar to the transmission process shown in Figure 12, and the differences are as follows: Description:
  • the method may further include: the CU sends a paging message to the UE through the DU; the paging message is used by the network device to indicate that there is downlink data to send to the UE.
  • S1201 can be changed to: in response to the paging message, the UE sends a first request message carrying auxiliary information in a disconnected state, and in this case, the UE may not send uplink small packet data in S1201.
  • S1206 can be changed to: based on the UE context restored by the DU, the CU sends the downlink small packet data to the DU.
  • S1209 can be changed to: the DU sends downlink small packet data and an indication message to the UE.
  • the downlink small packet data sent by the DU to the UE may not be sent with the indication message in S1209, but sent to the UE before S1209 and after S1205.
  • the UE may receive the downlink small packet data based on the downlink resource scheduled by the network device. The embodiment of the application does not limit this.
  • a UE in a disconnected state can report auxiliary information while requesting small packets of data with the network device.
  • the CU may refer to the auxiliary information to determine the RRC state of the indicated UE, so as to avoid as far as possible the problem of instructing the UE to enter an inappropriate RRC state when the CU cannot learn the data transmission requirements of the UE after the above-mentioned small packet data transmission is completed.
  • the impact on the subsequent data transmission of the UE is reduced, and unnecessary power consumption and signaling overhead of the UE are effectively avoided.
  • auxiliary information may be carried in the first request message sent by the UE to the network device, and there may be no need to add an additional RRC message between the UE and the DU.
  • the auxiliary information carried in the first request message is placed in the RRC Container IE of the first interface message, and the first interface message does not need to add an IE. There are fewer changes in the processing logic of DU, fewer restrictions on the use of auxiliary information, and a wider range of applications.
  • FIG. 13 is a schematic flowchart of another method for controlling the RRC state of a UE according to an embodiment of the present application.
  • FIG. 13 specifically is a schematic flow diagram of the transmission process of the method under the control plane.
  • This method can be applied to the communication system shown in FIG. 1, and the network device in the method may be the base station 120 in the communication system shown in FIG. 1.
  • This method can also be applied to the NR system shown in FIG. 2, and the network device in this method may also be the gNB2200 in the NR system shown in FIG. 2, and it is not limited to this.
  • the network device in the method may include a CU and at least one DU. The method includes but is not limited to the following steps:
  • S1301 The UE sends a first request message carrying auxiliary information and uplink small packet data to the DU in a disconnected state.
  • the uplink small packet data in S1201 in FIG. 12 is data sent to the DU together with the first request message carrying auxiliary information.
  • the uplink small packet data in S1301 is carried in a first request message, and the first request message also carries auxiliary information.
  • the description of the first request message under the control plane is similar to the description of the first request message under the user plane. For details, refer to the description of S1201 in FIG. 12. For an example of the first request message under the control plane, refer to FIGS. The first request message in Fig. 8 and Fig. 10 will not be repeated here.
  • the first request message in the transmission process under the user plane and the first request message in the transmission process under the control plane may be the same type of RRC message. For example, for a UE in the RRC INACTIVE state, the first request message sent in S1201 and the first request message sent in S1301 in FIG. 12 may both be RRCResumeRequest messages.
  • the first request message in the transmission process under the user plane and the first request message in the transmission process under the control plane may not be the same RRC message.
  • the first request message sent in S1201 of FIG. 12 is an RRCConnectionResumeRequest message
  • the first request message sent in S1301 is an RRCEarlyDataRequest message.
  • the uplink small packet data carried in the first request message may be carried by SRB (such as SRB0) and sent on the logical channel CCCH.
  • the description of the non-connected state and auxiliary information in S1301 is similar to the description of the non-connected state and auxiliary information in S1201 of FIG. 12.
  • the description of S1201 of FIG. 12 please refer to the description of S1201 of FIG.
  • the DU obtains the INITIAL UL RRC MESSAGE TRANSFER message according to the first request message carrying the auxiliary information and the uplink small packet data.
  • the same as S1202 in FIG. 12 is that the first request message carrying auxiliary information in S1302 is also placed in the RRC-Container IE of the INITIAL UL RRC MESSAGE TRANSFER message.
  • the description of the INITIAL UL RRC MESSAGE TRANSFER message may refer to the description of S1202 in FIG. 12 for details, which will not be repeated here.
  • the difference from S1202 in FIG. 12 is that in S1302, because the uplink small packet data is carried in the first request message, the uplink small packet data is also placed in the RRC-Container IE of the INITIAL UL RRC MESSAGE TRANSFER message. Since the uplink small packet data is carried in the INITIAL UL RRC MESSAGE TRANSFER message and sent to the CU, the DU does not need to save the uplink small packet data or restore the UE context before sending it to the CU.
  • the DU sends an INITIAL UL RRC MESSAGE TRANSFER message carrying auxiliary information and uplink small packet data to the CU.
  • the CU can obtain the first request message sent by the UE through the RRC-Container IE in the INITIAL UL RRC MESSAGE TRANSFER message, so as to obtain the auxiliary information and the uplink small packet data carried therein. If the network device is a base station, the CU can send the uplink small packet data to the core network device.
  • the CU may also obtain the UE's intention to perform S1301 according to the first request message.
  • the first request message is an RRCResumeRequest message
  • the RRCResumeRequest message is used to instruct the UE to request to resume the suspended RRC connection.
  • the CU can obtain the UE's intention to request to resume the suspended RRC connection according to the RRCResumeRequest message.
  • the first request message is a RRCEarlyDataRequest message
  • the RRCEarlyDataRequest message is used to instruct the UE to request EDT of the control plane.
  • the CU can obtain the UE's intention to request the EDT of the control plane according to the RRCEarlyDataRequest message.
  • S1304 The CU sends a UE CONTEXT SETUP REQUEST message to the DU.
  • S1304 is the same as S1204 in FIG. 12, and details are not described herein again.
  • the DU sends a UE CONTEXT SETUP RESPONSE message to the CU.
  • S1305 is the same as S1205 in FIG. 12, and details are not described herein again.
  • the CU obtains the indication message according to the auxiliary information in the INITIAL UL RRC MESSAGE TRANSFER message.
  • S1306 is similar to S1207 in FIG. 12. For details, refer to the description of S1207 in FIG. 12. For the example of the indication message in S1207 of FIG. 12, refer to the description of the response message in FIG. 7 for details, and refer to the description of the response message in FIG. 6 for the example of the indication message in S1306.
  • the method may further include: the CU obtains the scheduling information according to the auxiliary information in the INITIAL UL RRC MESSAGE TRANSFER message, and the CU sends an F1 interface message carrying the scheduling information to the DU.
  • the CU can not only obtain the indication message according to the auxiliary information in the INITIAL UL RRC MESSAGE TRANSFER message, but also obtain the scheduling information according to the auxiliary information in the INITIAL UL RRC MESSAGE TRANSFER message.
  • the CU may be based on the UE to be transmitted.
  • the scheduling information is obtained from the data volume information.
  • the scheduling information can be used to indicate the amount of data to be transmitted by the UE in the DU, and instruct the DU to allocate data transmission resources for the UE. It should be noted that the sequence of S1306 and S1304-S1305 is not limited.
  • the method may further include: the CU sends the carrying schedule to the DU Informational F1 interface message.
  • the F1 interface message carrying the scheduling information refers to the description of the F1 interface message carrying the scheduling information in FIG. 12, which will not be repeated.
  • the F1 interface message carrying the scheduling information is a UE CONTEXT SETUP REQUEST message
  • the sending of the F1 interface message carrying the scheduling information by the CU to the DU can be implemented in S1304.
  • S1304 may specifically be: the CU sends a UE CONTEXT SETUP REQUEST message carrying scheduling information to the DU.
  • the DU can obtain the scheduling information through the F1 interface message carrying the scheduling information, thereby obtaining the data volume information to be transmitted by the UE after the UE and the network device have completed the transmission of the small packet data, and the data transmission resources allocated to the UE. instruct.
  • the DU can allocate data transmission resources for the UE.
  • For the description of the data transmission resource refer to the description of the data transmission resource in the F1 interface message carrying scheduling information sent by the CU to the DU in FIG. 12, which is not repeated here.
  • S1306 may be specifically: the CU obtains the indication message according to the scheduling information and the auxiliary information in the INITIAL UL RRC MESSAGE TRANSFER message.
  • the method may further include: the DU sends information indicating the completion of the scheduling transmission to the CU.
  • the completion of the scheduling transmission may assign the DU to the UE.
  • completion of scheduled transmission may be for the DU to receive data sent by the UE based on the allocated data transmission resources.
  • S1306 may be specifically as follows: the CU obtains the indication message according to the foregoing information and auxiliary information indicating completion of scheduling transmission.
  • the CU sends a DL RRC MESSAGE TRANSFER message carrying an indication message to the DU.
  • S1307 is similar to S1208 in FIG. 12. For details, refer to the description of S1208 in FIG. 12.
  • S1307 may specifically be: the CU sends a DL RRC MESSAGE TRANSFER message carrying the scheduling information and an indication message to the DU.
  • the indication message may be sent to the UE after the DU allocates data transmission resources for the UE.
  • the DU may perform S1308 after the UE completes data transmission with the network device through the data transmission resource.
  • S1308 The DU sends an indication message to the UE.
  • S1308 is the same as S1209 in FIG. 12, and details are not described herein again.
  • S1309 The UE enters the corresponding RRC state according to the indication message.
  • S1309 is the same as S1210 in FIG. 12, and details are not described herein again.
  • the method may further include:
  • S1310 The UE sends a first response message to the DU.
  • S1310 is the same as S1211 in FIG. 12, and details are not described herein again.
  • the DU sends a UL RRC MESSAGE TRANSFER message carrying the first response message to the CU.
  • S1311 is the same as S1212 in FIG. 12, and details are not repeated here.
  • the network device has downlink small packet data to send to the UE.
  • the method may further include: the CU sends the downlink small packet data to the DU based on the UE context restored by the DU.
  • the downlink small packet data can be carried in the indication message sent by the DU to the UE.
  • the indication message carrying the downlink small packet data is transmitted on the DCCH.
  • FIG. 13 uses the UE to perform S1301 when there is uplink small packet data to be sent to the network device, that is, the UE actively initiates the transmission process of the small packet data as an example for illustration.
  • the UE passively initiates the transmission process of small packet data under the instruction of the network device.
  • the transmission process under the user plane is similar to the transmission process shown in Figure 13, and the differences are as follows: Description:
  • the method may further include: the CU sends a paging message to the UE through the DU; the paging message is used by the network device to indicate that there is downlink data to send to the UE.
  • S1301 can be changed to: in response to the paging message, the UE sends a first request message carrying auxiliary information in a disconnected state. In this case, the first request message in S1301 may not carry uplink small packet data.
  • the method may further include: the CU sends the downlink small packet data to the DU.
  • S1308 can be changed to: the DU sends an indication message carrying the downlink small packet data to the UE.
  • the downlink small packet data sent by the DU to the UE may not be carried in the indication message of S1308 and sent, but sent to the UE before S1308 and after S1305.
  • the UE may receive the downlink small packet data based on the downlink resource scheduled by the network device. The embodiment of the application does not limit this.
  • a UE in a disconnected state can report auxiliary information while requesting small packets of data with the network device.
  • the CU may refer to the auxiliary information to determine the RRC state of the indicated UE, so as to avoid as far as possible the problem of instructing the UE to enter an inappropriate RRC state when the CU cannot learn the data transmission requirements of the UE after the above-mentioned small packet data transmission is completed.
  • the impact on the subsequent data transmission of the UE is reduced, and unnecessary power consumption and signaling overhead of the UE are effectively avoided.
  • auxiliary information may be carried in the first request message sent by the UE to the network device, and there may be no need to add an additional RRC message between the UE and the DU.
  • the auxiliary information carried in the first request message is placed in the RRC Container IE of the first interface message, and the first interface message may not need to add an IE. There are fewer changes in the processing logic of DU, fewer restrictions on the use of auxiliary information, and a wider range of applications.
  • the auxiliary information may not be carried in the first request message sent by the UE to the DU in the disconnected state, but sent together with the first request message.
  • the auxiliary information may not be carried in the first request message sent by the UE to the DU in the disconnected state, but sent together with the first request message.
  • FIG. 14 is a schematic flowchart of another method for controlling the RRC state of the UE according to an embodiment of the present application.
  • FIG. 14 specifically is a schematic flow diagram of the transmission process under the user plane of the method.
  • This method can be applied to the communication system shown in FIG. 1, and the network device in the method may be the base station 120 in the communication system shown in FIG. 1.
  • This method can also be applied to the NR system shown in FIG. 2, and the network device in this method may also be the gNB2200 in the NR system shown in FIG. 2, and it is not limited to this.
  • the network device in the method may include a CU and at least one DU.
  • the method includes but is not limited to the following steps:
  • S1401 The UE sends a first request message, auxiliary information, and uplink small packet data to the DU in a disconnected state.
  • the relationship between the auxiliary information and the first request message shown in FIGS. 14 and 15 may be different from the relationship between the auxiliary information and the first request message shown in FIGS. 12 and 13.
  • the auxiliary information may not be carried in the first request message, but sent together with the first request message.
  • the first request message may not include the newly added first IE to carry auxiliary information.
  • the auxiliary information may be carried in the UEAssistanceInformation message.
  • S1401 is, for example, that the UE sends the first request message, the UEAssistanceInformation message carrying the auxiliary information, and the uplink packet data to the DU in a disconnected state.
  • the UEAssistanceInformation message may include a newly added second IE.
  • the assistance information carried in the UEAssistanceInformation message may include the assistance information placed in the second IE, and specifically may include the assistance information described in Case 1, Case 2, and/or Case 4 in S1201 of FIG. 12.
  • the assistance information carried in the UEAssistanceInformation message may also include the ReleasePreference IE in the UEAssistanceInformation message, that is, the assistance information described in Case 3 in S1201 of FIG. 12.
  • the UEAssistanceInformation message may not include the newly added second IE.
  • the assistance information may be the ReleasePreference IE in the UEAssistanceInformation message, that is, the assistance information described in Case 3 in S1201 of FIG. 12.
  • the UEAssistanceInformation message may also indicate the data transmission requirements of the UE after the UE and the network device have completed the transmission of the above-mentioned small packet data through whether to add a second IE, which is not limited to this.
  • the first request message can be carried by SRB (for example, SRB0) and sent on the logical channel CCCH
  • the uplink small packet data can be carried by DRB and sent on the logical channel DTCH
  • the auxiliary information can be carried by other SRBs (for example, SRB1). ) Is carried and sent on the logical channel DCCH, and the MAC layer multiplexes the three into one MAC PDU and sends it to the network device.
  • non-connected state, the first request message and the auxiliary information in S1401 are similar to the non-connected state, the first request message and the auxiliary information in S1201 of FIG. 12, and for details, please refer to the description of S1201 in FIG. Do not repeat it.
  • the DU obtains an INITIAL UL RRC MESSAGE TRANSFER message according to the first request message.
  • the first request message belongs to UL-CCCH-Message, therefore, the RRC-Container IE in the INITIAL UL RRC MESSAGE TRANSFER message can be used to carry the first request message.
  • the DU After the DU receives the auxiliary information, the first request message, and the uplink small packet data sent by the UE, on the one hand, the DU can place the first request message in the RRC-Container IE of the INITIAL UL RRC MESSAGE TRANSFER message.
  • the DU since user data is carried by DRB and auxiliary information is carried by SRB, and the DU does not restore the UE context at this time, such as SRB1 and DRB1 related configuration, etc., the DU can save the uplink small packet data and auxiliary information, and restore The UE context is then sent to the CU.
  • the DU sends an INITIAL UL RRC MESSAGE TRANSFER message carrying the first request message to the CU.
  • the CU may obtain the first request message sent by the UE through the RRC-Container IE in the INITIAL UL RRC MESSAGE TRANSFER message, so as to obtain the UE's intention to perform S1401.
  • the CU may obtain the intention of the UE according to the first request message, refer to the example of S1203 in FIG. 12 for details.
  • S1404 The CU sends a UE CONTEXT SETUP REQUEST message to the DU.
  • S1404 is the same as S1204 in FIG. 12, and details are not described herein again.
  • the DU obtains the UE CONTEXT SETUP RESPONSE message according to the auxiliary information.
  • the DU restores the UE context.
  • the UE CONTEXT SETUP RESPONSE message is a response message sent by the DU to the CU to confirm the restoration of the UE context.
  • the UE CONTEXT SETUP RESPONSE message may include the related configuration of the restored UE context, such as but not limited to the RLC layer, MAC layer, and PHY layer related configuration of SRB1 and DRB1.
  • the UE CONTEXT SETUP RESPONSE message may include a newly added third IE, such as a UE Assistance Information Container (UE Assistance Information Container) IE, and the auxiliary information may be placed in the third IE.
  • UE Assistance Information Container UE Assistance Information Container
  • the DU sends a UE CONTEXT SETUP RESPONSE message carrying auxiliary information to the CU.
  • the DU may send a UE CONTEXT SETUP RESPONSE message carrying auxiliary information to the CU.
  • the DU sends the uplink small packet data to the CU.
  • S1407 is the same as S1206 in FIG. 12, and will not be repeated here.
  • S1408 The CU obtains the indication message according to the auxiliary information in the UE CONTEXT SETUP RESPONSE message.
  • the CU may obtain the auxiliary information sent by the UE through the third IE in the UE CONTEXT SETUP RESPONSE message, so as to obtain the data transmission requirements of the UE after the UE and the network device have completed the transmission of the small packet data. Then, the CU may obtain an indication message according to the data transmission requirements of the above UE, and the indication message is used to indicate the RRC state of the UE after the UE and the network device have completed the transmission of the above small packet data. The CU obtains the indication message according to the auxiliary information and the description of the indication message can refer to the corresponding description in S1207 of FIG. 12 for details, which will not be repeated.
  • the auxiliary information is only used to assist the network device to obtain the instruction message.
  • the network device does not only obtain the indication message based on the auxiliary information, but also needs to comprehensively consider the network conditions such as network congestion, resource scheduling, and resource occupation to obtain the indication message.
  • the network device does not only obtain the indication message based on the auxiliary information, but also needs to comprehensively consider the network conditions such as network congestion, resource scheduling, and resource occupation to obtain the indication message.
  • the network device does not only obtain the indication message based on the auxiliary information, but also needs to comprehensively consider the network conditions such as network congestion, resource scheduling, and resource occupation to obtain the indication message.
  • the method may further include: the CU obtains the scheduling information according to the auxiliary information in the INITIAL UL RRC MESSAGE TRANSFER message, and the CU sends an F1 interface message carrying the scheduling information to the DU.
  • S1408 may specifically be: the CU obtains the indication message according to the scheduling information and the auxiliary information in the INITIAL UL RRC MESSAGE TRANSFER message.
  • the method may further include: the DU sends information indicating the completion of the scheduling transmission to the CU.
  • the completion of the scheduling transmission may assign the DU to the UE.
  • completion of scheduled transmission may be for the DU to receive data sent by the UE based on the allocated data transmission resources.
  • S1408 may specifically be: the CU obtains an indication message according to the above information and auxiliary information indicating completion of scheduling transmission.
  • the CU can obtain not only the indication message according to the auxiliary information in the UE CONTEXT SETUP RESPONSE message, but also the scheduling information according to the auxiliary information in the UE CONTEXT SETUP RESPONSE message.
  • the CU may be based on the UE to be transmitted.
  • the scheduling information is obtained from the data volume information.
  • the scheduling information can be used to indicate the amount of data to be transmitted by the UE in the DU, and instruct the DU to allocate data transmission resources for the UE.
  • S1409 The CU sends a DL RRC MESSAGE TRANSFER message carrying an indication message to the DU.
  • the CU places the indication message in the RRC-Container IE of the DL RRC MESSAGE TRANSFER message. Then, the CU sends the DL RRC MESSAGE TRANSFER message carrying the indication message to the DU, thereby sending the indication message to the UE through the DU.
  • S1409 may specifically be: the CU sends a DL RRC MESSAGE TRANSFER message carrying the scheduling information and an indication message to the DU.
  • the DU can obtain the indication message and scheduling information therein through the DL RRC MESSAGE TRANSFER message that carries the scheduling information and the indication message.
  • the DU can obtain the data volume information to be transmitted by the UE after the above-mentioned UE and the network device have completed the transmission of the above-mentioned small packet data through the scheduling information, and an indication of allocating data transmission resources for the UE.
  • the DU can allocate data transmission resources for the UE.
  • the specific description of the data transmission resource can be referred to the description of the data transmission resource in the F1 interface message carrying scheduling information sent by the CU to the DU in Fig. 12, which will not be repeated.
  • the indication message may be sent to the UE after the DU allocates data transmission resources for the UE.
  • the DU may perform S1410 after the UE completes data transmission with the network device through the data transmission resource.
  • the scheduling information may also be carried in the F1 interface message sent by the CU to the DU after S1408 and before S1409 and sent to the DU.
  • the embodiment of the application does not limit this.
  • S1410 The DU sends an indication message to the UE.
  • S1410 is the same as S1209 in FIG. 12, and details are not described herein again.
  • S1411 The UE enters the corresponding RRC state according to the indication message.
  • S1411 is the same as S1210 in FIG. 12, and details are not described herein again.
  • the method may further include:
  • S1412 The UE sends a first response message to the DU.
  • S1412 is the same as S1211 in FIG. 12, and details are not described herein again.
  • the DU sends the UL RRC MESSAGE TRANSFER message carrying the first response message to the CU.
  • S1413 is the same as S1212 in FIG. 12, and details are not described herein again.
  • the network device has downlink small packet data to send to the UE.
  • the method may further include: the CU sends the downlink small packet data to the DU based on the UE context restored by the DU.
  • the DU may send the downlink small packet data to the UE when sending the indication message.
  • the downlink small packet data can be transmitted on the DTCH and multiplexed with the indication message transmitted on the DCCH.
  • FIG. 14 uses the UE to perform S1401 when there is uplink small packet data to be sent to the network device, that is, the UE actively initiates the transmission process of the small packet data as an example for illustration.
  • the UE passively initiates the transmission process of small packets under the instruction of the network device.
  • the transmission process under the user plane in this case is similar to the transmission process shown in Figure 14, and the differences are as follows: Description:
  • the method may further include: the CU sends a paging message to the UE through the DU; the paging message is used by the network device to indicate that there is downlink data to send to the UE.
  • S1401 can be changed to: in response to the paging message, the UE sends the first request message and the auxiliary information in the disconnected state, and in this case, the UE may not send the uplink small packet data in S1401.
  • S1407 can be changed to: based on the UE context restored by the DU, the CU sends the downlink small packet data to the DU.
  • S1410 can be changed to: the DU sends downlink small packet data and an indication message to the UE.
  • the downlink small packet data sent by the DU to the UE may not be sent with the indication message in S1410, but sent to the UE before S1410 and after S1406.
  • the UE may receive the downlink small packet data based on the downlink resource scheduled by the network device. The embodiment of the application does not limit this.
  • a UE in a disconnected state can report auxiliary information while requesting small packet data with the network device.
  • the CU may refer to the auxiliary information to determine the RRC state of the indicated UE, so as to avoid as far as possible the problem of instructing the UE to enter an inappropriate RRC state when the CU cannot learn the data transmission requirements of the UE after the above-mentioned small packet data transmission is completed.
  • the impact on the subsequent data transmission of the UE is reduced, and unnecessary power consumption and signaling overhead of the UE are effectively avoided.
  • auxiliary information can be sent together with the first request message, and the auxiliary information can also include more information, and the form can be more flexible.
  • FIG. 15 is a schematic flowchart of yet another method for controlling the RRC state of a UE according to an embodiment of the present application.
  • FIG. 15 specifically is a schematic flow diagram of the transmission process of the method under the control plane.
  • This method can be applied to the communication system shown in FIG. 1, and the network device in the method may be the base station 120 in the communication system shown in FIG. 1.
  • This method can also be applied to the NR system shown in FIG. 2, and the network device in this method may also be the gNB2200 in the NR system shown in FIG. 2, and it is not limited to this.
  • the network device in the method may include a CU and at least one DU. The method includes but is not limited to the following steps:
  • S1501 The UE sends a first request message carrying uplink small packet data and auxiliary information to the DU in a disconnected state.
  • the uplink small packet data in S1401 in FIG. 14 is the data sent to the DU together with the first request message.
  • the uplink small packet data in S1501 is carried in the first request message.
  • the first request message in the transmission process under the user plane and the first request message in the transmission process under the control plane may be the same type of RRC message or different types of RRC messages. For details, see S1301 in FIG. 13 Example.
  • the first request message carrying uplink small packet data can be carried by SRB (for example, SRB0) and sent on the logical channel CCCH. It can be carried by other SRBs (such as SRB1) and sent on the logical channel DCCH, and then the MAC layer multiplexes the two into one MAC PDU and sends it to the network device.
  • SRB for example, SRB0
  • SRB1 SRB1
  • DCCH logical channel
  • the unconnected state, the first request message and auxiliary information in S1501 under the control plane are similar to the unconnected state, first request message, and auxiliary information in S1401 in Figure 14 on the user plane.
  • Figure 14 The description of S1401 will not be repeated here.
  • the DU obtains an INITIAL UL RRC MESSAGE TRANSFER message according to the first request message carrying the uplink small packet data.
  • the same as S1402 in FIG. 14 is that the first request message in S1502 is also placed in the RRC-Container IE of the INITIAL UL RRC MESSAGE TRANSFER message.
  • the description of the INITIAL UL RRC MESSAGE TRANSFER message may refer to the description of S1202 in FIG. 12 for details, which will not be repeated here.
  • the DU can still save the auxiliary information and send it to the CU after restoring the UE context.
  • the difference from S1402 in FIG. 14 is that in S1502, because the uplink small packet data is carried in the first request message, the uplink small packet data is also placed in the RRC-Container IE of the INITIAL UL RRC MESSAGE TRANSFER message. Since the uplink small packet data is carried in the INITIAL UL RRC MESSAGE TRANSFER message and sent to the CU, the DU does not need to save the uplink small packet data or restore the UE context before sending it to the CU.
  • the DU sends an INITIAL UL RRC MESSAGE TRANSFER message carrying uplink small packet data to the CU.
  • the CU may obtain the first request message sent by the UE through the RRC-Container IE in the INITIAL UL RRC MESSAGE TRANSFER message, so as to obtain the uplink small packet data carried therein.
  • the network device is a base station
  • the CU can send the uplink small packet data to the core network device.
  • the CU may also obtain the UE's intention to perform S1501 according to the first request message. For details, refer to the example of S1303 in FIG. 13.
  • S1504 The CU sends a UE CONTEXT SETUP REQUEST message to the DU.
  • S1504 is the same as S1404 in FIG. 14, and will not be described again.
  • the DU obtains the UE CONTEXT SETUP RESPONSE message according to the auxiliary information.
  • S1505 is the same as S1405 in FIG. 14, and details are not described again.
  • the DU sends a UE CONTEXT SETUP RESPONSE message carrying auxiliary information to the CU.
  • S1506 is the same as S1406 in FIG. 14, and details are not described herein again.
  • the CU obtains the indication message according to the auxiliary information in the UE CONTEXT SETUP RESPONSE message.
  • S1507 is similar to S1408 in FIG. 14.
  • the example of the indication message in S1507 refer to the description of the response message in FIG. 6 for details.
  • the method may further include: the CU obtains the scheduling information according to the auxiliary information in the INITIAL UL RRC MESSAGE TRANSFER message, and the CU sends an F1 interface message carrying the scheduling information to the DU.
  • S1507 may be specifically: the CU obtains the indication message according to the scheduling information and the auxiliary information in the INITIAL UL RRC MESSAGE TRANSFER message.
  • the method may further include: the DU sends information indicating the completion of the scheduling transmission to the CU.
  • the completion of the scheduling transmission may assign the DU to the UE.
  • completion of scheduled transmission may be for the DU to receive data sent by the UE based on the allocated data transmission resources.
  • S1507 may be specifically: the CU obtains an indication message according to the foregoing information indicating the completion of the scheduling transmission and the auxiliary information.
  • the CU can obtain not only the indication message according to the auxiliary information in the UE CONTEXT SETUP RESPONSE message, but also the scheduling information according to the auxiliary information in the UE CONTEXT SETUP RESPONSE message.
  • the CU may be based on the UE to be transmitted.
  • the scheduling information is obtained from the data volume information.
  • the scheduling information can be used to indicate the amount of data to be transmitted by the UE in the DU, and instruct the DU to allocate data transmission resources for the UE.
  • S1508 The CU sends a DL RRC MESSAGE TRANSFER message carrying an indication message to the DU.
  • S1508 is similar to S1409 in FIG. 14. For details, refer to the description of S1409 in FIG. 14.
  • S1508 may specifically be: the CU sends a DL RRC MESSAGE TRANSFER message carrying the scheduling information and an indication message to the DU.
  • the indication message may be sent to the UE after the DU allocates data transmission resources for the UE.
  • the DU may perform S1509 after the UE completes data transmission with the network device through the data transmission resource.
  • S1509 The DU sends an indication message to the UE.
  • S1509 is the same as S1410 in FIG. 14, and details are not described herein again.
  • S1510 The UE enters the corresponding RRC state according to the indication message.
  • S1510 is the same as S1411 in FIG. 14, and details are not described herein again.
  • the method may further include:
  • S1511 The UE sends a first response message to the DU.
  • S1511 is the same as S1412 in FIG. 14, and details are not described herein again.
  • the DU sends a UL RRC MESSAGE TRANSFER message carrying the first response message to the CU.
  • S1512 is the same as S1413 in FIG. 14, and details are not described herein again.
  • the network device has downlink small packet data to send to the UE.
  • the method may further include: the CU sends the downlink small packet data to the DU based on the UE context restored by the DU.
  • the downlink small packet data can be carried in the indication message sent by the DU to the UE.
  • the indication message carrying the downlink small packet data is transmitted on the DCCH.
  • FIG. 15 uses the UE to perform S1501 when there is uplink small packet data to be sent to the network device, that is, the UE actively initiates the transmission process of the small packet data as an example for illustration. However, in specific implementations, there is also a case where the UE passively initiates the transmission of small packets under the instructions of the network device.
  • the transmission process under the user plane in this case is similar to the transmission process shown in Figure 15, and the differences are as follows: Description:
  • the method may further include: the CU sends a paging message to the UE through the DU; the paging message is used by the network device to indicate that there is downlink data to send to the UE.
  • S1501 can be changed to: in response to the paging message, the UE sends the first request message and auxiliary information in a disconnected state, and the first request message in S1501 in this case may not carry uplink small packet data.
  • the method may further include: the CU sends the downlink small packet data to the DU.
  • S1509 can be changed to: the DU sends an indication message carrying the downlink small packet data to the UE.
  • the downlink small packet data sent by the DU to the UE may not be sent with the indication message in S1509, but sent to the UE before S1509 and after S1506.
  • the UE may receive the downlink small packet data based on the downlink resource scheduled by the network device. The embodiment of the application does not limit this.
  • a UE in a disconnected state can report auxiliary information while requesting small packets of data with the network device.
  • the CU may refer to the auxiliary information to determine the RRC state of the indicated UE, so as to avoid as far as possible the problem of instructing the UE to enter an inappropriate RRC state when the CU cannot learn the data transmission requirements of the UE after the above-mentioned small packet data transmission is completed.
  • the impact on the subsequent data transmission of the UE is reduced, and unnecessary power consumption and signaling overhead of the UE are effectively avoided.
  • auxiliary information can be sent together with the first request message, and the auxiliary information can also include more information, and the form can be more flexible.
  • FIG. 16 is a schematic flowchart of yet another method for controlling the RRC state of a UE according to an embodiment of the present application.
  • This method can be applied to the communication system shown in FIG. 1, and the network device in the method may be the base station 120 in the communication system shown in FIG. 1.
  • This method can also be applied to the NR system shown in FIG. 2, and the network device in this method may also be the gNB2200 in the NR system shown in FIG. 2, and it is not limited to this.
  • the network device in the method may include a CU and at least one DU. The method includes but is not limited to the following steps:
  • S1601 The UE sends auxiliary information to the DU in the unconnected state.
  • the aforementioned non-connected state may be the RRC INACTIVE state or the RRC IDLE state shown in FIG. 5.
  • the auxiliary information is used to indicate the data transmission requirements of the UE after the UE and the network device have completed the transmission of the small packet data.
  • the transmission mode of the auxiliary information may include but is not limited to the following two situations:
  • S1601 may specifically be: the UE sends a first request message carrying auxiliary information to the DU in a disconnected state.
  • the first request message may be used by the UE to request data transmission with the network device.
  • the description of the auxiliary information and the first request message refer to the description of the auxiliary information and the first request message in S1201 in FIG. 12 and S1301 in FIG. 13 for details.
  • S1601 may specifically be: the UE sends the auxiliary information and the first request message to the DU in the disconnected state.
  • the first request message may be used by the UE to request data transmission with the network device.
  • the description of the auxiliary information and the first request message refer to the description of the auxiliary information and the first request message in S1401 of FIG. 14 and S1501 of FIG. 15 for details.
  • the UE may perform S1601 when there is uplink small packet data to be sent to the network device, that is, the UE may actively initiate the transmission of the small packet data, and the UE may send the uplink small packet data to the DU in S1601.
  • S1601 may be specifically: the UE sends the first request message carrying the auxiliary information and the uplink small packet data to the DU in the non-connected state. At this time, for the description of the uplink small packet data, refer to the description of the uplink small packet data in S1201 of FIG. 12 for details. If under the control plane, S1601 may specifically be: the UE sends a first request message carrying auxiliary information and uplink small packet data to the DU in a disconnected state. At this time, for the description of the uplink small packet data, refer to the description of the uplink small packet data in S1301 of FIG. 13 for details.
  • S1601 may specifically be: the UE sends the auxiliary information, the first request message and the uplink small packet data to the DU in the non-connected state. At this time, for the description of the uplink small packet data, refer to the description of the uplink small packet data in S1401 of FIG. 14 for details. If under the control plane, S1601 may specifically be: the UE sends the first request message carrying the uplink small packet data and the auxiliary information to the DU in the disconnected state. At this time, for the description of the uplink small packet data, refer to the description of the uplink small packet data in S1501 of FIG. 15 for details.
  • the UE may also perform S1601 in response to the paging message after receiving the paging message sent by the network device, that is, the UE may passively initiate the small packet data transmission process under the instruction of the network device, then The UE may receive the downlink small packet data sent by the CU through the DU in S1606.
  • the above-mentioned paging message is used to indicate that the network device has downlink data to send to the UE.
  • the UE may also send the uplink small packet data to the DU in S1601.
  • the transmission mode of the uplink small packet data is consistent with the transmission mode of the uplink small packet data in the case where the UE actively initiates the transmission process of the small packet data, and will not be repeated here.
  • the DU obtains the first interface message according to the auxiliary information.
  • the first interface message is an F1 interface message transmitted between the DU and the CU. If the sending mode of the auxiliary information is as shown in S1601 Case 1, the first interface message is an INITIAL UL RRC MESSAGE TRANSFER message. If the sending mode of the auxiliary information is as shown in S1601 case two, the first interface message is the UE CONTEXT SETUP RESPONSE message.
  • S1602 may be specifically: the DU obtains the INITIAL UL RRC MESSAGE TRANSFER message according to the first request message carrying the auxiliary information.
  • the DU can save the uplink small packet data in S1602 so that the DU can restore the UE context before sending it to the CU.
  • S1602 can be specifically: DU obtains INITIAL UL RRC MESSAGE TRANSFER message according to the first request message carrying auxiliary information and uplink small packet data.
  • the method may further include: DU obtains the second interface message (i.e. INITIAL UL RRC MESSAGE TRANSFER message) according to the first request message; DU; Send the second interface message carrying the first request message to the CU; the CU sends the UE CONTEXT SETUP REQUEST message to the DU; the DU responds to the UE CONTEXT SETUP REQUEST message to restore the UE context.
  • the second interface message i.e. INITIAL UL RRC MESSAGE TRANSFER message
  • S1602 may specifically be: the DU obtains the UE CONTEXT SETUP RESPONSE message according to the auxiliary information.
  • the UE sends the uplink small packet data to the DU in S1601
  • the uplink small packet data is carried in the above second interface message and sent to the CU.
  • the process of sending the uplink small packet data to the CU can refer to the corresponding description in S1603 for details.
  • the DU sends a first interface message carrying auxiliary information to the CU.
  • the method may also include: CU sending a UE CONTEXT SETUP REQUEST message to the DU; the DU responds to the UE CONTEXT SETUP REQUEST message, Restore the UE context and send a UE CONTEXT SETUP RESPONSE message to the CU.
  • CU sending a UE CONTEXT SETUP REQUEST message to the DU
  • the DU responds to the UE CONTEXT SETUP REQUEST message, Restore the UE context and send a UE CONTEXT SETUP RESPONSE message to the CU.
  • S1603 can be specifically: the DU sends an INITIAL UL RRC MESSAGE TRANSFER message carrying auxiliary information to the CU.
  • the method may also include: based on the UE context restored by the DU, the DU sends the uplink small packet data to the CU. Refer to the description of S1206 in FIG. 12.
  • S1603 may specifically be: the DU sends a first interface message carrying auxiliary information and uplink small packet data to the CU. For details, refer to the description of S1303 in FIG. 13.
  • S1603 may be specifically: the DU sends the UE CONTEXT SETUP RESPONSE message carrying the auxiliary information to the CU.
  • the method may further include: based on the UE context restored by the DU, the DU sends the uplink small packet data to the CU. Refer to the description of S1407 in FIG. 14.
  • S1604 The CU obtains the indication message according to the auxiliary information in the first interface message.
  • the indication message is used to indicate the RRC status of the UE after the UE and the network device have completed the transmission of the aforementioned small packet data.
  • S1604 can be specifically: CU obtains an indication message according to the auxiliary information in the INITIAL UL RRC MESSAGE TRANSFER message. For details, please refer to the description of S1207 in Figure 12 and S1306 in Figure 13 .
  • S1604 may be specifically: the CU obtains an indication message according to the auxiliary information in the CONTEXT SETUP RESPONSE message. For details, refer to the description of S1408 in FIG. 14 and S1507 in FIG. 15.
  • the auxiliary information is only used to assist the network device to obtain the instruction message.
  • the network device does not only obtain the indication message based on the auxiliary information, but also needs to comprehensively consider the network conditions such as network congestion, resource scheduling, and resource occupation to obtain the indication message. For details, refer to the corresponding example in S1207 in FIG. 12.
  • the method may further include: the CU obtains the scheduling information according to the auxiliary information in the INITIAL UL RRC MESSAGE TRANSFER message, and the CU sends an F1 interface message carrying the scheduling information to the DU.
  • S1604 may be specifically: the CU obtains the indication message according to the scheduling information and the auxiliary information in the INITIAL UL RRC MESSAGE TRANSFER message.
  • the method may further include: the DU sends information indicating the completion of the scheduling transmission to the CU.
  • the completion of the scheduling transmission may assign the DU to the UE.
  • completion of scheduled transmission may be for the DU to receive data sent by the UE based on the allocated data transmission resources.
  • S S1604 may specifically be: the CU obtains an indication message according to the foregoing information and auxiliary information indicating completion of scheduling transmission.
  • the CU may not only obtain the indication message according to the auxiliary information in the first interface message, but also obtain the scheduling information according to the auxiliary information in the first interface message.
  • the CU may be based on the UE to be transmitted.
  • the scheduling information is obtained from the data volume information.
  • the scheduling information can be used to indicate the amount of data to be transmitted by the UE in the DU, and instruct the DU to allocate data transmission resources for the UE.
  • the transmission process and description of the scheduling information can refer to the related description of the scheduling information in S1207 in FIG. 12 and S1306 in FIG. 13.
  • the transmission process and description of the scheduling information may refer to the related description of the scheduling information in S1408 in FIG. 14 and S1507 in FIG. 15 for details.
  • S1605 The CU sends an indication message to the DU, thereby sending the indication message to the UE through the DU.
  • the CU sends a third interface message carrying an indication message to the DU, and the third interface message is a DL RRC MESSAGE TRANSFER message.
  • the CU in S1604 obtains the scheduling information according to the auxiliary information in the first interface message
  • S1605 may specifically be: the CU sends a third interface message carrying the scheduling information and an indication message to the DU.
  • S1605 refer to the description of S1208 in FIG. 12, S1307 in FIG. 13, S1409 in FIG. 14, and S1508 in FIG. 15.
  • S1606 The DU sends an indication message to the UE.
  • the DU obtains the indication message according to the third interface message carrying the indication message and sends it to the UE.
  • the DU obtains the indication message according to the third interface message carrying the indication message and sends it to the UE.
  • S1209 in FIG. 12 S1308 in FIG. 13, S1410 in FIG. 14, and S1509 in FIG.
  • the network device has downlink small packet data to send to the UE.
  • the method may further include: the CU sends the downlink small packet data to the DU based on the UE context restored by the DU.
  • the DU sends an indication message and downlink small packet data to the UE.
  • the downlink small packet data can be transmitted on the DTCH and multiplexed with the indication message transmitted on the DCCH.
  • the control plane S1606 can be specifically: the DU sends an indication message carrying the downlink small packet data to the UE.
  • the indication message carrying the downlink small packet data is transmitted on the DCCH.
  • the downlink small packet data sent by the DU to the UE may not be sent with the indication message or carried in the indication message. Instead, the DU will resume before the DU sends the indication message to the UE. The UE context is then sent to the UE. The UE may receive the downlink small packet data based on the downlink resource scheduled by the network device. The embodiment of the application does not limit this.
  • S1607 The UE enters the corresponding RRC state according to the indication message.
  • the UE enters the RRC state indicated in the indication message after the UE and the network device have completed the transmission of the small packet data.
  • S1210 in FIG. 12 S1309 in FIG. 13, S1411 in FIG. 14, and S1510 in FIG.
  • the auxiliary information in the embodiment of the present application is used to indicate the UE's data transmission requirements after the UE and the network device have completed the transmission of the small packet data
  • the indication message is used to indicate the UE and the network device's RRC status after the UE and the network device have completed the above small packet data.
  • the above-mentioned small packet data transmission may be one uplink and/or downlink small packet data transmission.
  • the foregoing small packet data transmission is one uplink small packet data transmission.
  • the foregoing small packet data is uplink small packet data sent by the UE to the DU in the disconnected state in S1601.
  • the foregoing small packet data transmission is a downlink small packet data transmission.
  • the foregoing small packet data is the downlink small packet data sent by the CU to the DU after the DU restores the UE context, and is also the downlink small packet data sent by the DU to the UE in S1606.
  • the transmission of the above small packet data is a transmission of uplink small packet data and downlink small packet data.
  • the above small packet data includes: the uplink small packet data sent by the UE to the DU in the disconnected state in S1601, and also includes: in S1606 Downlink small packet data sent by the DU to the UE.
  • a UE in a disconnected state can report auxiliary information while requesting small packet data with the network device.
  • the CU may refer to the auxiliary information to determine the RRC state of the indicated UE, so as to avoid as far as possible the problem of instructing the UE to enter an inappropriate RRC state when the CU cannot learn the data transmission requirements of the UE after the above-mentioned small packet data transmission is completed.
  • the impact on the subsequent data transmission of the UE is reduced, and unnecessary power consumption and signaling overhead of the UE are effectively avoided.
  • auxiliary information may be carried in the first request message sent by the UE to the network device, or may be sent together with the first request message.
  • the information included in the auxiliary information can also have multiple forms, which is more flexible in implementation and has a wider range of application scenarios.
  • FIG. 17 is a network device 170 provided by an embodiment of the present application.
  • the network device 170 includes a processor 1701, a memory 1702, and a transceiver 1703.
  • the processor 1701, the memory 1702, and the transceiver 1703 are connected to each other through a bus. .
  • the memory 1702 includes but is not limited to random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM), the memory 1702 is used for related computer programs and data.
  • the transceiver 1703 is used to receive and transmit data.
  • the processor 1101 may be one or more central processing units (CPU).
  • CPU central processing units
  • the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1701 in the network device 170 is configured to read the computer program code stored in the memory 1702, and perform the following operations:
  • the distribution unit of the network device 170 is invoked to receive the auxiliary information sent by the UE in the disconnected state.
  • the auxiliary information is used to indicate the data transmission requirements of the UE after the UE and the network device 170 have completed the transmission of the small packet data.
  • the calling distribution unit obtains the first interface message according to the auxiliary information.
  • the first interface message includes auxiliary information.
  • the calling distribution unit sends the first interface message to the centralized unit of the network device 170.
  • the calling central unit obtains the indication message according to the auxiliary information in the first interface message.
  • the indication message is used to indicate the RRC state of the UE after the UE and the network device 170 have completed the transmission of the aforementioned small packet data.
  • the central unit is called to send an indication message to the UE through the distribution unit.
  • the auxiliary information includes: information about the amount of data to be transmitted by the UE after the UE and the network device 170 have completed the transmission of the small packet data; or, the auxiliary information includes: the first bit; The value indicates the data transmission requirement; or, the auxiliary information includes: information about the RRC state that the UE expects to complete the above-mentioned small packet data transmission; or, the auxiliary information includes: the data to be transmitted by the UE after the UE and the network device complete the above-mentioned small packet data transmission The relationship between the amount and the preset threshold.
  • the data amount information includes: a first index value; the first index value corresponds to the amount of data to be transmitted by the UE after the UE and the network device 170 have completed the transmission of the aforementioned small packet data; or, the data
  • the amount information includes: the value of the BSR.
  • the processor 1701 before the distribution unit that invokes the network device 170 receives the auxiliary information sent by the UE in the disconnected state, the processor 1701 is further configured to execute: send a paging message to the UE; the paging message is used for The network device 170 indicates that there is downlink data to be sent to the UE.
  • the processor 1701 specifically executes: calling the distribution unit to receive the auxiliary information sent by the UE in response to the paging message.
  • the centralized unit may send the downlink small packet data to the distribution unit after the distribution unit restores the UE context, and send the downlink small packet data to the UE through the distribution unit.
  • the processor 1701 specifically executes: Invoke the distribution unit to receive the UE when there is uplink small packet data and send it to the network device Auxiliary information sent at 170 o'clock.
  • the centralized unit may receive the uplink small packet data sent by the UE through the distribution unit, where the uplink small packet data is sent to the distribution unit together when the UE sends the auxiliary information in the non-connected state.
  • the processor 1701 specifically executes: invoking the distribution unit to receive the first information sent by the UE in the non-connected state.
  • Request message The first request message is used by the UE to request data transmission with the network device 170, the auxiliary information is carried in the first request message, the first interface message is an initial uplink RRC message transfer message, and the first interface message includes RRC Container IE, RRC The Container IE contains the first request message carrying auxiliary information.
  • the first request message carries small packet data.
  • the processor 1701 specifically executes: the call distribution unit sends the first interface message carrying auxiliary information and small packet data to the centralized unit.
  • the processor 1701 is further configured to execute: invoking the distribution unit to receive the small packet data sent by the UE in the disconnected state.
  • the processor 1701 specifically executes: the invoking distribution unit sends the first interface message carrying auxiliary information to the centralized unit; the invoking distribution unit receives the UE context recovery request message sent by the centralized unit; In response to the restore UE context request message, the distribution unit is invoked to restore the UE context; the distribution unit is invoked to send small packets of data to the centralized unit based on the UE context restored by the distribution unit.
  • the processor 1701 specifically executes: invoking the distribution unit to receive the first information sent by the UE in the non-connected state.
  • Request message and auxiliary information The first request message is used by the UE to request data transmission with the network device 170, the first interface message is a UE context establishment response message, and the auxiliary information is carried in the first interface message.
  • the first request message carries small packet data.
  • the processor 1701 is further configured to execute: the invoking and distributing unit sends a second interface message carrying the first request message to the centralized unit; the invoking and distributing unit receives the recovery UE sent by the centralized unit Context request message; in response to the restore UE context request message, call the distribution unit to restore the UE context.
  • the processor 1701 specifically executes: based on the UE context restored by the distribution unit, the distribution unit is invoked to transmit the first interface message carrying auxiliary information to the centralized unit.
  • the processor 1701 is further configured to execute: invoking the distribution unit to receive the small packet data sent by the UE in the disconnected state.
  • the processor 1701 is further configured to execute: the invoking and distributing unit sends a second interface message carrying the first request message to the centralized unit; the invoking and distributing unit receives the recovery UE sent by the centralized unit Context request message; in response to the restore UE context request message, call the distribution unit to restore the UE context.
  • the processor 1701 specifically executes: based on the UE context restored by the distribution unit, the distribution unit is invoked to transmit the first interface message carrying auxiliary information to the centralized unit.
  • the processor 1701 is further configured to execute: based on the UE context restored by the distribution unit, call the distribution unit to send small packets of data to the centralized unit.
  • the first interface message is an F1 interface message transmitted between the centralized unit and the distributed unit
  • the first request message is an RRC recovery request message or an RRC data early transmission request message.
  • the uplink small packet data is carried in the first request message, and the downlink small packet data is carried in the indication message.
  • the uplink small packet data is the data sent by the UE to the distribution unit together with the first request message in the disconnected state, and the uplink small packet data is the data sent to the centralized unit after the distribution unit restores the UE context; downlink; Small packet data is data sent by the centralized unit to the UE through the distribution unit after the distribution unit restores the UE context, and downlink small packet data is data that the distribution unit sends to the UE together with the indication message.
  • the first request message is an RRC message sent by the UE based on the resources allocated by the random access response sent by the network device 170, where the random access response is the random access message sent by the network device 170 based on the UE.
  • the preamble response message; or, the first request message is the RRC message sent together when the UE sends the random access preamble to the network device 170; or, the first request message is the RRC message that the UE sends to the network device 170 based on the pre-configured uplink resources information.
  • each operation can also correspond to the corresponding description of the method embodiments shown in FIGS. 12-16, where the network device 170 is the network device in the method embodiments shown in FIGS. 12-16.
  • FIG. 18 is a UE 180 provided by an embodiment of the present application.
  • the UE 180 includes a processor 1801, a memory 1802, and a transceiver 1803.
  • the processor 1801, the memory 1802, and the transceiver 1803 are connected to each other through a bus.
  • the memory 1802 includes but is not limited to random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM), the memory 1802 is used for related computer programs and data.
  • the transceiver 1803 is used to receive and send data.
  • the processor 1101 may be one or more central processing units (CPUs).
  • the processor 1801 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1801 in the UE 180 is configured to read the computer program code stored in the memory 1802, and perform the following operations:
  • the auxiliary information is used to indicate the data transmission requirements of the UE 180 after the UE 180 and the network device have completed the transmission of the small packet data.
  • the indication message is a message obtained by the centralized unit of the network device according to the first interface message sent by the distribution unit.
  • the first interface message includes auxiliary information.
  • the indication message is used to indicate the RRC status of the UE 180 after the UE 180 and the network device have completed the transmission of the aforementioned small packet data.
  • the auxiliary information includes: information about the amount of data to be transmitted by the UE 180 after the UE 180 and the network device have completed the transmission of the small packet data; or, the auxiliary information includes: the first bit; The value indicates the data transmission requirement; or, the auxiliary information includes: information about the RRC status that the UE 180 hopes to complete the above-mentioned small packet data transmission; or, the auxiliary information includes: the amount of data to be transmitted by the UE 180 after the UE 180 and the network device complete the above-mentioned small packet data transmission The relationship with the preset threshold.
  • the data amount information includes: a first index value; the first index value corresponds to the amount of data to be transmitted by the UE 180 after the UE 180 and the network device have completed the transmission of the above small packet data; or, the amount of data
  • the information includes: the value of the BSR.
  • the processor 1801 before sending the auxiliary information to the distribution unit of the network device in the non-connected state, the processor 1801 is further configured to perform: receiving a paging message sent by the network device; and the paging message is used for the network device Indicates that there is downlink data to send to the UE 180.
  • the processor 1801 specifically executes: in response to the paging message, the UE 180 sends the auxiliary information to the distribution unit.
  • the UE 180 may receive the downlink small packet data sent by the centralized unit through the distribution unit, where the downlink small packet data is data sent by the centralized unit to the distribution unit after the distribution unit restores the UE context.
  • the above-mentioned auxiliary information is sent to the distribution unit of the network device in the non-connected state, and the processor 1801 specifically executes: when there is uplink small packet data to be sent to the network device, the auxiliary information is sent to the distribution unit in the non-connected state. Send auxiliary information.
  • the UE 180 may send the uplink small packet data to the distribution unit together when sending the auxiliary information in the non-connected state, so that the uplink small packet data is sent to the centralized unit through the distribution unit.
  • the aforementioned auxiliary information is sent to the distribution unit of the network device in the disconnected state, and the processor 1801 specifically executes: sending the first request message to the distribution unit in the disconnected state.
  • the first request message is used by the UE 180 to request data transmission with the network device.
  • the auxiliary information is carried in the first request message.
  • the first interface message is an initial uplink RRC message transmission message.
  • the first interface message includes RRC Container IE, RRC Container.
  • the IE contains the first request message carrying auxiliary information.
  • the aforementioned auxiliary information is sent to the distribution unit of the network device in the non-connected state, and the processor 1801 specifically executes: in the non-connected state, the first request message and the auxiliary information are sent to the distribution unit; wherein, The first request message is used by the UE 180 to request data transmission with the network device, the first interface message is a UE context establishment response message, and the auxiliary information is carried in the first interface message.
  • the first interface message is an F1 interface message transmitted between the centralized unit and the distributed unit
  • the first request message is an RRC recovery request message or an RRC data early transmission request message.
  • the uplink small packet data is carried in the first request message, and the downlink small packet data is carried in the indication message.
  • the uplink small packet data is the data sent by the UE 180 together with the first request message to the distribution unit in the disconnected state, and the uplink small packet data is the data sent to the centralized unit after the distribution unit restores the UE context; downlink;
  • the small packet data is data sent by the centralized unit to the UE 180 through the distribution unit after the distribution unit restores the UE context, and the downlink small packet data is the data that the distribution unit sends to the UE 180 together with the indication message.
  • the first request message is an RRC message sent by the UE 180 based on the resources allocated by the random access response sent by the network device, where the random access response is a random access preamble response sent by the network device based on the UE 180
  • the first request message is an RRC message that is sent together when the UE 180 sends a random access preamble to the network device; or, the first request message is an RRC message that the UE 180 sends to the network device based on a pre-configured uplink resource.
  • each operation can also correspond to the corresponding description of the method embodiments shown in FIGS. 12-16, where the UE 180 is the UE in the method embodiments shown in FIGS. 12-16.
  • An embodiment of the present application also provides a chip system.
  • the chip system includes at least one processor, a memory, and an interface circuit.
  • the memory, a transceiver, and at least one processor are interconnected by wires, and the at least one memory stores a computer program.
  • the computer program is executed by the processor, the operations performed by the embodiments shown in FIGS. 12-16 are realized.
  • the embodiments of the present application also provide a computer-readable storage medium, and the computer-readable storage medium stores a computer program, and when it runs on a processor, it implements the operations performed by the embodiments shown in FIGS. 12-16.
  • the embodiments of the present application also provide a computer program product.
  • the computer program product runs on a processor, the operations performed by the embodiments shown in FIGS. 12-16 are implemented.
  • the UE when the UE receives the paging message sent by the network device, the UE may perform S1601 in FIG. 16 to receive the downlink small packet data sent by the network device. Or, when the UE has uplink small packet data to send to the network device, the UE may perform S1601 in FIG. 16 and send the uplink small packet data to the network device in S1601.
  • the UE may be a smart phone, and the UE may be installed with the first application.
  • the foregoing network device may be connected to the application server of the first application program, or the foregoing network device may be the application server of the first application program.
  • the UE installed with the first application program may send a heartbeat packet to the application server of the first application program at a preset time interval (for example, 30s) to report its own state.
  • the UE installed with the first application program may perform S1601 in FIG. 16 in a disconnected state, and send uplink small packet data whose data type is a heartbeat packet to the network device in S1601. Then, the UE and the network device can perform S1602-S1607 shown in FIG. 16.
  • the indication message obtained by the CU of the network device performing S1604 may be used to indicate that the uplink small packet data whose data type is the heartbeat packet is successfully transmitted.
  • the network device may send the received uplink small packet data whose data type is a heartbeat packet to the application server of the first application, so that the application server can obtain whether the UE installed with the first application is normal Communication and other status.
  • the indication message obtained by the CU of the network device performing S1604 may be used to indicate that the uplink small packet data transmission failure of the above data type is the heartbeat packet.
  • the application program can consider that the status of the UE with the first application program is abnormal and cannot communicate normally.
  • the auxiliary information reported by the UE in the above S1601 may be It is used to instruct the UE and the network equipment to complete the transmission of the above-mentioned data type of the uplink small packet data of the heartbeat packet. BSR). Therefore, the indication message obtained by the CU of the network device performing S1604 can be used to instruct the UE and the network device to keep the UE in the current disconnected state after the above-mentioned transmission of the uplink small packet data whose data type is the heartbeat packet.
  • the UE can keep the disconnected state that the UE was in when S1601 was performed according to the indication message.
  • the UE can perform S1601 in FIG. 16 in a non-connected state, and send the uplink small packet data whose data type is a heartbeat packet to the network device in S1601.
  • the auxiliary information reported by the UE in S1601 can be It is used to instruct the UE and the network device to complete the above-mentioned transmission of the uplink small packet data of the heartbeat packet, and the UE has a data transmission requirement (for example, the amount of data to be transmitted by the UE is greater than a preset threshold).
  • the indication message obtained by the CU of the network device performing S1604 can be used to instruct the UE and the network device to return to the RRC CONNECTED state after the above-mentioned transmission of the uplink small packet data whose data type is the heartbeat packet.
  • the UE can fall back to the RRC CONNECTED state according to the indication message.
  • the UE can transfer files with the network device in the RRC CONNECTED state.
  • the network device can instruct the above-mentioned other UE to enter the RRC CONNECTED state, and then send the file to the above-mentioned another UE.
  • the UE may be a smart meter.
  • Network equipment can be connected to the industrial network of smart meters.
  • the network device can periodically obtain the recorded value of the smart meter, for example, obtain the recorded value of the smart meter every 30 minutes (such as the recorded value within 30 minutes), and synchronize it to the devices in the industrial network of the smart meter.
  • the network device may send a paging message to the UE in a disconnected state, and the paging message is used to indicate that the UE has downlink small packet data sent to the UE by the network device.
  • the UE may perform S1601 of FIG. 16 in response to the paging message.
  • the UE and the network device can perform S1602-S1607 shown in FIG. 16.
  • the auxiliary information reported by the UE in S1601 may be used to indicate that the UE and the network equipment have no data transmission requirements after the UE and the network equipment have completed the above-mentioned downlink small packet data transmission.
  • the network device knows that it needs to obtain the record value of the UE within 30 minutes. Therefore, the indication message obtained by the CU of the network device performing S1604 can be used to indicate the UE and the network device After completing the transmission of the uplink small packet data whose data type is the heartbeat packet, the UE returns to the RRC CONNECTED state. And in S1606, the network device may send the downlink small packet data whose data type is periodic reading to the UE. The UE can fall back to the RRC CONNECTED state according to the indication message. Then, the UE can transmit to the network device the above-mentioned recorded value of the UE within 30 minutes in the RRC CONNECTED state.
  • small packet data such as but not limited to: instant messaging messages, application push messages and other infrequent prompt messages, application heartbeat packets, step count detection, heart rate detection, Periodic data such as smart meter readings.
  • the UE may also execute the method shown in FIG. 16 with the network device, so as to transmit the small packet data of the instant messaging message with the network device.
  • the embodiment of the application does not limit this.
  • the computer program can be stored in a computer readable storage medium.
  • the computer program During execution, it may include the procedures of the foregoing method embodiments.
  • the aforementioned storage media include various media capable of storing computer program codes, such as ROM or RAM, magnetic disks, or optical disks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种用户设备UE的无线资源控制RRC状态的控制方法,应用于包括集中单元和至少一个分布单元的网络设备,该方法包括:分布单元接收UE在非连接态下发送的辅助信息;辅助信息用于指示UE与网络设备完成小包数据的传输后UE的数据传输需求;分布单元根据辅助信息得到第一接口消息;分布单元向集中单元发送携带辅助信息的第一接口消息;集中单元根据第一接口消息中的辅助信息得到指示消息;指示消息用于指示UE和网络设备完成上述小包数据的传输后UE的RRC状态;集中单元通过分布单元向UE发送指示消息。采用本申请实施例,能够避免UE在完成上述小包数据的传输后进入不合适的RRC状态,减少UE后续数据传输的影响。

Description

用户设备的无线资源控制状态的控制方法及相关装置
本申请要求于2020年04月13日提交中国专利局、申请号为202010284622.7、申请名称为“一种small data传输时UE提供辅助信息的方法、UE及网络设备”的中国专利申请的优先权,以及于2020年07月15日提交中国专利局、申请号为202010688838.X、申请名称为“用户设备的无线资源控制状态的控制方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种用户设备的无线资源控制状态的控制方法及相关装置。
背景技术
在通信系统中,用户设备(user equipment,UE)与网络设备的通信协议栈中可以包括无线资源控制(radio resource control,RRC)层。目前存在三种UE的RRC状态,分别为RRC空闲(RRC IDLE)态、RRC非激活(RRC INACTIVE)态和RRC连接(RRC CONNECTED)态。
一般情况下,UE处于RRC CONNECTED态时,UE与网络设备之间才能传输数据。但在一些场景下,处于RRC IDLE态或RRC INACTIVE态的UE需传输的数据包很小,可以称这类数据包为小包数据,例如即时通讯消息,心跳包,周期性数据等。而UE从RRC IDLE态或RRC INACTIVE态进入RRC CONNECTED态所需的信令甚至大于小包数据,从而导致UE不必要的功耗和信令开销。为了避免上述情况,处于RRC IDLE态或RRC INACTIVE态的UE可以在随机接入过程中传输小包数据,或者可以基于预配置的上行资源传输小包数据,而无需进入RRC CONNECTED态后再传输小包数据。
但是UE和网络设备完成一次上行和/或下行小包数据的传输后,网络设备的集中单元无法获知UE后续是否有数据传输需求,因此可能导致UE在集中单元的指示下进入不合适的RRC状态,从而影响UE后续数据传输。例如,若UE后续无数据传输需求或者UE后续传输的数据包仍为小包数据,但UE却在集中单元的指示下进入RRC CONNECTED态,UE耗电较多。若UE后续待传输的数据包较大较多,但UE却在集中单元的指示下进入RRC INACTIVE态或RRC IDLE态,为了进行正常的数据传输,UE又需重新发起随机接入过程,从而导致不必要的功耗和信令开销。因此,如何避免UE在完成小包数据的传输后进入不合适的RRC状态,减少对UE后续数据传输的影响是本领域的技术人员正在研究的问题。
发明内容
本申请实施例提供了一种用户设备UE的无线资源控制RRC状态的控制方法及相关装置,能够避免UE在完成小包数据的传输后进入不合适的RRC状态,减少对UE后续数据传输的影响。
第一方面,本申请实施例提供了一种UE的RRC状态的控制方法,应用于网络设备,上述网络设备包括集中单元和至少一个分布单元,上述方法包括:上述分布单元接收UE在非连接态下发送的辅助信息;上述辅助信息用于指示上述UE与上述网络设备完成小包数据的传输后上述UE的数据传输需求;上述分布单元根据上述辅助信息得到第一接口消息;上述第一接口消息包括上述辅助信息;上述分布单元向上述集中单元发送上述第一接口消息;上述集中单元根据上述第一接口消息中的上述辅助信息得到指示消息;上述指示消息用于指示上述UE和上述网络设备完成上述小包数据的传输后上述UE的RRC状态;上述集中单元通过上述分布单元向上述UE发送上述指示消息。
本申请实施例中,对于由集中单元和分布单元组成的网络设备,处于非连接态的UE可以在请求与网络设备进行上述小包数据的同时上报辅助信息。集中单元可以通过辅助信息获取UE与网络设备完成上述小包数据的传输后UE的数据传输需求。并且,集中单元可以参考上述UE的数据传输需求确定用于指示UE与网络设备完成上述小包数据的传输后UE的RRC状态的指示消息。从而尽可能避免集中单元在无法获知完成上述小包数据传输后的UE的数据传输需求的情况下,指示UE进入不合适的RRC状态的问题。减少了对UE后续数据传输的影响,以及,有效避免了UE不必要的功耗和信令开销。
在一种可能的实现方式中,上述辅助信息包括:上述UE与上述网络设备完成上述小包数据的传输后上述UE待传输的数据量信息;或,上述辅助信息包括:第一比特位;通过上述第一比特位的取值指示上述数据传输需求;或,上述辅助信息包括:上述UE希望在完成上述小包数据传输之后的RRC状态的信息;或,上述辅助信息包括:上述UE与上述网络设备完成上述小包数据的传输后上述UE待传输的数据量与预设阈值之间的关系。
在一种可能的实现方式中,上述数据量信息包括:第一索引值;上述第一索引值对应上述UE与上述网络设备完成上述小包数据的传输后上述UE待传输的数据量位于第一范围;或,上述数据量信息包括:缓冲状态报告BSR的取值。
本申请实施例中,辅助信息包括的信息可以有多种形式,实现较为灵活,应用场景更为广泛。例如,若网络设备无法有效识别UE希望在完成上述小包数据传输之后的RRC状态的辅助信息,则UE可以反馈包括第一索引值或BSR的取值的辅助信息。
在一种可能的实现方式中,上述分布单元接收UE在非连接态下发送的辅助信息之前,上述方法还包括:上述网络设备向上述UE发送寻呼消息;上述寻呼消息用于上述网络设备指示存在下行数据发送给上述UE;上述分布单元接收UE在非连接态下发送的辅助信息,包括:上述分布单元接收上述UE响应于上述寻呼消息发送的上述辅助信息。
具体地,集中单元可以在分布单元恢复UE上下文之后向分布单元发送下行小包数据,并通过分布单元向UE发送下行小包数据。
在一种可能的实现方式中,上述分布单元接收UE在非连接态下发送的辅助信息,包括:上述分布单元接收上述UE在存在上行小包数据发送给上述网络设备时发送的上述辅助信息。
具体地,集中单元可以通过分布单元接收UE发送的上行小包数据。其中,该上行小包数据为UE在非连接态下发送辅助信息时一起向分布单元发送的。
在一种可能的实现方式中,上述分布单元接收UE在非连接态下发送的辅助信息,包 括:上述分布单元接收上述UE在上述非连接态下发送的第一请求消息;其中,上述第一请求消息用于上述UE请求与上述网络设备进行数据传输,上述辅助信息携带于上述第一请求消息中,上述第一接口消息为初始上行RRC消息传送消息,上述第一接口消息包括RRC容器信息元素RRC Container IE,上述RRC Container IE包含携带上述辅助信息的上述第一请求消息。
本申请实施例中,辅助信息可以携带于第一请求消息中,因此,UE和分布单元之间可以无需增加额外的RRC消息。并且,携带于第一请求消息中的辅助信息可以放置在第一接口消息的RRC Container IE中,因此,第一接口消息可以无需新增IE,分布单元的处理逻辑的改变较少。辅助信息的使用场景限制较少,应用范围更为广泛。
在一种可能的实现方式中,上述第一请求消息中携带上述小包数据;上述分布单元向上述集中单元发送上述第一接口消息,包括:上述分布单元向上述集中单元发送携带上述辅助信息和上述小包数据的上述第一接口消息。
在一种可能的实现方式中,上述方法还包括:上述分布单元接收上述UE在上述非连接态下发送的上述小包数据;上述分布单元向上述集中单元发送上述第一接口消息,包括:上述分布单元向上述集中单元发送携带上述辅助信息的上述第一接口消息;接收上述集中单元发送的恢复UE上下文请求消息;响应于上述恢复UE上下文请求消息,恢复UE上下文;基于上述恢复的UE上下文向上述集中单元发送上述小包数据。
在一种可能的实现方式中,上述分布单元接收UE在非连接态下发送的辅助信息,包括:上述分布单元接收上述UE在上述非连接态下发送的第一请求消息和上述辅助信息;其中,上述第一请求消息用于上述UE请求与上述网络设备进行数据传输,上述第一接口消息为UE上下文建立响应消息,上述辅助信息携带于上述第一接口消息中。
本申请实施例中,辅助信息可以和第一请求消息一起发送,辅助信息包括的信息也可以更多,形式也可以更为灵活。集中单元也可以获得更为全面的辅助信息,从而进一步避免了集中单元在无法获知完成上述小包数据传输后的UE的数据传输需求的情况下,指示UE进入不合适的RRC状态的问题。减少了对UE后续数据传输的影响,以及,有效避免了UE不必要的功耗和信令开销。
在一种可能的实现方式中,上述第一请求消息中携带上述小包数据;上述分布单元向上述集中单元发送上述第一接口消息之前,上述方法还包括:上述分布单元向上述集中单元发送携带上述第一请求消息的第二接口消息;接收上述集中单元发送的恢复UE上下文请求消息;响应于上述恢复UE上下文请求消息,恢复UE上下文;上述分布单元向上述集中单元发送上述第一接口消息,包括:基于上述恢复的UE上下文向上述集中单元发送携带上述辅助信息的上述第一接口消息。
在一种可能的实现方式中,上述方法还包括:上述分布单元接收上述UE在上述非连接态下发送的上述小包数据;上述分布单元向上述集中单元发送上述第一接口消息之前,上述方法还包括:上述分布单元向上述集中单元发送携带上述第一请求消息的第二接口消息;接收上述集中单元发送的恢复UE上下文请求消息;响应于上述恢复UE上下文请求消息,恢复UE上下文;上述分布单元向上述集中单元发送上述第一接口消息,包括:基于上述恢复的UE上下文向上述集中单元发送携带上述辅助信息的上述第一接口消息;上述 方法还包括:上述分布单元基于上述恢复的UE上下文向上述集中单元发送上述小包数据。
在一种可能的实现方式中,上述第一接口消息为上述集中单元和上述分布单元之间传输的F1接口消息,上述第一请求消息为RRC恢复请求消息或RRC数据早传请求消息。
在一种可能的实现方式中,上行小包数据携带于上述第一请求消息中,下行小包数据携带于上述指示消息中。
在一种可能的实现方式中,上行小包数据为上述UE在上述非连接态下与上述第一请求消息一起发送给上述分布单元的数据,上述上行小包数据为上述分布单元恢复UE上下文之后向上述集中单元发送的数据;下行小包数据为上述集中单元在上述分布单元恢复UE上下文之后通过上述分布单元向上述UE发送的数据,上述下行小包数据为上述分布单元与上述指示消息一起发送给上述UE的数据。
在一种可能的实现方式中,上述第一请求消息为上述UE基于上述网络设备发送的随机接入响应分配的资源发送的RRC消息,其中,上述随机接入响应为上述网络设备基于上述UE发送的随机接入前导响应的消息;或,上述第一请求消息为上述UE向上述网络设备发送随机接入前导时一起发送的RRC消息;或,上述第一请求消息为上述UE基于预配置的上行资源向上述网络设备发送的RRC消息。
本申请实施例中,携带辅助信息的第一请求消息,或,和辅助信息一起发送的第一请求消息可以是多种应用场景下的RRC消息。相应地,辅助信息也可以适用于上述多种应用场景下,应用范围更为广泛。
第二方面,本申请实施例提供了又一种UE的RRC状态的控制方法,应用于UE,上述方法包括:上述UE在非连接态下向网络设备的分布单元发送辅助信息;上述辅助信息用于指示上述UE与上述网络设备完成小包数据的传输后上述UE的数据传输需求;上述UE接收上述分布单元发送的指示消息;上述指示消息为上述网络设备的集中单元根据上述分布单元发送的第一接口消息得到的消息,上述第一接口消息包括上述辅助信息,上述指示消息用于指示上述UE和上述网络设备完成上述小包数据的传输后上述UE的RRC状态;上述UE根据上述指示消息进入对应的RRC状态。
本申请实施例中,对于由集中单元和分布单元组成的网络设备,处于非连接态的UE可以在请求与网络设备进行上述小包数据的同时上报辅助信息。集中单元可以通过辅助信息获取UE与网络设备完成上述小包数据的传输后UE的数据传输需求。并且,集中单元可以参考上述UE的数据传输需求确定用于指示UE与网络设备完成上述小包数据的传输后UE的RRC状态的指示消息。从而尽可能避免集中单元在无法获知完成上述小包数据传输后的UE的数据传输需求的情况下,指示UE进入不合适的RRC状态的问题。减少了对UE后续数据传输的影响,以及,有效避免了UE不必要的功耗和信令开销。
在一种可能的实现方式中,上述辅助信息包括:上述UE与上述网络设备完成上述小包数据的传输后上述UE待传输的数据量信息;或,上述辅助信息包括:第一比特位;上述第一比特位的取值用于指示上述数据传输需求;或,上述辅助信息包括:上述UE希望在完成上述小包数据传输之后的RRC状态的信息;或,上述辅助信息包括:上述UE与上述网络设备完成上述小包数据的传输后上述UE待传输的数据量与预设阈值之间的关系。
在一种可能的实现方式中,上述数据量信息包括:第一索引值;上述第一索引值对应上述UE与上述网络设备完成上述小包数据的传输后上述UE待传输的数据量位于第一范围;或,上述数据量信息包括:缓冲状态报告BSR的取值。
本申请实施例中,辅助信息包括的信息可以有多种形式,实现较为灵活,应用场景更为广泛。例如,若网络设备无法有效识别UE希望在完成上述小包数据传输之后的RRC状态的辅助信息,则UE可以反馈包括第一索引值或BSR的取值的辅助信息。
在一种可能的实现方式中,上述UE在非连接态下向网络设备的分布单元发送辅助信息之前,上述方法还包括:上述UE接收上述网络设备发送的寻呼消息;上述寻呼消息用于上述网络设备指示存在下行数据发送给上述UE;上述UE在非连接态下向网络设备的分布单元发送辅助信息,包括:响应于上述寻呼消息,上述UE向上述分布单元发送上述辅助信息。
具体地,UE可以通过分布单元接收集中单元发送的下行小包数据。其中,该下行小包数据为分布单元恢复UE上下文之后,集中单元向分布单元发送的数据。
在一种可能的实现方式中,上述UE在非连接态下向网络设备的分布单元发送辅助信息,包括:当存在上行小包数据发送给上述网络设备时,上述UE在上述非连接态下向上述分布单元发送上述辅助信息。
具体地,UE可以在非连接态下发送辅助信息时一起发送上行小包数据给分布单元,从而通过分布单元将上行小包数据发送给集中单元。
在一种可能的实现方式中,上述UE在非连接态下向网络设备的分布单元发送辅助信息,包括:上述UE在上述非连接态下向上述分布单元发送第一请求消息;其中,上述第一请求消息用于上述UE请求与上述网络设备进行数据传输,上述辅助信息携带于上述第一请求消息中,上述第一接口消息为初始上行RRC消息传送消息,上述第一接口消息包括RRC Container IE,上述RRC Container IE包含携带有上述辅助信息的上述第一请求消息。
本申请实施例中,辅助信息可以携带于第一请求消息中,因此,UE和分布单元之间可以无需增加额外的RRC消息。并且,携带于第一请求消息中的辅助信息可以放置在第一接口消息的RRC Container IE中,因此,第一接口消息可以无需新增IE,分布单元的处理逻辑的改变较少。辅助信息的使用场景限制较少,应用范围更为广泛。
在一种可能的实现方式中,上述UE在非连接态下向网络设备的分布单元发送辅助信息,包括:上述UE在上述非连接态下向上述分布单元发送第一请求消息和上述辅助信息;其中,上述第一请求消息用于上述UE请求与上述网络设备进行数据传输,上述第一接口消息为UE上下文建立响应消息,上述辅助信息携带于上述第一接口消息中。
本申请实施例中,辅助信息可以和第一请求消息一起发送,辅助信息包括的信息也可以更多,形式也可以更为灵活。集中单元也可以获得更为全面的辅助信息,从而进一步避免了集中单元在无法获知完成上述小包数据传输后的UE的数据传输需求的情况下,指示UE进入不合适的RRC状态的问题。减少了对UE后续数据传输的影响,以及,有效避免了UE不必要的功耗和信令开销。
在一种可能的实现方式中,上述第一接口消息为上述集中单元和上述分布单元之间传输的F1接口消息,上述第一请求消息为RRC恢复请求消息或RRC数据早传请求消息。
在一种可能的实现方式中,上行小包数据携带于上述第一请求消息中,下行小包数据携带于上述指示消息中。
在一种可能的实现方式中,上行小包数据为上述UE在上述非连接态下与上述第一请求消息一起发送给上述分布单元的数据,下行小包数据为上述分布单元与上述指示消息一起发送给上述UE的数据。
在一种可能的实现方式中,上述第一请求消息为上述UE基于上述网络设备发送的随机接入响应分配的资源发送的RRC消息,其中,上述随机接入响应为上述网络设备基于上述UE发送的随机接入前导响应的消息;或,上述第一请求消息为上述UE向上述网络设备发送随机接入前导时一起发送的RRC消息;或,上述第一请求消息为上述UE基于预配置的上行资源向上述网络设备发送的RRC消息。
本申请实施例中,携带辅助信息的第一请求消息,或,和辅助信息一起发送的第一请求消息可以是多种应用场景下的RRC消息。相应地,辅助信息也可以适用于上述多种应用场景下,应用范围更为广泛。
第三方面,本申请实施例提供了一种网络设备,包括集中单元和至少一个分布单元,其中:上述分布单元,用于接收UE在非连接态下发送的辅助信息;上述辅助信息用于指示上述UE与上述网络设备完成小包数据的传输后上述UE的数据传输需求;上述分布单元,用于根据上述辅助信息得到第一接口消息;上述第一接口消息包括上述辅助信息;上述分布单元,用于向上述集中单元发送上述第一接口消息;上述集中单元,用于根据上述第一接口消息中的上述辅助信息得到指示消息;上述指示消息用于指示上述UE和上述网络设备完成上述小包数据的传输后上述UE的RRC状态;上述集中单元,用于通过上述分布单元向上述UE发送上述指示消息。
本申请实施例中,对于由集中单元和分布单元组成的网络设备,处于非连接态的UE可以在请求与网络设备进行上述小包数据的同时上报辅助信息。集中单元可以通过辅助信息获取UE与网络设备完成上述小包数据的传输后UE的数据传输需求。并且,集中单元可以参考上述UE的数据传输需求确定用于指示UE与网络设备完成上述小包数据的传输后UE的RRC状态的指示消息。从而尽可能避免集中单元在无法获知完成上述小包数据传输后的UE的数据传输需求的情况下,指示UE进入不合适的RRC状态的问题。减少了对UE后续数据传输的影响,以及,有效避免了UE不必要的功耗和信令开销。
在一种可能的实现方式中,上述辅助信息包括:上述UE与上述网络设备完成上述小包数据的传输后上述UE待传输的数据量信息;或,上述辅助信息包括:第一比特位;通过上述第一比特位的取值指示上述数据传输需求;或,上述辅助信息包括:上述UE希望在完成上述小包数据传输之后的RRC状态的信息;或,上述辅助信息包括:上述UE与上述网络设备完成上述小包数据的传输后上述UE待传输的数据量与预设阈值之间的关系。
在一种可能的实现方式中,上述数据量信息包括:第一索引值;上述第一索引值对应上述UE与上述网络设备完成上述小包数据的传输后上述UE待传输的数据量位于第一范围;或,上述数据量信息包括:BSR的取值。
本申请实施例中,辅助信息包括的信息可以有多种形式,实现较为灵活,应用场景更 为广泛。例如,若网络设备无法有效识别UE希望在完成上述小包数据传输之后的RRC状态的辅助信息,则UE可以反馈包括第一索引值或BSR的取值的辅助信息。
在一种可能的实现方式中,上述集中单元,还用于在上述分布单元接收UE在非连接态下发送的辅助信息之前,通过上述分布单元向上述UE寻呼消息;上述寻呼消息用于上述网络设备指示存在下行数据发送给上述UE;上述分布单元用于接收UE在非连接态下发送的辅助信息时,具体用于:接收上述UE响应于上述寻呼消息发送的上述辅助信息。
具体地,集中单元可以在分布单元恢复UE上下文之后向分布单元发送下行小包数据,并通过分布单元向UE发送下行小包数据。
在一种可能的实现方式中,上述分布单元用于接收UE在非连接态下发送的辅助信息时,具体用于:接收上述UE在存在上行小包数据发送给上述网络设备时发送的上述辅助信息。
具体地,集中单元可以通过分布单元接收UE发送的上行小包数据。其中,该上行小包数据为UE在非连接态下发送辅助信息时一起向分布单元发送的。
在一种可能的实现方式中,上述分布单元用于接收UE在非连接态下发送的辅助信息时,具体用于:接收上述UE在上述非连接态下发送的第一请求消息;其中,上述第一请求消息用于上述UE请求与上述网络设备进行数据传输,上述辅助信息携带于上述第一请求消息中,上述第一接口消息为初始上行RRC消息传送消息,上述第一接口消息包括RRC Container IE,上述RRC Container IE包含携带上述辅助信息的上述第一请求消息。
本申请实施例中,辅助信息可以携带于第一请求消息中,因此,UE和分布单元之间可以无需增加额外的RRC消息。并且,携带于第一请求消息中的辅助信息可以放置在第一接口消息的RRC Container IE中,因此,第一接口消息可以无需新增IE,分布单元的处理逻辑的改变较少。辅助信息的使用场景限制较少,应用范围更为广泛。
在一种可能的实现方式中,上述第一请求消息中携带上述小包数据;上述分布单元用于向上述集中单元发送上述第一接口消息时,具体用于:向上述集中单元发送携带上述辅助信息和上述小包数据的上述第一接口消息。
在一种可能的实现方式中,上述分布单元,还用于:接收上述UE在上述非连接态下发送的上述小包数据;上述分布单元用于向上述集中单元发送上述第一接口消息时,具体用于:向上述集中单元发送携带上述辅助信息的上述第一接口消息;接收上述集中单元发送的恢复UE上下文请求消息;响应于上述恢复UE上下文请求消息,恢复UE上下文;基于上述恢复的UE上下文向上述集中单元发送上述小包数据。
在一种可能的实现方式中,上述分布单元用于接收UE在非连接态下发送的辅助信息时,具体用于:接收上述UE在上述非连接态下发送的第一请求消息和上述辅助信息;其中,上述第一请求消息用于上述UE请求与上述网络设备进行数据传输,上述第一接口消息为UE上下文建立响应消息,上述辅助信息携带于上述第一接口消息中。
本申请实施例中,辅助信息可以和第一请求消息一起发送,辅助信息包括的信息也可以更多,形式也可以更为灵活。集中单元也可以获得更为全面的辅助信息,从而进一步避免了集中单元在无法获知完成上述小包数据传输后的UE的数据传输需求的情况下,指示UE进入不合适的RRC状态的问题。减少了对UE后续数据传输的影响,以及,有效避免 了UE不必要的功耗和信令开销。
在一种可能的实现方式中,上述第一请求消息中携带上述小包数据;上述分布单元,还用于在上述分布单元向上述集中单元发送上述第一接口消息之前,向上述集中单元发送携带上述第一请求消息的第二接口消息;接收上述集中单元发送的恢复UE上下文请求消息;响应于上述恢复UE上下文请求消息,恢复UE上下文;上述分布单元用于向上述集中单元发送上述第一接口消息时,具体用于:基于上述恢复的UE上下文向上述集中单元发送携带上述辅助信息的上述第一接口消息。
在一种可能的实现方式中,上述分布单元,还用于:接收上述UE在上述非连接态下发送的上述小包数据;上述分布单元,还用于在上述分布单元向上述集中单元发送上述第一接口消息之前,向上述集中单元发送携带上述第一请求消息的第二接口消息;接收上述集中单元发送的恢复UE上下文请求消息;响应于上述恢复UE上下文请求消息,恢复UE上下文;上述分布单元用于向上述集中单元发送上述第一接口消息时,具体用于:基于上述恢复的UE上下文向上述集中单元发送携带上述辅助信息的上述第一接口消息;上述分布单元,还用于:基于上述恢复的UE上下文向上述集中单元发送上述小包数据。
在一种可能的实现方式中,上述第一接口消息为上述集中单元和上述分布单元之间传输的F1接口消息,上述第一请求消息为RRC恢复请求消息或RRC数据早传请求消息。
在一种可能的实现方式中,上行小包数据携带于上述第一请求消息中,下行小包数据携带于上述指示消息中。
在一种可能的实现方式中,上行小包数据为上述UE在上述非连接态下与上述第一请求消息一起发送给上述分布单元的数据,上述上行小包数据为上述分布单元恢复UE上下文之后向上述集中单元发送的数据;下行小包数据为上述集中单元在上述分布单元恢复UE上下文之后通过上述分布单元向上述UE发送的数据,上述下行小包数据为上述分布单元与上述指示消息一起发送给上述UE的数据。
在一种可能的实现方式中,上述第一请求消息为上述UE基于上述网络设备发送的随机接入响应分配的资源发送的RRC消息,其中,上述随机接入响应为上述网络设备基于上述UE发送的随机接入前导响应的消息;或,上述第一请求消息为上述UE向上述网络设备发送随机接入前导时一起发送的RRC消息;或,上述第一请求消息为上述UE基于预配置的上行资源向上述网络设备发送的RRC消息。
本申请实施例中,携带辅助信息的第一请求消息,或,和辅助信息一起发送的第一请求消息可以是多种应用场景下的RRC消息。相应地,辅助信息也可以适用于上述多种应用场景下,应用范围更为广泛。
第四方面,本申请实施例提供了一种用户设备UE,包括:第一发送单元,用于在非连接态下向网络设备的分布单元发送辅助信息;上述辅助信息用于指示上述UE与上述网络设备完成小包数据的传输后上述UE的数据传输需求;第一接收单元,用于接收上述分布单元发送的指示消息;上述指示消息为上述网络设备的集中单元根据上述分布单元发送的第一接口消息得到的消息,上述第一接口消息包括上述辅助信息,上述指示消息用于指示上述UE和上述网络设备完成上述小包数据的传输后上述UE的RRC状态;设置状态单元, 用于根据上述指示消息进入对应的RRC状态。
本申请实施例中,对于由集中单元和分布单元组成的网络设备,处于非连接态的UE可以在请求与网络设备进行上述小包数据的同时上报辅助信息。集中单元可以通过辅助信息获取UE与网络设备完成上述小包数据的传输后UE的数据传输需求。并且,集中单元可以参考上述UE的数据传输需求确定用于指示UE与网络设备完成上述小包数据的传输后UE的RRC状态的指示消息。从而尽可能避免集中单元在无法获知完成上述小包数据传输后的UE的数据传输需求的情况下,指示UE进入不合适的RRC状态的问题。减少了对UE后续数据传输的影响,以及,有效避免了UE不必要的功耗和信令开销。
在一种可能的实现方式中,上述辅助信息包括:上述UE与上述网络设备完成上述小包数据的传输后上述UE待传输的数据量信息;或,上述辅助信息包括:第一比特位;上述第一比特位的取值用于指示上述数据传输需求;或,上述辅助信息包括:上述UE希望在完成上述小包数据传输之后的RRC状态的信息;或,上述辅助信息包括:上述UE与上述网络设备完成上述小包数据的传输后上述UE待传输的数据量与预设阈值之间的关系。
在一种可能的实现方式中,上述数据量信息包括:第一索引值;上述第一索引值对应上述UE与上述网络设备完成上述小包数据的传输后上述UE待传输的数据量位于第一范围;或,上述数据量信息包括:BSR的取值。
本申请实施例中,辅助信息包括的信息可以有多种形式,实现较为灵活,应用场景更为广泛。例如,若网络设备无法有效识别UE希望在完成上述小包数据传输之后的RRC状态的辅助信息,则UE可以反馈包括第一索引值或BSR的取值的辅助信息。
在一种可能的实现方式中,上述UE还包括:第二接收单元,用于接收上述网络设备发送的寻呼消息;上述寻呼消息用于上述网络设备指示存在下行数据发送给上述UE;上述第一发送单元,具体用于响应于上述寻呼消息,上述UE向上述分布单元发送上述辅助信息。
具体地,UE可以通过分布单元接收集中单元发送的下行小包数据。其中,该下行小包数据为分布单元恢复UE上下文之后,集中单元向分布单元发送的数据。
在一种可能的实现方式中,上述第一发送单元,具体用于当存在上行小包数据发送给上述网络设备时,在上述非连接态下向上述分布单元发送上述辅助信息。
具体地,UE可以在非连接态下发送辅助信息时一起发送上行小包数据给分布单元,从而通过分布单元将上行小包数据发送给集中单元。
在一种可能的实现方式中,上述第一发送单元,具体用于在上述非连接态下向上述分布单元发送第一请求消息;其中,上述第一请求消息用于上述UE请求与上述网络设备进行数据传输,上述辅助信息携带于上述第一请求消息中,上述第一接口消息为初始上行RRC消息传送消息,上述第一接口消息包括RRC Container IE,上述RRC Container IE包含携带有上述辅助信息的上述第一请求消息。
本申请实施例中,辅助信息可以携带于第一请求消息中,因此,UE和分布单元之间可以无需增加额外的RRC消息。并且,携带于第一请求消息中的辅助信息可以放置在第一接口消息的RRC Container IE中,因此,第一接口消息可以无需新增IE,分布单元的处理逻辑的改变较少。辅助信息的使用场景限制较少,应用范围更为广泛。
在一种可能的实现方式中,上述第一发送单元,具体用于在上述非连接态下向上述分布单元发送第一请求消息和上述辅助信息;其中,上述第一请求消息用于上述UE请求与上述网络设备进行数据传输,上述第一接口消息为UE上下文建立响应消息,上述辅助信息携带于上述第一接口消息中。
本申请实施例中,辅助信息可以和第一请求消息一起发送,辅助信息包括的信息也可以更多,形式也可以更为灵活。集中单元也可以获得更为全面的辅助信息,从而进一步避免了集中单元在无法获知完成上述小包数据传输后的UE的数据传输需求的情况下,指示UE进入不合适的RRC状态的问题。减少了对UE后续数据传输的影响,以及,有效避免了UE不必要的功耗和信令开销。
在一种可能的实现方式中,上述第一接口消息为上述集中单元和上述分布单元之间传输的F1接口消息,上述第一请求消息为RRC恢复请求消息或RRC数据早传请求消息。
在一种可能的实现方式中,上行小包数据携带于上述第一请求消息中,下行小包数据携带于上述指示消息中。
在一种可能的实现方式中,上行小包数据为上述UE在上述非连接态下与上述第一请求消息一起发送给上述分布单元的数据,下行小包数据为上述分布单元与上述指示消息一起发送给上述UE的数据。
在一种可能的实现方式中,上述第一请求消息为上述UE基于上述网络设备发送的随机接入响应分配的资源发送的RRC消息,其中,上述随机接入响应为上述网络设备基于上述UE发送的随机接入前导响应的消息;或,上述第一请求消息为上述UE向上述网络设备发送随机接入前导时一起发送的RRC消息;或,上述第一请求消息为上述UE基于预配置的上行资源向上述网络设备发送的RRC消息。
本申请实施例中,携带辅助信息的第一请求消息,或,和辅助信息一起发送的第一请求消息可以是多种应用场景下的RRC消息。相应地,辅助信息也可以适用于上述多种应用场景下,应用范围更为广泛。
第五方面,本申请实施例提供了一种网络设备,包括收发器、处理器和存储器;上述存储器用于存储计算机程序代码,上述计算机程序代码包括计算机指令,上述处理器调用上述计算机指令以使上述网络设备执行本申请实施例第一方面、第一方面的任意一种实现方式提供的UE的RRC状态的控制方法。
第六方面,本申请实施例提供了一种用户设备UE,包括收发器、处理器和存储器;上述存储器用于存储计算机程序代码,上述计算机程序代码包括计算机指令,上述处理器调用上述计算机指令以使上述用户设备执行本申请实施例第二方面、第二方面的任意一种实现方式提供的UE的RRC状态的控制方法。
第七方面,本申请实施例提供了一种计算机存储介质,该计算机存储介质存储有计算机程序,该计算机程序包括程序指令,该程序指令被处理器执行时,用于执行本申请实施例第一方面或第二方面、第一方面或第二方面的任意一种实现方式提供的UE的RRC状态的控制方法。
第八方面,本申请实施例提供了一种计算机程序产品,当该计算机程序产品在通信设备上运行时,使得该通信设备执行本申请实施例第一方面或第二方面、第一方面或第二方 面的任意一种实现方式提供的UE的RRC状态的控制方法。
第九方面,本申请实施例提供了一种芯片,该芯片包括至少一个处理器和接口电路,可选地,该芯片还包括存储器;上述存储器、上述接口电路和上述至少一个处理器通过线路互联,上述至少一个存储器中存储有计算机程序;上述计算机程序被上述处理器执行时实现第一方面或第二方面、第一方面或第二方面的任意一种实现方式提供的UE的RRC状态的控制方法。第十方面,本申请实施例提供一种电子设备,所述电子设备包括执行本发明任一实施例所介绍的方法的装置。所述电子设备例如为芯片。
可以理解地,上述提供的第五方面提供的网络设备、上述提供的第六方面提供的用户设备、第七方面提供的计算机存储介质、第八方面提供的计算机程序产品以及第九方面提供的芯片均用于执行第一方面和第二方面提供的UE的RRC状态的控制方法。因此,其所能达到的有益效果可参考第一方面和第二方面所提供的UE的RRC状态的控制方法中的有益效果,此处不再赘述。
附图说明
以下对本申请实施例用到的附图进行介绍。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种新无线接入NR系统的架构示意图;
图3是一种NR系统的通信协议栈的架构示意图;
图4是又一种NR系统的通信协议栈的架构示意图;
图5是一种用户设备UE的无线资源控制RRC状态的转换示意图;
图6-图11是本申请实施例提供的一些小包数据的传输过程的流程示意图;
图12是本申请实施例提供的一种UE的RRC状态的控制方法的一种流程示意图;
图13是本申请实施例提供的一种UE的RRC状态的控制方法的又一种流程示意图;
图14是本申请实施例提供的又一种UE的RRC状态的控制方法的一种流程示意图;
图15是本申请实施例提供的又一种UE的RRC状态的控制方法的又一种流程示意图;
图16是本申请实施例提供的又一种UE的RRC状态的控制方法的流程示意图;
图17是本申请实施例提供的一种网络设备的结构示意图;
图18是本申请实施例提供的一种UE的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请实施例中,网络设备可以是一种用于发送或接收信息的设备。例如但不限于:基站,用户设备(user equipment,UE),无线接入点(access point,AP),收发点(transmission and receiver point,TRP),中继设备,或者具备基站的功能的其他网络设备等。并且,该网络设备可以包括集中单元(central unit,CU)和至少一个分布单元(distributed unit,DU)。
其中,基站是一种部署在无线接入网(radio access network,RAN)中用于提供无线通信功能的设备。在不同的无线接入系统中,基站的名称可能不同。例如但不限于,全球移 动通讯系统(global system for mobile communications,GSM)或码分多址接入(code division multiple access,CDMA)中的基站收发台(base transceiver station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中的节点B(node B,NB),长期演进(long term evolution,LTE)中的演进型基站(evolved node B,eNodeB),还可以是第五代移动通信技术(5th generation mobile networks,5G),即新无线接入(new radio,NR)中的下一代基站(g node B,gNB),或者其他未来网络系统中的基站。
本申请实施例中,UE是一种具有通信功能的设备,可以但不限于是具有无线通信功能的移动终端。在某些场景下,UE也可以被称为终端、移动台、接入终端、用户代理等。例如,UE为手持设备、可穿戴设备、计算设备、便携式设备或车载设备等形式的终端。例如,UE具体为蜂窝电话、智能手机、智能眼镜、膝上型电脑、个人数字助理或无绳电话等设备。
请参见图1,图1是本申请实施例提供的一种通信系统的架构示意图。该通信系统可以但不限于是GSM,CDMA,宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),通用移动通信系统(universal mobile telecommunications system,UMTS),LTE,NR,或其他未来网络系统。
如图1所示,该通信系统可以包括核心网110、基站120和UE130。其中,核心网110可以连接至少一个基站120,基站120可以为至少一个UE130提供无线通信服务,UE130可以通过空中接口连接任意一个基站120。核心网110为该通信系统中的关键控制节点,主要负责信令处理功能,例如但不限于用于实现接入控制、移动性管理、会话管理等功能。核心网110可以通过基站120向UE130发送下行数据,UE130也可以通过连接的基站120向核心网110发送上行数据。对应上述网络设备的说明,基站120可以为分布式基站,可以包括CU和至少一个DU。基站120和UE130的说明具体可参见上述网络设备和UE的说明,此处不予赘述。需要说明的是图1所示的核心网、基站和UE的形态和数量仅用于示例,例如,该通信系统中的部分基站也可以不为分布式基站,本申请实施例对此不作限定。
为了方便理解,本申请实施例主要以LTE和/或NR为应用的通信系统,网络设备为基站为例进行说明。而LTE技术较为成熟,其系统架构和通信协议栈等相关说明就不再详细解释。接下来主要对NR的系统架构和通信协议栈进行说明。
请参见图2,图2是本申请实施例提供的一种NR系统的架构示意图。该NR系统可以包括5G核心网(5G Core,5GC)210、NR-RAN节点220和UE230,NR-RAN节点220可以包括至少一个通过NG接口连接至5GC210的gNB2200。其中,5GC210对应图1中的核心网110,gNB2200对应图1中的基站120,UE230对应图1中的UE130。
如图2所示,gNB2200可以包括一个CU2201(为了方便区分,后续称为gNB-CU)和至少一个DU2202(为了方便区分,后续称为gNB-DU)。当然gNB2200也可以包含多个CN2201,本申请实施例不作限制。gNB-CU2201和gNB-DU2202之间可以通过F1接口连接。对于NR-RAN220,gNB2200之间可以通过Xn-C接口连接。UE230可以通过Uu接口连接gNB2200中的任意一个gNB-DU2202,可以通过gNB2200与5GC210进行通信。需要说明的是图2所示的5GC、NR-RAN节点、gNB、gNB-CU、gNB-DU和UE的形态和数量 仅用于示例,例如,NR系统中的部分gNB也可以不为分布式基站,本申请实施例对此不作限定。
在移动通信系统中,UE和基站之间的通信协议栈可以被分为用于控制信息传输的控制面协议栈和用于数据传输的用户面协议栈。其中,LTE系统和NR系统的控制面协议栈的架构一致,而对于用户面协议栈的架构,NR系统比LTE系统新增了服务数据适配协议(service data adaptation protocol,SDAP)层。接下来主要对NR系统的用户面协议栈和控制面协议栈进行说明。
请参见图3,图3是一种NR系统的用户面协议栈的架构示意图。该用户面协议栈可以包括物理(physical,PHY)层、媒体接入控制(medium access control,MAC)层、无线链路控制(radio link control,RLC)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层、服务数据适配协议(service data adaptation protocol,SDAP)层。
请参见图4,图4是一种NR系统的控制面协议栈的架构示意图。该控制面协议栈可以包括PHY层、MAC层、RLC层、PDCP层、无线资源控制(radio resource control,RRC)层、非接入层(non access stratum,NAS)。
如图3和图4所示,PHY层可以通过物理信道为较高层(如MAC层)提供数据传输服务。在PHY层,可以通过物理信道传输数据。PHY层也可以通过传输信道连接到MAC层,MAC层和PHY层之间可以通过传输信道传输数据。
MAC层可以经由逻辑信道为较高层(如RLC层)提供服务。MAC可以提供将多个逻辑信道映射到多个传输信道的功能,也可以提供将多个逻辑信道映射到单个传输信道的逻辑信道复用的功能。根据发送信息的类型,逻辑信道可以被分类为用于在控制面传输控制信息的控制信道和用于在用户面传输用户数据的业务信道。其中,控制信道可以包括但不限于公共控制信道(common control channel,CCCH)、专用控制信道(dedicated control channel,DCCH)。业务信道可以包括但不限于专用业务信道(dedicated traffic channel,DTCH)。CCCH可以一直存在,与RAN节点之间没有RRC连接的UE也可以使用CCCH传输信息。DCCH可以用于UE与RAN节点之间传输专用控制信息。DTCH可以用于UE与RAN节点之间传输用户数据。通常,DCCH和DTCH不会一直存在,而是在与UE连接的基站恢复UE上下文(UE context)之后,DCCH和DTCH才能用于UE和基站之间进行通信。其中,UE context包括但不限于终端的标识、无线承载(radio bearer,RB)相关配置、安全加密相关配置、服务质量相关配置等。
RLC层可以为较高层(如PDCP层)提供服务,例如通过自动重传请求(automatic repeat request,ARQ)提供重传服务,从而保障数据传输的可靠性。PDCP层可以提供安全性功能,例如在PDCP层可以对RB上承载的信息进行加密和完整性保护。其中,RB可以是RLC层为较高层(如RRC层)提供的服务。RB可以为UE和RAN节点之间的连接格式集,可以包括物理信道、传输信道和逻辑信道的相关配置。RB可以分为用于在控制面传输控制信息的信令无线承载(signaling radio bearer,SRB)和用于在用户面传输用户数据的数据无线承载(data radio bearer,DRB)。
如图4所示,RRC层可以用于UE和基站之间传输RRC消息。例如但不限于,NR中的RRC恢复请求(RRCResumeRequest)消息可以用于UE请求恢复已经暂停的RRC连接, 以此与基站传输数据。对于RRC层,目前存在三种UE的RRC状态,分别为RRC空闲(RRC IDLE)态、RRC非激活(RRC INACTIVE)态和RRC连接(RRC CONNECTED)态。UE在不同的RRC状态下,执行的操作大多不一样,这三种状态的转换过程具体可参见图5的示例。
请参见图5,图5是一种UE的RRC状态的转换示意图。具体地,当UE处于RRC CONNECTED态时,UE与基站之间存在RRC连接,从而可以发送和接收用户数据等信息。UE可以在基站的指示下,从RRC CONNECTED态进入RRC IDLE态。当UE处于RRC IDLE态时,UE与基站之间没有RRC连接。例如,在UE收到基站发送的RRC连接释放消息之后,UE与基站之间的RRC连接会被停止,RAN节点会删除该UE的UE context。
RRC INACTIVE态为NR中新增的RRC状态。一般情况下,对于数据传输不频繁的UE,基站通常会让该UE保持在RRC INACTIVE态。UE也可以在基站的指示下,从RRC CONNECTED态进入RRC INACTIVE态。例如,在UE收到基站发送的带有暂停指示的RRC连接释放消息之后,UE与基站之间的RRC连接会被暂停,但至少有一个RAN节点保留了该UE的UE context。因此,相比从RRC IDLE态进入RRC CONNECTED态,UE从RRC INACTIVE态进入RRC CONNECTED态的速度更快。UE也可以在基站的指示下,从RRC INACTIVE态进入RRC IDLE态,具体过程和上述从RRC CONNECTED态进入RRC IDLE态类似。
当存在上行数据发送给基站时,处于RRC IDLE态或RRC INACTIVE态的UE可以执行随机接入过程,然后在基站的指示下进入对应的RRC状态。其中,在随机接入过程的第三步中UE向基站发送的消息可以称为message 3,简称为msg3。UE处于不同的RRC状态和在不同的业务场景下,msg3(即RRC消息)不同。例如,处于RRC INACTIVE态的UE存在大量数据发送给基站,则msg3为RRCResumeRequest消息,以此请求恢复已经暂停的RRC连接并进入RRC CONNECTED态与基站传输数据。需要说明的是,基站并不是仅根据UE发送的消息(如msg3)来指示UE的RRC状态,还需要综合考虑网络堵塞、资源调度、资源占用等网络情况,以此确定指示的UE的RRC状态。
如图4所示,NAS层可以用于提供会话管理、移动性管理等功能。5GC可以包括接入和移动性管理功能(access and mobility management function,AMF)。AMF用于在控制面中负责移动性管理功能,例如但不限于,AMF设备可以执行NAS信令安全、NAS信令终止等功能。
可以理解地,相比LTE的用户面协议栈,NR的用户面协议栈新增了SDAP层,但其他层的架构是一致的,具体说明也类似,不再赘述。LTE的控制面协议栈和NR的控制面协议栈的架构是一致的,每一层的具体说明也类似,不再赘述。
可以理解地,本申请描述的架构以及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对于本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
基于上述图1-图5的说明可以得到:一般情况下,若处于RRC IDLE态或RRC INACTIVE态的UE存在上行数据发送给基站,或,处于RRC IDLE态或RRC INACTIVE 态的UE接收到基站发送的寻呼(Paging)消息,该寻呼消息用于基站指示存在下行数据发送给UE,那么,UE需要执行随机接入过程并进入RRC CONNECTED态,在RRC CONNECTED态下再与基站传输数据。但是,上述方法比较适用于UE和基站之间传输的数据量较大的情况。若传输的数据包很小,可以称这类数据包为小包数据(small data),UE切换状态的过程所需的信令甚至大于小包数据,从而导致UE不必要的功耗和信令开销。
本申请实施例中,小包数据可以但不限于为数据量小于预设门限(例如基站指示的传输块的大小)的数据包,数据标签为小包数据的数据包,数据类型属于小包数据的数据包等。其中,上述数据标签和/或上述数据类型可以为UE和网络设备共同协商的。例如,数据标签可以包括大包数据和小包数据。例如,数据类型为心跳包的数据为小包数据,数据类型为文件、视频或音频的数据不为小包数据。小包数据例如但不限于为:即时通讯消息,应用程序的推送消息等不频繁的提示消息,应用程序的心跳包、步数检测、心率检测、智能电表的读数等周期性数据。
为了避免上述情况,处于RRC IDLE态或RRC INACTIVE态(后续可统称为非连接态)的UE可以通过第一请求消息与网络设备进行小包数据的传输,例如在发送第一请求消息时发送上行小包数据,从而UE可以无需进入RRC CONNECTED态后再传输小包数据。其中,上述第一请求消息可以是以下三种情况中的任意一种RRC消息。
情况一,第一请求消息为四步随机接入过程的第三步中UE向基站发送的RRC消息(即上述msg3)。具体地,该RRC消息为UE基于基站发送的随机接入响应(random access response,RAR)分配的资源发送的消息,上述RAR为基站基于UE发送的随机接入前导(random access preamble)响应的消息。例如,LTE的数据早传(early data transmission,EDT)可以实现UE在RRC IDLE态下传输小包数据。情况一下小包数据的传输过程的示例具体可参见图6和图7,图6为控制面下传输过程的流程示意图,图7为用户面下传输过程的流程示意图。
情况二,第一请求消息为两步随机接入过程的第一步中UE向基站发送的RRC消息,后续可以称为message A,简称为msgA。具体地,该RRC消息为UE向基站发送random access preamble时一起发送的RRC消息。情况二下小包数据的传输过程的示例具体可参见图8和图9,图8为控制面下传输过程的流程示意图,图9为用户面下传输过程的流程示意图。
情况三,第一请求消息为UE基于预配置的上行资源向基站发送的RRC消息。情况三下小包数据的传输过程的示例具体可参见图10和图11,图10为控制面下传输过程的流程示意图,图11为用户面下传输过程的流程示意图。
请参见图6和图7,图6是本申请实施例提供的一种控制面下小包数据的传输过程的流程示意图,图7是本申请实施例提供的一种用户面下小包数据的传输过程的流程示意图。
如图6所示,图6所示的控制面下的传输过程包括但不限于以下步骤:
S601:UE向基站发送random access preamble。
S602:响应于random access preamble,基站向UE发送RAR。
S603:基于RAR分配的资源,UE向基站发送携带上行小包数据的RRC消息。
S604:基站向核心网发送上行小包数据。
S605:基站向UE发送响应消息。
具体地,当UE存在上行小包数据发送给基站,UE可以发起四步随机接入过程,并在该四步随机接入过程的第三步中,向基站发送携带上行小包数据的msg3(即上述RRC消息)。例如,UE发送的msg3可以是RRC数据早传请求(RRCEarlyDataRequest)消息。
UE处于不同的RRC状态和在不同的业务场景下,上述RRC消息可以不同。例如,处于RRC IDLE态的UE(可选地,此时UE可以存储有用于获取加密上述上行小包数据的密钥的配置信息等UE上下文)发送的msg3可以是RRC连接请求(RRCConnectionRequest)消息、RRC连接恢复请求(RRCConnectionResumeRequest)消息、RRCEarlyDataRequest消息、RRCResumeRequest消息、RRC建立请求(RRCSetupRequest)消息或其他具有相同功能但第三代合作伙伴计划(3rd generation partnership project,3GPP)未标准化的RRC消息。处于RRC INACTIVE态的UE发送的msg3也可以是RRCConnectionRequest消息、RRCConnectionResumeRequest消息、RRCEarlyDataRequest消息、RRCResumeRequest消息、RRCSetupRequest消息或其他具有相同功能但3GPP未标准化的RRC消息。
其中,上述上行小包数据可以携带于上述RRC消息中并在CCCH上传输。例如,上述上行小包数据可以携带于RRCEarlyDataRequest消息包含的NAS层相关的IE(如专用信息NAS(dedicatedInfoNAS)IE)中,并在CCCH上传输。相应地,基站可以通过上述携带上行小包数据的msg3向核心网发送上述上行小包数据。例如,基站可以通过转发上述msg3包含的NAS层相关的IE向核心网发送上述上行小包数据。
然后,基站可以向UE发送响应消息。在一些实施例中,S605之前,若核心网存在下行小包数据发送给UE,核心网可以向基站发送下行小包数据。然后,在S605中,基站可以通过携带下行小包数据的响应消息向UE发送下行小包数据。其中,上述下行小包数据可以携带于上述响应消息中并在CCCH上传输。例如,上述响应消息为RRC数据早传完成(RRCEarlyDataComplete)消息,上述下行小包数据可以携带于RRCEarlyDataComplete消息包含的NAS层相关的IE中,并在CCCH上传输。
若UE没有收到任何响应消息,则认为上述上行小包数据传输不成功。若UE收到基站发送的响应消息,则UE可以根据响应消息得到上述上行小包数据是否传输成功。例如,基站发送的响应消息可以是RRCEarlyDataComplete消息或RRC连接建立(RRCConnectionSetup)消息,则UE可以根据该响应消息得到上述上行小包数据传输成功。
在一些实施例中,若核心网没有进一步传输数据的需求,则上述响应消息可以用于指示UE上述上行小包数据传输成功,并指示UE保持在当前的非连接态。例如,上述响应消息为RRCEarlyDataComplete消息、RRC连接释放(RRCConnectionRelease)消息、RRC释放(RRCRelease)消息或其他具有相同功能但3GPP未标准化的RRC消息。UE可以根据上述响应消息得到上述上行小包数据传输成功。
在一些实施例中,若核心网有进一步传输数据的需求,核心网可以触发连接建立的指示过程,则上述响应消息可以用于指示UE回退至RRC CONNECTED态。例如,上述响应消息为RRCConnectionSetup消息、RRC连接恢复(RRCConnectionResume)消息、RRC建立(RRCSetup)消息、RRC恢复(RRCResume)消息或其他具有相同功能但3GPP未标 准化的RRC消息。UE可以根据上述响应消息得到上述上行小包数据传输成功。
在一些实施例中,上述响应消息用于指示UE上述上行小包数据传输失败,并指示UE保持在当前的非连接态。例如,上述响应消息为RRC连接拒绝(RRCConnectionReject)消息、RRC拒绝(RRCReject)消息或其他具有相同功能但3GPP未标准化的RRC消息。UE可以根据上述响应消息得到上述上行小包数据传输失败。
如图7所示,图7所示的用户面下的传输过程包括但不限于以下步骤:
S701:UE向基站发送random access preamble。
S702:响应于random access preamble,基站向UE发送RAR。
S703:基于RAR分配的资源,UE向基站发送上行小包数据和RRC消息。
S704:基站恢复UE的上下文并向核心网发送上行小包数据。
S705:基站向UE发送响应消息。
具体地,当UE存在上行小包数据发送给基站,UE可以发起四步随机接入过程,并在该随机接入过程的第三步中,向基站一起发送msg3(即上述RRC消息)和上行小包数据。例如,UE发送的msg3可以是RRCConnectionResumeRequest消息或RRCResumeRequest消息。UE处于不同的RRC状态和在不同的业务场景下,上述RRC消息可以不同,具体可参见图6中RRC消息的示例,此处不予赘述。
其中,上述上行小包数据可以在DTCH上传输,上述RRC消息可以在CCCH上传输。相应地,基站可以恢复UE上下文,并将接收到的上述上行小包数据发送给核心网。
然后,基站可以向UE发送响应消息。在一些实施例中,S705之前,若核心网存在下行小包数据发送给UE,核心网可以向基站发送下行小包数据。然后,在S705中,基站可以在发送响应消息时将下行小包数据一起发送给UE。其中,下行小包数据可以在DTCH上传输,并与在DCCH上传输的响应消息多路复用。
若UE没有收到任何响应消息,则认为上述上行小包数据传输不成功。若UE收到基站发送的响应消息,则UE可以根据响应消息得到上述上行小包数据是否传输成功。例如,基站发送的响应消息可以是RRCConnectionRelease消息、RRCConnectionResume消息、RRCConnectionSetup消息、RRCRelease消息、RRCResume消息或RRCSetup消息,则UE可以根据该响应消息得到上述上行小包数据传输成功。上述响应消息的说明具体可参见图6中响应消息的说明,此处不予赘述。
图6和图7以UE在存在上行小包数据发送给基站的情况下执行S601和/或S701,即UE主动发起小包数据的传输过程为例进行说明。但在具体实现中,还存在UE在基站的指示下被动发起小包数据的传输过程的情况,例如,LTE中的终端终止(mobile terminated,MT)EDT(简称MT-EDT)。该情况的传输过程与图6和图7所示的传输过程类似,区别之处具体如下所述:
在S601之前,当核心网存在下行小包数据发送给UE,核心网可以向基站发送寻呼消息。可选地,该寻呼消息可以携带下行小包数据的数据量信息。相应地,基站可以向UE发送寻呼消息,以使UE发起四步随机接入过程,即执行上述S601-S603。例如,基站可以根据该寻呼消息触发MT-EDT,并向UE发送携带MT-EDT指示的寻呼消息,以使UE触发用于MT-EDT的MO-EDT。其中,与上述UE主动发起小包数据的传输过程不同的是: S603中UE向基站发送的RRC消息可以未携带上行小包数据,可选地,还可以携带触发MT-EDT的原因信息。相应地,S604可以更改为基站接收核心网发送的下行小包数据。S605中基站向UE发送的响应消息中携带有下行小包数据。
类似地,在S701之前,当核心网存在下行小包数据发送给UE,核心网可以向基站发送寻呼消息。可选地,该寻呼消息可以携带下行小包数据的数据量信息。相应地,基站可以向UE发送寻呼消息,以使UE发起四步随机接入过程,即执行上述S701-S703。其中,与上述UE主动发起小包数据的传输过程不同的是:在S703中,UE可以仅发送RRC消息给基站,不发送上行小包数据,可选地,还可以携带触发MT-EDT的原因信息。相应地,S704可以更改为基站接收核心网发送的下行小包数据。S705可以更改为基站向UE发送响应消息和下行小包数据。
请参见图8和图9,图8是本申请实施例提供的又一种控制面下小包数据的传输过程的流程示意图,图9是本申请实施例提供的又一种用户面下小包数据的传输过程的流程示意图。
如图8所示,图8所示的控制面下的传输过程包括但不限于以下步骤:
S801:UE向基站发送random access preamble,以及携带上行小包数据的RRC消息。
S802:基站向核心网发送上行小包数据。
S803:基站向UE发送响应消息。
具体地,当UE存在上行小包数据发送给基站,UE可以发起两步随机接入过程,并在该两步随机接入过程的第一步中,向基站发送random access preamble以及携带上行小包数据的msgA(即上述RRC消息)。例如,UE发送的msgA可以是RRCResumeRequest消息。UE处于不同的RRC状态和在不同的业务场景下,上述RRC消息可以不同,具体可参见图6中RRC消息的示例,此处不予赘述。
其中,上述携带上行小包数据的RRC消息可以携带于物理上行共享信道(physical uplink share channel,PUSCH)负载中,上述携带上行小包数据的RRC消息可以在CCCH上传输。相应地,基站可以通过上述携带上行小包数据的RRC消息向核心网发送上述上行小包数据,例如,基站可以通过转发上述携带上行小包数据的RRCResumeRequest消息向核心网发送上述上行小包数据。
然后,基站可以向UE发送响应消息。在一些实施例中,S803之前,若核心网存在下行小包数据发送给UE,核心网可以向基站发送下行小包数据。然后,在S803中,基站可以通过携带下行小包数据的响应消息向UE发送下行小包数据。其中,下行小包数据可以携带于上述响应消息中,并在CCCH上传输。
若UE没有收到任何响应消息,则认为上述上行小包数据传输不成功。若UE收到基站发送的响应消息,则UE可以根据响应消息得到上述上行小包数据是否传输成功。例如,基站发送的响应消息可以是RRCRelease消息、RRCSetup消息或RRCResume消息,则UE可以根据该响应消息得到上述上行小包数据传输成功。上述响应消息的说明具体可参见图6中响应消息的说明,此处不予赘述。
如图9所示,图9所示的用户面下的传输过程包括但不限于以下步骤:
S901:UE向基站发送random access preamble,RRC消息和上行小包数据。
S902:基站恢复UE的上下文并向核心网发送上行小包数据。
S903:基站向UE发送响应消息。
具体地,S901的过程和图8的S801类似。不同的是,在S901中,上行小包数据不是携带于RRC消息中,而是和RRC消息一起发送。并且,在S901中,上述RRC消息和上行小包数据可以携带于PUSCH负载中。上述上行小包数据可以在DTCH上传输,上述RRC消息可以在CCCH上传输。相应地,基站可以恢复UE上下文,并将接收到的上述上行小包数据发送给核心网。UE处于不同的RRC状态和在不同的业务场景下,上述RRC消息可以不同,具体可参见图6中RRC消息的示例,此处不予赘述。
然后,基站可以向UE发送响应消息。在一些实施例中,S903之前,若核心网存在下行小包数据发送给UE,核心网可以向基站发送下行小包数据。然后,在S903中,基站可以在发送响应消息时将下行小包数据一起发送给UE。其中,下行小包数据可以在DTCH上传输,并与在DCCH上传输的响应消息多路复用。
若UE没有收到任何响应消息,则认为上述上行小包数据传输不成功。若UE收到基站发送的响应消息,则UE可以根据响应消息得到上述上行小包数据是否传输成功。例如,基站发送的响应消息可以是RRCRelease消息、RRCSetup消息或RRCResume消息,则UE可以根据该响应消息得到上述上行小包数据传输成功。上述响应消息的说明具体可参见图6中响应消息的说明,此处不予赘述。
图8和图9以UE在存在上行小包数据发送给基站的情况下执行S801和/或S901,即UE主动发起小包数据的传输过程为例进行说明。但在具体实现中,还存在UE在基站的指示下被动发起小包数据的传输过程的情况。该情况的传输过程与图8和图9所示的传输过程类似,区别之处具体如下所述:
在S801之前,当核心网存在下行小包数据发送给UE,核心网可以向基站发送寻呼消息。可选地,该寻呼消息可以携带下行小包数据的数据量信息。相应地,基站可以向UE发送寻呼消息,以使UE发起两步随机接入过程,即执行上述S801。其中,与上述UE主动发起小包数据的传输过程不同的是:在S801中,UE向基站发送的RRC消息可以未携带上行小包数据。相应地,S802可以更改为基站接收核心网发送的下行小包数据。S803中基站向UE发送的响应消息中携带有下行小包数据。
类似地,在S901之前,当核心网存在下行小包数据发送给UE,核心网可以向基站发送寻呼消息。可选地,该寻呼消息可以携带下行小包数据的数据量信息。相应地,基站可以向UE发送寻呼消息,以使UE发起两步随机接入过程,即执行上述S901。其中,与上述UE主动发起小包数据的传输过程不同的是:在S901中,UE可以仅发送random access preamble和RRC消息给基站,不发送上行小包数据。相应地,S902可以更改为基站接收核心网发送的下行小包数据。S903可以更改为基站向UE发送响应消息和下行小包数据。
请参见图10和图11,图10是本申请实施例提供的又一种控制面下小包数据的传输过程的流程示意图,图11是本申请实施例提供的又一种用户面下小包数据的传输过程的流程示意图。
如图10所示,图10所示的控制面下的传输过程包括但不限于以下步骤:
S101:UE确定可以使用预配置的上行资源。
S102:基于预配置的上行资源,UE向基站发送携带上行小包数据的RRC消息。
S103:基站向核心网发送上行小包数据。
S104:基站向UE发送响应消息。
具体地,上述预配置的上行资源可以但不限于是预配置上行资源(preconfigured uplink resource,PUR)或配置资源类型一(configured grants type 1,CG Type 1)。其中,CG Type 1可以是由RRC层直接配置的上行资源,可以包括但不限于该上行资源的周期。接下来以PUR为例进行说明。UE确定可以使用PUR的前提过程可以但不限于为:UE可以在处于RRC CONNECTED态时向基站发送PUR请求配置信息(PURConfigurationRequest)消息,以使基站在指示UE从RRC CONNECTED态切换为RRC IDLE态时,发送的RRC消息(如RRCConnectionRelease消息)中携带有详细的PUR配置信息或PUR释放指示信息。UE确定可以使用PUR的具体操作,例如但不限于包括:确定PUR已在小区内启动,对齐有效时间,确定具有有效的时间提前(timing advance,TA)量等。
当UE存在上行小包数据发送给基站,并且UE确定可以使用预配置的上行资源时,UE可以基于预配置的上行资源向基站发送携带上行小包数据的RRC消息。S102中的RRC消息和图6的S603中的RRC消息可以为同一种RRC消息,只是S102中的RRC消息是基于预配置的上行资源传输的,而图6的S603中的RRC消息是基于RAR分配的资源传输的。RRC消息的说明具体可参见图6中RRC消息的说明,此处不予赘述。
相应地,S103-S104的过程与图6的S604-S605的过程类似,具体可参见图6的S603-S605的说明。而与图6的S605不同的是:在一些实施例中,S104中的响应消息还可以是层一确认消息(Layer 1 Ack)、时间提前命令MAC控制单元(Timing Advance Command MAC Control Element)或其他未标准化的响应消息。其中,Layer 1 Ack和Timing Advance Command MAC Control Element可以用于终止当前过程并更新UE的TA。在一些实施例中,S104之前,若核心网存在下行小包数据发送给UE,此时的传输情况也和图6所述的若核心网存在下行小包数据发送给UE的传输情况类似,此处不予赘述。
如图11所示,图11所示的用户面下的传输过程包括但不限于以下步骤:
S111:UE确定可以使用预配置的上行资源。
S112:基于预配置的上行资源,UE向基站发送上行小包数据和RRC消息。
S113:基站恢复UE的上下文并向核心网发送上行小包数据。
S114:基站向UE发送响应消息。
具体地,预配置的上行资源的相关说明具体可参见上述图10的说明,此处不予赘述。
具体地,当UE存在上行小包数据发送给基站,并且UE确定可以使用预配置的上行资源时,UE可以基于预配置的上行资源向基站发送上行小包数据和RRC消息。S112中的RRC消息和图7的S703中的RRC消息可以为同一种RRC消息,只是S112中的RRC消息是基于预配置的上行资源传输的,而图7的S703中的RRC消息是基于RAR分配的资源传输的。RRC消息的说明具体可参见图7中RRC消息的说明,此处不予赘述。
相应地,S113-S114的过程与图7的S704-S705的过程类似,具体可参见图7的 S703-S705的说明。而与图7的S705不同的是:在一些实施例中,S114中的响应消息还可以是Layer 1 Ack、Timing Advance Command MAC Control Element或其他未标准化的响应消息。其中,Layer 1 Ack和Timing Advance Command MAC Control Element可以用于终止当前过程并更新UE的TA。S114之前,若核心网存在下行小包数据发送给UE的传输情况也和图7所述的传输情况类似,此处不予赘述。
图10和图11以UE在存在上行小包数据发送给基站的情况下执行S101和/或S111,即UE主动发起小包数据的传输过程为例进行说明。但在具体实现中,还存在UE在基站的指示下被动发起小包数据的传输过程的情况。该情况的传输过程与图10和图11所示的传输过程类似,区别之处具体如下所述:
在S101之前,当核心网存在下行小包数据发送给UE,核心网可以向基站发送寻呼消息。可选地,该寻呼消息可以携带下行小包数据的数据量信息。相应地,基站可以向UE发送寻呼消息,以使UE执行上述S101-S102。其中,与上述UE主动发起小包数据的传输过程不同的是:S102中UE向基站发送的RRC消息可以未携带上行小包数据,可选地,还可以携带触发MT-EDT的原因信息。相应地,S103可以更改为基站接收核心网发送的下行小包数据。S104中基站向UE发送的响应消息中携带有下行小包数据。
类似地,在S111之前,当核心网存在下行小包数据发送给UE,核心网可以向基站发送寻呼消息。可选地,该寻呼消息可以携带下行小包数据的数据量信息。相应地,基站可以向UE发送寻呼消息,以使UE执行上述S111-S112。其中,与上述UE主动发起小包数据的传输过程不同的是:在S112中,UE可以仅发送RRC消息给基站,不发送上行小包数据,可选地,还可以携带触发MT-EDT的原因信息。相应地,S113可以更改为基站接收核心网发送的下行小包数据。S114可以更改为基站向UE发送响应消息和下行小包数据。
对于包括CU和DU的基站而言,UE和基站完成小包数据的传输后,CU无法获知UE后续是否有数据传输需求。从而可能导致UE在CU的指示下进入一个不合适的RRC状态,从而影响UE后续数据的传输,导致UE不必要的功耗和信令开销。其中,上述小包数据的传输可以是一次上行和/或下行小包数据的传输,例如,UE和基站执行一次上述图6和图7所述的传输过程,或者,UE和基站执行一次上述图8和图9所述的传输过程,或者,UE和基站执行一次上述图10和图11所述的传输过程。
因此,为了避免上述情况,本申请实施例提供了基于UE发送的辅助信息的UE的RRC状态的控制方法,以此保障UE后续数据的传输。接下来,基于上述图1-图11所示的一些实施例对上述方法进行说明。
请参见图12,图12是本申请实施例提供一种UE的RRC状态的控制方法的一种流程示意图。图12具体为该方法在用户面下的传输过程的流程示意图。该方法可以应用于图1所示的通信系统,该方法中的网络设备可以是图1所示的通信系统中的基站120。该方法也可以应用于图2所示的NR系统,该方法中的网络设备也可以是图2所示的NR系统中的gNB2200,不限于此。其中,该方法中的网络设备可以包括CU和至少一个DU。该方法包括但不限于如下步骤:
S1201:UE在非连接态下向DU发送携带辅助信息的第一请求消息和上行小包数据。
具体地,上述非连接态可以是图5所示的RRC INACTIVE态或RRC IDLE态。第一请求消息可以用于UE请求与网络设备进行数据传输。其中,UE在RRC INACTIVE态下发送的第一请求消息和UE在RRC IDLE态下发送的第一请求消息可以相同。例如,UE在RRC IDLE态下(可选地,此时该UE还可以存储有用于获取加密上述上行小包数据的密钥的配置信息等UE上下文)和UE在RRC INACTIVE态下发送的第一请求消息可以均为RRCResumeRequest消息。UE在RRC INACTIVE态下发送的第一请求消息和UE在RRC IDLE态下发送的第一请求消息也可以不同。例如,UE在RRC INACTIVE态下发送的第一请求消息为RRCResumeRequest消息,UE在RRC IDLE态下发送的第一请求消息为RRCConnectionResumeRequest消息或RRCEarlyDataRequest消息。
具体地,第一请求消息可以是UE基于网络设备发送的RAR分配的资源发送的RRC消息,上述RAR为网络设备基于UE发送的random access preamble响应的消息,具体示例可参见图7的S703中的RRC消息(即上述msg3)。第一请求消息也可以是UE向网络设备发送random access preamble时一起发送的RRC消息,具体示例可参见图9的S901中的RRC消息(即上述msgA)。第一请求消息也可以是UE基于预配置的上行资源向网络设备发送的RRC消息,具体示例可参见图11的S112中的RRC消息,不限于此。
具体地,辅助信息可以用于指示:UE和网络设备完成小包数据的传输后UE的数据传输需求。第一请求消息可以包括新增的第一信息元素(information element,IE),上述辅助信息可以放置在第一IE中,第一IE指示的信息也可以为辅助信息指示的信息。该辅助信息可以包括以下四种情况中的至少一种信息。
情况一,该辅助信息可以包括:UE和网络设备完成上述小包数据的传输后UE待传输的数据量信息。
可选地,该数据量信息为第一索引值(index),第一index对应UE和网络设备完成上述小包数据的传输后UE待传输的数据量位于第一范围。其中,每个index对应一个数据量的取值范围,例如,每个index对应一个缓冲状态报告(buffer status report,BSR)的取值范围。index和BSR的取值的映射关系的示例如下表1所示。表1以介质访问控制层控制单元(media access control control unit,MAC CE)中index和BSR的取值的映射关系的部分为例进行示意,在具体实现中,还可以有其他映射关系,本申请实施例对此不作限定。
表1 一种index和BSR的取值的映射关系
index BSR的取值 index BSR的取值
0 0 3 小于等于20
1 小于等于10 4 小于等于28
2 小于等于14 5 小于等于38
6 小于等于53 11 小于等于276
7 小于等于74 12 小于等于384
8 小于等于102 13 小于等于535
9 小于等于142 14 小于等于745
10 小于等于198 15 小于等于1038
例如,UE和网络设备完成上述小包数据的传输后UE待传输的数据量用BSR表示为 1024,该BSR的取值小于等于1038,根据表1可以得到,第一index为15。那么,将第一index为15对应转换为二进制表达,第一IE为1111。
其中,第一IE的长度a决定了第一IE能指示的第一index的最大值index max,即决定了第一IE能指示的BSR的最大值。a和index max的关系具体如下所示:
index max=2 a-1
例如,第一IE的长度为4比特,那么index max=2 4-1=15,根据表1可以得到,第一IE能指示的BSR的最大值为1038。
可选地,该数据量信息可以包括BSR的取值。例如,UE和网络设备完成上述小包数据的传输后UE待传输的数据量用BSR表示为1024,将BSR为1024对应转换为二进制表达,第一IE为10000000000。
可以理解地,第一IE指示的数据量信息为BSR的取值会更为直观,但对于较大的数据量信息而言,第一IE的长度要求更长。若第一IE的长度固定,第一IE指示的数据量信息为第一index时,第一IE能够指示的BSR的取值范围更大。实际可以根据具体的场景选择第一IE指示的数据量信息的表达方式,本申请实施例对此不作限定。
情况二,该辅助信息可以包括第一比特位,第一比特位的取值用于指示上述UE和网络设备完成上述小包数据的传输后UE的数据传输需求。
示例性地,第一IE的取值类型可以为整数类型。例如,第一IE的取值为0或1,第一IE可以表示为INTEGER(0..1)。第一IE的取值为0时表示UE和网络设备完成上述小包数据的传输后UE无数据传输需求,第一IE的取值为1时表示UE和网络设备完成上述小包数据的传输后UE有数据传输需求。或者,第一IE的取值为0时表示UE和网络设备完成上述小包数据的传输后UE有数据传输需求,第一IE的取值为1时表示UE和网络设备完成上述小包数据的传输后UE无数据传输需求。
示例性地,第一IE的取值类型可以为枚举类型。例如,第一IE的取值为true或false,第一IE可以表示为ENUMERATED{true,false}。第一IE的取值为false时表示UE和网络设备完成上述小包数据的传输后UE无数据传输需求,第一IE的取值为true时表示UE和网络设备完成上述小包数据的传输后UE有数据传输需求。或者,第一IE的取值为false时表示UE和网络设备完成上述小包数据的传输后UE有数据传输需求,第一IE的取值为true时表示UE和网络设备完成上述小包数据的传输后UE无数据传输需求。
情况三,该辅助信息可以包括:UE希望在完成上述小包数据传输之后的RRC状态的信息。该辅助信息可以为用户设备辅助信息(UEAssistanceInformation)消息中的释放偏好(ReleasePreference)IE,ReleasePreference IE可以用于表示UE希望在完成上述小包数据传输之后的RRC状态不为RRC_CONNECTED态。可选地,该ReleasePreference IE还可以携带用于表示UE希望在完成上述小包数据传输之后的RRC状态的详细信息的参数,例如,该参数为偏好RRC状态(preferredRRC-State)。preferredRRC-State的内容可以为idle、inactive或connected,分别用于指示UE希望在完成上述小包数据传输之后的RRC状态为RRC_IDLE态、RRC_INACTIVE态或RRC_CONNECTED态。
情况四,该辅助信息可以包括:UE和网络设备完成上述小包数据的传输后UE待传输的数据量与预设阈值之间的关系。例如,UE和网络设备完成上述小包数据的传输后UE待 传输的数据量大于、等于或小于预设阈值。其中,预设阈值大于0。预设阈值可以但不限于是网络设备通过广播消息指示UE的,或者网络设备通过RRC消息指示UE的。
示例性地,第一IE的取值类型可以为整数类型。例如,第一IE的取值为0或1,第一IE可以表示为INTEGER(0..1)。第一IE的取值为0时表示UE和网络设备完成上述小包数据的传输后UE待传输的数据量小于预设阈值,第一IE的取值为1时表示UE和网络设备完成上述小包数据的传输后UE待传输的数据量大于或等于预设阈值。或者,第一IE的取值为0时表示UE和网络设备完成上述小包数据的传输后UE待传输的数据量大于或等于预设阈值,第一IE的取值为1时表示UE和网络设备完成上述小包数据的传输后UE待传输的数据量小于预设阈值。
例如,第一IE的取值为0、1或2,第一IE可以表示为INTEGER(0..2)。第一IE的取值为0时表示UE和网络设备完成上述小包数据的传输后UE待传输的数据量小于预设阈值。第一IE的取值为1时表示UE和网络设备完成上述小包数据的传输后UE待传输的数据量等于预设阈值。第一IE的取值为2时表示UE和网络设备完成上述小包数据的传输后UE待传输的数据量大于预设阈值。
示例性地,第一IE的取值类型可以为枚举类型。例如,第一IE的取值为true或false,第一IE可以表示为ENUMERATED{true,false}。第一IE为false时表示UE和网络设备完成上述小包数据的传输后UE待传输的数据量小于或等于预设阈值,第一IE为true时表示UE和网络设备完成上述小包数据的传输后UE待传输的数据量大于预设阈值。或者,第一IE为false时表示UE和网络设备完成上述小包数据的传输后UE待传输的数据量大于预设阈值,第一IE为true时表示UE和网络设备完成上述小包数据的传输后UE待传输的数据量小于或等于预设阈值。
在一些实施例中,情况四所述的预设阈值可以有多个。则情况四下,该辅助信息可以包括:UE和网络设备完成上述小包数据的传输后UE待传输的数据量与多个预设阈值之间的关系。
示例性地,第一IE的取值类型可以为整数类型。例如,第一IE的取值为0、1或2,第一IE可以表示为INTEGER(0..2)。第一IE的取值为0时表示UE和网络设备完成上述小包数据的传输后UE待传输的数据量小于或等于第一预设阈值。第一IE的取值为1时表示UE和网络设备完成上述小包数据的传输后UE待传输的数据量大于第一预设阈值但小于第二预设阈值。第一IE的取值为2时表示UE和网络设备完成上述小包数据的传输后UE待传输的数据量大于或等于第二预设阈值。
不限于上述列举的辅助信息的情况,在具体实现中,第一请求消息也可以通过是否携带辅助信息来指示UE和网络设备完成上述小包数据的传输后UE的数据传输需求。例如,第一IE可以表示为枚举类型ENUMERATED{true}。第一请求消息中携带了取值为true的第一IE时,表示UE和网络设备完成上述小包数据的传输后UE有数据传输需求。第一请求消息中未携带取值为true的第一IE时,表示UE和网络设备完成上述小包数据的传输后UE无数据传输需求。或者,第一请求消息中携带了取值为true的第一IE时,表示UE和网络设备完成上述小包数据的传输后UE待传输的数据量大于预设阈值。第一请求消息中未携带取值为true的第一IE时,表示UE和网络设备完成上述小包数据的传输后UE待传 输的数据量小于预设阈值。本申请实施例对此不做限定。
需要说明的是,UE发送的第一请求消息是否携带辅助信息,即是否携带第一IE可以由网络设备配置。例如但不限于,网络设备可以向UE发送指示消息,该指示消息可以用于指示UE发送的第一请求消息可以携带第一IE。UE接收到该指示消息后,后续发送的第一请求消息均可以携带第一IE。类似地,该指示消息可以用于指示UE发送的第一请求消息不可携带第一IE。UE接收到该指示消息后,后续发送的第一请求消息均不携带第一IE。
在一些实施例中,携带辅助信息的第一请求消息可以通过SRB承载并在逻辑信道CCCH上发送,上行小包数据可以通过DRB承载并在逻辑信道DTCH上发送,再由MAC层将二者复用为一个MAC协议数据单元(protocol data unit,PDU)发送到网络设备。
S1202:DU根据携带辅助信息的第一请求消息得到初始上行RRC消息传送(INITIAL UL RRC MESSAGE TRANSFER)消息。
具体地,INITIAL UL RRC MESSAGE TRANSFER消息为DU和CU之间传输的F1接口消息。INITIAL UL RRC MESSAGE TRANSFER消息可以包括多个IE。例如但不限于,RAN UE标识(identity document,ID)(简称RAN UE ID)IE可以用于携带UE的标识信息,RRC容器(RRC-Container)IE可以用于携带上行链路(uplink,UL)CCCH消息(简称UL-CCCH-Message),RRC容器RRC建立完成(简称RRC-Container-RRCSetupComplete)IE可以用于携带UL DCCH消息(简称UL-DCCH-Message)。
其中,UL-CCCH-Message可以为在上行CCCH逻辑信道上从UE发送至网络的RRC消息。例如但不限于,RRCSetupRequest消息和RRCResumeRequest消息等。UL-DCCH-Message可以为在上行DCCH逻辑信道上从UE发送至网络的RRC消息。例如但不限于,RRC建立完成(RRCSetupComplete)消息和RRC恢复完成(RRCResumeComplete)消息等。
具体地,根据上述第一请求消息和UL-CCCH-Message的说明可以得到:第一请求消息属于UL-CCCH-Message,因此,INITIAL UL RRC MESSAGE TRANSFER消息中的RRC-Container IE可以用于携带第一请求消息。
DU接收到UE发送的携带辅助信息的第一请求消息和上行小包数据后,一方面,DU可以将该携带辅助信息的第一请求消息放置在INITIAL UL RRC MESSAGE TRANSFER消息的RRC-Container IE中。另一方面,由于用户数据是通过DRB承载,而此时DU未恢复UE上下文,例如未恢复SRB1、DRB1相关配置等,因此DU可以保存上行小包数据,恢复UE上下文之后再发送给CU。
S1203:DU向CU发送携带辅助信息的INITIAL UL RRC MESSAGE TRANSFER消息。
具体地,CU可以通过INITIAL UL RRC MESSAGE TRANSFER消息中的RRC-Container IE获取UE发送的第一请求消息,从而得到其中携带的辅助信息。
在一些实施例中,CU也可以根据第一请求消息获取UE执行S1201的意图。
例如,该第一请求消息为RRCResumeRequest消息,RRCResumeRequest消息用于指示UE请求恢复已经暂停的RRC连接。CU可以根据RRCResumeRequest消息获取UE请求恢复已经暂停的RRC连接的意图。
例如,该第一请求消息为RRCConnectionResumeRequest消息, RRCConnectionResumeRequest消息用于指示UE请求进行用户面的EDT。CU可以根据RRCConnectionResumeRequest消息获取UE请求进行用户面的EDT的意图。
S1204:CU向DU发送恢复UE上下文请求(UE CONTEXT SETUP REQUEST)消息。
具体地,UE CONTEXT SETUP REQUEST消息为DU和CU之间传输的F1接口消息。UE CONTEXT SETUP REQUEST消息可以包括需要恢复的UE上下文的相关信息,例如但不限于需要恢复的SRB ID和DRB ID等。
S1205:DU向CU发送恢复UE上下文响应(UE CONTEXT SETUP RESPONSE)消息。
具体地,响应于CU发送的UE CONTEXT SETUP REQUEST消息,DU恢复UE上下文,并向CU发送UE CONTEXT SETUP RESPONSE消息。UE CONTEXT SETUP RESPONSE消息为DU向CU发送的确认恢复UE上下文的响应消息。UE CONTEXT SETUP RESPONSE消息也为DU和CU之间传输的F1接口消息。UE CONTEXT SETUP RESPONSE消息可以包括恢复的UE上下文的相关配置,例如但不限于包括,SRB1和DRB1的RLC层、MAC层和PHY层相关配置。
需要说明的是,DU可以仅恢复UE CONTEXT SETUP REQUEST消息中请求恢复的UE上下文的部分。例如,UE CONTEXT SETUP REQUEST消息中请求恢复的SRB ID为1和2,DRB ID为1和2,DU可以根据实际情况仅恢复SRB1和DRB1。本申请实施例以DU恢复的UE上下文可以支撑小包数据和/或辅助信息的传输为例进行说明。
S1206:DU向CU发送上行小包数据。
具体地,基于DU恢复的UE上下文,DU向CU发送上行小包数据。若网络设备为基站,CU可以将上行小包数据发送给核心网设备。
S1207:CU根据INITIAL UL RRC MESSAGE TRANSFER消息中的辅助信息得到指示消息。
具体地,CU可以通过INITIAL UL RRC MESSAGE TRANSFER消息中的RRC-Container IE获取UE发送的第一请求消息。并且,CU可以根据第一请求消息得到其中携带的辅助信息,以此获取UE和网络设备完成上述小包数据的传输后UE的数据传输需求。然后,CU可以根据上述UE的数据传输需求得到指示消息,该指示消息用于指示UE和网络设备完成上述小包数据的传输后UE的RRC状态。
在一些实施例中,上述指示消息不仅可以用于指示UE和网络设备完成上述小包数据的传输后UE的RRC状态,还可以用于指示UE上述上行小包数据传输成功。例如,上述辅助信息具体指示UE和网络设备完成上述小包数据的传输后UE没有数据传输需求(例如第一请求消息中未携带第一IE、第一比特位取值为false、UE待传输的数据量信息BSR为0等),CU可以根据该辅助信息得到对应的指示消息。该指示消息用于指示UE上述上行小包数据传输成功,并且用于指示UE和网络设备完成上述小包数据的传输后UE的RRC状态不变,即指示UE保持为S1201中的非连接态。该指示消息的示例具体可参见图7中用于指示UE上述上行小包数据传输成功并指示UE保持在当前的非连接态的响应消息的说明。
在一些实施例中,若核心网设备有进一步传输数据的需求,核心网可以触发连接建立 的指示过程,即通过网络设备指示UE回退至RRC CONNECTED态。那么,上述指示消息具体用于指示UE和网络设备完成上述小包数据的传输后UE的RRC状态为RRC CONNECTED态。可选地,该指示消息也可以用于指示UE上述上行小包数据传输成功。类似地,若上述辅助信息具体指示UE和网络设备完成上述小包数据的传输后UE有进一步传输数据的需求(例如UE待传输的数据量信息大于预设阈值、UE希望在完成上述小包数据传输之后的RRC状态为RRC CONNECTED态等),那么CU可以根据该辅助信息得到对应的指示消息。上述指示消息具体用于指示UE和网络设备完成上述小包数据的传输后UE的RRC状态为RRC CONNECTED态。可选地,该指示消息也可以用于指示UE上述上行小包数据传输成功。该指示消息的示例具体可参见图7中用于指示UE回退至RRC CONNECTED态的响应消息的说明。
在一些实施例中,上述指示消息不仅可以用于指示UE和网络设备完成上述小包数据的传输后UE的RRC状态,还可以用于指示UE上述上行小包数据传输失败。例如,上述辅助信息具体指示UE和网络设备完成上述小包数据的传输后UE没有数据传输需求(例如第一请求消息中未携带第一IE、第一比特位取值为false、UE待传输的数据量信息BSR为0等),CU可以根据该辅助信息得到对应的指示消息。该指示消息用于指示UE上述上行小包数据传输失败,并且用于指示UE和网络设备完成上述小包数据的传输后UE的RRC状态不变,即指示UE保持为S1201中的非连接态。该指示消息的示例具体可参见图7中用于指示UE上述上行小包数据传输失败并指示UE保持在当前的非连接态的响应消息的说明。
需要说明的是,辅助信息仅用于协助网络设备得到指示消息。实际中,网络设备并不是仅根据辅助信息得到指示消息,还需要综合考虑网络堵塞、资源调度、资源占用等网络情况,以此得到指示消息。例如,假设由于网络堵塞较为严重和资源占用较多,网络设备未接收到UE发送的上行小包数据或接收到的上行小包数据不完整。CU可以根据上述网络情况得到指示消息。该指示消息用于指示UE上述上行小包数据传输失败,并且用于指示UE和网络设备完成上述小包数据的传输后UE的RRC状态不变,即指示UE保持为S1201中的非连接态。该指示消息的示例具体可参见图7中用于指示UE上述上行小包数据传输失败的响应消息的说明。
需要说明的是,S1207和S1204-S1206的顺序不作限定。
在一些实施例中,该方法还可以包括:CU根据INITIAL UL RRC MESSAGE TRANSFER消息中的辅助信息得到调度信息,CU向DU发送携带调度信息的F1接口消息。
在一种可能的实现方式中,S1207中,CU不仅可以根据INITIAL UL RRC MESSAGE TRANSFER消息中的辅助信息得到指示消息,也可以根据INITIAL UL RRC MESSAGE TRANSFER消息中的辅助信息得到调度信息。
具体地,当辅助信息包括:UE和网络设备完成上述小包数据的传输后UE待传输的数据量信息(即S1201中情况一或情况四所示的辅助信息)时,CU可以根据上述UE待传输的数据量信息得到调度信息。该调度信息可以用于指示DU上述UE待传输的数据量信息,以及指示DU为UE分配数据传输资源。
在一些实施例中,若S1207中CU根据INITIAL UL RRC MESSAGE TRANSFER消息 中的辅助信息得到调度信息,那么,S1207之后,该方法还可以包括:CU向DU发送携带调度信息的F1接口消息。
具体地,上述携带调度信息的F1接口消息可以但不限于是UE上下文管理消息(UE Context Management messages)。例如,上述携带调度信息的F1接口消息为UE CONTEXT SETUP REQUEST消息,UE上下文修改请求(UE CONTEXT MODIFICATION REQUEST)消息,UE上下文修改确定(UE CONTEXT MODIFICATION CONFIRM)消息,UE上下文释放命令(UE CONTEXT RELEASE COMMAND)消息或其他具有相同功能但3GPP未标准化的F1接口消息。
其中,若上述携带调度信息的F1接口消息为UE CONTEXT SETUP REQUEST消息,则上述CU向DU发送携带调度信息的F1接口消息可以在S1204中实现。也就是说,S1204可以具体为:CU向DU发送携带调度信息的UE CONTEXT SETUP REQUEST消息。
具体地,DU可以通过携带调度信息的F1接口消息获取其中的调度信息,以此获取上述UE和网络设备完成上述小包数据的传输后UE待传输的数据量信息,以及为UE分配数据传输资源的指示。响应于该调度信息,DU可以为UE分配数据传输资源。
其中,上述数据传输资源可以是DU根据上述UE待传输的数据量信息分配的资源,也可以是DU根据网络情况分配的资源,不限于此。该数据传输资源可以用于UE在UE和网络设备完成上述上行小包数据的传输后向网络设备发送数据。例如,该数据传输资源可以用于UE在S1209之前向DU发送数据,以此通过DU向CU发送数据。可选地,该数据为小包数据。其中,该数据对应的数据量可以为上述UE待传输的数据量信息。
例如,上述辅助信息具体指示的UE和网络设备完成上述小包数据的传输后UE待传输的数据量BSR大于0。因此,CU根据该辅助信息得到的调度信息可以用于指示DU上述UE待传输的数据量BSR,以及指示DU为UE分配数据传输资源。DU可以根据上述UE待传输的数据量BSR分配该数据传输资源。UE可以在UE和网络设备完成上述上行小包数据的传输后通过该数据传输资源向网络设备发送数据,该数据对应的数据量为上述UE待传输的数据量BSR。
在一些实施例中,S1207可以具体为:CU根据调度信息和INITIAL UL RRC MESSAGE TRANSFER消息中的辅助信息得到指示消息。
在一些实施例中,DU响应于调度信息,为UE分配数据传输资源之后,该方法还可以包括:DU向CU发送指示调度传输完成的信息,可选地,调度传输完成可以为DU为UE分配数据传输资源,可选地,调度传输完成可以为DU接收到UE基于分配的数据传输资源发送的数据。S1207可以具体为:CU根据上述指示调度传输完成的信息和辅助信息得到指示消息。
S1208:CU向DU发送携带指示消息的下行RRC消息传送(DL RRC MESSAGE TRANSFER)消息。
具体地,DL RRC MESSAGE TRANSFER消息为DU和CU之间传输的F1接口消息。CU可以将指示消息放置在DL RRC MESSAGE TRANSFER消息的RRC-Container IE中。然后,CU可以将携带指示消息的DL RRC MESSAGE TRANSFER消息发送给DU,以此通过DU将该指示消息发送给UE。
在一些实施例中,若S1207中CU根据INITIAL UL RRC MESSAGE TRANSFER消息中的辅助信息得到调度信息,那么,S1208可以具体为:CU向DU发送携带调度信息和指示消息的DL RRC MESSAGE TRANSFER消息。
具体地,DU可以通过携带调度信息和指示消息的DL RRC MESSAGE TRANSFER消息获取其中的指示消息和调度信息。DU可以通过调度信息获取上述UE和网络设备完成上述小包数据的传输后UE待传输的数据量信息,以及为UE分配数据传输资源的指示。响应于该调度信息,DU可以为UE分配数据传输资源。其中,该数据传输资源的说明具体可参见上述CU向DU发送携带调度信息的F1接口消息中数据传输资源的描述,不再赘述。指示消息可以在DU为UE分配数据传输资源之后再发送给UE。例如,DU可以在UE通过该数据传输资源与网络设备传输数据完成后执行S1209。
S1209:DU向UE发送指示消息。
具体地,DU可以通过DL RRC MESSAGE TRANSFER消息中的RRC-Container IE获取指示消息,并将该指示消息发送给UE。
S1210:UE根据指示消息进入对应的RRC状态。
具体地,UE若未收到DU发送的指示消息,则认为上述上行小包数据的传输失败。UE若收到DU发送的指示消息,UE可以根据该指示消息得到上述上行小包数据是否传输成功,并根据该指示消息进入对应的RRC状态。
例如,假设S1201中UE处于RRC INACTIVE态,若该指示消息为RRCRelease消息,UE可以根据该指示消息得到上述上行小包数据传输成功。并且,UE可以根据该指示消息保持在当前的RRC状态,即S1201中UE处于的RRC INACTIVE态。
例如,假设S1201中UE处于RRC INACTIVE态,若该指示消息为RRCResume消息或RRCSetup消息,UE可以根据该指示消息得到上述上行小包数据传输成功。并且,UE可以根据该指示消息回退至RRC CONNECTED态。
例如,假设S1201中UE处于RRC INACTIVE态,若该指示消息为RRCReject消息,UE可以根据该指示消息得到上述上行小包数据传输不成功。并且,UE可以根据该指示消息保持在当前的RRC状态,即S1201中UE处于的RRC INACTIVE态。
在一些实施例中,若S1210中UE根据指示消息进入的RRC状态为RRC CONNECTED态,该方法还可以包括:
S1211:UE向DU发送第一响应消息。
具体地,UE根据指示消息进入RRC CONNECTED态后,响应于该指示消息,UE可以向DU发送第一响应消息。例如但不限于,该第一响应消息为RRC连接建立完成(RRCConnectionSetupComplete)消息、RRC连接恢复完成(RRCConnectionResumeComplete)消息、RRCSetupComplete消息、RRCResumeComplete消息或其他具有相同功能但3GPP未标准化的RRC消息。
例如,上述指示消息为RRCConnectionSetup消息。UE根据该指示消息从S1201中的非连接态回退至RRC CONNECTED态之后,为了告知基站UE已经进入RRC CONNECTED态和RRC连接建立成功,UE向DU发送的第一响应消息可以为RRCConnectionSetupComplete消息。
例如,上述指示消息为RRCConnectionResume消息。UE根据该指示消息从S1201中的非连接态回退至RRC CONNECTED态之后,为了告知基站UE已经进入RRC CONNECTED态和RRC连接恢复成功,UE向DU发送的第一响应消息可以为RRCConnectionResumeComplete消息。
例如,上述指示消息为RRCSetup消息。UE根据该指示消息从非连接态回退至RRC CONNECTED态之后,为了告知基站UE已经进入RRC CONNECTED态和RRC连接建立成功,UE向DU发送的第一响应消息可以为RRCSetupComplete消息。
例如,上述指示消息为RRCResume消息。UE根据该指示消息从非连接态回退至RRC CONNECTED态之后,为了告知基站UE已经进入RRC CONNECTED态和RRC连接恢复成功,UE向DU发送的第一响应消息可以为RRCResumeComplete消息。
S1212:DU向CU发送携带第一响应消息的上行RRC消息传送(UL RRC MESSAGE TRANSFER)消息。
具体地,UL RRC MESSAGE TRANSFER消息为DU和CU之间传输的F1接口消息。CU可以通过携带第一响应消息的UL RRC MESSAGE TRANSFER消息得到UE响应于指示消息的第一响应消息。
在一些实施例中,网络设备存在下行小包数据发送给UE。S1208之前,DU恢复UE上下文之后,该方法还可以包括:CU基于DU恢复的UE上下文向DU发送下行小包数据。相应地,在S1209中,DU可以在发送指示消息时将下行小包数据一起发送给UE。其中,下行小包数据可以在DTCH上传输,并与在DCCH上传输的指示消息多路复用。
图12以UE在存在上行小包数据发送给网络设备的情况下执行S1201,即UE主动发起小包数据的传输过程为例进行说明。但在具体实现中,还存在UE在网络设备的指示下被动发起小包数据的传输过程的情况,该情况的用户面下的传输过程和图12所示的传输过程类似,区别之处具体如下所述:
S1201之前,该方法还可以包括:CU通过DU向UE发送寻呼消息;该寻呼消息用于网络设备指示存在下行数据发送给UE。相应地,S1201可以更改为:响应于该寻呼消息,UE在非连接态下发送携带辅助信息的第一请求消息,该情况下的S1201中UE可以未发送上行小包数据。S1206可以更改为:基于DU恢复的UE上下文,CU向DU发送下行小包数据。S1209可以更改为:DU向UE发送下行小包数据和指示消息。
不限于上述列举的情况,在具体实现中,DU向UE发送的下行小包数据也可以不在S1209中和指示消息一起发送,而是在S1209之前,S1205之后发送给UE。UE可以基于网络设备调度的下行资源接收该下行小包数据。本申请实施例对此不作限定。
在图12描述的方法中,对于由CU和DU组成的网络设备,处于非连接态的UE可以在请求与网络设备进行小包数据的同时上报辅助信息。CU可以参考辅助信息来确定指示的UE的RRC状态,以便尽可能避免CU在无法获知完成上述小包数据传输后的UE的数据传输需求的情况下,指示UE进入不合适的RRC状态的问题。减少了对UE后续数据传输的影响,以及,有效避免了UE不必要的功耗和信令开销。
并且,上述辅助信息可以携带于UE向网络设备发送的第一请求消息中,UE和DU之间可以无需增加额外的RRC消息。并且,携带于第一请求消息中的辅助信息放置在第一接 口消息的RRC Container IE中,第一接口消息可以无需新增IE。DU的处理逻辑的改变较少,辅助信息的使用场景限制较少,应用范围更为广泛。
请参见图13,图13是本申请实施例提供一种UE的RRC状态的控制方法的又一种流程示意图。与图12所示的该方法在用户面下的流程示意图对应,图13具体为该方法在控制面下的传输过程的流程示意图。该方法可以应用于图1所示的通信系统,该方法中的网络设备可以是图1所示的通信系统中的基站120。该方法也可以应用于图2所示的NR系统,该方法中的网络设备也可以是图2所示的NR系统中的gNB2200,不限于此。其中,该方法中的网络设备可以包括CU和至少一个DU。该方法包括但不限于如下步骤:
S1301:UE在非连接态下向DU发送携带辅助信息和上行小包数据的第一请求消息。
具体地,用户面下,图12的S1201中上行小包数据为与携带辅助信息的第一请求消息一起发送给DU的数据。控制面下,S1301中上行小包数据携带于第一请求消息中,该第一请求消息还携带有辅助信息。
具体地,控制面下第一请求消息的描述和用户面下第一请求消息的描述类似,具体可参见图12的S1201的说明,控制面下第一请求消息的示例具体可参见图6、图8和图10中的第一请求消息,此处不予赘述。其中,用户面下的传输过程中的第一请求消息和控制面下的传输过程中的第一请求消息可以为同一种RRC消息。例如,处于RRC INACTIVE态的UE,在图12的S1201中发送的第一请求消息和S1301中发送的第一请求消息可以均为RRCResumeRequest消息。用户面下的传输过程中的第一请求消息和控制面下的传输过程中的第一请求消息也可以不为同一种RRC消息。例如,处于RRC IDLE态的UE,在图12的S1201中发送的第一请求消息为RRCConnectionResumeRequest消息,在S1301中发送的第一请求消息为RRCEarlyDataRequest消息。
在一些实施例中,与图12的S1201中上行小包数据通过DRB承载不同,S1301中,携带于第一请求消息中的上行小包数据可以通过SRB(例如SRB0)承载并在逻辑信道CCCH上发送。
可以理解地,S1301中的非连接态和辅助信息的描述和图12的S1201中的非连接态和辅助信息的描述类似,具体可参见图12的S1201的说明,此处不予赘述。
S1302:DU根据携带辅助信息和上行小包数据的第一请求消息得到INITIAL UL RRC MESSAGE TRANSFER消息。
具体地,与图12的S1202相同的是:S1302中携带辅助信息的第一请求消息也放置在INITIAL UL RRC MESSAGE TRANSFER消息的RRC-Container IE中。其中,INITIAL UL RRC MESSAGE TRANSFER消息的说明具体可参见图12的S1202的说明,此处不予赘述。
与图12的S1202不同的是:S1302中,由于上行小包数据携带于第一请求消息中,因此,上行小包数据也被放置在INITIAL UL RRC MESSAGE TRANSFER消息的RRC-Container IE中。由于上行小包数据携带于INITIAL UL RRC MESSAGE TRANSFER消息中发送给CU,因此,DU无需保存上行小包数据,也无需恢复UE上下文之后再发送给CU。
S1303:DU向CU发送携带辅助信息和上行小包数据的INITIAL UL RRC MESSAGE  TRANSFER消息。
具体地,CU可以通过INITIAL UL RRC MESSAGE TRANSFER消息中的RRC-Container IE获取UE发送的第一请求消息,从而得到其中携带的辅助信息和上行小包数据。若网络设备为基站,CU可以将上行小包数据发送给核心网设备。
在一些实施例中,CU也可以根据第一请求消息获取UE执行S1301的意图。
例如,该第一请求消息为RRCResumeRequest消息,RRCResumeRequest消息用于指示UE请求恢复已经暂停的RRC连接。CU可以根据RRCResumeRequest消息获取UE请求恢复已经暂停的RRC连接的意图。
例如,该第一请求消息为RRCEarlyDataRequest消息,RRCEarlyDataRequest消息用于指示UE请求进行控制面的EDT。CU可以根据RRCEarlyDataRequest消息获取UE请求进行控制面的EDT的意图。
S1304:CU向DU发送UE CONTEXT SETUP REQUEST消息。
具体地,S1304和图12的S1204一致,不再赘述。
S1305:DU向CU发送UE CONTEXT SETUP RESPONSE消息。
具体地,S1305和图12的S1205一致,不再赘述。
S1306:CU根据INITIAL UL RRC MESSAGE TRANSFER消息中的辅助信息得到指示消息。
具体地,S1306和图12的S1207类似,具体可参见图12的S1207的说明。其中,和图12的S1207中指示消息的示例具体可参见图7中响应消息说明,S1306中指示消息的示例具体可参见图6中响应消息的说明。
在一些实施例中,该方法还可以包括:CU根据INITIAL UL RRC MESSAGE TRANSFER消息中的辅助信息得到调度信息,CU向DU发送携带调度信息的F1接口消息。
在一种可能的实现方式中,S1306中,CU不仅可以根据INITIAL UL RRC MESSAGE TRANSFER消息中的辅助信息得到指示消息,也可以根据INITIAL UL RRC MESSAGE TRANSFER消息中的辅助信息得到调度信息。
具体地,当辅助信息包括:UE和网络设备完成上述小包数据的传输后UE待传输的数据量信息(即S1201中情况一或情况四所示的辅助信息)时,CU可以根据上述UE待传输的数据量信息得到调度信息。该调度信息可以用于指示DU上述UE待传输的数据量信息,以及指示DU为UE分配数据传输资源。需要说明的是,S1306和S1304-S1305的顺序不作限定。
在一些实施例中,若S1306中CU根据INITIAL UL RRC MESSAGE TRANSFER消息中的辅助信息得到调度信息,以及S1306在S1304-S1305之前,那么,S1306之后,该方法还可以包括:CU向DU发送携带调度信息的F1接口消息。
具体地,上述携带调度信息的F1接口消息的说明具体可参见图12中携带调度信息的F1接口消息的描述,不再赘述。若上述携带调度信息的F1接口消息为UE CONTEXT SETUP REQUEST消息,则上述CU向DU发送携带调度信息的F1接口消息可以在S1304中实现。也就是说,S1304可以具体为:CU向DU发送携带调度信息的UE CONTEXT SETUP REQUEST消息。
具体地,DU可以通过携带调度信息的F1接口消息获取其中的调度信息,以此获取上述UE和网络设备完成上述小包数据的传输后UE待传输的数据量信息,以及为UE分配数据传输资源的指示。响应于该调度信息,DU可以为UE分配数据传输资源。其中,该数据传输资源的说明具体可参见图12中CU向DU发送携带调度信息的F1接口消息中数据传输资源的描述,不再赘述。
在一些实施例中,S1306可以具体为:CU根据调度信息和INITIAL UL RRC MESSAGE TRANSFER消息中的辅助信息得到指示消息。
在一些实施例中,DU响应于调度信息,为UE分配数据传输资源之后,该方法还可以包括:DU向CU发送指示调度传输完成的信息,可选地,调度传输完成可以为DU为UE分配数据传输资源,可选地,调度传输完成可以为DU接收到UE基于分配的数据传输资源发送的数据。S1306可以具体为:CU根据上述指示调度传输完成的信息和辅助信息得到指示消息。
S1307:CU向DU发送携带指示消息的DL RRC MESSAGE TRANSFER消息。
具体地,S1307和图12的S1208类似,具体可参见图12的S1208的说明。
在一些实施例中,若S1306中CU根据INITIAL UL RRC MESSAGE TRANSFER消息中的辅助信息得到调度信息,那么,S1307可以具体为:CU向DU发送携带调度信息和指示消息的DL RRC MESSAGE TRANSFER消息。
具体地,DU获取调度信息和分配数据传输资源的说明具体可参见图12的S1208中对应的描述,不再赘述。指示消息可以在DU为UE分配数据传输资源之后再发送给UE。例如,DU可以在UE通过该数据传输资源与网络设备传输数据完成后执行S1308。
S1308:DU向UE发送指示消息。
具体地,S1308和图12的S1209一致,不再赘述。
S1309:UE根据指示消息进入对应的RRC状态。
具体地,S1309和图12的S1210一致,不再赘述。
在一些实施例中,若S1309中UE根据指示消息进入的RRC状态为RRC CONNECTED态,该方法还可以包括:
S1310:UE向DU发送第一响应消息。
具体地,S1310和图12的S1211一致,不再赘述。
S1311:DU向CU发送携带第一响应消息的UL RRC MESSAGE TRANSFER消息。
具体地,S1311和图12的S1212一致,不再赘述。
在一些实施例中,网络设备存在下行小包数据发送给UE。S1307之前,DU恢复UE上下文之后,该方法还可以包括:CU基于DU恢复的UE上下文向DU发送下行小包数据。相应地,在S1308中,该下行小包数据可以携带于DU向UE发送的指示消息中。其中,携带下行小包数据的指示消息在DCCH上传输。
图13以UE在存在上行小包数据发送给网络设备的情况下执行S1301,即UE主动发起小包数据的传输过程为例进行说明。但在具体实现中,还存在UE在网络设备的指示下被动发起小包数据的传输过程的情况,该情况的用户面下的传输过程和图13所示的传输过程类似,区别之处具体如下所述:
S1301之前,该方法还可以包括:CU通过DU向UE发送寻呼消息;该寻呼消息用于网络设备指示存在下行数据发送给UE。相应地,S1301可以更改为:响应于该寻呼消息,UE在非连接态下发送携带辅助信息的第一请求消息,该情况下的S1301中的第一请求消息可以未携带上行小包数据。S1307之前,该方法还可以包括:CU向DU发送下行小包数据。S1308可以更改为:DU向UE发送携带下行小包数据的指示消息。
不限于上述列举的情况,在具体实现中,DU向UE发送的下行小包数据也可以不携带于S1308的指示消息中发送,而是在S1308之前,S1305之后发送给UE。UE可以基于网络设备调度的下行资源接收该下行小包数据。本申请实施例对此不作限定。
在图13描述的方法中,对于由CU和DU组成的网络设备,处于非连接态的UE可以在请求与网络设备进行小包数据的同时上报辅助信息。CU可以参考辅助信息来确定指示的UE的RRC状态,以便尽可能避免CU在无法获知完成上述小包数据传输后的UE的数据传输需求的情况下,指示UE进入不合适的RRC状态的问题。减少了对UE后续数据传输的影响,以及,有效避免了UE不必要的功耗和信令开销。
并且,上述辅助信息可以携带于UE向网络设备发送的第一请求消息中,UE和DU之间可以无需增加额外的RRC消息。并且,携带于第一请求消息中的辅助信息放置在第一接口消息的RRC Container IE中,第一接口消息可以无需新增IE。DU的处理逻辑的改变较少,辅助信息的使用场景限制较少,应用范围更为广泛。
在一些实施例中,辅助信息也可以不携带于UE在非连接态下向DU发送的第一请求消息中,而是与第一请求消息一起发送,具体可参见图14和图15的示例。
请参见图14,图14是本申请实施例提供又一种UE的RRC状态的控制方法的一种流程示意图。图14具体为该方法在用户面下的传输过程的流程示意图。该方法可以应用于图1所示的通信系统,该方法中的网络设备可以是图1所示的通信系统中的基站120。该方法也可以应用于图2所示的NR系统,该方法中的网络设备也可以是图2所示的NR系统中的gNB2200,不限于此。其中,该方法中的网络设备可以包括CU和至少一个DU。该方法包括但不限于如下步骤:
S1401:UE在非连接态下向DU发送第一请求消息、辅助信息和上行小包数据。
具体地,图14和图15所示的辅助信息与第一请求消息的关系与图12和图13所示的辅助信息与第一请求消息的关系可以不同。在图14和图15中,辅助信息可以不是携带于第一请求消息中,而是和第一请求消息一起发送。第一请求消息可以不包括新增的第一IE来携带辅助信息。
在一些实施例中,辅助信息可以携带于UEAssistanceInformation消息中,S1401例如为:UE在非连接态下向DU发送第一请求消息、携带辅助信息的UEAssistanceInformation消息和上行小包数据。可选地,UEAssistanceInformation消息可以包括新增的第二IE。携带于UEAssistanceInformation消息中的辅助信息可以包括放置在第二IE中的辅助信息,具体可以包括图12的S1201中情况一、情况二和/或情况四所述的辅助信息。携带于UEAssistanceInformation消息中的辅助信息也可以包括UEAssistanceInformation消息中的ReleasePreference IE,即图12的S1201中情况三所述的辅助信息。可选地, UEAssistanceInformation消息也可以不包括新增的第二IE。辅助信息可以为UEAssistanceInformation消息中的ReleasePreference IE,即图12的S1201中情况三所述的辅助信息。可选地,UEAssistanceInformation消息也可以通过是否新增第二IE来指示UE和网络设备完成上述小包数据的传输后UE的数据传输需求,不限于此。
在一些实施例中,第一请求消息可以通过SRB(例如SRB0)承载并在逻辑信道CCCH上发送,上行小包数据可以通过DRB承载并在逻辑信道DTCH上发送,辅助信息可以通过其他SRB(例如SRB1)承载并在逻辑信道DCCH上发送,再由MAC层将三者复用为一个MAC PDU发送到网络设备。
可以理解地,S1401中的非连接态,第一请求消息和辅助信息和图12的S1201中的非连接态、第一请求消息和辅助信息类似,具体可参见图12的S1201的说明,此处不予赘述。
S1402:DU根据第一请求消息得到INITIAL UL RRC MESSAGE TRANSFER消息。
具体地,INITIAL UL RRC MESSAGE TRANSFER消息的说明具体可参见图12的S1202和S1203的说明,此处不予赘述。第一请求消息属于UL-CCCH-Message,因此,INITIAL UL RRC MESSAGE TRANSFER消息中的RRC-Container IE可以用于携带第一请求消息。
DU接收到UE发送的辅助信息、第一请求消息和上行小包数据后,一方面,DU可以将第一请求消息放置在INITIAL UL RRC MESSAGE TRANSFER消息的RRC-Container IE中。另一方面,由于用户数据是通过DRB承载,辅助信息是通过SRB承载,而此时DU未恢复UE上下文,例如未恢复SRB1、DRB1相关配置等,因此DU可以保存上行小包数据和辅助信息,恢复UE上下文之后再发送给CU。
S1403:DU向CU发送携带第一请求消息的INITIAL UL RRC MESSAGE TRANSFER消息。
具体地,CU可以通过INITIAL UL RRC MESSAGE TRANSFER消息中的RRC-Container IE获取UE发送的第一请求消息,从而获取UE执行S1401的意图。CU根据第一请求消息获取UE的意图的示例具体可参见图12的S1203的示例。
S1404:CU向DU发送UE CONTEXT SETUP REQUEST消息。
具体地,S1404和图12的S1204一致,不再赘述。
S1405:DU根据辅助信息得到UE CONTEXT SETUP RESPONSE消息。
具体地,响应于CU发送的UE CONTEXT SETUP REQUEST消息,DU恢复UE上下文。UE CONTEXT SETUP RESPONSE消息为DU向CU发送的确认恢复UE上下文的响应消息。UE CONTEXT SETUP RESPONSE消息可以包括恢复的UE上下文的相关配置,例如但不限于,SRB1和DRB1的RLC层、MAC层和PHY层相关配置。UE CONTEXT SETUP RESPONSE消息可以包括新增的第三IE,例如用户设备辅助信息容器(UEAssistanceInformation Container)IE,辅助信息可以放置在该第三IE中。
S1406:DU向CU发送携带辅助信息的UE CONTEXT SETUP RESPONSE消息。
具体地,基于恢复的UE下文,DU可以向CU发送携带辅助信息的UE CONTEXT SETUP RESPONSE消息。
S1407:DU向CU发送上行小包数据。
具体地,S1407和图12的S1206一致,不再赘述。
S1408:CU根据UE CONTEXT SETUP RESPONSE消息中的辅助信息得到指示消息。
具体地,CU可以通过UE CONTEXT SETUP RESPONSE消息中的第三IE获取UE发送的辅助信息,以此获取UE和网络设备完成上述小包数据的传输后UE的数据传输需求。然后,CU可以根据上述UE的数据传输需求得到指示消息,该指示消息用于指示UE和网络设备完成上述小包数据的传输后UE的RRC状态。CU根据辅助信息得到指示消息以及指示消息的说明具体可参见图12的S1207中对应的描述,不再赘述。
需要说明的是,辅助信息仅用于协助网络设备得到指示消息。实际中,网络设备并不是仅根据辅助信息得到指示消息,还需要综合考虑网络堵塞、资源调度、资源占用等网络情况,以此得到指示消息。具体示例可参见图12的S1207中的示例,不再赘述。
在一些实施例中,该方法还可以包括:CU根据INITIAL UL RRC MESSAGE TRANSFER消息中的辅助信息得到调度信息,CU向DU发送携带调度信息的F1接口消息。
在一些实施例中,S1408可以具体为:CU根据调度信息和INITIAL UL RRC MESSAGE TRANSFER消息中的辅助信息得到指示消息。
在一些实施例中,DU响应于调度信息,为UE分配数据传输资源之后,该方法还可以包括:DU向CU发送指示调度传输完成的信息,可选地,调度传输完成可以为DU为UE分配数据传输资源,可选地,调度传输完成可以为DU接收到UE基于分配的数据传输资源发送的数据。S1408可以具体为:CU根据上述指示调度传输完成的信息和辅助信息得到指示消息。
具体说明和上图12的S1207中调度信息的说明类似,不再赘述。在一种可能的实现方式中,S1408中,CU不仅可以根据UE CONTEXT SETUP RESPONSE消息中的辅助信息得到指示消息,也可以根据UE CONTEXT SETUP RESPONSE消息中的辅助信息得到调度信息。
具体地,当辅助信息包括:UE和网络设备完成上述小包数据的传输后UE待传输的数据量信息(即S1201中情况一或情况四所示的辅助信息)时,CU可以根据上述UE待传输的数据量信息得到调度信息。该调度信息可以用于指示DU上述UE待传输的数据量信息,以及指示DU为UE分配数据传输资源。
S1409:CU向DU发送携带指示消息的DL RRC MESSAGE TRANSFER消息。
具体地,CU将指示消息放置在DL RRC MESSAGE TRANSFER消息的RRC-Container IE中。然后,CU将携带指示消息的DL RRC MESSAGE TRANSFER消息发送给DU,以此通过DU将该指示消息发送给UE。
在一些实施例中,若S1408中CU根据UE CONTEXT SETUP RESPONSE消息中的辅助信息得到调度信息,那么,S1409可以具体为:CU向DU发送携带调度信息和指示消息的DL RRC MESSAGE TRANSFER消息。
具体地,DU可以通过携带调度信息和指示消息的DL RRC MESSAGE TRANSFER消息获取其中的指示消息和调度信息。DU可以通过调度信息获取上述UE和网络设备完成上述小包数据的传输后UE待传输的数据量信息,以及为UE分配数据传输资源的指示。响应于该调度信息,DU可以为UE分配数据传输资源。其中,该数据传输资源的说明具体可参 见图12中CU向DU发送携带调度信息的F1接口消息中数据传输资源的描述,不再赘述。指示消息可以在DU为UE分配数据传输资源之后再发送给UE。例如,DU可以在UE通过该数据传输资源与网络设备传输数据完成后执行S1410。
不限于上述列举的情况,在具体实现中,调度信息也可以在S1408之后,S1409之前携带于CU向DU发送的F1接口消息中发送给DU。本申请实施例对此不作限定。
S1410:DU向UE发送指示消息。
具体地,S1410和图12的S1209一致,不再赘述。
S1411:UE根据指示消息进入对应的RRC状态。
具体地,S1411和图12的S1210一致,不再赘述。
在一些实施例中,若S1411中UE根据指示消息进入的RRC状态为RRC CONNECTED态,该方法还可以包括:
S1412:UE向DU发送第一响应消息。
具体地,S1412和图12的S1211一致,不再赘述。
S1413:DU向CU发送携带第一响应消息的UL RRC MESSAGE TRANSFER消息。
具体地,S1413和图12的S1212一致,不再赘述。
在一些实施例中,网络设备存在下行小包数据发送给UE。S1409之前,DU恢复UE上下文之后,该方法还可以包括:CU基于DU恢复的UE上下文向DU发送下行小包数据。相应地,在S1410中,DU可以在发送指示消息时将下行小包数据一起发送给UE。其中,下行小包数据可以在DTCH上传输,并与在DCCH上传输的指示消息多路复用。
图14以UE在存在上行小包数据发送给网络设备的情况下执行S1401,即UE主动发起小包数据的传输过程为例进行说明。但在具体实现中,还存在UE在网络设备的指示下被动发起小包数据的传输过程的情况,该情况的用户面下的传输过程和图14所示的传输过程类似,区别之处具体如下所述:
S1401之前,该方法还可以包括:CU通过DU向UE发送寻呼消息;该寻呼消息用于网络设备指示存在下行数据发送给UE。相应地,S1401可以更改为:响应于该寻呼消息,UE在非连接态下发送第一请求消息和辅助信息,该情况下的S1401中UE可以未发送上行小包数据。S1407可以更改为:基于DU恢复的UE上下文,CU向DU发送下行小包数据。S1410可以更改为:DU向UE发送下行小包数据和指示消息。
不限于上述列举的情况,在具体实现中,DU向UE发送的下行小包数据也可以不在S1410中和指示消息一起发送,而是在S1410之前,S1406之后发送给UE。UE可以基于网络设备调度的下行资源接收该下行小包数据。本申请实施例对此不作限定。
在图14描述的方法中,对于由CU和DU组成的网络设备,处于非连接态的UE可以在请求与网络设备进行小包数据的同时上报辅助信息。CU可以参考辅助信息来确定指示的UE的RRC状态,以便尽可能避免CU在无法获知完成上述小包数据传输后的UE的数据传输需求的情况下,指示UE进入不合适的RRC状态的问题。减少了对UE后续数据传输的影响,以及,有效避免了UE不必要的功耗和信令开销。
并且,辅助信息可以和第一请求消息一起发送,辅助信息包括的信息也可以更多,形式也可以更为灵活。
请参见图15,图15是本申请实施例提供又一种UE的RRC状态的控制方法的又一种流程示意图。与图14所示的该方法在用户面下的流程示意图对应,图15具体为该方法在控制面下的传输过程的流程示意图。该方法可以应用于图1所示的通信系统,该方法中的网络设备可以是图1所示的通信系统中的基站120。该方法也可以应用于图2所示的NR系统,该方法中的网络设备也可以是图2所示的NR系统中的gNB2200,不限于此。其中,该方法中的网络设备可以包括CU和至少一个DU。该方法包括但不限于如下步骤:
S1501:UE在非连接态下向DU发送携带上行小包数据的第一请求消息和辅助信息。
具体地,用户面下,图14的S1401中上行小包数据为与第一请求消息一起发送给DU的数据。控制面下,S1501中上行小包数据携带于第一请求消息中。其中,用户面下的传输过程中的第一请求消息和控制面下的传输过程中的第一请求消息可以为同一种RRC消息,也可以为不同种RRC消息,具体可参见图13的S1301的示例。
在一些实施例中,与图14的S1401中上行小包数据通过DRB承载不同,S1501中,携带上行小包数据的第一请求消息可以通过SRB(例如SRB0)承载并在逻辑信道CCCH上发送,辅助信息可以通过其他SRB(例如SRB1)承载并在逻辑信道DCCH上发送,再由MAC层将二者复用为一个MAC PDU发送到网络设备。
可以理解地,控制面下S1501中的非连接态,第一请求消息和辅助信息和用户面下图14的S1401中的非连接态、第一请求消息和辅助信息类似,具体可参见图14的S1401的说明,此处不予赘述。
S1502:DU根据携带上行小包数据的第一请求消息得到INITIAL UL RRC MESSAGE TRANSFER消息。
具体地,与图14的S1402相同的是:S1502中第一请求消息也放置在INITIAL UL RRC MESSAGE TRANSFER消息的RRC-Container IE中。其中,INITIAL UL RRC MESSAGE TRANSFER消息的说明具体可参见图12的S1202的说明,此处不予赘述。以及,DU可以仍旧保存辅助信息,恢复UE上下文之后再发送给CU。
与图14的S1402不同的是:S1502中,由于上行小包数据携带于第一请求消息中,因此,上行小包数据也被放置在INITIAL UL RRC MESSAGE TRANSFER消息的RRC-Container IE中。由于上行小包数据携带于INITIAL UL RRC MESSAGE TRANSFER消息中发送给CU,因此,DU无需保存上行小包数据,也无需恢复UE上下文之后再发送给CU。
S1503:DU向CU发送携带上行小包数据的INITIAL UL RRC MESSAGE TRANSFER消息。
具体地,CU可以通过INITIAL UL RRC MESSAGE TRANSFER消息中的RRC-Container IE获取UE发送的第一请求消息,从而得到其中携带的上行小包数据。若网络设备为基站,CU可以将上行小包数据发送给核心网设备。CU也可以根据第一请求消息获取UE执行S1501的意图,具体可参见图13的S1303的示例。
S1504:CU向DU发送UE CONTEXT SETUP REQUEST消息。
具体地,S1504和图14的S1404一致,不再赘述。
S1505:DU根据辅助信息得到UE CONTEXT SETUP RESPONSE消息。
具体地,S1505和图14的S1405一致,不再赘述。
S1506:DU向CU发送携带辅助信息的UE CONTEXT SETUP RESPONSE消息。
具体地,S1506和图14的S1406一致,不再赘述。
S1507:CU根据UE CONTEXT SETUP RESPONSE消息中的辅助信息得到指示消息。
具体地,S1507和图14的S1408类似,具体可参见图14的S1408的说明。其中,和图14的S1408中指示消息的示例具体可参见图7中响应消息说明不同,S1507中指示消息的示例具体可参见图6中响应消息的说明。
在一些实施例中,该方法还可以包括:CU根据INITIAL UL RRC MESSAGE TRANSFER消息中的辅助信息得到调度信息,CU向DU发送携带调度信息的F1接口消息。
在一些实施例中,S1507可以具体为:CU根据调度信息和INITIAL UL RRC MESSAGE TRANSFER消息中的辅助信息得到指示消息。
在一些实施例中,DU响应于调度信息,为UE分配数据传输资源之后,该方法还可以包括:DU向CU发送指示调度传输完成的信息,可选地,调度传输完成可以为DU为UE分配数据传输资源,可选地,调度传输完成可以为DU接收到UE基于分配的数据传输资源发送的数据。S1507可以具体为:CU根据上述指示调度传输完成的信息和辅助信息得到指示消息。
具体说明和上图12的S1207中调度信息的说明类似,不再赘述。
在一种可能的实现方式中,S1507中,CU不仅可以根据UE CONTEXT SETUP RESPONSE消息中的辅助信息得到指示消息,也可以根据UE CONTEXT SETUP RESPONSE消息中的辅助信息得到调度信息。
具体地,当辅助信息包括:UE和网络设备完成上述小包数据的传输后UE待传输的数据量信息(即S1201中情况一或情况四所示的辅助信息)时,CU可以根据上述UE待传输的数据量信息得到调度信息。该调度信息可以用于指示DU上述UE待传输的数据量信息,以及指示DU为UE分配数据传输资源。
S1508:CU向DU发送携带指示消息的DL RRC MESSAGE TRANSFER消息。
具体地,S1508和图14的S1409类似,具体可参见图14的S1409的说明。
在一些实施例中,若S1507中CU根据UE CONTEXT SETUP RESPONSE消息中的辅助信息得到调度信息,那么,S1508可以具体为:CU向DU发送携带调度信息和指示消息的DL RRC MESSAGE TRANSFER消息。
具体地,DU获取调度信息和分配数据传输资源的说明具体可参见图14的S1409中对应的描述,不再赘述。指示消息可以在DU为UE分配数据传输资源之后再发送给UE。例如,DU可以在UE通过该数据传输资源与网络设备传输数据完成后执行S1509。
S1509:DU向UE发送指示消息。
具体地,S1509和图14的S1410一致,不再赘述。
S1510:UE根据指示消息进入对应的RRC状态。
具体地,S1510和图14的S1411一致,不再赘述。
在一些实施例中,若S1510中UE根据指示消息进入的RRC状态为RRC CONNECTED 态,该方法还可以包括:
S1511:UE向DU发送第一响应消息。
具体地,S1511和图14的S1412一致,不再赘述。
S1512:DU向CU发送携带第一响应消息的UL RRC MESSAGE TRANSFER消息。
具体地,S1512和图14的S1413一致,不再赘述。
在一些实施例中,网络设备存在下行小包数据发送给UE。S1508之前,DU恢复UE上下文之后,该方法还可以包括:CU基于DU恢复的UE上下文向DU发送下行小包数据。相应地,S1509中,该下行小包数据可以携带于DU向UE发送的指示消息中。其中,携带下行小包数据的指示消息在DCCH上传输。
图15以UE在存在上行小包数据发送给网络设备的情况下执行S1501,即UE主动发起小包数据的传输过程为例进行说明。但在具体实现中,还存在UE在网络设备的指示下被动发起小包数据的传输过程的情况,该情况的用户面下的传输过程和图15所示的传输过程类似,区别之处具体如下所述:
S1501之前,该方法还可以包括:CU通过DU向UE发送寻呼消息;该寻呼消息用于网络设备指示存在下行数据发送给UE。相应地,S1501可以更改为:响应于该寻呼消息,UE在非连接态下发送第一请求消息和辅助信息,该情况下的S1501中的第一请求消息可以未携带上行小包数据。S1508之前,该方法还可以包括:CU向DU发送下行小包数据。S1509可以更改为:DU向UE发送携带下行小包数据的指示消息。
不限于上述列举的情况,在具体实现中,DU向UE发送的下行小包数据也可以不在S1509中和指示消息一起发送,而是在S1509之前,S1506之后发送给UE。UE可以基于网络设备调度的下行资源接收该下行小包数据。本申请实施例对此不作限定。
在图15描述的方法中,对于由CU和DU组成的网络设备,处于非连接态的UE可以在请求与网络设备进行小包数据的同时上报辅助信息。CU可以参考辅助信息来确定指示的UE的RRC状态,以便尽可能避免CU在无法获知完成上述小包数据传输后的UE的数据传输需求的情况下,指示UE进入不合适的RRC状态的问题。减少了对UE后续数据传输的影响,以及,有效避免了UE不必要的功耗和信令开销。
并且,辅助信息可以和第一请求消息一起发送,辅助信息包括的信息也可以更多,形式也可以更为灵活。
请参见图16,图16是本申请实施例提供又一种UE的RRC状态的控制方法的流程示意图。该方法可以应用于图1所示的通信系统,该方法中的网络设备可以是图1所示的通信系统中的基站120。该方法也可以应用于图2所示的NR系统,该方法中的网络设备也可以是图2所示的NR系统中的gNB2200,不限于此。其中,该方法中的网络设备可以包括CU和至少一个DU。该方法包括但不限于如下步骤:
S1601:UE在非连接态下向DU发送辅助信息。
具体地,上述非连接态可以是图5所示的RRC INACTIVE态或RRC IDLE态。辅助信息用于指示UE与网络设备完成小包数据的传输后UE的数据传输需求,该辅助信息的发送方式可以包括但不限于以下两种情况:
情况一,S1601可以具体为:UE在非连接态下向DU发送携带辅助信息的第一请求消息。第一请求消息可以用于UE请求与网络设备进行数据传输。此时,辅助信息和第一请求消息的说明具体可参见图12的S1201和图13的S1301中辅助信息和第一请求消息的说明。
情况二,S1601可以具体为:UE在非连接态下向DU发送辅助信息和第一请求消息。第一请求消息可以用于UE请求与网络设备进行数据传输。此时,辅助信息和第一请求消息的说明具体可参见图14的S1401和图15的S1501中辅助信息和第一请求消息的说明。
在一些实施例中,UE可以是在存在上行小包数据发送给网络设备的情况下,执行S1601,即UE可以主动发起小包数据的传输过程,则UE可以在S1601中向DU发送上行小包数据。
在上述情况一的前提下,若在用户面下,S1601可以具体为:UE在非连接态下向DU发送携带辅助信息的第一请求消息和上行小包数据。此时,上行小包数据的说明具体可参见图12的S1201中上行小包数据的说明。若在控制面下,S1601可以具体为:UE在非连接态下向DU发送携带辅助信息和上行小包数据的第一请求消息。此时,上行小包数据的说明具体可参见图13的S1301中上行小包数据的说明。
在上述情况二的前提下,若在用户面下,S1601可以具体为:UE在非连接态下向DU发送辅助信息、第一请求消息和上行小包数据。此时,上行小包数据的说明具体可参见图14的S1401中上行小包数据的说明。若在控制面下,S1601可以具体为:UE在非连接态下向DU发送携带上行小包数据的第一请求消息和辅助信息。此时,上行小包数据的说明具体可参见图15的S1501中上行小包数据的说明。
在一些实施例中,UE也可以是在接收到网络设备发送的寻呼消息之后,响应于该寻呼消息,执行S1601,即UE可以在网络设备的指示下被动发起小包数据的传输过程,则UE可以在S1606中接收CU通过DU发送的下行小包数据。其中,上述寻呼消息用于指示网络设备存在下行数据发送给UE。可选地,若接收到上述寻呼消息之后,UE存在上行小包数据发送给网络设备,UE也可以在S1601中向DU发送上行小包数据。其中,该上行小包数据的传输方式和上述UE主动发起小包数据的传输过程的情况下上行小包数据的传输方式一致,此处不予赘述。
S1602:DU根据辅助信息得到第一接口消息。
具体地,第一接口消息为DU和CU之间传输的F1接口消息。如果辅助信息的发送方式如S1601的情况一所示,则第一接口消息为INITIAL UL RRC MESSAGE TRANSFER消息。如果辅助信息的发送方式如S1601的情况二所示,则第一接口消息为UE CONTEXT SETUP RESPONSE消息。
如果辅助信息的发送方式如S1601的情况一所示,那么S1602可以具体为:DU根据携带辅助信息的第一请求消息得到INITIAL UL RRC MESSAGE TRANSFER消息。可选地,在S1601中UE向DU发送了上行小包数据的情况下,若在用户面下,DU可以在S1602中保存上行小包数据,以便DU恢复UE上下文之后再发送给CU,具体可参见图12的S1202的说明。若在控制面下,S1602可以具体为:DU根据携带辅助信息和上行小包数据的第一请求消息得到INITIAL UL RRC MESSAGE TRANSFER消息,具体可参见图13的S1302的说明。
如果辅助信息的发送方式如S1601的情况二所示,那么,S1601之后,S1602之前,该方法还可以包括:DU根据第一请求消息得到第二接口消息(即INITIAL UL RRC MESSAGE TRANSFER消息);DU向CU发送携带第一请求消息的第二接口消息;CU向DU发送UE CONTEXT SETUP REQUEST消息;DU响应于UE CONTEXT SETUP REQUEST消息,恢复UE上下文,具体可参见图14的S1402-S1404和图15的S1502-S1504的说明。相应地,S1602可以具体为:DU根据辅助信息得到UE CONTEXT SETUP RESPONSE消息,具体可参见图14的S1405和图15的S1505的说明。可选地,在S1601中UE向DU发送了上行小包数据的情况下,若在控制面下,上行小包数据携带于上述第二接口消息中发送给CU。若在用户面下,上行小包数据发送给CU的过程具体可参见S1603中对应的说明。
S1603:DU向CU发送携带辅助信息的第一接口消息。
具体地,如果辅助信息的发送方式如S1601的情况一所示,那么,S1603之后,S1604之前,该方法还可以包括:CU向DU发送UE CONTEXT SETUP REQUEST消息;DU响应于UE CONTEXT SETUP REQUEST消息,恢复UE上下文,并向CU发送UE CONTEXT SETUP RESPONSE消息,具体可参见图12的S1204-S1205和图13的S1304-S1305的说明。
可选地,在S1601中UE向DU发送了上行小包数据的情况下,若在用户面下,S1603可以具体为:DU向CU发送携带辅助信息的INITIAL UL RRC MESSAGE TRANSFER消息,具体可参见图12的S1203的说明。并且,在上述DU响应于UE CONTEXT SETUP REQUEST消息,恢复UE上下文,并向CU发送UE CONTEXT SETUP RESPONSE消息之后,该方法还可以包括:基于DU恢复的UE上下文,DU向CU发送上行小包数据,具体可参见图12的S1206的说明。若在控制面下,S1603可以具体为:DU向CU发送携带辅助信息和上行小包数据的第一接口消息,具体可参见图13的S1303的说明。
具体地,如果辅助信息的发送方式如S1601的情况二所示,那么,S1603可以具体为:DU向CU发送携带辅助信息的UE CONTEXT SETUP RESPONSE消息,具体可参见图14的1406和图15的S1506的说明。可选地,在S1601中UE向DU发送了上行小包数据的情况下,若在用户面下,S1603之后,该方法还可以包括:基于DU恢复的UE上下文,DU向CU发送上行小包数据,具体可参见图14的S1407的说明。
S1604:CU根据第一接口消息中的辅助信息得到指示消息。
具体地,指示消息用于指示UE和网络设备完成上述小包数据的传输后UE的RRC状态。如果辅助信息的发送方式如S1601的情况一所示,那么S1604可以具体为:CU根据INITIAL UL RRC MESSAGE TRANSFER消息中的辅助信息得到指示消息,具体可参见图12的S1207和图13的S1306的说明。
如果辅助信息的发送方式如S1601的情况二所示,那么S1604可以具体为:CU根据CONTEXT SETUP RESPONSE消息中的辅助信息得到指示消息,具体可参见图14的S1408和图15的S1507的说明。
需要说明的是,辅助信息仅用于协助网络设备得到指示消息。实际中,网络设备并不是仅根据辅助信息得到指示消息,还需要综合考虑网络堵塞、资源调度、资源占用等网络情况,以此得到指示消息。具体可参见图12的S1207中对应的示例。
在一些实施例中,该方法还可以包括:CU根据INITIAL UL RRC MESSAGE  TRANSFER消息中的辅助信息得到调度信息,CU向DU发送携带调度信息的F1接口消息。
在一些实施例中,S1604可以具体为:CU根据调度信息和INITIAL UL RRC MESSAGE TRANSFER消息中的辅助信息得到指示消息。
在一些实施例中,DU响应于调度信息,为UE分配数据传输资源之后,该方法还可以包括:DU向CU发送指示调度传输完成的信息,可选地,调度传输完成可以为DU为UE分配数据传输资源,可选地,调度传输完成可以为DU接收到UE基于分配的数据传输资源发送的数据。S S1604可以具体为:CU根据上述指示调度传输完成的信息和辅助信息得到指示消息。
具体说明和上图12的S1207中调度信息的说明类似,不再赘述。
在一种可能的实现方式中,S1604中,CU不仅可以根据第一接口消息中的辅助信息得到指示消息,也可以根据第一接口消息中的辅助信息得到调度信息。
具体地,当辅助信息包括:UE和网络设备完成上述小包数据的传输后UE待传输的数据量信息(即S1201中情况一或情况四所示的辅助信息)时,CU可以根据上述UE待传输的数据量信息得到调度信息。该调度信息可以用于指示DU上述UE待传输的数据量信息,以及指示DU为UE分配数据传输资源。其中,如果辅助信息的发送方式如S1601的情况一所示,调度信息的传输过程和说明具体可参见图12的S1207和图13的S1306中调度信息的相关描述。如果辅助信息的发送方式如S1601的情况二所示,调度信息的传输过程和说明具体可参见图14的S1408和图15的S1507中调度信息的相关描述。
S1605:CU向DU发送指示消息,从而通过DU向UE发送指示消息。
具体地,CU向DU发送携带指示消息的第三接口消息,第三接口消息为DL RRC MESSAGE TRANSFER消息。在一些实施例中,若S1604中CU根据第一接口消息中的辅助信息得到调度信息,那么,S1605可以具体为:CU向DU发送携带调度信息和指示消息的第三接口消息。S1605的具体过程可参见图12的S1208、图13的S1307、图14的S1409和图15的S1508的说明。
S1606:DU向UE发送指示消息。
具体地,DU根据携带指示消息的第三接口消息得到指示消息,并发送给UE,具体可参见图12的S1209、图13的S1308、图14的S1410和图15的S1509的说明。
在一些实施例中,网络设备存在下行小包数据发送给UE。S1606之前,DU恢复UE上下文之后,该方法还可以包括:CU基于DU恢复的UE上下文向DU发送下行小包数据。相应地,若在用户面中,S1606可以具体为:DU向UE发送指示消息和下行小包数据。其中,下行小包数据可以在DTCH上传输,并与在DCCH上传输的指示消息多路复用。若在控制面中,S1606可以具体为:DU向UE发送携带下行小包数据的指示消息。其中,携带下行小包数据的指示消息在DCCH上传输。
不限于上述列举的情况,在具体实现中,DU向UE发送的下行小包数据也可以不和指示消息一起发送或不携带于指示消息中发送,而是在DU向UE发送指示消息之前,DU恢复UE上下文之后再发送给UE。UE可以基于网络设备调度的下行资源接收该下行小包数据。本申请实施例对此不作限定。
S1607:UE根据指示消息进入对应的RRC状态。
具体地,UE进入指示消息中指示的UE和网络设备完成上述小包数据的传输后的RRC状态,具体可参见图12的S1210、图13的S1309、图14的S1411和图15的S1510的说明。
需要说明的是,本申请实施例中的辅助信息用于指示UE和网络设备完成小包数据的传输后UE的数据传输需求,指示消息用于指示UE和网络设备完成上述小包数据后UE的RRC状态。其中的上述小包数据的传输可以为一次上行和/或下行小包数据的传输。可选地,上述小包数据的传输为一次上行小包数据的传输,例如,上述小包数据是S1601中UE在非连接态下发送给DU的上行小包数据。可选地,上述小包数据的传输为一次下行小包数据的传输,例如,上述小包数据是CU在DU恢复UE上下文之后向DU发送的下行小包数据,也是S1606中DU发送给UE的下行小包数据。可选地,上述小包数据的传输为一次上行小包数据和下行小包数据的传输,例如,上述小包数据既包括:S1601中UE在非连接态下发送给DU的上行小包数据,也包括:S1606中DU发送给UE的下行小包数据。
可以理解地,关于图16所述方法的各个步骤的具体实现方式,可参考前述图1-图15所示的实施例,不再赘述。
在图16描述的方法中,对于由CU和DU组成的网络设备,处于非连接态的UE可以在请求与网络设备进行小包数据的同时上报辅助信息。CU可以参考辅助信息来确定指示的UE的RRC状态,以便尽可能避免CU在无法获知完成上述小包数据传输后的UE的数据传输需求的情况下,指示UE进入不合适的RRC状态的问题。减少了对UE后续数据传输的影响,以及,有效避免了UE不必要的功耗和信令开销。
并且,上述辅助信息可以携带于UE向网络设备发送的第一请求消息中,也可以和第一请求消息一起发送。辅助信息包括的信息也可以有多种形式,实现较为灵活,应用场景也更为广泛。
上述详细阐述了本申请实施例的方法,下面提供了一些本申请实施例的装置。
请参见图17,图17是本申请实施例提供的一种网络设备170,网络设备170包括处理器1701、存储器1702和收发器1703,上述处理器1701、存储器1702和收发器1703通过总线相互连接。
存储器1702包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器1702用于相关计算机程序及数据。收发器1703用于接收和发送数据。
处理器1101可以是一个或多个中央处理器(central processing unit,CPU),在处理器1701是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
网络设备170中的处理器1701用于读取上述存储器1702中存储的计算机程序代码,执行以下操作:
调用网络设备170的分布单元接收UE在非连接态下发送的辅助信息。辅助信息用于指示UE与网络设备170完成小包数据的传输后UE的数据传输需求。
调用分布单元根据辅助信息得到第一接口消息。第一接口消息包括辅助信息。
调用分布单元向网络设备170的集中单元发送第一接口消息。
调用集中单元根据第一接口消息中的辅助信息得到指示消息。指示消息用于指示UE 和网络设备170完成上述小包数据的传输后UE的RRC状态。
调用集中单元通过分布单元向UE发送指示消息。
在一种可能的实现方式中,辅助信息包括:UE与网络设备170完成上述小包数据的传输后UE待传输的数据量信息;或,辅助信息包括:第一比特位;通过第一比特位的取值指示数据传输需求;或,辅助信息包括:UE希望在完成上述小包数据传输之后的RRC状态的信息;或,辅助信息包括:UE与网络设备完成上述小包数据的传输后UE待传输的数据量与预设阈值之间的关系。
在一种可能的实现方式中,数据量信息包括:第一索引值;第一索引值对应UE与网络设备170完成上述小包数据的传输后UE待传输的数据量位于第一范围;或,数据量信息包括:BSR的取值。
在一种可能的实现方式中,上述调用网络设备170的分布单元接收UE在非连接态下发送的辅助信息之前,处理器1701还用于执行:向UE发送寻呼消息;寻呼消息用于网络设备170指示存在下行数据发送给UE。
上述调用网络设备170的分布单元接收UE在非连接态下发送的辅助信息时,处理器1701具体执行:调用分布单元接收UE响应于寻呼消息发送的辅助信息。
具体地,集中单元可以在分布单元恢复UE上下文之后向分布单元发送下行小包数据,并通过分布单元向UE发送下行小包数据。
在一种可能的实现方式中,上述调用网络设备170的分布单元接收UE在非连接态下发送的辅助信息时,处理器1701具体执行:调用分布单元接收UE在存在上行小包数据发送给网络设备170时发送的辅助信息。
具体地,集中单元可以通过分布单元接收UE发送的上行小包数据,其中,该上行小包数据为UE在非连接态下发送辅助信息时一起向分布单元发送的。
在一种可能的实现方式中,上述调用网络设备170的分布单元接收UE在非连接态下发送的辅助信息时,处理器1701具体执行:调用分布单元接收UE在非连接态下发送的第一请求消息。其中,第一请求消息用于UE请求与网络设备170进行数据传输,辅助信息携带于第一请求消息中,第一接口消息为初始上行RRC消息传送消息,第一接口消息包括RRC Container IE,RRC Container IE包含携带辅助信息的第一请求消息。
在一种可能的实现方式中,第一请求消息中携带小包数据。上述调用分布单元向集中单元发送第一接口消息时,处理器1701具体执行:调用分布单元向集中单元发送携带辅助信息和小包数据的第一接口消息。
在一种可能的实现方式中,处理器1701还用于执行:调用分布单元接收UE在非连接态下发送的小包数据。
上述调用分布单元向集中单元发送第一接口消息时,处理器1701具体执行:调用分布单元向集中单元发送携带辅助信息的第一接口消息;调用分布单元接收集中单元发送的恢复UE上下文请求消息;响应于恢复UE上下文请求消息,调用分布单元恢复UE上下文;调用分布单元基于分布单元恢复的UE上下文向集中单元发送小包数据。
在一种可能的实现方式中,上述调用网络设备170的分布单元接收UE在非连接态下发送的辅助信息时,处理器1701具体执行:调用分布单元接收UE在非连接态下发送的第 一请求消息和辅助信息。其中,第一请求消息用于UE请求与网络设备170进行数据传输,第一接口消息为UE上下文建立响应消息,辅助信息携带于第一接口消息中。
在一种可能的实现方式中,第一请求消息中携带小包数据。上述调用分布单元向集中单元发送第一接口消息之前,处理器1701还用于执行:调用分布单元向集中单元发送携带第一请求消息的第二接口消息;调用分布单元接收集中单元发送的恢复UE上下文请求消息;响应于恢复UE上下文请求消息,调用分布单元恢复UE上下文。
上述调用分布单元向集中单元发送第一接口消息时,处理器1701具体执行:基于分布单元恢复的UE上下文,调用分布单元向集中单元发送携带辅助信息的第一接口消息。
在一种可能的实现方式中,处理器1701还用于执行:调用分布单元接收UE在非连接态下发送的小包数据。
上述调用分布单元向集中单元发送第一接口消息之前,处理器1701还用于执行:调用分布单元向集中单元发送携带第一请求消息的第二接口消息;调用分布单元接收集中单元发送的恢复UE上下文请求消息;响应于恢复UE上下文请求消息,调用分布单元恢复UE上下文。
上述调用分布单元向集中单元发送第一接口消息时,处理器1701具体执行:基于分布单元恢复的UE上下文,调用分布单元向集中单元发送携带辅助信息的第一接口消息。
处理器1701还用于执行:基于分布单元恢复的UE上下文,调用分布单元向集中单元发送小包数据。
在一种可能的实现方式中,第一接口消息为集中单元和分布单元之间传输的F1接口消息,第一请求消息为RRC恢复请求消息或RRC数据早传请求消息。
在一种可能的实现方式中,上行小包数据携带于第一请求消息中,下行小包数据携带于指示消息中。
在一种可能的实现方式中,上行小包数据为UE在非连接态下与第一请求消息一起发送给分布单元的数据,上行小包数据为分布单元恢复UE上下文之后向集中单元发送的数据;下行小包数据为集中单元在分布单元恢复UE上下文之后通过分布单元向UE发送的数据,下行小包数据为分布单元与指示消息一起发送给UE的数据。
在一种可能的实现方式中,第一请求消息为UE基于网络设备170发送的随机接入响应分配的资源发送的RRC消息,其中,随机接入响应为网络设备170基于UE发送的随机接入前导响应的消息;或,第一请求消息为UE向网络设备170发送随机接入前导时一起发送的RRC消息;或,第一请求消息为UE基于预配置的上行资源向网络设备170发送的RRC消息。
需要说明的是,各个操作的实现还可以对应参照图12-图16所示的方法实施例的相应描述,其中,网络设备170为图12-图16所示方法实施例中的网络设备。
请参见图18,图18是本申请实施例提供的一种UE 180,UE180包括处理器1801、存储器1802和收发器1803,上述处理器1801、存储器1802和收发器1803通过总线相互连接。
存储器1802包括但不限于是随机存储记忆体(random access memory,RAM)、只读 存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器1802用于相关计算机程序及数据。收发器1803用于接收和发送数据。
处理器1101可以是一个或多个中央处理器(central processing unit,CPU),在处理器1801是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
UE 180中的处理器1801用于读取存储器1802中存储的计算机程序代码,执行以下操作:
在非连接态下向网络设备的分布单元发送辅助信息。辅助信息用于指示UE180与网络设备完成小包数据的传输后UE180的数据传输需求。
接收分布单元发送的指示消息。指示消息为网络设备的集中单元根据分布单元发送的第一接口消息得到的消息,第一接口消息包括辅助信息,指示消息用于指示UE180和网络设备完成上述小包数据的传输后UE180的RRC状态。
根据指示消息进入对应的RRC状态。
在一种可能的实现方式中,辅助信息包括:UE180与网络设备完成上述小包数据的传输后UE180待传输的数据量信息;或,辅助信息包括:第一比特位;通过第一比特位的取值指示数据传输需求;或,辅助信息包括:UE180希望在完成上述小包数据传输之后的RRC状态的信息;或,辅助信息包括:UE180与网络设备完成上述小包数据的传输后UE180待传输的数据量与预设阈值之间的关系。
在一种可能的实现方式中,数据量信息包括:第一索引值;第一索引值对应UE180与网络设备完成上述小包数据的传输后UE180待传输的数据量位于第一范围;或,数据量信息包括:BSR的取值。
在一种可能的实现方式中,上述在非连接态下向网络设备的分布单元发送辅助信息之前,处理器1801还用于执行:接收网络设备发送的寻呼消息;寻呼消息用于网络设备指示存在下行数据发送给UE180。
上述在非连接态下向网络设备的分布单元发送辅助信息,处理器1801具体执行:响应于寻呼消息,UE180向分布单元发送辅助信息。
具体地,UE180可以通过分布单元接收集中单元发送的下行小包数据,其中,该下行小包数据为分布单元恢复UE上下文之后,集中单元向分布单元发送的数据。
在一种可能的实现方式中,上述在非连接态下向网络设备的分布单元发送辅助信息,处理器1801具体执行:当存在上行小包数据发送给网络设备时,在非连接态下向分布单元发送辅助信息。
具体地,UE180可以在非连接态下发送辅助信息时一起发送上行小包数据给分布单元,从而通过分布单元将上行小包数据发送给集中单元。
在一种可能的实现方式中,上述在非连接态下向网络设备的分布单元发送辅助信息,处理器1801具体执行:在非连接态下向分布单元发送第一请求消息。其中,第一请求消息用于UE180请求与网络设备进行数据传输,辅助信息携带于第一请求消息中,第一接口消息为初始上行RRC消息传送消息,第一接口消息包括RRC Container IE,RRC Container IE包含携带有辅助信息的第一请求消息。
在一种可能的实现方式中,上述在非连接态下向网络设备的分布单元发送辅助信息,处理器1801具体执行:在非连接态下向分布单元发送第一请求消息和辅助信息;其中,第一请求消息用于UE180请求与网络设备进行数据传输,第一接口消息为UE上下文建立响应消息,辅助信息携带于第一接口消息中。
在一种可能的实现方式中,第一接口消息为集中单元和分布单元之间传输的F1接口消息,第一请求消息为RRC恢复请求消息或RRC数据早传请求消息。
在一种可能的实现方式中,上行小包数据携带于第一请求消息中,下行小包数据携带于指示消息中。
在一种可能的实现方式中,上行小包数据为UE180在非连接态下与第一请求消息一起发送给分布单元的数据,上行小包数据为分布单元恢复UE上下文之后向集中单元发送的数据;下行小包数据为集中单元在分布单元恢复UE上下文之后通过分布单元向UE180发送的数据,下行小包数据为分布单元与指示消息一起发送给UE180的数据。
在一种可能的实现方式中,第一请求消息为UE180基于网络设备发送的随机接入响应分配的资源发送的RRC消息,其中,随机接入响应为网络设备基于UE180发送的随机接入前导响应的消息;或,第一请求消息为UE180向网络设备发送随机接入前导时一起发送的RRC消息;或,第一请求消息为UE180基于预配置的上行资源向网络设备发送的RRC消息。
需要说明的是,各个操作的实现还可以对应参照图12-图16所示的方法实施例的相应描述,其中,UE 180为图12-图16所示方法实施例中的UE。
本申请实施例还提供一种芯片系统,芯片系统包括至少一个处理器,存储器和接口电路,存储器、收发器和至少一个处理器通过线路互联,至少一个存储器中存储有计算机程序。计算机程序被处理器执行时,实现图12-图16所示实施例所执行的操作。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当其在处理器上运行时,实现图12-图16所示实施例所执行的操作。
本申请实施例还提供一种计算机程序产品,当计算机程序产品在处理器上运行时,实现图12-图16所示实施例所执行的操作。
本申请实施例中,当UE接收到网络设备发送的寻呼消息时,UE可以执行图16的S1601,以此接收网络设备发送的下行小包数据。或者,当UE存在上行小包数据发送给网络设备时,UE可以执行图16的S1601,并在S1601中向网络设备发送上行小包数据。
示例性地,UE可以是智能手机,UE可以安装有第一应用程序。上述网络设备可以连接第一应用程序的应用服务器,或,上述网络设备可以就是第一应用程序的应用服务器。安装有第一应用程序的UE可以按照预设时间间隔(例如30s)向第一应用程序的应用服务器发送心跳包,以此报告自身状态。具体地,安装有第一应用程序的UE可以在非连接态下执行图16的S1601,并在S1601中向网络设备发送数据类型为心跳包的上行小包数据。然后,UE和网络设备可以执行图16所示的S1602-S1607。
若网络设备的CU成功接收到上述数据类型为心跳包的上行小包数据,则网络设备的CU执行S1604得到的指示消息可以用于指示上述数据类型为心跳包的上行小包数据传输 成功。可选地,该网络设备可以将接收到的上述数据类型为心跳包的上行小包数据发送给第一应用程序的应用服务器,以使该应用服务器获取到安装有第一应用程序的UE是否可以正常通信等状态。若网络设备的CU未接收到完整的上述数据类型为心跳包的上行小包数据,则网络设备的CU执行S1604得到的指示消息可以用于指示上述数据类型为心跳包的上行小包数据传输失败。当该应用服务器未接收到上述数据类型为心跳包的数据的次数大于预设次数,该应用程序可以认为安装有第一应用程序的UE的状态不正常,无法正常通信。
其中,若UE在和网络设备完成上述数据类型为心跳包的上行小包数据后仅需按照预设时间间隔发送下一次数据类型为心跳包的上行小包数据,UE在上述S1601中上报的辅助信息可以用于指示UE和网络设备完成上述数据类型为心跳包的上行小包数据的传输后UE的数据传输需求为小包数据的传输需求(例如UE待传输的数据量BSR为数据类型为心跳包的小包数据的BSR)。因此,网络设备的CU执行S1604得到的指示消息可以用于指示UE和网络设备完成上述数据类型为心跳包的上行小包数据的传输后UE保持在当前的非连接态。UE可以根据该指示消息保持在执行S1601时UE所处的非连接态。后续UE需传输下一次数据类型为心跳包的上行小包数据时,可以再在非连接态下执行图16的S1601,并在S1601中向网络设备发送数据类型为心跳包的上行小包数据。
若UE执行S1601之前,检测到用户作用于UE的用户操作,该用户操作用于在第一应用程序上发送文件给另一个UE(如智能手机),则UE在上述S1601中上报的辅助信息可以用于指示UE和网络设备完成上述数据类型为心跳包的上行小包数据的传输后UE有数据传输需求(例如UE待传输的数据量大于预设阈值)。因此,网络设备的CU执行S1604得到的指示消息可以用于指示UE和网络设备完成上述数据类型为心跳包的上行小包数据的传输后UE回退至RRC CONNECTED态。UE可以根据该指示消息回退至RRC CONNECTED态。然后,UE可以在RRC CONNECTED态下与网络设备传输文件。网络设备接收到该文件后,可以指示上述另一个UE进入RRC CONNECTED态,然后将该文件发送给上述另一个UE。
示例性地,UE可以是智能电表。网络设备可以连接智能电表的工业网络。网络设备可以周期性获取智能电表的记录数值,例如每30分钟获取一次智能电表的记录数值(如30分钟内的记录数值),并同步给把上述智能电表的工业网络中的设备。具体地,网络设备可以向处于非连接态的UE发送寻呼消息,该寻呼消息用于指示UE网络设备存在下行小包数据发送给UE。UE可以响应于该寻呼消息执行图16的S1601。然后,UE和网络设备可以执行图16所示的S1602-S1607。其中,UE在S1601中上报的辅助信息可以用于指示UE和网络设备完成上述下行小包数据的传输后UE无数据传输需求。虽然该辅助信息用于指示UE无数据传输需求,但网络设备已知后续需获取UE在30分钟内的记录数值,因此,网络设备的CU执行S1604得到的指示消息可以用于指示UE和网络设备完成上述数据类型为心跳包的上行小包数据的传输后UE回退至RRC CONNECTED态。并且在S1606中,网络设备可以向UE发送数据类型为周期性读数的下行小包数据。UE可以根据该指示消息回退至RRC CONNECTED态。然后,UE可以在RRC CONNECTED态下向网络设备传输上述UE在30分钟内的记录数值。
不限于上述列举的应用场景,在具体实现中,小包数据例如但不限于为:即时通讯消息,应用程序的推送消息等不频繁的提示消息,应用程序的心跳包、步数检测、心率检测、智能电表的读数等周期性数据。UE也可以和网络设备执行图16所示的方法,从而与网络设备传输数据类型为即时通讯消息的小包数据。本申请实施例对此不作限定。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来计算机程序相关的硬件完成,该计算机程序可存储于计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或RAM、磁碟或者光盘等各种可存储计算机程序代码的介质。

Claims (23)

  1. 一种用户设备UE的无线资源控制RRC状态的控制方法,其特征在于,应用于网络设备,所述网络设备包括集中单元和至少一个分布单元,所述方法包括:
    所述分布单元接收UE在非连接态下发送的辅助信息;所述辅助信息用于指示所述UE与所述网络设备完成小包数据的传输后所述UE的数据传输需求;
    所述分布单元根据所述辅助信息得到第一接口消息;所述第一接口消息包括所述辅助信息;
    所述分布单元向所述集中单元发送所述第一接口消息;
    所述集中单元根据所述第一接口消息中的所述辅助信息得到指示消息;所述指示消息用于指示所述UE和所述网络设备完成所述小包数据的传输后所述UE的RRC状态;
    所述集中单元通过所述分布单元向所述UE发送所述指示消息。
  2. 如权利要求1所述的方法,其特征在于,所述辅助信息包括:所述UE与所述网络设备完成所述小包数据的传输后所述UE待传输的数据量信息;或,
    所述辅助信息包括:第一比特位;通过所述第一比特位或所述第一比特位的取值指示所述数据传输需求;或,
    所述辅助信息包括:所述UE希望在完成所述小包数据传输之后的RRC状态的信息;或,
    所述辅助信息包括:所述UE与所述网络设备完成所述小包数据的传输后所述UE待传输的数据量与预设阈值之间的关系。
  3. 如权利要求2所述的方法,其特征在于,所述数据量信息包括:第一索引值;所述第一索引值对应所述UE与所述网络设备完成所述小包数据的传输后所述UE待传输的数据量位于第一范围;或,
    所述数据量信息包括:缓冲状态报告BSR的取值。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述分布单元接收UE在非连接态下发送的辅助信息之前,所述方法还包括:所述网络设备向所述UE发送寻呼消息;所述寻呼消息用于所述网络设备指示存在下行数据发送给所述UE;
    所述分布单元接收UE在非连接态下发送的辅助信息,包括:所述分布单元接收所述UE响应于所述寻呼消息发送的所述辅助信息。
  5. 如权利要求1-3任一项所述的方法,其特征在于,所述分布单元接收UE在非连接态下发送的辅助信息,包括:所述分布单元接收所述UE在存在上行小包数据发送给所述网络设备时发送的所述辅助信息。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述分布单元接收UE在非连接态 下发送的辅助信息,包括:所述分布单元接收所述UE在所述非连接态下发送的第一请求消息;其中,所述第一请求消息用于所述UE请求与所述网络设备进行数据传输,所述辅助信息携带于所述第一请求消息中,所述第一接口消息为初始上行RRC消息传送消息,所述第一接口消息包括RRC容器信息元素RRC Container IE,所述RRC Container IE包含携带所述辅助信息的所述第一请求消息。
  7. 如权利要求6所述的方法,其特征在于,所述第一请求消息中携带所述小包数据;所述分布单元向所述集中单元发送所述第一接口消息,包括:所述分布单元向所述集中单元发送携带所述辅助信息和所述小包数据的所述第一接口消息;或,
    所述方法还包括:所述分布单元接收所述UE在所述非连接态下发送的所述小包数据;所述分布单元向所述集中单元发送所述第一接口消息,包括:所述分布单元向所述集中单元发送携带所述辅助信息的所述第一接口消息;接收所述集中单元发送的恢复UE上下文请求消息;响应于所述恢复UE上下文请求消息,恢复UE上下文;基于所述恢复的UE上下文向所述集中单元发送所述小包数据。
  8. 如权利要求1-5任一项所述的方法,所述分布单元接收UE在非连接态下发送的辅助信息,包括:所述分布单元接收所述UE在所述非连接态下发送的第一请求消息和所述辅助信息;其中,所述第一请求消息用于所述UE请求与所述网络设备进行数据传输,所述第一接口消息为UE上下文建立响应消息,所述辅助信息携带于所述第一接口消息中。
  9. 如权利要求8所述的方法,其特征在于,所述第一请求消息中携带所述小包数据;所述分布单元向所述集中单元发送所述第一接口消息之前,所述方法还包括:所述分布单元向所述集中单元发送携带所述第一请求消息的第二接口消息;接收所述集中单元发送的恢复UE上下文请求消息;响应于所述恢复UE上下文请求消息,恢复UE上下文;所述分布单元向所述集中单元发送所述第一接口消息,包括:基于所述恢复的UE上下文向所述集中单元发送携带所述辅助信息的所述第一接口消息;或,
    所述方法还包括:所述分布单元接收所述UE在所述非连接态下发送的所述小包数据;所述分布单元向所述集中单元发送所述第一接口消息之前,所述方法还包括:所述分布单元向所述集中单元发送携带所述第一请求消息的第二接口消息;接收所述集中单元发送的恢复UE上下文请求消息;响应于所述恢复UE上下文请求消息,恢复UE上下文;所述分布单元向所述集中单元发送所述第一接口消息,包括:基于所述恢复的UE上下文向所述集中单元发送携带所述辅助信息的所述第一接口消息;所述方法还包括:所述分布单元基于所述恢复的UE上下文向所述集中单元发送所述小包数据。
  10. 一种确定UE的RRC状态的控制方法,其特征在于,应用于UE,所述方法包括:
    所述UE在非连接态下向网络设备的分布单元发送辅助信息;所述辅助信息用于指示所述UE与所述网络设备完成小包数据的传输后所述UE的数据传输需求;
    所述UE接收所述分布单元发送的指示消息;所述指示消息为所述网络设备的集中单 元根据所述分布单元发送的第一接口消息得到的消息,所述第一接口消息包括所述辅助信息,所述指示消息用于指示所述UE和所述网络设备完成所述小包数据的传输后所述UE的RRC状态;
    所述UE根据所述指示消息进入对应的RRC状态。
  11. 如权利要求10所述的方法,其特征在于,所述辅助信息包括:所述UE与所述网络设备完成所述小包数据的传输后所述UE待传输的数据量信息;或,
    所述辅助信息包括:第一比特位;所述第一比特位的取值用于指示所述数据传输需求;或,
    所述辅助信息包括:所述UE希望在完成所述小包数据传输之后的RRC状态的信息;或,
    所述辅助信息包括:所述UE与所述网络设备完成所述小包数据的传输后所述UE待传输的数据量与预设阈值之间的关系。
  12. 如权利要求11所述的方法,其特征在于,所述数据量信息包括:第一索引值;所述第一索引值对应所述UE与所述网络设备完成所述小包数据的传输后所述UE待传输的数据量位于第一范围;或,
    所述数据量信息包括:缓冲状态报告BSR的取值。
  13. 如权利要求10-12任一项所述的方法,其特征在于,所述UE在非连接态下向网络设备的分布单元发送辅助信息之前,所述方法还包括:所述UE接收所述网络设备发送的寻呼消息;所述寻呼消息用于所述网络设备指示存在下行数据发送给所述UE;
    所述UE在非连接态下向网络设备的分布单元发送辅助信息,包括:响应于所述寻呼消息,所述UE向所述分布单元发送所述辅助信息。
  14. 如权利要求10-12任一项所述的方法,其特征在于,所述UE在非连接态下向网络设备的分布单元发送辅助信息,包括:当存在上行小包数据发送给所述网络设备时,所述UE在所述非连接态下向所述分布单元发送所述辅助信息。
  15. 如权利要求10-14任一项所述的方法,其特征在于,所述UE在非连接态下向网络设备的分布单元发送辅助信息,包括:所述UE在所述非连接态下向所述分布单元发送第一请求消息;其中,所述第一请求消息用于所述UE请求与所述网络设备进行数据传输,所述辅助信息携带于所述第一请求消息中,所述第一接口消息为初始上行RRC消息传送消息,所述第一接口消息包括RRC Container IE,所述RRC Container IE包含携带有所述辅助信息的所述第一请求消息。
  16. 如权利要求10-14任一项所述的方法,其特征在于,所述UE在非连接态下向网络设备的分布单元发送辅助信息,包括:所述UE在所述非连接态下向所述分布单元发送第 一请求消息和所述辅助信息;其中,所述第一请求消息用于所述UE请求与所述网络设备进行数据传输,所述第一接口消息为UE上下文建立响应消息,所述辅助信息携带于所述第一接口消息中。
  17. 如权利要求15或16所述的方法,其特征在于,所述第一接口消息为所述集中单元和所述分布单元之间传输的F1接口消息,所述第一请求消息为RRC恢复请求消息或RRC数据早传请求消息。
  18. 如权利要求15-17任一项所述的方法,其特征在于,上行小包数据携带于所述第一请求消息中,下行小包数据携带于所述指示消息中。
  19. 如权利要求15-17任一项所述的方法,其特征在于,上行小包数据为所述UE在所述非连接态下与所述第一请求消息一起发送给所述分布单元的数据,下行小包数据为所述分布单元与所述指示消息一起发送给所述UE的数据。
  20. 如权利要求15-17任一项所述的方法,其特征在于,所述第一请求消息为所述UE基于所述网络设备发送的随机接入响应分配的资源发送的RRC消息,其中,所述随机接入响应为所述网络设备基于所述UE发送的随机接入前导响应的消息;或,
    所述第一请求消息为所述UE向所述网络设备发送随机接入前导时一起发送的RRC消息;或,
    所述第一请求消息为所述UE基于预配置的上行资源向所述网络设备发送的RRC消息。
  21. 一种网络设备,其特征在于,包括收发器、处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用所述计算机程序,用于执行如权利要求1-9任一项所述的方法。
  22. 一种用户设备,其特征在于,包括收发器、处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用所述计算机程序,用于执行如权利要求10-20任一项所述的方法。
  23. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机程序,所述计算机程序被处理器执行时,实现权利要求1-9任一项所述的方法或者权利要求10-20任一项所述的方法。
PCT/CN2021/086802 2020-04-13 2021-04-13 用户设备的无线资源控制状态的控制方法及相关装置 WO2021208880A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010284622 2020-04-13
CN202010284622.7 2020-04-13
CN202010688838.XA CN113543311B (zh) 2020-04-13 2020-07-15 用户设备的无线资源控制状态的控制方法及相关装置
CN202010688838.X 2020-07-15

Publications (1)

Publication Number Publication Date
WO2021208880A1 true WO2021208880A1 (zh) 2021-10-21

Family

ID=78084172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086802 WO2021208880A1 (zh) 2020-04-13 2021-04-13 用户设备的无线资源控制状态的控制方法及相关装置

Country Status (1)

Country Link
WO (1) WO2021208880A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024032080A1 (zh) * 2022-08-09 2024-02-15 华为技术有限公司 一种无线通信方法、通信装置及通信系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109246753A (zh) * 2017-06-15 2019-01-18 华为技术有限公司 一种传输数据的方法、网络设备和终端设备
WO2019028732A1 (en) * 2017-08-10 2019-02-14 Nokia Solutions And Networks Oy DATA TRANSMISSIONS DURING A RANDOM ACCESS PROCESS
CN109923913A (zh) * 2016-11-04 2019-06-21 瑞典爱立信有限公司 用于管理无线通信网络中的寻呼的方法和装置
CN109952747A (zh) * 2016-11-04 2019-06-28 瑞典爱立信有限公司 用于管理来自用户设备的小数据传输的方法、计算机程序、载体、计算机程序产品和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923913A (zh) * 2016-11-04 2019-06-21 瑞典爱立信有限公司 用于管理无线通信网络中的寻呼的方法和装置
CN109952747A (zh) * 2016-11-04 2019-06-28 瑞典爱立信有限公司 用于管理来自用户设备的小数据传输的方法、计算机程序、载体、计算机程序产品和装置
CN109246753A (zh) * 2017-06-15 2019-01-18 华为技术有限公司 一种传输数据的方法、网络设备和终端设备
WO2019028732A1 (en) * 2017-08-10 2019-02-14 Nokia Solutions And Networks Oy DATA TRANSMISSIONS DURING A RANDOM ACCESS PROCESS

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL: "Subsequent small data transmission", 3GPP DRAFT; R2-2101507, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051974388 *
ZTE (EMAIL DISCUSSION MODERATOR): "Work Item on NR small data transmissions in INACTIVE state", 3GPP DRAFT; RP-192572, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Sitges, Spain; 20191209 - 20191212, 2 December 2019 (2019-12-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051834220 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024032080A1 (zh) * 2022-08-09 2024-02-15 华为技术有限公司 一种无线通信方法、通信装置及通信系统

Similar Documents

Publication Publication Date Title
US11647551B2 (en) Method and system for user information management
US20180317276A1 (en) Connection management method and device in d2d relay communication, terminal and base station
WO2018202153A1 (zh) 一种新型服务质量架构在双连接系统的配置方法及装置
CN108282819B (zh) 一种减少中断时延的方法、装置及用户设备
US11917711B2 (en) RRC state transition method, terminal, CU, DU, and computer-readable storage medium
CN107534987A (zh) 一种数据调度方法、基站及系统
JP2015530838A (ja) 制御面シグナリングによるデータ伝送の方法、機器及びシステム
CN107454636B (zh) 处理用户端存取层上下文的装置及方法
US20220225354A1 (en) Data transmission method, centralized unit, and distributed unit
WO2021134728A1 (zh) 一种上下文管理方法及装置
CN110831256B (zh) 数据无线承载的恢复方法及装置、存储介质、电子装置
CN113543311B (zh) 用户设备的无线资源控制状态的控制方法及相关装置
CN115552961A (zh) 用于通信的方法、设备和计算机存储介质
WO2021208880A1 (zh) 用户设备的无线资源控制状态的控制方法及相关装置
US20130195033A1 (en) Apparatus and Method for Optimization of Access Stratum Bearer Signaling in Radio Resource Control Connection Establishment
US20240172184A1 (en) User equipment, resource selection method in sidelink communication, and storage medium
CN114727414A (zh) 数据传输方法及相关装置
CN117461350A (zh) 通信的方法、装置和计算机存储介质
US11228943B2 (en) Signaling transmission method and apparatus, base station, and terminal
EP4132035A1 (en) Communication method and apparatus
CN116746261A (zh) 用户设备和侧行链路通信中的资源监测方法
US20230069669A1 (en) Methods, devices, and medium for communication
WO2024037595A1 (zh) 数据传输方法、装置、系统、终端及网络设备
WO2023226648A1 (zh) 数据传输方法及相关设备
CN106937385B (zh) 一种进入双传输模式请求无线资源的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21788050

Country of ref document: EP

Kind code of ref document: A1