WO2021208613A1 - 孤岛微电网异构电池储能系统分布式有限时间控制方法 - Google Patents

孤岛微电网异构电池储能系统分布式有限时间控制方法 Download PDF

Info

Publication number
WO2021208613A1
WO2021208613A1 PCT/CN2021/078414 CN2021078414W WO2021208613A1 WO 2021208613 A1 WO2021208613 A1 WO 2021208613A1 CN 2021078414 W CN2021078414 W CN 2021078414W WO 2021208613 A1 WO2021208613 A1 WO 2021208613A1
Authority
WO
WIPO (PCT)
Prior art keywords
bess
control
battery energy
matrix
island microgrid
Prior art date
Application number
PCT/CN2021/078414
Other languages
English (en)
French (fr)
Inventor
李泽
许德明
崔国增
郝万君
Original Assignee
苏州科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州科技大学 filed Critical 苏州科技大学
Priority to EP21754880.9A priority Critical patent/EP3926780A4/en
Publication of WO2021208613A1 publication Critical patent/WO2021208613A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation

Definitions

  • the invention relates to a distributed limited time control method for a heterogeneous battery energy storage system in an island microgrid, and belongs to the technical field of microgrid control.
  • Microgrid is a new type of energy structure that can accommodate a large number of distributed power sources, loads and energy storage devices, and can operate in two modes: grid-connected and isolated.
  • the microgrid When the microgrid is in the grid-connected operation mode, it can provide or absorb electric energy to the main network. Once the main network fails, it can be disconnected from the common coupling point and enter island mode operation.
  • the microgrid runs in island mode, the system independently controls the voltage and frequency, and meets the load demand within the microgrid. In the islanding mode, some key loads within the system have higher requirements for power quality. Therefore, the use of battery energy storage systems to power the internal loads of the island microgrid can not only meet the load requirements in the system, but also increase the power of the system. quality.
  • the traditional control method of the energy storage system adopts centralized control, which requires a central control unit to control all the energy storage devices in the microgrid.
  • This control method is not only less reliable and robust, but also unable to adapt to the scalability of the system. Require.
  • distributed control methods are widely used in the control of energy storage systems.
  • the distributed control method uses local communication to achieve the overall control goal, and does not require a communication link between the centralized control control unit and each BESS, which reduces the communication burden and computational burden, and improves the control efficiency.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a distributed limited time control method for an isolated island microgrid heterogeneous battery energy storage system.
  • Step (1) The droop control strategy is adopted at the primary control layer of the local control unit to meet the internal load demand of the island microgrid and stabilize the frequency and voltage of the island microgrid;
  • Step (2) In the secondary control layer of the local control unit, respectively design the secondary frequency control structure and the secondary voltage control structure, and control the battery energy, design the battery energy control structure, use the distributed communication method, and design the distributed Limited-time secondary coordinated control rules, within a limited time, the output voltage amplitude and frequency of the battery energy storage system BESS are restored to the rated value, and the island microgrid system distributes the active power proportionally to balance the battery energy;
  • Step (3) Estimate the convergence time, and the upper bound of the estimated convergence time is independent of the initial state of the island microgrid system.
  • Step (1) the droop control strategy is adopted at the primary control layer of the local control unit to meet the internal load demand of the island microgrid and realize the proportional distribution of the load.
  • the droop control rule is:
  • the battery energy storage system BESS with Respectively represent the output frequency droop coefficient and voltage amplitude droop coefficient of the i-th BESS; with BESS respectively the i-th output frequency and voltage amplitude reference value; P i and Q i are calculated represent the i-th output active power and reactive power BESS, P i and Q i are:
  • v odi , v oqi , i odi and i oqi are the dq axis components of the output voltage v oi and output current i oi of the i-th battery energy storage system BESS, respectively;
  • s represents a complex variable, ⁇ c Is the cutoff frequency of the low-pass filter.
  • Step (2) the secondary control layer of the local control unit, the secondary frequency control structure is:
  • the secondary frequency control rule makes the BESS output frequency converge to the rated value within the setting time T( ⁇ ), and distribute the BESS output active power proportionally within the setting time T( ⁇ ).
  • T( ⁇ ) is specifically expressed as follows:
  • ⁇ 3 min ⁇ 1 (L 1 +B 1 ), ⁇ 2 (L 3 ), ⁇ 1 (L 2 +B 2 ), ⁇ 2 (L 4 ) ⁇
  • L 1 is Is the Laplacian matrix corresponding to the adjacency matrix of the element
  • B 1 is Is the diagonal matrix of diagonal elements
  • L 3 is Is the Laplacian matrix corresponding to the adjacency matrix of the element
  • L 2 is Is the Laplacian matrix corresponding to the adjacency matrix of the element
  • B 2 is Is the diagonal matrix of diagonal elements
  • L 4 is Is the Laplacian matrix corresponding to the adjacency matrix of the element
  • ⁇ 1 (L 1 +B 1 ) represents the smallest eigenvalue of the matrix L 1 +B 1
  • ⁇ 2 (L 3 ) represents the second small feature of the matrix L 3 Value
  • ⁇ 1 (L 2 +B 2 ) represents the smallest eigenvalue of the matrix L 2 +B 2
  • ⁇ 2 (L 4 )
  • Step (2) the secondary control layer of the local control unit, the secondary voltage control structure is:
  • the secondary voltage control rule makes the BESS output voltage amplitude converge to the rated value within the setting time T(v), and T(v) is expressed as:
  • ⁇ 4 min ⁇ 1 (L ⁇ +B 3 ), ⁇ 1 (L ⁇ +B 4 ) ⁇
  • L ⁇ is Is the Laplacian matrix corresponding to the adjacency matrix of the element
  • B 3 is Is a diagonal matrix of diagonal elements
  • L ⁇ is Is the Laplacian matrix corresponding to the adjacency matrix of the element
  • B 4 is Is the diagonal matrix of diagonal elements
  • ⁇ 1 (L ⁇ +B 3 ) represents the smallest eigenvalue of the matrix L ⁇ +B 3
  • ⁇ 1 (L ⁇ +B 4 ) represents the smallest eigenvalue of the matrix L ⁇ +B 4
  • Min means the minimum value
  • the upper bound of the estimated value of T(v) has nothing to do with the initial state of the island microgrid system
  • Step (2) design the control of battery energy in the secondary control layer of the local control unit.
  • the battery energy control structure is:
  • E i is the battery energy of the i-th BESS; Denotes the i th coefficient BESS heterogeneous characteristics; P i of the i th output active power BESS; Represents the active power control input, and its control rules have been given in equation (5); Represents the battery energy control input of the i-th BESS, and the designed control rules are as follows:
  • T(E) T(E)
  • ⁇ 5 min ⁇ 2 (L B ), ⁇ 2 (L C ) ⁇
  • L B represents Is the Laplacian matrix corresponding to the adjacency matrix of the element
  • L C means Is the Laplacian matrix corresponding to the adjacency matrix of the element
  • ⁇ 2 (L B ) represents the second smallest eigenvalue of the matrix L B
  • ⁇ 2 (L C ) represents the second smallest eigenvalue of the matrix L C
  • min represents Take the minimum value
  • the upper bound of the estimated value of T(E) has nothing to do with the initial state of the island microgrid system.
  • the present invention has significant advantages and beneficial effects, which are specifically embodied in the following aspects:
  • the distributed limited time control of battery energy is added to the secondary control layer, so All battery energy storage systems BESS can respond to demand fluctuations in the island microgrid with the maximum power capacity; the convergence time of the finite time control in the secondary control layer is estimated, and the upper bound of the estimated value of the convergence time is independent of the island microgrid Initial state
  • the designed secondary frequency control rules and secondary voltage control rules of the heterogeneous battery energy storage system can restore the output frequency and voltage amplitude of the battery energy storage system to the rated state, while ensuring the proportional distribution of active power; battery energy
  • the control rules to achieve the balance and consistency of battery energy, so that the battery energy storage system can respond to the load demand in the island microgrid with the maximum power capacity.
  • the control objectives can be completed within a limited time, and the convergence time estimation method is provided. ;
  • the distributed limited time control method of the battery energy storage system of the isolated island microgrid of the present invention has a better ability to resist load disturbance.
  • Figure 1 is a schematic diagram of the control flow of the present invention
  • FIG. 2 is a schematic diagram of the structure of an island microgrid system in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a communication topology structure between BESSs in an embodiment of the present invention.
  • Fig. 4 is a graph of frequency change of an island microgrid in an embodiment of the present invention.
  • FIG. 5 is a graph showing the variation curve of the output voltage amplitude of the BESS in the embodiment of the present invention.
  • Fig. 6 is a graph showing the change of the output active power of the BESS in the embodiment of the present invention.
  • Fig. 7 is a graph showing the change of the battery energy of the BESS in the embodiment of the present invention.
  • the distributed limited time control method of the heterogeneous battery energy storage system of the island microgrid of the present invention has a hierarchical control structure, and the droop control method is used at the primary control layer to meet the load demand inside the island microgrid. Aiming at the frequency and voltage deviation caused by droop control, at the secondary control layer, based on the theory of distributed cooperative control, a distributed finite-time secondary controller is designed to restore the output voltage amplitude and frequency of the battery energy storage system to the rated value. State, while ensuring that the active power is distributed proportionally.
  • the secondary control layer adds the control of the battery energy, and the distributed limited time control strategy of the battery energy is designed to achieve the balance of the battery energy Unanimous.
  • the BESS unit in the present invention is composed of a battery, a voltage source inverter, an LC filter, an output connector, and a local control unit. Each local control unit exchanges status information with its neighboring BESS units through a two-way communication link.
  • the control process of the present invention is shown in Figure 1.
  • the primary control layer of the local control unit adopts the droop control mode to meet the load demand of the island microgrid.
  • the droop control includes frequency droop control and voltage droop control.
  • the droop control is:
  • v odi , v oqi , i odi and i oqi are the dq axis components of the output voltage v oi and output current i oi of the i-th battery energy storage system BESS, respectively;
  • s represents a complex variable, ⁇ c Is the cutoff frequency of the low-pass filter.
  • the secondary frequency control rule makes the BESS output frequency converge to the rated value within the setting time T( ⁇ ), and distribute the BESS output active power proportionally within the setting time T( ⁇ ).
  • T( ⁇ ) is expressed as follows:
  • ⁇ 3 min ⁇ 1 (L 1 +B 1 ), ⁇ 2 (L 3 ), ⁇ 1 (L 2 +B 2 ), ⁇ 2 (L 4 ) ⁇
  • L 1 is Is the Laplacian matrix corresponding to the adjacency matrix of the element
  • B 1 is Is the diagonal matrix of diagonal elements
  • L 3 is Is the Laplacian matrix corresponding to the adjacency matrix of the element
  • L 2 is Is the Laplacian matrix corresponding to the adjacency matrix of the element
  • B 2 is Is the diagonal matrix of diagonal elements
  • L 4 is Is the Laplacian matrix corresponding to the adjacency matrix of the element
  • ⁇ 1 (L 1 +B 1 ) represents the smallest eigenvalue of the matrix L 1 +B 1
  • ⁇ 2 (L 3 ) represents the second smallest eigenvalue of the matrix L3
  • ⁇ 1 (L 2 +B 2 ) represents the smallest eigenvalue of matrix L 2 +B 2
  • the secondary voltage control rule makes the BESS output voltage amplitude converge to the rated value within the setting time T(v), and T(v) is expressed as:
  • ⁇ 4 min ⁇ 1 (L ⁇ +B 3 ), ⁇ 1 (L ⁇ +B 4 ) ⁇
  • L ⁇ is Is the Laplacian matrix corresponding to the adjacency matrix of the element
  • B 3 is Is a diagonal matrix of diagonal elements
  • L ⁇ is Is the Laplacian matrix corresponding to the adjacency matrix of the element
  • B 4 is Is the diagonal matrix of diagonal elements
  • ⁇ 1 (L ⁇ +B 3 ) represents the smallest eigenvalue of the matrix L ⁇ +B 3
  • ⁇ 1 (L ⁇ +B 4 ) represents the smallest eigenvalue of the matrix L ⁇ +B 4
  • Min means the minimum value
  • the upper bound of the estimated value of T(v) has nothing to do with the initial state of the island microgrid system
  • the specific battery energy control structure is:
  • E i is the battery energy of the i-th BESS; Denotes the i th coefficient BESS heterogeneous characteristics; P i of the i th output active power BESS; Represents the active power control input, and its control rules have been given in equation (5); Represents the battery energy control input of the i-th BESS, and the designed control rules are as follows:
  • the battery energy control rule enables the battery energy of all BESSs in the island microgrid system to converge within the set time T(E), and T(E) is expressed as:
  • ⁇ 5 min ⁇ 2 (L B ), ⁇ 2 (L C ) ⁇
  • L B represents Is the Laplacian matrix corresponding to the adjacency matrix of the element
  • L C means Is the Laplacian matrix corresponding to the adjacency matrix of the element
  • ⁇ 2 (L B ) represents the second smallest eigenvalue of the matrix L B
  • ⁇ 2 (L C ) represents the second smallest eigenvalue of the matrix L C
  • min represents Take the minimum value
  • the upper bound of the estimated value of T(E) has nothing to do with the initial state of the island microgrid system.
  • the present invention builds a simulated island microgrid system as shown in Fig. 2 in a Matlab/Simulink simulation environment.
  • the system is powered by 5 distributed BESS units, including 5 local load units and 5 power transmission lines.
  • Each BESS unit only exchanges status information with neighboring BESS units, and the communication topology between BESSs is shown in Figure 3.
  • Set the rated frequency of the island microgrid to 50Hz
  • the rated phase voltage amplitude is 311V
  • the initial battery energy of the system is between 270kWh and 210kWh.
  • BESS1 is the only battery energy storage unit that can receive the system's rated frequency and rated voltage amplitude.
  • the simulation starts, only the primary control layer of the local control unit adopts droop control, and the control function of the secondary control layer is closed.
  • the convergence time of the control action is estimated.
  • the upper bound of the time T( ⁇ ) for frequency recovery and active power proportional distribution is 10.02s
  • the upper bound of the voltage recovery time T(v) is 5.45s, and the battery energy balance is uniformly converged.
  • the upper bound of the time T(E) is 10.02s.
  • Figure 4 is the frequency change curve of the island microgrid
  • Figure 5 is the output voltage amplitude change curve of BESS. It can be seen from the figure that the output frequency and voltage amplitude deviate from the rated value due to the droop control only in 0-10s After 10s, using the distributed limited time secondary control method of the present invention, the frequency and voltage amplitude quickly return to the rated state, and the convergence time does not exceed the upper bound of the estimated convergence time.
  • Figure 6 shows the change curve of the output active power of BESS. It can be seen from the figure that under the action of the distributed limited time secondary control, the re-proportional distribution of active power can be realized in a relatively short time, and the convergence time The upper bound of the estimated convergence time of 10.02s is not exceeded.
  • Figure 7 shows the battery energy change curve of BESS. It can be seen that the convergence time T(E) for the uniform battery energy balance does not exceed its estimated upper bound of 10.02s. The above control effect can also be guaranteed in the case of load disturbance.
  • the distributed limited-time secondary control method of the present invention uses a distributed control method.
  • Each BESS unit only exchanges information with neighboring BESS units to change the system frequency and voltage amplitude within a limited time. Restore to the rated state, while ensuring the proportional distribution of the output active power of the system, and achieving the balance and consistency of battery energy, improving the power quality of the island microgrid system, so that the battery energy storage system can cope with the internal system with the maximum power capacity Load demand and improve power supply reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及孤岛微电网异构电池储能系统分布式有限时间控制方法,在局部控制单元的初级控制层采用下垂控制策略,满足孤岛微电网内部的负荷需求,稳定孤岛微电网的频率和电压;在局部控制单元的次级控制层,分别设计次级频率控制结构、次级电压控制结构,并对电池能量控制,设计电池能量控制结构,采用分布式通信方式,设计分布式有限时间次级协同控制规则,有限时间内,电池储能系统BESS的输出电压幅值和频率恢复到额定值,同时孤岛微电网系统按比例分配有功功率,使电池能量均衡一致;对收敛时间进行估计,收敛时间估计值的上界独立于孤岛微电网系统的初始状态。分布式控制,每个电池储能单元与其邻近电池储能单元通信,提升系统鲁棒性。

Description

孤岛微电网异构电池储能系统分布式有限时间控制方法 技术领域
本发明涉及一种孤岛微电网异构电池储能系统分布式有限时间控制方法,属于微电网控制技术领域。
背景技术
微电网是一种新型的能源结构,能够容纳大量的分布式电源、负荷和储能装置,并能够在并网和孤岛两种模式下运行。当微电网处于并网运行模式时,可以向主网提供或吸收电能,一旦主网发生故障,即能从公共耦合点处断开,进入孤岛模式运行。当微电网运行在孤岛模式时,系统独立地控制电压和频率,并满足微电网内部的负荷需求。由于在孤岛模式时,系统内部的一些关键负荷对电能质量的要求较高,为此,利用电池储能系统为孤岛微电网内部负荷供电,既能满足系统内负荷需求,同时能够提升系统的电能质量。
储能系统传统的控制方法采用集中式控制,需要一个中央控制单元来控制微电网中所有的储能装置,这种控制方式不仅可靠性和鲁棒性较差,也不能适应系统可扩展性的要求。针对这一弊端,分布式控制方法被广泛应用在储能系统的控制中。分布式控制方式利用局部的通信而达到整体的控制目标,不需要集中式控制控制单元和每一个BESS之间存在通信链接,减少了通信负担和计算负担,提升了控制效率。
发明内容
本发明的目的是克服现有技术存在的不足,提供一种孤岛微电网异构电池储能系统分布式有限时间控制方法。
本发明的目的通过以下技术方案来实现:
孤岛微电网异构电池储能系统分布式有限时间控制方法,特点是:包含以下步骤:
步骤(1):在局部控制单元的初级控制层采用下垂控制策略,满足孤岛微电网内部的负荷需求,稳定孤岛微电网的频率和电压;
步骤(2):在局部控制单元的次级控制层,分别设计次级频率控制结构、次级电压控制结构,并对电池能量控制,设计电池能量控制结构,采用分布式通信方式,设计分布式有限时间次级协同控制规则,在有限时间内,电池储能系统BESS的输出电压幅值和频率恢复到额定值,同时孤岛微电网系统按比例分配有功功率,使电池能量均衡一致;
步骤(3):对收敛时间进行估计,收敛时间估计值的上界独立于孤岛微电网系统的初始状态。
进一步地,上述的孤岛微电网异构电池储能系统分布式有限时间控制方法,其中,
步骤(1),在局部控制单元的初级控制层采用下垂控制策略,满足孤岛微电网内部的负荷需求,实现负荷按比例分配,下垂控制规则为:
Figure PCTCN2021078414-appb-000001
式(1)中,电池储能系统BESS,
Figure PCTCN2021078414-appb-000002
Figure PCTCN2021078414-appb-000003
分别表示第i个BESS的输出频率下垂系数和电压幅值下垂系数;
Figure PCTCN2021078414-appb-000004
Figure PCTCN2021078414-appb-000005
分别为第i个BESS的输出频率和电压幅值的参考值;P i和Q i分别表示第i个BESS的输出有功功率和无功功率,P i和Q i的计算方法为:
Figure PCTCN2021078414-appb-000006
式(2)中,v odi、v oqi、i odi和i oqi分别是第i个电池储能系统BESS的输出电压v oi和输出电流i oi的dq轴分量;s表示一个复变量,ω c是低通滤波器的截止频率。
进一步地,上述的孤岛微电网异构电池储能系统分布式有限时间控制方法,其中,
步骤(2),局部控制单元的次级控制层,次级频率控制结构为:
Figure PCTCN2021078414-appb-000007
式(3)中,
Figure PCTCN2021078414-appb-000008
Figure PCTCN2021078414-appb-000009
分别为第i个BESS的次级频率控制输入和有功功率控制输入,
Figure PCTCN2021078414-appb-000010
Figure PCTCN2021078414-appb-000011
所设计的控制规则分别表示如下:
Figure PCTCN2021078414-appb-000012
Figure PCTCN2021078414-appb-000013
其中:c ω和c p为正的控制增益参数;控制参数m<n,且均为正奇整数;ω j和ω i分别为第j个和第i个BESS的输出频率,ω ref为孤岛微电网系统的额定频率;
Figure PCTCN2021078414-appb-000014
Figure PCTCN2021078414-appb-000015
分别表示第j个和第i个BESS的频率下垂系数;P j和P i分别为第j个和第i个BESS的输出有功功率;a ij表示第i个与第j个BESS之间通信权值,若第i个BESS与第j个BESS之间存在通信链路,则a ij=a ji>0,否则a ij=a ji=0;b i表示牵制增益,若第i个BESS可接收到孤岛微电网系统提供的额定值,则b i>0,否则b i=0;N表示孤岛微电网中BESS的总数;
次级频率控制规则使BESS的输出频率在整定时间T(ω)内收敛到额定值,且在整定时间T(ω)内按比例分配BESS的输出有功功率,T(ω)具体表示如下:
Figure PCTCN2021078414-appb-000016
式(6)中: λ 3 =min{λ 1(L 1+B 1),λ 2(L 3),λ 1(L 2+B 2),λ 2(L 4)},L 1是以
Figure PCTCN2021078414-appb-000017
为元素的邻接矩阵所对应的拉普拉斯矩阵,B 1是以
Figure PCTCN2021078414-appb-000018
为对角元素的对角矩阵,L 3是以
Figure PCTCN2021078414-appb-000019
为元素的邻接矩阵所对应的拉普拉斯矩阵,L 2是以
Figure PCTCN2021078414-appb-000020
为元素的邻接矩阵所对应的拉普拉斯矩阵,B 2是以
Figure PCTCN2021078414-appb-000021
为对角元素的对角矩阵,L 4是以
Figure PCTCN2021078414-appb-000022
为元素的邻接矩阵所对应的拉普拉斯矩阵;λ 1(L 1+B 1)表示矩阵L 1+B 1的最小特征值,λ 2(L 3)表示矩阵L 3的第2小特征值,λ 1(L 2+B 2)表示矩阵L 2+B 2的最小特征值,λ 2(L 4)表示矩阵L 4的第2小特征值,min表示取最小值;T(ω)估计值的上界与孤岛微电网系统的初始状态无关。
进一步地,上述的孤岛微电网异构电池储能系统分布式有限时间控制方法,其中,
步骤(2),局部控制单元的次级控制层,次级电压控制结构为:
Figure PCTCN2021078414-appb-000023
式(7)中:
Figure PCTCN2021078414-appb-000024
为第i个BESS的次级电压控制输入,
Figure PCTCN2021078414-appb-000025
所设计的控制规则表示如下:
Figure PCTCN2021078414-appb-000026
式(8)中,c v是正的控制增益参数;控制参数m<n,且均为正奇整数;v j和v i分别为第j个和第i个BESS的输出电压幅值,v ref为孤岛微电网系统的额定电压幅值;a ij表示第i个与第j个BESS之间通信权 值,若第i个BESS与第j个BESS之间存在通信链路,则a ij=a ji>0,否则a ij=a ji=0;b i表示牵制增益,若第i个BESS可接收到孤岛微电网系统提供的额定值,则b i>0,否则b i=0;N表示孤岛微电网中BESS的总数;
次级电压控制规则使BESS的输出电压幅值在整定时间T(v)内收敛到额定值,T(v)表示为:
Figure PCTCN2021078414-appb-000027
式(9)中, λ 4 =min{λ 1(L α+B 3),λ 1(L β+B 4)},L α是以
Figure PCTCN2021078414-appb-000028
为元素的邻接矩阵所对应的拉普拉斯矩阵,B 3是以
Figure PCTCN2021078414-appb-000029
为对角元素的对角矩阵,L β是以
Figure PCTCN2021078414-appb-000030
为元素的邻接矩阵所对应的拉普拉斯矩阵,B 4是以
Figure PCTCN2021078414-appb-000031
为对角元素的对角矩阵;λ 1(L α+B 3)表示矩阵L α+B 3的最小特征值,λ 1(L β+B 4)表示矩阵L β+B 4的最小特征值;min表示取最小值;T(v)估计值的上界与孤岛微电网系统的初始状态无关;
进一步地,上述的孤岛微电网异构电池储能系统分布式有限时间控制方法,其中,
步骤(2),在局部控制单元的次级控制层设计对电池能量的控制,电池能量控制结构为:
Figure PCTCN2021078414-appb-000032
式(10)中:E i为第i个BESS的电池能量;
Figure PCTCN2021078414-appb-000033
表示第i个BESS异构性特征的系数;P i为第i个BESS的输出有功功率;
Figure PCTCN2021078414-appb-000034
表示有功功率控制输入,其控制规则已在式(5)中给出;
Figure PCTCN2021078414-appb-000035
表示第i个BESS的电池能量控制输入,所设计的控制规则如下:
Figure PCTCN2021078414-appb-000036
式(11)中:c E表示正的控制增益参数;控制参数m<n,且均为正奇整数;E j和E i分别为第j个和第i个BESS的电池能量;a ij表示第i个与第j个BESS之间通信权值,若第i个BESS与第j个BESS之间存在通信链路,则a ij=a ji>0,否则a ij=a ji=0;N表示系统中BESS的总数;
电池能量控制规则使得孤岛微电网系统中所有BESS的电池能量可在整定时间T(E)内收敛一致,T(E)表示为:
T(E)≤max{T(ω),T(μ)}    (12)
式(12)中:max表示取最大值;T(ω)表示频率恢复时间,其计算方法已在式(6)中给出;T(μ)的计算方法如下所示:
Figure PCTCN2021078414-appb-000037
式(13)中: λ 5 =min{λ 2(L B),λ 2(L C)},L B表示以
Figure PCTCN2021078414-appb-000038
为元素的邻接矩阵所对应的拉普拉斯矩阵,L C表示以
Figure PCTCN2021078414-appb-000039
为元素的邻接矩阵所对应的拉普拉斯矩阵,λ 2(L B)表示矩阵L B的第2小特征值,λ 2(L C)表示矩阵L C的第2小特征值;min表示取最小值;T(E)估计值的上界与孤岛微电网系统的初始状态无关。
本发明与现有技术相比具有显著的优点和有益效果,具体体现在以下方面:
①设计分级的控制结构,在初级控制层采用下垂控制策略,满足孤岛微电网系统内部的负荷需求,在次级控制层设计分布式有限时间协同控制,通过分布式通信的方式,在有限时间内,实现电池储能系统BESS的输出电压幅值和频率恢复到额定状态,并保证孤岛微电网系统的有功功率 按比例分配,同时在次级控制层增加对电池能量的分布式有限时间控制,使得所有的电池储能系统BESS能够以最大的功率容量来应对孤岛微电网内部的需求波动;对次级控制层中有限时间控制的收敛时间进行估计,收敛时间估计值的上界独立于孤岛微电网的初始状态;
②针对孤岛微电网的电池储能系统,利用分布式控制方式,仅需每个电池储能单元与其邻近的电池储能单元进行通信,交换状态信息,无需中央控制单元,减轻了系统通信负担,提升了系统可靠性和鲁棒性;
③所设计的异构电池储能系统的次级频率控制规则和次级电压控制规则能够恢复电池储能系统的输出频率和电压幅值到额定状态,同时保证有功功率的按比例分配;电池能量的控制规则,实现电池能量的均衡一致,使得电池储能系统能够以最大的功率容量来应对孤岛微电网内部的负荷需求,控制目标均能在有限时间内完成,并提供了收敛时间的估计方法;
④本发明孤岛微电网电池储能系统的分布式有限时间控制方法具有较好的抗负荷扰动的能力。
本发明的其他特征和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明具体实施方式了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书中所特别指出的结构来实现和获得。
附图说明
图1为本发明的控制流程示意图;
图2为本发明实施例中孤岛微电网系统结构示意图;
图3为本发明实施例中BESS间的通信拓扑结构示意图;
图4为本发明实施例中孤岛微电网的频率变化曲线图;
图5为本发明实施例中BESS的输出电压幅值的变化曲线图;
图6为本发明实施例中BESS的输出有功功率的变化曲线图;
图7为本发明实施例中BESS的电池能量的变化曲线图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现详细说明具体实施方案。
本发明孤岛微电网异构电池储能系统的分布式有限时间控制方法,具有分级的控制结构,在初级控制层利用下垂控制方法,满足孤岛微电网内部的负荷需求。针对下垂控制导致的频率和电压偏移问题,在次级控制层,基于分布式协同控制理论,设计分布式有限时间次级控制器,将电池储能系统的输出电压幅值和频率恢复到额定状态,同时保证有功功率按比例分配。为使电池储能系统能以最大的功率容量来应对孤岛微电网内部的负荷需求,在次级控制层增加对电池能量的控制,设计电池能量的分布式有限时间控制策略,实现电池能量的均衡一致。
本发明中的BESS单元由电池、电压源逆变器、LC滤波器、输出连接器和局部控制单元等构成,每个局部控制单元通过双向的通信链路与其邻近的BESS单元交换状态信息。本发明的控制流程如图1所示,局部控制单元的初级控制层采用下垂控制方式,满足孤岛微电网的负荷需求,下垂控制包含频率下垂控制和电压下垂控制,下垂控制为:
Figure PCTCN2021078414-appb-000040
式(1)中,
Figure PCTCN2021078414-appb-000041
Figure PCTCN2021078414-appb-000042
分别表示第i个BESS的输出频率下垂系数和电压幅值下垂系数;
Figure PCTCN2021078414-appb-000043
Figure PCTCN2021078414-appb-000044
分别为第i个BESS的输出频率和电压幅值的参考值;P i和Q i分别表示第i个BESS的输出有功功率和无功功率,P i和Q i的计算方法为:
Figure PCTCN2021078414-appb-000045
式(2)中,v odi、v oqi、i odi和i oqi分别是第i个电池储能系统BESS的输出电压v oi和输出电流i oi的dq轴分量;s表示一个复变量,ω c是低通滤波器的截止频率。
在局部控制单元的次级控制层,具有如下所示的次级频率控制结构:
Figure PCTCN2021078414-appb-000046
式(3)中,
Figure PCTCN2021078414-appb-000047
Figure PCTCN2021078414-appb-000048
分别为第i个BESS的次级频率控制输入和有功功率控制输入,
Figure PCTCN2021078414-appb-000049
Figure PCTCN2021078414-appb-000050
所设计的控制规则分别表示如下:
Figure PCTCN2021078414-appb-000051
Figure PCTCN2021078414-appb-000052
其中:c ω和c p为正的控制增益参数;控制参数m<n,且均为正奇整数;ω j和ω i分别为第j个和第i个BESS的输出频率,ω ref为孤岛微电网系统的额定频率;
Figure PCTCN2021078414-appb-000053
Figure PCTCN2021078414-appb-000054
分别表示第j个和第i个BESS的频率下垂系数;P j和P i分别为第j个和第i个BESS的输出有功功率;a ij表示第i个与第j个BESS之间通信权值,若第i个BESS与第j个BESS之间存在通信链路,则a ij=a ji>0,否则a ij=a ji=0;b i表示牵制增益,若第i个BESS可接收到孤岛微电网系统提供的额定值,则b i>0,否则b i=0;N表示孤岛微电网中BESS的总数;
次级频率控制规则使BESS的输出频率在整定时间T(ω)内收敛到额定值,且在整定时间T(ω)内按比例分配BESS的输出有功功率,T(ω)具 体表示如下:
Figure PCTCN2021078414-appb-000055
式(6)中: λ 3 =min{λ 1(L 1+B 1),λ 2(L 3),λ 1(L 2+B 2),λ 2(L 4)},L 1是以
Figure PCTCN2021078414-appb-000056
为元素的邻接矩阵所对应的拉普拉斯矩阵,B 1是以
Figure PCTCN2021078414-appb-000057
为对角元素的对角矩阵,L 3是以
Figure PCTCN2021078414-appb-000058
为元素的邻接矩阵所对应的拉普拉斯矩阵,L 2是以
Figure PCTCN2021078414-appb-000059
为元素的邻接矩阵所对应的拉普拉斯矩阵,B 2是以
Figure PCTCN2021078414-appb-000060
为对角元素的对角矩阵,L 4是以
Figure PCTCN2021078414-appb-000061
为元素的邻接矩阵所对应的拉普拉斯矩阵;λ 1(L 1+B 1)表示矩阵L 1+B 1的最小特征值,λ 2(L 3)表示矩阵 L3的第2小特征值,λ 1(L 2+B 2)表示矩阵L 2+B 2的最小特征值,λ 2(L 4)表示矩阵L 4的第2小特征值,min表示取最小值;T(ω)估计值的上界与孤岛微电网系统的初始状态无关。
在局部控制单元的次级控制层,具有如下的次级电压控制规则:
Figure PCTCN2021078414-appb-000062
式(7)中:
Figure PCTCN2021078414-appb-000063
为第i个BESS的次级电压控制输入,
Figure PCTCN2021078414-appb-000064
所设计的控制规则表示如下:
Figure PCTCN2021078414-appb-000065
式(8)中,c v是正的控制增益参数;控制参数m<n,且均为正奇整数;v j和v i分别为第j个和第i个BESS的输出电压幅值,v ref为孤岛微电网系统的额定电压幅值;a ij表示第i个与第j个BESS之间通信权值,若第i个BESS与第j个BESS之间存在通信链路,则a ij=a ji>0,否则a ij=a ji=0;b i表示牵制增益,若第i个BESS可接收到孤岛微电网系统提供的额定值,则b i>0,否则b i=0;N表示孤岛微电网中BESS的总数;
次级电压控制规则使BESS的输出电压幅值在整定时间T(v)内收敛 到额定值,T(v)表示为:
Figure PCTCN2021078414-appb-000066
式(9)中, λ 4 =min{λ 1(L α+B 3),λ 1(L β+B 4)},L α是以
Figure PCTCN2021078414-appb-000067
为元素的邻接矩阵所对应的拉普拉斯矩阵,B 3是以
Figure PCTCN2021078414-appb-000068
为对角元素的对角矩阵,L β是以
Figure PCTCN2021078414-appb-000069
为元素的邻接矩阵所对应的拉普拉斯矩阵,B 4是以
Figure PCTCN2021078414-appb-000070
为对角元素的对角矩阵;λ 1(L α+B 3)表示矩阵L α+B 3的最小特征值,λ 1(L β+B 4)表示矩阵L β+B 4的最小特征值;min表示取最小值;T(v)估计值的上界与孤岛微电网系统的初始状态无关;
在局部控制单元的次级控制层增加对电池能量的控制,具体的电池能量控制结构为:
Figure PCTCN2021078414-appb-000071
式(10)中:E i为第i个BESS的电池能量;
Figure PCTCN2021078414-appb-000072
表示第i个BESS异构性特征的系数;P i为第i个BESS的输出有功功率;
Figure PCTCN2021078414-appb-000073
表示有功功率控制输入,其控制规则已在式(5)中给出;
Figure PCTCN2021078414-appb-000074
表示第i个BESS的电池能量控制输入,所设计的控制规则如下:
Figure PCTCN2021078414-appb-000075
式(11)中:c E表示正的控制增益参数;控制参数m<n,且均为正奇整数;E j和E i分别为第j个和第i个BESS的电池能量;a ij表示第i个与第j个BESS之间通信权值,若第i个BESS与第j个BESS之间存在通信链路,则a ij=a ji>0,否则a ij=a ji=0;N表示系统中BESS的总数;
电池能量控制规则使得孤岛微电网系统中所有BESS的电池能量可 在整定时间T(E)内收敛一致,T(E)表示为:
T(E)≤max{T(ω),T(μ)}    (12)
式(12)中:max表示取最大值;T(ω)表示频率恢复时间,其计算方法已在式(6)中给出;T(μ)的计算方法如下所示:
Figure PCTCN2021078414-appb-000076
式(13)中: λ 5 =min{λ 2(L B),λ 2(L C)},L B表示以
Figure PCTCN2021078414-appb-000077
为元素的邻接矩阵所对应的拉普拉斯矩阵,L C表示以
Figure PCTCN2021078414-appb-000078
为元素的邻接矩阵所对应的拉普拉斯矩阵,λ 2(L B)表示矩阵L B的第2小特征值,λ 2(L C)表示矩阵L C的第2小特征值;min表示取最小值;T(E)估计值的上界与孤岛微电网系统的初始状态无关。
本发明在Matlab/Simulink仿真环境中搭建如图2所示的仿真孤岛微电网系统,系统由5个分布式的BESS单元进行供电,包含5个局部负荷单元和5条电力传输线。每个BESS单元仅与邻近的BESS单元交换状态信息,BESS间的通信拓扑结构如图3所示。设置孤岛微电网的额定频率为50Hz,额定相电压幅值为311V,系统初始的电池能量在270kWh~210kWh之间。在该系统中,BESS1为唯一能够接收系统额定频率和额定电压幅值的电池储能单元。
仿真开始时,仅在局部控制单元的初级控制层采用下垂控制,次级控制层的控制作用处于关闭状态。t=10s时,在次级控制层采用本发明分布式有限时间控制次级控制方法,设置负荷扰动在t=50s时发生。对控制作用的收敛时间进行预估,频率恢复和有功功率按比例分配的时间T(ω)的上界为10.02s,电压恢复时间T(v)的上界为5.45s,电池能量均衡一致收敛时间T(E)的上界值为10.02s。
图4为孤岛微电网的频率变化曲线,图5为BESS的输出电压幅值变化曲线,从图中可以看出,由于在0~10s内仅采用下垂控制,输出频率和 电压幅值偏离了额定值,10s后,采用本发明分布式有限时间次级控制方法,频率和电压幅值迅速恢复到额定状态,并且收敛时间未超过预估的收敛时间上界值。图6为BESS的输出有功功率的变化曲线,从图中可以看出,在分布式有限时间次级控制的作用下,有功功率的重新按比例分配能够在较短的时间内实现,并且收敛时间未超过预估的收敛时间上界值10.02s。图7为BESS的电池能量变化曲线,可以看出,电池能量均衡一致的收敛时间T(E)未超过其预估的上界值10.02s。以上控制作用在负荷扰动发生的情况下,同样能够得到保证。
从仿真可以看出,本发明分布式有限时间次级控制方法,以分布式控制的方式,每个BESS单元仅通过与邻近的BESS单元进行信息交互,在有限时间内将系统频率和电压幅值恢复到额定状态,同时保证系统的输出有功功率的按比例分配,以及实现电池能量的均衡一致,提升孤岛微电网系统的电能质量,使得电池储能系统能够以最大的功率容量来应对系统内部的负荷需求,提升供电可靠性。
需要说明的是:以上所述仅为本发明的优选实施方式,并非用以限定本发明的权利范围;同时以上的描述,对于相关技术领域的专门人士应可明了及实施,因此其它未脱离本发明所揭示的精神下所完成的等效改变或修饰,均应包含在申请专利范围中。

Claims (5)

  1. 孤岛微电网异构电池储能系统分布式有限时间控制方法,其特征在于:包含以下步骤:
    步骤(1):在局部控制单元的初级控制层采用下垂控制策略,满足孤岛微电网内部的负荷需求,稳定孤岛微电网的频率和电压;
    步骤(2):在局部控制单元的次级控制层,分别设计次级频率控制结构、次级电压控制结构,并对电池能量控制,设计电池能量控制结构,采用分布式通信方式,设计分布式有限时间次级协同控制规则,在有限时间内,电池储能系统BESS的输出电压幅值和频率恢复到额定值,同时孤岛微电网系统按比例分配有功功率,使电池能量均衡一致;
    步骤(3):对收敛时间进行估计,收敛时间估计值的上界独立于孤岛微电网系统的初始状态。
  2. 根据权利要求1所述的孤岛微电网异构电池储能系统分布式有限时间控制方法,其特征在于:
    步骤(1),在局部控制单元的初级控制层采用下垂控制策略,满足孤岛微电网内部的负荷需求,实现负荷按比例分配,下垂控制规则为:
    Figure PCTCN2021078414-appb-100001
    式(1)中,电池储能系统BESS,
    Figure PCTCN2021078414-appb-100002
    Figure PCTCN2021078414-appb-100003
    分别表示第i个BESS的输出频率下垂系数和电压幅值下垂系数;
    Figure PCTCN2021078414-appb-100004
    Figure PCTCN2021078414-appb-100005
    分别为第i个BESS的输出频率和电压幅值的参考值;P i和Q i分别表示第i个BESS的输出有功功率和无功功率,P i和Q i的计算方法为:
    Figure PCTCN2021078414-appb-100006
    式(2)中,v odi、v oqi、i odi和i oqi分别是第i个电池储能系统BESS的输出电压v oi和输出电流i oi的dq轴分量;s表示一个复变量,ω c是低通滤波器的截止频率。
  3. 根据权利要求1所述的孤岛微电网异构电池储能系统分布式有限时间控制方法,其特征在于:
    步骤(2),局部控制单元的次级控制层,次级频率控制结构为:
    Figure PCTCN2021078414-appb-100007
    式(3)中,
    Figure PCTCN2021078414-appb-100008
    Figure PCTCN2021078414-appb-100009
    分别为第i个BESS的次级频率控制输入和有功功率控制输入,
    Figure PCTCN2021078414-appb-100010
    Figure PCTCN2021078414-appb-100011
    所设计的控制规则分别表示如下:
    Figure PCTCN2021078414-appb-100012
    Figure PCTCN2021078414-appb-100013
    其中:c ω和c p为正的控制增益参数;控制参数m<n,且均为正奇整数;ω j和ω i分别为第j个和第i个BESS的输出频率,ω ref为孤岛微电网系统的额定频率;
    Figure PCTCN2021078414-appb-100014
    Figure PCTCN2021078414-appb-100015
    分别表示第j个和第i个BESS的频率下垂系数;P j和P i分别为第j个和第i个BESS的输出有功功率;a ij表示第i个与第j个BESS之间通信权值,若第i个BESS与第j个BESS之间存在通信链路,则a ij=a ji>0,否则a ij=a ji=0;b i表示牵制增益,若第i个BESS可接收到孤岛微电网系统提供的额定值,则b i>0,否则b i=0;N表示孤岛微电网中BESS的总数;
    次级频率控制规则使BESS的输出频率在整定时间T(ω)内收敛到额定值,且在整定时间T(ω)内按比例分配BESS的输出有功功率,T(ω)具体表示如下:
    Figure PCTCN2021078414-appb-100016
    式(6)中: λ 3 =min{λ 1(L 1+B 1),λ 2(L 3),λ 1(L 2+B 2),λ 2(L 4)},L 1是以
    Figure PCTCN2021078414-appb-100017
    为元素的邻接矩阵所对应的拉普拉斯矩阵,B 1是以
    Figure PCTCN2021078414-appb-100018
    为对角元素的对角矩阵,L 3是以
    Figure PCTCN2021078414-appb-100019
    为元素的邻接矩阵所对应的拉普拉斯矩阵,L 2是以
    Figure PCTCN2021078414-appb-100020
    为元素的邻接矩阵所对应的拉普拉斯矩阵,B 2是以
    Figure PCTCN2021078414-appb-100021
    为对角元素的对角矩阵,L 4是以
    Figure PCTCN2021078414-appb-100022
    为元素的邻接矩阵所对应的拉普拉斯矩阵;λ 1(L 1+B 1)表示矩阵L 1+B 1的最小特征值,λ 2(L 3)表示矩阵L 3的第2小特征值,λ 1(L 2+B 2)表示矩阵L 2+B 2的最小特征值,λ 2(L 4)表示矩阵L 4的第2小特征值,min表示取最小值;T(ω)估计值的上界与孤岛微电网系统的初始状态无关。
  4. 根据权利要求1所述的孤岛微电网异构电池储能系统分布式有限时间控制方法,其特征在于:
    步骤(2),局部控制单元的次级控制层,次级电压控制结构为:
    Figure PCTCN2021078414-appb-100023
    式(7)中:
    Figure PCTCN2021078414-appb-100024
    为第i个BESS的次级电压控制输入,
    Figure PCTCN2021078414-appb-100025
    所设计的控制规则表示如下:
    Figure PCTCN2021078414-appb-100026
    式(8)中,c v是正的控制增益参数;控制参数m<n,且均为正奇整数;v j和v i分别为第j个和第i个BESS的输出电压幅值,v ref为孤岛微电网系统的额定电压幅值;a ij表示第i个与第j个BESS之间通信权 值,若第i个BESS与第j个BESS之间存在通信链路,则a ij=a ji>0,否则a ij=a ji=0;b i表示牵制增益,若第i个BESS可接收到孤岛微电网系统提供的额定值,则b i>0,否则b i=0;N表示孤岛微电网中BESS的总数;
    次级电压控制规则使BESS的输出电压幅值在整定时间T(v)内收敛到额定值,T(v)表示为:
    Figure PCTCN2021078414-appb-100027
    式(9)中, λ 4 =min{λ 1(L α+B 3),λ 1(L β+B 4)},L α是以
    Figure PCTCN2021078414-appb-100028
    为元素的邻接矩阵所对应的拉普拉斯矩阵,B 3是以
    Figure PCTCN2021078414-appb-100029
    为对角元素的对角矩阵,L β是以
    Figure PCTCN2021078414-appb-100030
    为元素的邻接矩阵所对应的拉普拉斯矩阵,B 4是以
    Figure PCTCN2021078414-appb-100031
    为对角元素的对角矩阵;λ 1(L α+B 3)表示矩阵L α+B 3的最小特征值,λ 1(L β+B 4)表示矩阵L β+B 4的最小特征值;min表示取最小值;T(v)估计值的上界与孤岛微电网系统的初始状态无关;
  5. 根据权利要求1所述的孤岛微电网异构电池储能系统分布式有限时间控制方法,其特征在于:
    步骤(2),在局部控制单元的次级控制层设计对电池能量的控制,电池能量控制结构为:
    Figure PCTCN2021078414-appb-100032
    式(10)中:E i为第i个BESS的电池能量;
    Figure PCTCN2021078414-appb-100033
    表示第i个BESS异构性特征的系数;P i为第i个BESS的输出有功功率;
    Figure PCTCN2021078414-appb-100034
    表示有功功率控制输入,其控制规则已在式(5)中给出;
    Figure PCTCN2021078414-appb-100035
    表示第i个BESS的电池能量控制输入,所设计的控制规则如下:
    Figure PCTCN2021078414-appb-100036
    式(11)中:c E表示正的控制增益参数;控制参数m<n,且均为正奇整数;E j和E i分别为第j个和第i个BESS的电池能量;a ij表示第i个与第j个BESS之间通信权值,若第i个BESS与第j个BESS之间存在通信链路,则a ij=a ji>0,否则a ij=a ji=0;N表示系统中BESS的总数;
    电池能量控制规则使得孤岛微电网系统中所有BESS的电池能量可在整定时间T(E)内收敛一致,T(E)表示为:
    T(E)≤max{T(ω),T(μ)}  (12)
    式(12)中:max表示取最大值;T(ω)表示频率恢复时间,其计算方法已在式(6)中给出;T(μ)的计算方法如下所示:
    Figure PCTCN2021078414-appb-100037
    式(13)中: λ 5 =min{λ 2(L B),λ 2(L C)},L B表示以
    Figure PCTCN2021078414-appb-100038
    为元素的邻接矩阵所对应的拉普拉斯矩阵,L C表示以
    Figure PCTCN2021078414-appb-100039
    为元素的邻接矩阵所对应的拉普拉斯矩阵,λ 2(L B)表示矩阵L B的第2小特征值,λ 2(L C)表示矩阵L C的第2小特征值;min表示取最小值;T(E)估计值的上界与孤岛微电网系统的初始状态无关。
PCT/CN2021/078414 2020-04-15 2021-03-01 孤岛微电网异构电池储能系统分布式有限时间控制方法 WO2021208613A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21754880.9A EP3926780A4 (en) 2020-04-15 2021-03-01 DISTRIBUTED FINAL TIME CONTROL METHOD FOR AN ISOLATED ISLAND MICROGRID WITH HETEROGENOUS BATTERY POWER STORAGE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010293665.1 2020-04-15
CN202010293665.1A CN111371112A (zh) 2020-04-15 2020-04-15 孤岛微电网异构电池储能系统分布式有限时间控制方法

Publications (1)

Publication Number Publication Date
WO2021208613A1 true WO2021208613A1 (zh) 2021-10-21

Family

ID=71212382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078414 WO2021208613A1 (zh) 2020-04-15 2021-03-01 孤岛微电网异构电池储能系统分布式有限时间控制方法

Country Status (3)

Country Link
EP (1) EP3926780A4 (zh)
CN (1) CN111371112A (zh)
WO (1) WO2021208613A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447934A (zh) * 2022-01-21 2022-05-06 湖南工业大学 一种考虑功率约束的孤岛交直流混合微网控制方法及系统
CN114512983A (zh) * 2022-03-02 2022-05-17 国网浙江省电力有限公司信息通信分公司 一种网络攻击的分布式电源弹性控制方法
CN116826780A (zh) * 2023-05-19 2023-09-29 重庆大学 基于主从的有限时间一致性的储能二次调频控制方法
CN117805541A (zh) * 2024-02-29 2024-04-02 西安千帆翼数字能源技术有限公司 储能变流器孤岛检测方法、保护方法及相关装置
CN117890723A (zh) * 2023-12-19 2024-04-16 安徽拓界电源科技有限公司 孤岛检测方法及系统
CN117913902A (zh) * 2024-03-19 2024-04-19 山东大学 基于预设时间观测器的孤岛微网状态估计方法及系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111371112A (zh) * 2020-04-15 2020-07-03 苏州科技大学 孤岛微电网异构电池储能系统分布式有限时间控制方法
CN112147900B (zh) * 2020-09-30 2022-04-26 苏州科技大学 全状态约束电力系统的有限时间自适应模糊跟踪控制方法
CN112436533B (zh) * 2020-11-13 2022-08-02 武汉科技大学 基于比例功率分配的多储能单元分布式控制方法
CN112531756A (zh) * 2020-11-30 2021-03-19 香港中文大学(深圳) 用于储能系统电量平衡的分布式控制方法及系统、设备
CN114221355B (zh) * 2021-11-29 2024-01-26 苏州科技大学 基于事件触发机制的微电网有限时间二次调频控制方法
CN114421509A (zh) * 2022-01-28 2022-04-29 山东大学 一种未知扰动下微电网储能系统的分布式自适应控制方法
CN114744641B (zh) * 2022-04-26 2024-03-05 合肥工业大学 一种无功均分的微电网分布式滑模电压次级控制方法
CN115333143B (zh) * 2022-07-08 2024-05-07 国网黑龙江省电力有限公司大庆供电公司 基于双神经网络的深度学习多智能体微电网协同控制方法
CN116094002B (zh) * 2022-12-09 2024-08-23 国网上海市电力公司 一种基于分布式电池储能系统的快速分层协调控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634020A (zh) * 2016-03-16 2016-06-01 东南大学 基于有限时间一致性的孤岛微电网分布式协调控制方法
CN109687526A (zh) * 2019-03-06 2019-04-26 华北电力大学 一种基于一致性理论的孤岛微电网分层分布式控制策略
CN110854927A (zh) * 2019-10-28 2020-02-28 国网福建省电力有限公司 一种孤岛型微电网分布式协同控制方法
CN111371112A (zh) * 2020-04-15 2020-07-03 苏州科技大学 孤岛微电网异构电池储能系统分布式有限时间控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11005269B2 (en) * 2017-08-01 2021-05-11 Siemens Aktiengesellschaft Systems, apparatus, and methods for load sharing between isochronous generators and battery energy storage systems in islanded microgrids
CN107465211B (zh) * 2017-09-06 2020-09-01 重庆大学 孤岛微电网的分布式固定时间协调控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634020A (zh) * 2016-03-16 2016-06-01 东南大学 基于有限时间一致性的孤岛微电网分布式协调控制方法
CN109687526A (zh) * 2019-03-06 2019-04-26 华北电力大学 一种基于一致性理论的孤岛微电网分层分布式控制策略
CN110854927A (zh) * 2019-10-28 2020-02-28 国网福建省电力有限公司 一种孤岛型微电网分布式协同控制方法
CN111371112A (zh) * 2020-04-15 2020-07-03 苏州科技大学 孤岛微电网异构电池储能系统分布式有限时间控制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN GANG, LI ZHIYONG WEI MENGLI: "Distributed fixed-time secondary coordination control of islanded microgrids", CONTROL AND DECISION, DONGBEI DAXUE, SHENYANG, CN, vol. 34, no. 1, 31 January 2019 (2019-01-31), CN , pages 205 - 212, XP055857466, ISSN: 1001-0920, DOI: 10.13195/j.kzyjc.2017.0935 *
HU JUNYAN; LANZON ALEXANDER: "Distributed Finite-Time Consensus Control for Heterogeneous Battery Energy Storage Systems in Droop-Controlled Microgrids", IEEE TRANSACTIONS ON SMART GRID, IEEE, USA, vol. 10, no. 5, 1 September 2019 (2019-09-01), USA, pages 4751 - 4761, XP011741216, ISSN: 1949-3053, DOI: 10.1109/TSG.2018.2868112 *
See also references of EP3926780A4 *
XU DEMING, LI ZE CUI GUOZENG HAO WANJUN: "Distributed finite-time secondary control for heterogeneous battery energy storage systems in an islanded microgrid", CONTROL AND DECISION, DONGBEI DAXUE, SHENYANG, CN, vol. 36, no. 8, 3 July 2020 (2020-07-03), CN , pages 2034 - 2041, XP055857469, ISSN: 1001-0920, DOI: 10.13195/j.kzyjc.2020.0012 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447934A (zh) * 2022-01-21 2022-05-06 湖南工业大学 一种考虑功率约束的孤岛交直流混合微网控制方法及系统
CN114447934B (zh) * 2022-01-21 2024-04-26 湖南工业大学 一种考虑功率约束的孤岛交直流混合微网控制方法及系统
CN114512983A (zh) * 2022-03-02 2022-05-17 国网浙江省电力有限公司信息通信分公司 一种网络攻击的分布式电源弹性控制方法
CN114512983B (zh) * 2022-03-02 2024-05-07 国网浙江省电力有限公司信息通信分公司 一种网络攻击的分布式电源弹性控制方法
CN116826780A (zh) * 2023-05-19 2023-09-29 重庆大学 基于主从的有限时间一致性的储能二次调频控制方法
CN117890723A (zh) * 2023-12-19 2024-04-16 安徽拓界电源科技有限公司 孤岛检测方法及系统
CN117805541A (zh) * 2024-02-29 2024-04-02 西安千帆翼数字能源技术有限公司 储能变流器孤岛检测方法、保护方法及相关装置
CN117805541B (zh) * 2024-02-29 2024-05-03 西安千帆翼数字能源技术有限公司 储能变流器孤岛检测方法、保护方法及相关装置
CN117913902A (zh) * 2024-03-19 2024-04-19 山东大学 基于预设时间观测器的孤岛微网状态估计方法及系统

Also Published As

Publication number Publication date
EP3926780A1 (en) 2021-12-22
EP3926780A4 (en) 2022-05-11
CN111371112A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
WO2021208613A1 (zh) 孤岛微电网异构电池储能系统分布式有限时间控制方法
Zhou et al. Distributed power management for networked AC–DC microgrids with unbalanced microgrids
Moradi et al. Power flow analysis in islanded Micro-Grids via modeling different operational modes of DGs: A review and a new approach
Zhao et al. Coordinated restoration of transmission and distribution system using decentralized scheme
Ahmethodzic et al. Comprehensive review of trends in microgrid control
WO2019178919A1 (zh) 一种基于线性二次型优化的微电网分布式控制器参数确定方法
CN109494746A (zh) 基于改进自适应下垂控制的孤岛交直流混联微电网潮流计算方法
CN108879690B (zh) 一种交直流混合微电网数据驱动控制方法
CN110460099B (zh) 公共负载公共连接点pcc电压暂态补偿前馈控制方法以及系统
CN107579543A (zh) 一种基于分层控制策略的孤岛微电网分布式协调控制方法
CN108808682A (zh) 基于复合鲁棒控制的单三相混合多微网电压控制方法
CN105391071A (zh) 用于微电网中多功能并网逆变器并联的群体智能控制方法
Engels et al. A distributed gossip-based voltage control algorithm for peer-to-peer microgrids
WO2023143284A1 (zh) 一种未知扰动下微电网储能系统的分布式自适应控制方法
CN109560547A (zh) 一种考虑输配协同的主动配电网n-1安全评估方法
Zhang et al. A novel event-triggered secondary control strategy for distributed generalized droop control in microgrid considering time delay
Zhang et al. Distributed control strategy of DC microgrid based on consistency theory
Dai et al. Consensus-based distributed fixed-time optimization for a class of resource allocation problems
Mohamed et al. An adaptive control of remote hybrid microgrid based on the CMPN algorithm
Kolluri et al. Controlling DC microgrids in communities, buildings and data centers
Smith et al. A secondary strategy for unbalance consensus in an islanded voltage source converter-based microgrid using cooperative gain control
Huang et al. A voltage-shifting-based state-of-charge balancing control for distributed energy storage systems in islanded DC microgrids
CN108599974B (zh) 一种基于图论连通性的微电网分布式通讯拓扑设计方法
Wu et al. Measurement-based online distributed optimization of networked distributed energy resources
Dong et al. A distributed power transfer limit calculation method for multi-area interconnection power networks

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021754880

Country of ref document: EP

Effective date: 20210914

NENP Non-entry into the national phase

Ref country code: DE