WO2019178919A1 - 一种基于线性二次型优化的微电网分布式控制器参数确定方法 - Google Patents

一种基于线性二次型优化的微电网分布式控制器参数确定方法 Download PDF

Info

Publication number
WO2019178919A1
WO2019178919A1 PCT/CN2018/084938 CN2018084938W WO2019178919A1 WO 2019178919 A1 WO2019178919 A1 WO 2019178919A1 CN 2018084938 W CN2018084938 W CN 2018084938W WO 2019178919 A1 WO2019178919 A1 WO 2019178919A1
Authority
WO
WIPO (PCT)
Prior art keywords
distributed power
power supply
distributed
controller
output voltage
Prior art date
Application number
PCT/CN2018/084938
Other languages
English (en)
French (fr)
Inventor
顾伟
楼冠男
曹戈
洪灏灏
杨权
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2019178919A1 publication Critical patent/WO2019178919A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the invention belongs to the field of micro grid operation control, and in particular relates to a micro-grid distributed controller design method based on linear quadratic optimization.
  • Microgrid is an emerging energy transmission model that increases the renewable energy and distributed energy penetration rate in energy supply systems. Its components include different types of distributed energy resources (DER, including micro gas turbines, wind turbines). , photovoltaic, fuel cells, energy storage equipment, etc.), various electrical loads and / or heat load user terminals and related monitoring and protection devices.
  • DER distributed energy resources
  • the power supply inside the microgrid is mainly responsible for the energy conversion of the power electronic device and provides the necessary control; the microgrid represents a single controlled unit relative to the external large grid, and can simultaneously meet the requirements of the user for power quality and power supply security. .
  • the micro-grid and the large power grid exchange energy through a common connection point, and the two sides spare each other, thereby providing power supply reliability. Because the microgrid is a small-scale distributed system, the distance from the load is relatively close, which can increase the reliability of local power supply, reduce network loss, and greatly increase energy utilization efficiency. It is a new power supply mode that meets the requirements of future smart grid development. .
  • the microgrid Under normal circumstances, the microgrid is connected to the large grid, and the voltage and frequency are supported by the large grid.
  • the common connection point When the fault occurs on the distribution network side, the common connection point is disconnected and the microgrid enters the island mode.
  • the peer-to-peer control mode with the droop control strategy has received extensive attention because it does not need to dominate the distributed power supply and the connection between the tie lines.
  • the droop control will cause the deviation of each local voltage from the rated reference value, and the micro-grid secondary voltage control is required.
  • the secondary control of the microgrid can be divided into centralized control and distributed control.
  • centralized control is based on a central controller, requires a complex communication network and processes a large amount of data, and the failure of point-to-point communication and the plug-and-play of renewable energy increase the burden of centralized control.
  • Distributed control due to the use of information interaction with adjacent distributed power sources, has been widely studied while ensuring efficient information sharing while reducing the complexity of the communication structure.
  • the distributed controller will have an important impact on the secondary voltage control performance. Therefore, it is necessary to study a set of methods to guide the parameter design of the distributed controller to effectively improve the stability and dynamic performance of the microgrid.
  • the technical problem to be solved by the present invention is to provide a distributed controller design method based on linear quadratic optimization, which is based on static output feedback and decomposes the microgrid model into corresponding distributed
  • the single input and single output model of the power supply converts the distributed secondary controller into a distributed controller, and adopts a linear quadratic optimization algorithm to guide the controller parameter design to realize the reactive power equalization and average voltage recovery of the microgrid, thereby Improve the overall power quality of the microgrid.
  • Step 10 Based on the droop control, establish a micro-grid small-signal model including an inverter-type distributed power source, a connection network, and an impedance-type load to achieve reactive power equalization and average voltage recovery:
  • ⁇ i represents the ith distributed power local angular frequency
  • ⁇ n represents the distributed power local angular frequency reference value in radians/second
  • m i represents the frequency droop characteristic of the ith distributed power source.
  • P i represents the actual output active power of the i-th distributed power source, unit: watt
  • k Vi represents the droop control gain of the ith distributed power source;
  • V ni represents the output voltage reference value of the i-th distributed power supply, in volts
  • V o,magi represents the ith distributed power supply output voltage , unit: volt
  • n i represents the voltage droop characteristic coefficient of the i-th distributed power supply, unit: volt / lack
  • Q i represents the actual output reactive power of the i-th distributed power supply, unit: lack;
  • Equation (2) Indicates the i-th distributed power active power rate of change, in watts per second; ⁇ ci represents the i-th distributed power supply low-pass filter shear frequency in radians/second; V odi is represented in the ith distribution In the dq reference coordinate system of the power supply, the d-axis component of the i-th distributed power supply output voltage, in volts; V oqi represents the i-th distributed power supply output voltage in the dq reference coordinate system of the i-th distributed power supply The q-axis component, in volts; i odi represents the d-axis component of the i-th distributed power supply output current in the dq reference coordinate system of the i-th distributed power supply, in units of amp; i oqi expressed in the ith In the dq reference coordinate system of the distributed power supply, the q-axis component of the output power of the i-th distributed power supply, unit: amp; Indicates the i-
  • Equation (3) Indicates the rate of change of the i-th distributed power supply output voltage in the d-axis component, in volts per second;
  • V odi represents the i-th distributed power supply output voltage in the d-axis component, in volts;
  • V oqi represents the ith distribution
  • the output voltage of the power supply is in the q-axis component, the unit is volt, u i is the secondary voltage control amount, and the unit is volt;
  • ⁇ i oDQ [ ⁇ i oDQ1 ... ⁇ i oDQn ] T
  • ⁇ i oDQ1 [ ⁇ i oD1 , ⁇ i oQ1 ] T
  • ⁇ i oD1 represents the first distributed power supply output current in the D-axis in the common reference coordinate system DQ small signal component
  • ⁇ i oQ1 common reference coordinate system represents the first DQ a distributed power supply output current in a small signal component Q axis
  • ⁇ i oDQn [ ⁇ i oDn, ⁇ i oQn] T
  • ⁇ i oDn denotes a common reference coordinates
  • ⁇ i oQn represents the small signal component of the nth distributed power supply output current in the Q-axis in the common reference coordinate system DQ.
  • the component, ⁇ V oQ1 represents the small signal component of the first distributed power supply output voltage in the Q-axis in the common reference coordinate system DQ
  • ⁇ V oDQn [ ⁇ V oDn , ⁇ V oQn ] T
  • ⁇ V oDn is represented in the common reference coordinate system DQ
  • the nth distributed power supply outputs a small signal component of the D-axis
  • ⁇ V oQn represents the small signal component of the nth distributed power supply output current in the Q-axis in the common reference coordinate system DQ.
  • G B represents the node admittance matrix of
  • a distributed average voltage observer is built for each distributed power source to obtain the average output voltage of the distributed power supply:
  • C E is the average voltage observer coupling coefficient. Indicates the output voltage of the ith distributed power average voltage observer, Indicates the output voltage of the jth distributed power supply average voltage observer in volts.
  • the secondary voltage control of the microgrid is to achieve the reactive power equalization and average voltage recovery of each distributed power supply.
  • the design auxiliary state variables are:
  • C Q is the distributed power source equalization coupling coefficient
  • n j represents the voltage droop characteristic coefficient of the jth distributed power source, unit: volt/lack
  • Q j indicates j distributed power supply actually outputs reactive power, unit: lack
  • ⁇ i represents reactive power equalization and average voltage recovery reference coefficient
  • V * represents microgrid output voltage reference value, unit: volt.
  • micro-signal small signal model including the distributed power supply, the connection network and the load is shown in equation (7):
  • ⁇ x inv1 [ ⁇ 1 , ⁇ P 1 , ⁇ Q 1 , ⁇ V od1 ] T
  • ⁇ 1 represents the small signal phase angle difference between the first distributed power reference coordinate system dq and the microgrid common reference frame DQ, unit: radians
  • ⁇ P 1 represents the small signal component of the first distributed power supply actually outputting active power, in watts
  • ⁇ Q 1 represents the small signal component of the first distributed power supply actually outputting reactive power
  • unit: lack ⁇ V od1 indicates the first A small signal component of the distributed power supply output voltage on the d-axis, in volts
  • ⁇ x invn [ ⁇ n , ⁇ P n , ⁇ Q n , ⁇ V odn ] T
  • ⁇ n represents the nth distributed power reference coordinate system dq and Small signal phase angle difference between micro-grid common reference system DQ, unit: radians
  • ⁇ P n represents the small signal component of the small signal
  • u [ ⁇ u 1 .... ⁇ u n ] T
  • ⁇ u 1 represents the voltage control small semaphore of the first distributed power source
  • ⁇ u n represents the voltage control small semaphore unit of the nth distributed power source: volt.
  • A represents the micro power state matrix
  • B represents the microgrid input matrix
  • C represents the microgrid output matrix.
  • B i represents the input matrix of the ith distributed power source
  • C i represents the output matrix of the ith distributed power source
  • Step 30 Design a distributed output feedback controller and a linear quadratic optimization objective function:
  • K y diag( ⁇ i ) is the microgrid feedback controller and ⁇ i represents the distributed feedback controller of the ith distributed power source.
  • Q represents the state weight coefficient of the closed-loop quadratic optimization objective function
  • R represents the input weight coefficient of the closed-loop quadratic optimization objective function
  • Step 40 Select a stable feedback controller Calculate the rate of change of the linear quadratic optimization objective function to the feedback controller, and improve the feedback controller based on the rate of change, so that the improved controller quadratic optimization performance is better than the performance of the improved controller:
  • the current feedback controller is taken as Repeat step 40) until a feedback controller that satisfies the condition is obtained, and the distributed controller is locally optimized; if the quadratic optimization objective function of the current feedback controller is smaller than the quadratic optimization objective function value corresponding to the improved controller, Then take the current feedback controller as a locally optimized distributed controller.
  • the load is an impedance type load.
  • the controller iteration step size s can be obtained by a one-dimensional static optimization method.
  • the embodiment of the present invention is a controller design method proposed for a distributed control mode of a microgrid, which avoids a complicated communication structure and a large amount of data in a centralized control and control manner. Processing requirements.
  • the invention is based on a linear quadratic optimization algorithm, and studies the parameter design of the distributed secondary controller of the microgrid for the first time. Firstly, based on the static output feedback, the micro-grid small-signal model is decomposed into a single-input single-output model corresponding to each distributed power source, thereby transforming the parameter design of the distributed quad-controller into the parameter design of the distributed controller.
  • Figure 1 is a flow chart of an embodiment of the present invention
  • FIG. 2(a) is a diagram of a microgrid simulation system used in an embodiment of the present invention
  • 2(b) is a schematic diagram of a distributed communication topology of a microgrid used in an embodiment of the present invention
  • 3(a) is a diagram showing the effect of the distributed power source reactive power equalization control of the distributed power supply of the microgrid distributed controller by using the optimization method of the present invention
  • FIG. 3(b) is a diagram showing the control effect of the distributed voltage average voltage observer under the optimization method of the microgrid distributed controller
  • Figure 4(a) is a diagram showing the effect of the distributed power supply reactive power sharing control under the optimization method of the micro-grid distributed controller
  • Figure 4(b) is a diagram showing the control effect of the distributed voltage average voltage observer under the optimization method of the microgrid distributed controller
  • a method for designing a distributed controller of a micro grid based on linear quadratic optimization includes the following steps:
  • Step 10 Based on the droop control, establish a micro-grid small-signal model including an inverter-type distributed power source, a connection network, and an impedance-type load to achieve reactive power equalization and average voltage recovery:
  • ⁇ i represents the ith distributed power local angular frequency
  • ⁇ n represents the distributed power local angular frequency reference value in radians/second
  • m i represents the frequency droop characteristic of the ith distributed power source.
  • P i represents the actual output active power of the i-th distributed power source, unit: watt
  • k Vi represents the droop control gain of the ith distributed power source;
  • V ni represents the output voltage reference value of the i-th distributed power supply, in volts
  • V o,magi represents the ith distributed power supply output voltage , unit: volt
  • n i represents the voltage droop characteristic coefficient of the i-th distributed power supply, unit: volt / lack
  • Q i represents the actual output reactive power of the i-th distributed power supply, unit: lack;
  • Equation (2) Indicates the i-th distributed power active power rate of change, in watts per second; ⁇ ci represents the i-th distributed power supply low-pass filter shear frequency in radians/second; V odi is represented in the ith distribution In the dq reference coordinate system of the power supply, the d-axis component of the i-th distributed power supply output voltage, in volts; V oqi represents the i-th distributed power supply output voltage in the dq reference coordinate system of the i-th distributed power supply The q-axis component, in volts; i odi represents the d-axis component of the i-th distributed power supply output current in the dq reference coordinate system of the i-th distributed power supply, in units of amp; i oqi expressed in the ith In the dq reference coordinate system of the distributed power supply, the q-axis component of the output power of the i-th distributed power supply, unit: amp; Indicates the i-
  • Equation (3) Indicates the rate of change of the i-th distributed power supply output voltage in the d-axis component, in volts per second;
  • V odi represents the i-th distributed power supply output voltage in the d-axis component, in volts;
  • V oqi represents the ith distribution
  • the output voltage of the power supply is in the q-axis component, the unit is volt, u i is the secondary voltage control amount, and the unit is volt;
  • the small signal component, ⁇ i oQ1 represents the small signal component of the first distributed power supply output current in the Q-axis in the common reference coordinate system DQ
  • ⁇ i oDQn [ ⁇ i oDn , ⁇ i oQn ] T
  • ⁇ i oDn is expressed in common reference coordinates
  • the small signal component of the d-axis of the nth distributed power supply output current in DQ, ⁇ i oQn represents the small signal component of the nth distributed power supply output current in the Q-axis in the common reference coordinate system DQ.
  • the component, ⁇ V oQ1 represents the small signal component of the first distributed power supply output voltage in the Q-axis in the common reference coordinate system DQ
  • ⁇ V oDQn [ ⁇ V oDn , ⁇ V oQn ] T
  • ⁇ V oDn is represented in the common reference coordinate system DQ
  • the nth distributed power supply outputs a small signal component of the D-axis
  • ⁇ V oQn represents the small signal component of the nth distributed power supply output current in the Q-axis in the common reference coordinate system DQ.
  • G B represents the node admittance matrix of
  • a distributed average voltage observer is built for each distributed power source to obtain the average output voltage of the distributed power supply:
  • C E is the average voltage observer coupling coefficient. Indicates the output voltage of the ith distributed power average voltage observer, Indicates the output voltage of the jth distributed power supply average voltage observer in volts.
  • the secondary voltage control of the microgrid is to achieve the reactive power equalization and average voltage recovery of each distributed power supply.
  • the design auxiliary state variables are:
  • C Q is the distributed power source equalization coupling coefficient
  • n j represents the voltage droop characteristic coefficient of the jth distributed power source, unit: volt/lack
  • Q j indicates j distributed power supply actually outputs reactive power, unit: lack
  • ⁇ i represents reactive power equalization and average voltage recovery reference coefficient
  • V * represents microgrid output voltage reference value, unit: volt.
  • micro-signal small signal model including the distributed power supply, the connection network and the load is shown in equation (7):
  • ⁇ x inv1 [ ⁇ 1 , ⁇ P 1 , ⁇ Q 1 , ⁇ V od1 ] T
  • ⁇ 1 represents the small signal phase angle difference between the first distributed power reference coordinate system dq and the microgrid common reference frame DQ, unit: radians
  • ⁇ P 1 represents the small signal component of the first distributed power supply actually outputting active power, in watts
  • ⁇ Q 1 represents the small signal component of the first distributed power supply actually outputting reactive power
  • unit: lack ⁇ V od1 indicates the first A small signal component of the distributed power supply output voltage on the d-axis, in volts
  • ⁇ x invn [ ⁇ n , ⁇ P n , ⁇ Q n , ⁇ V odn ] T
  • ⁇ n represents the nth distributed power reference coordinate system dq and Small signal phase angle difference between micro-grid common reference system DQ, unit: radians
  • ⁇ P n represents the small signal component of the small signal
  • u [ ⁇ u 1 .... ⁇ u n ] T
  • ⁇ u 1 represents the voltage control small semaphore of the first distributed power source
  • ⁇ u n represents the voltage control small semaphore unit of the nth distributed power source: volt.
  • A represents the micro power state matrix
  • B represents the microgrid input matrix
  • C represents the microgrid output matrix.
  • B i represents the input matrix of the ith distributed power source
  • C i represents the output matrix of the ith distributed power source
  • Step 30 Design a distributed output feedback controller and a linear quadratic optimization objective function:
  • K y diag( ⁇ i ) is the microgrid feedback controller and ⁇ i represents the distributed feedback controller of the ith distributed power source.
  • Q represents the state weight coefficient of the closed-loop quadratic optimization objective function
  • R represents the input weight coefficient of the closed-loop quadratic optimization objective function
  • Step 40 Select a stable feedback controller Calculate the rate of change of the linear quadratic optimization objective function to the feedback controller, and improve the feedback controller based on the rate of change, so that the improved controller quadratic optimization performance is better than the performance of the improved controller:
  • the current feedback controller is taken as Repeat step 40) until a feedback controller that satisfies the condition is obtained, and the distributed controller is locally optimized; if the quadratic optimization objective function of the current feedback controller is smaller than the quadratic optimization objective function value corresponding to the improved controller, Then take the current feedback controller as a locally optimized distributed controller.
  • the method of the invention decomposes the micro-grid small-signal model into a single-input single-output model of each distributed power source, thereby converting the distributed controller into a distributed controller, and iteratively searching for controller parameters based on linear quadratic optimization. Excellent, thus obtaining a locally optimal distributed controller to improve the dynamic performance of the microgrid.
  • the microgrid simulation system is shown in Figure 2(a) and consists of five distributed power supplies and two loads.
  • the five distributed power supplies have the same rated active and reactive capacity, and are connected to the same voltage busbar together with the two loads.
  • the load in the system is impedance-type.
  • the micro-grid distributed communication topology is shown in Figure 2(b).
  • the micro-grid distributed controller design method according to the embodiment of the invention optimizes the controller parameters, simulates the control performance, and verifies the control effect of the method of the invention.
  • FIG. 3 shows a simulation result of the micro-grid distributed controller adopting the optimization method of the present invention in the embodiment.
  • each distributed power supply operates in the droop control mode, and the secondary voltage control is input at 0.3 seconds.
  • the simulation results are shown in Fig. 3(a) and Fig. 3(b).
  • Fig. 3(a) is the effect diagram of reactive power output control of each distributed power supply in the microgrid.
  • the abscissa indicates time, unit: second, vertical
  • the coordinates represent reactive power, and the unit is: lack.
  • the distributed power source reactive power sharing effect is not ideal.
  • Fig. 3(b) is the control effect diagram of the average voltage observer of each distributed power supply in the microgrid.
  • the abscissa represents time, the unit is second, and the ordinate represents the average voltage observer output voltage, in volts. It can be seen from Fig. 3(b) that the output voltage of the distributed power supply average voltage observer initially deviates from the rated value under the drooping action, which is lower than the rated value. After 0.3 seconds, the average voltage observer output voltage is increased under the secondary control. Thus, the average output voltage of the microgrid is up to the rated value, and the system is stabilized in about 0.5 seconds.
  • FIG. 4 shows the simulation results of the micro-grid distributed controller in the embodiment without using the optimization method.
  • each distributed power supply operates in the droop control mode, and the secondary voltage control is input at 0.3 seconds.
  • the simulation results are shown in Fig. 4(a) and Fig. 4(b).
  • Fig. 4(a) is the effect diagram of reactive power output control of each distributed power supply in the microgrid.
  • the abscissa indicates time, unit: second, vertical
  • the coordinates represent reactive power, and the unit is: lack.
  • the distributed power source reactive power sharing effect is not ideal. After 0.3 seconds, the reactive power is gradually divided under the secondary control, and the system is stable in 0.8 seconds.
  • FIG. 4(b) is a control diagram of the average voltage observer of each distributed power supply in the microgrid.
  • the abscissa represents time, in seconds, and the ordinate represents the average voltage observer output voltage in volts. It can be seen from Fig. 4(b) that the output voltage of the distributed power supply average voltage observer initially deviates from the rated value under the drooping action, which is lower than the rated value. After 0.3 seconds, the average voltage observer output voltage is increased under the secondary control. Thus, the average output voltage of the microgrid is up to the rated value, and the system is stabilized in about 0.8 seconds. Comparing FIG. 3 with FIG. 4, the micro-grid distributed controller design method of the present invention can optimize the controller parameters, and realize the reactive power equalization and average voltage recovery of the micro-grid with better dynamic performance, thereby improving the overall micro-grid. Power Quality.
  • the microgrid voltage recovery method proposed by the invention converts the secondary voltage recovery problem into a distributed predictive synchronous following problem strategy, and avoids the complex communication mechanism and big data processing pressure of the centralized controller based on the distributed topology, and can achieve high efficiency Decentralized global information sharing and good dynamic recovery.
  • the control quantity includes prediction information and rolling optimization characteristics, which has good adaptability to model uncertainties such as load uncertainty and distributed unit output randomness, and can better meet the needs of plug and play, and effectively improve the dynamic operation capability of the microgrid. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明公开了一种基于线性二次型优化的微电网分布式控制器设计方法,包括:步骤10)基于下垂控制,建立包含逆变器型分布式电源、连接网络和阻抗型负载的微电网小信号模型,实现无功均分和平均电压恢复;步骤20)将微电网小信号模型转化为多个对应于各分布式电源的单输入单输出子模型;步骤30)设计分散式输出反馈控制器及线性二次型优化目标函数;步骤40)选取一稳定的反馈控制器,计算线性二次型优化目标函数对反馈控制器的变化率,基于变化率改进反馈控制器,使改进后的控制器二次型优化性能优于改进前控制器的性能,从而获得局部最优分布式控制器。该控制方法基于线性二次型优化策略设计微电网分布式控制器,实现微电网中无功功率均分和平均电压恢复,从而提高微电网的整体电能质量。

Description

一种基于线性二次型优化的微电网分布式控制器参数确定方法 技术领域
本发明属于微电网运行控制领域,具体来说,涉及一种基于线性二次型优化的微电网分布式控制器设计方法。
背景技术
随着地球资源的日渐衰竭以及人们对环境问题的关注,可再生能源的接入越来越受到世界各国的重视。微电网是一种在能量供应系统中增加可再生能源和分布式能源渗透率的新兴能量传输模式,其组成部分包括不同种类的分布式能源(distributed energy resources,DER,包括微型燃气轮机、风力发电机、光伏、燃料电池、储能设备等)、各种电负荷和/或热负荷的用户终端以及相关的监控、保护装置。
微电网内部的电源主要由电力电子器件负责能量的转换,并提供必须的控制;微电网相对于外部大电网表现为单一的受控单元,并可同时满足用户对电能质量和供电安全等的要求。微电网与大电网之间通过公共连接点进行能量交换,双方互为备用,从而提供了供电的可靠性。由于微电网是规模较小的分散系统,与负荷的距离较近,可以增加本地供电的可靠性、降低网损,大大增加了能源利用效率,是一种符合未来智能电网发展要求的新型供电模式。
正常情况下,微电网与大电网连接,由大电网提供电压、频率支撑;当配网侧出现故障时,公共连接点断开,微电网进入孤岛模式。孤岛模式下,采用下垂控制策略的对等控制模式由于不需要主导分布式电源及联络线间联系获得了广泛的关注,但由于各分布式电源输出阻抗不同无功功率均分很难达到满意效果,此外下垂控制会引起各本地电压与额定参考值的偏差,需要采用微电网二次电压控制。就控制结构而言,微电网二次控制可分为集中式控制和分布式控制。其中,集中式控制基于中央控制器,需要复杂的通讯网络和处理大量的数据,而且点对点通讯的失败、可再生能源的即插即用加大了集中控制的负担。而分布式控制由于采用与相邻分布式电源进行通信的信息交互方式,在保证高效的信息共享的同时降低了通讯结构的复杂度,受到了广泛研究。而分布式控制器将对二次电压控制性能产生重要影响,因此有必要研究一套指导分布式控制器参数设计的方法,有效提高微网稳定性及动态性能。
发明内容
技术问题:本发明所要解决的技术问题是:提供一种基于线性二次型优化的微电网分布式控制器设计方法,该控制方法基于静态输出反馈,将微电网模型分解为对应于各分布式电源的单输入单输出模型,从而将分布式二次控制器转化为分散式控制器,采用线性二次型优化算法指导控制器参数设计,实现微电网无功功率均分和平均电压恢复,从而提高微电网的整体电能质量。
技术方案:为解决上述技术问题,本发明实施例采取的一种基于线性二次型优化的微电网分布式控制器设计方法,该控制方法包括下述步骤:
步骤10)基于下垂控制,建立包含逆变器型分布式电源、连接网络和阻抗型负载的微电网小信号模型,实现无功均分和平均电压恢复:
各分布式电源通过下垂控制设置逆变器输出电压及频率参考指令,如式(1)所示:
Figure PCTCN2018084938-appb-000001
式(1)中,ω i表示第i个分布式电源本地角频率;ω n表示分布式电源本地角频率参考值,单位:弧度/秒;m i表示第i个分布式电源的频率下垂特性系数,单位:弧度/秒·瓦;P i表示第i个分布式电源实际输出有功功率,单位:瓦;k Vi表示第i个分布式电源的下垂控制增益;
Figure PCTCN2018084938-appb-000002
表示第i个分布式电源输出电压变化率,单位:伏/秒;V ni表示第i个分布式电源的输出电压参考值,单位:伏;V o,magi表示第i个分布式电源输出电压,单位:伏;n i表示第i个分布式电源的电压下垂特性系数,单位:伏/乏;Q i表示第i个分布式电源实际输出无功功率,单位:乏;
第i个分布式电源的实际输出有功功率P i、无功功率Q i通过低通滤波器获得,如式(2)所示:
Figure PCTCN2018084938-appb-000003
式(2)中,
Figure PCTCN2018084938-appb-000004
表示第i个分布式电源有功功率变化率,单位:瓦/秒;ω ci表示第i个分布式电源低通滤波器剪切频率,单位:弧度/秒;V odi表示在第i个分布式电源的dq参考坐标系中,第i个分布式电源输出电压的d轴分量,单位:伏;V oqi表示在第i个分布式电源的dq参考坐标系中,第i个分布式电源输出电压的q轴分量,单位:伏;i odi表示在第i个分布式电源的dq参考坐标系中,第i个分布式电源输出电流的d轴分量,单位:安;i oqi表示在第i个分布式电源的dq参考坐标系中,第i个分布式电源输出电压的q轴分量,单位: 安;
Figure PCTCN2018084938-appb-000005
表示第i个分布式电源无功功率变化率,单位:乏/秒;
各分布式电源输出电压经dq坐标变换使q轴分量为0,考虑电压二次控制,得到式(3):
Figure PCTCN2018084938-appb-000006
式(3)中,
Figure PCTCN2018084938-appb-000007
表示第i个分布式电源输出电压在d轴分量的变化率,单位:伏/秒;V odi表示第i个分布式电源输出电压在d轴分量,单位:伏;V oqi表示第i个分布式电源输出电压在q轴分量,单位:伏,u i表示二次电压控制量,单位:伏;
微网中,分布式电源输出电流的动态方程如式(4)为
△i oDQ=G B△V oDQ     式(4)
式中,Δi oDQ=[Δi oDQ1...Δi oDQn] T;Δi oDQ1=[Δi oD1,Δi oQ1] T,Δi oD1表示在公共参考坐标系DQ中第1个分布式电源输出电流在D轴的小信号分量,Δi oQ1表示在公共参考坐标系DQ中第1个分布式电源输出电流在Q轴的小信号分量,Δi oDQn=[Δi oDn,Δi oQn] T,Δi oDn表示在公共参考坐标系DQ中第n个分布式电源输出电流在D轴的小信号分量,Δi oQn表示在公共参考坐标系DQ中第n个分布式电源输出电流在Q轴的小信号分量。ΔV oDQ=[ΔV oDQ1...ΔV oDQn] T;ΔV oDQ1=[ΔV oD1,ΔV oQ1] T,ΔV oD1表示在公共参考坐标系DQ中第1个分布式电源输出电压在D轴的小信号分量,ΔV oQ1表示在公共参考坐标系DQ中第1个分布式电源输出电压在Q轴的小信号分量,ΔV oDQn=[ΔV oDn,ΔV oQn] T,ΔV oDn表示在公共参考坐标系DQ中第n个分布式电源输出电流在D轴的小信号分量,ΔV oQn表示在公共参考坐标系DQ中第n个分布式电源输出电流在Q轴的小信号分量。G B表示微电网连接网络的节点导纳矩阵。
各分布式电源建立分布式平均电压观测器,获取分布式电源平均输出电压:
Figure PCTCN2018084938-appb-000008
式中,
Figure PCTCN2018084938-appb-000009
表示第i个分布式电源平均电压观测器输出电压变化率,单位:伏/秒。a ij表示微电网中第i个分布式电源与第j个分布式电源的直接通讯连通性,若第i个分布式电源与第j个分布式电源通讯连通,a ij=1,否则a ij=0。C E为平均电压观测器耦合系数。
Figure PCTCN2018084938-appb-000010
表示第i个分布式电源平均电压观测器输出电压,
Figure PCTCN2018084938-appb-000011
表示第j个分布式电源平均电压观测器输出电压,单位:伏。
微电网二次电压控制是为了实现各分布式电源无功均分和平均电压恢复,设计辅助状态变量为:
Figure PCTCN2018084938-appb-000012
Figure PCTCN2018084938-appb-000013
表示第i个分布式电源辅助状态变量变化率,C Q为分布式电源功率均分耦合系数,n j表示第j个分布式电源的电压下垂特性系数,单位:伏/乏;Q j表示第j个分布式电源实际输出无功功率,单位:乏;β i表示无功功率均分和平均电压恢复的基准系数;V *表示微网输出电压参考值,单位:伏。
连接式(1)~式(6),得到包含分布式电源,连接网络和负载的微电网小信号模型如式(7)所示:
Figure PCTCN2018084938-appb-000014
式中,
Figure PCTCN2018084938-appb-000015
Δx inv1=[Δδ 1,ΔP 1,ΔQ 1,ΔV od1] T,Δδ 1表示第1个分布式电源参考坐标系dq与微电网公共参考系DQ间的小信号相角差,单位:弧度;ΔP 1表示第1个分布式电源实际输出有功功率的小信号分量,单位:瓦,ΔQ 1表示第1个分布式电源实际输出无功功率的小信号分量,单位:乏,ΔV od1表示第1个分布式电源输出电压在d轴的小信号分量,单位:伏;Δx invn=[Δδ n,ΔP n,ΔQ n,ΔV odn] T,Δδ n表示第n个分布式电源参考坐标系dq与微电网公共参考系DQ间的小信号相角差,单位:弧度;ΔP n表示第n个分布式电源实际输出有功功率的小信号分量,单位:瓦,ΔQ n表示第n个分布式电源实际输出无功功率的小信号分量,单位:乏,ΔV odn表示第n个分布式电源输出电压在d轴的小信号分量,单位:伏。u=[Δu 1....Δu n] T,Δu 1表示第1个分布式电源的电压控制小信号量,Δu n表示第n个分布式电源的电压控制小信号量单位:伏。
Figure PCTCN2018084938-appb-000016
Figure PCTCN2018084938-appb-000017
表示第1个分布式电源辅助状态变量,
Figure PCTCN2018084938-appb-000018
表示第n个分布式电源辅助状态变量。A表示微电源状态矩阵,B表示微电网输入矩阵,C表示微电网输出矩阵。
20)将微电网小信号模型转化为对应于各分布式电源的单输入单输出子模型:
Figure PCTCN2018084938-appb-000019
式中,B i表示第i个分布式电源的输入矩阵,C i表示第i个分布式电源的输出矩阵。
步骤30)设计分散式输出反馈控制器及线性二次型优化目标函数:
基于各分布式的单输入输出模型(8),设计分散式反馈控制率如式(9)所示:
u=-K yy     式(9)
式中,K y=diag(κ i)为微电网反馈控制器,κ i表示第i个分布式电源的分散式反馈 控制器。
定义系统闭环二次型优化目标函数为:
Figure PCTCN2018084938-appb-000020
式中,Q表示闭环二次型优化目标函数的状态权重系数,R表示闭环二次型优化目标函数的输入权重系数。
步骤40)选取一稳定的反馈控制器
Figure PCTCN2018084938-appb-000021
计算线性二次型优化目标函数对反馈控制器的变化率,基于变化率改进反馈控制器,使改进后的控制器二次型优化性能优于改进前控制器的性能:
基于式(10),求取当前反馈控制器对应的二次型优化目标函数变化率为:
Figure PCTCN2018084938-appb-000022
其中,L为式(12)的正定矩阵解。
Figure PCTCN2018084938-appb-000023
在此稳定的反馈控制器
Figure PCTCN2018084938-appb-000024
基础上,设计改进后的控制器为
Figure PCTCN2018084938-appb-000025
式中,s为控制器迭代步长。
若改进后反馈控制器对应的二次型优化目标函数小于当前反馈控制器的二次型优化目标函数,则取当前反馈控制器为
Figure PCTCN2018084938-appb-000026
重复步骤40),直到获得满足条件的反馈控制器,为局部优化分布式控制器;若当前反馈控制器的二次型优化目标函数小于改进后的控制器对应的二次型优化目标函数值,则取当前反馈控制器为局部优化分布式控制器。
作为优选例,所述的步骤10)中,负载为阻抗型负载。
作为优选例,所述的步骤40)中,控制器迭代步长s可通过一维静态优化方式求取。
有益效果:与现有技术相比,本发明具有以下有益效果:本发明实施例是针对微电网分布式控制方式提出的控制器设计方法,避免了集中控制控制方式复杂的通讯结构和大量的数据处理要求。本发明基于线性二次型优化算法,首次对微电网分布式二次控制器参数设计进行研究。首先基于静态输出反馈,将微电网小信号模型分解为对应于各分布式电源的单输入单输出模型,从而将分布式二次控制器的参数设计转化为分散式控制器的参数设计。基于线性二次型优化对控制器参数进行迭代优化,从而获得局部最优分布式控制器,作为微电网分布式二次控制策略的重要部分,实现微电网无功功率均分和平均电压恢复,从而提高微电网的动态控制性能。
附图说明
图1是本发明实施例的流程图;
图2(a)是本发明实施例中采用的微电网仿真系统图;
图2(b)是本发明实施例中采用的微电网分布式通信拓扑结构图;
图3(a)是微电网分布式控制器采用本发明优化方法下,各分布式电源无功功率均分控制效果图;
图3(b)是微电网分布式控制器采用本发明优化方法下,各分布式电源平均电压观测器控制效果图;
图4(a)是微电网分布式控制器未采用优化方法下,各分布式电源无功功率均分控制效果图;
图4(b)是微电网分布式控制器未采用优化方法下,各分布式电源平均电压观测器控制效果图;
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施案例对本发明进行深入地详细说明。应当理解,此处所描述的具体实施案例仅仅用以解释本发明,并不用于限定发明。
如图1所示,本发明实施例的一种基于线性二次型优化的微电网分布式控制器设计方法,包括下述步骤:
步骤10)基于下垂控制,建立包含逆变器型分布式电源、连接网络和阻抗型负载的微电网小信号模型,实现无功均分和平均电压恢复:
各分布式电源通过下垂控制设置逆变器输出电压及频率参考指令,如式(1)所示:
Figure PCTCN2018084938-appb-000027
式(1)中,ω i表示第i个分布式电源本地角频率;ω n表示分布式电源本地角频率参考值,单位:弧度/秒;m i表示第i个分布式电源的频率下垂特性系数,单位:弧度/秒·瓦;P i表示第i个分布式电源实际输出有功功率,单位:瓦;k Vi表示第i个分布式电源的下垂控制增益;
Figure PCTCN2018084938-appb-000028
表示第i个分布式电源输出电压变化率,单位:伏/秒;V ni表示第i个分布式电源的输出电压参考值,单位:伏;V o,magi表示第i个分布式电源输出电压,单位:伏;n i表示第i个分布式电源的电压下垂特性系数,单位:伏/乏;Q i表示第i个分布式电源实际输出无功功率,单位:乏;
第i个分布式电源的实际输出有功功率P i、无功功率Q i通过低通滤波器获得,如式(2)所示:
Figure PCTCN2018084938-appb-000029
式(2)中,
Figure PCTCN2018084938-appb-000030
表示第i个分布式电源有功功率变化率,单位:瓦/秒;ω ci表示第i个分布式电源低通滤波器剪切频率,单位:弧度/秒;V odi表示在第i个分布式电源的dq参考坐标系中,第i个分布式电源输出电压的d轴分量,单位:伏;V oqi表示在第i个分布式电源的dq参考坐标系中,第i个分布式电源输出电压的q轴分量,单位:伏;i odi表示在第i个分布式电源的dq参考坐标系中,第i个分布式电源输出电流的d轴分量,单位:安;i oqi表示在第i个分布式电源的dq参考坐标系中,第i个分布式电源输出电压的q轴分量,单位:安;
Figure PCTCN2018084938-appb-000031
表示第i个分布式电源无功功率变化率,单位:乏/秒;
各分布式电源输出电压经dq坐标变换使q轴分量为0,考虑电压二次控制,得到式(3):
Figure PCTCN2018084938-appb-000032
式(3)中,
Figure PCTCN2018084938-appb-000033
表示第i个分布式电源输出电压在d轴分量的变化率,单位:伏/秒;V odi表示第i个分布式电源输出电压在d轴分量,单位:伏;V oqi表示第i个分布式电源输出电压在q轴分量,单位:伏,u i表示二次电压控制量,单位:伏;
微网中,分布式电源输出电流的动态方程如式(4)为
△i oDQ=G B△V oDQ     式(4)
式中,Δi oDQ=[Δi oDQ1...Δi oDQn] T;Δi oDQ1=[Δi oD1,Δi oQ1] T,Δi oD1表示在公共参考坐标系DQ中第1个分布式电源输出电流在D轴的小信号分量,Δi oQ1表示在公共参考坐标系DQ中第1个分布式电源输出电流在Q轴的小信号分量,Δi oDQn=[Δi oDn,Δi oQn] T,Δi oDn表示在公共参 考坐标系DQ中第n个分布式电源输出电流在D轴的小信号分量,Δi oQn表示在公共参考坐标系DQ中第n个分布式电源输出电流在Q轴的小信号分量。ΔV oDQ=[ΔV oDQ1...ΔV oDQn] T;ΔV oDQ1=[ΔV oD1,ΔV oQ1] T,ΔV oD1表示在公共参考坐标系DQ中第1个分布式电源输出电压在D轴的小信号分量,ΔV oQ1表示在公共参考坐标系DQ中第1个分布式电源输出电压在Q轴的小信号分量,ΔV oDQn=[ΔV oDn,ΔV oQn] T,ΔV oDn表示在公共参考坐标系DQ中第n个分布式电源输出电流在D轴的小信号分量,ΔV oQn表示在公共参考坐标系DQ中第n个分布式电源输出电流在Q轴的小信号分量。G B表示微电网连接网络的节点导纳矩阵。
各分布式电源建立分布式平均电压观测器,获取分布式电源平均输出电压:
Figure PCTCN2018084938-appb-000034
式中,
Figure PCTCN2018084938-appb-000035
表示第i个分布式电源平均电压观测器输出电压变化率,单位:伏/秒。a ij表示微电网中第i个分布式电源与第j个分布式电源的直接通讯连通性,若第i个分布式电源与第j个分布式电源通讯连通,a ij=1,否则a ij=0。C E为平均电压观测器耦合系数。
Figure PCTCN2018084938-appb-000036
表示第i个分布式电源平均电压观测器输出电压,
Figure PCTCN2018084938-appb-000037
表示第j个分布式电源平均电压观测器输出电压,单位:伏。
微电网二次电压控制是为了实现各分布式电源无功均分和平均电压恢复,设计辅助状态变量为:
Figure PCTCN2018084938-appb-000038
Figure PCTCN2018084938-appb-000039
表示第i个分布式电源辅助状态变量变化率,C Q为分布式电源功率均分耦合系数,n j表示第j个分布式电源的电压下垂特性系数,单位:伏/乏;Q j表示第j个分布式电源实际输出无功功率,单位:乏;β i表示无功功率均分和平均电压恢复的基准系数;V *表示微网输出电压参考值,单位:伏。
连接式(1)~式(6),得到包含分布式电源,连接网络和负载的微电网小信号模型如式(7)所示:
Figure PCTCN2018084938-appb-000040
式中,
Figure PCTCN2018084938-appb-000041
Δx inv1=[Δδ 1,ΔP 1,ΔQ 1,ΔV od1] T,Δδ 1表示第1个分布式电源参考坐标系dq与微电网公共参考系DQ间的小信号相角差,单位:弧 度;ΔP 1表示第1个分布式电源实际输出有功功率的小信号分量,单位:瓦,ΔQ 1表示第1个分布式电源实际输出无功功率的小信号分量,单位:乏,ΔV od1表示第1个分布式电源输出电压在d轴的小信号分量,单位:伏;Δx invn=[Δδ n,ΔP n,ΔQ n,ΔV odn] T,Δδ n表示第n个分布式电源参考坐标系dq与微电网公共参考系DQ间的小信号相角差,单位:弧度;ΔP n表示第n个分布式电源实际输出有功功率的小信号分量,单位:瓦,ΔQ n表示第n个分布式电源实际输出无功功率的小信号分量,单位:乏,ΔV odn表示第n个分布式电源输出电压在d轴的小信号分量,单位:伏。u=[Δu 1....Δu n] T,Δu 1表示第1个分布式电源的电压控制小信号量,Δu n表示第n个分布式电源的电压控制小信号量单位:伏。
Figure PCTCN2018084938-appb-000042
Figure PCTCN2018084938-appb-000043
表示第1个分布式电源辅助状态变量,
Figure PCTCN2018084938-appb-000044
表示第n个分布式电源辅助状态变量。A表示微电源状态矩阵,B表示微电网输入矩阵,C表示微电网输出矩阵。
20)将微电网小信号模型转化为对应于各分布式电源的单输入单输出子模型:
Figure PCTCN2018084938-appb-000045
式中,B i表示第i个分布式电源的输入矩阵,C i表示第i个分布式电源的输出矩阵。
步骤30)设计分散式输出反馈控制器及线性二次型优化目标函数:
基于各分布式的单输入输出模型(8),设计分散式反馈控制率如式(9)所示:
u=-K yy      式(9)
式中,K y=diag(κ i)为微电网反馈控制器,κ i表示第i个分布式电源的分散式反馈控制器。
定义系统闭环二次型优化目标函数为:
Figure PCTCN2018084938-appb-000046
式中,Q表示闭环二次型优化目标函数的状态权重系数,R表示闭环二次型优化目标函数的输入权重系数。
步骤40)选取一稳定的反馈控制器
Figure PCTCN2018084938-appb-000047
计算线性二次型优化目标函数对反馈控制器的变化率,基于变化率改进反馈控制器,使改进后的控制器二次型优化性能优于改进前控制器的性能:
基于式(10),求取当前反馈控制器对应的二次型优化目标函数变化率为:
Figure PCTCN2018084938-appb-000048
其中,L为式(12)的正定矩阵解。
Figure PCTCN2018084938-appb-000049
在此稳定的反馈控制器
Figure PCTCN2018084938-appb-000050
基础上,设计改进后的控制器为
Figure PCTCN2018084938-appb-000051
式中,s为控制器迭代步长。
若改进后反馈控制器对应的二次型优化目标函数小于当前反馈控制器的二次型优化目标函数,则取当前反馈控制器为
Figure PCTCN2018084938-appb-000052
重复步骤40),直到获得满足条件的反馈控制器,为局部优化分布式控制器;若当前反馈控制器的二次型优化目标函数小于改进后的控制器对应的二次型优化目标函数值,则取当前反馈控制器为局部优化分布式控制器。
本发明方法通过将微电网小信号模型分解为各分布式电源的单输入单输出模型,从而将分布式控制器转化为分散式控制器,并基于线性二次型优化对控制器参数进行迭代寻优,从而获得局部最优分布式控制器,提高微电网的动态性能。
下面例举一个实施例。
微电网仿真系统如图2(a)所示,由5个分布式电源和2个负载组成。5个分布式电源的额定有功无功容量相等,与2个负载共同连接到同一条电压母线上,系统中负载采用阻抗型负载。微电网分布式通讯拓扑图如图2(b)所示。根据本发明实施例的微电网分布式控制器设计方法对控制器参数进行优化设计,对控制性能进行仿真,验证本发明方法的控制效果。
图3所示为本实施例中微电网分布式控制器采用本发明优化方法的仿真结果。开始运行时,各分布式电源运行于下垂控制模式,0.3秒时二次电压控制投入。仿真结果如图3(a)和图3(b)所示,其中,图3(a)为微电网中各分布式电源输出无功功率控制效果图,横坐标表示时间,单位:秒,纵坐标表示无功功率,单位:乏。如图3(a)所示,最初在下垂控制作用下,分布式电源无功功率均分效果并不理想,0.3秒后在二次控制作用下无功功率逐渐均分,0.5秒系统达到稳定。图3(b)为微电网中各分布式电源平均电压观测器控制效果图,横坐标表示时间,单位:秒,纵坐标表示平均电压观测器输出电压,单位:伏。由图3(b)可知,最初在下垂作用下分布式电源平均电压观测器输出电压与额定值有偏差,低于额定值,0.3秒后在二次控制作用下,平均电压观测器输出电压提升从而微网平均输出电压至额定值,约0.5秒系统达到稳定。
图4所示为本实施例中微电网分布式控制器未采用优化方法下的仿真结果。开始运行时,各分布式电源运行于下垂控制模式,0.3秒时二次电压控制投入。仿真结果如图4(a)和图4(b)所示,其中,图4(a)为微电网中各分布式电源输出无功功率控制效果图,横 坐标表示时间,单位:秒,纵坐标表示无功功率,单位:乏。如图4(a)所示,最初在下垂控制作用下,分布式电源无功功率均分效果并不理想,0.3秒后在二次控制作用下无功功率逐渐均分,0.8秒系统达到稳定。图4(b)为微电网中各分布式电源平均电压观测器控制效果图,横坐标表示时间,单位:秒,纵坐标表示平均电压观测器输出电压,单位:伏。由图4(b)可知,最初在下垂作用下分布式电源平均电压观测器输出电压与额定值有偏差,低于额定值,0.3秒后在二次控制作用下,平均电压观测器输出电压提升从而微网平均输出电压至额定值,约0.8秒系统达到稳定。对比图3与图4可知,采用本发明微电网分布式控制器设计方法可以优化控制器参数,以更优的动态性能实现微网无功功率均分和平均电压恢复,从而提高微电网的整体电能质量。
本发明所提出的微电网电压恢复方法,将二次电压恢复问题转化为分布式预测同步跟随问题策略,基于分布式的拓扑结构避免集中控制器复杂的通讯机构及大数据处理压力,可以实现高效的分散式全局信息共享及良好的动态恢复。控制量中包含预测信息及滚动优化特性,对负荷不确定、分布式单元出力随机性等模型不确定有良好的适应性,更能满足即插即用的需求,有效提高微电网的动态运行能力。

Claims (3)

  1. 一种基于线性二次型优化的微电网分布式控制器设计方法,其特征在于,该控制方法包括下述步骤:
    步骤10)基于下垂控制,建立包含逆变器型分布式电源、连接网络和阻抗型负载的微电网小信号模型,实现无功均分和平均电压恢复:
    各分布式电源通过下垂控制设置逆变器输出电压及频率参考指令,如式(1)所示:
    Figure PCTCN2018084938-appb-100001
    式(1)中,ω i表示第i个分布式电源本地角频率;ω n表示分布式电源本地角频率参考值,单位:弧度/秒;m i表示第i个分布式电源的频率下垂特性系数,单位:弧度/秒·瓦;P i表示第i个分布式电源实际输出有功功率,单位:瓦;k Vi表示第i个分布式电源的下垂控制增益;
    Figure PCTCN2018084938-appb-100002
    表示第i个分布式电源输出电压变化率,单位:伏/秒;V ni表示第i个分布式电源的输出电压参考值,单位:伏;V o,magi表示第i个分布式电源输出电压,单位:伏;n i表示第i个分布式电源的电压下垂特性系数,单位:伏/乏;Q i表示第i个分布式电源实际输出无功功率,单位:乏;
    第i个分布式电源的实际输出有功功率P i、无功功率Q i通过低通滤波器获得,如式(2)所示:
    Figure PCTCN2018084938-appb-100003
    式(2)中,
    Figure PCTCN2018084938-appb-100004
    表示第i个分布式电源有功功率变化率,单位:瓦/秒;ω ci表示第i个分布式电源低通滤波器剪切频率,单位:弧度/秒;V odi表示在第i个分布式电源的dq参考坐标系中,第i个分布式电源输出电压的d轴分量,单位:伏;V oqi表示在第i个分布式电源的dq参考坐标系中,第i个分布式电源输出电压的q轴分量,单位:伏;i odi表示在第i个分布式电源的dq参考坐标系中,第i个分布式电源输出电流的d轴分量,单位:安;i oqi表示在第i个分布式电源的dq参考坐标系中,第i个分布式电源输出电压的q轴分量,单位:安;
    Figure PCTCN2018084938-appb-100005
    表示第i个分布式电源无功功率变化率,单位:乏/秒;
    各分布式电源输出电压经dq坐标变换使q轴分量为0,考虑电压二次控制,得到式(3):
    Figure PCTCN2018084938-appb-100006
    式(3)中,
    Figure PCTCN2018084938-appb-100007
    表示第i个分布式电源输出电压在d轴分量的变化率,单位:伏/秒; V odi表示第i个分布式电源输出电压在d轴分量,单位:伏;V oqi表示第i个分布式电源输出电压在q轴分量,单位:伏,u i表示二次电压控制量,单位:伏;
    微网中,分布式电源输出电流的动态方程如式(4)为
    △i oDQ=G B△V oDQ                  式(4)
    式中,Δi oDQ=[Δi oDQ1...Δi oDQn] T;Δi oDQ1=[Δi oD1,Δi oQ1] T,Δi oD1表示在公共参考坐标系DQ中第1个分布式电源输出电流在D轴的小信号分量,Δi oQ1表示在公共参考坐标系DQ中第1个分布式电源输出电流在Q轴的小信号分量,Δi oDQn=[Δi oDn,Δi oQn] T,Δi oDn表示在公共参考坐标系DQ中第n个分布式电源输出电流在D轴的小信号分量,Δi oQn表示在公共参考坐标系DQ中第n个分布式电源输出电流在Q轴的小信号分量。ΔV oDQ=[ΔV oDQ1...ΔV oDQn] T;ΔV oDQ1=[ΔV oD1,ΔV oQ1] T,ΔV oD1表示在公共参考坐标系DQ中第1个分布式电源输出电压在D轴的小信号分量,ΔV oQ1表示在公共参考坐标系DQ中第1个分布式电源输出电压在Q轴的小信号分量,ΔV oDQn=[ΔV oDn,ΔV oQn] T,ΔV oDn表示在公共参考坐标系DQ中第n个分布式电源输出电流在D轴的小信号分量,ΔV oQn表示在公共参考坐标系DQ中第n个分布式电源输出电流在Q轴的小信号分量。G B表示微电网连接网络的节点导纳矩阵。
    各分布式电源建立分布式平均电压观测器,获取分布式电源平均输出电压:
    Figure PCTCN2018084938-appb-100008
    式中,
    Figure PCTCN2018084938-appb-100009
    表示第i个分布式电源平均电压观测器输出电压变化率,单位:伏/秒。a ij表示微电网中第i个分布式电源与第j个分布式电源的直接通讯连通性,若第i个分布式电源与第j个分布式电源通讯连通,a ij=1,否则a ij=0。C E为平均电压观测器耦合系数。
    Figure PCTCN2018084938-appb-100010
    表示第i个分布式电源平均电压观测器输出电压,
    Figure PCTCN2018084938-appb-100011
    表示第j个分布式电源平均电压观测器输出电压,单位:伏。
    微电网二次电压控制是为了实现各分布式电源无功均分和平均电压恢复,设计辅助状态变量为:
    Figure PCTCN2018084938-appb-100012
    Figure PCTCN2018084938-appb-100013
    表示第i个分布式电源辅助状态变量变化率,C Q为分布式电源功率均分耦合系数,n j表示第j个分布式电源的电压下垂特性系数,单位:伏/乏;Q j表示第j个分布式电源实际输出无功功率,单位:乏;β i表示无功功率均分和平均电压恢复的基准系数;V *表示微网 输出电压参考值,单位:伏。
    连接式(1)~式(6),得到包含分布式电源,连接网络和负载的微电网小信号模型如式(7)所示:
    Figure PCTCN2018084938-appb-100014
    式中,
    Figure PCTCN2018084938-appb-100015
    Δx inv1=[Δδ 1,ΔP 1,ΔQ 1,ΔV od1] T,Δδ 1表示第1个分布式电源参考坐标系dq与微电网公共参考系DQ间的小信号相角差,单位:弧度;ΔP 1表示第1个分布式电源实际输出有功功率的小信号分量,单位:瓦,ΔQ 1表示第1个分布式电源实际输出无功功率的小信号分量,单位:乏,ΔV od1表示第1个分布式电源输出电压在d轴的小信号分量,单位:伏;Δx invn=[Δδ n,ΔP n,ΔQ n,ΔV odn] T,Δδ n表示第n个分布式电源参考坐标系dq与微电网公共参考系DQ间的小信号相角差,单位:弧度;ΔP n表示第n个分布式电源实际输出有功功率的小信号分量,单位:瓦,ΔQ n表示第n个分布式电源实际输出无功功率的小信号分量,单位:乏,ΔV odn表示第n个分布式电源输出电压在d轴的小信号分量,单位:伏。u=[Δu 1....Δu n] T,Δu 1表示第1个分布式电源的电压控制小信号量,Δu n表示第n个分布式电源的电压控制小信号量单位:伏。
    Figure PCTCN2018084938-appb-100016
    表示第1个分布式电源辅助状态变量,
    Figure PCTCN2018084938-appb-100017
    表示第n个分布式电源辅助状态变量。A表示微电源状态矩阵,B表示微电网输入矩阵,C表示微电网输出矩阵。
    20)将微电网小信号模型转化为对应于各分布式电源的单输入单输出子模型:
    Figure PCTCN2018084938-appb-100018
    式中,B i表示第i个分布式电源的输入矩阵,C i表示第i个分布式电源的输出矩阵。
    步骤30)设计分散式输出反馈控制器及线性二次型优化目标函数:
    基于各分布式的单输入输出模型(8),设计分散式反馈控制率如式(9)所示:
    u=-K yy               式(9)
    式中,K y=diag(κ i)为微电网反馈控制器,κ i表示第i个分布式电源的分散式反馈控制器。
    定义系统闭环二次型优化目标函数为:
    Figure PCTCN2018084938-appb-100019
    式中,Q表示闭环二次型优化目标函数的状态权重系数,R表示闭环二次型优化 目标函数的输入权重系数。
    步骤40)选取一稳定的反馈控制器
    Figure PCTCN2018084938-appb-100020
    计算线性二次型优化目标函数对反馈控制器的变化率,基于变化率改进反馈控制器,使改进后的控制器二次型优化性能优于改进前控制器的性能:
    基于式(10),求取当前反馈控制器对应的二次型优化目标函数变化率为:
    Figure PCTCN2018084938-appb-100021
    其中,L为式(12)的正定矩阵解。
    Figure PCTCN2018084938-appb-100022
    在此稳定的反馈控制器
    Figure PCTCN2018084938-appb-100023
    基础上,设计改进后的控制器为
    Figure PCTCN2018084938-appb-100024
    式中,s为控制器迭代步长。
    若改进后反馈控制器对应的二次型优化目标函数小于当前反馈控制器的二次型优化目标函数,则取当前反馈控制器为
    Figure PCTCN2018084938-appb-100025
    重复步骤40),直到获得满足条件的反馈控制器,为局部优化分布式控制器;若当前反馈控制器的二次型优化目标函数小于改进后的控制器对应的二次型优化目标函数值,则取当前反馈控制器为局部优化分布式控制器。
  2. 按照权利要求1所述的一种基于线性二次型优化的微电网分布式控制器设计方法,其特征在于,所述的步骤10)中,负载为阻抗型负载。
  3. 按照权利要求1所述的一种基于线性二次型优化的微电网分布式控制器设计方法,其特征在于,所述的步骤4)中,控制器迭代步长s可通过一维静态优化方式求取。
PCT/CN2018/084938 2018-03-20 2018-04-27 一种基于线性二次型优化的微电网分布式控制器参数确定方法 WO2019178919A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810229054.3 2018-03-20
CN201810229054.3A CN108363306B (zh) 2018-03-20 2018-03-20 基于线性二次型优化的微电网分布式控制器参数确定方法

Publications (1)

Publication Number Publication Date
WO2019178919A1 true WO2019178919A1 (zh) 2019-09-26

Family

ID=63000595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084938 WO2019178919A1 (zh) 2018-03-20 2018-04-27 一种基于线性二次型优化的微电网分布式控制器参数确定方法

Country Status (3)

Country Link
CN (1) CN108363306B (zh)
NL (1) NL2024333B1 (zh)
WO (1) WO2019178919A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111431216A (zh) * 2020-03-18 2020-07-17 国网浙江嘉善县供电有限公司 一种采用q学习的高比例光伏微网无功均分控制方法
CN111628517A (zh) * 2020-04-28 2020-09-04 全球能源互联网研究院有限公司 一种模块化多电平换流器小信号阻抗的计算方法及装置
NL2024333B1 (en) * 2018-03-20 2021-01-21 Univ Southeast Microgrid distributed controller parameter determination method based on linear quadratic optimization
CN112684699A (zh) * 2020-11-10 2021-04-20 北京京能科技有限公司 变量幅值约束的超临界机组运行的控制方法及超临界机组
CN113572166A (zh) * 2021-08-09 2021-10-29 东南大学 一种考虑延时不对称性的微电网延时稳定性分析方法
CN113675863A (zh) * 2021-08-23 2021-11-19 南京理工大学 一种基于数字孪生的微电网频率二次协同控制方法
CN113887892A (zh) * 2021-09-16 2022-01-04 国网湖北省电力有限公司电力科学研究院 一种分布式电源即插即用终端交互控制方法
CN113991726A (zh) * 2021-10-29 2022-01-28 国网上海市电力公司 一种离网直流微电网的分布式优化控制方法和装置
CN114296345A (zh) * 2021-12-14 2022-04-08 国网湖北省电力有限公司电力科学研究院 一种电能多端口低压交流混合H2/Hinf优化控制方法
CN114336569A (zh) * 2021-11-30 2022-04-12 南京邮电大学 一种直流微电网协同弹性控制方法及系统
CN114447934A (zh) * 2022-01-21 2022-05-06 湖南工业大学 一种考虑功率约束的孤岛交直流混合微网控制方法及系统
CN115207988A (zh) * 2022-09-13 2022-10-18 国网江西省电力有限公司电力科学研究院 一种新能源发电变流器的控制方法及系统
CN116418049A (zh) * 2023-06-08 2023-07-11 四川大学 一种下垂控制的三相并网逆变器精确导纳建模方法
CN117559568A (zh) * 2024-01-12 2024-02-13 广东海洋大学 基于风力发电和波浪能发电的级联微电网功率分配方法
CN111431216B (zh) * 2020-03-18 2024-06-04 国网浙江省电力有限公司嘉善县供电公司 一种采用q学习的高比例光伏微网无功均分控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110362103B (zh) * 2019-08-19 2023-02-10 西北工业大学 分布式自主水下航行器姿态协同优化控制方法
CN111082989B (zh) * 2020-03-05 2021-11-12 东南大学 基于网络镜像和全局传播率的微电网分布式通信拓扑设计方法
CN113485126B (zh) * 2021-08-23 2023-05-12 安徽工业大学 一种用于直流微电网集群的改进型动态矩阵控制三次控制方法
CN114675532B (zh) * 2022-01-12 2024-05-28 武汉理工大学 一种分数阶多周期6k±1次谐波重复控制器设计方法及控制器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510064A (zh) * 2011-11-08 2012-06-20 山东大学 微电网孤岛运行控制系统中的改进下垂控制方法
CN104201667A (zh) * 2014-07-25 2014-12-10 华北电力大学(保定) 一种新能源电力系统中微网的最优分散协调控制方法
CN104917170A (zh) * 2015-05-04 2015-09-16 福州大学 一种基于pi控制的微电网自适应下垂控制调节电压频率的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578045B (zh) * 2015-02-09 2017-05-24 上海电力学院 独立直流微网智能功率分配方法
CN106532715B (zh) * 2016-12-30 2019-04-09 东南大学 一种基于非线性状态观测器的微电网分散式电压控制方法
CN106877398B (zh) * 2017-03-23 2020-05-29 燕山大学 基于多智能体的微电源分散协调控制方法
CN107294085B (zh) * 2017-06-16 2019-12-17 东南大学 基于临界特征根跟踪的微电网延时裕度计算方法
CN108363306B (zh) * 2018-03-20 2020-04-24 东南大学 基于线性二次型优化的微电网分布式控制器参数确定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510064A (zh) * 2011-11-08 2012-06-20 山东大学 微电网孤岛运行控制系统中的改进下垂控制方法
CN104201667A (zh) * 2014-07-25 2014-12-10 华北电力大学(保定) 一种新能源电力系统中微网的最优分散协调控制方法
CN104917170A (zh) * 2015-05-04 2015-09-16 福州大学 一种基于pi控制的微电网自适应下垂控制调节电压频率的方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2024333B1 (en) * 2018-03-20 2021-01-21 Univ Southeast Microgrid distributed controller parameter determination method based on linear quadratic optimization
CN111431216B (zh) * 2020-03-18 2024-06-04 国网浙江省电力有限公司嘉善县供电公司 一种采用q学习的高比例光伏微网无功均分控制方法
CN111431216A (zh) * 2020-03-18 2020-07-17 国网浙江嘉善县供电有限公司 一种采用q学习的高比例光伏微网无功均分控制方法
CN111628517B (zh) * 2020-04-28 2021-12-07 全球能源互联网研究院有限公司 一种模块化多电平换流器小信号阻抗的计算方法及装置
CN111628517A (zh) * 2020-04-28 2020-09-04 全球能源互联网研究院有限公司 一种模块化多电平换流器小信号阻抗的计算方法及装置
CN112684699A (zh) * 2020-11-10 2021-04-20 北京京能科技有限公司 变量幅值约束的超临界机组运行的控制方法及超临界机组
CN113572166A (zh) * 2021-08-09 2021-10-29 东南大学 一种考虑延时不对称性的微电网延时稳定性分析方法
CN113572166B (zh) * 2021-08-09 2023-08-22 东南大学 一种考虑延时不对称性的微电网延时稳定性分析方法
CN113675863A (zh) * 2021-08-23 2021-11-19 南京理工大学 一种基于数字孪生的微电网频率二次协同控制方法
CN113675863B (zh) * 2021-08-23 2024-02-06 南京理工大学 一种基于数字孪生的微电网频率二次协同控制方法
CN113887892A (zh) * 2021-09-16 2022-01-04 国网湖北省电力有限公司电力科学研究院 一种分布式电源即插即用终端交互控制方法
CN113887892B (zh) * 2021-09-16 2024-05-28 国网湖北省电力有限公司电力科学研究院 一种分布式电源即插即用终端交互控制方法
CN113991726A (zh) * 2021-10-29 2022-01-28 国网上海市电力公司 一种离网直流微电网的分布式优化控制方法和装置
CN114336569A (zh) * 2021-11-30 2022-04-12 南京邮电大学 一种直流微电网协同弹性控制方法及系统
CN114296345A (zh) * 2021-12-14 2022-04-08 国网湖北省电力有限公司电力科学研究院 一种电能多端口低压交流混合H2/Hinf优化控制方法
CN114296345B (zh) * 2021-12-14 2024-04-16 国网湖北省电力有限公司电力科学研究院 一种电能多端口低压交流混合H2/Hinf优化控制方法
CN114447934A (zh) * 2022-01-21 2022-05-06 湖南工业大学 一种考虑功率约束的孤岛交直流混合微网控制方法及系统
CN114447934B (zh) * 2022-01-21 2024-04-26 湖南工业大学 一种考虑功率约束的孤岛交直流混合微网控制方法及系统
CN115207988A (zh) * 2022-09-13 2022-10-18 国网江西省电力有限公司电力科学研究院 一种新能源发电变流器的控制方法及系统
CN115207988B (zh) * 2022-09-13 2022-12-30 国网江西省电力有限公司电力科学研究院 一种新能源发电变流器的控制方法及系统
CN116418049B (zh) * 2023-06-08 2023-08-11 四川大学 一种下垂控制的三相并网逆变器精确导纳建模方法
CN116418049A (zh) * 2023-06-08 2023-07-11 四川大学 一种下垂控制的三相并网逆变器精确导纳建模方法
CN117559568B (zh) * 2024-01-12 2024-04-09 广东海洋大学 基于风力发电和波浪能发电的级联微电网功率分配方法
CN117559568A (zh) * 2024-01-12 2024-02-13 广东海洋大学 基于风力发电和波浪能发电的级联微电网功率分配方法

Also Published As

Publication number Publication date
NL2024333B1 (en) 2021-01-21
CN108363306A (zh) 2018-08-03
CN108363306B (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
WO2019178919A1 (zh) 一种基于线性二次型优化的微电网分布式控制器参数确定方法
Zhao et al. Coordinated restoration of transmission and distribution system using decentralized scheme
WO2018121732A1 (zh) 一种基于非线性状态观测器的微电网分散式电压控制方法
Lou et al. Decentralised secondary voltage and frequency control scheme for islanded microgrid based on adaptive state estimator
CN107294085B (zh) 基于临界特征根跟踪的微电网延时裕度计算方法
Ahmad et al. An improved power control strategy for grid‐connected hybrid microgrid without park transformation and phase‐locked loop system
CN111371112A (zh) 孤岛微电网异构电池储能系统分布式有限时间控制方法
Sepehrzad et al. An efficient multilevel interconnect control algorithm in AC/DC micro-grids using hybrid energy storage system
Shafiee Roudbari et al. Voltage and frequency regulation in an islanded microgrid with PEM fuel cell based on a fuzzy logic voltage control and adaptive droop control
Shrivastava et al. Comprehensive review on hierarchical control of cyber‐physical microgrid system
Wang et al. Adaptive terminal sliding mode based load frequency control for multi-area interconnected power systems with PV and energy storage
Gao et al. Distributed multi‐agent control for combined AC/DC grids with wind power plant clusters
CN108599974B (zh) 一种基于图论连通性的微电网分布式通讯拓扑设计方法
CN108879797B (zh) 一种主动配电网端口pq控制方法
Kang et al. Distributed event-triggered optimal control method for heterogeneous energy storage systems in smart grid
Hou et al. Distributed control strategy for voltage and frequency restoration and accurate reactive power-sharing for islanded microgrid
Zhang et al. Distributed secondary control for island microgrids with expected dynamic performance under communication delays
Li et al. General power flow calculation for multi-terminal HVDC system based on sensitivity analysis and extended AC grid
Raza et al. Robust nonlinear control of regenerative fuel cell, supercapacitor, battery and wind based direct current microgrid
Sheela et al. H‐infinity controller for frequency and voltage regulation in grid‐connected and islanded microgrid
Malik et al. A state of charge‐based linearised frequency–voltage droop for interlinking converters in an isolated hybrid microgrid
CN117411007A (zh) 一种分布式光伏和储能联合的配网低电压治理方法
Dat et al. Modeling the dynamics of a DC distribution grid integrated of renewable energy sources
CN104600746B (zh) 区域光伏储能系统并网变流器无源非线性控制方法
de Godoy et al. Unified centralised/decentralised frequency control structure for microgrids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911209

Country of ref document: EP

Kind code of ref document: A1