WO2021208534A1 - 一种波分系统osc通道单纤双向实现方法及设备 - Google Patents

一种波分系统osc通道单纤双向实现方法及设备 Download PDF

Info

Publication number
WO2021208534A1
WO2021208534A1 PCT/CN2021/070736 CN2021070736W WO2021208534A1 WO 2021208534 A1 WO2021208534 A1 WO 2021208534A1 CN 2021070736 W CN2021070736 W CN 2021070736W WO 2021208534 A1 WO2021208534 A1 WO 2021208534A1
Authority
WO
WIPO (PCT)
Prior art keywords
osc
oscad
local
disk
wavelength
Prior art date
Application number
PCT/CN2021/070736
Other languages
English (en)
French (fr)
Inventor
蒋小庆
梅亮
栾艳彩
曹尔慧
雍博
Original Assignee
烽火通信科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烽火通信科技股份有限公司 filed Critical 烽火通信科技股份有限公司
Publication of WO2021208534A1 publication Critical patent/WO2021208534A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor

Definitions

  • the invention relates to the technical field of optical fiber communication, in particular to a method and equipment for realizing single-fiber bidirectionality of a wavelength division system OSC channel.
  • the traditional classical WDM system generally uses 1510nm wavelength as the OSC channel, and C-band wavelength as the service channel. Since the optical amplifier devices are all unidirectional, the current service channel of the conventional WDM system is dual-fiber bidirectional.
  • the OSC channel is S-band, with a low rate, and a large optical link budget without amplification. At the same time, because the OSC channel is an independent channel and does not undergo processing such as electrical crossover, the delay is relatively stable. Therefore, in general, the accuracy of using the OSC channel to transmit 1588 clock messages is better than that of the service optical channel to transmit 1588 clock messages.
  • the purpose of the present invention is to provide a single-fiber bidirectional implementation method and device for an OSC channel of a wavelength division system, to realize the single-fiber bidirectional OSC channel, and to ensure the accuracy of 1588 clock messages.
  • the technical solution adopted by the present invention is: a single-fiber bidirectional realization method of the OSC channel of an asymmetric WDM system, which includes the following steps:
  • the first line-side ports of the OSCAD single disk at the local end and the opposite end are connected by pigtails;
  • the second line-side port of the OSCAD single disk at the local end and the opposite end uses WDM devices with three wavelengths of 1490nm/1510nm/1550nm;
  • the local end adopts the OSC single-disk port as the OSC optical module with the emission wavelength of 1510nm, and the opposite end adopts the OSC single-disk port as the OSC optical module with the emission wavelength of 1490nm.
  • the method further includes the following steps:
  • Each of the OSCAD single disks at the local end and the opposite end is connected to an automatic detection and matching device, and the local and opposite OSCAD single disks are connected through the two automatic detection and matching devices;
  • the first interface of the automatic detection and matching device is connected to the first line-side port of the local or opposite OSCAD single disk, and the second interface of the automatic detection and matching device is connected to the second line-side port of the local or opposite OSCAD single disk by default;
  • the first interface of the automatic detection and matching device at the local end detects that the opposite end transmits a 1490nm/1510nm wavelength optical signal, it will enter the cross-switching state, and the wavelength optical signal will enter the second line side port of the OSCAD single disk;
  • the second interface of the automatic detection and matching device at the local end detects that the opposite end emits a 1490nm/1510nm wavelength optical signal, it will maintain the through state and make the wavelength optical signal enter the second line side port of the OSCAD single disk.
  • the automatic detection and matching device includes a full 2 ⁇ 2 optical switch.
  • the automatic detection and matching device also includes a combination of 98:2 TAP-PD and 1510nm/1490nm wavelength WDM device, which is used to detect the optical power of the optical signal of the wavelength emitted by the opposite end to determine whether the optical path at both ends match.
  • the present invention also provides a single-fiber bidirectional realization method of the OSC channel of the symmetrical wavelength division system, which includes the following steps:
  • Both the first line-side port of the OSCAD single disk at the local end and the opposite end use WDM devices with three wavelengths of 1490nm/1510nm/1550nm;
  • the second line-side port of the OSCAD single disk at the local end and the opposite end uses WDM devices with three wavelengths of 1490nm/1510nm/1550nm;
  • the local end adopts the OSC single-disk port as the OSC optical module with the emission wavelength of 1510nm, and the opposite end adopts the OSC single-disk port as the OSC optical module with the emission wavelength of 1490nm;
  • the present invention also provides an asymmetrical wavelength division system OSC channel single-fiber bidirectional realization device, which includes a local OSCAD single disk and an opposite OSCAD single disk, wherein:
  • Pigtails are used to connect the first line-side ports of the OSCAD single disk at the local end and the opposite end;
  • the second line-side port of the OSCAD single disk at the local end and the opposite end uses WDM devices with three wavelengths of 1490nm/1510nm/1550nm;
  • the local end adopts the OSC single-disk port as an OSC optical module with a wavelength of 1510nm, and the opposite end adopts the OSC single-disk port as an OSC optical module with a wavelength of 1490nm.
  • the equipment further includes two automatic detection and matching devices;
  • Each of the OSCAD single disks at the local end and the opposite end is connected to an automatic detection and matching device, and the local and opposite OSCAD single disks are connected through the two automatic detection and matching devices;
  • the first interface of the automatic detection and matching device is connected to the first line-side port of the local or opposite OSCAD single disk, and the second interface of the automatic detection and matching device is connected to the second line-side port of the local or opposite OSCAD single disk by default;
  • the first interface of the automatic detection and matching device at the local end detects that the opposite end transmits a 1490nm/1510nm wavelength optical signal, it will enter the cross-switching state, and the wavelength optical signal will enter the second line side port of the OSCAD single disk;
  • the second interface of the automatic detection and matching device at the local end detects that the opposite end emits a 1490nm/1510nm wavelength optical signal, it will maintain the through state and make the wavelength optical signal enter the second line side port of the OSCAD single disk.
  • the automatic detection and matching device includes a full 2 ⁇ 2 optical switch.
  • the automatic detection and matching device also includes a combination of 98:2 TAP-PD and 1510nm/1490nm wavelength WDM device, which is used to detect the optical power of the optical signal of the wavelength emitted by the opposite end to determine the two ends Whether the light path matches.
  • the present invention also provides a symmetrical wavelength division system OSC channel single-fiber bidirectional realization device, which includes a local OSCAD single disk and an opposite OSCAD single disk, wherein:
  • the first line-side port of the OSCAD single disk at the local end and the opposite end uses WDM devices with three wavelengths of 1490nm/1510nm/1550nm;
  • the second line-side port of the OSCAD single disk at the local end and the opposite end uses WDM devices with three wavelengths of 1490nm/1510nm/1550nm;
  • the local end adopts the OSC single-disk port as the OSC optical module with the emission wavelength of 1510nm, and the opposite end adopts the OSC single-disk port as the OSC optical module with the emission wavelength of 1490nm.
  • the present invention realizes the asymmetric and symmetric OSC channel single-fiber bidirectional functions respectively, that is, the OSC channel receiving and sending direction is transmitted in one fiber core, ensuring that the OSC channel receiving and sending are in the same path and the same length .
  • the OSC channel receiving and sending paths are strictly symmetrical and the lengths are strictly equal.
  • the asymmetric WDM system is also equipped with an automatic detection and matching device, which can automatically detect the directions of the optical path on both sides, automatically select the appropriate path, and there is no need to worry about engineering problems caused by manual errors during use.
  • Figure 1 shows the classic DWDM system scheme of the background technology
  • FIG. 2 is a schematic diagram of the principle of an asymmetric OSC single-fiber bidirectional realization method according to an embodiment of the present invention
  • FIG. 3 is an optical path diagram of an automatic detection and matching device of an asymmetric OSC single-fiber bidirectional realization method according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of the principle of an asymmetric OSC single-fiber bidirectional realization method with an automatic detection and matching device according to an embodiment of the present invention
  • Fig. 5 is a schematic diagram of the principle of a symmetrical OSC single-fiber bidirectional realization method according to an embodiment of the present invention.
  • OSCAD Single Disk Optical monitoring split/multiplex single disk, used to realize the multiplexing and splitting of the main optical channel (1550nm) and the optical monitoring channel (1510nm).
  • an embodiment of the present invention provides a single-fiber bidirectional implementation method for an OSC channel of an asymmetrical wavelength division system, which includes the following steps:
  • Pigtails are used to connect the first line-side ports of the OSCAD single disk at the local end and the opposite end;
  • the second line-side port of the OSCAD single disk at the local end and the opposite end uses WDM devices with three wavelengths of 1490nm/1510nm/1550nm;
  • the local end adopts the OSC single-disk port as an OSC optical module with a wavelength of 1510nm, and the opposite end adopts the OSC single-disk port as an OSC optical module with a wavelength of 1490nm.
  • the asymmetric optical path scheme device of the embodiment of the present invention includes the following components:
  • the original second line port COM1B of the OSCAD single disk used at the local and opposite ends is a WDM device with two wavelengths of 1510nm/1550nm, which is modified to a WDM device with three wavelengths of 1490nm/1510nm/1550nm. Since the two wavelengths of 1510nm and 1490nm belong to the S-band, they belong to the low attenuation window in the optical fiber, and the transmission attenuation coefficient and dispersion coefficient in the optical fiber are moderate, which can ensure that the two wavelengths have a long transmission distance and the transmission distance is not much different.
  • the local end uses an OSC optical module with an emission wavelength of 1510nm
  • the opposite end uses an optical module with an emission wavelength of 1490nm.
  • the optical modules ROSA Receiveiver Optical Subassembly
  • ROSA Receiveiver Optical Subassembly
  • the first line-side port COM1A of the OSCAD single disk originally used is a WDM device with two wavelengths of 1510nm/1550nm, which can be modified to directly connect the pigtail.
  • a WDM device can be saved, equipment cost can be reduced, and attenuation can be reduced at the same time. It can also be used without removing the 1510nm/1550nm wavelength WDM devices, and the 1510nm wavelength port does not connect to the optical fiber;
  • the local end and the opposite end are respectively equipped with automatic detection and matching devices, which can automatically detect the transmission and reception directions of the optical paths on both sides, and use the full 2 ⁇ 2 optical switch to perform the transmission and reception matching according to the detection results to ensure that any connection errors are made by the engineers It can make the light path change normally, reduce the difficulty of construction and maintenance by the operator, and have the function of foolproof.
  • the embodiment of the present invention has no impact on the service channel and minimal impact on the optical path of the wavelength division system. It only needs to make simple modifications to the OSC single disk and the OSCAD single disk, and has operability and ease of use.
  • the asymmetric OSC single-fiber bidirectional system of the embodiment of the present invention also includes an automatic detection and matching device, which can automatically detect the direction of the transmission and reception of the optical paths on both sides, and use the full 2 ⁇ 2 optical switch for matching to reduce the difficulty of the operator. , With fool-proof function. See Figure 3 for the optical path diagram of the automatic detection and matching device.
  • a full 2 ⁇ 2 optical switch is used in the receiving/transmitting direction. Since the FULL 2 ⁇ 2 optical switch has two states of light path through/light path crossing, it can realize the function of two light paths through/crossing. ; We control the FULL 2 ⁇ 2 at both ends to adjust the fiber connected in the receiving and sending direction of the local end by receiving the APS byte or detecting the optical power result to ensure that the OSC optical path at the local end and the OSC optical path at the opposite end are always kept on the same optical fiber;
  • Fig. 4 shows a scheme of an asymmetric OSC single-fiber bidirectional system with an automatic detection and matching device according to an embodiment of the present invention.
  • the full 2 ⁇ 2 optical switch enters the cross-switching state to ensure that the port CL2 enters COM1B.
  • the full 2 ⁇ 2 optical switch remains in a direct state to ensure that the port CL2 enters COM1B.
  • the local and opposite OSC channels can detect the LOS alarm at the same time, and both sides can switch to the other optical fiber at the same time to ensure that the OSC channel is always working normally and the opposite network element is not It will be disconnected to provide convenience for engineering fault location.
  • the embodiment of the present invention also provides a single-fiber bidirectional implementation method of the OSC channel of the symmetrical wavelength division system.
  • the OSC single-fiber bidirectional function is respectively completed in the receiving and sending directions, so that there are two independent OSC channels in the optical path.
  • the single-fiber bidirectional function of the OSC channel is completed, and the two channels can be the master and backup for each other.
  • the "symmetrical optical path scheme” uses the same optical structure and the same connection method at the local end and the opposite end, so the use method is consistent with the original classic DWDM scheme, and will not cause misunderstandings in engineering use.
  • both ends can detect the optical signal failure of the OS C channel at the same time, and at the same time switch the OSC on the original backup channel to the main channel to ensure that the OSC signal works normally and the OSC channel can normally
  • the remote network element information is transmitted to the network management computer to facilitate engineering troubleshooting and maintenance.
  • the embodiment of the present invention also provides a symmetrical wavelength division system OSC channel single-fiber bidirectional realization device, including the local OSCAD single disk and the opposite OSCAD single disk, wherein:
  • the first line-side port of the OSCAD single disk at the local end and the opposite end uses WDM devices with three wavelengths of 1490nm/1510nm/1550nm;
  • the second line-side port of the OSCAD single disk at the local end and the opposite end uses WDM devices with three wavelengths of 1490nm/1510nm/1550nm;
  • the local end adopts the OSC single-disk port as an OSC optical module with a wavelength of 1510nm, and the opposite end adopts the OSC single-disk port as an OSC optical module with a wavelength of 1490nm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种波分系统OSC通道单纤双向实现方法及设备,涉及光纤通信技术领域,本发明通过修改OSCAD单盘的连接方式,分别实现不对称式和对称式两种OSC通道单纤双向功能,即OSC通道收发方向在一根纤芯中传送,保证OSC通道收发处于同一路径同一长度。使用OSC传送带外1588PTP时钟,由于收发路径在同一根纤芯中,保证OSC通道收发路径严格对称,长度严格相等,在进行1588时钟计算时,不会由于光纤长度不同引入误差。同时不对称式波分系统还设置自动检测匹配装置,能够自动检测两边光路收发方向,自动选择合适路径,无需担心使用时人工错误带来工程问题。

Description

一种波分系统OSC通道单纤双向实现方法及设备 技术领域
本发明涉及光纤通信技术领域,具体涉及一种波分系统OSC通道单纤双向实现方法及设备。
背景技术
目前传统经典波分系统,一般使用1510nm波长做为OSC通道,C波段波长做为业务波道。由于光放大器件均是单向,因此当前常规波分系统业务通道是双纤双向。OSC通道为S波段,速率较低,光链路预算较大无需放大。同时由于OSC通道为独立通道,不经过电交叉等处理过程,时延较为稳定,因此一般情况下使用OSC通道传送1588时钟报文精度会优于业务光通道传送1588时钟报文。
参见图1所示,双纤双向系统中,由于OSC收发使用不同纤芯,在部分情况下,存在收发路径不对称情况,影响1588V2时间同步计算,会导致引入额外误差。例如光收发路径存在1m光纤长度误差的情况下,引入时间同步精度误差为(1m/(2×108m/s)/2=2.5ns。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种波分系统OSC通道单纤双向实现方法及设备,实现OSC通道单纤双向,保证1588时钟报文精度。
为达到以上目的,本发明采取的技术方案是:一种不对称式波分系统OSC通道单纤双向实现方法,包括以下步骤:
本端和对端的OSCAD单盘第1个线路侧端口之间采用尾纤相互 连接;
本端和对端的OSCAD单盘第2个线路侧端口均采用1490nm/1510nm/1550nm三个波长的WDM器件;
本端采用OSC单盘端口为发射波长为1510nm的OSC光模块,对端采用OSC单盘端口为发射波长为1490nm的OSC光模块。
在上述技术方案的基础上,所述方法还包括以下步骤:
本端与对端的OSCAD单盘各连接一个自动检测匹配装置,本端与对端的OSCAD单盘通过两所述自动检测匹配装置相连;
自动检测匹配装置的第一接口默认连通本端或对端的OSCAD单盘第1个线路侧端口,自动检测匹配装置的第二接口默认连通本端或对端的OSCAD单盘第2个线路侧端口;
若本端的自动检测匹配装置的第一接口检测到对端发射1490nm/1510nm波长光信号过来,则进入交叉切换状态,使波长光信号进入OSCAD单盘第2个线路侧端口;
若本端的自动检测匹配装置的第二接口检测到对端发射1490nm/1510nm波长光信号过来,则保持直通状态,使波长光信号进入OSCAD单盘第2个线路侧端口。
在上述技术方案的基础上,自动检测匹配装置包括full 2×2光开关。
在上述技术方案的基础上,自动检测匹配装置还包括98:2的TAP-PD和1510nm/1490nm波长WDM器件的组合,用于检测对端发射波长光信号的光功率,以判断两端光路是否匹配。
本发明还提供一种对称式波分系统OSC通道单纤双向实现方法,包括以下步骤:
本端和对端的OSCAD单盘第1个线路侧端口均采用 1490nm/1510nm/1550nm三个波长的WDM器件;
本端和对端的OSCAD单盘第2个线路侧端口均采用1490nm/1510nm/1550nm三个波长的WDM器件;
本端采用OSC单盘端口为发射波长为1510nm的OSC光模块,对端采用OSC单盘端口为发射波长为1490nm的OSC光模块;
在本端和对端的EOSC单盘进行优先级设置,设置一组OSC通道作为工作通道,另一组作为备用通道。
本发明还提供一种不对称式波分系统OSC通道单纤双向实现设备,包括本端的OSCAD单盘和对端的OSCAD单盘,其中:
本端和对端的OSCAD单盘第1个线路侧端口之间采用尾纤相互连接;
本端和对端的OSCAD单盘第2个线路侧端口均采用1490nm/1510nm/1550nm三个波长的WDM器件;
本端采用OSC单盘端口为发射波长为1510nm的OSC光模块,对端采用OSC单盘端口为发射波长为1490nm的OSC光模块。
在上述技术方案的基础上,所述设备还包括两个自动检测匹配装置;
本端与对端的OSCAD单盘各连接一个自动检测匹配装置,本端与对端的OSCAD单盘通过两所述自动检测匹配装置相连;
自动检测匹配装置的第一接口默认连通本端或对端的OSCAD单盘第1个线路侧端口,自动检测匹配装置的第二接口默认连通本端或对端的OSCAD单盘第2个线路侧端口;
若本端的自动检测匹配装置的第一接口检测到对端发射1490nm/1510nm波长光信号过来,则进入交叉切换状态,使波长光信号进入OSCAD单盘第2个线路侧端口;
若本端的自动检测匹配装置的第二接口检测到对端发射1490nm/1510nm波长光信号过来,则保持直通状态,使波长光信号进入OSCAD单盘第2个线路侧端口。
在上述技术方案的基础上,所述自动检测匹配装置包括full 2×2光开关。
在上述技术方案的基础上,所述自动检测匹配装置还包括98:2的TAP-PD和1510nm/1490nm波长WDM器件的组合,用于检测对端发射波长光信号的光功率,以判断两端光路是否匹配。
本发明还提供一种对称式波分系统OSC通道单纤双向实现设备,包括本端的OSCAD单盘和对端的OSCAD单盘,其中:
本端和对端的OSCAD单盘第1个线路侧端口均采用1490nm/1510nm/1550nm三个波长的WDM器件;
本端和对端的OSCAD单盘第2个线路侧端口均采用1490nm/1510nm/1550nm三个波长的WDM器件;
本端采用OSC单盘端口为发射波长为1510nm的OSC光模块,对端采用OSC单盘端口为发射波长为1490nm的OSC光模块。
与现有技术相比,本发明的优点在于:
本发明通过修改OSCAD单盘的连接方式,分别实现不对称式和对称式两种OSC通道单纤双向功能,即OSC通道收发方向在一根纤芯中传送,保证OSC通道收发处于同一路径同一长度。使用OSC传送带外1588PTP时钟,由于收发路径在同一根纤芯中,保证OSC通道收发路径严格对称,长度严格相等,在进行1588时钟计算时,不会由于光纤长度不同引入误差。同时不对称式波分系统还设置自动检测匹配装置,能够自动检测两边光路收发方向,自动选择合适路径,无需担心使用时人工错误带来工程问题。
附图说明
图1为背景技术的经典DWDM系统方案;
图2为本发明实施例的不对称式OSC单纤双向实现方法的原理示意图;
图3为本发明实施例的不对称式OSC单纤双向实现方法的自动检测匹配装置光路图;
图4为本发明实施例的带自动检测匹配装置的不对称式OSC单纤双向实现方法的原理示意图;
图5为本发明实施例的对称式OSC单纤双向实现方法的原理示意图。
具体实施方式
术语说明:
OSCAD单盘:即光监控分波/合波单盘,用于实现主光通道(1550nm)与光监控通道(1510nm)的合波与分波。
以下结合附图对本发明的实施例作进一步详细说明。
参见图2所示,本发明实施例提供一种不对称式波分系统OSC通道单纤双向实现方法,包括以下步骤:
本端和对端的OSCAD单盘第1个线路侧端口之间采用尾纤相互连接;
本端和对端的OSCAD单盘第2个线路侧端口均采用1490nm/1510nm/1550nm三个波长的WDM器件;
本端采用OSC单盘端口为发射波长为1510nm的OSC光模块,对端采用OSC单盘端口为发射波长为1490nm的OSC光模块。
参见图2所示,本发明实施例的不对称式光路方案装置包括如下部分组成:
(1)将本端和对端,原来使用的OSCAD单盘第2个线路侧端口COM1B是1510nm/1550nm两个波长的WDM器件,修改为1490nm/1510nm/1550nm三个波长的WDM器件。由于1510nm和1490nm两个波长均属于S波段,在光纤中属于低衰减窗口,在光纤中传输衰减系数、色散系数均适中,可以保证两个波长都有较长传输距离同时传输距离相差不大。其它CWDM波长由于色散和衰减系数等方面影响较大,一般情况下很难满足在没有放大器情况下传输160Km以上。因此采用1490nm和1510nm光模块作为OSC通道可以保证DWDM系统传输距离不受影响;
(2)本端使用发射波长为1510nm的OSC光模块,对端使用发射波长为1490nm的光模块。由于光模块ROSA(Receiver Optical Subassembly,光接收次组件)均为宽谱接收,不区分波长,因此虽然这两个光模块发射波长不一致,但是相互之间可以接收对端光信号;
(3)本端和对端,原来使用的OSCAD单盘第1个线路侧端口COM1A是1510nm/1550nm两个波长的WDM器件,修改为尾纤直接连接即可。这种情况下可以节约一块WDM器件,降低设备成本,同时降低衰减。如果不去除1510nm/1550nm波长WDM器件也可以使用,1510nm波长端口不连接光纤;
(4)在本端和对端,分别装备了自动检测匹配装置,能够自动检测两边光路的收发方向,根据检测结果利用full 2×2光开关进行收发匹配,保证在工程人员任何接错的情况下都可以使光路变换正常,降低操作人员施工和维护难度,具备防呆功能。
本发明实施例对业务通道无影响,对波分系统光路影响最小,仅需要对OSC单盘和OSCAD单盘进行简单修改即可,具备可操作性和易用性。
本方案使用时,由于需要本端和对端配合使用,如果连纤错误或者端口使用错误,将导致业务不通或者其它故障,因此对工程和运维人员要求较高。
参见图3所示,本发明实施例的不对称式OSC单纤双向系统还包括一种自动检测匹配装置,能够自动检测两边光路收发方向,利用full 2×2光开关进行匹配,减轻操作人员难度,具备防呆功能。参见图3自动检测匹配装置光路图。
(1)在本端和对端,在收/发方向利用一只full 2×2光开关。由于FULL 2×2光开关有光路直通/光路交叉两种状态,能够实现两路光路直通/交叉功能。;我们通过接收APS字节或者检测光功率结果,控制两端的FULL 2×2调整本端收发方向连接的光纤,保证本端的OSC光路始终与对端OSC光路保持在一根光纤上;
(2)利用98:2的TAP-PD(分光探测器)和1510nm/1490nm定制波长WDM器件组合,实现对光路上面接收方向1490nm/1510nm特定波长光功率检测,同时保证对光路上面业务和OSC光信号没有影响;
(3)利用PIN管检测出来的1491nm/1510nm光功率,判断两边光路是否匹配,自动选择正确路径;
图4所示为本发明实施例的带自动检测匹配装置的不对称式OSC单纤双向系统方案。在本端和对端同时安装1台自动检测匹配装置后,就无需担心使用时人工错误带来工程问题。
例如本端端口OTS1如果检测到对端有1490nm/1510nm波长光信号发射过来,则full 2×2光开关进入交叉切换状态,保证从端口CL2进入COM1B。
如果本端端口OTS2检测到对端有1490nm/1510nm波长光信号 发射过来,则full 2×2光开关保持直通状态,保证从端口CL2进入COM1B。
如此可以保证本端和对端的COM1B端口始终有1490nm/1510nm波长OSC光信号进入,自动检测匹配,无需人工干预。工作中如果有OSC通道的那根光纤断开的话,本端与对端OSC通道可以同时检测到los告警,两边同时切换到另外一根光纤上面,保证OSC通道始终正常工作,对端网元不会脱管,为工程故障定位提供方便。
参见图5所示,本发明实施例还提供对称式波分系统OSC通道单纤双向实现方法。
本方案的特点是在原来经典DWDM基础上,在收发方向分别完成OSC单纤双向功能,这样在光路中就有两路独立的OSC通道。通过选择其中一路OSC作为工作通道,另外一路OSC作为备用通道闲置,这样就完成OSC通道单纤双向功能,并且两路可以互为主备。
(1)将本端和对端,原来经典DWDM系统使用的OSCAD的两个线路侧端口COM1A/COM1B的1510nm/1550nm两个波长的WDM器件,修改为1490nm/1510nm/1550nm三个波长的WDM器件;
(2)本端和对端的OSC1端口仍然使用发射波长为1510nm的光模块,OSC2端口仍然使用发射波长为1490nm的光模块;
(3)由于同时有两路OSC通道到达对端,需要在两端EOSC单盘上面采取优先级控制,自动选择一组OSC通道作为工作通道,另外一组作为备用通道预留。
使用时,“对称式光路方案”由于本端和对端都是采用一样的光学结构,一样的连接方式,因此使用方法与原来经典DWDM方案保持一致,不会引起工程使用上的误解。
工作中,如果工作通道光纤断开的话,两端能够同时检测到OS C通道光信号故障,同时将原来的备用通道上面的OSC切换为主用通道,保证OSC信号正常工作,OSC通道能够正常将远端网元信息传送到网管计算机,方便工程故障处理和维护。
本发明实施例还提供一种对称式波分系统OSC通道单纤双向实现设备,包括本端的OSCAD单盘和对端的OSCAD单盘,其中:
本端和对端的OSCAD单盘第1个线路侧端口均采用1490nm/1510nm/1550nm三个波长的WDM器件;
本端和对端的OSCAD单盘第2个线路侧端口均采用1490nm/1510nm/1550nm三个波长的WDM器件;
本端采用OSC单盘端口为发射波长为1510nm的OSC光模块,对端采用OSC单盘端口为发射波长为1490nm的OSC光模块。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种不对称式波分系统OSC通道单纤双向实现方法,其特征在于,包括以下步骤:
    本端和对端的OSCAD单盘第1个线路侧端口之间采用尾纤相互连接;
    本端和对端的OSCAD单盘第2个线路侧端口均采用1490nm/1510nm/1550nm三个波长的WDM器件;
    本端采用OSC单盘端口为发射波长为1510nm的OSC光模块,对端采用OSC单盘端口为发射波长为1490nm的OSC光模块。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括以下步骤:
    本端与对端的OSCAD单盘各连接一个自动检测匹配装置,本端与对端的OSCAD单盘通过两所述自动检测匹配装置相连;
    自动检测匹配装置的第一接口默认连通本端或对端的OSCAD单盘第1个线路侧端口,自动检测匹配装置的第二接口默认连通本端或对端的OSCAD单盘第2个线路侧端口;
    若本端的自动检测匹配装置的第一接口检测到对端发射1490nm/1510nm波长光信号过来,则进入交叉切换状态,使波长光信号进入OSCAD单盘第2个线路侧端口;
    若本端的自动检测匹配装置的第二接口检测到对端发射1490nm/1510nm波长光信号过来,则保持直通状态,使波长光信号进入OSCAD单盘第2个线路侧端口。
  3. 如权利要求1所述的方法,其特征在于,自动检测匹配装置包括full 2×2光开关。
  4. 如权利要求1所述的方法,其特征在于,自动检测匹配装置 还包括98:2的TAP-PD和1510nm/1490nm波长WDM器件的组合,用于检测对端发射波长光信号的光功率,以判断两端光路是否匹配。
  5. 一种对称式波分系统OSC通道单纤双向实现方法,其特征在于,包括以下步骤:
    本端和对端的OSCAD单盘第1个线路侧端口均采用1490nm/1510nm/1550nm三个波长的WDM器件;
    本端和对端的OSCAD单盘第2个线路侧端口均采用1490nm/1510nm/1550nm三个波长的WDM器件;
    本端采用OSC单盘端口为发射波长为1510nm的OSC光模块,对端采用OSC单盘端口为发射波长为1490nm的OSC光模块;
    在本端和对端的EOSC单盘进行优先级设置,设置一组OSC通道作为工作通道,另一组作为备用通道。
  6. 一种不对称式波分系统OSC通道单纤双向实现设备,其特征在于,包括本端的OSCAD单盘和对端的OSCAD单盘,其中:
    本端和对端的OSCAD单盘第1个线路侧端口之间采用尾纤相互连接;
    本端和对端的OSCAD单盘第2个线路侧端口均采用1490nm/1510nm/1550nm三个波长的WDM器件;
    本端采用OSC单盘端口为发射波长为1510nm的OSC光模块,对端采用OSC单盘端口为发射波长为1490nm的OSC光模块。
  7. 如权利要求6所述的设备,其特征在于,所述设备还包括两个自动检测匹配装置;
    本端与对端的OSCAD单盘各连接一个自动检测匹配装置,本端与对端的OSCAD单盘通过两所述自动检测匹配装置相连;
    自动检测匹配装置的第一接口默认连通本端或对端的OSCAD单 盘第1个线路侧端口,自动检测匹配装置的第二接口默认连通本端或对端的OSCAD单盘第2个线路侧端口;
    若本端的自动检测匹配装置的第一接口检测到对端发射1490nm/1510nm波长光信号过来,则进入交叉切换状态,使波长光信号进入OSCAD单盘第2个线路侧端口;
    若本端的自动检测匹配装置的第二接口检测到对端发射1490nm/1510nm波长光信号过来,则保持直通状态,使波长光信号进入OSCAD单盘第2个线路侧端口。
  8. 如权利要求6所述的设备,其特征在于,所述自动检测匹配装置包括full 2×2光开关。
  9. 如权利要求6所述的设备,其特征在于,所述自动检测匹配装置还包括98:2的TAP-PD和1510nm/1490nm波长WDM器件的组合,用于检测对端发射波长光信号的光功率,以判断两端光路是否匹配。
  10. 一种对称式波分系统OSC通道单纤双向实现设备,其特征在于,包括本端的OSCAD单盘和对端的OSCAD单盘,其中:
    本端和对端的OSCAD单盘第1个线路侧端口均采用1490nm/1510nm/1550nm三个波长的WDM器件;
    本端和对端的OSCAD单盘第2个线路侧端口均采用1490nm/1510nm/1550nm三个波长的WDM器件;
    本端采用OSC单盘端口为发射波长为1510nm的OSC光模块,对端采用OSC单盘端口为发射波长为1490nm的OSC光模块。
PCT/CN2021/070736 2020-04-17 2021-01-08 一种波分系统osc通道单纤双向实现方法及设备 WO2021208534A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010306463.6A CN113541795B (zh) 2020-04-17 2020-04-17 一种波分系统osc通道单纤双向实现方法及设备
CN202010306463.6 2020-04-17

Publications (1)

Publication Number Publication Date
WO2021208534A1 true WO2021208534A1 (zh) 2021-10-21

Family

ID=78084023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070736 WO2021208534A1 (zh) 2020-04-17 2021-01-08 一种波分系统osc通道单纤双向实现方法及设备

Country Status (2)

Country Link
CN (1) CN113541795B (zh)
WO (1) WO2021208534A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840906A (zh) * 2014-02-25 2014-06-04 烽火通信科技股份有限公司 一种支持监控信道光单纤双向传送的otn系统及方法
CN203933633U (zh) * 2014-06-30 2014-11-05 武汉光迅科技股份有限公司 一种便携式光纤通信波分复用系统应急抢修设备
CN110212985A (zh) * 2019-05-28 2019-09-06 上海交通大学 光纤时间频率和数据联合传输系统和方法
US10411796B1 (en) * 2018-05-22 2019-09-10 Ciena Corporation Optical fiber characterization measurement systems and methods

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4376014B2 (ja) * 2003-07-01 2009-12-02 富士通株式会社 光伝送装置
CN1514566A (zh) * 2003-07-04 2004-07-21 上海全光网络科技股份有限公司 同波长单纤双向稀疏波分复用传输系统
CN101834663B (zh) * 2010-04-08 2015-05-20 中兴通讯股份有限公司 光纤连接的检测方法和系统
US20140334812A1 (en) * 2012-01-13 2014-11-13 Mitsubishi Electric Corporation Wavelength multiplexing optical communication device
CN103400163A (zh) * 2013-06-27 2013-11-20 杭州中恒电气股份有限公司 一种具有自纠错功能的光纤连接关系识别系统及方法
CN103986524B (zh) * 2014-05-22 2016-09-28 北京星网锐捷网络技术有限公司 一种单纤双向光模块、通信设备及连接错误检测方法
CN106162382A (zh) * 2015-03-23 2016-11-23 阿尔卡特朗讯 在otn上提供双向光学定时信道的方法
CN204615828U (zh) * 2015-05-20 2015-09-02 广州杰鑫通讯技术有限公司 智能光线路自动切换保护设备
CN105871455B (zh) * 2016-05-31 2018-08-28 国网新疆电力公司阿勒泰供电公司 用于光线路保护系统的带osc放大的edfa装置
CN109428665B (zh) * 2017-08-22 2020-10-23 中国电信股份有限公司 波分复用发送设备、接收设备、中继设备以及传输系统
CN207652439U (zh) * 2017-12-28 2018-07-24 杭州东捷光通信技术有限公司 一种电力光缆智能诊断自动切换运维系统
CN110380810B (zh) * 2019-07-31 2024-03-22 广州芯泰通信技术有限公司 一种半有源wdm波分系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840906A (zh) * 2014-02-25 2014-06-04 烽火通信科技股份有限公司 一种支持监控信道光单纤双向传送的otn系统及方法
CN203933633U (zh) * 2014-06-30 2014-11-05 武汉光迅科技股份有限公司 一种便携式光纤通信波分复用系统应急抢修设备
US10411796B1 (en) * 2018-05-22 2019-09-10 Ciena Corporation Optical fiber characterization measurement systems and methods
CN110212985A (zh) * 2019-05-28 2019-09-06 上海交通大学 光纤时间频率和数据联合传输系统和方法

Also Published As

Publication number Publication date
CN113541795A (zh) 2021-10-22
CN113541795B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
US9154220B2 (en) Large-capacity fiber optical switching device and optical transmission system
US7415211B2 (en) Interconnections and protection between optical communications networks
US7424224B2 (en) Systems and methods for placing line terminating equipment of optical communication systems in customer points of presence
TWI406526B (zh) 用於光網路監控及錯誤檢測之光信號切換模組
US8306417B2 (en) Bidirectional multi-wavelength optical signal routing and amplification module
US8305877B2 (en) System and method for distributed fault sensing and recovery
US6563979B2 (en) Automatically switched redundant switch configurations
JPH11205243A (ja) 光伝送回線自動電力停止システム
US20120294604A1 (en) Optical protection and switch enabled optical repeating
US8494360B2 (en) In-service optical network testing
US20050180316A1 (en) Protection for bi-directional optical wavelength division multiplexed communications networks
US20120087648A1 (en) Method and system for protection switching
EP1004184B1 (en) Self-healing ring network and a method for fault detection and rectifying
US20140270751A1 (en) Passive Optical Loopback
US6512865B1 (en) Cross-traffic suppression in wavelength division multiplexed systems
WO2016061782A1 (zh) 一种光纤故障诊断方法、装置及系统
WO2021208534A1 (zh) 一种波分系统osc通道单纤双向实现方法及设备
US20050089331A1 (en) Assured connectivity fiber-optic communications link
CN113346346A (zh) 光纤放大器控制方法、装置、系统、传输节点和存储介质
KR20190070148A (ko) 네트워크 구조 파악 시스템, 이에 적용되는 국사내 장치 및 그 장치에서 수행되는 네트워크 구조 파악 방법
KR100283377B1 (ko) 감시채널의 오버헤드 저장 장치
KR101610808B1 (ko) 선로 절체 우회 기능을 갖는 이중화 광 송수신기
WO2023005431A1 (zh) 故障定位方法、装置及系统
Chen et al. Optimization and expansion Analysis of WDM Transmission Network
US7742698B2 (en) Method and system for monitoring an optical network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21788888

Country of ref document: EP

Kind code of ref document: A1