WO2021208320A1 - 无人机的飞行轨迹处理方法、装置、电子设备与存储介质 - Google Patents

无人机的飞行轨迹处理方法、装置、电子设备与存储介质 Download PDF

Info

Publication number
WO2021208320A1
WO2021208320A1 PCT/CN2020/111703 CN2020111703W WO2021208320A1 WO 2021208320 A1 WO2021208320 A1 WO 2021208320A1 CN 2020111703 W CN2020111703 W CN 2020111703W WO 2021208320 A1 WO2021208320 A1 WO 2021208320A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
flight trajectory
optimal
trajectory
unmanned aerial
Prior art date
Application number
PCT/CN2020/111703
Other languages
English (en)
French (fr)
Inventor
黄超
刘鑫
姜化京
李瀚�
黎秋媚
Original Assignee
上海特金信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海特金信息科技有限公司 filed Critical 上海特金信息科技有限公司
Publication of WO2021208320A1 publication Critical patent/WO2021208320A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying

Definitions

  • the invention relates to the field of unmanned aerial vehicles, and in particular to a method, device, electronic equipment and storage medium for processing the flight trajectory of an unmanned aerial vehicle.
  • the invention provides a flight trajectory processing method, device, electronic equipment and storage medium of an unmanned aerial vehicle, so as to solve the problem of lack of a flight trajectory estimation scheme for multiple unmanned aerial vehicles.
  • a flight trajectory processing method of an unmanned aerial vehicle including:
  • each location point is a location that a UAV is located in this cycle
  • the optimal corresponding way is determined according to the multiple relative distance information; in each corresponding way, one position point corresponds to one flight trajectory, and Different flight trajectories correspond to different position points; where N and M are integers greater than or equal to 2;
  • any one of the target flight trajectories of the M flight trajectories has a corresponding target position point that is successfully matched, then the target flight trajectory is updated according to the target position point, where , For the position point and flight trajectory that are successfully matched, the relative distance information is less than the preset successful match threshold.
  • a flight trajectory processing device of an unmanned aerial vehicle including:
  • the location point determination module is used to determine discrete N location points; each location point is a location that a UAV is located in this cycle;
  • the relative distance calculation module is used to calculate the distance of each position point relative to each flight trajectory for the M existing flight trajectories and the N position points to obtain multiple relative distance information;
  • the optimal corresponding mode determination module is used to determine the optimal corresponding mode according to the multiple relative distance information among all the corresponding modes of the N position points and the M flight trajectories; in each corresponding mode, one Or multiple position points correspond to one flight trajectory, and different flight trajectories correspond to different position points; where N and M are integers greater than or equal to 2;
  • the trajectory update module is configured to update all target locations according to the target location points if any one of the target flight trajectories in the M flight trajectories has a corresponding target location point in the optimal corresponding manner.
  • the relative distance information of the position point and the flight trajectory that are successfully matched is less than the preset successful matching threshold.
  • an electronic device including a processor and a memory
  • the memory is used to store codes and related data
  • the processor is configured to execute the code in the memory to implement the flight trajectory processing method of the drone involved in the first aspect and its optional solutions.
  • a storage medium on which a computer program is stored, and when the program is executed by a processor, it realizes the flight trajectory processing method of the UAV involved in the first aspect and its optional solutions.
  • the flight trajectory processing method, device, electronic equipment and storage medium of the unmanned aerial vehicle provided by the present invention can calculate the relative distance information between the position point and the existing flight trajectory for the discrete position points tracked, and further, Based on the relative distance information, the position points can be corresponded to the existing flight trajectory, and the flight trajectory can be updated accordingly. It can be seen that the present invention can characterize the chaotic and discrete positioning results as the smooth flight trajectory of multiple UAVs (for example, The curve of the flight trajectory). At the same time, because it is based on the real relative distance information, the processed flight trajectory is more similar to the real trajectory and has better accuracy. Therefore, the present invention can facilitate the realization of the UAV Effective monitoring of flight trajectories.
  • Fig. 1 is a schematic diagram of an application scenario in an embodiment of the present invention
  • Fig. 2 is a first flow diagram of a method for processing a flight trajectory of an unmanned aerial vehicle in an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of step S11 in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of center distance information in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the second flow chart of a method for processing a flight trajectory of an unmanned aerial vehicle in an embodiment of the present invention
  • Fig. 6 is a schematic diagram of relative distance information in an embodiment of the present invention.
  • FIG. 7 is a first schematic diagram of the flow of step S13 in an embodiment of the present invention.
  • FIG. 8 is a second schematic diagram of the flow of step S13 in an embodiment of the present invention.
  • FIG. 9 is a third flowchart of a method for processing a flight trajectory of a drone in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a program module of a flight trajectory processing device of a drone in an embodiment of the present invention.
  • FIG. 11 is a second schematic diagram of a program module of a flight trajectory processing device of a drone in an embodiment of the present invention.
  • FIG. 12 is a third schematic diagram of a program module of a flight trajectory processing device of a drone in an embodiment of the present invention.
  • FIG. 13 is a fourth schematic diagram of a program module of the flight trajectory processing device of an unmanned aerial vehicle in an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of the structure of an electronic device in an embodiment of the present invention.
  • Fig. 1 is a schematic diagram of an application scenario in an embodiment of the present invention.
  • the flight trajectory processing method, device, electronic equipment, and storage medium of the drone involved in this embodiment can be applied to any device that supervises the drone 2, and the device may be, for example, the supervision device 1 shown in FIG. 1 , It can also be a device that is not dedicated to monitoring drones, for example, it can also be a suppression device that suppresses drones, or it can be a monitoring device that monitors other aircraft or all aircraft. No matter what kind of equipment it is applied to, it does not deviate from the description of this embodiment.
  • UAV 2 can be understood as any unmanned aircraft, which can be flown under automatic control according to a predefined program, or it can be flown under human control, regardless of its structure, purpose, and working mode.
  • UAV 2 can be understood as any unmanned aircraft, which can be flown under automatic control according to a predefined program, or it can be flown under human control, regardless of its structure, purpose, and working mode.
  • the flight trajectory can refer to a trajectory formed by continuous lines in a two-dimensional plane, or a trajectory formed by continuous lines in a three-dimensional space.
  • Fig. 2 is a first flowchart of a method for processing a flight trajectory of an unmanned aerial vehicle in an embodiment of the present invention.
  • the flight trajectory processing method of the UAV includes:
  • S11 Determine discrete N location points; each location point is a location that a UAV is located in this cycle;
  • the position point can be understood as the result of positioning the drone. It is any position that can be described using information.
  • coordinate information can be used (for example, it can be a relative coordinate referenced to a reference object, or it can be GPS coordinates) can also be described using vector information. As long as different positions can be described differently, it does not deviate from the scope of this embodiment.
  • a drone can be located to one location point, or it can be located to more than one location point, or part of the drone. Being located at one location, some drones are located at more than one location.
  • the steps in this embodiment are effective for various possibilities.
  • each corresponding way can also be regarded as a possible permutation and combination of N position points and M flight trajectories.
  • each position point has the possibility of M combinations, then: N location points are different drones, there may be M! The possibility of a combination, namely M! A possible way of corresponding.
  • step S13 the optimal corresponding way can be found based on the relative distance information.
  • the optimal corresponding method can be understood as all or part of the corresponding methods that are evaluated as the optimal corresponding method for one or several custom indicators. According to the different defined indicators, the best corresponding method is obtained.
  • the optimal correspondence mode can be different.
  • the evaluation is based on relative distance information.
  • the maximum number of matches or expressed as: making the number of successful matches involved in the hereinafter referred to as the maximum
  • the minimum matching distance or expressed as: Make the statistical information of the matching distance involved in the following to be the minimum
  • this embodiment does not exclude implementations that use other indicators or combined with other indicators for evaluation. For example, indicators related to factors such as speed, displacement, and direction can also be used for evaluation.
  • the relative distance information can reflect to a certain extent the possibility of whether a location point and an existing flight trajectory belong to the same drone (for example, the closer it is, the more likely it belongs to the same drone). Then, take this as According to this, it is easy to find a possibility that fits the real situation. Further, this embodiment is evaluated based on at least part of N position points and M existing flight trajectories, and is aimed at any position point and The possibility of flight trajectory, whether it belongs to the same drone, will constrain other location points and flight trajectories, and will also be constrained by other location points and flight trajectories. Furthermore, through comprehensive consideration in this embodiment, it is convenient to take into account other locations.
  • this embodiment can facilitate the realization of unmanned Effective monitoring of aircraft flight trajectory.
  • step S14 it is also necessary to point out that even if the optimal corresponding method is determined, the flight trajectory may not be successfully matched with the location point. At the same time, it is not ruled out that all existing flight trajectories have not successfully matched the location point. , The unmatched location points can be used to form a new flight trajectory.
  • step S13 it may further include:
  • a new flight trajectory is generated according to the K position points, where K is less than or equal to N.
  • Fig. 3 is a schematic diagram of the flow of step S11 in an embodiment of the present invention
  • Fig. 4 is a schematic diagram of center distance information in an embodiment of the present invention.
  • all the acquired position points can be directly used as the N position points, so as to be applied to subsequent processing.
  • step S11 includes:
  • S1102 Calculate the distance of each of the multiple position points relative to the preset center position, and obtain the center distance information of each position point;
  • S1103 Filter the multiple position points according to the center distance information and a preset center distance threshold, and determine the N position points.
  • step S1101 by monitoring the drone in flight, the positioning results of discrete points on the flight trajectory of the drone can be obtained, so as to determine multiple discrete position points.
  • the position of four points as an example, L a, L b, L c, L d is the distance from the center point to the position of the four positions, where the center position of the center of the site can be The location of, does not exclude it as any other pre-defined location.
  • all positioning results greater than the center distance threshold can be discarded.
  • the position point d in FIG. 4 may be discarded, so that the remaining position points are used as the N position points that need to participate in subsequent processing.
  • the center distance threshold T0 may be 8 kilometers, for example.
  • Fig. 5 is a second flowchart of a method for processing a flight trajectory of an unmanned aerial vehicle in an embodiment of the present invention.
  • the method may further include:
  • step S16 can be implemented: generating a new flight trajectory according to the N position points.
  • step S15 and step S16 can also be implemented in conjunction with steps S1101 to S1103 mentioned above, and furthermore, all positioning results that meet the center distance threshold can be used to generate a new flight trajectory, which can be used as the starting position of the flight trajectory .
  • FIG. 6 is a schematic diagram of relative distance information in an embodiment of the present invention
  • FIG. 7 is a schematic diagram 1 of the flow of step S13 in an embodiment of the present invention
  • FIG. 8 is a schematic diagram 2 of the flow of step S13 in an embodiment of the present invention.
  • the relative distance information calculated in step S13 may be l ij as an example, where different i can represent different flight trajectories, for example, can refer to the sequence number of the flight trajectory, and different j can represent different The location point, or can be understood as different positioning results. Furthermore, l ij may, for example, represent relative distance information between the i-th flight trajectory and the j-th position point. The relative distance information may, for example, take the shortest distance between the position point and the flight trajectory.
  • a distance relationship matrix can be formed. Since each element records a relative distance information, it actually represents a corresponding flight trajectory and a corresponding flight path. Location point.
  • the number of successful matching between the position point and the flight trajectory in the optimal correspondence mode is the largest in all or part of the correspondence modes, which can also be understood as the maximum number of matches as an evaluation index, where success
  • the matched position point and flight trajectory can be defined as the relative distance information is less than the preset successful matching threshold. In other words, for the position point and flight trajectory corresponding to each other in the corresponding relationship, it can be calculated whether the relative distance information is less than the successful matching threshold. , If it is less than, the two are considered to be successfully matched, otherwise, the two are considered to be unsuccessfully matched. Furthermore, the number of successful matches can better reflect whether the corresponding relationship fully and truly fits the real situation.
  • the successful matching threshold corresponding to the first flight trajectory is the first successful matching threshold
  • the successful matching threshold corresponding to the second flight trajectory is the second successful matching threshold.
  • the first successful matching threshold T1 may be n times a unit distance (the unit distance may be, for example, 75m), and n is less than the stop-and-shift period threshold mentioned later. Integer.
  • the second successful matching threshold T2 may be a preset fixed value (the fixed value may be, for example, 150 m).
  • the statistical information of the matching distance in the optimal corresponding manner is the smallest among all or part of the corresponding methods; it can also be understood as the minimum matching distance as an evaluation index, wherein the statistical information of the matching distance It is used to characterize the sum of the relative distance information between the successfully matched position point and the flight trajectory in the corresponding corresponding method. For example, in a corresponding method, the number of successful matching is 10 times, then the matching distance statistical information can be the corresponding 10 relative distances The sum of the information itself can also be the average of the sum, or other statistical data associated with the sum. The statistical information of the matching distance can better reflect whether the corresponding relationship as a whole fits the real situation.
  • the number of successful matches or the statistical information of the matching distance can be selected to evaluate the optimal corresponding method, and the number of successful matches and the statistical information of the matching distance can also be used to evaluate the optimal corresponding method.
  • priority can also be configured for both, for example, the priority of the number of successful matches can be higher than the statistical information of the matching distance.
  • a certain relative distance information is less than the corresponding successful matching threshold (for example: judging whether the relative distance information between the non-continuously updated flight trajectory and its corresponding location point is less than the first successful matching threshold, or: whether the relative distance information between the continuously updated flight trajectory and its corresponding location point is less than the second Successful matching threshold), if it is less than, the position point of the relative distance information and the flight trajectory are successfully matched, otherwise, it is determined that the two are not successfully matched.
  • the relative distance information l ij can be set to Infinity, or set to other specific values, and further, by judging the number of relative distance information l ij in a corresponding relationship that is not set to infinity (or other specific values) or is set to infinity (or other specific values) ) To count the number of successful matches.
  • Step S13 may include:
  • step S1304 can be implemented: determining that the candidate corresponding mode is the optimal corresponding mode;
  • step S103 If the judgment result of step S103 is no, that is, the number of candidate corresponding modes is at least two, the following steps can be implemented:
  • S1306 Determine the optimal corresponding mode according to the matching distance statistical information of each candidate corresponding mode.
  • the algorithm of the above processing process can be understood as a calculation process based on an exhaustive algorithm.
  • all permutations and combinations for example, M! permutations and combinations
  • the distance relationship matrix can be calculated based on the exhaustive algorithm.
  • the number of successful matching of each candidate corresponding method determined in step S1302 may be the same. In another example, the number of successful matching of each candidate corresponding method may also be different, and the candidate corresponding method may be, for example, successful matching.
  • the K correspondences ranked first by the number of times may also be multiple correspondences whose times difference between the first K correspondences and the first correspondence is smaller than a certain threshold.
  • Step S13 may include:
  • step S1310 can be implemented: determining the local optimal corresponding way as the new optimal corresponding way;
  • step S1311 can be implemented: randomly determine whether the number of times of multiple corresponding methods reaches the cycle number threshold;
  • step S1312 can be implemented: determining that the optimal corresponding way at this time is the final optimal corresponding way;
  • step S1311 If the judgment result of step S1311 is no, return to step S1307, again randomly determine multiple corresponding modes, and repeat step S1307 to step S1311 again until the threshold of the number of cycles is reached.
  • the local optimal corresponding method can be determined by referring to the process from step S1302 to step S1306. Specifically, the corresponding method with the largest number of successful matches can be determined as the candidate corresponding method. If the number is one, the candidate corresponding method is determined to be the local optimal corresponding method. If the number of candidate corresponding methods is at least two, then the matching distance statistical information in each candidate corresponding method is calculated, and the matching according to each candidate corresponding method The distance statistical information determines the local optimal corresponding manner. In other examples, only the number of successful matches or matching example information may be considered.
  • step S1309 in an example, the number of successful matching between the previously determined optimal corresponding method and the local optimal corresponding method may be compared first. If the local optimal corresponding method has more successful matching times, the local optimal corresponding method is determined. The corresponding method is better than the previously determined optimal corresponding method. Otherwise, the determined optimal corresponding method is still the previous optimal corresponding method.
  • the algorithm of the above processing process can be understood as a calculation process based on the greedy algorithm.
  • the calculation process based on the exhaustive algorithm and the calculation process based on the greedy algorithm in one embodiment, only one of them can be used, and in another embodiment, two algorithms can be configured at the same time. The calculation process, and then, can automatically choose which algorithm to use according to the actual situation.
  • step S13 may also include:
  • the algorithm selection threshold can be understood as: if the algorithm selection threshold is exceeded, the greedy algorithm shown in FIG. 8 is adopted, and if the threshold is not exceeded, the exhaustive algorithm shown in FIG. 7 is adopted, for example.
  • the algorithm selection threshold G may be 6, for example.
  • the algorithm selection threshold G may be 6, for example.
  • the number of trajectories appearing is less than 6, use the exhaustive algorithm to select the global optimal corresponding method; otherwise, use the greedy algorithm to select the local optimal matching, and then get the final optimal corresponding method based on this.
  • the final updated trajectory is similar to the real trajectory, so as to monitor the flight trajectory of the UAV.
  • step S14 during the update, for any one of the fourth flight trajectory and the fourth position point corresponding to the fourth flight trajectory in the optimal corresponding manner and successfully matched, the fourth flight trajectory may be updated to pass through the
  • the fourth position point, the fourth position point can be understood as the target position point mentioned above, and further, the number of position points passed by each flight trajectory can be determined.
  • Fig. 9 is a third flowchart of a method for processing a flight trajectory of an unmanned aerial vehicle in an embodiment of the present invention.
  • step S14 it may further include:
  • step S18 can be implemented: for any one of the third flight trajectories, whether the number of position points passed by the flight trajectory is less than the preset number of position points threshold, and The stop-and-shift period information of the third flight trajectory is greater than the preset stop-and-shift period threshold;
  • step S19 can be implemented: deleting the third flight trajectory.
  • the stop period information is used to characterize the number of periods in which the corresponding flight trajectory has not been continuously updated.
  • the period can be understood as: the positioning of the position point can be implemented periodically, and further, the stop period information here can be, for example: after a periodic positioning occurs, if step S14 is not implemented for a certain flight trajectory
  • the stop period information of the flight trajectory can be accumulated once, and if step S14 is performed for the update for a certain flight trajectory, the cumulative stop period information of the flight trajectory can be cleared.
  • the stop-and-shift period information can also be used to determine whether the flight trajectory was updated in the previous period. For example, if the stop-and-shift period information is 0, it is determined that the flight trajectory was updated in the previous period. If the information is not 0, it is determined that the flight trajectory has not been updated in the previous cycle.
  • the threshold for the number of trajectories may be, for example, 5, the threshold for the number of position points may be, for example, 2, and the stop period threshold may be, for example, 5.
  • the relative distance information between the position point and the existing flight trajectory can be calculated for the discrete position points tracked, and then the relative distance information is taken as According to this, the position points can be corresponded to the existing flight trajectory, and the flight trajectory can be updated accordingly.
  • this embodiment can characterize the chaotic and discrete positioning results as the smooth flight trajectory of multiple drones (for example, the flight trajectory of the drone). Curve).
  • the processed flight trajectory is similar to the real trajectory and has better accuracy. Therefore, this embodiment can facilitate the realization of the flight trajectory of the drone. Effective monitoring.
  • FIG. 10 is a schematic diagram of a program module of the flight trajectory processing device of a drone in an embodiment of the present invention
  • FIG. 11 is a schematic diagram of a program module of the flight trajectory processing device of a drone in an embodiment of the present invention
  • FIG. 13 is the fourth schematic diagram of the program module of the UAV flight trajectory processing device in an embodiment of the present invention.
  • the flight trajectory processing device 200 of the UAV includes:
  • the location point determination module 201 is used to determine discrete N location points; each location point is a location that a UAV is located in this cycle;
  • the relative distance calculation module 202 is configured to calculate the distance of each position point relative to each flight trajectory for the M existing flight trajectories and the N position points to obtain multiple relative distance information;
  • the optimal corresponding manner determining module 203 is configured to determine the optimal corresponding manner based on the multiple relative distance information among all the corresponding manners of the N position points and the M flight trajectories; in each corresponding manner, One position point corresponds to one flight trajectory, and different flight trajectories correspond to different position points; where N and M are integers greater than or equal to 2;
  • the trajectory update module 204 is configured to update according to the target location point if any one of the target flight trajectories in the M flight trajectories has a corresponding target location point that is successfully matched in the optimal corresponding manner In the target flight trajectory, the relative distance information of the position point and the flight trajectory that are successfully matched is less than a preset successful matching threshold.
  • the number of successful matching between the position point and the flight trajectory in the optimal correspondence manner is the largest among all correspondence manners, and/or: the matching distance statistical information in the optimal correspondence manner is the smallest among all correspondence manners of;
  • the relative distance information is less than the preset successful matching threshold, and the matching distance statistical information is used to characterize the relative distance information between the position point and the flight trajectory that are successfully matched in the corresponding manner.
  • the optimal corresponding mode determining module 203 is specifically configured to:
  • the corresponding method with the largest number of successful matches is determined as the candidate corresponding method
  • the matching distance statistical information in each candidate corresponding mode is calculated, and the optimal corresponding mode is determined according to the matching distance statistical information of each candidate corresponding mode.
  • the optimal corresponding method determining module 203 is further configured to: before determining that the corresponding method with the largest number of successful matches is the candidate corresponding method:
  • the optimal corresponding mode determining module 203 is specifically configured to:
  • multiple corresponding methods are randomly determined multiple times
  • the optimal corresponding mode at this time is the final optimal corresponding mode.
  • the optimal corresponding manner determining module 203 is further configured to: before randomly determining multiple corresponding manners for multiple times:
  • the successful matching threshold corresponding to the first flight trajectory is the first successful matching threshold
  • the successful matching threshold corresponding to the second flight trajectory is the second successful matching threshold.
  • the position point determination module 201 is specifically configured to:
  • the multiple position points are screened, and the N position points are determined.
  • the flight trajectory processing device of the UAV further includes:
  • the first new trajectory generation module 205 is configured to generate a new flight trajectory according to the N position points if the number of existing flight trajectories is 0.
  • the flight trajectory processing device 200 of the UAV further includes:
  • the trajectory deletion module 206 is configured to, if the number of existing flight trajectories exceeds the trajectory number threshold, the number of position points passed by any one of the third flight trajectories is less than the preset position point number threshold, and the third If the stop period information of the flight trajectory is greater than the preset stop period threshold, the third flight trajectory is deleted, and the stop period information is used to represent the number of consecutive cycles of the corresponding flight trajectory that have not been updated.
  • the flight trajectory processing device 200 of the drone further includes:
  • the new trajectory second generation module 207 is used to generate a new flight trajectory according to the K position points that are not successfully matched in the optimal correspondence mode, where K is less than or equal to N .
  • the relative distance information between the position point and the existing flight trajectory can be calculated for the discrete position points tracked, and further, the relative distance information is taken as According to this, the position points can be corresponded to the existing flight trajectory, and the flight trajectory can be updated accordingly.
  • this embodiment can characterize the chaotic and discrete positioning results as the smooth flight trajectory of multiple drones (for example, the flight trajectory of the drone). Curve).
  • the processed flight trajectory is similar to the real trajectory and has better accuracy. Therefore, this embodiment can facilitate the realization of the flight trajectory of the drone. Effective monitoring.
  • FIG. 14 is a schematic diagram of the structure of an electronic device in an embodiment of the present invention.
  • an electronic device 30 including:
  • the memory 32 is configured to store executable instructions of the processor
  • the processor 31 is configured to execute the above-mentioned methods by executing the executable instructions.
  • the processor 31 can communicate with the memory 32 through the bus 33.
  • This embodiment also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the above-mentioned methods are implemented.
  • a person of ordinary skill in the art can understand that all or part of the steps in the foregoing method embodiments can be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a computer readable storage medium. When the program is executed, it executes the steps including the foregoing method embodiments; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种无人机(2)的飞行轨迹处理方法、装置(200)、电子设备(30)与存储介质,飞行轨迹处理方法包括:确定离散的N个位置点(S11);每个位置点为一个无人机(2)在本周期内被定位到的一个位置;针对于M条已有的飞行轨迹,以及N个位置点,计算每个位置点相对于每一条飞行轨迹的距离,得到多个相对距离信息(S12);在N个位置点与M条飞行轨迹的所有对应方式中,根据多个相对距离信息,确定最优对应方式(S13);在每个对应方式中,一个位置点对应于一个飞行轨迹,且不同飞行轨迹对应于不同位置点;其中的N、M均为大于或等于2的整数;若在最优对应方式中,M条飞行轨迹中任意之一目标飞行轨迹具有对应的一个成功匹配的目标位置点,则根据目标位置点,更新目标飞行轨迹(S14)。

Description

无人机的飞行轨迹处理方法、装置、电子设备与存储介质 技术领域
本发明涉及无人机领域,尤其涉及一种无人机的飞行轨迹处理方法、装置、电子设备与存储介质。
背景技术
随着无人机技术的不断发展,越来越多的消费级无人机被应用在普通人的日常生活。与无人机技术的日渐成熟相比,无人机的监管技术则比较落后,尤其是飞机场等禁飞区域附近的监管,更为缺乏。
在无人机预警监管领域,可跟踪飞行中的无人机,估计无人机的飞行轨迹,进而,在无人机靠近禁飞区域附近时可对其进行压制。现有相关技术中,通常仅能针对于单架无人机的飞行轨迹进行估计。
然而,在实际情况中,区域内的无人机数量常为多架,现有的相关技术中,缺乏针对多架无人机的飞行轨迹估计方案。
发明内容
本发明提供一种无人机的飞行轨迹处理方法、装置、电子设备与存储介质,以解决缺乏针对多架无人机的飞行轨迹估计方案的问题。
根据本发明的第一方面,提供了一种无人机的飞行轨迹处理方法,包括:
确定离散的N个位置点;每个位置点为一个无人机在本周期内被定位到的一个位置;
针对于M条已有的飞行轨迹,以及所述N个位置点,计算每个位置点相对于每一条飞行轨迹的距离,得到多个相对距离信息;
在所述N个位置点与M条飞行轨迹的所有对应方式中,根据所述多个相对距离信息,确定最优对应方式;在每个对应方式中,一个位置点对应于一个飞行轨迹,且不同飞行轨迹对应于不同位置点;其中的N、M均为大于或等于2的整数;
若在所述最优对应方式中,所述M条飞行轨迹中任意之一目标飞行轨迹具有对应的一个成功匹配的目标位置点,则根据所述目标位置点,更新所述目标飞行轨迹,其中,针对于成功匹配的位置点与飞行轨迹,其相对距离信息小于预设的成功匹配阈值。
根据本发明的第二方面,提供了一种无人机的飞行轨迹处理装置,包括:
位置点确定模块,用于确定离散的N个位置点;每个位置点为一个无人机在本周期内被定位到的一个位置;
相对距离计算模块,用于针对于M条已有的飞行轨迹,以及所述N个位置点,计算每个位置点相对于每一条飞行轨迹的距离,得到多个相对距离信息;
最优对应方式确定模块,用于在所述N个位置点与M条飞行轨迹的所有对应方式中,根据所述多个相对距离信息,确定最优对应方式;在每个对应方式中,一个或多个位置点对应于一个飞行轨迹,且不同飞行轨迹对应于不同位置点;其中的N、M均为大于或等于2的整数;
轨迹更新模块,用于若在所述最优对应方式中,所述M条飞行轨迹中任意之一目标飞行轨迹具有对应的一个成功匹配的目标位置点,则根据所述目标位置点,更新所述目标飞行轨迹,其中,针对于成功匹配的位置点与飞行轨迹,其相对距离信息小于预设的成功匹配阈值。
根据本发明的第三方面,提供了一种电子设备,包括处理器与存储器,
所述存储器,用于存储代码和相关数据;
所述处理器,用于执行所述存储器中的代码用以实现第一方面及其可选方案涉及的无人机的飞行轨迹处理方法。
根据本发明的第四方面,提供了一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现第一方面及其可选方案涉及的无人机的飞行轨迹处理方法。
本发明提供的无人机的飞行轨迹处理方法、装置、电子设备与存储介质中,能够针对于所追踪到的离散的位置点,计算位置点与已有飞行轨迹的相对距离信息,进而,以相对距离信息为依据,可将位置点对应到已有飞行轨迹,并据此更新飞行轨迹,可见,本发明可将杂乱无章的离 散的定位结果表征为多条无人机的平滑的飞行轨迹(例如飞行轨迹的曲线),同时,因其是以真实的相对距离信息为依据的,处理得到的飞行轨迹与真实轨迹较为近似,具有较佳的准确性,故而,本发明可便于实现对无人机飞行轨迹的有效监控。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中的应用场景示意图;
图2是本发明一实施例中无人机的飞行轨迹处理方法的流程示意图一;
图3是本发明一实施例中步骤S11的流程示意图;
图4是本发明一实施例中中心距离信息的示意图;
图5是本发明一实施例中无人机的飞行轨迹处理方法的流程示意图二;
图6是本发明一实施例中相对距离信息的示意图;
图7是本发明一实施例中步骤S13的流程示意图一;
图8是本发明一实施例中步骤S13的流程示意图二;
图9是本发明一实施例中无人机的飞行轨迹处理方法的流程示意图三;
图10是本发明一实施例中无人机的飞行轨迹处理装置的程序模块示意图一;
图11是本发明一实施例中无人机的飞行轨迹处理装置的程序模块示意图二;
图12是本发明一实施例中无人机的飞行轨迹处理装置的程序模块示意图三;
图13是本发明一实施例中无人机的飞行轨迹处理装置的程序模块示意图四;
图14是本发明一实施例中电子设备的构造示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1是本发明一实施例中的应用场景示意图。
本实施例所涉及的无人机的飞行轨迹处理方法、装置、电子设备与存储介质可应用于对无人机2进行监管的任意设备,该设备例如可以是如图1所示的监管设备1,也可以是非专用于监管无人机的设备,例如还可以是对无人机进行压制的压制设备,也可以是对其他飞行器或所有飞行器进行监管的监管设备。不论应用于何种设备,均不脱离本实施例的描述。
其中的无人机2,可理解为任意不载人飞行器,其可以是根据预定义的程序,在自动控制下飞行的,也可以是在人为控制下飞行的,不论其构造、用途、工作方式等如何,只要其是不用于载人的,就不脱离本实施例的描述。
其中的飞行轨迹,可以指二维平面中的连续线条所形成的轨迹,也可以是三维空间中的连续线条所形成的轨迹。
图2是本发明一实施例中无人机的飞行轨迹处理方法的流程示意图一。
请参考图2,无人机的飞行轨迹处理方法,包括:
S11:确定离散的N个位置点;每个位置点为一个无人机在本周期内被定位到的一个位置;
S12:针对于M条已有的飞行轨迹,以及所述N个位置点,计算每个位置点相对于每一条飞行轨迹的距离,得到多个相对距离信息;
S13:在所述N个位置点与M条飞行轨迹的所有对应方式中,根据所述多个相对距离信息,确定最优对应方式;在每个对应方式中,一个或多个位置点对应于一个飞行轨迹,且不同飞行轨迹对应于不同位置点;其中的N、M均为大于或等于2的整数;
S14:若在所述最优对应方式中,所述M条飞行轨迹中任意之一目标飞行轨迹具有对应的一个成功匹配的目标位置点,则根据所述目标位置点,更新所述目标飞行轨迹,其中,针对于成功匹配的位置点与飞行轨迹,其相对距离信息小于预设的成功匹配阈值。
其中的位置点,可理解为对无人机进行定位的定位结果,其为能够利用信息被描述的任意位置,例如可以利用坐标信息(例如可以是参照于某参照物的相对坐标,也可以是GPS坐标)来描述,也可以是利用向量信息来描述,只要不同位置能够被区别描述,就不脱离本实施例的范围。
此外,根据定位的方式,定位的周期等等配置,离散的N个位置点中,一个无人机可以被定位到一个位置点,也可以被定位到不止一个位置点,也可以部分无人机被定位到一个位置点,部分无人机被定位到不止一个位置点。对应的,本实施例所的步骤针对于各种可能性均可起到作用。
针对于其中的对应方式,每一种对应方式也可视作N个位置点与M条飞行轨迹的一种可能的排列组合,其中,每一个位置点有M种组合的可能性,那么:由于N个位置点是不同无人机的,则可能有M!种组合的可能性,即M!种可能的对应方式。
通过步骤S13,可以以相对距离信息为依据从中找出最优对应方式。
其中的最优对应方式,可理解为是所有或部分对应方式中针对于某个或某几个自定义的指标而被评价为最优的对应方式,根据所定义的指标不同,所得到的最优对应方式可以是不同的。同时,在本实施例中,不论采用何种 指标来评价,均是以相对距离信息为依据评价的。在后文图7和图8所示的实施方式中,可以以最多匹配个数(或表述为:使得后文所涉及的成功匹配次数为最大)这一指标与最小匹配距离(或表述为:使得后文所涉及的匹配距离统计信息为最小)这一指标来评价。但本实施例也不排除使用其他指标或结合其他指标来评价的实施方式,例如也可使用或结合速度、位移、方向等因素相关的指标来评价。
其中,相对距离信息可在一定程度上体现出一个位置点与一个已有的飞行轨迹是否属于同一无人机的可能性(例如越接近越有可能属于同一无人机),那么,以此为依据,可便于找到贴合真实情况的一种可能性,进一步的,本实施例是基于N个位置点与M条已有飞行轨迹中的至少部分进行评价的,针对于任意之一位置点与飞行轨迹,其是否属于同一无人机的可能性都会约束其他位置点与飞行轨迹,也会受到其他位置点与飞行轨迹的约束,进而,本实施例通过综合考量,可便于在兼顾其他位置点与飞行轨迹的情况下,找到最有可能贴近真实情况的一种对应关系,使得处理得到的飞行轨迹与真实轨迹较为近似,具有较佳的准确性,故而,本实施例可便于实现对无人机飞行轨迹的有效监控。
针对于以上步骤S14,还需指出,即便确定了最优对应方式,其中飞行轨迹也可能未与位置点成功匹配,同时,也不排除所有已有的飞行轨迹均未成功匹配位置点,此时,未被匹配的位置点可用于形成新的飞行轨迹。
其中一种实施方式中,步骤S13之后,还可包括:
针对于所述最优对应方式中未被成功匹配的K个位置点,根据所述K个位置点,产生新的飞行轨迹,其中的K小于或等于N。
图3是本发明一实施例中步骤S11的流程示意图;图4是本发明一实施例中中心距离信息的示意图。
其中一种实施方式中,所获取到的所有位置点均可直接作为所述N个位置点,从而应用于后续的处理。
另一种实施方式中,可对所获取到的所有位置点进行筛选,从而得到所述N个位置点。请参考图3和图4,其中一种实施方式中,步骤S11包括:
S1101:确定离散的多个位置点;
S1102:计算所述多个位置点中每个位置点相对于预设的中心位置的距离,得到每个位置点的中心距离信息;
S1103:根据所述中心距离信息,以及预设的中心距离阈值,筛选所述多个位置点,确定所述N个位置点。
其中,在步骤S1101中,通过监测飞行中的无人机,可得到无人机飞行轨迹离散点的定位结果,从而确定离散的多个位置点。
以图4中三角形的a、b、c、d四个位置点为例,L a、L b、L c、L d为四个位置点到中心位置的距离,其中的中心位置可以是站点中心的位置,也不排除其为其他任意预先定义的位置。通过计算中心距离信息,可以将大于中心距离阈值的定位结果都抛弃,例如可将图4中的位置点d抛弃,从而将剩下的位置点作为需参与后续处理的N个位置点。
一种举例中,中心距离阈值T0可例如为8公里。
通过以上过程,可便于降低后续处理的工作量。
图5是本发明一实施例中无人机的飞行轨迹处理方法的流程示意图二。
请参考图5,其中一种实施方式中,步骤S11之后,还可包括:
S15:已有飞行轨迹的数量是否为0;
若步骤S15的判断结果为是,则可实施步骤S16:根据所述N个位置点,产生新的飞行轨迹。
同时,步骤S15与步骤S16也可与前文所涉及的步骤S1101至步骤S1103配合实施,进而,可将符合中心距离阈值的定位结果全部用于生成新的飞行轨迹,其可作为飞行轨迹起始位置。
图6是本发明一实施例中相对距离信息的示意图;图7是本发明一实施例中步骤S13的流程示意图一;图8是本发明一实施例中步骤S13的流程示意图二。
以图6为例,在步骤S13中计算得到的相对距离信息可如其中的l ij为例,其中不同的i可表示不同的飞行轨迹,例如可以指飞行轨迹的序号,不同的j可表示不同的位置点,或可理解为不同的定位结果。进而,l ij可例如表示第i个飞行轨迹与第j个位置点之间的相对距离信息。该相对距离信息可例如取位置点相对于飞行轨迹的最短距离。
具体实施过程中,在计算得到相对距离信息之后,为了便于后续的处理,可形成距离关系矩阵,其中,由于每一个元素记载了一个相对距离信息,实际也表征了相对应的一个飞行轨迹与一个位置点。
其中一种实施方式中,所述最优对应方式中位置点与飞行轨迹的成功匹配次数是所有或部分对应方式中最多的,其也可理解为将最多匹配个数作为评价指标,其中,成功匹配的位置点与飞行轨迹,可定义为其相对距离信息小于预设的成功匹配阈值,换言之,针对于对应关系中互相对应的位置点与飞行轨迹,可计算其相对距离信息是否小于成功匹配阈值,若小于,则认为两者被成功匹配,反之,则认为两者未被成功匹配,进而,成功匹配的次数可较好地反映出该对应关系是否全面真实地贴合真实的情况。
具体实施过程中,还可针对于连续更新与非连续更新的飞行轨迹进行区分处理,例如:
若任意之一第一飞行轨迹在上一个周期中未被更新,则所述第一飞行轨迹对应的成功匹配阈值为第一成功匹配阈值;
若任意之一第二飞行轨迹未在上一个周期中被更新了,则所述第二飞行轨迹对应的成功匹配阈值为第二成功匹配阈值。
一种举例中,针对于非连续更新的飞行轨迹,其中的第一成功匹配阈值T1可以为n乘以单位距离(该单位距离可例如75m),n为小于后文所涉及的停更周期阈值的整数。
一种举例中,针对于连续更新的飞行轨迹,其中的第二成功匹配阈值T2可以为预设的固定值(该固定值可例如150m)。
其中一种实施方式中,所述最优对应方式中的匹配距离统计信息是所有或部分对应方式中最小的;其也可理解为将最小匹配距离作为评价指标,其中,所述匹配距离统计信息用于表征所属对应方式中成功匹配的位置点与飞行轨迹的相对距离信息的总和,例如在某对应方式中,成功匹配的次数为10次,则匹配距离统计信息可以是对应的10个相对距离信息的总和本身,也可以是该总和的平均数,或其他与该总和相关联的统计数据。匹配距离统计信息可较好地反映出该对应关系整体是否贴合真实的情况。
具体实施过程中,可以择一选择成功匹配次数或匹配距离统计信息来评价最优对应方式,也可同时采用成功匹配次数与匹配距离统计信息来评价最 优对应方式。
在同时采用以上成功匹配次数与匹配距离统计信息时,还可针对于两者配置优先级,例如成功匹配次数的优先级可高于匹配距离统计信息。
此外,一种举例中,为了对各次成功匹配进行记录,进而便于后续的处理过程,在使用以上所涉及的距离关系矩阵进行计算时,可判断某相对距离信息是否小于对应的成功匹配阈值(例如:判断非连续更新的飞行轨迹与其对应的位置点之间的相对距离信息是否小于第一成功匹配阈值,或者:连续更新的飞行轨迹与其对应的位置点之间的相对距离信息是否小于第二成功匹配阈值),若小于,则该相对距离信息的位置点与飞行轨迹是成功匹配的,反之,则确定两者未成功匹配,在未成功匹配时,可将该相对距离信息l ij置为无穷大,或置为其他特定的值,进而,可通过判断一种对应关系中相对距离信息l ij未被置为无穷大(或其他特定的值)的数量或被置为无穷大(或其他特定的值)的数量来统计成功匹配的次数。
在图7所示的实施方式中,可直接针对于所有对应关系确定全局最优对应方式作为前文所涉及的最优对应方式,请参考图7,步骤S13可以包括:
S1302:在所有对应方式中,确定成功匹配次数最多的对应方式为候选对应方式;
S1303:所述候选对应方式的数量是否为一个;
若步骤S103的判断结果为是,则可实施步骤S1304:确定该候选对应方式为所述最优对应方式;
若步骤S103的判断结果为否,即所述候选对应方式的数量为至少两个,则可实施以下步骤:
S1305:计算每个候选对应方式中的匹配距离统计信息;
S1306:根据各候选对应方式的匹配距离统计信息,确定所述最优对应方式。
以上处理过程的算法可理解为是基于穷举算法的计算过程,具体实施过程中,可基于穷举算法计算距离关系矩阵的所有种排列组合(例如M!种排列组合)。
一种举例中,步骤S1302所确定的各候选对应方式的成功匹配次数可以是相同的,另一举例中,各候选对应方式的成功匹配次数也可以是不同的,候选对应方式例如可以是成功匹配次数排在最先的K个对应关系,也可例如排在最先的K个对应关系中与排第一的对应关系的次数差距小于一定阈值的多个对应关系。
在图8所示的实施方式中,也可以不一次性对所有对应关系进行计算,请参考图8,步骤S13,可以包括:
S1307:在所有对应方式中,随机确定多个对应方式;
S1308:在所述多个对应方式中确定一个局部最优对应方式;
S1309:所述局部最优对应方式是否优于之前确定的最优对应方式;
若步骤S1309的判断结果为是,则可实施步骤S1310:确定所述局部最优对应方式作为新的最优对应方式;
若步骤S1309的判断结果为否,或步骤S1310实施后,可实施步骤S1311:随机确定多个对应方式的次数是否到达循环次数阈值;
若步骤S1311的判断结果为是,则可实施步骤S1312:确定此时的最优对应方式为最终的最优对应方式;
若步骤S1311的判断结果为否,则可返回步骤S1307,再次随机确定多个对应方式,再次重复步骤S1307至步骤S1311,直至到达循环次数阈值。
在步骤S1308中,一种举例中,可参照于步骤S1302至步骤S1306的过程确定局部最优对应方式,具体的,可以先确定成功匹配次数最多的对应方式为候选对应方式,若候选对应方式的数量为一个,则确定该候选对应方式为局部最优对应方式,若候选对应方式的数量为至少两个,则计算其中每个候选对应方式中的匹配距离统计信息,根据各候选对应方式的匹配距离统计信息,确定所述局部最优对应方式。其他举例中,也可仅考虑成功匹配次数或匹配举例信息。
在步骤S1309中,一种举例中,可先比对之前确定的最优对应方式与局部最优对应方式的成功匹配次数,若局部最优对应方式的成功匹配次数较多,则确定局部最优对应方式优于之前确定的最优对应方式,反之,则确定最优对应方式依旧为之前的最优对应方式。
以上处理过程的算法可理解为是基于贪婪算法的计算过程。
针对于以上所举例的基于穷举算法的计算过程,以及基于贪婪算法的计算过程,一种实施方式中,可以仅采用其中的一种,另一实施方式中,可以同时配置有两种算法的计算过程,进而,可根据实际情况自动选择使用哪一种算法。
具体实施过程中,步骤S13还可包括:
S1301:其中的M是否超出预设的算法选择阈值。
该算法选择阈值可理解为:若超出该算法选择阈值,则采用例如图8所示的贪婪算法,若未超出该阈值,则采用例如图7所示的穷举算法。
一种举例中,其中的算法选择阈值G可例如为6。当出现的轨迹小于6条时,使用穷举算法选择全局最优对应方式;否则用贪婪算法选择局部最优匹配,再基于此得到最终的最优对应方式,通过基于轨迹数量的区别处理,可使得最终更新的轨迹与真实轨迹近似,从而实现对无人机飞行轨迹的监控。
在步骤S14中,在更新时,针对于任意之一第四飞行轨迹以及最优对应方式中第四飞行轨迹对应的且成功匹配的第四位置点,可将第四飞行轨迹更新为经过所述第四位置点,该第四位置点可理解为前文所涉及的目标位置点,进而,每个飞行轨迹经过的位置点的数量可被确定。
图9是本发明一实施例中无人机的飞行轨迹处理方法的流程示意图三。
在步骤S14之后,还可包括:
S17:已有的飞行轨迹的数量是否超出轨迹数量阈值;
若步骤S17的判断结果为是,则可实施步骤S18:针对于其中任意之一第三飞行轨迹,是否所述飞行轨迹所经过的位置点的数量少于预设的位置点数量阈值,且所述第三飞行轨迹的停更周期信息大于预设的停更周期阈值;
若步骤S18的判断结果为是,则可实施步骤S19:删除所述第三飞行轨迹。
其中的停更周期信息用于表征对应飞行轨迹连续未被更新的周期数。其中的周期,可理解为:位置点的定位可以是周期性实施的,进而,此处的停更周期信息可例如:在发生一次周期性的定位后,若针对于某飞行轨迹未实施步骤S14进行更新,则可累加一次该飞行轨迹的停更周期信息,若针对于某飞行轨迹实施了步骤S14进行更新,则可将该飞行轨迹累加的停更周期信 息清零。
同时,也可利用该停更周期信息判断飞行轨迹是否在上一个周期中被更新,例如,若停更周期信息为0,则确定该飞行轨迹在上一个周期中被更新了,若停更周期信息不为0,则确定该飞行轨迹在上一个周期中未被更新。
一种举例中,其中的轨迹数量阈值可例如为5,其中的位置点数量阈值可例如为2,其中的停更周期阈值可例如为5。
综上,本实施例提供的无人机的飞行轨迹处理方法中,能够针对于所追踪到的离散的位置点,计算位置点与已有飞行轨迹的相对距离信息,进而,以相对距离信息为依据,可将位置点对应到已有飞行轨迹,并据此更新飞行轨迹,可见,本实施例可将杂乱无章的离散的定位结果表征为多条无人机的平滑的飞行轨迹(例如飞行轨迹的曲线),同时,因其是以真实的相对距离信息为依据的,处理得到的飞行轨迹与真实轨迹较为近似,具有较佳的准确性,故而,本实施例可便于实现对无人机飞行轨迹的有效监控。
图10是本发明一实施例中无人机的飞行轨迹处理装置的程序模块示意图一;图11是本发明一实施例中无人机的飞行轨迹处理装置的程序模块示意图二;图12是本发明一实施例中无人机的飞行轨迹处理装置的程序模块示意图三;图13是本发明一实施例中无人机的飞行轨迹处理装置的程序模块示意图四。
请参考图10至图13,无人机的飞行轨迹处理装置200,包括:
位置点确定模块201,用于确定离散的N个位置点;每个位置点为一个无人机在本周期内被定位到的一个位置;
相对距离计算模块202,用于针对于M条已有的飞行轨迹,以及所述N个位置点,计算每个位置点相对于每一条飞行轨迹的距离,得到多个相对距离信息;
最优对应方式确定模块203,用于在所述N个位置点与M条飞行轨迹的所有对应方式中,根据所述多个相对距离信息,确定最优对应方式;在每个对应方式中,一个位置点对应于一个飞行轨迹,且不同飞行轨迹对应于不同位置点;其中的N、M均为大于或等于2的整数;
轨迹更新模块204,用于若在所述最优对应方式中,所述M条飞行轨迹 中任意之一目标飞行轨迹具有对应的一个成功匹配的目标位置点,则根据所述目标位置点,更新所述目标飞行轨迹,其中,针对于成功匹配的位置点与飞行轨迹,其相对距离信息小于预设的成功匹配阈值。
可选的,所述最优对应方式中位置点与飞行轨迹的成功匹配次数是所有对应方式中最多的,和/或:所述最优对应方式中的匹配距离统计信息是所有对应方式中最小的;
其中,针对于成功匹配的位置点与飞行轨迹,其相对距离信息小于预设的成功匹配阈值,所述匹配距离统计信息用于表征所属对应方式中成功匹配的位置点与飞行轨迹的相对距离信息的总和。
可选的,所述最优对应方式确定模块203,具体用于:
在所有对应方式中,确定成功匹配次数最多的对应方式为候选对应方式;
若所述候选对应方式的数量为一个,则确定该候选对应方式为所述最优对应方式;
若所述候选对应方式的数量为至少两个,则计算每个候选对应方式中的匹配距离统计信息,并根据各候选对应方式的匹配距离统计信息,确定所述最优对应方式。
可选的,所述最优对应方式确定模块203在确定成功匹配次数最多的对应方式为候选对应方式之前,还用于:
确定其中的M未超出预设的算法选择阈值。
可选的,所述最优对应方式确定模块203,具体用于:
在所有对应方式中,多次随机确定多个对应方式;
在每次随机确定多个对应方式后,均在所述多个对应方式中确定一个局部最优对应方式;
若所述局部最优对应方式优于之前确定的最优对应方式,则确定所述局部最优对应方式作为新的最优对应方式;
在随机确定多个对应方式的次数到达循环次数阈值时,确定此时的最优对应方式为最终的最优对应方式。
可选的,所述最优对应方式确定模块203在多次随机确定多个对应方式之前,还用于:
确定其中的M超出预设的算法选择阈值。
可选的,若任意之一第一飞行轨迹在上一个周期中未被更新,则所述第一飞行轨迹对应的成功匹配阈值为第一成功匹配阈值;
若任意之一第二飞行轨迹未在上一个周期中被更新了,则所述第二飞行轨迹对应的成功匹配阈值为第二成功匹配阈值。
可选的,所述位置点确定模块201,具体用于:
确定离散的多个位置点;
计算所述多个位置点中每个位置点相对于预设的中心位置的距离,得到每个位置点的中心距离信息;
根据所述中心距离信息,以及预设的中心距离阈值,筛选所述多个位置点,确定所述N个位置点。
可选的,请参考图11,所述的无人机的飞行轨迹处理装置,还包括:
新轨迹第一产生模块205,用于若已有飞行轨迹的数量为0,则根据所述N个位置点,产生新的飞行轨迹。
可选的,请参考图12,所述的无人机的飞行轨迹处理装置200,还包括:
轨迹删除模块206,用于若已有的飞行轨迹的数量超出轨迹数量阈值,其中任意之一第三飞行轨迹所经过的位置点的数量少于预设的位置点数量阈值,且所述第三飞行轨迹的停更周期信息大于预设的停更周期阈值,则删除所述第三飞行轨迹,所述停更周期信息用于表征对应飞行轨迹连续未被更新的周期数。
可选的,请参考图13,所述的无人机的飞行轨迹处理装置200,还包括:
新轨迹第二产生模块207,用于针对于所述最优对应方式中未被成功匹配的K个位置点,根据所述K个位置点,产生新的飞行轨迹,其中的K小于或等于N。
综上,本实施例提供的无人机的飞行轨迹处理装置中,能够针对于所追踪到的离散的位置点,计算位置点与已有飞行轨迹的相对距离信息,进而,以相对距离信息为依据,可将位置点对应到已有飞行轨迹,并据此更新飞行轨迹,可见,本实施例可将杂乱无章的离散的定位结果表征 为多条无人机的平滑的飞行轨迹(例如飞行轨迹的曲线),同时,因其是以真实的相对距离信息为依据的,处理得到的飞行轨迹与真实轨迹较为近似,具有较佳的准确性,故而,本实施例可便于实现对无人机飞行轨迹的有效监控。
图14是本发明一实施例中电子设备的构造示意图。
请参考图14,提供了一种电子设备30,包括:
处理器31;以及,
存储器32,用于存储所述处理器的可执行指令;
其中,所述处理器31配置为经由执行所述可执行指令来执行以上所涉及的方法。
处理器31能够通过总线33与存储器32通讯。
本实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以上所涉及的方法。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (22)

  1. 一种无人机的飞行轨迹处理方法,其中无人机的数量为多架;其特征在于,包括:
    确定离散的N个位置点;每个位置点为一个无人机在本周期内被定位到的一个位置;
    针对于M条已有的飞行轨迹,以及所述N个位置点,计算每个位置点相对于每一条飞行轨迹的距离,得到多个相对距离信息;
    在所述N个位置点与M条飞行轨迹的所有对应方式中,根据所述多个相对距离信息,确定最优对应方式;在每个对应方式中,一个位置点对应于一个飞行轨迹,且不同飞行轨迹对应于不同位置点;其中的N、M均为大于或等于2的整数;
    若在所述最优对应方式中,所述M条飞行轨迹中任意之一目标飞行轨迹具有对应的一个成功匹配的目标位置点,则根据所述目标位置点,更新所述目标飞行轨迹,其中,针对于成功匹配的位置点与飞行轨迹,其相对距离信息小于预设的成功匹配阈值;
    若已有的飞行轨迹的数量超出轨迹数量阈值,其中任意之一第三飞行轨迹所经过的位置点的数量少于预设的位置点数量阈值,且所述第三飞行轨迹的停更周期信息大于预设的停更周期阈值,则删除所述第三飞行轨迹,所述停更周期信息用于表征对应飞行轨迹连续未被更新的周期数。
  2. 根据权利要求1所述的无人机的飞行轨迹处理方法,其特征在于,所述最优对应方式中位置点与飞行轨迹的成功匹配次数是所有或部分对应方式中最多的,和/或:所述最优对应方式中的匹配距离统计信息是所有或部分对应方式中最小的;
    其中,所述匹配距离统计信息用于表征所属对应方式中成功匹配的位置点与飞行轨迹的相对距离信息的总和。
  3. 根据权利要求2所述的无人机的飞行轨迹处理方法,其特征在于,其特征在于,在所述N个位置点与M条飞行轨迹的所有对应方式中,根据所述多个相对距离信息,确定最优对应方式,包括:
    在所有对应方式中,确定成功匹配次数最多的对应方式为候选对应方式;
    若所述候选对应方式的数量为一个,则确定该候选对应方式为所述最优对应方式;
    若所述候选对应方式的数量为至少两个,则计算每个候选对应方式中的匹配距离统计信息,并根据各候选对应方式的匹配距离统计信息,确定所述最优对应方式。
  4. 根据权利要求3所述的无人机的飞行轨迹处理方法,其特征在于,在所有对应方式中,确定成功匹配次数最多的对应方式为候选对应方式之前,还包括:
    确定其中的M未超出预设的算法选择阈值。
  5. 根据权利要求2所述的无人机的飞行轨迹处理方法,其特征在于,在所述N个位置点与M条飞行轨迹的所有对应方式中,根据所述多个相对距离信息,确定最优对应方式,包括:
    在所有对应方式中,多次随机确定多个对应方式;
    在每次随机确定多个对应方式后,均在所述多个对应方式中确定一个局部最优对应方式;
    若所述局部最优对应方式优于之前确定的最优对应方式,则确定所述局部最优对应方式作为新的最优对应方式;
    在随机确定多个对应方式的次数到达循环次数阈值时,确定此时的最优对应方式为最终的最优对应方式。
  6. 根据权利要求5所述的无人机的飞行轨迹处理方法,其特征在于,在所有对应方式中,多次随机确定多个对应方式之前,还包括:
    确定其中的M超出预设的算法选择阈值。
  7. 根据权利要求1至6任一项所述的无人机的飞行轨迹处理方法,其特征在于,若任意之一第一飞行轨迹在上一个周期中未被更新,则所述第一飞行轨迹对应的成功匹配阈值为第一成功匹配阈值;
    若任意之一第二飞行轨迹未在上一个周期中被更新了,则所述第二飞行轨迹对应的成功匹配阈值为第二成功匹配阈值。
  8. 根据权利要求1至6任一项所述的无人机的飞行轨迹处理方法,其特征在于,确定离散的N个位置点,包括:
    确定离散的多个位置点;
    计算所述多个位置点中每个位置点相对于预设的中心位置的距离,得到每个位置点的中心距离信息;
    根据所述中心距离信息,以及预设的中心距离阈值,筛选所述多个位置点,确定所述N个位置点。
  9. 根据权利要求1至6任一项所述的无人机的飞行轨迹处理方法,其特征在于,确定所述N个位置点之后,还包括:
    若已有飞行轨迹的数量为0,则根据所述N个位置点,产生新的飞行轨迹。
  10. 根据权利要求1至6任一项所述的无人机的飞行轨迹处理方法,其特征与,根据所述多个相对距离信息,确定最优对应方式,还包括:
    针对于所述最优对应方式中未被成功匹配的K个位置点,根据所述K个位置点,产生新的飞行轨迹,其中的K小于或等于N。
  11. 一种无人机的飞行轨迹处理装置,其中无人机的数量为多架;其特征在于,包括:
    位置点确定模块,用于确定离散的N个位置点;每个位置点为一个无人机在本周期内被定位到的一个位置;
    相对距离计算模块,用于针对于M条已有的飞行轨迹,以及所述N个位置点,计算每个位置点相对于每一条飞行轨迹的距离,得到多个相对距离信息;
    最优对应方式确定模块,用于在所述N个位置点与M条飞行轨迹的所有对应方式中,根据所述多个相对距离信息,确定最优对应方式;在每个对应方式中,一个位置点对应于一个飞行轨迹,且不同飞行轨迹对应于不同位置点;其中的N、M均为大于或等于2的整数;
    轨迹更新模块,用于若在所述最优对应方式中,所述M条飞行轨迹中任意之一目标飞行轨迹具有对应的一个成功匹配的目标位置点,则根据所述目标位置点,更新所述目标飞行轨迹,其中,针对于成功匹配的位置点与飞行轨迹,其相对距离信息小于预设的成功匹配阈值;
    轨迹删除模块,用于若已有的飞行轨迹的数量超出轨迹数量阈值,其中任意之一第三飞行轨迹所经过的位置点的数量少于预设的位置点数量阈值,且所述第三飞行轨迹的停更周期信息大于预设的停更周期阈值,则删除所述 第三飞行轨迹,所述停更周期信息用于表征对应飞行轨迹连续未被更新的周期数。
  12. 根据权利要求11所述的无人机的飞行轨迹处理装置,其特征在于,所述最优对应方式中位置点与飞行轨迹的成功匹配次数是所有或部分对应方式中最多的,和/或:所述最优对应方式中的匹配距离统计信息是所有或部分对应方式中最小的;
    其中,所述匹配距离统计信息用于表征所属对应方式中成功匹配的位置点与飞行轨迹的相对距离信息的总和。
  13. 根据权利要求12所述的无人机的飞行轨迹处理装置,其特征在于,其特征在于,所述对应方式确定模块,具体用于:
    在所有对应方式中,确定成功匹配次数最多的对应方式为候选对应方式;
    若所述候选对应方式的数量为一个,则确定该候选对应方式为所述最优对应方式;
    若所述候选对应方式的数量为至少两个,则计算每个候选对应方式中的匹配距离统计信息,并根据各候选对应方式的匹配距离统计信息,确定所述最优对应方式。
  14. 根据权利要求13所述的无人机的飞行轨迹处理装置,其特征在于,所述最优对应方式确定模块在确定成功匹配次数最多的对应方式为候选对应方式之前,还用于:
    确定其中的M未超出预设的算法选择阈值。
  15. 根据权利要求12所述的无人机的飞行轨迹处理装置,其特征在于,所述最优对应方式确定模块,具体用于:
    在所有对应方式中,多次随机确定多个对应方式;
    在每次随机确定多个对应方式后,均在所述多个对应方式中确定一个局部最优对应方式;
    若所述局部最优对应方式优于之前确定的最优对应方式,则确定所述局部最优对应方式作为新的最优对应方式;
    在随机确定多个对应方式的次数到达循环次数阈值时,确定此时的最优对应方式为最终的最优对应方式。
  16. 根据权利要求15所述的无人机的飞行轨迹处理装置,其特征在于,所述最优对应方式确定模块在多次随机确定多个对应方式之前,还用于:
    确定其中的M超出预设的算法选择阈值。
  17. 根据权利要求11至16任一项所述的无人机的飞行轨迹处理装置,其特征在于,若任意之一第一飞行轨迹在上一个周期中未被更新,则所述第一飞行轨迹对应的成功匹配阈值为第一成功匹配阈值;
    若任意之一第二飞行轨迹未在上一个周期中被更新了,则所述第二飞行轨迹对应的成功匹配阈值为第二成功匹配阈值。
  18. 根据权利要求11至16任一项所述的无人机的飞行轨迹处理装置,其特征在于,所述位置点确定模块,具体用于:
    确定离散的多个位置点;
    计算所述多个位置点中每个位置点相对于预设的中心位置的距离,得到每个位置点的中心距离信息;
    根据所述中心距离信息,以及预设的中心距离阈值,筛选所述多个位置点,确定所述N个位置点。
  19. 根据权利要求11至16任一项所述的无人机的飞行轨迹处理装置,其特征在于,还包括:
    新轨迹第一产生模块,用于若已有飞行轨迹的数量为0,则根据所述N个位置点,产生新的飞行轨迹。
  20. 根据权利要求11至16任一项所述的无人机的飞行轨迹处理装置,其特征在于,还包括:
    新轨迹第二产生模块,用于针对于所述最优对应方式中未被成功匹配的K个位置点,根据所述K个位置点,产生新的飞行轨迹,其中的K小于或等于N。
  21. 一种电子设备,其特征在于,包括处理器与存储器,
    所述存储器,用于存储代码和相关数据;
    所述处理器,用于执行所述存储器中的代码用以实现权利要求1至10任一项所述的无人机的飞行轨迹处理方法。
  22. 一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现权利要求1至10任一项所述的无人机的飞行轨迹处理方法。
PCT/CN2020/111703 2020-04-16 2020-08-27 无人机的飞行轨迹处理方法、装置、电子设备与存储介质 WO2021208320A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010297637.7 2020-04-16
CN202010297637.7A CN111221353B (zh) 2020-04-16 2020-04-16 无人机的飞行轨迹处理方法、装置、电子设备与存储介质

Publications (1)

Publication Number Publication Date
WO2021208320A1 true WO2021208320A1 (zh) 2021-10-21

Family

ID=70831763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111703 WO2021208320A1 (zh) 2020-04-16 2020-08-27 无人机的飞行轨迹处理方法、装置、电子设备与存储介质

Country Status (2)

Country Link
CN (1) CN111221353B (zh)
WO (1) WO2021208320A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111221353B (zh) * 2020-04-16 2020-08-14 上海特金信息科技有限公司 无人机的飞行轨迹处理方法、装置、电子设备与存储介质
CN112034420B (zh) * 2020-09-27 2024-03-15 上海特金无线技术有限公司 用于无人机定位与追踪的处理方法、装置、系统、设备、介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070071285A1 (en) * 2005-09-26 2007-03-29 Cognisign Llc Apparatus and method for trajectory-based identification of digital data content
CN105912683A (zh) * 2016-04-15 2016-08-31 深圳大学 一种基于时间顺序的轨迹匹配方法
CN107798346A (zh) * 2017-10-23 2018-03-13 中国人民解放军国防科技大学 一种基于Fréchet距离阈值的轨迹相似性快速匹配方法
CN108924759A (zh) * 2017-04-06 2018-11-30 阿里巴巴集团控股有限公司 识别移动发生器的方法、装置及系统
CN110456825A (zh) * 2019-07-22 2019-11-15 清华大学 一种基于改进快速随机搜索树的无人机在线运动规划方法
CN110517294A (zh) * 2019-08-29 2019-11-29 中国科学院长春光学精密机械与物理研究所 一种多目标编批方法、多目标编批装置及多目标编批设备
CN111221353A (zh) * 2020-04-16 2020-06-02 上海特金信息科技有限公司 无人机的飞行轨迹处理方法、装置、电子设备与存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108536813B (zh) * 2018-04-04 2019-07-16 平安科技(深圳)有限公司 轨迹查询方法、电子设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070071285A1 (en) * 2005-09-26 2007-03-29 Cognisign Llc Apparatus and method for trajectory-based identification of digital data content
CN105912683A (zh) * 2016-04-15 2016-08-31 深圳大学 一种基于时间顺序的轨迹匹配方法
CN108924759A (zh) * 2017-04-06 2018-11-30 阿里巴巴集团控股有限公司 识别移动发生器的方法、装置及系统
CN107798346A (zh) * 2017-10-23 2018-03-13 中国人民解放军国防科技大学 一种基于Fréchet距离阈值的轨迹相似性快速匹配方法
CN110456825A (zh) * 2019-07-22 2019-11-15 清华大学 一种基于改进快速随机搜索树的无人机在线运动规划方法
CN110517294A (zh) * 2019-08-29 2019-11-29 中国科学院长春光学精密机械与物理研究所 一种多目标编批方法、多目标编批装置及多目标编批设备
CN111221353A (zh) * 2020-04-16 2020-06-02 上海特金信息科技有限公司 无人机的飞行轨迹处理方法、装置、电子设备与存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN ZAIBEN; SHEN HENG TAO; ZHOU XIAOFANG; ZHENG YU; XIE XING: "Searching Trajectories by Locations-An Efficiency Study.", USER INTERFACE SOFTWARE AND TECHNOLOGY, 6 June 2010 (2010-06-06), pages 255 - 266, XP058519642, ISBN: 978-1-4503-4531-6, DOI: 10.1145/1807167.1807197 *

Also Published As

Publication number Publication date
CN111221353A (zh) 2020-06-02
CN111221353B (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
WO2021208320A1 (zh) 无人机的飞行轨迹处理方法、装置、电子设备与存储介质
CN107566781B (zh) 视频监控方法和视频监控设备
US9524562B2 (en) Object tracking method and device
CN105404860B (zh) 用于管理走失人员信息的方法和设备
CN108228705B (zh) 直播视频反馈中的自动对象和活动跟踪设备、方法及介质
EP3376469A1 (en) Method and device for tracking location of human face, and electronic equipment
CN104732187B (zh) 一种图像跟踪处理的方法及设备
JP7263216B2 (ja) ワッサースタイン距離を使用する物体形状回帰
CN106502267A (zh) 一种无人机避让系统
CN111008631B (zh) 图像的关联方法及装置、存储介质和电子装置
JP7330708B2 (ja) 画像処理装置、画像処理方法、及びプログラム
CN115903895A (zh) 一种无人机集群的轨迹规划方法、装置和系统
CN113569758A (zh) 基于动作三元组引导的时序动作定位方法、系统、设备及介质
KR20200063304A (ko) 객체 검출 훈련 방법
CN110889315A (zh) 图像处理方法、装置、电子设备及系统
CN113408337B (zh) 目标聚档方法、电子设备和计算机存储介质
KR102039244B1 (ko) 반딧불 알고리즘을 이용한 데이터 클러스터링 방법 및 시스템
CN109543604A (zh) 视频的处理方法、装置、介质及电子设备
KR102336284B1 (ko) 단일 카메라를 이용한 영상에서 움직이는 객체 검출 방법 및 시스템
CN109800685A (zh) 一种视频中对象的确定方法及装置
US20210081726A1 (en) Model-based image labeling and/or segmentation
WO2021227303A1 (zh) 无人机信号压制设备的调度方法、装置、电子设备与介质
KR20230078377A (ko) 위성 영상 편집 방법, 위성 영상 편집 장치 및 상기 방법을 실행시키기 위하여 기록매체에 저장된 컴퓨터 프로그램
Liu et al. Spatial tessellation of infectious disease spread for epidemic decision support
CN109508703A (zh) 一种视频中的人脸确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931423

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20931423

Country of ref document: EP

Kind code of ref document: A1