WO2021208293A1 - 调相机控制方法、装置、调相机系统及存储介质 - Google Patents

调相机控制方法、装置、调相机系统及存储介质 Download PDF

Info

Publication number
WO2021208293A1
WO2021208293A1 PCT/CN2020/105681 CN2020105681W WO2021208293A1 WO 2021208293 A1 WO2021208293 A1 WO 2021208293A1 CN 2020105681 W CN2020105681 W CN 2020105681W WO 2021208293 A1 WO2021208293 A1 WO 2021208293A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
reference value
converter
axis current
final
Prior art date
Application number
PCT/CN2020/105681
Other languages
English (en)
French (fr)
Inventor
孙华东
李文锋
许涛
郭剑波
张健
李志强
郭强
赵兵
贺静波
贾媛
魏巍
李莹
王官宏
陶向宇
Original Assignee
中国电力科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010290627.0A external-priority patent/CN111262254B/zh
Priority claimed from CN202010290626.6A external-priority patent/CN111193273B/zh
Application filed by 中国电力科学研究院有限公司 filed Critical 中国电力科学研究院有限公司
Publication of WO2021208293A1 publication Critical patent/WO2021208293A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • This application relates to the field of camera adjustments, for example, to a camera adjustment control method, device, camera adjustment system, and storage medium.
  • Tuning camera as a reactive power compensation device, can automatically increase reactive power output when the grid voltage drops according to the needs of the system, and absorb reactive power when the grid voltage rises to maintain the voltage and improve the stability of the power system , To improve the quality of system power supply, so it is widely used in UHV DC converter stations.
  • Synchronous motors are used for tuning cameras.
  • tuning cameras There are problems in the operation of tuning cameras such as uncontrollable inertia support and inability to participate in the primary frequency modulation of the system. This makes the tuning cameras in many application scenarios, such as application scenarios with complex power grid operating characteristics (such as new energy farms). Station), it is impossible to solve the problems of inertia and frequency adjustment of the power grid system while solving the problems of insufficient short-circuit current and voltage regulation, which leads to frequent electric accidents.
  • This application proposes a camera control method, device, camera system, and storage medium, aiming to simultaneously solve the problems of voltage, inertia, frequency adjustment and insufficient short-circuit current in the power system.
  • a method for adjusting camera control including:
  • the final value Q ref2 of the reactive power reference value of the controller and the final value P ref2 of the reactive power reference value of the controller are output.
  • the final value of the reactive power reference value Q ref2 of the controller and the controller active power are output.
  • the final value P ref2 of the power reference value is used to realize the control of the camera adjustment.
  • a control device for adjusting a camera including:
  • the data acquisition unit is set to acquire the preliminary value Q ref1 of the reactive power reference value of the camera
  • the first amplitude limiting unit is configured to perform amplitude limiting processing on the preliminary value Q ref1 of the reactive power reference value of the dimming camera to obtain the final value Q ref2 of the reactive power reference value of the dimming camera;
  • the judging unit is configured to obtain the grid frequency and determine whether the grid frequency is within the frequency dead zone, and in the case that the grid frequency is not within the frequency dead zone, calculate the active power of the controller according to the grid frequency Preliminary value P ref1 of the power reference value;
  • the second limiter unit is set to limit the initial value Pref1 of the active power reference value of the controller to obtain the final value Pref2 of the active power reference value of the controller;
  • the output unit is configured to output the final value Q ref2 of the reactive power reference value of the controller and the final value P ref2 of the active power reference value of the controller, the final value of the reactive power reference value Q ref2 of the controller and The final value Pref2 of the active power reference value of the dimming camera is used to realize the control of the dimming camera.
  • Another method of adjusting the camera control including:
  • the preliminary value I gqref1 of the q-axis current reference value of the converter is calculated ;
  • Another camera control device including:
  • the data acquisition unit is configured to acquire the DC side voltage E dc and the AC side reactive power Q g of the converter in the camera system;
  • the determining unit is configured to determine whether the DC side voltage E dc of the converter is within the voltage dead zone: in the case that the DC side voltage E dc of the converter is not within the voltage dead zone, through calculation And limiting to obtain the d-axis current reference value of the converter; when the DC side voltage E dc of the converter is within the voltage dead zone, the previous d-axis current reference value of the converter The value is used as the d-axis current reference value of the converter;
  • the calculation unit is configured to calculate the preliminary value I gqref1 of the q-axis current reference value of the converter according to the reactive power Q g of the AC side of the converter;
  • the limiting unit is set to limit the initial value I gqref1 of the q-axis current reference value of the converter to obtain the final value I gqref2 of the q-axis current reference value of the converter;
  • the output unit is configured to output the final value I gqref2 of the d-axis current reference value of the converter and the q-axis current reference value of the converter, the d-axis current reference value of the converter and the final value of the converter.
  • the final value I gqref2 of the q-axis current reference value of the inverter is used to realize the control of the adjustment camera.
  • a camera adjustment system including:
  • the collection device is configured to collect power data and send the power data to the control device.
  • the power data includes at least one of the following: grid frequency, grid voltage, the speed of the regulator, and the direct current of the converter in the regulator system.
  • Side voltage adjust the AC side reactive power of the converter in the camera system;
  • the control device is configured to acquire the power data and output a control signal according to the method described in the above embodiment, the control signal including at least one of the following: adjusting the final value of the reactive power reference value of the camera, adjusting the active power of the camera The final value of the reference value, the d-axis current reference value of the converter, and the final value of the q-axis current reference value of the converter;
  • the frequency converter is configured to receive the control signal and control the operation of the asynchronous motor according to the control signal;
  • An asynchronous motor which is set to realize abnormal regulation of the power grid under the control of the frequency converter
  • the acquisition device is respectively connected to the power grid, the asynchronous motor and the control device, the control device is connected to the frequency converter, and the frequency converter is connected to the asynchronous motor.
  • a computer storage medium which stores a computer program, and the computer program is used to implement:
  • the final value Q ref2 of the reactive power reference value of the controller and the final value P ref2 of the reactive power reference value of the controller are output.
  • the final value of the reactive power reference value Q ref2 of the controller and the controller active power are output.
  • the final value P ref2 of the power reference value is used to realize the control of the camera adjustment.
  • Another computer storage medium which stores a computer program, and the computer program is used to implement:
  • the preliminary value I gqref1 of the q-axis current reference value of the converter is calculated ;
  • Fig. 1 shows an exemplary flow chart of a camera control method according to an embodiment of the present invention
  • Fig. 2 is an exemplary flow chart of an embodiment of the method shown in Fig. 1;
  • Figure 3 shows a schematic structural diagram of a camera control device according to an embodiment of the present invention
  • Fig. 4 shows an exemplary flow chart of another method for adjusting camera control according to an embodiment of the present invention
  • FIG. 5 is an exemplary flowchart of an implementation manner of the method shown in FIG. 4;
  • Fig. 6 shows a schematic structural diagram of another camera control device according to an embodiment of the present invention.
  • Fig. 7 shows a schematic structural diagram of a camera adjustment system according to an embodiment of the present invention.
  • Fig. 1 shows an exemplary flowchart of a camera control method according to an embodiment of the present invention.
  • the method includes:
  • Step S101 Obtain a preliminary value Q ref1 of the reactive power reference value of the camera.
  • Step S102 Perform amplitude limiting processing on the preliminary value Q ref1 of the reactive power reference value of the modulator to obtain the final value Q ref2 of the reactive power reference value of the modulator.
  • Step S103 Obtain the grid frequency and determine whether the grid frequency is within the frequency dead zone. In the case that the grid frequency is not within the frequency dead zone, calculate the preliminary value of the active power reference value of the dimming camera according to the grid frequency P ref1 .
  • Step S104 Perform amplitude limiting processing on the preliminary value Pref1 of the active power reference value of the adjustable camera to obtain the final value Pref2 of the active power reference value of the adjustable camera.
  • Step S105 output the final value Q ref2 of the reactive power reference value of the camera and the final value P ref2 of the reactive power reference value of the camera, the final value of the reactive power reference value Q ref2 of the camera and the final value of the active power reference value of the camera
  • the value P ref2 is used to realize the control of the camera swap.
  • step S103 the difference ⁇ f between the grid frequency f and the grid frequency reference value f ref can be calculated to determine whether ⁇ f is within the frequency dead zone, that is, whether the frequency modulation process is entered. If it is within the frequency dead zone, that is, the grid frequency fluctuation is within the normal range, there is no need to carry out the subsequent frequency modulation process, and this control process can be ended and the next control process can be entered; if it is not within the frequency dead zone, that is, the frequency fluctuation is abnormal. Then proceed to the subsequent frequency modulation process.
  • the frequency dead zone range is the deviation range between the grid frequency and the grid frequency reference value.
  • the grid frequency reference value is 50.00 Hz
  • the frequency dead zone is ⁇ 0.05 Hz
  • the grid frequency is in the range of 49.95-50.05 Hz.
  • Steps S103-S105 can realize the adjustment of the inertia and frequency of the power grid system through frequency judgment and adjustment of the preliminary value Pref1 of the active power reference value.
  • the use of constant reactive power and constant active power control for the adjustment camera solves the application scenarios where the adjustment camera has complex operating characteristics in the power grid (such as new energy stations).
  • the control method of the power regulator provided by the embodiment of the present invention can not only realize the steady-state voltage regulation of the power grid system, but also provide fast and correct reactive power response during the transient process of the voltage sudden change, and is sensitive to the inertia and primary power of the power grid system. Frequency modulation plays a regulating role and greatly improves the stability of the power grid system.
  • Fig. 2 is an exemplary flow chart of an embodiment of the method shown in Fig. 1.
  • step S103 includes:
  • Step S204 Obtain the first frequency f 1 of the power grid.
  • Step S205 Determine whether the first frequency f 1 of the power grid is within the first frequency dead zone.
  • Step S206 If it is not within the first frequency dead zone, delay the first time period by a first predetermined amount of time.
  • Step S207 Obtain the second frequency f 2 of the power grid.
  • Step S208 Determine whether the second frequency f 2 of the power grid is within the second frequency dead zone.
  • Step S209 If it is not within the second frequency dead zone , calculate the preliminary value Pref1 of the active power reference value of the dimming camera according to the second frequency f 2 of the power grid.
  • step S205 and step S208 are both to judge whether the grid frequency is within the frequency dead zone, that is, to judge whether it enters the frequency modulation process: if it is within the frequency dead zone, that is, the grid frequency fluctuation is within the normal range, Then there is no need to perform the subsequent frequency modulation process, and the current control process can be ended and the next control process can be entered; if it is not within the frequency dead zone, that is, the frequency fluctuation is abnormal, then the subsequent frequency modulation process is performed.
  • the first grid frequency f 1 and the grid second frequency f 2 are grid frequencies at two different moments.
  • the first frequency dead zone and the second frequency dead zone may be the same or different.
  • the first predetermined amount of time can be any value in the range of 0.1-10 s, optionally 0.2 s.
  • the camera by performing delay processing after the dead zone determination of the first frequency f 1 of the power grid, the camera can release its own inertia, thereby realizing inertia adjustment.
  • the preliminary value Pref1 of the active power reference value of the adjusted camera in step S209 can be calculated using the following formula (1):
  • K p is the droop control coefficient
  • f 2 is the second grid frequency
  • f ref is the grid frequency reference value.
  • it further includes:
  • Step S210 According to the final value Q ref2 of the reactive power reference value of the controller, the preliminary value P refmax1 of the upper limit value of the active power reference value of the controller and the preliminary value P of the lower limit value of the active power reference value of the controller are respectively calculated refmin1 .
  • step S210 and step S209 can be interchanged, and can also be executed at the same time.
  • the preliminary value Prefmax1 of the upper limit value of the active power reference value of the dimming camera can be calculated by using the following formula (2):
  • S max is the maximum capacity limit value of the inverter in the camera
  • Q ref2 is the final value of the reactive power reference value of the camera.
  • the preliminary value P refmin1 of the lower limit value of the active power reference value of the tuning camera can be calculated using the following formula (3):
  • S max is the maximum capacity limit value of the inverter in the camera
  • Q ref2 is the final value of the reactive power reference value of the camera.
  • step S210 the method further includes:
  • Step S211 Adjust the preliminary value Prefmax1 of the upper limit value of the active power reference value of the adjuster and the preliminary value Prefmin1 of the lower limit value of the active power reference value of the adjuster respectively according to the rotational speed ⁇ of the adjuster to obtain the active power of the adjuster upper limit reference value and the final value of P refmax2 condensers active power reference value, the lower limit of the final value P refmin2.
  • step S211 includes:
  • ⁇ max is the upper limit of the speed of the camera
  • ⁇ min is the lower limit of the speed of the camera.
  • Step S212 includes:
  • the frequency of the power grid system can be adjusted, thereby improving the stability of the power grid system.
  • Step S203 includes:
  • Q max is the upper limit of the reactive power reference value of the tuning camera
  • Q min is the lower limit of the reactive power reference value of the tuning camera.
  • the method before step S203, the method further includes:
  • Step S201 Obtain the grid voltage V t and the grid current I t .
  • Step S202 According to the grid voltage V t and the grid current I t , the preliminary value Q ref1 of the reactive power reference value of the regulator is calculated.
  • the grid voltage V t and the grid current I t in step S201, the first grid frequency f 1 in step S204, and the speed ⁇ of the camera in step S211 can be collected from the current collection stage at the same time. Obtained from the electric power data, the second frequency f 2 of the power grid in step S207 may be obtained from the electric power data collected in the next acquisition stage.
  • the preliminary value Q ref1 of the reactive power reference value of the dimming camera is calculated using the following formula (4):
  • K is the serial link corrected DC gain
  • K is an enlarged part A gain
  • s is Laplace operator
  • T 1 and T 2 are respectively link the first series of correction time constant
  • T 3 and T 4 respectively The time constant of the second series correction link
  • T a is the time constant of the amplification link
  • K v is the selection factor of the integral correction link
  • V ref is the grid voltage reference value
  • V t is the grid voltage
  • I t is the grid current
  • X c additional compensation for the reactance
  • is the additional compensation factor angle
  • T r the time constant for the filter segment.
  • FIG. 3 shows a schematic structural diagram of a camera control device according to an embodiment of the present invention.
  • the device shown in FIG. 3 can correspondingly execute the method shown in FIG. 1.
  • a camera control device including:
  • the data acquisition unit 301 is configured to acquire the preliminary value Q ref1 of the reactive power reference value of the camera;
  • the first amplitude limiting unit 302 is configured to perform amplitude limiting processing on the preliminary value Q ref1 of the reactive power reference value of the modulator to obtain the final value Q ref2 of the reactive power reference value of the modulator;
  • the determining unit 303 is configured to obtain the power grid frequency and determine whether the power grid frequency is within the frequency dead zone, and in the case that the grid frequency is not within the frequency dead zone, calculate the active power reference value of the adjuster according to the grid frequency Preliminary value of P ref1 ;
  • the second limiter unit 304 is configured to perform limiter processing on the preliminary value Pref1 of the reference value of the power of the modulator to obtain the final value Pref2 of the reference value of the modulator's active power;
  • the output unit 305 is set to output the final value Q ref2 of the reactive power reference value and the final value P ref2 of the reactive power reference value, the final value of the reactive power reference value Q ref2 of the reactive power and the reactive power of the reactive power
  • the final value P ref2 of the reference value is used to realize the control of the camera adjustment.
  • the data acquisition unit 301 and the first limiting unit 302 are configured to limit the voltage of the grid system by adjusting the preliminary value Q ref1 of the reactive power reference value of the camera.
  • Determination unit 303 may be provided by calculating a difference ⁇ f grid frequency f of grid frequency f REF of the reference value, it is determined whether the frequency ⁇ f of the dead zone, i.e. the process of determining whether to enter the FM. If it is within the frequency dead zone, that is, the grid frequency fluctuation is within the normal range, there is no need to carry out the subsequent frequency modulation process, and this control process can be ended and the next control process can be entered; if it is not within the frequency dead zone, that is, the frequency fluctuation is abnormal.
  • the frequency dead zone range is the deviation range between the grid frequency and the grid frequency reference value.
  • the grid frequency reference value is 50.00 Hz
  • the frequency dead zone is ⁇ 0.05 Hz
  • the grid frequency is in the range of 49.95-50.05 Hz.
  • the judging unit 303, the second limiting unit 304 and the output unit 305 can adjust the inertia and frequency of the grid system through frequency judgment and adjustment of the preliminary value Pref1 of the active power reference value.
  • the use of constant reactive power and constant active power control for the adjustment camera solves the application scenarios where the adjustment camera has complex operating characteristics in the power grid (such as new energy stations).
  • the control method of the power regulator provided by the embodiment of the present invention can not only realize the steady-state voltage regulation of the power grid system, but also provide fast and correct reactive power response during the transient process of the voltage sudden change, and is sensitive to the inertia and primary power of the power grid system. Frequency modulation plays a regulating role and greatly improves the stability of the power grid system.
  • the judging unit 303 is further configured to:
  • the preliminary value Pref1 of the active power reference value of the dimming camera is calculated according to the second frequency f 2 of the power grid.
  • the first frequency f 1 and the second frequency f 2 of the power grid are within the frequency dead zone, that is, it is judged whether to enter the frequency modulation process: if they are within the frequency dead zone, that is, the grid frequency fluctuates. If it is within the normal range, there is no need to perform the subsequent frequency modulation process, and this control process can be ended and enter the next control process; if it is not within the frequency dead zone, that is, the frequency fluctuation is abnormal, the subsequent frequency modulation process needs to be performed.
  • the first grid frequency f 1 and the grid second frequency f 2 are grid frequencies at two different moments.
  • the first frequency dead zone and the second frequency dead zone may be the same or different.
  • the first predetermined amount of time can be any value in the range of 0.1-10 s, optionally 0.2 s.
  • the camera by performing delay processing after the dead zone determination of the first frequency f 1 of the power grid, the camera can release its own inertia, thereby realizing inertia adjustment.
  • the preliminary value P ref1 of the active power reference value of the dimming camera can be calculated using the following formula (1):
  • K p is the droop control coefficient
  • f 2 is the second grid frequency
  • f ref is the grid frequency reference value.
  • the judging unit 303 is further configured to:
  • Adjusting the camera in accordance with the reactive power reference value, the final value Q ref2, are calculated to obtain the initial value of the upper limit reference value of active power condensers and condensers P refmax1 preliminary lower limit value of the active power reference value P refmin1.
  • the preliminary value Prefmax1 of the upper limit value of the active power reference value of the dimming camera can be calculated by using the following formula (2):
  • S max is the maximum capacity limit value of the inverter in the camera
  • Q ref2 is the final value of the reactive power reference value of the camera.
  • the preliminary value P refmin1 of the lower limit value of the active power reference value of the tuning camera can be calculated using the following formula (3):
  • S max is the maximum capacity limit value of the inverter in the camera
  • Q ref2 is the final value of the reactive power reference value of the camera.
  • the judging unit 303 is further configured to:
  • the preliminary value Prefmax1 of the upper limit value of the active power reference value of the controller and the preliminary value Prefmin1 of the lower limit value of the active power reference value of the controller are respectively adjusted according to the rotational speed ⁇ of the controller.
  • the final value Prefmax2 of the upper limit value of the active power reference value of the controller and the final value Prefmin2 of the lower limit value of the active power reference value of the controller are obtained , including:
  • ⁇ max is the upper limit of the speed of the camera
  • ⁇ min is the lower limit of the speed of the camera.
  • the preliminary value P ref1 of the active power reference value of the controller is subjected to clipping processing to obtain the final value P ref2 of the active power reference value of the controller, which includes:
  • the frequency in the power grid system can be adjusted, thereby improving the stability of the power grid system.
  • the preliminary value Q ref1 of the reference value of the reactive power of the dimming camera is subjected to clipping processing to obtain the final value Q ref2 of the reference value of the reactive power of the dimming camera, which includes:
  • Q max is the upper limit of the reactive power reference value of the tuning camera
  • Q min is the lower limit of the reactive power reference value of the tuning camera.
  • the data acquisition unit 301 is further configured to:
  • the preliminary value Q ref1 of the reactive power reference value of the adjuster is calculated.
  • the grid voltage V t , the grid current I t , the grid first frequency f 1 , and the speed ⁇ of the tuning camera can be simultaneously obtained from the electric power data collected in the current collection stage, and the grid second frequency f 2 It can be obtained from the power data collected in the next collection stage.
  • the preliminary value Q ref1 of the reactive power reference value of the dimming camera is calculated using the following formula (4):
  • K is the serial link corrected DC gain
  • K is an enlarged part A gain
  • s is Laplace operator
  • T 1 and T 2 are respectively link the first series of correction time constant
  • T 3 and T 4 respectively The time constant of the second series correction link
  • T a is the time constant of the amplification link
  • K v is the selection factor of the integral correction link
  • V ref is the grid voltage reference value
  • V t is the grid voltage
  • I t is the grid current
  • X c additional compensation for the reactance
  • is the additional compensation factor angle
  • T r the time constant for the filter segment.
  • Fig. 4 shows an exemplary flow chart of another method for adjusting camera control according to an embodiment of the present invention.
  • the method includes:
  • Step S401 Obtain the DC side voltage E dc and the AC side reactive power Q g of the converter in the camera system.
  • Step S402 Determine whether the DC side voltage E dc of the converter is within the voltage dead zone.
  • Step S403 In the case that the DC side voltage E dc of the converter is not within the voltage dead zone, obtain the d-axis current reference value of the converter through calculation and amplitude limiting.
  • Step S404 When the DC side voltage E dc of the converter is within the voltage dead zone, use the previous value of the d-axis current reference value of the converter as the d-axis current reference value of the converter .
  • Step S405 According to the reactive power Q g of the AC side of the converter, the preliminary value I gqref1 of the q-axis current reference value of the converter is calculated .
  • Step S406 Limit the preliminary value I gqref1 of the q-axis current reference value of the converter to obtain the final value I gqref2 of the q-axis current reference value of the converter.
  • Step S407 Output the final value I gqref2 of the d-axis current reference value of the converter and the q-axis current reference value of the converter, the final value of the d-axis current reference value of the converter and the final q-axis current reference value of the converter
  • the value I gqref2 is used to realize the control of the camera swap.
  • step S402 can determine whether ⁇ E dc is within the voltage dead zone by calculating the difference ⁇ E dc between the DC side voltage E dc of the converter and the DC side voltage reference value E dcref of the converter, That is, it is judged whether to perform constant DC voltage control. If it is within the voltage dead zone, that is, the voltage fluctuation is within the normal range, the d-axis current reference value of the converter can be taken as the previous value of the d-axis current reference value of the converter, which is obtained from the previous control process The reference value of the d-axis current of the converter.
  • Step S406 can realize the regulation of the grid system voltage by limiting the q-axis current reference value of the converter. In addition, it can also ensure that the current reference value does not exceed the current limit of the converter itself, so as to realize the protection of the converter.
  • the method for adjusting the power supply provided by the embodiment of the present invention can not only realize the steady-state voltage regulation of the power grid system, but also provide a fast and correct reactive power response during the voltage sudden change transient process, which greatly improves the stability of the power grid system. .
  • step S406 includes:
  • I gqmax is the upper limit of the q-axis current reference value of the converter
  • I gqmin is the lower limit of the q-axis current reference value of the converter.
  • Fig. 5 is an exemplary flow chart of an embodiment of the method shown in Fig. 4.
  • the method further includes:
  • Step S506 According to the reactive power Q g of the AC side of the converter, a preliminary value I gqref1 of the q-axis current reference value of the converter is calculated .
  • Step S507 According to the d-axis current reference value of the converter, the upper limit I gqmax and the lower limit I gqmin of the q-axis current reference value of the converter are respectively calculated.
  • step S506 and step S507 can be reversed, and can also be executed at the same time.
  • step S403 includes:
  • Step S503 According to the DC side voltage E dc of the converter, the preliminary value I gdref1 of the d-axis current reference value of the converter is obtained through calculation.
  • Step S504 Perform amplitude limiting processing on the preliminary value I gdref1 of the d-axis current reference value of the converter to obtain the final value I gdref2 of the d-axis current reference value of the converter.
  • step S504 includes:
  • I gdmax is the upper limit of the d-axis current reference value of the converter
  • I gdmin is the lower limit of the d-axis current reference value of the converter.
  • the preliminary value I gdref1 of the d-axis current reference value of the converter is calculated by using the following formula (5):
  • E dcref is the DC voltage reference value of the grid-side converter
  • E dc is the DC voltage of the grid-side converter
  • K pd is the DC voltage control proportional element constant of the grid-side converter
  • K id is the grid-side converter's DC voltage control proportional element constant.
  • the DC voltage control integral element constant of the side converter, s is the Laplace operator.
  • the preliminary value I gqref1 of the q-axis current reference value of the converter is calculated using the following formula (6):
  • Q gref is the AC-side reactive power reference value of the grid-side converter
  • Q g is the AC-side reactive power of the grid-side converter
  • K gd is the AC-side reactive power control ratio of the grid-side converter Link constant
  • K ig is the AC side reactive power control integral link constant of the grid-side converter
  • s is the Laplace operator.
  • the upper limit value I gqmax of the q-axis current reference value of the converter is calculated using the following formula (7):
  • I gmax is the maximum current limit value of the inverter in the camera
  • I gdref2 is the final value of the d-axis current reference value of the grid-side converter.
  • the lower limit I gqmin of the q-axis current reference value of the converter is calculated using the following formula (8):
  • I gmax is the maximum current limit value of the inverter in the camera
  • I gdref2 is the final value of the d-axis current reference value of the grid-side converter.
  • Fig. 6 shows a schematic structural diagram of a camera control device according to an embodiment of the present invention.
  • the device shown in FIG. 6 can correspondingly execute the method shown in FIG. 4.
  • a camera control device including:
  • the data acquisition unit 601 is configured to acquire the DC side voltage E dc and the AC side reactive power Q g of the converter in the camera system.
  • the judging unit 602 is configured to judge whether the DC side voltage E dc of the converter is within the voltage dead zone: if it is not, the d-axis current reference value of the converter is obtained through calculation and limiting; if it is, it will change The previous value of the d-axis current reference value of the converter is used as the d-axis current reference value of the converter.
  • the calculation unit 603 is configured to calculate the preliminary value I gqref1 of the q-axis current reference value of the converter according to the reactive power Q g of the AC side of the converter.
  • the limiting unit 604 is configured to limit the preliminary value I gqref1 of the q-axis current reference value of the converter to obtain the final value I gqref2 of the q-axis current reference value of the converter.
  • the output unit 605 is set to output the final value I gqref2 of the d-axis current reference value of the converter and the q-axis current reference value of the converter, the d-axis current reference value of the converter and the q-axis current reference of the converter
  • the final value of the value I gqref2 is used to realize the control of the adjustment camera.
  • the determining unit 602 may be configured to determine whether ⁇ E dc is in the voltage dead zone by calculating the difference ⁇ E dc between the DC side voltage E dc of the converter and the DC side voltage reference value E dcref of the converter Within, it is judged whether to perform constant DC voltage control. If it is within the voltage dead zone, that is, the voltage fluctuation is within the normal range, the d-axis current reference value of the converter can be taken as the previous value of the d-axis current reference value of the converter, which is obtained from the previous control process The reference value of the d-axis current of the converter.
  • the d-axis current reference value of the converter is zero; if it is not within the voltage dead zone, that is, the voltage If the fluctuation is abnormal, calculate the d-axis current reference value of the converter at this time, and limit the d-axis current reference value to ensure that the current reference value does not exceed the current limit of the converter itself. protect.
  • the limiter unit 604 can be set to limit the q-axis current reference value of the converter to realize the regulation of the grid system voltage. In addition, it can also ensure that the current reference value does not exceed the current limit of the converter itself to realize the Streamer protection.
  • the method for adjusting the power supply provided by the embodiment of the present invention can not only realize the steady-state voltage regulation of the power grid system, but also provide a fast and correct reactive power response during the voltage sudden change transient process, which greatly improves the stability of the power grid system. .
  • limiting the preliminary value I gqref1 of the q-axis current reference value of the converter to obtain the final value I gqref2 of the q-axis current reference value of the converter includes:
  • I gqmax is the upper limit of the q-axis current reference value of the converter
  • I gqmin is the lower limit of the q-axis current reference value of the converter.
  • calculation unit 603 is further configured to:
  • the upper limit I gqmax and the lower limit I gqmin of the q-axis current reference value of the converter are respectively calculated.
  • the judging unit 602 is further configured to:
  • the preliminary value I gdref1 of the d-axis current reference value of the converter is obtained by calculation;
  • the preliminary value I gdref1 of the d-axis current reference value of the converter is subjected to amplitude limiting processing to obtain the final value I gdref2 of the d-axis current reference value of the converter.
  • the preliminary value I gdref1 of the reference value of the d-axis current of the converter is limited to obtain the final value I gdref2 of the reference value of the d-axis current of the converter, which includes:
  • I gdmax is the upper limit of the d-axis current reference value of the converter
  • I gdmin is the lower limit of the d-axis current reference value of the converter.
  • the preliminary value I gdref1 of the d-axis current reference value of the converter is calculated by using the following formula (5):
  • E dcref is the DC voltage reference value of the grid-side converter
  • E dc is the DC voltage of the grid-side converter
  • K pd is the DC voltage control proportional element constant of the grid-side converter
  • K id is the grid-side converter's DC voltage control proportional element constant.
  • the DC voltage control integral element constant of the side converter, s is the Laplace operator.
  • the preliminary value I gqref1 of the q-axis current reference value of the converter is calculated using the following formula (6):
  • Q gref is the AC-side reactive power reference value of the grid-side converter
  • Q g is the AC-side reactive power of the grid-side converter
  • K gd is the AC-side reactive power control ratio of the grid-side converter Link constant
  • K ig is the AC side reactive power control integral link constant of the grid-side converter
  • s is the Laplace operator.
  • the upper limit value I gqmax of the q-axis current reference value of the converter is calculated using the following formula (7):
  • I gmax is the maximum current limit value of the inverter in the camera
  • I gdref2 is the final value of the grid-side converter d-axis current reference value.
  • the lower limit I gqmin of the q-axis current reference value of the converter is calculated using the following formula (8):
  • I gmax is the maximum current limit value of the inverter in the camera
  • I gdref2 is the final value of the grid-side converter d-axis current reference value.
  • the camera control method, device, camera system, and storage medium provided by the embodiments of the present invention adopt constant active power and constant reactive power control methods, and/or constant DC voltage control and constant reactive power control methods by swapping cameras, It solves the application scenarios with complex operating characteristics of the dimming camera in the power grid (such as new energy stations), and cannot simultaneously solve the problems of insufficient short-circuit current and voltage, inertia, and frequency adjustment.
  • the control method, device, and the power regulator provided by the embodiments of the present invention can not only realize the steady-state voltage regulation of the power grid system, but also provide fast and correct reactive power response during the transient process of the voltage sudden change, and can respond to the power grid.
  • the inertia of the system and the primary frequency modulation play a regulatory role, which greatly improves the stability of the power grid system.
  • the embodiment of the present invention also provides a camera adjustment system.
  • Fig. 7 shows a schematic structural diagram of a camera adjustment system according to an embodiment of the present invention.
  • the camera adjustment system includes:
  • the collection device 701 is configured to collect power data and send the power data to the control device 702.
  • the power data includes at least one of the following: grid frequency, grid voltage, speed of the regulator, and DC side voltage of the converter in the regulator system , Adjust the reactive power of the AC side of the converter in the camera system;
  • the control device 702 is configured to obtain power data and output a control signal according to the method of the above-mentioned embodiment.
  • the control signal includes at least one of the following: adjusting the final value of the reactive power reference value of the camera, adjusting the final value of the active power reference value of the camera , The final value of the d-axis current reference value of the converter, and the final value of the q-axis current reference value of the converter;
  • the frequency converter 703 is set to receive the control signal and control the operation of the asynchronous motor 704 according to the control signal;
  • the asynchronous motor 704 is set to realize abnormal regulation of the power grid under the control of the frequency converter 703;
  • the collection device 701 is respectively connected to the power grid, the asynchronous motor 704 and the control device 702, the control device 702 is connected to the frequency converter 703, and the frequency converter 703 is connected to the asynchronous motor 704.
  • the collection device 701 may be one collection device configured to collect all power data, or it may be two or more collection devices that collect power data of different devices respectively.
  • the frequency converter 703 can be any suitable frequency converter.
  • the control device 702 may be a processor or other devices with data processing capabilities; it may execute the method described in the above embodiment alone to control the operation of the frequency converter 703, or it may execute two or more of the methods described in the above embodiment at the same time.
  • the inverter 703 is controlled to operate.
  • the asynchronous motor 704 can be any suitable asynchronous motor, optionally a double-fed asynchronous motor.
  • the control device controls the operation of the frequency converter according to the method described in the above-mentioned embodiment, which solves the application scenarios of the adjustment camera in the power grid with complex operating characteristics (such as new energy stations), and cannot simultaneously solve the short-circuit current shortage and Problems with voltage, inertia, and frequency adjustment.
  • the camera system provided by the embodiment of the present invention can not only realize the steady-state voltage regulation of the power grid system, but also provide fast and correct reactive power response during the transient process of voltage sudden change, and it can adjust the inertia of the power grid system and the primary frequency regulation. Play a regulatory role, greatly improving the stability of the power grid system.
  • the frequency converter includes: a generator-side converter and a grid-side converter; the generator-side converter is connected to the asynchronous motor and the grid-side converter, and the grid-side converter is connected to the power grid.
  • control device can control the operation of the machine-side converter in the frequency converter according to the method shown in Fig. 1, and control the operation of the grid-side converter in the frequency converter according to the method shown in Fig. 4 .
  • both the generator-side converter and the grid-side converter are fully controlled converters.
  • the embodiment of the present invention also provides a computer storage medium storing a computer program, and the computer program is used to implement:
  • the embodiment of the present invention also provides another computer storage medium, which stores a computer program, and the computer program is used to implement:
  • the preliminary value I gqref1 of the q-axis current reference value of the converter is calculated ;

Abstract

本文提供一种调相机控制方法、装置及调相机系统,调相机控制方法包括:获取调相机无功功率参考值的初步值Q ref1;对调相机无功功率参考值的初步值Q ref1进行限幅处理,得到调相机无功功率参考值的最终值Q ref2;获取电网频率并判断电网频率是否在频率死区之内,在所述电网频率不在所述频率死区之内的情况下,根据电网频率,计算得到调相机有功功率参考值的初步值P ref1;对调相机有功功率参考值的初步值P ref1进行限幅处理,得到调相机有功功率参考值的最终值P ref2;输出调相机到无功功率参考值的最终值Q ref2和调相机有功功率参考值的最终值P ref2

Description

调相机控制方法、装置、调相机系统及存储介质
本申请要求在2020年04月14日提交中国专利局、申请号为202010290627.0、202010290626.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及调相机领域,例如涉及一种调相机控制方法、装置、调相机系统及存储介质。
背景技术
调相机,作为一种无功功率补偿装置,可以根据系统的需要,自动地在电网电压下降时增加无功输出,在电网电压上升时吸收无功功率,以维持电压,提高电力系统的稳定性,改善系统供电质量,因而广泛应用于特高压直流换流站。
调相机均是采用同步电机,调相机在运行中存在惯量支撑不可控、不能参与系统的一次调频等问题,使得调相机在很多应用场景下,例如电网运行特性复杂的应用场景(如新能源场站),无法在解决短路电流不足及电压调节问题的同时,解决电网系统的惯量和频率调节问题,从而导致电力事故频发。
发明内容
本申请提出了一种调相机控制方法、装置、调相机系统及存储介质,旨在同时解决电力系统中电压、惯量、频率调节以及短路电流不足的问题。
提供了一种调相机控制方法,包括:
获取调相机无功功率参考值的初步值Q ref1
对所述调相机无功功率参考值的初步值Q ref1进行限幅处理,得到调相机无功功率参考值的最终值Q ref2
获取电网频率并判断所述电网频率是否在频率死区之内,在所述电网频率不在所述频率死区之内的情况下,根据所述电网频率,计算得到调相机有功功率参考值的初步值P ref1
对所述调相机有功功率参考值的初步值P ref1进行限幅处理,得到调相机有功功率参考值的最终值P ref2
输出所述调相机无功功率参考值的最终值Q ref2和所述调相机有功功率参考值的最终值P ref2,所述调相机无功功率参考值的最终值Q ref2和所述调相机有功功率参考值的最终值P ref2用于实现对调相机的控制。
还提供了一种调相机控制装置,包括:
数据获取单元,设置为获取调相机无功功率参考值的初步值Q ref1
第一限幅单元,设置为对所述调相机无功功率参考值的初步值Q ref1进行限幅处理,得到调相机无功功率参考值的最终值Q ref2
判断单元,设置为获取电网频率并判断所述电网频率是否在频率死区之内,在所述电网频率不在所述频率死区之内的情况下,根据所述电网频率,计算得到调相机有功功率参考值的初步值P ref1
第二限幅单元,设置为对所述调相机有功功率参考值的初步值P ref1进行限幅处理,得到调相机有功功率参考值的最终值P ref2
输出单元,设置为输出所述调相机无功功率参考值的最终值Q ref2和所述调相机有功功率参考值的最终值P ref2,所述调相机无功功率参考值的最终值Q ref2和所述调相机有功功率参考值的最终值P ref2用于实现对调相机的控制。
还提供了另一种调相机控制方法,包括:
获取调相机系统中的变流器的直流侧电压E dc和交流侧无功功率Q g
判断所述变流器的直流侧电压E dc是否在电压死区之内:
在所述变流器的直流侧电压E dc不在所述电压死区之内的情况下,通过计算和限幅得到变流器的d轴电流参考值;
在所述变流器的直流侧电压E dc在所述电压死区之内的情况下,将变流器的d轴电流参考值的先前值作为变流器的d轴电流参考值;
根据所述变流器的交流侧无功功率Q g,计算得到变流器的q轴电流参考值的初步值I gqref1
对所述变流器的q轴电流参考值的初步值I gqref1进行限幅,得到变流器的q轴电流参考值的最终值I gqref2
输出所述变流器的d轴电流参考值和所述变流器的q轴电流参考值的最终值I gqref2,所述变流器的d轴电流参考值和所述变流器的q轴电流参考值的最终值I gqref2用于实现对调相机的控制。
还提供了另一种调相机控制装置,包括:
数据获取单元,设置为获取调相机系统中的变流器的直流侧电压E dc和交流 侧无功功率Q g
判断单元,设置为判断所述变流器直流侧电压E dc是否在电压死区之内:在所述变流器的直流侧电压E dc不在所述电压死区之内的情况下,通过计算和限幅得到变流器的d轴电流参考值;在所述变流器的直流侧电压E dc在所述电压死区之内的情况下,将变流器的d轴电流参考值的先前值作为变流器的d轴电流参考值;
计算单元,设置为根据所述变流器的交流侧无功功率Q g,计算得到变流器的q轴电流参考值的初步值I gqref1
限幅单元,设置为对所述变流器的q轴电流参考值的初步值I gqref1进行限幅,得到变流器的q轴电流参考值的最终值I gqref2
输出单元,设置为输出所述变流器的d轴电流参考值和所述变流器的q轴电流参考值的最终值I gqref2,所述变流器的d轴电流参考值和所述变流器的q轴电流参考值的最终值I gqref2用于实现对调相机的控制。
还提供了一种调相机系统,包括:
采集装置,设置为采集电力数据,并将所述电力数据发送给控制装置,所述电力数据包括以下至少一项:电网频率、电网电压、调相机的转速、调相机系统中变流器的直流侧电压、调相机系统中变流器的交流侧无功功率;
控制装置,设置为获取所述电力数据,并根据如上述实施例所述的方法输出控制信号,所述控制信号包括以下至少一项:调相机无功功率参考值的最终值、调相机有功功率参考值的最终值、变流器的d轴电流参考值、变流器的q轴电流参考值的最终值;
变频器,设置为接收所述控制信号,并根据所述控制信号来控制异步电机运转;
异步电机,设置为在所述变频器的控制下实现对电网异常的调节;
其中,所述采集装置分别与电网、所述异步电机以及所述控制装置相连,所述控制装置与所述变频器相连,所述变频器与所述异步电机相连。
还提供了一种计算机存储介质,存储有计算机程序,所述计算机程序用于实现:
获取调相机无功功率参考值的初步值Q ref1
对所述调相机无功功率参考值的初步值Q ref1进行限幅处理,得到调相机无功功率参考值的最终值Q ref2
获取电网频率并判断所述电网频率是否在频率死区之内,在所述电网频率 不在所述频率死区之内的情况下,根据所述电网频率,计算得到调相机有功功率参考值的初步值P ref1
对所述调相机有功功率参考值的初步值P ref1进行限幅处理,得到调相机有功功率参考值的最终值P ref2
输出所述调相机无功功率参考值的最终值Q ref2和所述调相机有功功率参考值的最终值P ref2,所述调相机无功功率参考值的最终值Q ref2和所述调相机有功功率参考值的最终值P ref2用于实现对调相机的控制。
还提供了另一种计算机存储介质,存储有计算机程序,所述计算机程序用于实现:
获取调相机系统中的变流器的直流侧电压E dc和交流侧无功功率Q g
判断所述变流器直流侧电压E dc是否在电压死区之内:
在所述变流器的直流侧电压E dc不在所述电压死区之内的情况下,通过计算和限幅得到变流器的d轴电流参考值;
在所述变流器的直流侧电压E dc在所述电压死区之内的情况下,将变流器的d轴电流参考值的先前值作为变流器的d轴电流参考值;
根据所述变流器的交流侧无功功率Q g,计算得到变流器的q轴电流参考值的初步值I gqref1
对所述变流器的q轴电流参考值的初步值I gqref1进行限幅,得到变流器的q轴电流参考值的最终值I gqref2
输出所述变流器的d轴电流参考值和所述变流器的q轴电流参考值的最终值I gqref2,所述变流器的d轴电流参考值和所述变流器的q轴电流参考值的最终值I gqref2用于实现对调相机的控制。
附图说明
图1示出了根据本发明实施例的调相机控制方法的示例性流程图;
图2为图1所示方法的一种实施方式的示例性流程图;
图3示出了根据本发明实施例的调相机控制装置的结构示意图;
图4示出了根据本发明实施例的另一种调相机控制方法的示例性流程图;
图5为图4所示方法的一种实施方式的示例性流程图;
图6示出了根据本发明实施例的另一种调相机控制装置的结构示意图;
图7示出了根据本发明实施例的调相机系统的结构示意图。
具体实施方式
以下参考附图介绍本发明实施例的示例性实施方式,然而,本发明实施例可以用许多不同的形式来实施,并且不局限于此处描述的实施例。对于表示在附图中的示例性实施方式中的术语并不是对本发明实施例的限定。在附图中,相同的单元/元件使用相同的附图标记。
图1示出了根据本发明实施例的调相机控制方法的示例性流程图。
如图1所示,该方法包括:
步骤S101:获取调相机无功功率参考值的初步值Q ref1
步骤S102:对调相机无功功率参考值的初步值Q ref1进行限幅处理,得到调相机无功功率参考值的最终值Q ref2
步骤S103:获取电网频率并判断电网频率是否在频率死区之内,在所述电网频率不在所述频率死区之内的情况下,根据电网频率,计算得到调相机有功功率参考值的初步值P ref1
步骤S104:对调相机有功功率参考值的初步值P ref1进行限幅处理,得到调相机有功功率参考值的最终值P ref2
步骤S105:输出调相机无功功率参考值的最终值Q ref2和调相机有功功率参考值的最终值P ref2,调相机无功功率参考值的最终值Q ref2和调相机有功功率参考值的最终值P ref2用于实现对调相机的控制。
在本发明实施例中,步骤S101-S102通过对调相机无功功率参考值的初步值Q ref1限幅,可以实现对电网系统电压的调节。步骤S103可以通过计算电网频率f与电网频率参考值f ref的差值Δf,判断Δf是否在频率死区之内,即判断是否进入调频过程。如果在频率死区之内,即电网频率波动属正常范围,则无需进行后续的调频过程,可以结束本次控制流程,进入下一个控制流程;如果不在频率死区之内,即频率波动异常,则进行后续调频过程。其中,频率死区范围为电网频率与电网频率参考值之间的偏差范围,例如,电网频率参考值为50.00Hz,频率死区为±0.05Hz,电网频率在49.95-50.05Hz范围则在频率死区之内,否则不在。步骤S103-S105通过频率判断和调相机有功功率参考值的初步值P ref1限幅可以实现对电网系统惯量和频率的调节。
上述实施例中,通过对调相机采用定无功功率和定有功功率控制,解决了调相机在电网运行特性复杂的应用场景(如新能源场站),无法同时解决短路 电流不足以及电压、惯量、频率调节的问题。本发明实施例提供的调相机控制方法,在既能实现电网系统的稳态电压调节的前提下,又能在电压突变暂态过程提供快速正确的无功响应,并且对电网系统的惯量和一次调频起到调节作用,大大提高了电网系统的稳定性。
图2为图1所示方法的一种实施方式的示例性流程图。
如图2所示,在一实施例中,步骤S103,包括:
步骤S204:获取电网第一频率f 1
步骤S205:判断电网第一频率f 1是否在第一频率死区之内。
步骤S206:如果不在第一频率死区之内,则将第一时间段延迟第一预定时间量。
步骤S207:获取电网第二频率f 2
步骤S208:判断电网第二频率f 2是否在第二频率死区之内。
步骤S209:如果不在第二频率死区之内,则根据电网第二频率f 2,计算得到调相机有功功率参考值的初步值P ref1
在本发明实施例中,步骤S205、步骤S208均是对电网频率是否在频率死区之内进行判断,即判断是否进入调频过程:如果在频率死区之内,即电网频率波动属正常范围,则无需进行后续的调频过程,可以结束本次控制流程,进入下一个控制流程;如果不在频率死区之内,即频率波动异常,则进行后续调频过程。电网第一频率f 1和电网第二频率f 2为两个不同时刻的电网频率。第一频率死区和第二频率死区可以相同也可以不同。第一预定时间量可以为0.1-10s范围的任意值,可选地为0.2s。
上述实施例中,通过在电网第一频率f 1的死区判断之后进行延时处理,可以让调相机释放自身的惯量,从而实现惯量调节。
在一实施例中,步骤S209中调相机有功功率参考值的初步值P ref1可以采用如下公式(1)计算得到:
P ref1=K P(f ref-f 2)   (1);
其中,K p为下垂控制系数,f 2为电网第二频率,f ref为电网频率参考值。
在一实施例中,还包括:
步骤S210:根据调相机无功功率参考值的最终值Q ref2,分别计算得到调相机有功功率参考值的上限值的初步值P refmax1和调相机有功功率参考值的下限值的初步值P refmin1
在本发明实施例中,步骤S210与步骤S209前后顺序可以互换,也可以同时执行。
在一实施例中,调相机有功功率参考值的上限值的初步值P refmax1可以采用如下公式(2)计算得到:
Figure PCTCN2020105681-appb-000001
其中,S max为调相机中变频器的最大容量限制值,Q ref2为调相机无功功率参考值的最终值。
调相机有功功率参考值的下限值的初步值P refmin1可以采用如下公式(3)计算得到:
Figure PCTCN2020105681-appb-000002
其中,S max为调相机中变频器的最大容量限制值,Q ref2为调相机无功功率参考值的最终值。
在一实施例中,步骤S210之后,还包括:
步骤S211:根据调相机的转速Ω,对调相机有功功率参考值的上限值的初步值P refmax1和调相机有功功率参考值的下限值的初步值P refmin1分别进行调整,得到调相机有功功率参考值的上限值的最终值P refmax2和调相机有功功率参考值的下限值的最终值P refmin2
上述实施例中,通过对调相机转速的限制,可以防止调相机过速或欠速,可以实现对调相机中变流器的保护,提高系统稳定性。
在一实施例中,步骤S211,包括:
如果Ω min≤Ω≤Ω max,则调相机有功功率参考值的上限值的最终值P refmax2=P refmax1,调相机有功功率参考值的下限值的最终值P refmin2=P refmin1
如果Ω>Ω max,则调相机有功功率参考值的上限值的最终值P refmax2=0;
如果Ω<Ω min,则调相机有功功率参考值的下限值的最终值P refmin2=0;
其中,Ω max为调相机转速的上限值,Ω min为调相机转速的下限值。
在一实施例中,还包括:步骤S212。步骤S212包括:
如果P refmin2≤P ref1≤P refmax2,则调相机有功功率参考值的最终值P ref2=P ref1
如果P ref1>P refmax2,则调相机有功功率参考值的最终值P ref2=P refmax2
如果P ref1<P refmin2,则调相机有功功率参考值的最终值P ref2=P refmin2
上述实施例中,通过对调相机有功功率的限制,可以实现对电网系统中频 率的调节,从而提高电网系统的稳定性。
在一实施例中,还包括:步骤S203。步骤S203包括:
如果Q min≤Q ref1≤Q max,则调相机无功功率参考值的最终值Q ref2=Q ref1
如果Q ref1>Q max,则调相机无功功率参考值的最终值Q ref2=Q max
如果Q ref1<Q min,则调相机无功功率参考值的最终值Q ref2=Q min
其中,Q max为调相机无功功率参考值的上限值,Q min为调相机无功功率参考值的下限值。
上述实施例中,调相机的无功功率参考值的上限值Q max和下限值Q min与调相机中变频器的最大容量限制值S max相关,Q max=S max,Q min=-S max。通过对调相机无功功率的限制,可以实现对电网系统中电压的调节,从而提高电网系统的稳定性。
在一实施例中,步骤S203之前,还包括:
步骤S201:获取电网电压V t和电网电流I t
步骤S202:根据电网电压V t和电网电流I t,计算得到调相机无功功率参考值的初步值Q ref1
在本发明实施例中,步骤S201中的电网电压V t和电网电流I t、步骤S204中的电网第一频率f 1、步骤S211中调相机的转速Ω可以同时从当前采集阶段所采集到的电力数据中获取,步骤S207中的电网第二频率f 2可以从下一采集阶段所采集到的电力数据中获取。
在一实施例中,调相机无功功率参考值的初步值Q ref1采用如下公式(4)计算得到:
Figure PCTCN2020105681-appb-000003
其中,K为串联校正环节的直流增益,K a为放大环节增益,s为拉普拉斯算子,T 1和T 2分别为第一串联校正环节的时间常数,T 3和T 4分别为第二串联校正环节的时间常数,T a为放大环节的时间常数,K v为积分校正环节的选择因子,V ref为电网电压参考值,V t为电网电压,I t为电网电流,X c为附加补偿电抗,φ为附加补偿因数角,T r为滤波环节的时间常数。
图3示出了根据本发明实施例的调相机控制装置的结构示意图。图3所示的装置可对应执行图1所示的方法。
如图3所示,在本实施例中,还提供一种调相机控制装置,包括:
数据获取单元301,设置为获取调相机无功功率参考值的初步值Q ref1
第一限幅单元302,设置为对调相机无功功率参考值的初步值Q ref1进行限幅处理,得到调相机无功功率参考值的最终值Q ref2
判断单元303,设置为获取电网频率并判断电网频率是否在频率死区之内,在所述电网频率不在所述频率死区之内的情况下,根据电网频率,计算得到调相机有功功率参考值的初步值P ref1
第二限幅单元304,设置为对调相机功功率参考值的初步值P ref1进行限幅处理,得到调相机有功功率参考值的最终值P ref2
输出单元305,设置为输出调相机到无功功率参考值的最终值Q ref2和调相机有功功率参考值的最终值P ref2,调相机无功功率参考值的最终值Q ref2和调相机有功功率参考值的最终值P ref2用于实现对调相机的控制。
在本发明实施例中,数据获取单元301和第一限幅单元302,设置为通过对调相机无功功率参考值的初步值Q ref1限幅,可以实现对电网系统电压的调节。判断单元303可以设置为通过计算电网频率f与电网频率参考值f ref的差值Δf,判断Δf是否在频率死区之内,即判断是否进入调频过程。如果在频率死区之内,即电网频率波动属正常范围,则无需进行后续的调频过程,可以结束本次控制流程,进入下一个控制流程;如果不在频率死区之内,即频率波动异常,则进行后续调频过程。其中,频率死区范围为电网频率与电网频率参考值之间的偏差范围,例如,电网频率参考值为50.00Hz,频率死区为±0.05Hz,电网频率在49.95-50.05Hz范围则在频率死区之内,否则不在。判断单元303、第二限幅单元304和输出单元305,通过频率判断和调相机有功功率参考值的初步值P ref1限幅可以实现对电网系统惯量和频率的调节。
上述实施例中,通过对调相机采用定无功功率和定有功功率控制,解决了调相机在电网运行特性复杂的应用场景(如新能源场站),无法同时解决短路电流不足以及电压、惯量、频率调节的问题。本发明实施例提供的调相机控制方法,在既能实现电网系统的稳态电压调节的前提下,又能在电压突变暂态过程提供快速正确的无功响应,并且对电网系统的惯量和一次调频起到调节作用,大大提高了电网系统的稳定性。
在一实施例中,判断单元303还设置为:
获取电网第一频率f 1
判断电网第一频率f 1是否在第一频率死区之内;
如果不在第一频率死区之内,则将第一时间段延迟第一预定时间量;
获取电网第二频率f 2
判断电网第二频率f 2是否在第二频率死区之内;
如果不在第二频率死区之内,则根据电网第二频率f 2,计算得到调相机有功功率参考值的初步值P ref1
在本发明实施例中,分别对第一频率f 1和电网第二频率f 2是否在频率死区之内进行判断,即判断是否进入调频过程:如果在频率死区之内,即电网频率波动属正常范围,则无需进行后续的调频过程,可以结束本次控制流程,进入下一个控制流程;如果不在频率死区之内,即频率波动异常,则需要进行后续调频过程。电网第一频率f 1和电网第二频率f 2为两个不同时刻的电网频率。第一频率死区和第二频率死区可以相同也可以不同。第一预定时间量可以为0.1-10s范围的任意值,可选地为0.2s。
上述实施例中,通过在电网第一频率f 1的死区判断之后进行延时处理,可以让调相机释放自身的惯量,从而实现惯量调节。
在一实施例中,调相机有功功率参考值的初步值P ref1可以采用如下公式(1)计算得到:
P ref1=K P(f ref-f 2)   (1);
其中,K p为下垂控制系数,f 2为电网第二频率,f ref为电网频率参考值。
在一实施例中,判断单元303还设置为:
根据调相机无功功率参考值的最终值Q ref2,分别计算得到调相机有功功率参考值的上限值的初步值P refmax1和调相机有功功率参考值的下限值的初步值P refmin1
在一实施例中,调相机有功功率参考值的上限值的初步值P refmax1可以采用如下公式(2)计算得到:
Figure PCTCN2020105681-appb-000004
其中,S max为调相机中变频器的最大容量限制值,Q ref2为调相机无功功率参考值的最终值。
调相机有功功率参考值的下限值的初步值P refmin1可以采用如下公式(3)计算得到:
Figure PCTCN2020105681-appb-000005
其中,S max为调相机中变频器的最大容量限制值,Q ref2为调相机无功功率参考值的最终值。
在一实施例中,判断单元303还设置为:
根据调相机的转速Ω,对调相机有功功率参考值的上限值的初步值P refmax1和调相机有功功率参考值的下限值的初步值P refmin1分别进行调整,得到调相机有功功率参考值的上限值的最终值P refmax2和调相机有功功率参考值的下限值的最终值P refmin2
上述实施例中,通过对调相机转速的限制,可以防止调相机过速或欠速,可以实现对调相机中变流器的保护,提高系统稳定性。
在一实施例中,根据调相机的转速Ω,对所述调相机有功功率参考值的上限值的初步值P refmax1和调相机有功功率参考值的下限值的初步值P refmin1分别进行调整,得到调相机有功功率参考值的上限值的最终值P refmax2和调相机有功功率参考值的下限值的最终值P refmin2,包括:
如果Ω min≤Ω≤Ω max,则调相机有功功率参考值的上限值的最终值P refmax2=P refmax1,调相机有功功率参考值的下限值的最终值P refmin2=P refmin1
如果Ω>Ω max,则调相机有功功率参考值的上限值的最终值P refmax2=0;
如果Ω<Ω min,则调相机有功功率参考值的下限值的最终值P refmin2=0;
其中,Ω max为调相机转速的上限值,Ω min为调相机转速的下限值。
在一实施例中,对所述调相机有功功率参考值的初步值P ref1进行限幅处理,得到调相机有功功率参考值的最终值P ref2,包括:
如果P refmin2≤P ref1≤P refmax2,则调相机有功功率参考值的最终值P ref2=P ref1
如果P ref1>P refmax2,则调相机有功功率参考值的最终值P ref2=P refmax2
如果P ref1<P refmin2,则调相机有功功率参考值的最终值P ref2=P refmin2
上述实施例中,通过对调相机有功功率的限制,可以实现对电网系统中频率的调节,从而提高电网系统的稳定性。
在一实施例中,对所述调相机无功功率参考值的初步值Q ref1进行限幅处理,得到调相机无功功率参考值的最终值Q ref2,包括:
如果Q min≤Q ref1≤Q max,则调相机无功功率参考值的最终值Q ref2=Q ref1
如果Q ref1>Q max,则调相机无功功率参考值的最终值Q ref2=Q max
如果Q ref1<Q min,则调相机无功功率参考值的最终值Q ref2=Q min
其中,Q max为调相机无功功率参考值的上限值,Q min为调相机无功功率参考值的下限值。
上述实施例中,调相机的无功功率参考值的上限值Q max和下限值Q min与调相机中变频器的最大容量限制值S max相关,Q max=S max,Q min=-S max。通过对调相机无功功率的限制,可以实现对电网系统中电压的调节,从而提高电网系统的稳定性。
在一实施例中,数据获取单元301还设置为:
获取电网电压V t和电网电流I t
根据电网电压V t和电网电流I t,计算得到调相机无功功率参考值的初步值Q ref1
在本发明实施例中,电网电压V t、电网电流I t、电网第一频率f 1、调相机的转速Ω可以同时从当前采集阶段所采集到的电力数据中获取,电网第二频率f 2可以从下一采集阶段所采集到的电力数据中获取。
在一实施例中,调相机无功功率参考值的初步值Q ref1采用如下公式(4)计算得到:
Figure PCTCN2020105681-appb-000006
其中,K为串联校正环节的直流增益,K a为放大环节增益,s为拉普拉斯算子,T 1和T 2分别为第一串联校正环节的时间常数,T 3和T 4分别为第二串联校正环节的时间常数,T a为放大环节的时间常数,K v为积分校正环节的选择因子,V ref为电网电压参考值,V t为电网电压,I t为电网电流,X c为附加补偿电抗,φ为附加补偿因数角,T r为滤波环节的时间常数。
图4示出了根据本发明实施例的另一种调相机控制方法的示例性流程图。
如图4所示,该方法包括:
步骤S401:获取调相机系统中的变流器的直流侧电压E dc和交流侧无功功率Q g
步骤S402:判断变流器的直流侧电压E dc是否在电压死区之内。
步骤S403:在所述变流器的直流侧电压E dc不在所述电压死区之内的情况下,通过计算和限幅得到变流器的d轴电流参考值。
步骤S404:在所述变流器的直流侧电压E dc在所述电压死区之内的情况下,将变流器的d轴电流参考值的先前值作为变流器的d轴电流参考值。
步骤S405:根据变流器的交流侧无功功率Q g,计算得到变流器的q轴电流参考值的初步值I gqref1
步骤S406:对变流器的q轴电流参考值的初步值I gqref1进行限幅,得到变流器的q轴电流参考值的最终值I gqref2
步骤S407:输出变流器的d轴电流参考值和变流器的q轴电流参考值的最终值I gqref2,变流器的d轴电流参考值和变流器的q轴电流参考值的最终值I gqref2用于实现对调相机的控制。
在本发明实施例中,步骤S402可以通过计算变流器的直流侧电压E dc与变流器的直流侧电压参考值E dcref的差值ΔE dc,判断ΔE dc是否在电压死区之内,即判断是否进行定直流电压控制。如果在电压死区之内,即电压波动属正常范围,则变流器的d轴电流参考值可以取值为变流器的d轴电流参考值的先前值,即上一次控制过程所得到的变流器的d轴电流参考值。如果没有变流器的d轴电流参考值的先前值,即首次控制过程中在电压死区之内,则变流器的d轴电流参考值为零;如果不在电压死区之内,即电压波动异常,则计算此时的变流器的d轴电流参考值,并对d轴电流参考值进行限幅,以保证电流参考值不超过变流器本身的电流限制,实现对变流器的保护。步骤S406可以通过对变流器的q轴电流参考值限幅,实现对电网系统电压的调节,此外,还可以保证电流参考值不超过变流器本身的电流限制,实现对变流器保护。
上述实施例中,通过对调相机采用定直流电压控制和定无功功率控制,解决了调相机在电网运行特性复杂的应用场景(如新能源场站),无法同时解决短路电流不足以及电压调节的问题。本发明实施例提供的调相机控制方法,在既能实现电网系统的稳态电压调节的前提下,又能在电压突变暂态过程提供快速正确的无功响应,大大提高了电网系统的稳定性。
在一实施例中,步骤S406,包括:
如果I gqmin≤I gqref1≤I gqmax,则变流器的q轴电流参考值的最终值I gqref2=I gqref1
如果I gqref1>I gqmax,则变流器的q轴电流参考值的最终值I gqref2=I gqmax
如果I gqref1<I gqmin,则变流器的q轴电流参考值的最终值I gqref2=I gqmin
其中,I gqmax为变流器的q轴电流参考值的上限值,I gqmin为变流器的q轴电流参考值的下限值。
图5为图4所示方法的一种实施方式的示例性流程图。
如图5所示,在一实施例中,在步骤S508之前,还包括:
步骤S506:根据变流器的交流侧无功功率Q g,计算得到变流器的q轴电流参考值的初步值I gqref1
步骤S507:根据变流器的d轴电流参考值,分别计算得到变流器的q轴电 流参考值的上限值I gqmax和下限值I gqmin
在本发明实施例中,步骤S506、步骤S507可以互换前后顺序,也可以同时执行。
在一实施例中,步骤S403,包括:
步骤S503:根据变流器的直流侧电压E dc,通过计算得到变流器的d轴电流参考值的初步值I gdref1
步骤S504:对变流器的d轴电流参考值的初步值I gdref1进行限幅处理,得到变流器的d轴电流参考值的最终值I gdref2
在一实施例中,步骤S504,包括:
如果I gdmin≤I gdref1≤I gdmax,则变流器的d轴电流参考值的最终值I gdref2=I gdref1
如果I gdref1>I gdmax,则变流器的d轴电流参考值的最终值I gdref2=I gdmax
如果I gdref1<I gdmin,则变流器的d轴电流参考值的最终值I gdref2=I gdmin
其中,I gdmax为变流器的d轴电流参考值的上限值,I gdmin为变流器的d轴电流参考值的下限值。
在本发明实施例中,变流器的d轴电流参考值的上限值I gdmax和下限值I gdmin与调相机中变频器本身的最大电流和最小电流限制有关,I gdmax=I gmax,I gdmin=-I gmax,I gmax为调相机中变频器的最大电流限制值。
在一实施例中,变流器的d轴电流参考值的初步值I gdref1采用如下公式(5)计算得到:
Figure PCTCN2020105681-appb-000007
其中,E dcref为网侧变流器的直流侧电压参考值,E dc为网侧变流器的直流侧电压,K pd为网侧变流器的直流电压控制比例环节常数,K id为网侧变流器的直流电压控制积分环节常数,s为拉普拉斯算子。
在一实施例中,变流器的q轴电流参考值的初步值I gqref1采用如下公式(6)计算得到:
Figure PCTCN2020105681-appb-000008
其中,Q gref为网侧变流器的交流侧无功功率参考值,Q g为网侧变流器的交流侧无功功率,K gd为网侧变流器的交流侧无功功率控制比例环节常数,K ig为网侧变流器的交流侧无功功率控制积分环节常数,s为拉普拉斯算子。
在一实施例中,变流器的q轴电流参考值的上限值I gqmax采用如下公式(7)计算得到:
Figure PCTCN2020105681-appb-000009
其中,I gmax为调相机中变频器的最大电流限制值,I gdref2为网侧变流器的d轴电流参考值的最终值。
变流器的q轴电流参考值的下限值I gqmin采用如下公式(8)计算得到:
Figure PCTCN2020105681-appb-000010
其中,I gmax为调相机中变频器的最大电流限制值,I gdref2为网侧变流器的d轴电流参考值的最终值。
图6示出了根据本发明实施例的调相机控制装置的结构示意图。图6所示的装置可对应执行图4所示的方法。
如图6所示,在本实施例中,还提供一种调相机控制装置,包括:
数据获取单元601,设置为获取调相机系统中的变流器的直流侧电压E dc和交流侧无功功率Q g
判断单元602,设置为判断变流器的直流侧电压E dc是否在电压死区之内:如果不在,则通过计算和限幅得到变流器的d轴电流参考值;如果在,则将变流器的d轴电流参考值的先前值作为变流器的d轴电流参考值。
计算单元603,设置为根据变流器的交流侧无功功率Q g,计算得到变流器的q轴电流参考值的初步值I gqref1
限幅单元604,设置为对变流器的q轴电流参考值的初步值I gqref1进行限幅,得到变流器的q轴电流参考值的最终值I gqref2
输出单元605,设置为输出变流器的d轴电流参考值和变流器的q轴电流参考值的最终值I gqref2,变流器的d轴电流参考值和变流器的q轴电流参考值的最终值I gqref2用于实现对调相机的控制。
在本发明实施例中,判断单元602可以设置为通过计算变流器的直流侧电压E dc与变流器的直流侧电压参考值E dcref的差值ΔE dc,判断ΔE dc是否在电压死区之内,即判断是否进行定直流电压控制。如果在电压死区之内,即电压波动属正常范围,则变流器的d轴电流参考值可以取值为变流器的d轴电流参考值的先前值,即上一次控制过程所得到的变流器的d轴电流参考值。如果没有变流器的d轴电流参考值的先前值,即首次控制过程中在电压死区之内,则变流器的d轴电流参考值为零;如果不在电压死区之内,即电压波动异常,则计算 此时的变流器的d轴电流参考值,并对d轴电流参考值进行限幅,以保证电流参考值不超过变流器本身的电流限制,实现对变流器的保护。限幅单元604可以设置为通过对变流器的q轴电流参考值限幅,实现对电网系统电压的调节,此外,还可以保证电流参考值不超过变流器本身的电流限制,实现对变流器保护。
上述实施例中,通过对调相机采用定直流电压控制和定无功功率控制,解决了调相机在电网运行特性复杂的应用场景(如新能源场站),无法同时解决短路电流不足以及电压调节的问题。本发明实施例提供的调相机控制方法,在既能实现电网系统的稳态电压调节的前提下,又能在电压突变暂态过程提供快速正确的无功响应,大大提高了电网系统的稳定性。
在一实施例中,对所述变流器的q轴电流参考值的初步值I gqref1进行限幅,得到变流器的q轴电流参考值的最终值I gqref2,包括:
如果I gqmin≤I gqref1≤I gqmax,则变流器的q轴电流参考值的最终值I gqref2=I gqref1
如果I gqref1>I gqmax,则变流器的q轴电流参考值的最终值I gqref2=I gqmax
如果I gqref1<I gqmin,则变流器的q轴电流参考值的最终值I gqref2=I gqmin
其中,I gqmax为变流器的q轴电流参考值的上限值,I gqmin为变流器的q轴电流参考值的下限值。
在一实施例中,计算单元603还设置为:
根据变流器的d轴电流参考值,分别计算得到变流器的q轴电流参考值的上限值I gqmax和下限值I gqmin
在一实施例中,判断单元602还设置为:
根据变流器的直流侧电压E dc,通过计算得到变流器的d轴电流参考值的初步值I gdref1
对变流器的d轴电流参考值的初步值I gdref1进行限幅处理,得到变流器的d轴电流参考值的最终值I gdref2
在一实施例中,对所述变流器的d轴电流参考值的初步值I gdref1进行限幅处理,得到变流器的d轴电流参考值的最终值I gdref2,包括:
如果I gdmin≤I gdref1≤I gdmax,则变流器的d轴电流参考值的最终值I gdref2=I gdref1
如果I gdref1>I gdmax,则变流器的d轴电流参考值的最终值I gdref2=I gdmax
如果I gdref1<I gdmin,则变流器的d轴电流参考值的最终值I gdref2=I gdmin
其中,I gdmax为变流器的d轴电流参考值的上限值,I gdmin为变流器的d轴电 流参考值的下限值。
在本发明实施例中,变流器的d轴电流参考值的上限值I gdmax和下限值I gdmin与调相机中变频器本身的最大电流和最小电流限制有关,I gdmax=I gmax,I gdmin=-I gmax,I gmax为调相机中变频器的最大电流限制值。
在一实施例中,变流器的d轴电流参考值的初步值I gdref1采用如下公式(5)计算得到:
Figure PCTCN2020105681-appb-000011
其中,E dcref为网侧变流器的直流侧电压参考值,E dc为网侧变流器的直流侧电压,K pd为网侧变流器的直流电压控制比例环节常数,K id为网侧变流器的直流电压控制积分环节常数,s为拉普拉斯算子。
在一实施例中,变流器的q轴电流参考值的初步值I gqref1采用如下公式(6)计算得到:
Figure PCTCN2020105681-appb-000012
其中,Q gref为网侧变流器的交流侧无功功率参考值,Q g为网侧变流器的交流侧无功功率,K gd为网侧变流器的交流侧无功功率控制比例环节常数,K ig为网侧变流器的交流侧无功功率控制积分环节常数,s为拉普拉斯算子。
在一实施例中,变流器的q轴电流参考值的上限值I gqmax采用如下公式(7)计算得到:
Figure PCTCN2020105681-appb-000013
其中,I gmax为调相机中变频器的最大电流限制值,I gdref2为网侧变流器d轴电流参考值的最终值。
变流器的q轴电流参考值的下限值I gqmin采用如下公式(8)计算得到:
Figure PCTCN2020105681-appb-000014
其中,I gmax为调相机中变频器的最大电流限制值,I gdref2为网侧变流器d轴电流参考值的最终值。
本发明实施例提供的调相机控制方法、装置、调相机系统及存储介质,通过对调相机采用定有功功率和定无功功率控制方式,和/或定直流电压控制和定无功功率控制方式,解决了调相机在电网运行特性复杂的应用场景(如新能源 场站),无法同时解决短路电流不足以及电压、惯量、频率调节的问题。本发明实施例提供的调相机控制方法、装置及调相机,在既能实现电网系统的稳态电压调节的前提下,又能在电压突变暂态过程提供快速正确的无功响应,并且对电网系统的惯量和一次调频起到调节作用,大大提高了电网系统的稳定性。
另一方面,本发明实施例还提供了一种调相机系统。
图7示出了根据本发明实施例的调相机系统的结构示意图。如图7所示,该调相机系统,包括:
采集装置701,设置为采集电力数据,并将电力数据发送给控制装置702,电力数据包括以下至少一项:电网频率、电网电压、调相机的转速、调相机系统中变流器的直流侧电压、调相机系统中变流器的交流侧无功功率;
控制装置702,设置为获取电力数据,并根据如上述实施例的方法输出控制信号,控制信号包括以下至少一项:调相机无功功率参考值的最终值、调相机有功功率参考值的最终值、变流器的d轴电流参考值、变流器的q轴电流参考值的最终值;
变频器703,设置为接收控制信号,并根据控制信号来控制异步电机704运转;
异步电机704,设置为在变频器703的控制下实现对电网异常的调节;
其中,采集装置701分别与电网、异步电机704以及控制装置702相连,控制装置702与变频器703相连,变频器703与异步电机704相连。
本实施例中,采集装置701可以为一个采集装置,设置为采集所有的电力数据,也可以为两个或多个采集装置,分别采集不同装置的电力数据。变频器703可以为任意合适的变频器。控制装置702可以为处理器或者其他具有数据处理能力的装置;可以单独执行上述实施例所述的方法来控制变频器703运行,也可以同时执行两种或多种上述实施例所述的方法来控制变频器703运行。异步电机704可以为任意合适的异步电机,可选地为双馈异步电机。
上述实施例中,通过采用异步电机取代相关技术中的同步电机,提供了一种全新的调相机系统。在一实施例中,控制装置根据如上述实施例所述的方法来控制变频器运行,解决了调相机在电网运行特性复杂的应用场景(如新能源场站),无法同时解决短路电流不足以及电压、惯量、频率调节的问题。本发明实施例提供的调相机系统,在既能实现电网系统的稳态电压调节的前提下,又能在电压突变暂态过程提供快速正确的无功响应,并且对电网系统的惯量和一次调频起到调节作用,大大提高了电网系统的稳定性。
在一可选实施例中,变频器包括:机侧变流器和网侧变流器;机侧变流器与异步电机、网侧变流器相连,网侧变流器与电网相连。
本发明实施例中,控制装置可以根据如图1所示的方法来控制变频器中的机侧变流器运行,根据如图4所示的方法来控制变频器中的网侧变流器运行。
在一实施例中,机侧变流器和网侧变流器均为全控型变流器。
上述实施例中,通过采用全控型变流器,可以实现对有功功率和无功功率分别进行控制,使得调相机控制过程更加方便有效。
另一方面,本发明实施例还提供了一种计算机存储介质,存储有计算机程序,该计算机程序用于实现:
获取调相机无功功率参考值的初步值Q ref1
对调相机无功功率参考值的初步值Q ref1进行限幅处理,得到调相机无功功率参考值的最终值Q ref2
获取电网频率并判断电网频率是否在频率死区之内,在所述电网频率不在所述频率死区之内的情况下,根据电网频率,计算得到调相机有功功率参考值的初步值P ref1
对调相机有功功率参考值的初步值P ref1进行限幅处理,得到调相机有功功率参考值的最终值P ref2
输出调相机到无功功率参考值的最终值Q ref2和调相机有功功率参考值的最终值P ref2,调相机无功功率参考值的最终值Q ref2和调相机有功功率参考值的最终值P ref2用于实现对调相机的控制。
本发明实施例提供的一种计算机程序存储介质相关部分的说明请参见上述实施例提供的一种调相机控制方法中对应部分的说明,在此不再赘述。
另一方面,本发明实施例还提供了另一种计算机存储介质,存储有计算机程序,该计算机程序用于实现:
获取调相机系统中的变流器的直流侧电压E dc和交流侧无功功率Q g
判断变流器的直流侧电压E dc是否在电压死区之内;
在所述变流器的直流侧电压E dc不在所述电压死区之内的情况下,通过计算和限幅得到变流器d轴电流参考值;
在所述变流器的直流侧电压E dc在所述电压死区之内的情况下,将变流器d轴电流参考值的先前值作为变流器d轴电流参考值;
根据变流器的交流侧无功功率Q g,计算得到变流器的q轴电流参考值的初 步值I gqref1
对变流器的q轴电流参考值的初步值I gqref1进行限幅,得到变流器的q轴电流参考值的最终值I gqref2
输出变流器的d轴电流参考值和变流器的q轴电流参考值的最终值I gqref2,变流器的d轴电流参考值和变流器的q轴电流参考值的最终值I gqref2用于实现对调相机的控制。
本发明实施例提供的另一种计算机存储介质相关部分的说明请参见上述实施例提供的一种调相机控制方法中对应部分的说明,在此不再赘述。

Claims (31)

  1. 一种调相机控制方法,包括:
    获取调相机无功功率参考值的初步值Q ref1
    对所述调相机无功功率参考值的初步值Q ref1进行限幅处理,得到所述调相机无功功率参考值的最终值Q ref2
    获取电网频率并判断所述电网频率是否在频率死区之内,在所述电网频率不在所述频率死区之内的情况下,根据所述电网频率,计算得到调相机有功功率参考值的初步值P ref1
    对所述调相机有功功率参考值的初步值P ref1进行限幅处理,得到所述调相机有功功率参考值的最终值P ref2
    输出所述调相机无功功率参考值的最终值Q ref2和所述调相机有功功率参考值的最终值P ref2,所述调相机无功功率参考值的最终值Q ref2和所述调相机有功功率参考值的最终值P ref2用于实现对调相机的控制。
  2. 根据权利要求1所述的方法,其中,所述获取电网频率并判断所述电网频率是否在频率死区之内,在所述电网频率不在所述频率死区之内的情况下,根据所述电网频率,计算得到调相机有功功率参考值的初步值P ref1,包括:
    获取电网第一频率f 1
    判断所述电网第一频率f 1是否在第一频率死区之内;
    在所述电网第一频率f 1不在所述第一频率死区之内的情况下,将第一时间段延迟第一预定时间量;
    获取电网第二频率f 2
    判断所述电网第二频率f 2是否在第二频率死区之内;
    在所述电网第二频率f 2不在所述第二频率死区之内的情况下,根据所述电网第二频率f 2,计算得到所述调相机有功功率参考值的初步值P ref1
  3. 根据权利要求2所述的方法,在所述对所述调相机有功功率参考值的初步值P ref1进行限幅处理之前,还包括:
    根据所述调相机无功功率参考值的最终值Q ref2,分别计算得到所述调相机有功功率参考值的上限值的初步值P refmax1和所述调相机有功功率参考值的下限值的初步值P refmin1
  4. 根据权利要求3所述的方法,其中,在所述分别计算得到所述调相机有功功率参考值的上限值的初步值P refmax1和所述调相机有功功率参考值的下限值的初步值P refmin1之后,还包括:
    根据调相机的转速Ω,对所述调相机有功功率参考值的上限值的初步值P refmax1和所述调相机有功功率参考值的下限值的初步值P refmin1分别进行调整,得到所述调相机有功功率参考值的上限值的最终值P refmax2和所述调相机有功功率参考值的下限值的最终值P refmin2
  5. 根据权利要求4所述的方法,其中,所述根据调相机的转速Ω,对所述调相机有功功率参考值的上限值的初步值P refmax1和所述调相机有功功率参考值的下限值的初步值P refmin1分别进行调整,得到所述调相机有功功率参考值的上限值的最终值P refmax2和所述调相机有功功率参考值的下限值的最终值P refmin2,包括:
    在Ω min≤Ω≤Ω max的情况下,所述调相机有功功率参考值的上限值的最终值P refmax2=P refmax1,所述调相机有功功率参考值的下限值的最终值P refmin2=P refmin1
    在Ω>Ω max的情况下,所述调相机有功功率参考值的上限值的最终值P refmax2=0;
    在Ω<Ω min的情况下,所述调相机有功功率参考值的下限值的最终值P refmin2=0;
    其中,Ω max为调相机转速的上限值,Ω min为调相机转速的下限值。
  6. 根据权利要求5所述的方法,其中,所述对所述调相机有功功率参考值的初步值P ref1进行限幅处理,得到所述调相机有功功率参考值的最终值P ref2,包括:
    在P refmin2≤P ref1≤P refmax2的情况下,所述调相机有功功率参考值的最终值P ref2=P ref1
    在P ref1>P refmax2的情况下,所述调相机有功功率参考值的最终值P ref2=P refmax2
    在P ref1<P refmin2的情况下,所述调相机有功功率参考值的最终值P ref2=P refmin2
  7. 根据权利要求1-6中任一项所述的方法,其中,所述对所述调相机无功功率参考值的初步值Q ref1进行限幅处理,得到所述调相机无功功率参考值的最终值Q ref2,包括:
    在Q min≤Q ref1≤Q max的情况下,所述调相机无功功率参考值的最终值Q ref2=Q ref1
    在Q ref1>Q max的情况下,所述调相机无功功率参考值的最终值Q ref2=Q max
    在Q ref1<Q min的情况下,所述调相机无功功率参考值的最终值Q ref2=Q min
    其中,Q max为所述调相机无功功率参考值的上限值,Q min为所述调相机无功功率参考值的下限值。
  8. 根据权利要求7所述的方法,其中,在所述获取调相机无功功率参考值的初步值Q ref1之前,还包括:
    获取电网电压V t和电网电流I t
    根据所述电网电压V t和所述电网电流I t,计算得到所述调相机无功功率参考值的初步值Q ref1
  9. 一种调相机控制装置,包括:
    数据获取单元,设置为获取调相机无功功率参考值的初步值Q ref1
    第一限幅单元,设置为对所述调相机无功功率参考值的初步值Q ref1进行限幅处理,得到所述调相机无功功率参考值的最终值Q ref2
    判断单元,设置为获取电网频率并判断所述电网频率是否在频率死区之内,在所述电网频率不在所述频率死区之内的情况下,根据所述电网频率,计算得到调相机有功功率参考值的初步值P ref1
    第二限幅单元,设置为对所述调相机有功功率参考值的初步值P ref1进行限幅处理,得到所述调相机有功功率参考值的最终值P ref2
    输出单元,设置为输出所述调相机无功功率参考值的最终值Q ref2和所述调相机有功功率参考值的最终值P ref2,所述调相机无功功率参考值的最终值Q ref2和所述调相机有功功率参考值的最终值P ref2用于实现对调相机的控制。
  10. 根据权利要求9所述的装置,其中,所述判断单元是设置为:
    获取电网第一频率f 1
    判断所述电网第一频率f 1是否在第一频率死区之内;
    在所述电网第一频率f 1不在所述第一频率死区之内的情况下,将第一时间段延迟第一预定时间量;
    获取电网第二频率f 2
    判断所述电网第二频率f 2是否在第二频率死区之内;
    在所述电网第二频率f 2不在所述第二频率死区之内的情况下,根据所述电网第二频率f 2,计算得到所述调相机有功功率参考值的初步值P ref1
  11. 根据权利要求10所述的装置,其中,所述判断单元还设置为:
    根据所述调相机无功功率参考值的最终值Q ref2,分别计算得到所述调相机 有功功率参考值的上限值的初步值P refmax1和所述调相机有功功率参考值的下限值的初步值P refmin1
  12. 根据权利要求11所述的装置,其中,所述判断单元还设置为:
    根据调相机的转速Ω,对所述调相机有功功率参考值的上限值的初步值P refmax1和所述调相机有功功率参考值的下限值的初步值P refmin1分别进行调整,得到所述调相机有功功率参考值的上限值的最终值P refmax2和所述调相机有功功率参考值的下限值的最终值P refmin2
  13. 根据权利要求12所述的装置,其中,所述判断单元还设置为:
    在Ω min≤Ω≤Ω max的情况下,所述调相机有功功率参考值的上限值的最终值P refmax2=P refmax1,所述调相机有功功率参考值的下限值的最终值P refmin2=P refmin1
    在Ω>Ω max的情况下,所述调相机有功功率参考值的上限值的最终值P refmax2=0;
    在Ω<Ω min的情况下,所述调相机有功功率参考值的下限值的最终值P refmin2=0;
    其中,Ω max为调相机转速的上限值,Ω min为调相机转速的下限值。
  14. 根据权利要求13所述的装置,其中,所述第二限幅单元是设置为:
    在P refmin2≤P ref1≤P refmax2的情况下,所述调相机有功功率参考值的最终值P ref2=P ref1
    在P ref1>P refmax2的情况下,所述调相机有功功率参考值的最终值P ref2=P refmax2
    在P ref1<P refmin2的情况下,所述调相机有功功率参考值的最终值P ref2=P refmin2
  15. 根据权利要求9-14中任一项所述的装置,其中,所述第一限幅单元是设置为:
    在Q min≤Q ref1≤Q max的情况下,所述调相机无功功率参考值的最终值Q ref2=Q ref1
    在Q ref1>Q max的情况下,所述调相机无功功率参考值的最终值Q ref2=Q max
    在Q ref1<Q min的情况下,所述调相机无功功率参考值的最终值Q ref2=Q min
    其中,Q max为所述调相机无功功率参考值的上限值,Q min为所述调相机无功功率参考值的下限值。
  16. 根据权利要求15所述的装置,其中,所述数据获取单元还设置为:
    获取电网电压V t和电网电流I t
    根据所述电网电压V t和所述电网电流I t,计算得到所述调相机无功功率参考值的初步值Q ref1
  17. 一种调相机控制方法,包括:
    获取调相机系统中的变流器的直流侧电压E dc和交流侧无功功率Q g
    判断所述变流器的直流侧电压E dc是否在电压死区之内;
    在所述变流器的直流侧电压E dc不在所述电压死区之内的情况下,通过计算和限幅得到所述变流器的d轴电流参考值;
    在所述变流器的直流侧电压E dc在所述电压死区之内的情况下,将所述变流器的d轴电流参考值的先前值作为所述变流器的d轴电流参考值;
    根据所述变流器的交流侧无功功率Q g,计算得到所述变流器的q轴电流参考值的初步值I gqref1
    对所述变流器的q轴电流参考值的初步值I gqref1进行限幅,得到所述变流器的q轴电流参考值的最终值I gqref2
    输出所述变流器的d轴电流参考值和所述变流器的q轴电流参考值的最终值I gqref2,所述变流器的d轴电流参考值和所述变流器的q轴电流参考值的最终值I gqref2用于实现对调相机的控制。
  18. 根据权利要求17所述的方法,其中,所述对所述变流器的q轴电流参考值的初步值I gqref1进行限幅,得到所述变流器的q轴电流参考值的最终值I gqref2,包括:
    在I gqmin≤I gqref1≤I gqmax的情况下,所述变流器的q轴电流参考值的最终值I gqref2=I gqref1
    在I gqref1>I gqmax的情况下,所述变流器的q轴电流参考值的最终值I gqref2=I gqmax
    在I gqref1<I gqmin的情况下,所述变流器的q轴电流参考值的最终值I gqref2=I gqmin
    其中,I gqmax为所述变流器的q轴电流参考值的上限值,I gqmin为所述变流器的q轴电流参考值的下限值。
  19. 根据权利要求18所述的方法,其中,在所述对所述变流器的q轴电流参考值的初步值I gqref1进行限幅之前,还包括:
    根据所述变流器的d轴电流参考值,分别计算得到所述变流器的q轴电流 参考值的上限值I gqmax和下限值I gqmin
  20. 根据权利要求17-19中任一项所述的方法,其中,所述通过计算和限幅得到所述变流器的d轴电流参考值,包括:
    根据所述变流器的直流侧电压E dc,通过计算得到所述变流器的d轴电流参考值的初步值I gdref1
    对所述变流器的d轴电流参考值的初步值I gdref1进行限幅处理,得到所述变流器的d轴电流参考值的最终值I gdref2
  21. 根据权利要求20所述的方法,其中,所述对所述变流器的d轴电流参考值的初步值I gdref1进行限幅处理,得到所述变流器的d轴电流参考值的最终值I gdref2,包括:
    在I gdmin≤I gdref1≤I gdmax的情况下,所述变流器的d轴电流参考值的最终值I gdref2=I gdref1
    在I gdref1>I gdmax的情况下,所述变流器的d轴电流参考值的最终值I gdref2=I gdmax
    在I gdref1<I gdmin的情况下,所述变流器的d轴电流参考值的最终值I gdref2=I gdmin
    其中,I gdmax为所述变流器的d轴电流参考值的上限值,I gdmin为所述变流器的d轴电流参考值的下限值。
  22. 一种调相机控制装置,包括:
    数据获取单元,设置为获取调相机系统中的变流器的直流侧电压E dc和交流侧无功功率Q g
    判断单元,设置为判断所述变流器的直流侧电压E dc是否在电压死区之内;在所述变流器的直流侧电压E dc不在所述电压死区之内的情况下,通过计算和限幅得到所述变流器的d轴电流参考值;在所述变流器的直流侧电压E dc在所述电压死区之内的情况下,将所述变流器的d轴电流参考值的先前值作为所述变流器的d轴电流参考值;
    计算单元,设置为根据所述变流器的交流侧无功功率Q g,计算得到所述变流器的q轴电流参考值的初步值I gqref1
    限幅单元,设置为对所述变流器的q轴电流参考值的初步值I gqref1进行限幅,得到所述变流器的q轴电流参考值的最终值I gqref2
    输出单元,设置为输出所述变流器的d轴电流参考值和所述变流器的q轴电流参考值的最终值I gqref2,所述变流器的d轴电流参考值和所述变流器的q轴 电流参考值的最终值I gqref2用于实现对调相机的控制。
  23. 根据权利要求22所述的装置,其中,所述限幅单元是设置为:
    在I gqmin≤I gqref1≤I gqmax的情况下,所述变流器的q轴电流参考值的最终值I gqref2=I gqref1
    在I gqref1>I gqmax的情况下,所述变流器的q轴电流参考值的最终值I gqref2=I gqmax
    在I gqref1<I gqmin的情况下,所述变流器的q轴电流参考值的最终值I gqref2=I gqmin
    其中,I gqmax为所述变流器的q轴电流参考值的上限值,I gqmin为所述变流器的q轴电流参考值的下限值。
  24. 根据权利要求23所述的装置,其中,所述计算单元还设置为:
    根据所述变流器的d轴电流参考值,分别计算得到所述变流器的q轴电流参考值的上限值I gqmax和下限值I gqmin
  25. 根据权利要求22-24中任一项所述的装置,其中,所述判断单元还设置为:
    根据所述变流器的直流侧电压E dc,通过计算得到所述变流器的d轴电流参考值的初步值I gdref1
    对所述变流器的d轴电流参考值的初步值I gdref1进行限幅处理,得到所述变流器的d轴电流参考值的最终值I gdref2
  26. 根据权利要求25所述的装置,其中,所述限幅单元是设置为:
    在I gdmin≤I gdref1≤I gdmax的情况下,所述变流器的d轴电流参考值的最终值I gdref2=I gdref1
    在I gdref1>I gdmax的情况下,所述变流器的d轴电流参考值的最终值I gdref2=I gdmax
    在I gdref1<I gdmin的情况下,所述变流器的d轴电流参考值的最终值I gdref2=I gdmin
    其中,I gdmax为所述变流器的d轴电流参考值的上限值,I gdmin为所述变流器的d轴电流参考值的下限值。
  27. 一种调相机系统,包括:
    采集装置,设置为采集电力数据,并将所述电力数据发送给控制装置,所述电力数据包括以下至少一项:电网频率、电网电压、调相机的转速、调相机 系统中变流器的直流侧电压、调相机系统中变流器的交流侧无功功率;
    所述控制装置,设置为获取所述电力数据,并根据如权利要求1-8、17-21中任一项所述的方法输出控制信号,所述控制信号包括以下至少一项:调相机无功功率参考值的最终值、调相机有功功率参考值的最终值、变流器的d轴电流参考值、变流器的q轴电流参考值的最终值;
    变频器,设置为接收所述控制信号,并根据所述控制信号来控制异步电机运转;
    所述异步电机,设置为在所述变频器的控制下实现对电网异常的调节;
    其中,所述采集装置分别与电网、所述异步电机以及所述控制装置相连,所述控制装置与所述变频器相连,所述变频器与所述异步电机相连。
  28. 根据权利要求27所述的系统,其中,所述变频器包括:机侧变流器和网侧变流器;
    所述机侧变流器与所述异步电机和所述网侧变流器相连,所述网侧变流器与所述电网相连。
  29. 根据权利要求28所述的系统,其中,所述机侧变流器和所述网侧变流器均为全控型变流器。
  30. 一种计算机存储介质,存储有计算机程序,所述计算机程序用于实现:
    获取调相机无功功率参考值的初步值Q ref1
    对所述调相机无功功率参考值的初步值Q ref1进行限幅处理,得到所述调相机无功功率参考值的最终值Q ref2
    获取电网频率并判断所述电网频率是否在频率死区之内,在所述电网频率不在所述频率死区之内的情况下,根据所述电网频率,计算得到调相机有功功率参考值的初步值P ref1
    对所述调相机有功功率参考值的初步值P ref1进行限幅处理,得到所述调相机有功功率参考值的最终值P ref2
    输出所述调相机无功功率参考值的最终值Q ref2和所述调相机有功功率参考值的最终值P ref2,所述调相机无功功率参考值的最终值Q ref2和所述调相机有功功率参考值的最终值P ref2用于实现对调相机的控制。
  31. 一种计算机存储介质,存储有计算机程序,所述计算机程序用于实现:
    获取调相机系统中的变流器的直流侧电压E dc和交流侧无功功率Q g
    判断所述变流器的直流侧电压E dc是否在电压死区之内;
    在所述变流器的直流侧电压E dc不在所述电压死区之内的情况下,通过计算和限幅得到所述变流器的d轴电流参考值;
    在所述变流器的直流侧电压E dc在所述电压死区之内的情况下,将所述变流器的d轴电流参考值的先前值作为所述变流器的d轴电流参考值;
    根据所述变流器的交流侧无功功率Q g,计算得到所述变流器的q轴电流参考值的初步值I gqref1
    对所述变流器的q轴电流参考值的初步值I gqref1进行限幅,得到所述变流器的q轴电流参考值的最终值I gqref2
    输出所述变流器的d轴电流参考值和所述变流器的q轴电流参考值的最终值I gqref2,所述变流器的d轴电流参考值和所述变流器的q轴电流参考值的最终值I gqref2用于实现对调相机的控制。
PCT/CN2020/105681 2020-04-14 2020-07-30 调相机控制方法、装置、调相机系统及存储介质 WO2021208293A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010290626.6 2020-04-14
CN202010290627.0A CN111262254B (zh) 2020-04-14 2020-04-14 调相机控制方法、装置、调相机系统及存储介质
CN202010290627.0 2020-04-14
CN202010290626.6A CN111193273B (zh) 2020-04-14 2020-04-14 调相机控制方法、装置、调相机系统及存储介质

Publications (1)

Publication Number Publication Date
WO2021208293A1 true WO2021208293A1 (zh) 2021-10-21

Family

ID=78083494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105681 WO2021208293A1 (zh) 2020-04-14 2020-07-30 调相机控制方法、装置、调相机系统及存储介质

Country Status (1)

Country Link
WO (1) WO2021208293A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114156952A (zh) * 2021-12-14 2022-03-08 广西大学 一种基于协同控制的独立电力系统频率控制方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160087475A1 (en) * 2014-09-23 2016-03-24 Lsis Co., Ltd. Control device of energy storage system
CN108281970A (zh) * 2017-12-25 2018-07-13 华中科技大学 一种交流励磁同步调相机及其控制方法
CN110061475A (zh) * 2019-03-22 2019-07-26 中国电力科学研究院有限公司 一种基于对系统影响程度的调相机失磁保护方法及系统
CN110661269A (zh) * 2019-11-03 2020-01-07 国网湖北省电力有限公司电力科学研究院 一种抵御直流连续换相失败的调相机无功功率快速支撑方法
CN110661274A (zh) * 2019-09-29 2020-01-07 国网山东省电力公司电力科学研究院 一种复合型动态功率支撑系统及其协调控制方法
CN111193273A (zh) * 2020-04-14 2020-05-22 中国电力科学研究院有限公司 调相机控制方法、装置、调相机系统及存储介质
CN111262254A (zh) * 2020-04-14 2020-06-09 中国电力科学研究院有限公司 调相机控制方法、装置、调相机系统及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160087475A1 (en) * 2014-09-23 2016-03-24 Lsis Co., Ltd. Control device of energy storage system
CN108281970A (zh) * 2017-12-25 2018-07-13 华中科技大学 一种交流励磁同步调相机及其控制方法
CN110061475A (zh) * 2019-03-22 2019-07-26 中国电力科学研究院有限公司 一种基于对系统影响程度的调相机失磁保护方法及系统
CN110661274A (zh) * 2019-09-29 2020-01-07 国网山东省电力公司电力科学研究院 一种复合型动态功率支撑系统及其协调控制方法
CN110661269A (zh) * 2019-11-03 2020-01-07 国网湖北省电力有限公司电力科学研究院 一种抵御直流连续换相失败的调相机无功功率快速支撑方法
CN111193273A (zh) * 2020-04-14 2020-05-22 中国电力科学研究院有限公司 调相机控制方法、装置、调相机系统及存储介质
CN111262254A (zh) * 2020-04-14 2020-06-09 中国电力科学研究院有限公司 调相机控制方法、装置、调相机系统及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114156952A (zh) * 2021-12-14 2022-03-08 广西大学 一种基于协同控制的独立电力系统频率控制方法及系统
CN114156952B (zh) * 2021-12-14 2023-08-11 广西大学 一种基于协同控制的独立电力系统频率控制方法及系统

Similar Documents

Publication Publication Date Title
DK2556247T3 (en) DYNAMIC INERTIRE REGULATION
CN111262254B (zh) 调相机控制方法、装置、调相机系统及存储介质
CN111193273B (zh) 调相机控制方法、装置、调相机系统及存储介质
CN109586319B (zh) 一种风电机组参与系统调频方法及系统
CN108683198A (zh) 双馈风力发电机组的电压控制型虚拟同步方法
RU2729059C1 (ru) Способ подачи электрической мощности посредством управляемого преобразователем генераторного блока, в частности, ветроэнергетической установки
KR20190127913A (ko) 전력 공급 네트워크에 전력을 공급하기 위한 방법
CN110739721A (zh) 一种电压源型风电机组控制方法及系统
KR20110009072A (ko) 풍력 발전 장치 및 그 제어 방법
US11411405B2 (en) Method of feeding electric power by means of a wind energy system
CN106817041A (zh) 电力转换装置、发电系统、控制装置以及电力转换方法
WO2021208293A1 (zh) 调相机控制方法、装置、调相机系统及存储介质
CN116247750A (zh) 一种惯量和阻尼自适应的vsg控制方法
CN108183490B (zh) 无功补偿装置的控制增益调节方法、装置和系统
CN112928781B (zh) 双馈风机暂态稳定控制方法、系统、计算机设备和介质
US20220102980A1 (en) Command generation device and command generation method
CN112491071B (zh) 一种储能自适应惯量vsg控制方法
CN109586338B (zh) 一种双馈风电系统中变流器的控制方法及装置
CN108565888A (zh) 一种用于抑制风力发电系统直流电压振荡的稳定器
CN113517708A (zh) 控制飞轮储能阵列系统的方法、装置、存储介质及控制器
CN110970941B (zh) 一种双馈风力发电机组无功输出范围的精确计算方法
CN113852099A (zh) 一种直驱风电机组快速频率响应控制系统及方法
CN113574270A (zh) 对风力涡轮机的惯性响应功率的估计
JP2002218657A (ja) 電力発電システム
JP2003102130A (ja) 電力貯蔵システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20930759

Country of ref document: EP

Kind code of ref document: A1