WO2021208233A1 - 三轴快速刀具伺服机构及其三维力在线检测系统 - Google Patents

三轴快速刀具伺服机构及其三维力在线检测系统 Download PDF

Info

Publication number
WO2021208233A1
WO2021208233A1 PCT/CN2020/097275 CN2020097275W WO2021208233A1 WO 2021208233 A1 WO2021208233 A1 WO 2021208233A1 CN 2020097275 W CN2020097275 W CN 2020097275W WO 2021208233 A1 WO2021208233 A1 WO 2021208233A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
piezoelectric ceramic
axis
displacement
amplifier
Prior art date
Application number
PCT/CN2020/097275
Other languages
English (en)
French (fr)
Inventor
陈远流
李忠伟
陈甫文
居冰峰
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2021208233A1 publication Critical patent/WO2021208233A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/34Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission
    • B23Q5/36Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission in which a servomotor forms an essential element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/08Control or regulation of cutting velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining

Definitions

  • the invention relates to the technical field of ultra-precision machining, in particular to a novel three-axis fast tool servo mechanism and a three-dimensional force detection system thereof.
  • the fast tool servo system is a mechanical cutting method based on a single-point diamond tool, and an effective method for processing the main component of ultra-precision devices—microstructure arrays.
  • ultra-precision technology special fields require more and more complex optical three-dimensional free surfaces, and the demand for high-performance manufacturing of microstructures is increasing day by day.
  • the traditional single-axis fast tool servo system cannot meet the manufacturing requirements of complex three-dimensional free surfaces and complex microstructures. Therefore, two-axis and three-axis fast tool servo mechanisms have emerged.
  • the cutting process of the three-axis fast tool servo mechanism is more complicated, which is mainly reflected in the serious coupling between the axes and the unclear cutting state of the diamond tool cutting edge and the microstructure surface.
  • the three-axis fast tool servo has kinematic coupling problems in the three directions of X, Y, and Z, which will cause difficulties in tool path planning, affect the service life of the tool, and affect the machining accuracy. Therefore, the key point of the design of the three-axis fast tool servo mechanism It lies in the design of the flexible decoupling mechanism.
  • the three-axis fast tool servo decoupling mechanisms that have been proposed or developed at present include parallel, series and other forms of decoupling mechanisms.
  • the structural characteristic of the parallel three-axis fast tool servo decoupling mechanism is that the three input terminals are independently connected to the output terminal through the flexible guide and transmission mechanism in their respective directions, that is, connected in parallel without affecting each other; and each input terminal corresponds to only one The output of the direction.
  • the three input terminals are connected to the output terminal through the series connection of flexible guiding and transmission structures in different directions; and each input terminal only corresponds to the output in one direction.
  • decoupling mechanisms include: output in one direction requires more than one input to cooperate to produce and coordinate motion; series and coordinate motions; parallel and coordinate motions, etc.; these decoupling mechanisms have the following problems One or more of: poor decoupling effect, low rigidity, low frequency response, large stroke loss, complex structure, difficult to process, etc.
  • the cutting force is an important indicator reflecting the cutting state.
  • the abnormal position of the cutting force often has micro-structure surface micro-defects.
  • the current three-dimensional force detection methods include flexible tactile sensor array-based three-dimensional force detection methods, electromagnetic induction-based three-dimensional force detection methods, capacitive three-dimensional force detection methods, etc.
  • the devices involved in the above methods have disadvantages such as large volume and inflexible structure.
  • a single-axis fast tool servo system integrated with a piezoelectric force sensor to detect the axial cutting force in the process of single-axis fast tool servo cutting surface microstructures.
  • This method uses a piezoelectric ceramic sheet as a force sensor, and uses the positive piezoelectric effect of the piezoelectric ceramic sheet, that is, when a dynamic force acts on the surface of the piezoelectric ceramic sheet, the piezoelectric ceramic sheet will generate polarized charges, positive and negative The chemical charges are respectively distributed on the two ends of the piezoelectric ceramic sheet along the axial direction. By detecting the magnitude of the polarization charge, the dynamic force can be reflected, thereby realizing the function of the force sensor.
  • the single-axis fast tool servo system with integrated force sensor realizes the detection of the axial cutting force during the cutting process, thereby ensuring the online monitoring of surface micro-defects during the cutting process.
  • a force sensor is integrated on the single-axis fast tool servo mechanism. Through the closed-loop feedback control of contact force and cutting force, the scanning function that uses the tool as a probe is derived, and the measurement function is integrated on the basis of the machining function to expand the tool In-situ measurement of cutting edge profile, self-positioning of relay machining and many other applications.
  • the single-axis fast tool servo mechanism has only one degree of servo freedom, it is difficult to process complex free optical curved surfaces and complex surface microstructures.
  • the present invention provides a novel three-axis fast tool servo mechanism and its three-dimensional force online detection system.
  • a control system integrating a detection feedback system with displacement detection and feedback and three-dimensional force online detection in the cutting process and a precision drive system integrated with a precision voltage amplifier can realize an end effector Precisely decoupled movement in three axes.
  • the three-axis fast tool servo mechanism includes:
  • the base body has a cavity and a connection part for fixing itself on the working platform;
  • An end effector which is located in the cavity
  • Three piezoelectric ceramics are respectively arranged in the three axial directions of X, Y, and Z in the cavity, and one end abuts against the cavity wall;
  • the first guide mechanism which is installed in the cavity, includes four guide members symmetrically arranged around the end effector up, down, left and right, and each guide member includes an X/Y guide part located in the middle, and a symmetrically arranged connection
  • the connecting parts of the guiding part and the fixed parts at both ends, each connecting part is composed of 2n straight circular flexure hinges arranged in parallel, n ⁇ 1; wherein each of the guiding parts located in the X and Y axis directions is connected to the The other end of the piezoelectric ceramic abuts in the direction;
  • the first displacement transmission mechanism includes four groups of X/Y displacement transmission units respectively located between the four X/Y guide parts and the end effector and arranged symmetrically around the end effector.
  • Each group of displacement transmission units includes one For the displacement transmission member formed by two double-axis straight circular flexible hinges in series;
  • a second guide mechanism which includes a Z guide part abutting against the other end of the piezoelectric ceramic in the Z-axis direction, two end fixing parts fixed on the base, and a symmetrically arranged connecting guide part and both ends
  • the connecting part of the fixed part, each connecting part is composed of 2n straight circular flexible hinges arranged in parallel, n ⁇ 1;
  • the second displacement transmission mechanism includes four displacement transmission members arranged along the Z axis between the Z guide part and the end effector, each displacement transmission member is connected in series by two biaxial straight circular flexible hinges ##
  • a displacement detection mechanism that integrates three capacitive displacement sensors, which is used to detect the displacements of the three guiding parts that are in contact with the piezoelectric ceramics in the X, Y, and Z axial directions, respectively.
  • system further includes a force detection mechanism detachably connected to the end effector, and the force detection mechanism includes:
  • a frame which has a connection part that can be detachably connected with the end effector
  • a force transmission mechanism which includes an integrally arranged head in series for installing tools, a block structure with two hemispherical surfaces, two two-axis straight circular flexible hinges connected in series, and a terminal fixing part;
  • the two hemispherical surfaces are respectively located in the X/Y direction perpendicular to the axis of the force transmission mechanism;
  • the first piezoelectric ceramic force sensor and the second piezoelectric ceramic force sensor are clamped and fixed on the inner wall of the frame by a fixed block one and a fixed block two, respectively, and are subjected to a certain pre-tightening force.
  • the fixed block one and the fixed block two The other end of is abutted with the two hemispherical surfaces with a certain pre-tightening force;
  • the third piezoelectric ceramic force sensor is clamped and fixed on the inner wall of the frame through the end fixing part and subjected to a certain pre-tightening force.
  • system also includes:
  • a three-channel charge amplifier module the input ends of which are respectively coupled to three piezoelectric ceramic force sensors for amplifying the polarization charges generated by the piezoelectric ceramic force sensors;
  • AD/DA acquisition card the input ends of which are respectively connected to the output ends of the three capacitive displacement sensors and the output end of the three-channel charge amplifier module, and are used to collect the voltage signal generated by the capacitive displacement sensor and amplify the output of the charge amplifier module
  • the output terminal of the latter polarized charge signal is connected to the input terminal of a voltage amplifier for driving the piezoelectric ceramic, and is used to generate an output voltage signal for controlling the displacement of the piezoelectric ceramic;
  • the host computer which is connected to the control end of the AD/DA capture card, is used to receive the displacement voltage signal and the amplified polarization charge signal collected by the AD/DA capture card, and calculate the three axial directions generated by the piezoelectric ceramic based on the signal
  • the displacement value of the piezoelectric ceramic force sensor and the dynamic force received by the piezoelectric ceramic force sensor, as well as the voltage signal to be output by the control, the voltage signal is transmitted to the piezoelectric ceramic through the AD/DA capture card and the precision voltage amplifier to precisely control the piezoelectric ceramic production Displacement.
  • U 1 , U 2 , U 3 are respectively the output corresponding to the force of the three piezoelectric ceramic force sensors amplified by the charge amplifier, F x , F y , F z force detection mechanism in the three directions size.
  • the three-channel charge amplifier module is an integrated three-channel charge amplifier, or includes three single-channel charge amplifiers, or includes one single-channel or one dual-channel charge amplifier.
  • the three-channel charge amplifier module is an integrated three-channel charge amplifier, which integrates three independent amplification channels, wherein each amplification channel includes:
  • the negative feedback unit composed of capacitors C F in parallel is coupled to its inverting terminal.
  • the model of the first amplifier is LMP7715
  • the model of the second amplifier is LMP7721.
  • the three-axis fast tool servo mechanism of the integrated force sensor in the system of the present invention has a higher degree of freedom and can realize the processing of complex surface microstructures.
  • the three-axis fast tool servo mechanism in the system of the present invention has a high driving displacement resolution, and the minimum driving displacement of the three axes can reach within 5nm.
  • the three-axis fast tool servo mechanism in the system of the present invention has a good decoupling effect, and the coupling between the three axes is 3%.
  • the system of the present invention can integrate the force detection system on the three-axis fast tool servo mechanism, so that it can be used in the cutting process of the three-axis fast tool servo mechanism.
  • the cutting force is detected online; it can also be split into a three-axis fast tool servo mechanism and a three-dimensional force detection mechanism, which can be used as two systems separately.
  • the system of the present invention has high sensitivity, and the minimum cutting force within 10 mN can be recognized in each axis.
  • Figure 1 is a schematic diagram of the three-axis fast tool servo structure of the present invention.
  • Figure 2 is a schematic diagram of the Z-direction drive structure of the three-axis fast tool servo structure of the present invention.
  • Fig. 3 is a schematic diagram of the installation of the displacement sensor of the three-axis fast tool servo structure in the present invention.
  • Fig. 4 is a graph of the test result of the driving displacement resolution of the three-axis in the present invention.
  • Figure 5 is a schematic diagram of the force detection structure of the present invention.
  • Fig. 6 is a schematic diagram of a three-axis fast tool servo mechanism integrated with a force detection mechanism in the present invention.
  • Fig. 7 is a schematic diagram of three-dimensional force perception measurement in an embodiment of the present invention.
  • Figure 8 is a diagram of the calibration results of the three-axis force sensor in the embodiment of the present invention, in which (a) is the change curve of the output voltage of the three charge amplifiers with the dynamic force acting in different X-axis directions; (b) is the output voltage of the three charge amplifiers The change curve of dynamic force acting in different X-axis directions; (c) is the change curve of the output voltage of three charge amplifiers acting dynamic force in different X-axis directions.
  • a three-axis fast tool servo mechanism includes:
  • the base 1 has a cavity 101 and a connecting portion 102 for fixing itself on a working platform.
  • the cavity 101 piezoelectric ceramics in each axial direction, a guide mechanism and a displacement transmission mechanism, and an end effector 8 are provided.
  • the piezoelectric ceramics are arranged in three 4, 16, 22, respectively arranged in the three axial directions of X, Y, and Z in the cavity, and one end of the piezoelectric ceramic abuts against the inner wall of the cavity 101.
  • the guide mechanism includes a first guide mechanism in the X/Y axis direction and a second guide mechanism in the Z axis direction (the driving structure in the Z axis direction is shown in FIG. 2).
  • the first guide mechanism is installed in the cavity 101, and includes four guides symmetrically arranged around the end effector up, down, left and right, and their ends are connected to each other to form an integral arrangement.
  • Each guide includes X/Y guide parts 3, 5, 14, 17 in the middle, and symmetrically arranged connecting parts 6, 10, 11, and 13 connecting the guide parts and the fixed parts at both ends.
  • the part is composed of two straight circular flexible hinges arranged in parallel. Among them, one guide portion 5, 17 located in the X and Y axis directions respectively abuts the other ends of the piezoelectric ceramics 4, 16 in the direction.
  • the second guide mechanism includes a Z guide part 24 that abuts against the other end of the piezoelectric ceramic 22 in the Z-axis direction, two end fixing parts 20 fixed on the base, and a symmetrically arranged connecting guide part 24 and two Each of the connecting portions 23 of the end fixing portion 20 is composed of two straight circular flexible hinges arranged in parallel.
  • each guide member in the above-mentioned guide mechanism may be composed of 2n straight circular flexible hinges arranged in parallel, n ⁇ 1.
  • the displacement transmission mechanism includes a first displacement transmission mechanism corresponding to the X/Y guide portion in the X/Y axis direction and a second displacement transmission mechanism corresponding to the Z guide portion in the Z axis direction.
  • the first displacement transmission mechanism includes four sets of X/Y displacement transmissions respectively located between the four X/Y guide parts 3, 5, 14, 17 and the end effector 8 and arranged symmetrically around the end effector 8.
  • Units 7, 9, 12, and 18, each group of displacement transmission units includes a pair of displacement transmission members formed by two biaxial straight circular flexible hinges connected in series.
  • the second displacement transmission mechanism includes four displacement transmission members 25 arranged along the Z axis between the Z guide portion 24 and the end effector 8.
  • Each displacement transmission member is composed of two biaxial straight circular flexible hinges. Concatenated.
  • displacement detection mechanisms 2, 15, 19 integrated with three capacitive displacement sensors, which are used to detect the three guide parts 5, which are in contact with the piezoelectric ceramics in the X, Y, and Z axial directions, respectively. 17. Displacement of 24. Among them, as shown in FIG. 3, the displacement detection mechanism 19 is provided with a capacitive displacement sensor 37 at the end, and the structures of the other two displacement detection mechanisms 2, 15 are similar.
  • the three-axis fast tool servo mechanism in this embodiment adopts a symmetrical and flexible design idea, which has a decoupling effect.
  • the base When in use, the base is fixed on the designated platform, and the structural end of the mechanism connected with the base is regarded as the fixed end.
  • the piezoelectric ceramic 16 When the piezoelectric ceramic 16 is driven to produce displacement in the X-axis direction, the guiding part 17 generates a main movement in the X direction under the action of the X-axis connecting portion 13; the end effector 8 generates a main movement in the X direction, which moves in the Y direction.
  • the motion constraints of the guide part and the end effector rotating around the X, Y, and Z axes are similar to those when driving the X axis, and the end effector's movement in the X direction is symmetrical.
  • the displacement transmission units 18 and 9 are constrained, and the movement in the Y-direction is constrained by the displacement transmission units 7 and 12 which are arranged symmetrically. From the above analysis, it can be seen that the end effector 8 can realize decoupling movement in three axial directions.
  • a force detection mechanism includes:
  • the frame (26) is provided with a connection part (38) that is detachably connected to the aforementioned end effector 8.
  • a force transmission mechanism and a piezoelectric ceramic force sensor are respectively arranged.
  • the force transmission mechanism includes integrally arranged in series: a head (29), a block structure with two hemispherical surfaces (39), two series-connected biaxial straight circular flexible hinges (40), and End fixing part (41).
  • the head (29) is used for installing the cutter (30), and the two hemispherical surfaces on the block structure (39) are respectively located in the X/Y direction perpendicular to the axis of the force transmission mechanism.
  • the piezoelectric ceramic force sensor includes piezoelectric ceramic force sensor one (27), piezoelectric ceramic force sensor two (31) and piezoelectric ceramic force sensor three (33), which pass through a fixed block one (28) and a fixed block two ( 32) It is clamped and fixed on the inner wall of the baffle plate (36), (35) and subjected to a certain pre-tightening force.
  • the other ends of the fixed block one (28) and the fixed block two (32) abut against the two hemispherical surfaces on the block structure (39) with a certain pretension force.
  • the piezoelectric ceramic force sensor three (33) is clamped and fixed on the inner wall of the frame (26) through the end fixing part (41) and is subjected to a certain pre-tightening force.
  • the baffles (36), (35), (34) are respectively fixedly connected with the fixed frame (26) through screw connections.
  • a three-axis fast tool servo mechanism with integrated force detection mechanism includes the three-axis fast tool servo mechanism in embodiment 1 and the force detection mechanism in embodiment 2, wherein the force detection mechanism is executed through the connection part (38) on the frame (26) and the end of the three-axis fast tool servo mechanism ⁇ Connectors.
  • the entire three-dimensional force detection system also includes:
  • a three-channel charge amplifier module the input ends of which are respectively coupled to three piezoelectric ceramic force sensors for amplifying the polarization charges generated by the piezoelectric ceramic force sensors;
  • AD/DA acquisition card its input terminals are respectively connected to the output terminals of the three capacitive displacement sensors and the output terminals of the three-channel charge amplifier module, used to collect the voltage signal generated by the capacitive displacement sensor and the amplified output of the charge amplifier module Polarized charge signal, the output terminal of which is connected to the input terminal of a voltage amplifier for driving piezoelectric ceramics, and is used to generate an output voltage signal for controlling the displacement of piezoelectric ceramics;
  • the host computer which is connected to the control end of the AD/DA capture card, is used to receive the displacement voltage signal and the amplified polarization charge signal collected by the AD/DA capture card, and calculate the three axial directions generated by the piezoelectric ceramic based on the signal
  • the displacement value of the piezoelectric ceramic force sensor and the dynamic force received by the piezoelectric ceramic force sensor, as well as the voltage signal to be output by the control, the voltage signal is transmitted to the piezoelectric ceramic through the AD/DA capture card and the precision voltage amplifier to accurately control the piezoelectric ceramic to produce displacement .
  • the three-channel charge amplifier module is an integrated three-channel charge amplifier, or includes three single-channel charge amplifiers, or includes one single-channel or one dual-channel charge amplifier.
  • the three-channel charge amplifier module is an integrated three-channel charge amplifier, which integrates independent three-channel amplification channels, wherein each amplification channel includes:
  • the negative feedback unit composed of capacitors C F in parallel is coupled to its inverting terminal.
  • the model of the first amplifier is LMP7715
  • the model of the second amplifier is LMP7721
  • the piezoelectric ceramic force sensor Under the action of dynamic force, the piezoelectric ceramic force sensor will generate corresponding polarized charges distributed at both ends. According to the positive piezoelectric effect of piezoelectric ceramics, the polarization charge generated at both ends of the piezoelectric ceramics is proportional to the dynamic force of the piezoelectric ceramic sheet. Because the cutting force is very weak in the process of machining the surface microstructure by the three-axis fast tool servo mechanism, the polarization charge generated at the two ends of the piezoelectric ceramic force sensor is also very weak, which is difficult to measure directly. Therefore, through the three-channel charge amplifier, the polarization charges generated by the three piezoelectric ceramic force sensors are respectively amplified, and then the cutting force received by the three force sensors is detected.
  • the three force sensor outputs are respectively connected to the input channel 1, input channel 2, and input channel 3 of the three-channel charge amplifier, corresponding to the three output channels.
  • the output signals are collected by the 16-bit AD/DA acquisition card , The collected results are transmitted to the host computer for processing.
  • the three force sensors correspond to the three axial directions respectively. When a certain axial force is received, the force sensor corresponding to this direction receives the greatest force, but the other two force sensors also receive force, that is, there is a coupling.
  • the amplified output results of the three force sensors have a linear relationship with the axial force, and this relationship can be expressed by the following formula:
  • U 1 , U 2 , U 3 are respectively the output corresponding to the force of the three force sensors after the charge amplifier, F x , F y , F z are the magnitude of the force in the three directions of the mechanism. After obtaining the linear matrix, the magnitude of the force in the three directions of the mechanism can be calculated inversely according to the output of the three force sensors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本发明提供了一种三轴快速刀具伺服机构及其三维力检测系统,包括:三轴快速刀具伺服机构,其由三个压电陶瓷驱动分别产生三个轴向的位移,通过对称布置的柔性铰链的传动与约束作用,可在末端执行器处实现三个轴向的解耦运动;集成三个电容式位移传感器的位移检测机构,其可检测三轴快速刀具伺服机构三个输入端的位移;集成三个压电陶瓷力传感器的力检测机构,其与三轴快速刀具伺服机构的末端执行器连接,可拆卸,可通过三个力传感器检测值与三个轴向力的线性关系检测出刀尖所受任一空间力在三个轴向的分力。本发明的系统基于压电陶瓷片的正压电效应,将压电陶瓷片作为力传感器,实现了切削过程当中三维力的在线检测。

Description

三轴快速刀具伺服机构及其三维力在线检测系统 技术领域
本发明涉及超精密加工技术领域,具体涉及一种新型三轴快速刀具伺服机构及其三维力检测系统。
背景技术
快速刀具伺服系统是一种基于单点金刚石刀具的机械切削方法,是加工超精密器件主要组成部件——微结构阵列的有效手段。随着超精密技术的发展,特殊领域对光学三维自由表面的复杂程度要求越来越高,对微结构的高性能制造需求与日俱增。基于伺服自由度的限制,传统的单轴快速刀具伺服系统难以满足复杂三维自由表面、复杂微结构的制造需求,因此两轴、三轴快速刀具伺服机构应运而生。相比于单轴快速刀具伺服机构切削过程,三轴快速刀具伺服机构的切削过程更加复杂,主要体现在轴间耦合严重、金刚石刀具切削刃与微结构表面切削状态不明晰等。
三轴快速刀具伺服在X、Y、Z三个方向上存在的运动耦合问题,会导致刀具路径规划困难、影响道具使用寿命、影响加工精度等问题,所以三轴快速刀具伺服机构的设计关键点在于柔性解耦机构的设计。目前的已经被提出或被开发的三轴快速刀具伺服解耦机构包括并联式、串联式以及其他形式解耦机构。并联式三轴快速刀具伺服解耦机构的结构特性是三个输入端通过各自方向的柔性导向和传递机构独立的与输出端相连,即并行连接,互不影响;且每个输入端只对应一个方向的输出。对于串联式解耦机构,三个输入端通过不同方向柔性导向和传递结构的串联与输出端相连;且每个输入端只对应一个方向的输出。其他形式解耦机构,包括:一个方向的输出需要一个以上的输入配合产生,及配合运动;串联式与配合运动相结合;并联式与配合运动相结合等;这些解耦机构都存在以下问题中的一种或多种:解耦效果不佳,刚度低,频响低,行程损失大,结构复杂导致难以加工等。
切削力是反映切削状态的重要指标,切削力产生异常的位置,常有微结构表面微缺陷的产生。为了对三轴快速刀具伺服机构切削复杂表面微结构的切削状态有所把握,以保证所加工的表面微结构的完整性,需要对切削过程中产生的三个方向的切削力进行实时检测。目前的三维力检测方法有基于柔性触觉传感器阵列的三维力检测方法、基于电磁感应的三维力检测方法、电容式三维力检测方法等,上述方法所涉及装置都有体积大、结构不灵巧等缺点,难以与快速刀具伺服机构集成使用;同时,上述方法三维力检测精度普遍不高,而三轴快速刀具却有超低切削力的特点,同样存在不可调和的矛盾。出于以上原因,传统的动力计、力传感器难以集成到三轴快速刀具伺服机构对三维力进行在线检测。
另一方面,目前已有集成压电式力传感器的单轴快速刀具伺服系统,用于检测单轴快速刀具伺服切削表面微结构过程当中的轴向切削力。这种方法使用压电陶瓷片作为力传感器,利用压电陶瓷片的正压电效应,即当有动态力作用在压电陶瓷片表面时,压电陶瓷片会产生极化电荷,正、负极化电荷分别分布在压电陶瓷片沿轴向的两端,通过检测极化电荷的大小,可以反映动态力的大小,从而实现力传感器的作用。该集成力传感器的单轴快速刀具伺服系统,实现了在切削过程当中对轴向切削力的检测,从而保证切削过程当中对表面微缺陷的在线监测。此外,在单轴快速刀具伺服机构上集成力传感器,通过接触力、切削力闭环反馈控制,衍生了将刀具作为探针使用的扫描功能,在加工功能基础上集成了测量功能,拓展了如刀具切削刃轮廓原位测量、接力加工自定位等诸多应用。但是,由于单轴快速刀具伺服机构只有一个伺服自由度,难以加工复杂的自由光学曲面、复杂表面微结构。
发明内容
基于上述背景,本发明提供了一种新型三轴快速刀具伺服机构及其三维力在线检测系统。基于解耦型三轴快速刀具伺服机构,集成具有位移检测与反馈和切削过程中三维力在线检测功能的检测反馈系统与集成精密电压放大器的精密驱动系统于一体的控制系统,可实现末端执行器在三个轴向的精密解耦运动。
为实现上述目的,本发明采用了如下技术方案:
一种三轴快速刀具伺服机构及其三维力检测系统,所述三轴快速刀具伺服机构包括:
基体,其具有一方形容腔,并设有将其自身固定于工作平台上的连接部;
末端执行器,其位于所述容腔内;
三个压电陶瓷,分别设置于容腔内X、Y、Z三个轴向方向,且一端与容腔壁抵接;
第一导向机构,其安装于所述容腔内,包括上下左右围绕末端执行器对称设置的四个导向件,每个导向件包括位于中间的X/Y向导引部,以及对称布置的连接导引部与两端固定部的连接部,每个连接部由2n个平行设置的直圆型柔性铰链构成,n≥1;其中位于X、Y轴方向上的各一个导引部分别与该方向上的压电陶瓷的另一端抵接;
第一位移传递机构,其包括分别位于四个X/Y向导引部与末端执行器之间且绕末端执行器对称布置的四组X/Y向位移传递单元,每组位移传递单元包括一对由两个双轴直圆型柔性铰链串联而成的位移传递件;
第二导向机构,其包括与Z轴方向上的压电陶瓷的另一端抵接的Z向导引部,固定于基体上的两端固定部,,以及对称布置的连接导引部与两端固定部的连接部,每个连接部由2n个平行设置的直圆型柔性铰链构成,n≥1;
第二位移传递机构,其包括四个位于Z向导引部与末端执行器之间的沿Z轴向设置的位 移传递件,每个位移传递件均由两个双轴直圆型柔性铰链串联而成;
以及集成三个电容式位移传感器的位移检测机构,其用于检测分别与X、Y、Z三个轴向方向上的压电陶瓷抵接的三个导引部的位移。
进一步的,该系统还包括与所述末端执行器可拆卸连接的力检测机构,所述力检测机构包括:
框架,其具有与所述末端执行器进行可拆装连接的连接部;
力传递机构,其包括一体式设置的依次串接的用于安装刀具的头部,具有两个半球面的块状结构,两个串联的双轴直圆型柔性铰链,以及末端固定部;所述两个半球面分别位于垂直于力传递机构轴线的X/Y方向;
压电陶瓷力传感器一和压电陶瓷力传感器二,其分别通过固定块一和固定块二夹紧固定于所述框架的内壁上并受一定预紧力,所述固定块一和固定块二的另一端与所述两个半球面有一定预紧力的抵接;
压电陶瓷力传感器三,其通过所述末端固定部夹紧固定于所述框架的内壁上并受一定预紧力。
进一步的,该系统还包括:
三通道电荷放大器模块,其输入端分别耦接三个压电陶瓷力传感器,用于对压电陶瓷力传感器产生的极化电荷进行放大;
AD/DA采集卡,其输入端分别连接三个电容式位移传感器的输出端和所述三通道电荷放大器模块的输出端,用于采集电容式位移传感器产生的电压信号和电荷放大器模块输出的放大后的极化电荷信号,其输出端连接用于驱动压电陶瓷的电压放大器的输入端,用于产生控制压电陶瓷产生位移的输出电压信号;
上位机,其连接AD/DA采集卡的控制端,用于接收AD/DA采集卡采集的位移电压信号和放大后的极化电荷信号,并基于该信号计算压电陶瓷产生的三个轴向的位移值和压电陶瓷力传感器受到的动态力大小,以及控制所要输出的电压信号,所述电压信号经AD/DA采集卡,精密电压放大器传递到压电陶瓷,以精确控制压电陶瓷产生位移。
进一步的,力检测机构所受三个方向力的大小基于如下线性矩阵计算:
Figure PCTCN2020097275-appb-000001
其中,U 1,U 2,U 3分别为经电荷放大器放大后的三个压电陶瓷力传感器受力所对应的 输出,F x,F y,F z力检测机构所受三个方向力的大小。
可选的,所述三通道电荷放大器模块为集成型三通道电荷放大器,或者包括三个单通道电荷放大器,或者包括一个单通道、一个双通道电荷放大器。
进一步的,所述三通道电荷放大器模块为集成型三通道电荷放大器,其集成有独立的三路放大通道,其中每路放大通道包括:
第一放大器和第二放大器;第一放大器的同相端经电阻R T耦接第二放大器Q2的同相端,反相端经由电阻R G和电容C G并联组成的滤波单元接地,输出端耦接三通道电荷放大器的信号输入端口;第二放大器的反相端经电阻R S耦接三通道电荷放大器的信号输入端口,输出端耦接三通道电荷放大器的信号输出端口,并经由电阻R F和电容C F并联组成的负反馈单元耦接自身反相端。
优选的,所述第一放大器的型号为LMP7715,第二放大器的型号为LMP7721。
本发明的有益效果如下:
(1)与集成力传感器的单轴快速刀具伺服机构相比,本发明所述系统中集成力传感器的三轴快速刀具伺服机构具有更高自由度,可以实现加工复杂表面微结构。
(2)与现有三轴快速刀具伺服机构相比,本发明所述系统中的三轴快速刀具伺服机构具有高驱动位移分辨率,三个轴的最小驱动位移均可达到5nm以内。
(3)与现有解耦型三轴快速刀具伺服机构相比,本发明所述系统中的三轴快速刀具伺服机构具有好的解耦效果,三个轴互相的轴间耦合均在3%以内。
(4)与现有三轴快速刀具伺服机构和三维力检测手段相比,本发明所述系统可以将力检测系统集成在三轴快速刀具伺服机构上,从而在三轴快速刀具伺服机构的切削过程中在线检测切削力大小;也可以拆分成三轴快速刀具伺服机构和三维力检测机构,从而作为两个系统单独使用。
(5)与现有三轴力检测手段相比,本发明所述系统具有高灵敏度,在每个轴向最小可识别10mN以内切削力。
附图说明
图1为本发明中三轴快速刀具伺服结构示意图。
图2为本发明中三轴快速刀具伺服结构Z向驱动结构示意图。
图3为本发明中三轴快速刀具伺服结构位移传感器安装示意图。
图4为本发明中三轴的驱动位移分辨率测试结果图。
图5为本发明中力检测结构示意图。
图6为本发明中集成力检测机构的三轴快速刀具伺服机构示意图。
图7为本发明实施例中三维力感知测量示意图。
图8为本发明实施例中三轴力传感器标定结果图,其中,(a)为三个电荷放大器输出电压变化随不同X轴方向作用动态力变化曲线;(b)为三个电荷放大器输出电压变化随不同X轴方向作用动态力变化曲线;(c)为三个电荷放大器输出电压变化随不同X轴方向作用动态力变化曲线。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
实施例1
如图1-3所示,一种三轴快速刀具伺服机构,包括:
基体1,该基体1具有一方形容腔101,并设有将其自身固定于工作平台上的连接部102。在容腔101内,设置有各个轴向的压电陶瓷、导向机构和位移传递机构,以及末端执行器8。
其中,压电陶瓷设置为三个4、16、22,分别设置于容腔内X、Y、Z三个轴向方向,其一端均与容腔101的内壁抵接。
导向机构包括X/Y轴方向的第一导向机构和Z轴方向的第二导向机构(Z轴方向驱动结构如图2所示)。
其中,第一导向机构安装于101容腔内,包括上下左右围绕末端执行器对称设置的四个导向件,其端部相互连接,呈一体式设置。每个导向件包括位于中间的X/Y向导引部3、5、14、17,以及对称布置的连接导引部与两端固定部的连接部6、10、11、13,每个连接部由2个平行设置的直圆型柔性铰链构成。其中位于X、Y轴方向上的各一个导引部5、17分别与该方向上的压电陶瓷4、16的另一端抵接。
第二导向机构包括与Z轴方向上的压电陶瓷22的另一端抵接的Z向导引部24,固定于基体上的两端固定部20,以及对称布置的连接导引部24与两端固定部20的连接部23,每个连接部23由2个平行设置的直圆型柔性铰链构成。
作为可选可选实施方案,上述导向机构中每个导向件的连接部可由2n个平行设置的直圆型柔性铰链构成,n≥1。
相应的,位移传递机构包括X/Y轴方向的与X/Y向导引部对应的第一位移传递机构和Z轴方向的与Z向导引部对应的第二位移传递机构。
其中,第一位移传递机构包括分别位于四个X/Y向导引部3、5、14、17与末端执行器8之间且绕末端执行器8对称布置的四组X/Y向位移传递单元7、9、12、18,每组位移传递单元包括一对由两个双轴直圆型柔性铰链串联而成的位移传递件。
第二位移传递机构包括四个位于Z向导引部24与末端执行器8之间的沿Z轴向设置的位移传递件25,每个位移传递件均由两个双轴直圆型柔性铰链串联而成。
还包括集成三个电容式位移传感器的位移检测机构2、15、19,其用于检测分别与X、Y、Z三个轴向方向上的压电陶瓷抵接的三个导引部5、17、24的位移。其中,如图3所示,位移检测机构19于末端设置有电容式位移传感器37,其它两个位移检测机构2、15的结构与之类似。
本实施例中的三轴快速刀具伺服机构采用对称柔性设计思想,具有解耦效果,。使用时将基体固定在指定平台上,此机构上与基体相连的结构端视为固定端。当驱动压电陶瓷16在X轴方向产生位移时,导引部17在X轴连接部13作用下产生X向的主运动;末端执行器8产生X向的主运动,其在Y向的运动受对称设置的位移传递单元7、12约束,其绕X轴和Y轴的转动受沿Z轴向对称布置的位移传递单元25约束,其绕Z轴的转动受在XY平面绕末端执行器对称布置的结构位移传递单元18、9、7、12约束。当驱动压电陶瓷4在Y轴方向产生位移时,导引部和末端执行器的运动约束情况与驱动X轴时相似。用于驱动X和Y轴向运动的压电陶瓷16和4的安装方式为过盈安装。当驱动压电陶瓷22在Z轴方向产生位移时,导引部和末端执行器绕X、Y和Z轴旋转的运动约束情况与驱动X轴时相似,末端执行器在X向的运动受对称设置的位移传递单元18、9约束,在Y向的运动受对称设置的位移传递单元7、12约束。通过以上分析可知,末端执行器8可实现在三个轴向的解耦运动。
实施例2
如图5(a)、(b)所示,一种力检测机构,包括:
框架(26),其设置有有与前述末端执行器8进行可拆装连接的连接部(38)。在框架(26)内,分别设置有力传递机构和压电陶瓷力传感器。
其中,力传递机构包括一体式设置的依次串接的:头部(29)、具有两个半球面的块状结构(39)、两个串联的双轴直圆型柔性铰链(40),以及末端固定部(41)。其中,头部(29)用于安装刀具(30),块状结构(39)上的两个半球面分别位于垂直于力传递机构轴线的X/Y方向。
压电陶瓷力传感器包括压电陶瓷力传感器一(27)、压电陶瓷力传感器二(31)和压电陶瓷力传感器三(33),其分别通过固定块一(28)和固定块二(32)夹紧固定于挡板(36)、(35)的内壁上并受一定预紧力。固定块一(28)和固定块二(32)的另一端与块状结构(39)上的两个半球面有一定预紧力的抵接。压电陶瓷力传感器三(33)通过末端固定部(41)夹紧固定于框架(26)的内壁上并受一定预紧力。挡板(36)、(35)、(34)分别通过螺纹连接与固定框架(26)固定连接。
实施例3
如图6所示,一种集成力检测机构的三轴快速刀具伺服机构。其包括实施例1中的三轴快速刀具伺服机构和实施例2中的力检测机构,其中力检测机构通过框架(26)上的连接部(38)与三轴快速刀具伺服机构上的末端执行器连接。
进一步的,如图7所示,整个三维力检测系统还包括:
三通道电荷放大器模块,其输入端分别耦接三个压电陶瓷力传感器,用于对压电陶瓷力传感器产生的极化电荷进行放大;
AD/DA采集卡,其输入端分别连接三个电容式位移传感器的输出端和三通道电荷放大器模块的输出端,用于采集电容式位移传感器产生的电压信号和电荷放大器模块输出的放大后的极化电荷信号,其输出端连接用于驱动压电陶瓷的电压放大器的输入端,用于产生控制压电陶瓷产生位移的输出电压信号;
上位机,其连接AD/DA采集卡的控制端,用于接收AD/DA采集卡采集的位移电压信号和放大后的极化电荷信号,并基于该信号计算压电陶瓷产生的三个轴向的位移值和压电陶瓷力传感器受到的动态力大小,以及控制所要输出的电压信号,该电压信号经AD/DA采集卡,精密电压放大器传递到压电陶瓷,以精确控制压电陶瓷产生位移。
在一种或几种实施例中,三通道电荷放大器模块为集成型三通道电荷放大器,或者包括三个单通道电荷放大器,或者包括一个单通道、一个双通道电荷放大器。
作为一种优选实施方案,三通道电荷放大器模块为集成型三通道电荷放大器,其集成有独立的三路放大通道,其中每路放大通道包括:
第一放大器和第二放大器;第一放大器的同相端经电阻R T耦接第二放大器Q2的同相端,反相端经由电阻R G和电容C G并联组成的滤波单元接地,输出端耦接三通道电荷放大器的信号输入端口;第二放大器的反相端经电阻R S耦接三通道电荷放大器的信号输入端口,输出端耦接三通道电荷放大器的信号输出端口,并经由电阻R F和电容C F并联组成的负反馈单元耦接自身反相端。
在一种实例中,第一放大器的型号为LMP7715,第二放大器的型号为LMP7721。
本实施例中,为获得三个轴向的位移分辨率大小,分别驱动三个压电陶瓷产生位移,并通过位移传感器产生的电压信号传递到16位AD/DA采集卡进而传递到上位机,计算出位移变化量。可检测到的三个轴向的最小位移变化曲线及其滤波后的曲线如图4所示,由图可知,三个轴向的位移分辨率均可达到5nm以内。
压电陶瓷力传感器在受到动态力的作用下,会产生相应的极化电荷分布在两端。根据压电陶瓷正压电效应,压电陶瓷两端产生的极化电荷和压电陶瓷片承受的动态力大小成比例关 系。由于三轴快速刀具伺服机构加工表面微结构过程中切削力十分微弱,所以压电陶瓷力传感器两端产生的极化电荷也十分微弱,难以直接测量。因此,通过三通道电荷放大器,分别将三个压电陶瓷力传感器产生的极化电荷放大,进而检测三个力传感器所受到的切削力大小。三轴快速刀具伺服切削加工过程当中,三个力传感器输出分别接三通道电荷放大器的输入通道1、输入通道2、输入通道3,对应三个输出通道输出信号由16位AD/DA采集卡采集,采集结果传输到上位机中进行处理。三个力传感器分别与三个轴向方向对应,当受到某个轴向的力时,此方向对应的力传感器受力最大,但另两个力传感器也会有受力,即存在耦合。三个力传感器经放大后的输出结果均与所受轴向力呈线性关系,此关系可由下式表示:
Figure PCTCN2020097275-appb-000002
U 1、U 2、U 3分别为经电荷放大器后三个力传感器受力所对应的输出,F x、F y、F z为机构所受三个方向力的大小。求得线性矩阵后,可根据三个力传感器输出反求解出机构所受三个方向力的大小。
实施例4
为验证三个力传感器经放大后的输出结果均与所受轴向力呈线性关系,求得线性矩阵,并测得最小分辨力,进行力传感器标定实验。标定方式是在每个轴输入不同的动态力,同时检测三个电荷放大器输出结果。在力检测机构上沿X轴方向作用不同大小动态力,对应的电荷放大器输出如图8(a)所示,由图可知,三个电荷放大器输出结果与力检测机构所承受的X轴方向动态力大小成线性比例关系,最小识别电压变化为1mv,则力传感器最小能识别X轴方向的切削力大小为10mN以内。在力检测机构上沿Y轴方向作用不同大小动态力,对应的电荷放大器输出如图8(b)所示,由图可知,三个电荷放大器输出结果与力检测机构所承受的Y轴方向动态力大小成线性比例关系,最小识别电压变化为1mv,则力传感器最小能识别Y轴方向的切削力大小为10mN以内。在力检测机构上沿Z轴方向作用不同大小动态力,对应的电荷放大器输出如图8(c)所示,由图可知,三个电荷放大器输出结果与力检测机构所承受的Z轴方向动态力大小成线性比例关系,最小识别电压变化为1mv,则力传感器最小能识别Z轴方向的切削力大小为10mN以内。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (7)

  1. [根据细则91更正 10.08.2020]
    一种三轴快速刀具伺服机构及其三维力检测系统,其特征在于,所述三轴快速刀具伺服机构包括:
    基体,其具有一方形容腔,并设有将其自身固定于工作平台上的连接部;
    末端执行器,其位于所述容腔内;
    三个压电陶瓷,分别设置于容腔内X、Y、Z三个轴向方向,且一端与容腔壁抵接;
    第一导向机构,其安装于所述容腔内,包括上下左右围绕末端执行器对称设置的四个导向件,每个导向件包括位于中间的X/Y向导引部,以及对称布置的连接导引部与两端固定部的连接部,每个连接部由2n个平行设置的直圆型柔性铰链构成,n≥1;其中位于X、Y轴方向上的各一个导引部分别与该方向上的压电陶瓷的另一端抵接;
    第一位移传递机构,其包括分别位于四个X/Y向导引部与末端执行器之间且绕末端执行器对称布置的四组X/Y向位移传递单元,每组位移传递单元包括一对由两个双轴直圆型柔性铰链串联而成的位移传递件;
    第二导向机构,其包括与Z轴方向上的压电陶瓷的另一端抵接的Z向导引部,固定于基体上的两端固定部,以及对称布置的连接导引部与两端固定部的连接部,每个连接部由2n个平行设置的直圆型柔性铰链构成,n≥1;
    第二位移传递机构,其包括四个位于Z向导引部与末端执行器之间的沿Z轴向设置的位移传递件,每个位移传递件均由两个双轴直圆型柔性铰链串联而成;
    以及集成三个电容式位移传感器的位移检测机构,其用于检测分别与X、Y、Z三个轴向方向上的压电陶瓷抵接的三个导引部的位移。
  2. [根据细则91更正 10.08.2020]
    如权利要求1所述的三轴快速刀具伺服机构及其三维力在线检测系统,其特征在于,还包括与所述末端执行器可拆卸连接的力检测机构,所述力检测机构包括:
    框架,其具有与所述末端执行器进行可拆装连接的连接部;
    力传递机构,其包括一体式设置的依次串接的用于安装刀具的头部,具有两个半球面的块状结构,两个串联的双轴直圆型柔性铰链,以及末端固定部;所述两个半球面分别位于垂直于力传递机构轴线的X/Y方向;
    压电陶瓷力传感器一和压电陶瓷力传感器二,其分别通过固定块一和固定块二夹紧固定于所述框架的内壁上并受一定预紧力,所述固定块一和固定块二的另一端与所述两个半球面有一定预紧力的抵接;
    压电陶瓷力传感器三,其通过所述末端固定部夹紧固定于所述框架的内壁上并受一定预紧力。
  3. [根据细则91更正 10.08.2020]
    如权利要求2所述的三轴快速刀具伺服机构及其三维力在线检测系统,其特征在于,还包括:
    三通道电荷放大器模块,其输入端分别耦接三个压电陶瓷力传感器,用于对压电陶瓷力传感器产生的极化电荷进行放大;
    AD/DA采集卡,其输入端分别连接三个电容式位移传感器的输出端和所述三通道电荷放大器模块的输出端,用于采集电容式位移传感器产生的电压信号和电荷放大器模块输出的放大后的极化电荷信号,其输出端连接用于驱动压电陶瓷的电压放大器的输入端,用于产生控制压电陶瓷产生位移的输出电压信号;
    上位机,其连接AD/DA采集卡的控制端,用于接收AD/DA采集卡采集的位移电压信号和放大后的极化电荷信号,并基于该信号计算压电陶瓷产生的三个轴向的位移值和压电陶瓷力传感器受到的动态力大小,以及控制所要输出的电压信号,所述电压信号经AD/DA采集卡,精密电压放大器传递到压电陶瓷,以精确控制压电陶瓷产生位移。
  4. 如权利要求3所述的三轴快速刀具伺服机构及其三维力在线检测系统,其特征在于,力检测机构所受三个方向力的大小基于如下线性矩阵计算:
    Figure PCTCN2020097275-appb-100001
    其中,U 1,U 2,U 3分别为经电荷放大器放大后的三个压电陶瓷力传感器受力所对应的输出,F x,F y,F z力检测机构所受三个方向力的大小。
  5. 如权利要求4所述的三轴快速刀具伺服机构及其三维力在线检测系统,其特征在于:所述三通道电荷放大器模块为集成型三通道电荷放大器,或者包括三个单通道电荷放大器,或者包括一个单通道、一个双通道电荷放大器。
  6. 如权利要求5所述的三轴快速刀具伺服机构及其三维力在线检测系统,其特征在于:所述三通道电荷放大器模块为集成型三通道电荷放大器,其集成有独立的三路放大通道,其中每路放大通道包括:
    第一放大器和第二放大器;第一放大器的同相端经电阻R T耦接第二放大器Q2的同相端,反相端经由电阻R G和电容C G并联组成的滤波单元接地,输出端耦接三通道电荷放大器的信号输入端口;第二放大器的反相端经电阻R S耦接三通道电荷放大器的信号输入端口,输出端耦接三通道电荷放大器的信号输出端口,并经由电阻R F和电容C F并联组成的负反馈单元耦接自身反相端。
  7. 如权利要求6所述的三轴快速刀具伺服机构及其三维力在线检测系统,其特征在于:所述第一放大器的型号为LMP7715,第二放大器的型号为LMP7721。
PCT/CN2020/097275 2020-04-14 2020-06-20 三轴快速刀具伺服机构及其三维力在线检测系统 WO2021208233A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010289057.3 2020-04-14
CN202010289057.3A CN111633451B (zh) 2020-04-14 2020-04-14 三轴快速刀具伺服机构的三维力检测系统

Publications (1)

Publication Number Publication Date
WO2021208233A1 true WO2021208233A1 (zh) 2021-10-21

Family

ID=72324661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097275 WO2021208233A1 (zh) 2020-04-14 2020-06-20 三轴快速刀具伺服机构及其三维力在线检测系统

Country Status (2)

Country Link
CN (1) CN111633451B (zh)
WO (1) WO2021208233A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114406773A (zh) * 2022-01-26 2022-04-29 哈尔滨工业大学(深圳) 一种两自由度刀具伺服装置
CN114434325A (zh) * 2022-02-21 2022-05-06 华中科技大学 一种基于串联弹性执行器的单自由度力控磨头装置
CN115431100A (zh) * 2022-09-30 2022-12-06 杭州电子科技大学 一种快速刀具伺服装置的切削力监测及位移控制系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113418567A (zh) * 2021-07-30 2021-09-21 杭州高品自动化设备有限公司 门执行器最大力测试及bumper轮廓度检测装置及工作方法
CN114625185B (zh) * 2022-03-04 2024-01-26 上海百琪迈科技(集团)有限公司 基于电容位移检测震动抑制用于异形柔性材料裁剪的控制装置
CN114594727B (zh) * 2022-03-04 2023-10-24 上海百琪迈科技(集团)有限公司 一种用于异形柔性材料的高度自适应反馈控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608270B1 (ko) * 2004-05-11 2006-08-08 고등기술연구원연구조합 초정밀 가공에서의 공구 윤곽도 보상방법
CN102069411A (zh) * 2010-11-26 2011-05-25 吉林大学 一种高精密大行程三轴快速刀具伺服装置
CN105583692A (zh) * 2016-03-02 2016-05-18 吉林大学 一种快速刀具伺服车削的三向切削力测量方法及装置
CN109079552A (zh) * 2018-08-15 2018-12-25 广东工业大学 一种基于柔顺并联机构的三轴刀具伺服装置
CN110253340A (zh) * 2019-06-26 2019-09-20 浙江大学 一种基于三轴快速刀具伺服机构的三维力检测系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007001620B4 (de) * 2007-01-04 2009-08-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Betrieb einer Bearbeitungsmaschine sowie Werkzeughalterung
CN102446562B (zh) * 2011-08-29 2014-02-12 华南理工大学 一种基于柔顺机构的微位移放大机构
CN103225728B (zh) * 2013-04-24 2014-12-24 山东大学 一种压电陶瓷驱动的二维并联微动平台
CN106546401B (zh) * 2016-11-24 2019-09-20 苏州东菱振动试验仪器有限公司 具有预紧结构的三轴向解耦装置及振动台

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608270B1 (ko) * 2004-05-11 2006-08-08 고등기술연구원연구조합 초정밀 가공에서의 공구 윤곽도 보상방법
CN102069411A (zh) * 2010-11-26 2011-05-25 吉林大学 一种高精密大行程三轴快速刀具伺服装置
CN105583692A (zh) * 2016-03-02 2016-05-18 吉林大学 一种快速刀具伺服车削的三向切削力测量方法及装置
CN109079552A (zh) * 2018-08-15 2018-12-25 广东工业大学 一种基于柔顺并联机构的三轴刀具伺服装置
CN110253340A (zh) * 2019-06-26 2019-09-20 浙江大学 一种基于三轴快速刀具伺服机构的三维力检测系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114406773A (zh) * 2022-01-26 2022-04-29 哈尔滨工业大学(深圳) 一种两自由度刀具伺服装置
CN114434325A (zh) * 2022-02-21 2022-05-06 华中科技大学 一种基于串联弹性执行器的单自由度力控磨头装置
CN115431100A (zh) * 2022-09-30 2022-12-06 杭州电子科技大学 一种快速刀具伺服装置的切削力监测及位移控制系统
CN115431100B (zh) * 2022-09-30 2024-04-05 杭州电子科技大学 一种快速刀具伺服装置的切削力监测及位移控制系统

Also Published As

Publication number Publication date
CN111633451A (zh) 2020-09-08
CN111633451B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2021208233A1 (zh) 三轴快速刀具伺服机构及其三维力在线检测系统
CN110253340B (zh) 一种基于三轴快速刀具伺服机构的三维力检测系统
Wei et al. Design and testing of a new force-sensing cell microinjector based on small-stiffness compliant mechanism
CN104142125A (zh) 基于激光位移传感器的压电板振动检测控制装置与方法
CN102435775B (zh) 应变式三维加速度传感器
CN116147599B (zh) 一种四质量全差分双轴mems陀螺仪
CN111890128A (zh) 一种三向解耦的测力型压电快刀伺服装置
JPH08115128A (ja) パラレルリンク機構
CN104925738A (zh) 基于柔性铰链放大的压电微动平台
US7683634B2 (en) Micromachined capacitive sensor and linkage
CN110455656B (zh) 精密作动/感知双模式一体化的微机械梳齿结构及检测方法
US8950258B2 (en) Micromechanical angular acceleration sensor and method for measuring an angular acceleration
JP2673849B2 (ja) 力検出手段付き直線運動用案内装置
Metz et al. Integration of an isotropic microprobe and a microenvironment into a conventional CMM
CN113514666B (zh) 一种基于pt对称谐振器的微机械加速度计及其检测方法
CN101373156B (zh) 一种亚微牛顿级力测量系统
CN110148436B (zh) 一种大行程、可转动的三自由度并联柔性微动平台
CN111766401A (zh) 一种三轴压阻式加速度计
JP4901533B2 (ja) 力センサ、荷重検出装置及び形状測定装置
CN1055157C (zh) 机器人重复位姿精度检测系统
CN111872746B (zh) 一种可实现单轴、双轴及三轴力检测功能的机械柔性机构
CN101078660A (zh) 一种压电式六维力传感器
CN105300577A (zh) 回转主轴装置及集成该装置的二维微力测量系统
CN111735989A (zh) 一种三轴压阻式加速度计
CN206601119U (zh) 一种滚珠丝杠弯曲挠度检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931667

Country of ref document: EP

Kind code of ref document: A1