WO2021208221A1 - 一种掘进机惯导组合定位装置减振系统及其使用方法 - Google Patents

一种掘进机惯导组合定位装置减振系统及其使用方法 Download PDF

Info

Publication number
WO2021208221A1
WO2021208221A1 PCT/CN2020/096043 CN2020096043W WO2021208221A1 WO 2021208221 A1 WO2021208221 A1 WO 2021208221A1 CN 2020096043 W CN2020096043 W CN 2020096043W WO 2021208221 A1 WO2021208221 A1 WO 2021208221A1
Authority
WO
WIPO (PCT)
Prior art keywords
roadheader
inertial navigation
positioning device
vibration reduction
vibration
Prior art date
Application number
PCT/CN2020/096043
Other languages
English (en)
French (fr)
Inventor
刘送永
朱真才
崔玉明
崔新霞
李洪盛
刘后广
张德义
姬会福
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to RU2021113647A priority Critical patent/RU2752433C1/ru
Publication of WO2021208221A1 publication Critical patent/WO2021208221A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines

Definitions

  • the invention relates to the field of a vibration damping system for a roadheader inertial navigation combined positioning device and a use method thereof, in particular to a vibration damping system for a roadheader inertial navigation combined positioning device and a use method thereof.
  • the spectrum analyzer and the microprocessor are installed in an electrical control box of the roadheader.
  • the number of the variable damping vibration reduction device is four.
  • the present invention also provides a method for using the vibration damping system of the inertial navigation combined positioning device of the roadheader, which specifically includes the following steps:
  • Vibration sensors in three directions detect the vibration state of the cutting part of the roadheader in real time, and transmit the real-time vibration signal to the spectrum analyzer for spectrum analysis, and the spectrum analyzer calculates the main frequency domain of the roadheader for no-load operation;
  • step d If the judgment result in step d is affirmative, the microprocessor will send a signal to control the roadheader to perform pre-cutting operations and execute step g;
  • step d If the judgment result in step d is negative, the roadheader’s microprocessor calculates the ratio ⁇ between the roadheader’s unloaded main frequency domain and the natural frequency of the inertial navigation combined positioning device, and calculates the current adjustment of the variable damping vibration reduction device Parameter such that ⁇ m, adjust the excitation current of the variable damping vibration reduction device according to the calculated current adjustment parameter, and repeat step c;
  • step h If the result of the judgment in step h is affirmative, then the roadheader will formally automatically cut and run the operation and execute step k;
  • the monitoring system detects the vibration state of the roadheader in real time, and the vibration reduction system accurately controls and outputs the position and posture of the roadheader 1 in real time.
  • m and n take a value greater than or equal to 2 under normal circumstances, and are determined according to specific conditions.
  • the present invention divides the vibration reduction operation of the inertial navigation combination positioning device during the roadheading process into the vibration reduction part of the roadheader no-load operation and the vibration reduction part of the roadheader cutting operation, distinguishing the different width frequencies of the roadheader
  • the range of drive excitation reduces the requirement for precise adjustment of the variable damping vibration reduction device.
  • the present invention analyzes the excitation frequency of the roadheader in the no-load operation state and the cutting state in real time, and implements real-time vibration reduction for the roadheader inertial navigation combined positioning device according to the change of the excitation frequency , To ensure that the inertial navigation combined positioning device always works in a suitable environment.
  • Figure 1 is a schematic diagram of the installation positions of a monitoring system and a vibration reduction system in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the principle of vibration feedback control of the vibration reduction system in an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the installation position of the variable damping vibration reduction device in the embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the structure of a variable damping vibration reduction device in an embodiment of the present invention.
  • the damping and vibration reduction device 3-1 is used to perform real-time vibration reduction processing on the inertial navigation combined positioning device 1-5 to improve the accuracy and real-time performance of the system's pose determination;
  • the spectrum analyzer 2-2 and the microprocessor 3 -2 is installed in the tunneling electrical control box 1-8, and the tunneling machine 1 has a loading department 1-4;
  • variable damping vibration damping device 3-1 includes a rubber shell 3-1-3, and the rubber shell 3-1-3 is filled with magnetic powder 3-1-4 on its inner wall.
  • the excitation coil 3-1-6 is fixed, and the upper and lower ends of the rubber housing 3-1-3 are respectively provided with an upper connection port 3-1-2 and a lower connection port 3 connected to the upper and lower ends of the excitation coil 3-1-6.
  • the middle part of the rubber shell 3-1-3 is provided with a damping rod 3-1-5 that penetrates up and down, and the upper end of the damping rod 3-1-5 extends out of the rubber shell 3-1-3 and is fixed with
  • the upper bracket 3-1-1, the upper end surface of the upper bracket 3-1-1 is fixed to the bottom of the inertial navigation combined positioning device 1-5; the magnetic powder 3-1-4 can be adjusted according to the current in the exciting coil 3-1-6 Provide variable friction for the damping rod 3-1-5, thereby changing the anti-vibration damping of the device.
  • the upper wiring port 3-1-2 and the lower wiring port 3-1-7 are the excitation current input interfaces, which are inertial navigation
  • the combined positioning device 1-5 provides variable damping in the x, y, and z directions.
  • the three vibration sensors 2-1 are respectively electrically connected to the spectrum analyzer 2-2, the spectrum analyzer 2-2, the upper wiring port 3-1-2 and the lower wiring port of the rubber housing 3-1-3 3-1-7 is electrically connected to the microprocessor 3-2 respectively.
  • the vibration sensor 2-1 in three directions detects the vibration state of the cutting part 1-2 of the roadheader in real time, and transmits the real-time vibration signal to the spectrum analyzer 2-2 for spectrum analysis, and the spectrum analyzer 2-2 calculates Exit the main frequency domain of roadheader 1 in no-load operation;
  • the spectrum analyzer 2-2 inputs the no-load running main frequency of the roadheader 1 to the microprocessor 3-2, and the microprocessor 3-2 determines whether the no-load main frequency domain of the roadheader 1 in step c is greater than or equal to step a Inertial navigation combined positioning device 1-5 natural frequency 2 times;
  • step d If the judgment result in step d is affirmative, the microprocessor 3-2 sends a signal to control the roadheader 1 to perform the pre-cutting operation, and execute step g;
  • step d If the judgment result in step d is negative, the roadheader microprocessor 3-2 calculates the ratio ⁇ between the unloaded main frequency domain of the roadheader 1 and the natural frequency of the inertial navigation integrated positioning device 1-5, and calculates the change
  • the current adjustment parameters of the damping vibration reduction device 3-1 are such that ⁇ m, m takes a value greater than or equal to 2 under normal circumstances, which is determined according to the specific situation, and the variable damping vibration reduction device is adjusted according to the calculated current adjustment parameters 3- 1 Excitation current, repeat step c;
  • the vibration sensor 2-1 in three directions detects the vibration state of the cutting part 1-2 of the roadheader in real time, and transmits the real-time vibration signal to the spectrum analyzer 2-2 for spectrum analysis, and the spectrum analyzer 2-2 calculates Exit the main frequency domain of the roadheader 1 in the cutting state;
  • the spectrum analyzer 2-2 inputs the main frequency of the roadheader 1 in the cutting state to the microprocessor 3-2, and the microprocessor 3-2 determines whether the main frequency domain of the roadheader 1 in the cutting state in step g is greater than or equal to In step a, the inertial navigation combined positioning device 1-5 natural frequency twice;
  • step h If the judgment result in step h is negative, the microprocessor 3-2 calculates the ratio ⁇ between the main frequency domain of the cutting state of the roadheader 1 and the natural frequency of the inertial navigation integrated positioning device 1-5, and calculates the variable damping
  • the current adjustment parameters of the vibration damping device 3-1 are such that ⁇ n, and n takes a value greater than or equal to 2 under normal circumstances, and it is determined according to the specific situation. Adjust the variable damping vibration damping device 3-1 according to the calculated current adjustment parameters Excitation current, repeat step g;
  • the monitoring system 2 detects the vibration state of the roadheader 1 in real time, and the vibration reduction system 3 accurately controls and outputs the position and posture of the roadheader 1 in real time.
  • the invention can detect the excitation frequency of the roadheader in real time, and adjust the connection stiffness and damping of the inertial navigation positioning device and the roadheader through the variable damping vibration reduction device, which can better improve the accuracy and real-time performance of the roadheader navigation and positioning, and improve the roadway construction
  • the forming quality especially suitable for the comprehensive driving conditions in the underground roadway, can provide conditions for the intelligent and automated operation of the roadheader.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Navigation (AREA)

Abstract

一种掘进机惯导组合定位装置减振系统及其使用方法,该系统包括监测系统(2)和减振系统(3),监测系统(2)包括频谱分析仪(2-2)和三个固定在掘进机截割部(1-2)上的振动传感器(2-1),减振系统(3)包括微处理器(3-2)和若干个均布在回转台(1-6)周向边缘上用于承载惯导组合定位装置(1-5)的变阻尼减振装置(3-1);该系统利用监测系统(2)和变阻尼减振装置(3-1)进行对掘进机惯导组合定位装置的反馈减振控制,能够使惯导组合定位装置远离掘进机运行过程中激振的主频域范围,增强惯导组合定位装置的位姿敏感性,提高掘进机惯性组合导航精度和实时性,能够为掘进机的智能化和自动化作业提供有利条件。

Description

一种掘进机惯导组合定位装置减振系统及其使用方法 技术领域
本发明涉及掘进机惯导组合定位装置减振系统及其使用方法领域,具体涉及一种掘进机惯导组合定位装置减振系统及其使用方法。
背景技术
掘进机作为矿井巷道综合掘进最重要的一种掘进机械,普遍面临着工作环境恶劣,掘进方向可控性差,掘进巷道成型质量差等难题,掘进机的自动导航和精确定位成为掘进机智能化发展的关键问题。诸多基于惯性导航的组合导航措施被用来实现掘进机的精确导航定位,而惯导组合定位装置通常被直接安装在机身以检测掘进机的位置和姿态变化。而掘进机实际运行过程中必然受到行走机构、截割系统和装运系统的宽频激励作用,导致惯导组合定位装置的位姿检测结果产生较大影响。因此,亟需一种实时的可变阻尼减振系统及方法使掘进机惯导组合定位装置能够在合适的环境频率范围工作,为掘进机提供准确的自动导航和定位方法,为实现智能化综掘提供技术支撑。
发明内容
针对上述存在的技术不足,本发明的目的是提供一种掘进机惯导组合定位装置减振系统及其使用方法,其能够解决现有技术中掘进机惯导组合定位装置无法实时准确估计掘进机位姿的问题。
为解决上述技术问题,本发明采用如下技术方案:
本发明提供一种掘进机惯导组合定位装置减振系统及其使用方法,包括监测系统和减振系统,所述监测系统包括频谱分析仪和三个固定在掘进机截割部上并且分别与掘进机横摆方向x、俯仰方向y以及前后方向z重合的振动传感器,所述减振系统包括微处理器和若干个均布在回转台周向边缘上用于承载惯 导组合定位装置的变阻尼减振装置;
所述变阻尼减振装置包括橡胶外壳,所述橡胶外壳内部填充有磁粉并且其内壁上固定有激磁线圈,所述橡胶外壳的上下端分别设有与激磁线圈上下端连接的上接线口和下接线口,所述橡胶外壳中部设有上下贯穿的阻尼杆,所述阻尼杆上端伸出橡胶外壳外固定有上支架,所述上支架上端面与惯导组合定位装置底部固定;三个振动传感器分别与频谱分析仪电性连接,所述频谱分析仪、所述橡胶外壳的上接线口和下接线口分别与微处理器电性连接。
优选地,所述频谱分析仪和所述微处理器安装在掘进机电控箱内。
优选地,所述变阻尼减振装置数量为4个。
本发明还提供上述一种掘进机惯导组合定位装置减振系统的使用方法,具体包括以下步骤:
a、启动掘进机的电控系统,为振动传感器、变阻尼减振装置和惯导组合定位装置通电,输入惯导组合定位装置固有频率和变阻尼减振装置固有参数;
b、启动掘进机截割系统和行走机构,将掘进机移至工作面,并下落铲板部和后支撑以固定掘进机;
c、三个方向上的振动传感器实时检测掘进机截割部的振动状态,并将实时振动信号传送至频谱分析仪进行频谱分析,频谱分析仪计算出掘进机空载运行主频域;
d、频谱分析仪将掘进机空载运行主频输入至微处理器,微处理器判断步骤c中掘进机空载主频域是否大于或等于步骤a中惯导组合定位装置固有频率的2倍;
e、若步骤d中判断结果为肯定的,则由微处理器发出信号,控制掘进机进行预截割作业,并执行步骤g;
f、若步骤d中判断结果为否定的,则由掘进机微处理器计算掘进机空载主频域与惯导组合定位装置固有频率之比λ,并计算出变阻尼减振装置的电流调节参数,使λ≥m,按计算出的电流调节参数调整变阻尼减振装置激磁电流, 重复执行步骤c;
g、三个方向上的振动传感器实时检测掘进机截割部的振动状态,并将实时振动信号传送至频谱分析仪进行频谱分析,频谱分析仪计算出掘进机截割状态的主频域;
h、频谱分析仪将掘进机截割状态的主频输入至微处理器,微处理器判断步骤g中掘进机截割状态主频域是否大于或等于步骤a中惯导组合定位装置固有频率的2倍;
i、若步骤h中判断结果为肯定的,则进行掘进机正式自动截割运行作业,并执行步骤k;
j、若步骤h中判断结果为否定的,则由微处理器计算掘进机截割状态主频域与惯导组合定位装置固有频率之比ζ,并计算出变阻尼减振装置的电流调节参数,使ζ≥n,按计算出的电流调节参数调整变阻尼减振装置激磁电流,重复执行步骤g;
k、监测系统实时检测掘进机振动状态,减振系统实时精确控制和输出掘进机1作业的位置和姿态。
优选的,步骤f和步骤j中,m和n在通常情况下取大于或等于2的数值,根据具体情况确定。
本发明的有益效果在于:
1、本发明结合掘进机实际工作流程,将掘进过程中惯导组合定位装置的减振作业分为掘进机空载运行减振部分和掘进机截割运行减振部分,区别掘进机不同宽度频率范围的驱动激励,降低对变阻尼减振装置精确调整的要求。
2、本发明基于振动状态监测技术与变阻尼减振装置,实时分析掘进机空载运行状态和截割状态下的激励频率,根据激励频率的改变实时针对掘进机惯导组合定位装置进行减振,确保惯导组合定位装置始终工作在合适的环境中。
3、采用变阻尼减振装置对惯导组合定位装置进行减振处理,通过调整变阻尼减振装置的激磁电流更改惯导组合定位装置与机身的连接刚度及阻尼,从 而保证惯导组合定位装置工作环境的频率远离时变的掘进机激励频率,提升惯导组合定位装置对掘进机位姿的估计精度和可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中监测系统和减振系统安装位置示意图;
图2为本发明实施例中减振系统振动反馈控制原理示意图;
图3为本发明实施例中变阻尼减振装置安装位置示意图;
图4为本发明实施例中变阻尼减振装置结构示意图;
图5为本发明实施例中变阻尼减振装置剖面图;
图6本发明实施例中一种掘进机惯导组合定位装置减振系统的使用方法工作流程图。
图中:1、掘进机,1-1、掘进机截割头,1-2、掘进机截割部,1-3、铲板部,1-4、掘进机装运部,1-5、惯导组合定位装置,1-6、回转台,1-7、行走机构,1-8、掘进机电控箱,1-9、后支撑,2、监测系统,2-1、振动传感器,2-2、频谱分析仪,3、减振系统,3-1、变阻尼减振装置,3-1-1、上支架,3-1-2、上接线口,3-1-3、橡胶外壳,3-1-4、磁粉,3-1-5、阻尼杆,3-1-6、激磁线圈,3-1-7、下接线口,3-2、微处理器。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,一种掘进机惯导组合定位装置减振系统,包括监测系统2和减振系统3,所述监测系统2包括频谱分析仪2-2和三个固定在掘进机截割部1-2上并且分别与掘进机横摆方向x、俯仰方向y以及前后方向z重合的振动传感器2-1,振动传感器2-1用于监测和分析掘进机1机身的振动频谱参数,所述减振系统3包括微处理器3-2和4个均布在回转台1-6周向边缘上用于承载惯导组合定位装置1-5的变阻尼减振装置3-1,变阻尼减振装置3-1用于对惯导组合定位装置1-5进行实时减振处理,提升系统位姿确定的精度和实时性;所述频谱分析仪2-2和所述微处理器3-2安装在掘进机电控箱1-8内,掘进机1设有装运部1-4;
如图2所示,三个方向上的振动传感器2-1监测掘进机截割部1-2的振动状态,并将振动信号传输给频谱分析仪2-2,频谱分析仪2-2分析振动信号并给出掘进机1振动信号的主频域,为减振系统3提供特征频率的解析;微处理器3-2接频谱分析仪2-2输出的频率信息,并根据激振频率和惯导组合定位装置1-5固有频率的关系调整变阻尼减振装置3-1的阻尼电流系数,使惯导组合定位装置1-5工作在远离掘进机激振频率的环境中,实现惯导组合定位装置1-5的实时反馈减振,提升位姿导航可靠性;
如图3-图5所示,所述变阻尼减振装置3-1包括橡胶外壳3-1-3,所述橡胶外壳3-1-3内部填充有磁粉3-1-4并且其内壁上固定有激磁线圈3-1-6,所述橡胶外壳3-1-3的上下端分别设有与激磁线圈3-1-6上下端连接的上接线口3-1-2和下接线口3-1-7,所述橡胶外壳3-1-3中部设有上下贯穿的阻尼杆3-1-5,所述阻尼杆3-1-5上端伸出橡胶外壳3-1-3外固定有上支架3-1-1,所述上支架3-1-1上端面与惯导组合定位装置1-5底部固定;磁粉3-1-4能够根据激磁线圈3-1-6中电流的不同为阻尼杆3-1-5提供大小可变的摩擦力,进而改变装置的抗振阻尼,上接线口3-1-2和下接线口3-1-7是激磁电流输入接口,为惯导组合定位装置1-5提供x、y、z方向的可变阻尼减振。
三个振动传感器2-1分别与频谱分析仪2-2电性连接,所述频谱分析仪2-2、所述橡胶外壳3-1-3的上接线口3-1-2和下接线口3-1-7分别与微处理器3-2电性连接。
如图6所示,本发明还提供一种掘进机惯导组合定位装置减振系统的使用方法,具体包括以下步骤:
a、启动掘进机1的电控系统,为振动传感器2-1、变阻尼减振装置3-1和惯导组合定位装置1-5通电,输入惯导组合定位装置1-5固有频率和变阻尼减振装置3-1固有参数;
b、启动掘进机1截割系统和行走机构1-7,将掘进机1移至工作面,并下落铲板部1-3和后支撑1-9以固定掘进机1;
c、三个方向上的振动传感器2-1实时检测掘进机截割部1-2的振动状态,并将实时振动信号传送至频谱分析仪2-2进行频谱分析,频谱分析仪2-2计算出掘进机1空载运行主频域;
d、频谱分析仪2-2将掘进机1空载运行主频输入至微处理器3-2,微处理器3-2判断步骤c中掘进机1空载主频域是否大于或等于步骤a中惯导组合定位装置1-5固有频率的2倍;
e、若步骤d中判断结果为肯定的,则由微处理器3-2发出信号,控制掘进机1进行预截割作业,并执行步骤g;
f、若步骤d中判断结果为否定的,则由掘进机微处理器3-2计算掘进机1空载主频域与惯导组合定位装置1-5固有频率之比λ,并计算出变阻尼减振装置3-1的电流调节参数,使λ≥m,m在通常情况下取大于或等于2的数值,根据具体情况确定,按计算出的电流调节参数调整变阻尼减振装置3-1激磁电流,重复执行步骤c;
g、三个方向上的振动传感器2-1实时检测掘进机截割部1-2的振动状态,并将实时振动信号传送至频谱分析仪2-2进行频谱分析,频谱分析仪2-2计算出掘进机1截割状态的主频域;
h、频谱分析仪2-2将掘进机1截割状态的主频输入至微处理器3-2,微处理器3-2判断步骤g中掘进机1截割状态主频域是否大于或等于步骤a中惯导组合定位装置1-5固有频率的2倍;
i、若步骤h中判断结果为肯定的,则进行掘进机1正式自动截割运行作业,并执行步骤k;
j、若步骤h中判断结果为否定的,则由微处理器3-2计算掘进机1截割状态主频域与惯导组合定位装置1-5固有频率之比ζ,并计算出变阻尼减振装置3-1的电流调节参数,使ζ≥n,n在通常情况下取大于或等于2的数值,根据具体情况确定,按计算出的电流调节参数调整变阻尼减振装置3-1激磁电流,重复执行步骤g;
k、监测系统2实时检测掘进机1振动状态,减振系统3实时精确控制和输出掘进机1作业的位置和姿态。
本发明能够实时检测掘进机激励频率,并通过可变阻尼减振装置调整惯导定位装置与掘进机的连接刚度及阻尼,能够较好的提升掘进机导航定位的精度和实时性,提高巷道施工和成型质量,尤其适用于井下巷道中的综合掘进工况,能够为掘进机的智能化和自动化作业提供条件。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (5)

  1. 一种掘进机惯导组合定位装置减振系统,其特征在于,包括监测系统(2)和减振系统(3),所述监测系统(2)包括频谱分析仪(2-2)和三个固定在掘进机截割部(1-2)上并且分别与掘进机横摆方向x、俯仰方向y以及前后方向z重合的振动传感器(2-1),所述减振系统(3)包括微处理器(3-2)和若干个均布在回转台(1-6)周向边缘上用于承载惯导组合定位装置(1-5)的变阻尼减振装置(3-1);
    所述变阻尼减振装置(3-1)包括橡胶外壳(3-1-3),所述橡胶外壳(3-1-3)内部填充有磁粉(3-1-4)并且其内壁上固定有激磁线圈(3-1-6),所述橡胶外壳(3-1-3)的上下端分别设有与激磁线圈(3-1-6)上下端连接的上接线口(3-1-2)和下接线口(3-1-7),所述橡胶外壳(3-1-3)中部设有上下贯穿的阻尼杆(3-1-5),所述阻尼杆(3-1-5)上端伸出橡胶外壳(3-1-3)外固定有上支架(3-1-1),所述上支架(3-1-1)上端面与惯导组合定位装置(1-5)底部固定;三个振动传感器(2-1)分别与频谱分析仪(2-2)电性连接,所述频谱分析仪(2-2)、所述变阻尼减振装置(3-1)的上接线口(3-1-2)和下接线口(3-1-7)分别与微处理器(3-2)电性连接。
  2. 如权利要求1所述的一种掘进机惯导组合定位装置减振系统,其特征在于,所述频谱分析仪(2-2)和所述微处理器(3-2)安装在掘进机电控箱(1-8)内。
  3. 如权利要求1所述的一种掘进机惯导组合定位装置减振系统,其特征在于,所述变阻尼减振装置(3-1)数量为4个。
  4. 一种如权利要求1所述的掘进机惯导组合定位装置减振系统的使用方法,其特征在于,具体包括以下步骤:
    a、启动掘进机(1)的电控系统,为振动传感器(2-1)、变阻尼减振装置(3-1)和惯导组合定位装置(1-5)通电,输入惯导组合定位装置(1-5)固有频率和变阻尼减振装置(3-1)固有参数;
    b、启动掘进机(1)截割系统和行走机构(1-7),将掘进机(1)移至工作面,并下落铲板部(1-3)和后支撑(1-9)以固定掘进机(1);
    c、三个方向上的振动传感器(2-1)实时检测掘进机截割部(1-2)的振动状态,并将实时振动信号传送至频谱分析仪(2-2)进行频谱分析,频谱分析仪(2-2)计算出掘进机(1)空载运行主频域;
    d、频谱分析仪(2-2)将掘进机(1)空载运行主频输入至微处理器(3-2),微处理器(3-2)判断步骤c中掘进机(1)空载主频域是否大于或等于步骤a中惯导组合定位装置(1-5)固有频率的2倍;
    e、若步骤d中判断结果为肯定的,则由微处理器(3-2)发出信号,控制掘进机(1)进行预截割作业,并执行步骤g;
    f、若步骤d中判断结果为否定的,则由掘进机微处理器(3-2)计算掘进机(1)空载主频域与惯导组合定位装置(1-5)固有频率之比λ,并计算出变阻尼减振装置(3-1)的电流调节参数,使λ≥m,按计算出的电流调节参数调整变阻尼减振装置(3-1)激磁电流,重复执行步骤c;
    g、三个方向上的振动传感器(2-1)实时检测掘进机截割部(1-2)的振动状态,并将实时振动信号传送至频谱分析仪(2-2)进行频谱分析,频谱分析仪(2-2)计算出掘进机(1)截割状态的主频域;
    h、频谱分析仪(2-2)将掘进机(1)截割状态的主频输入至微处理器(3-2),微处理器(3-2)判断步骤g中掘进机(1)截割状态主频域是否大于或等于步骤a中惯导组合定位装置(1-5)固有频率的2倍;
    i、若步骤h中判断结果为肯定的,则进行掘进机(1)正式自动截割运行作业,并执行步骤k;
    j、若步骤h中判断结果为否定的,则由微处理器(3-2)计算掘进机(1)截割状态主频域与惯导组合定位装置(1-5)固有频率之比ζ,并计算出变阻尼减振装置(3-1)的电流调节参数,使ζ≥n,按计算出的电流调节参数调整变阻尼减振装置(3-1)激磁电流,重复执行步骤g;
    k、监测系统(2)实时检测掘进机(1)振动状态,减振系统(3)实时精确控制和输出掘进机(1)作业的位置和姿态。
  5. 如权利要求4所述的一种掘进机惯导组合定位装置减振系统的使用方法,其特征在于,步骤f和步骤j中,m和n在通常情况下取大于或等于2的数值,根据具体情况确定。
PCT/CN2020/096043 2020-04-17 2020-06-15 一种掘进机惯导组合定位装置减振系统及其使用方法 WO2021208221A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021113647A RU2752433C1 (ru) 2020-04-17 2020-06-15 Система глушения вибраций для интегрированного устройства позиционирования с инерциальной навигацией, содержащегося в проходческом комбайне, и способ ее применения

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010304184.6 2020-04-17
CN202010304184.6A CN111561543B (zh) 2020-04-17 2020-04-17 一种掘进机惯导组合定位装置减振系统及其使用方法

Publications (1)

Publication Number Publication Date
WO2021208221A1 true WO2021208221A1 (zh) 2021-10-21

Family

ID=72071657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096043 WO2021208221A1 (zh) 2020-04-17 2020-06-15 一种掘进机惯导组合定位装置减振系统及其使用方法

Country Status (2)

Country Link
CN (1) CN111561543B (zh)
WO (1) WO2021208221A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114120785A (zh) * 2021-11-02 2022-03-01 北京龙软科技股份有限公司 一种煤矿掘进设备与地质模型、巷道设计模型的耦合系统
CN114135281A (zh) * 2021-11-12 2022-03-04 黑龙江科技大学 臂式掘进机工作机构及其截割状态描述装置和描述方法
CN116952562A (zh) * 2023-09-21 2023-10-27 中国船舶集团有限公司第七〇七研究所 一种基于时频分析法的掘进机截割部振动状态识别方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115143229B (zh) * 2022-09-06 2022-11-29 万向钱潮股份公司 一种传动轴减震装置及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1657114A1 (en) * 2004-11-15 2006-05-17 Harman/Becker Automotive Systems GmbH Navigation device of a vehicle and memory unit mounting system
DE102014000987A1 (de) * 2013-01-30 2014-07-31 Riegl Laser Measurement Systems Gmbh Montagesystem für opto-elektronische Instrumente
CN108150603A (zh) * 2017-08-17 2018-06-12 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一种惯导设备减振器
CN109296370A (zh) * 2018-10-09 2019-02-01 山东蓝光软件有限公司 一种自动测绘定位的掘进方法及系统
CN110736458A (zh) * 2019-12-06 2020-01-31 中国矿业大学(北京) 基于航位推算的掘进机自主导航系统及方法
CN110985593A (zh) * 2019-11-18 2020-04-10 中国空空导弹研究院 一种基于弹性阻尼元件惯导系统整体式减振装置设计方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264689A (ja) * 1993-03-12 1994-09-20 Maeda Corp 岩盤掘削方法及び岩盤掘削装置
CN2258553Y (zh) * 1994-04-18 1997-07-30 山东建筑材料工业学院 阻尼力可控的磁粉减振器
JP2018135942A (ja) * 2017-02-22 2018-08-30 日産自動車株式会社 振動低減方法及び振動低減装置
CN107061613B (zh) * 2017-05-03 2019-01-25 武汉理工大学 多维主动控制减振装置和方法
CN107014379B (zh) * 2017-05-25 2019-09-20 中国矿业大学 一种掘进机绝对空间位姿检测装置与方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1657114A1 (en) * 2004-11-15 2006-05-17 Harman/Becker Automotive Systems GmbH Navigation device of a vehicle and memory unit mounting system
DE102014000987A1 (de) * 2013-01-30 2014-07-31 Riegl Laser Measurement Systems Gmbh Montagesystem für opto-elektronische Instrumente
CN108150603A (zh) * 2017-08-17 2018-06-12 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一种惯导设备减振器
CN109296370A (zh) * 2018-10-09 2019-02-01 山东蓝光软件有限公司 一种自动测绘定位的掘进方法及系统
CN110985593A (zh) * 2019-11-18 2020-04-10 中国空空导弹研究院 一种基于弹性阻尼元件惯导系统整体式减振装置设计方法
CN110736458A (zh) * 2019-12-06 2020-01-31 中国矿业大学(北京) 基于航位推算的掘进机自主导航系统及方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114120785A (zh) * 2021-11-02 2022-03-01 北京龙软科技股份有限公司 一种煤矿掘进设备与地质模型、巷道设计模型的耦合系统
CN114120785B (zh) * 2021-11-02 2023-08-08 北京龙软科技股份有限公司 一种煤矿掘进设备与地质模型、巷道设计模型的耦合系统
CN114135281A (zh) * 2021-11-12 2022-03-04 黑龙江科技大学 臂式掘进机工作机构及其截割状态描述装置和描述方法
CN114135281B (zh) * 2021-11-12 2024-04-26 黑龙江科技大学 臂式掘进机工作机构及其截割状态描述装置和描述方法
CN116952562A (zh) * 2023-09-21 2023-10-27 中国船舶集团有限公司第七〇七研究所 一种基于时频分析法的掘进机截割部振动状态识别方法
CN116952562B (zh) * 2023-09-21 2023-12-15 中国船舶集团有限公司第七〇七研究所 一种基于时频分析法的掘进机截割部振动状态识别方法

Also Published As

Publication number Publication date
CN111561543A (zh) 2020-08-21
CN111561543B (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2021208221A1 (zh) 一种掘进机惯导组合定位装置减振系统及其使用方法
US20210189857A1 (en) Drilling system control for reducing stick-slip by calculating and reducing energy of upgoing rotational waves in a drillstring
CA3047407C (en) Sliding mode control techniques for steerable systems
US7669656B2 (en) Method and apparatus for rescaling measurements while drilling in different environments
KR102447168B1 (ko) 쇼벨 및 쇼벨의 제어방법
CN104295297B (zh) 一种掘进机截割头定位系统及方法和掘进机
CN104652501B (zh) 桩侧探孔内激振的桩基质量检测装置及方法
WO2005093212A1 (en) Method and system for detecting conditions inside a wellbore
US20200011167A1 (en) Optimal trajectory control for rotary steerable systems
CN204960931U (zh) 用于控制粉尘的系统
US11286638B2 (en) Loading machine control device and control method
CN104453857B (zh) 一种小井斜下井斜和工具面角动态测量方法及装置
CN111126735B (zh) 一种钻井数字孪生系统
US10160139B2 (en) Method for speed controlling a power tool and related power tool
CN106767617A (zh) 基于加速度测量的游梁式抽油机光杆位移传感器及方法
NO20190707A1 (en) Curvature-Based Feedback Control Techniques for Directional Drilling
CN204238856U (zh) 推靠式旋转导向装置
US10353102B2 (en) Active dampening for wellbore logging using vibration feedback
CN116427909B (zh) 基于垂直钻井系统的井斜方位测定方法
CN102979518B (zh) 一种方位伽玛探管
CN111812136A (zh) Tbm搭载式矿物成分检测方法、超前地质预报方法及系统
AU2019264522A1 (en) Down-the-hole drilling control system for mobile drilling machines
RU2752433C1 (ru) Система глушения вибраций для интегрированного устройства позиционирования с инерциальной навигацией, содержащегося в проходческом комбайне, и способ ее применения
CN111456705A (zh) 一种定向钻井地面控制系统、方法及装置
CN217462265U (zh) 一种基于钻进信号的巷道顶板稳定性智能分析预警装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931602

Country of ref document: EP

Kind code of ref document: A1