WO2021208112A1 - 一种防止煤炭自燃的生物阻化剂及其制备方法 - Google Patents

一种防止煤炭自燃的生物阻化剂及其制备方法 Download PDF

Info

Publication number
WO2021208112A1
WO2021208112A1 PCT/CN2020/085504 CN2020085504W WO2021208112A1 WO 2021208112 A1 WO2021208112 A1 WO 2021208112A1 CN 2020085504 W CN2020085504 W CN 2020085504W WO 2021208112 A1 WO2021208112 A1 WO 2021208112A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
spontaneous combustion
coal
carrier
aerobic microorganisms
Prior art date
Application number
PCT/CN2020/085504
Other languages
English (en)
French (fr)
Inventor
程卫民
胡相明
吴明跃
赵艳云
张茜
鲁义
陆伟
王刚
陈连军
戚绪尧
贺正龙
王鹏
辛林
亓冠圣
陆新晓
田兆军
黄志安
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2021208112A1 publication Critical patent/WO2021208112A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F5/00Means or methods for preventing, binding, depositing, or removing dust; Preventing explosions or fires
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier

Definitions

  • the invention relates to the field of fireproof materials in coal mines and their preparation, in particular to a chemical inhibitor for preventing spontaneous combustion of coal and a preparation method thereof.
  • Coal mine fire is one of the important disasters affecting coal mine safety production.
  • Field observations of coal spontaneous combustion fires in a large number of mines show that after the fire area is closed, the air leakage channel cannot be effectively eliminated.
  • the air flow will enter the goaf from the roadway wall to provide fresh air flow for the goaf.
  • the remaining coal in the goaf is always in the oxidation heating zone, which cannot effectively make the coal body in an anaerobic state.
  • grouting, inert gas injection, gel injection, foam injection, and spraying inhibitors since the 1950s.
  • the spraying of chemical inhibitors has a better fire-fighting effect and has been widely used in preventing spontaneous combustion of coal.
  • the commonly used inhibitors include physical and chemical inhibitors.
  • Physical inhibitors are mainly halogen salts and ammonium salts. These substances have strong hygroscopicity and can effectively lock moisture, but they cannot fundamentally solve the hidden danger of coal spontaneous combustion.
  • the active substances in coal still exist and still have High spontaneous combustion tendency, and with the passage of time, the inhibitor is exhausted, physical conditions are destroyed, and its inhibitory effect gradually disappears.
  • Chemical inhibitors mainly include antioxidants, gels, polymers, etc.
  • This type of inhibitor is mainly based on the principle of low-temperature coal oxidation kinetics, and uses the role of free radicals in the spontaneous combustion process of coal oxidation.
  • Antioxidant which captures free radicals generated in the process of chain reaction, interrupts the chain transfer in the process of chain reaction, or inertizes the active functional groups that are oxidized at low temperature in coal to generate a stable structure and improve the reaction activation of the oxidation reaction It can increase the difficulty of the reaction, so as to prevent the coal with a high tendency to spontaneous combustion from oxidizing and spontaneous combustion.
  • Application No. 201810755870.8 discloses a physicochemical synergistic coal inhibitor and a preparation method thereof. It uses polyacrylate sodium salt as the water-absorbing swelling effect of super absorbent resin to obtain an aqueous resin colloid and rare earth hydrotalcite as a physical inhibitor. Due to the high water content and strong water retention properties, it has the effect of heat absorption, cooling, as well as the effect of oxygen isolation and heat transfer, which is beneficial to inhibit the coal-oxygen reaction.
  • Application No. 201810382839.4 discloses a smart composite inhibitor of coal spontaneous combustion based on redox double blocking, which is compounded by a specific ratio of polymer copolymers, ketone amine antioxidants and penetrants through optimization screening, polymer copolymerization
  • the object is to obtain acrylic acid acrylamide guar gum copolymer by solution polymerization method, and hydrophobically modify it to obtain ferrocene butyryl chloride graft-modified acrylic acid acrylamide guar gum copolymer.
  • the technical problem to be solved by the present invention is to solve the technical problem of environmental pollution caused by inorganic/organic inhibitors in the prior art that harms the physical and mental health of workers.
  • one of the objectives of the present invention is to provide a bioinhibitor for preventing spontaneous combustion of coal.
  • the bioinhibitor is prepared by selecting aerobic microorganisms and mixing them with carrier materials.
  • the agent is environmentally friendly and non-polluting, and has the effect of continuously preventing the spontaneous combustion of coal.
  • a biological inhibitor for preventing spontaneous combustion of coal which includes the following raw materials in parts by weight:
  • the above-mentioned carrier is composed of mine sludge and auxiliary additives, and the above-mentioned auxiliary additives are one or more of pulverized crop straw, bran, and rice bran.
  • aerobic microorganisms are used in inhibitors for the first time. They can absorb oxygen for metabolism, continue to multiply, and release carbon dioxide under the condition of oxygen; when the oxygen concentration is low, the microorganisms can exist in a dormant state. When there is a certain amount of oxygen in the environment, they will perform metabolic activities again, and these microorganisms have low requirements for growth conditions. Therefore, it is very suitable to place aerobic microorganisms in the goaf of coal mines. When the oxygen concentration in the goaf is high, the microorganisms It can absorb oxygen for metabolic activities and release carbon dioxide; when the oxygen concentration is low, aerobic microorganisms exist in a dormant state.
  • the mine sludge in the carrier material can not only lock the moisture to provide a suitable environment for the growth of microorganisms, but also release moisture to lower the temperature when the temperature in the goaf is high.
  • the weight parts of the mine sludge is 80 to 90 parts, and the total weight parts of the auxiliary additives is 10 to 20 parts.
  • the weight parts of the above-mentioned mine sludge is 85 to 90 parts, and the total weight parts of the auxiliary additives is 15 to 20 parts.
  • the above-mentioned aerobic microorganisms are one or more of yeast, Rhizopus chinensis, Mucor tall mold, Geotrichum candidum, saccharifying bacteria, and Aspergillus samei.
  • the above-mentioned aerobic microorganisms need to undergo pretreatment, and the pretreatment step is: cultivating the aerobic microorganisms to a mature stage and forming a dormant body.
  • Another object of the present invention is to provide a method for preparing a bioinhibitor for preventing spontaneous combustion of coal, which sequentially includes the following steps:
  • Bio-inhibitors can absorb oxygen in the goaf and release carbon dioxide, which has the dual effects of reducing oxygen concentration and inerting;
  • the aerobic microorganisms in the bioinhibitor can dormant and resuscitate according to the oxygen concentration in the environment, and have the effect of continuously preventing the spontaneous combustion of coal;
  • the mine sludge in the carrier material of the bioinhibitor can not only provide water for microbial metabolism, but also has the effect of reducing the temperature of the goaf; at the same time, the sludge is rich in water and has an efficient fire extinguishing effect.
  • the auxiliary additives in the carrier material of the bioinhibitor can not only provide nutrients for microorganisms, but also increase the air permeability of the carrier material.
  • the materials used in the bioinhibitor are green, pollution-free, low in price, and simple to prepare.
  • the present invention uses aerobic microorganisms and mine sludge as raw materials to prepare the bioinhibitor, which can protect the environment while continuously preventing coal from spontaneous combustion, is safe and pollution-free, and is very suitable for underground coal mines.
  • the present invention proposes a bioinhibitor for preventing spontaneous combustion of coal and a preparation method thereof.
  • the present invention will be described in detail below with reference to specific embodiments.
  • the aerobic microorganisms selected as the raw materials of the present invention can be purchased through commercial channels.
  • the aerobic microorganisms of the present invention are one or a mixture of one or more of yeast, Rhizopus chinensis, Mucor tall mold, Geotrichum candidum, saccharifying bacteria or Aspergillus samigi.
  • yeast for aerobic microorganisms
  • Aerobic microorganisms use a mixture of yeast and Huaroot enzyme
  • Aerobic microorganisms use a mixture of yeast, Hua root enzyme, and tall hair enzyme;
  • the aerobic microorganisms are a mixture of yeast, radicans, and Geotrichum candidum;
  • the aerobic microorganisms are a mixture of Mucor tall, Geotrichum candidum, Saccharifying bacteria, and Aspergillus samigi.
  • the auxiliary additive of the present invention is one or a mixture of pulverized crop straw, bran, and rice bran, for example, it can be a single bran, rice bran, or a mixture of bran and rice bran.
  • the aerobic microorganism uses yeast, and the auxiliary additive is bran.
  • the preparation method of the inhibitor is:
  • the yeast cultured to the mature stage is made into a dormant body
  • the bioinhibitor is placed in a closed container with a known gas component concentration, and the closed container contains crushed coal.
  • the aerobic microorganisms use yeast and Rhizopus chinensis, and the auxiliary additives are bran and pulverized crop straws.
  • the preparation method of the inhibitor is:
  • the yeast and Rhizopus chinensis cultured to the mature stage are made into dormant bodies;
  • the bioinhibitor is placed in a closed container with a known gas component concentration, and the closed container contains crushed coal.
  • Aerobic microorganisms are selected from Geotrichum candidum, saccharifying bacteria and Aspergillus samii, and the auxiliary additives are a mixture of bran, pulverized crop straw and rice bran.
  • the preparation method of the inhibitor is:
  • the bioinhibitor is placed in a closed container with a known gas component concentration, and the closed container contains crushed coal.
  • the bioinhibitor in the present invention can reduce the oxygen concentration in the environment and increase the carbon dioxide concentration, and after increasing the oxygen concentration in the environment, the bioinhibitor can reduce the oxygen concentration again, thereby It can be seen that the bioinhibitor in the present invention can effectively prevent the spontaneous combustion of coal.
  • the aerobic microorganisms in the bioinhibitor of the present invention can sleep or undergo metabolic activities according to the oxygen concentration in the environment, so as to achieve the purpose of continuously preventing the spontaneous combustion of coal.
  • the bio-inhibitor in the present invention is economical, environmentally friendly, and highly effective.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Botany (AREA)
  • Mining & Mineral Resources (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

一种防止煤炭自燃的生物阻化剂及其制备方法,按照重量份计该生物阻化剂包括原料:好氧型微生物0.01~2份、载体90~99份;其中载体由矿井污泥和辅助添加物组成,辅助添加物为农作物秸秆粉碎物、麸皮、米糠中的一种或几种组成。该制备方法首先将好氧型微生物培养至成熟期并制成休眠体,然后将矿井污泥与辅助添加物混合均匀得载体,再将经过预处理后的好氧型微生物与载体混合均匀,即得生物阻化剂。该生物阻化剂能够有效降低煤矿采空区氧气浓度,并释放二氧化碳,可持续防止煤炭自燃。

Description

一种防止煤炭自燃的生物阻化剂及其制备方法 技术领域
本发明涉及煤矿井下防火材料及其制备领域,具体涉及一种防止煤炭自燃的阻化剂及其制备方法。
背景技术
煤矿火灾是影响煤矿安全生产的重要灾害之一。对大量矿井的煤自燃火灾现场观测结果表明,火区封闭以后,由于无法有效地消除漏风通道,在内外压差的作用下,风流会由巷道壁进入采空区,为采空区提供新鲜风流,导致采空区遗煤始终处于氧化升温带内,无法有效使煤体处于绝氧状态。为防治煤炭自燃,我国从上世纪50年代开始就陆续采用灌浆、注惰性气体、注凝胶、注泡沫以及喷洒阻化剂等技术。在这些技术中,由于喷洒阻化剂防灭火效果较好,在防止煤炭自燃方面得到了广泛应用。目前,常用的阻化剂有物理阻化剂和化学阻化剂。物理阻化剂主要是一些卤盐类和铵盐类物质,这类物质吸湿性强,能够有效将水分锁住,但是不能从根本上解决煤自燃的隐患,煤中活性物质仍然存在,仍具有较高的自燃倾向性,而且随着时间的推移,阻化剂消耗殆尽、物理条件发生破坏,其阻化效果也逐渐消失。化学阻化剂主要有抗氧化类、凝胶类、高聚物类等,这类阻化剂主要是基于煤低温氧化动力学原理,利用了自由基在煤氧化自燃过程中的作用,通过引入抗氧化剂,捕获链式反应过程中产生的自由基,中断链式反应过程中链的传递,或者将煤中低温氧化的活性官能团进行惰化,使其生成稳定的结构,提高氧化反应的反应活化能,增加反应的难度,以此来抑制自燃倾向性高的煤发生氧化自燃。
如现有技术采用物理阻化剂、化学阻化剂的相关研究报道主要有:
申请号201810755870.8公开了一种物化协同煤炭阻化剂及其制备方法,其利用聚丙烯酸钠盐作为高吸水性树脂的吸水溶胀作用得到含水树脂胶体与稀土类水滑石共同作用作为物理阻化剂,由于高含水、强保水性能促使其具有吸热,降温作用,以及隔氧和阻止热传递的效果,有利于抑制煤氧反应。
申请号201810382839.4公开了一种基于氧化还原双重阻断的煤自燃智能复合阻化剂,由高分子共聚物、酮胺类防老剂和渗透剂通过优化筛选的特定比例复配而成,高分子共聚物是通过溶液聚合方法得到丙烯酸丙烯酰胺瓜儿胶共聚物,并疏水改性,得到二茂铁丁酰氯接枝改性的丙烯酸丙烯酰胺瓜儿胶共聚物。
上述现有技术中的阻化剂虽然可以从一定程度上抑制煤氧反应,但是上述阻化剂的制备复杂、生产成本高、且容易腐蚀井下设备和危害工人身心健康。因此,在煤炭防灭火领域亟需寻求一种制备简单、价格低廉、经济环保且具有持续效果的阻化剂。
发明概述
技术问题
问题的解决方案
技术解决方案
本发明所要解决的技术问题:解决现有技术无机/有机阻化剂所造成的对环境污染导致危害工作人员的身心健康这一技术问题。
为解决上述技术问题,本发明的目的之一在于提供一种防止煤炭自燃的生物阻化剂,其通过选用好氧型微生物,并将其与载体材料混合制备得到生物阻化剂,该阻化剂环保无污染且具有持续防止煤自燃的作用。
一种防止煤炭自燃的生物阻化剂,按照重量份计其包括以下原料:
好氧型微生物0.01~2份、载体90~99份;
上述的载体由矿井污泥和辅助添加物组成,上述的辅助添加物为农作物秸秆粉碎物、麸皮、米糠中的一种或几种组成。
上述方案直接带来的有益技术效果为:
本发明首次将好氧型微生物用于阻化剂中,在有氧气的条件下能够吸收氧气进行新陈代谢、不断增殖,并且释放二氧化碳;在氧气浓度低时,微生物能够以休眠体的状态存在,当环境中有一定氧气后会再次进行新陈代谢活动,且该类微生物对生长条件要求低,因此非常适宜将好氧型微生物置于煤矿采空区中,当采空区内氧气浓度较高时,微生物能够吸收氧气进行新陈代谢活动,并且释放二氧化碳;当氧气浓度较低时,好氧型微生物以休眠体的状态存在,一旦有 一定的氧气,该休眠体会再次复苏进行新陈代谢活动。载体材料中的矿井污泥不仅能够锁住水分为微生物生长提供合适的环境,当采空区内温度较高时,还能释放水分降低温度。
作为本发明的一个优选方案,上述的载体中,矿井污泥的重量份数为80~90份,辅助添加物的总重量份数为10~20份。
进一步的,上述的矿井污泥的重量份数为85~90份,辅助添加物的总重量份数为15~20份。
进一步的,上述的好氧型微生物为酵母菌、华根霉、高大毛霉、白地霉、糖化菌、字佐美曲霉中的一种或几种。
进一步的,上述的好氧型微生物需要经过预处理,预处理步骤为:将好氧型微生物培养至成熟期,并制成休眠体。
本发明的另一目的在于提供一种防止煤炭自燃的生物阻化剂的制备方法,依次包括以下步骤:
a、预处理,将好氧型微生物培养至成熟期并制成休眠体;
b、按照重量份数分别准备好氧型微生物、矿井污泥和辅助添加物;
c、将矿井污泥与辅助添加物混合均匀得载体,再将经过预处理后的好氧型微生物与载体混合均匀,即得。
发明的有益效果
有益效果
与现有技术相比,本发明带来了以下有益技术效果:
(1)生物阻化剂能够吸收采空区内的氧气,并释放二氧化碳,具有降低氧气浓度和惰化的双重效果;
(2)生物阻化剂中的好氧型微生物能够根据环境中的氧气浓度进行休眠和复苏,具有持续防止煤自燃的作用;
(3)生物阻化剂载体材料中的矿井污泥不仅能够为微生物新陈代谢提供水分,而且具有降低采空区温度的作用;同时污泥中含有丰富的水分,具有高效灭火作用。
(4)生物阻化剂载体材料中的辅助添加物不仅能够为微生物提供营养物质, 还能够增加载体材料的透气性。
(5)生物阻化剂中的所用材料绿色、无污染,价格低廉,制备简单。
综上所述,本发明以好氧型微生物和矿井污泥作为原料来制备得到的生物阻化剂,其在持续防止煤自燃的同时还可以保护环境,安全无污染,非常适用于煤矿井下。
发明实施例
本发明的实施方式
本发明提出了一种防止煤炭自燃的生物阻化剂及其制备方法,为了使本发明的优点、技术方案更加清楚、明确,下面结合具体实施例对本发明做详细说明。
首先,本发明所选原料好氧型微生物可通过商业渠道购买获得。
本发明好氧型微生物如酵母菌、华根霉、高大毛霉、白地霉、糖化菌或字佐美曲霉中的一种或几种的混合物。
根据上述好氧型微生物的具体种类,可以有多种组合:
如好氧型微生物选用酵母菌;
好氧型微生物选用酵母菌和华根酶的混合物;
好氧型微生物选用酵母菌、华根酶、高大毛酶的混合物;
好氧型微生物选用酵母菌、华根酶、白地霉的混合物;
好氧型微生物选用高大毛霉、白地霉、糖化菌、字佐美曲霉的混合物。
本发明的辅助添加物为农作物秸秆粉碎物、麸皮、米糠中的一种或几种的混合物,如可以为单独的麸皮、米糠,可以为麸皮和米糠的混合物。
下面结合具体实施例对本发明的生物阻化剂的制备方法做详细说明。
实施例1:
好氧型微生物选用酵母菌,辅助添加物为麸皮。
阻化剂的制备方法为:
首先将培养至成熟期的酵母菌制成休眠体;
然后取重量份数为1∶97的酵母菌和载体材料,其中载体材料中矿井污泥与辅助添加物的重量份数为90∶10,混合均匀后加入酵母菌休眠体;
最后将生物阻化剂置于已知气体成分浓度的密闭容器中,且密闭容器中含有碎 煤。
持续监测容器中气体的浓度,结果如表1所示。
实施例2:
好氧型微生物选用酵母菌和华根霉,辅助添加物为麸皮和农作物秸秆粉碎物。
阻化剂的制备方法为:
首先将培养至成熟期的酵母菌和华根霉制成休眠体;
然后取重量份数为0.5∶98的细菌休眠体和载体材料,其中载体材料中矿井污泥与辅助添加物的重量份数为85∶15,混合均匀后加入细菌休眠体;
最后将生物阻化剂置于已知气体成分浓度的密闭容器中,且密闭容器中含有碎煤。
持续监测容器中气体浓度,直至容器内氧气和二氧化碳浓度几乎不再变化。此时,人为将容器中的各气体浓度变为初始浓度,并继续监测。结果如表1所示。
实施例3:
好氧型微生物选用白地霉、糖化菌和字佐美曲霉,辅助添加物为麸皮、农作物秸秆粉碎物和米糠的混合物。
阻化剂的制备方法为:
首先将培养至成熟期的白地霉、糖化菌和字佐美曲霉制成休眠体;
然后取重量份数为1.5∶96的细菌休眠体和载体材料,其中载体材料中矿井污泥与辅助添加物的重量份数为88∶12,混合均匀后加入细菌休眠体;
最后将生物阻化剂置于已知气体成分浓度的密闭容器中,且密闭容器中含有碎煤。
持续监测容器中气体浓度,直至容器内氧气和二氧化碳浓度几乎不再变化。此时,人为将容器中的各气体浓度变为初始浓度,并继续监测。结果如表1所示。
由以上实施例可以看出,本发明中的生物阻化剂能够降低环境中的氧气浓度并提高二氧化碳浓度,且将环境中氧气浓度提高后,该生物阻化剂能够再次降低氧气浓度,由此可见,本发明中的生物阻化剂能够有效防止煤炭自燃。
表1各实施例中不同时间时容器中气体浓度
Figure PCTCN2020085504-appb-000001
从表1可以得出,本发明生物阻化剂中的好氧型微生物能够根据环境中氧气浓度的不同进行休眠或者进行新陈代谢活动,从而达到持续防止煤炭自燃的目的。此外,本发明中的生物阻化剂经济环保、持续高效。
在上述实施例1-3的指引下,其它未列举的组合均可显而易见的实现。
需要说明的是,在本说明书的教导下本领域技术人员所做出的任何等同方式或明显变型方式均应在本发明的保护范围内。

Claims (6)

  1. 一种防止煤炭自燃的生物阻化剂,其特征在于,按照重量份计其包括以下原料:
    好氧型微生物0.01~2份、载体90~99份;
    所述的载体由矿井污泥和辅助添加物组成,所述的辅助添加物为农作物秸秆粉碎物、麸皮、米糠中的一种或几种组成。
  2. 根据权利要求1所述的一种防止煤炭自燃的生物阻化剂,其特征在于:所述的载体中,矿井污泥的重量份数为80~90份,辅助添加物的总重量份数为10~20份。
  3. 根据权利要求2所述的一种防止煤炭自燃的生物阻化剂,其特征在于:所述的矿井污泥的重量份数为85~90份,辅助添加物的总重量份数为15~20份。
  4. 根据权利要求1或2所述的一种防止煤炭自燃的生物阻化剂,其特征在于:所述的好氧型微生物为酵母菌、华根霉、高大毛霉、白地霉、糖化菌、字佐美曲霉中的一种或几种。
  5. 根据权利要求4所述的一种防止煤炭自燃的生物阻化剂,其特征在于:所述的好氧型微生物需要经过预处理,所述的预处理步骤为:将所述的好氧型微生物培养至成熟期,并制成休眠体。
  6. 根据权利要求1所述的一种防止煤炭自燃的生物阻化剂的制备方法,其特征在于,依次包括以下步骤:
    a、预处理,将好氧型微生物培养至成熟期并制成休眠体;
    b、按照重量份数分别准备好氧型微生物、矿井污泥和辅助添加物;
    c、将矿井污泥与辅助添加物混合均匀得载体,再将经过预处理后的好氧型微生物与载体混合均匀,即得。
PCT/CN2020/085504 2020-04-16 2020-04-20 一种防止煤炭自燃的生物阻化剂及其制备方法 WO2021208112A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010297647.0A CN111472831A (zh) 2020-04-16 2020-04-16 一种防止煤炭自燃的生物阻化剂及其制备方法
CN202010297647.0 2020-04-16

Publications (1)

Publication Number Publication Date
WO2021208112A1 true WO2021208112A1 (zh) 2021-10-21

Family

ID=71753528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085504 WO2021208112A1 (zh) 2020-04-16 2020-04-20 一种防止煤炭自燃的生物阻化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN111472831A (zh)
WO (1) WO2021208112A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115875068A (zh) * 2023-01-06 2023-03-31 太原理工大学 一种迟滞耗氧阻化剂及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113738436B (zh) * 2021-09-22 2023-05-26 太原理工大学 一种老空区煤层气地面抽采耗氧微生物防灭火系统及方法
CN114263492B (zh) * 2021-12-24 2022-09-16 中南大学 一种基于微生物-阻化剂综合作用的硫化矿石阻燃方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990517A (en) * 1974-04-20 1976-11-09 Chemische Fabrik Kalk Gmbh Prevention of self-ignition (spontaneous ignition) of coal through the use of calcium or magnesium chloride with addition of a wetting agent
CN104630109A (zh) * 2015-02-06 2015-05-20 山西省农业科学院农业环境与资源研究所 矸石山复垦土壤用微生物制剂及使用该制剂复垦煤矸石土壤的方法
CN105587335A (zh) * 2015-12-11 2016-05-18 中国矿业大学(北京) 利用微生物技术防治煤自燃
CN106930783A (zh) * 2015-12-29 2017-07-07 肖栋 一种生物法煤自燃抑制方法与技术
CN108977245A (zh) * 2018-07-11 2018-12-11 太原理工大学 一种矿井采空区瓦斯的好氧与厌氧微生物联合治理系统和方法
CN109322693A (zh) * 2018-08-31 2019-02-12 王成 一种强附着性无机盐煤炭阻化剂的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1712628A1 (ru) * 1990-01-18 1992-02-15 Vorobev Aleksandr E Способ защиты отвалов от самовозгорани
CN109538283B (zh) * 2018-12-03 2020-08-11 中国矿业大学(北京) 一种利用甲烷氧化菌处理上隅角瓦斯的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990517A (en) * 1974-04-20 1976-11-09 Chemische Fabrik Kalk Gmbh Prevention of self-ignition (spontaneous ignition) of coal through the use of calcium or magnesium chloride with addition of a wetting agent
CN104630109A (zh) * 2015-02-06 2015-05-20 山西省农业科学院农业环境与资源研究所 矸石山复垦土壤用微生物制剂及使用该制剂复垦煤矸石土壤的方法
CN105587335A (zh) * 2015-12-11 2016-05-18 中国矿业大学(北京) 利用微生物技术防治煤自燃
CN106930783A (zh) * 2015-12-29 2017-07-07 肖栋 一种生物法煤自燃抑制方法与技术
CN108977245A (zh) * 2018-07-11 2018-12-11 太原理工大学 一种矿井采空区瓦斯的好氧与厌氧微生物联合治理系统和方法
CN109322693A (zh) * 2018-08-31 2019-02-12 王成 一种强附着性无机盐煤炭阻化剂的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115875068A (zh) * 2023-01-06 2023-03-31 太原理工大学 一种迟滞耗氧阻化剂及其制备方法

Also Published As

Publication number Publication date
CN111472831A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2021208112A1 (zh) 一种防止煤炭自燃的生物阻化剂及其制备方法
CN103031254B (zh) 一种高效秸秆腐熟剂及其制备工艺
CN103319214B (zh) 利用城市生活污泥制造生物有机肥的方法及其专用发酵剂
CN105016797A (zh) 一种畜禽尸体无害化处理技术与加工生物有机肥方法
CN104449744A (zh) 一种微生物土壤修复剂及其制备方法
CN106316694A (zh) 新一代全元素螯合态食品级液体菌肥及其制备方法
CN105820018A (zh) 一种生物土壤改良剂
CN105132300A (zh) 一种自然水体生态净化菌剂的制备方法
CN104312947A (zh) 一种多菌种配合的高效秸秆腐熟剂、制备方法及其应用
CN108752095A (zh) 一种农业面源污染调理剂及其制备方法
CN105036853A (zh) 一种利用鸡粪发酵制备生物有机肥的方法
CN105254353A (zh) 玉米秸秆高温腐熟剂及其制备方法
CN107235790A (zh) 一种植物和生物炭联合土壤修复剂
CN107245462A (zh) 一种耐高温除臭保氮发酵有机肥菌剂及其制备方法
CN105532296A (zh) 一种适合白芨生长的土壤改良剂及其制备方法
CN102617198B (zh) 一种促进植物生长的微生物肥料及其培养方法
CN103274795B (zh) 一种白兰花专用微生物肥料及其制备方法
CN108623414A (zh) 一种改良盐碱地型生物有机复合肥及其制备方法
CN103060245A (zh) 一种利用煤层有机杂质制取生物煤层气的复合微生物菌剂及其应用
CN107759369A (zh) 高效液体菌肥及其制备方法
CN116254117B (zh) 一种稻田甲烷排放抑制剂及减少稻田甲烷排放方法
WO2009003341A1 (fr) Engrais chimique composite comprenant des matériaux bioactifs
CN106676030A (zh) 一种改良土壤盐渍化的微生物培养物及其制备方法
CN113481111B (zh) 一种高效生物秸秆发酵菌剂及其制备方法
CN105753516A (zh) 促进潜育化稻田秧苗生长的生物炭制造方法及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930685

Country of ref document: EP

Kind code of ref document: A1