WO2021207883A1 - 光学系统、镜头模组和电子设备 - Google Patents

光学系统、镜头模组和电子设备 Download PDF

Info

Publication number
WO2021207883A1
WO2021207883A1 PCT/CN2020/084514 CN2020084514W WO2021207883A1 WO 2021207883 A1 WO2021207883 A1 WO 2021207883A1 CN 2020084514 W CN2020084514 W CN 2020084514W WO 2021207883 A1 WO2021207883 A1 WO 2021207883A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
optical axis
object side
image side
Prior art date
Application number
PCT/CN2020/084514
Other languages
English (en)
French (fr)
Inventor
杨健
李明
Original Assignee
南昌欧菲精密光学制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲精密光学制品有限公司 filed Critical 南昌欧菲精密光学制品有限公司
Priority to PCT/CN2020/084514 priority Critical patent/WO2021207883A1/zh
Publication of WO2021207883A1 publication Critical patent/WO2021207883A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • This application belongs to the field of optical imaging, and in particular relates to an optical system and a lens module and electronic equipment having the optical system.
  • the chromatic aberration of the optical system is not corrected or is not completely corrected, so that the shooting effect of the optical system is poor, and the performance of the optical system is low.
  • the purpose of this application is to provide an optical system that can well correct the chromatic aberration of the optical system and has a better shooting effect.
  • the present application provides an optical system, which includes in order from the object side to the image side: a first lens having a positive refractive power, the object side of the first lens is convex at the optical axis; and a second lens, It has a negative tortuous power, and the image side of the second lens is concave at the optical axis; the third lens has a tortuous power; the fourth lens has a tortuous power; the fifth lens has a tortuous power; the sixth lens has a tortuous power
  • the optical system satisfies the conditional formula: -2 ⁇ f1/f2345 ⁇ -0.5; where f1 is the effective focal length of the first lens, f2345 is the second lens, the third lens, and the first lens The combined focal length of the four lens and the fifth lens.
  • the object side and image of any one of the first lens, the second lens, the third lens, the fourth lens, the fifth lens and the sixth lens The sides are aspherical.
  • the object side surface and the image side surface of the first lens to the sixth lens are aspherical surfaces, the aberration generated by the optical system is eliminated, which is beneficial to further improve the performance of the optical system.
  • the optical system satisfies the conditional formula: TTL/Imgh ⁇ 2.4; wherein, TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis, and ImgH is Half of the diagonal length of the effective pixel area on the imaging surface of the optical system.
  • TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis
  • ImgH is Half of the diagonal length of the effective pixel area on the imaging surface of the optical system.
  • the optical system satisfies the conditional formula: TTL/f ⁇ 1.1; where TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis, and f is the The effective focal length of the optical system is described.
  • TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis
  • f is the The effective focal length of the optical system.
  • the optical system satisfies the conditional formula: FNO ⁇ 2.6; where FNO is the number of apertures of the optical system.
  • the optical system satisfies the conditional formula: map2/map1>0.6; where map2 is the clear aperture of the light on the side of the sixth lens image when the number of apertures of the optical system is the largest; Is the clear aperture of the central field of view light on the image side of the sixth lens.
  • map2/map1 is greater than 0.6, it is beneficial to increase the relative brightness of the optical system. Shooting in a darker environment can also achieve a clear imaging effect.
  • the optical system satisfies the conditional formula: Imgh/tan(HFOV)>6mm; wherein ImgH is half of the diagonal length of the effective pixel area on the imaging surface of the optical system, and HFOV is the optical system The half angle of view.
  • Imgh/tan (HFOV) is greater than 6mm, it is beneficial to maintain the telephoto characteristics of the optical system and increase the magnification of imaging.
  • the optical system satisfies the conditional formula: 1.5 ⁇ TTL/(ct23+ct45) ⁇ 6; wherein, TTL is the object side of the first lens to the imaging surface of the optical system on the optical axis Ct23 is the distance between the image side of the second lens and the object side of the third lens on the optical axis, and ct45 is the distance between the image side of the fourth lens and the object side of the fifth lens on the optical axis. The distance on the axis.
  • the optical system satisfies the conditional formula: (r4+r1)/(r4-r1)>1; where r1 is the radius of curvature of the object side surface of the first lens at the optical axis, and r4 is the The curvature radius of the second lens image side surface at the optical axis. It is understandable that the above two radii of curvature mainly assume the function of correcting the spherical aberration of the entire system. By satisfying that the value of (r4+r1)/(r4-r1) is greater than 1, the first-order aberration of the optical system can be well corrected, thereby improving performance.
  • the present application also provides a lens module, which includes a lens barrel, a photosensitive element, and the optical system according to any one of the embodiments of the first aspect, and the first lens of the optical system to The sixth lens is installed in the lens barrel, and the photosensitive element is arranged on the image side of the optical system.
  • the lens module can meet the design requirements of long focal length, has a higher magnification and relative brightness, and can well correct the chromatic aberration of the optical system, thus having better Shooting performance.
  • the present application also provides an electronic device.
  • the electronic device includes a housing and the lens module of the second aspect, and the lens module is provided in the housing.
  • the optical system in the near-infrared band working range has the characteristics of high resolution and miniaturization, so as to accurately and real-time capture the driver’s information and capture the captured image
  • the information is transmitted to the photosensitive element to realize real-time monitoring and identification of the driver.
  • the lens module provided by this application to the electronic device, the electronic device can meet the design requirements of long focal length, has a higher magnification and relative brightness, and can well correct the chromatic aberration of the optical system, thereby having better Shooting performance.
  • Fig. 1a is a schematic diagram of the structure of the optical system of the first embodiment
  • Figure 1b is the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the first embodiment
  • 2a is a schematic diagram of the structure of the optical system of the second embodiment
  • Fig. 2b is the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the second embodiment
  • 3a is a schematic diagram of the structure of the optical system of the third embodiment
  • Fig. 3b is the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the third embodiment
  • 4a is a schematic diagram of the structure of the optical system of the fourth embodiment
  • 4b is a longitudinal spherical aberration curve, astigmatism curve and distortion curve of the fourth embodiment
  • 5a is a schematic diagram of the structure of the optical system of the fifth embodiment
  • Fig. 5b is the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the fifth embodiment
  • Fig. 6a is a schematic diagram of the structure of the optical system of the sixth embodiment.
  • Fig. 6b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the sixth embodiment.
  • Fig. 7a is a schematic structural diagram of an optical system of a seventh embodiment
  • Fig. 7b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the seventh embodiment.
  • An embodiment of the present application provides an electronic device.
  • the electronic device includes a housing and the lens module of the second aspect, and the lens module is provided in the housing.
  • the electronic equipment can be smart phones, personal digital assistants (PDAs), tablet computers, smart watches, drones, e-book readers, driving recorders, wearable devices, and so on.
  • PDAs personal digital assistants
  • the optical system in the near-infrared band working range has the characteristics of high resolution and miniaturization, so as to accurately and real-time capture the driver’s information and capture the captured image
  • the information is transmitted to the photosensitive element to realize real-time monitoring and identification of the driver.
  • the electronic device can meet the design requirements of long focal length, has a higher magnification and relative brightness, and can well correct the chromatic aberration of the optical system, thereby having better Shooting performance.
  • An embodiment of the present application provides a lens module, which includes a lens barrel, a photosensitive element, and the optical system according to any one of the embodiments of the first aspect, the first lens to the second lens of the optical system
  • the six lenses are installed in the lens barrel, and the photosensitive element is arranged on the image side of the optical system.
  • the photosensitive element is used for converting light passing through the first lens to the sixth lens and incident on the photosensitive element into an electrical signal of the image.
  • the photosensitive element may be a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) or a charge-coupled device (Charge-coupled Device, CCD).
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-coupled Device
  • the lens module can be an independent lens of a digital camera, or it can be an imaging module integrated on an electronic device such as a smart phone or a tablet computer.
  • the lens module can meet the design requirements of long focal length, has a higher magnification and relative brightness, and can well correct the chromatic aberration of the optical system, thus having better Shooting performance.
  • the embodiment of the present application provides an optical system, which includes in order from the object side to the image side:
  • the first lens has a positive bending force, and the object side surface of the first lens is convex at the optical axis;
  • the second lens has a negative refractive power, and the image side surface of the second lens is concave at the optical axis;
  • the third lens has a tortuous force
  • the fourth lens has a tortuous force
  • the fifth lens has a tortuous force
  • the sixth lens has a tortuous force
  • optical system satisfies the conditional formula:
  • f1 is the effective focal length of the first lens
  • f2345 is the combined focal length of the second lens, the third lens, the fourth lens, and the fifth lens.
  • the object side and image of any one of the first lens, the second lens, the third lens, the fourth lens, the fifth lens and the sixth lens The sides are aspherical.
  • the object side surface and the image side surface of the first lens to the sixth lens are aspherical surfaces, the aberration generated by the optical system is eliminated, which is beneficial to further improve the performance of the optical system.
  • the optical system satisfies the conditional formula: TTL/Imgh ⁇ 2.4; wherein, TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis, and ImgH is Half of the diagonal length of the effective pixel area on the imaging surface of the optical system.
  • TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis
  • ImgH is Half of the diagonal length of the effective pixel area on the imaging surface of the optical system.
  • the optical system can have a smaller total system length when the imaging surface is fixed, thereby realizing miniaturized design requirements.
  • the value of TTL/Imgh may be 0.1, 0.3, 0.5, 1, 1.5, 2, 2.35, etc.
  • the optical system satisfies the conditional formula: TTL/f ⁇ 1.1; where TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis, and f is the The effective focal length of the optical system is described.
  • TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis
  • f is the The effective focal length of the optical system.
  • the optical system satisfies the conditional formula: FNO ⁇ 2.6; where FNO is the number of apertures of the optical system.
  • FNO is the number of apertures of the optical system.
  • the optical system can achieve the requirement of large amount of light under the premise of maintaining the telephoto of the lens, so that the optical system can achieve a clear imaging effect even when shooting in a dark environment.
  • the value of FNO can be 0.1, 0.5, 0.9, 1.2, 1.8, 2.3, 2.5, etc.
  • the optical system satisfies the conditional formula: map2/map1>0.6; where map2 is the clear aperture of the light on the side of the sixth lens image when the number of apertures of the optical system is the largest; Is the clear aperture of the central field of view light on the image side of the sixth lens.
  • map2/map1 is greater than 0.6, it is beneficial to increase the relative brightness of the optical system. Shooting in a darker environment can also achieve a clear imaging effect.
  • the value of map2/map1 can be 0.62, 0.68, 0.75, 0.9, 1.4, 2.2, and so on.
  • the optical system satisfies the conditional formula: Imgh/tan(HFOV)>6mm; wherein ImgH is half of the diagonal length of the effective pixel area on the imaging surface of the optical system, and HFOV is the optical system The half angle of view.
  • the value of Imgh/tan (HFOV) is greater than 6mm, it is beneficial to maintain the telephoto characteristics of the optical system and increase the magnification of imaging.
  • the value of Imgh/tan (HFOV) can be 6.1mm, 6.5mm, 7mm, 8mm, 9.5mm, 12mm and so on.
  • the optical system satisfies the conditional formula: 1.5 ⁇ TTL/(ct23+ct45) ⁇ 6; wherein, TTL is the object side of the first lens to the imaging surface of the optical system on the optical axis Ct23 is the distance between the image side of the second lens and the object side of the third lens on the optical axis, and ct45 is the distance between the image side of the fourth lens and the object side of the fifth lens on the optical axis. The distance on the axis.
  • TTL/(ct23+ct45) is between 1.5 and 6
  • the third lens and the fourth lens are arranged compactly and become the transition part of the system light refraction, so that the optical power distribution is less and the reduction is reduced.
  • the overall sensitivity of the optical system Specifically, the value of TTL/(ct23+ct45) may be 1.52, 1.67, 1.83, 2.56, 3.75, 4.25, 5.51, 5.97, etc.
  • the optical system satisfies the conditional formula: (r4+r1)/(r4-r1)>1; where r1 is the radius of curvature of the object side surface of the first lens at the optical axis, and r4 is the The curvature radius of the second lens image side surface at the optical axis.
  • the above two radii of curvature mainly assume the function of correcting the spherical aberration of the entire system.
  • the value of (r4+r1)/(r4-r1) is greater than 1, the first-order aberration of the optical system can be well corrected, thereby improving performance.
  • the value of (r4+r1)/(r4-r1) can be 1.2, 1.8, 2.5, 3.5, 5, and so on.
  • the optical system of this embodiment from the object side to the image side, includes:
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and concave at the circumference;
  • the image side S2 of the first lens L1 is convex at the optical axis and at the circumference ;
  • the second lens L2 has a negative refractive power.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and the circumference;
  • the image side surface S4 of the second lens L2 is concave at the optical axis and the circumference;
  • the third lens L3 has a negative refractive power.
  • the object side surface S5 of the third lens L3 is concave at the optical axis and at the circumference;
  • the image side surface S6 of the third lens L3 is convex at the optical axis and concave at the circumference ;
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 of the fourth lens L4 is convex at the optical axis and at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the optical axis and convex at the circumference ;
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis and the circumference;
  • the image side surface S10 of the fifth lens L5 is concave at the optical axis and convex at the circumference ;
  • the sixth lens L6 has a positive refractive power.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and the circumference; the image side surface S12 of the sixth lens L6 is concave at the optical axis and the circumference.
  • the materials of the first lens L1 to the sixth lens L6 are all plastic.
  • the optical system also includes a stop STO, an infrared cut filter L7, and an imaging surface S15.
  • the stop STO is arranged between the image side surface S4 of the second lens L2 and the object side surface S5 of the third lens L3 for controlling the amount of light entering.
  • the stop ST0 can also be arranged on the object side or the image side of the lens.
  • the infrared cut filter L7 is arranged on the image side of the sixth lens L6, which includes an object side S13 and an image side S14.
  • the object side S13 of the infrared cut filter L7 is opposite to the image side S12 of the sixth lens L6.
  • the light sheet L7 is used to filter out the infrared light, so that the light incident on the imaging surface S15 is visible light, and the wavelength of the visible light is 380nm-780nm.
  • the material of the infrared cut filter L7 is glass and can be coated on the glass.
  • the imaging surface S15 is the effective pixel area of the photosensitive element.
  • Table 1a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 587 nm, and the units of the Y radius, thickness, and focal length are all millimeters (mm).
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the maximum angle of view in the diagonal direction of the optical system
  • TTL is the object side of the first lens to the imaging surface of the optical system on the optical axis the distance.
  • the object side surface and the image side surface of any one of the first lens L1 to the sixth lens L6 are aspherical surfaces, and the surface shape x of each aspherical lens can be defined by but not limited to the following aspherical surface formula:
  • x is the maximum vector height when the aspheric surface is at a height of h along the optical axis direction;
  • k is the conic coefficient;
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 1b shows the high-order coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for each aspheric mirror surface S1-S14 in the first embodiment.
  • FIG. 1b shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the optical system of the first embodiment.
  • the light reference wavelength of the astigmatism curve and the distortion curve is 555nm, where the longitudinal spherical aberration curve represents the deviation of the focus point of light rays of different wavelengths after passing through the lenses of the optical system; the astigmatism curve meridian image plane curvature and sagittal image plane curvature;
  • the distortion curve represents the magnitude of distortion corresponding to different angles of view. According to Fig. 1b, it can be seen that the optical system provided in the first embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side, includes:
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and concave at the circumference;
  • the image side S2 of the first lens L1 is convex at the optical axis and at the circumference ;
  • the second lens L2 has negative refractive power.
  • the object side surface S3 of the second lens L2 is concave at the optical axis and convex at the circumference; the image side S4 of the second lens L2 is concave at the optical axis and at the circumference Convex
  • the third lens L3 has a negative refractive power.
  • the object side surface S5 of the third lens L3 is concave at the optical axis and at the circumference;
  • the image side surface S6 of the third lens L3 is convex at the optical axis and concave at the circumference ;
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 of the fourth lens L4 is convex at the optical axis and at the circumference;
  • the image side surface S8 of the fourth lens L4 is convex at the optical axis and concave at the circumference ;
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis and the circumference;
  • the image side surface S10 of the fifth lens L5 is concave at the optical axis and convex at the circumference ;
  • the sixth lens L6 has a positive refractive power.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and the circumference; the image side surface S12 of the sixth lens L6 is concave at the optical axis and the circumference.
  • the other structure of the second embodiment is the same as that of the first embodiment, so refer to.
  • Table 2a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 587 nm, and the units of the Y radius, thickness, and focal length are all millimeters (mm).
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the maximum angle of view in the diagonal direction of the optical system
  • TTL is the object side of the first lens to the imaging surface of the optical system on the optical axis the distance.
  • Table 2b shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in the second embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 2b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the second embodiment.
  • the reference wavelength of the astigmatism curve and the distortion curve is 555nm. According to Fig. 2b, it can be seen that the optical system provided in the second embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side, includes:
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and concave at the circumference;
  • the image side S2 of the first lens L1 is convex at the optical axis and at the circumference ;
  • the second lens L2 has negative refractive power.
  • the object side surface S3 of the second lens L2 is concave at the optical axis and convex at the circumference; the image side S4 of the second lens L2 is concave at the optical axis and at the circumference Convex
  • the third lens L3 has negative refractive power.
  • the object side surface S5 of the third lens L3 is concave at the optical axis and the circumference;
  • the image side surface S6 of the third lens L3 is concave at the optical axis and the circumference;
  • the fourth lens L4 has a negative refractive power.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and convex at the circumference; the image side S8 of the fourth lens L4 is convex at the optical axis and at the circumference Concave
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis and convex at the circumference;
  • the image side S10 of the fifth lens L5 is concave at the optical axis and at the circumference ;
  • the sixth lens L6 has a negative refractive power.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and the circumference; the image side surface S12 of the sixth lens L6 is concave at the optical axis and the circumference.
  • the other structure of the third embodiment is the same as that of the first embodiment, so refer to.
  • Table 3a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 587 nm, and the units of Y radius, thickness, and focal length are all millimeters (mm).
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the maximum angle of view in the diagonal direction of the optical system
  • TTL is the object side of the first lens to the imaging surface of the optical system on the optical axis the distance.
  • Table 3b shows the coefficients of higher-order terms applicable to each aspheric mirror surface in the third embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 3b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the third embodiment.
  • the reference wavelength of the astigmatism curve and the distortion curve is 555nm. According to FIG. 3b, it can be seen that the optical system provided in the third embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and concave at the circumference; the image side S2 of the first lens L1 is concave at the optical axis and at the circumference Convex
  • the second lens L2 has a negative refractive power.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and the circumference;
  • the image side surface S4 of the second lens L2 is concave at the optical axis and the circumference;
  • the third lens L3 has negative refractive power.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference;
  • the image side S6 of the third lens L3 is both concave at the optical axis and at the circumference ;
  • the fourth lens L4 has a negative refractive power.
  • the object side surface S7 of the fourth lens L4 is convex at the optical axis and at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the optical axis and convex at the circumference ;
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis and the circumference;
  • the image side surface S10 of the fifth lens L5 is concave at the optical axis and convex at the circumference ;
  • the sixth lens L6 has a negative refractive power.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and the circumference; the image side surface S12 of the sixth lens L6 is concave at the optical axis and the circumference.
  • the other structure of the fourth embodiment is the same as that of the first embodiment, so refer to.
  • Table 4a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 587 nm, and the units of the Y radius, thickness, and focal length are all millimeters (mm).
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the maximum angle of view in the diagonal direction of the optical system
  • TTL is the object side of the first lens to the imaging surface of the optical system on the optical axis the distance.
  • Table 4b shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in the fourth embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 4b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the fourth embodiment.
  • the reference wavelength of the astigmatism curve and the distortion curve is 555nm. According to FIG. 4b, it can be seen that the optical system provided in the fourth embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and concave at the circumference;
  • the image side S2 of the first lens L1 is convex at the optical axis and at the circumference ;
  • the second lens L2 has a negative refractive power.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the optical axis and convex at the circumference ;
  • the third lens L3 has negative refractive power.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference;
  • the image side S6 of the third lens L3 is both concave at the optical axis and at the circumference ;
  • the fourth lens L4 has a negative refractive power.
  • the object side surface S7 of the fourth lens L4 is convex at the optical axis and the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the optical axis and the circumference;
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 of the fifth lens L5 is convex at the optical axis and the circumference;
  • the image side surface S10 of the fifth lens L5 is concave at the optical axis and convex at the circumference ;
  • the sixth lens L6 has a negative refractive power.
  • the object side surface S11 of the sixth lens L6 is concave at the optical axis and convex at the circumference; the image side S12 of the sixth lens L6 is convex at the optical axis and at the circumference Concave.
  • the other structure of the fifth embodiment is the same as that of the first embodiment, so refer to.
  • Table 5a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 587 nm, and the units of the Y radius, thickness, and focal length are all millimeters (mm).
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the maximum angle of view in the diagonal direction of the optical system
  • TTL is the object side of the first lens to the imaging surface of the optical system on the optical axis the distance.
  • Table 5b shows the coefficients of higher-order terms applicable to each aspheric mirror surface in the fifth embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 5b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the fifth embodiment.
  • the reference wavelength of the astigmatism curve and the distortion curve is 555nm. According to FIG. 5b, it can be seen that the optical system provided in the fifth embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and concave at the circumference;
  • the image side S2 of the first lens L1 is convex at the optical axis and at the circumference ;
  • the second lens L2 has a negative refractive power.
  • the object side surface S3 of the second lens L2 is concave at the optical axis and convex at the circumference;
  • the image side S4 of the second lens L2 is both concave at the optical axis and at the circumference ;
  • the third lens L3 has negative refractive power.
  • the object side surface S5 of the third lens L3 is concave at the optical axis and the circumference;
  • the image side surface S6 of the third lens L3 is concave at the optical axis and the circumference;
  • the fourth lens L4 has a negative refractive power.
  • the object side surface S7 of the fourth lens L4 is convex at the optical axis and the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the optical axis and the circumference;
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis and convex at the circumference;
  • the image side S10 of the fifth lens L5 is convex at the optical axis and at the circumference ;
  • the sixth lens L6 has a negative refractive power.
  • the object side surface S11 of the sixth lens L6 is concave at the optical axis and convex at the circumference; the image side S12 of the sixth lens L6 is both concave at the optical axis and at the circumference .
  • the other structure of the sixth embodiment is the same as that of the first embodiment, so refer to.
  • Table 6a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 587 nm, and the units of the Y radius, thickness, and focal length are all millimeters (mm).
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the maximum angle of view in the diagonal direction of the optical system
  • TTL is the object side of the first lens to the imaging surface of the optical system on the optical axis the distance.
  • Table 6b shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in the sixth embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 6b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the sixth embodiment.
  • the reference wavelength of the astigmatism curve and the distortion curve is 555nm. According to FIG. 6b, it can be seen that the optical system provided in the sixth embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has positive refractive power.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and concave at the circumference;
  • the image side S2 of the first lens L1 is convex at the optical axis and at the circumference ;
  • the second lens L2 has a negative refractive power.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and the circumference;
  • the image side surface S4 of the second lens L2 is concave at the optical axis and the circumference;
  • the third lens L3 has negative refractive power.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference;
  • the image side S6 of the third lens L3 is both concave at the optical axis and at the circumference ;
  • the fourth lens L4 has negative refractive power.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the optical axis and convex at the circumference ;
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis and the circumference;
  • the image side surface S10 of the fifth lens L5 is concave at the optical axis and convex at the circumference ;
  • the sixth lens L6 has a negative refractive power.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and the circumference; the image side surface S12 of the sixth lens L6 is concave at the optical axis and the circumference.
  • the other structure of the seventh embodiment is the same as that of the first embodiment, so refer to.
  • Table 7a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 587 nm, and the units of Y radius, thickness, and focal length are all millimeters (mm).
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the maximum angle of view in the diagonal direction of the optical system
  • TTL is the object side of the first lens to the imaging surface of the optical system on the optical axis the distance.
  • Table 7b shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in the seventh embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 7b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the seventh embodiment.
  • the reference wavelength of the astigmatism curve and the distortion curve is 555nm. According to FIG. 7b, it can be seen that the optical system provided in the seventh embodiment can achieve good imaging quality.
  • Table 8 shows the TTL/Imgh, TTL/f, f1/f2345, FNO, map2/map1, Imgh/tan(HFOV), TTL/(ct23+ct45) of the optical system of the first embodiment to the seventh embodiment.
  • the unit of Imgh/tan (HFOV) is millimeter (mm).
  • TTL/Imgh TTL/f f1/f2345 FNO The first embodiment 1.99 0.92 -1.24 2.20 Second embodiment 2.02 0.93 -1.23 2.17 The third embodiment 2.02 0.93 -1.31 2.17 Fourth embodiment 2.02 0.93 -1.19 2.17 Fifth embodiment 2.02 0.93 -1.16 2.17 Sixth embodiment 2.02 0.93 -1.24 2.25 Seventh embodiment 2.02 0.93 -1.23 2.17 map2/map1 Imgh/tan(HFOV) TTL/(ct23+ct45) (r4+r1)/(r4-r1) The first embodiment 0.89 7.57 4.09 3.12 Second embodiment 0.84 7.56 4.53 2.12 The third embodiment 0.81 7.55 3.69 2.30 Fourth embodiment 0.88 7.55 4.06 2.44 Fifth embodiment 0.92 7.56 4.08 2.30 Sixth embodiment 0.83 7.56 3.30 2.17 Seventh embodiment 0.89 7.56 4.05 2.56

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)

Abstract

一种光学系统、镜头模组和电子设备,光学系统从物侧至像侧依次包括:第一透镜(L1),具有正曲折力,第一透镜(L1)的物侧面(S1)于光轴处为凸面;第二透镜(L2),具有负曲折力,第二透镜(L2)的像侧面(S4)于光轴处为凹面;第三透镜(S3),具有曲折力;第四透镜(S4),具有曲折力;第五透镜(S5),具有曲折力;第六透镜(S6),具有曲折力;光学系统满足条件式:-2<f1/f2345<-0.5;其中,f1为第一透镜(L1)的有效焦距,f2345为第二透镜(L2)、第三透镜(L3)、第四透镜(L4)和第五透镜(L5)的组合焦距。通过合理配置各透镜的曲折力和面型,同时满足f1/f2345的取值在-2和-0.5之间,有助于合理分配光学系统两部分的光焦度,能更好的矫正光学系统的色差,从而提升光学系统的性能。

Description

光学系统、镜头模组和电子设备 技术领域
本申请属于光学成像领域,尤其涉及一种光学系统以及具有该光学系统的镜头模组和电子设备。
背景技术
随着手机、平板电脑、无人机、计算机等电子产品在生活中的广泛应用,各种科技改进推陈出新。其中,新型电子产品改进中摄像镜头拍摄效果的改进创新成为人们关注的重心之一,同时成为科技改进的一项重要内容。
目前六片式的光学系统由于光焦度分配不合理,光学系统的色差没有矫正或者矫正不彻底,使得光学系统的拍摄效果较差,光学系统的性能低下。
发明内容
本申请的目的是提供一种光学系统,能够很好地矫正光学系统的色差,具有较好的拍摄效果。
为实现本申请的目的,本申请提供了如下的技术方案:
第一方面,本申请提供了一种光学系统,从物侧至像侧依次包括:第一透镜,具有正曲折力,所述第一透镜的物侧面于光轴处为凸面;第二透镜,具有负曲折力,所述第二透镜的像侧面于光轴处为凹面;第三透镜,具有曲折力;第四透镜,具有曲折力;第五透镜,具有曲折力;第六透镜,具有曲折力;所述光学系统满足条件式:-2<f1/f2345<-0.5;其中,f1为所述第一透镜的有效焦距,f2345为所述第二透镜、所述第三透镜、所述第四透镜和所述第五透镜的组合焦距。通过合理配置各透镜的曲折力和面型,同时满足f1/f2345的取值在-2和-0.5之间,有助于合理分配光学系统两部分的光焦度,能更好的矫正光学系统的色差,从而提升光学系统的性能。
一种实施方式中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜中任一透镜的物侧面和像侧面均为非球面。通过设置第一透镜至第六透镜的物侧面及像侧面均为非球面,消除光学系统产生的像差,有利于进一步提升光学系统的性能。
一种实施方式中,所述光学系统满足条件式:TTL/Imgh<2.4;其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,ImgH为所述光学系统成像面上有效像素区域对角线长度的一半。通过满足TTL与Imgh的比值在2.4以内,光学系统能够在成像面固定的情况下具有较小的系统总长,从而实现小型化的设计要求。
一种实施方式中,所述光学系统满足条件式:TTL/f<1.1;其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,f为所述光学系统的有效焦距。通过满足TTL与f的比值在1.1以内,在系统总长不变且满足小型化的情况下,光学系统的有效焦距具有较大的下限值,以此满足光学系统的长焦距要求。
一种实施方式中,所述光学系统满足条件式:FNO<2.6;其中,FNO为所述光学系统的光圈数。通过满足光学系统的光圈数在2.6以内,在维持镜头长焦性的前提下,光学系统能够实现大通光量的要求,使得光学系统即使在较暗环境下拍摄,也能达到清晰的成像效果。
一种实施方式中,所述光学系统满足条件式:map2/map1>0.6;其中,map2为当所述光学系统的光圈数最大时,光线在所述第六透镜像侧面的通光孔径;map1为中心视场光线在所述第六透镜像侧面的通光孔径。通过满足map2/map1的取值大于0.6,有利于提升光学系统的相对亮度,在较暗环境下拍摄,也能达到清晰的成像效果。
一种实施方式中,所述光学系统满足条件式:Imgh/tan(HFOV)>6mm;其中,ImgH为所述光学系统成像面上有效像素区域对角线长度的一半,HFOV为所述光学系统的半视场角。通过满足Imgh/tan(HFOV)的取值大于6mm,有利于保持光学系统的长焦特性,增大成像的放大倍率。
一种实施方式中,所述光学系统满足条件式:1.5<TTL/(ct23+ct45)<6;其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离, ct23为所述第二透镜的像侧面与所述第三透镜的物侧面于光轴上的距离,ct45为所述第四透镜的像侧面与所述第五透镜的物侧面于光轴上的距离。通过满足TTL/(ct23+ct45)的取值在1.5和6之间,使第三透镜和第四透镜排布紧凑,成为系统光线折转的过渡部分,从而光焦度分配较少,降低了光学系统的整体敏感性。
一种实施方式中,所述光学系统满足条件式:(r4+r1)/(r4-r1)>1;其中,r1为所述第一透镜物侧面于光轴处的曲率半径,r4为所述第二透镜像侧面于光轴处的曲率半径。可以理解的是,上述两个曲率半径主要承担整个系统矫正球差的功能。通过满足(r4+r1)/(r4-r1)的取值大于1,可以很好矫正光学系统的一阶像差,从而提升性能。
第二方面,本申请还提供了一种镜头模组,镜头模组包括镜筒、感光元件和第一方面任一项实施方式所述的光学系统,所述光学系统的所述第一透镜至所述第六透镜安装在所述镜筒内,所述感光元件设置在所述光学系统的像侧。通过在镜头模组内加入本申请提供的光学系统,镜头模组能够满足长焦距的设计要求,具有较高的放大倍率和相对亮度,同时能够很好地矫正光学系统的色差,从而具有较优的拍摄性能。
第三方面,本申请还提供了一种电子设备,电子设备包括壳体和第二方面的镜头模组,所述镜头模组设于所述壳体内。通过在电子设备中加入本申请提供的镜头模组,使得近红外波段工作范围内的光学系统表现高解像力与小型化的特征,从而准确、实时地抓取驾驶员的信息,并将捕捉的图像信息传递至感光元件上,实现驾驶员的实时监测与识别。通过在电子设备中加入本申请提供的镜头模组,电子设备能够满足长焦距的设计要求,具有较高的放大倍率和相对亮度,同时能够很好地矫正光学系统的色差,从而具有较优的拍摄性能。
附图说明
为了更清楚地说明本申请实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面 描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是第一实施例的光学系统的结构示意图;
图1b是第一实施例的纵向球差曲线、像散曲线和畸变曲线;
图2a是第二实施例的光学系统的结构示意图;
图2b是第二实施例的纵向球差曲线、像散曲线和畸变曲线;
图3a是第三实施例的光学系统的结构示意图;
图3b是第三实施例的纵向球差曲线、像散曲线和畸变曲线;
图4a是第四实施例的光学系统的结构示意图;
图4b是第四实施例的纵向球差曲线、像散曲线和畸变曲线;
图5a是第五实施例的光学系统的结构示意图;
图5b是第五实施例的纵向球差曲线、像散曲线和畸变曲线;
图6a是第六实施例的光学系统的结构示意图;
图6b是第六实施例的纵向球差曲线、像散曲线和畸变曲线。
图7a是第七实施例的光学系统的结构示意图;
图7b是第七实施例的纵向球差曲线、像散曲线和畸变曲线。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
本申请实施例提供了一种电子设备,电子设备包括壳体和第二方面的镜头模组,所述镜头模组设于所述壳体内。该电子设备可以为智能手机、个人数字 助理(PDA)、平板电脑、智能手表、无人机、电子书籍阅读器、行车记录仪和可穿戴装置等。通过在电子设备中加入本申请提供的镜头模组,使得近红外波段工作范围内的光学系统表现高解像力与小型化的特征,从而准确、实时地抓取驾驶员的信息,并将捕捉的图像信息传递至感光元件上,实现驾驶员的实时监测与识别。通过在电子设备中加入本申请提供的镜头模组,电子设备能够满足长焦距的设计要求,具有较高的放大倍率和相对亮度,同时能够很好地矫正光学系统的色差,从而具有较优的拍摄性能。
本申请实施例提供了一种镜头模组,镜头模组包括镜筒、感光元件和第一方面任一项实施方式所述的光学系统,所述光学系统的所述第一透镜至所述第六透镜安装在所述镜筒内,所述感光元件设置在所述光学系统的像侧。感光元件用于将穿过第一透镜至第六透镜入射到感光元件上的物的光线转换成图像的电信号。感光元件可以为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)或电荷耦合器件(Charge-coupled Device,CCD)。该镜头模组可以是数码相机的独立的镜头,也可以是集成在如智能手机、平板电脑等电子设备上的成像模块。通过在镜头模组内加入本申请提供的光学系统,镜头模组能够满足长焦距的设计要求,具有较高的放大倍率和相对亮度,同时能够很好地矫正光学系统的色差,从而具有较优的拍摄性能。
本申请实施例提供了一种光学系统,从物侧至像侧依次包括:
第一透镜,具有正曲折力,所述第一透镜的物侧面于光轴处为凸面;
第二透镜,具有负曲折力,所述第二透镜的像侧面于光轴处为凹面;
第三透镜,具有曲折力;
第四透镜,具有曲折力;
第五透镜,具有曲折力;
第六透镜,具有曲折力;
所述光学系统满足条件式:
-2<f1/f2345<-0.5;
其中,f1为所述第一透镜的有效焦距,f2345为所述第二透镜、所述第三透镜、所述第四透镜和所述第五透镜的组合焦距。
通过合理配置各透镜的曲折力和面型,同时满足f1/f2345的取值在-2和 -0.5之间,有助于合理分配光学系统两部分的光焦度,能更好的矫正光学系统的色差,从而提升光学系统的性能。
一种实施方式中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜中任一透镜的物侧面和像侧面均为非球面。通过设置第一透镜至第六透镜的物侧面及像侧面均为非球面,消除光学系统产生的像差,有利于进一步提升光学系统的性能。
一种实施方式中,所述光学系统满足条件式:TTL/Imgh<2.4;其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,ImgH为所述光学系统成像面上有效像素区域对角线长度的一半。通过满足TTL与Imgh的比值在2.4以内,光学系统能够在成像面固定的情况下具有较小的系统总长,从而实现小型化的设计要求。具体的,TTL/Imgh的值可以为0.1、0.3、0.5、1、1.5、2、2.35等。
一种实施方式中,所述光学系统满足条件式:TTL/f<1.1;其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,f为所述光学系统的有效焦距。通过满足TTL与f的比值在1.1以内,在系统总长不变且满足小型化的情况下,光学系统的有效焦距具有较大的下限值,以此满足光学系统的长焦距要求。具体的,TTL/f的值可以为1.08、1、0.85、0.6、0.4、0.15等。
一种实施方式中,所述光学系统满足条件式:FNO<2.6;其中,FNO为所述光学系统的光圈数。通过满足光学系统的光圈数在2.6以内,在维持镜头长焦性的前提下,光学系统能够实现大通光量的要求,使得光学系统即使在较暗环境下拍摄,也能达到清晰的成像效果。具体的,FNO的值可以为0.1、0.5、0.9、1.2、1.8、2.3、2.5等。
一种实施方式中,所述光学系统满足条件式:map2/map1>0.6;其中,map2为当所述光学系统的光圈数最大时,光线在所述第六透镜像侧面的通光孔径;map1为中心视场光线在所述第六透镜像侧面的通光孔径。通过满足map2/map1的取值大于0.6,有利于提升光学系统的相对亮度,在较暗环境下拍摄,也能达到清晰的成像效果。具体的,map2/map1的值可以为0.62、0.68、0.75、0.9、1.4、2.2等。
一种实施方式中,所述光学系统满足条件式:Imgh/tan(HFOV)>6mm;其中,ImgH为所述光学系统成像面上有效像素区域对角线长度的一半,HFOV为所述光学系统的半视场角。通过满足Imgh/tan(HFOV)的取值大于6mm,有利于保持光学系统的长焦特性,增大成像的放大倍率。具体的,Imgh/tan(HFOV)的值可以为6.1mm、6.5mm、7mm、8mm、9.5mm和12mm等。
一种实施方式中,所述光学系统满足条件式:1.5<TTL/(ct23+ct45)<6;其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,ct23为所述第二透镜的像侧面与所述第三透镜的物侧面于光轴上的距离,ct45为所述第四透镜的像侧面与所述第五透镜的物侧面于光轴上的距离。通过满足TTL/(ct23+ct45)的取值在1.5和6之间,使第三透镜和第四透镜排布紧凑,成为系统光线折转的过渡部分,从而光焦度分配较少,降低了光学系统的整体敏感性。具体的,TTL/(ct23+ct45)的值可以为1.52、1.67、1.83、2.56、3.75、4.25、5.51、5.97等。
一种实施方式中,所述光学系统满足条件式:(r4+r1)/(r4-r1)>1;其中,r1为所述第一透镜物侧面于光轴处的曲率半径,r4为所述第二透镜像侧面于光轴处的曲率半径。可以理解的是,上述两个曲率半径主要承担整个系统矫正球差的功能。通过满足(r4+r1)/(r4-r1)的取值大于1,可以很好矫正光学系统的一阶像差,从而提升性能。具体的,(r4+r1)/(r4-r1)的值可以为1.2、1.8、2.5、3.5、5等。
第一实施例
请参考图1a和图1b,本实施例的光学系统,从物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凹面;第一透镜L1的像侧面S2于光轴处和于圆周处均为凸面;
第二透镜L2,具有负曲折力,第二透镜L2的物侧面S3于光轴处和于圆周处均为凸面;第二透镜L2的像侧面S4于光轴处和于圆周处均为凹面;
第三透镜L3,具有负曲折力,第三透镜L3的物侧面S5于光轴处和于圆周处均为凹面;第三透镜L3的像侧面S6于光轴处为凸面,于圆周处为凹面;
第四透镜L4,具有正曲折力,第四透镜L4的物侧面S7于光轴处和于圆周处均为凸面;第四透镜L4的像侧面S8于光轴处为凹面,于圆周处为凸面;
第五透镜L5,具有负曲折力,第五透镜L5的物侧面S9于光轴处和于圆周处均为凹面;第五透镜L5的像侧面S10于光轴处为凹面,于圆周处为凸面;
第六透镜L6,具有正曲折力,第六透镜L6的物侧面S11于光轴处和于圆周处均为凸面;第六透镜L6的像侧面S12于光轴处和于圆周处均为凹面。
上述第一透镜L1至第六透镜L6的材质均为塑料。
此外,光学系统还包括光阑STO、红外截止滤光片L7和成像面S15。光阑STO设置在第二透镜L2的像侧面S4和第三透镜L3的物侧面S5之间,用于控制进光量。其他实施例中,光阑ST0还可以设置在透镜的物侧面或者像侧面上。红外截止滤光片L7设置在第六透镜L6的像侧,其包括物侧面S13和像侧面S14,红外截止滤光片L7的物侧面S13与第六透镜L6的像侧面S12相对,红外截止滤光片L7用于过滤掉红外光线,使得射入成像面S15的光线为可见光,可见光的波长为380nm-780nm。红外截止滤光片L7的材质为玻璃,并可在玻璃上镀膜。成像面S15为感光元件的有效像素区域。
表1a示出了本实施例的光学系统的特性的表格,其中的数据采用波长为587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表1a
Figure PCTCN2020084514-appb-000001
Figure PCTCN2020084514-appb-000002
其中,f为光学系统的有效焦距,FNO为光学系统的光圈数,FOV为光学系统对角线方向的最大视场角,TTL为第一透镜的物侧面至光学系统的成像面于光轴上的距离。
在本实施例中,第一透镜L1至第六透镜L6的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2020084514-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离最大矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1a中Y半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。表1b给出了可用于第一实施例中各非球面镜面S1-S14的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表1b
Figure PCTCN2020084514-appb-000004
Figure PCTCN2020084514-appb-000005
图1b示出了第一实施例的光学系统的纵向球差曲线、像散曲线和畸变曲线。像散曲线和畸变曲线的光线参考波长为555nm,其中,纵向球差曲线表示不同波长的光线经由光学系统的各透镜后的会聚焦点偏离;像散曲线子午像面弯曲和弧矢像面弯曲;畸变曲线表示不同视场角对应的畸变大小值。根据图1b可知,第一实施例所给出的光学系统能够实现良好的成像品质。
第二实施例
请参考图2a和图2b,本实施例的光学系统,从物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凹面;第一透镜L1的像侧面S2于光轴处和于圆周处均为凸面;
第二透镜L2,具有负曲折力,第二透镜L2的物侧面S3于光轴处为凹面,于圆周处为凸面;第二透镜L2的像侧面S4于光轴处为凹面,于圆周处为凸面;
第三透镜L3,具有负曲折力,第三透镜L3的物侧面S5于光轴处和于圆周处均为凹面;第三透镜L3的像侧面S6于光轴处为凸面,于圆周处为凹面;
第四透镜L4,具有正曲折力,第四透镜L4的物侧面S7于光轴处和于圆周处均为凸面;第四透镜L4的像侧面S8于光轴处为凸面,于圆周处为凹面;
第五透镜L5,具有负曲折力,第五透镜L5的物侧面S9于光轴处和于圆周处均为凹面;第五透镜L5的像侧面S10于光轴处为凹面,于圆周处为凸面;
第六透镜L6,具有正曲折力,第六透镜L6的物侧面S11于光轴处和于圆周处均为凸面;第六透镜L6的像侧面S12于光轴处和于圆周处均为凹面。
第二实施例的其他结构与第一实施例相同,参照即可。
表2a示出了本实施例的光学系统的特性的表格,其中的数据采用波长为587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表2a
Figure PCTCN2020084514-appb-000006
Figure PCTCN2020084514-appb-000007
其中,f为光学系统的有效焦距,FNO为光学系统的光圈数,FOV为光学系统对角线方向的最大视场角,TTL为第一透镜的物侧面至光学系统的成像面于光轴上的距离。
表2b给出了可用于第二实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表2b
Figure PCTCN2020084514-appb-000008
Figure PCTCN2020084514-appb-000009
图2b示出了第二实施例的光学系统的纵向球差曲线、像散曲线和畸变曲线。像散曲线和畸变曲线的光线参考波长为555nm。根据图2b可知,第二实施例所给出的光学系统能够实现良好的成像品质。
第三实施例
请参考图3a和图3b,本实施例的光学系统,从物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凹面;第一透镜L1的像侧面S2于光轴处和于圆周处均为凸面;
第二透镜L2,具有负曲折力,第二透镜L2的物侧面S3于光轴处为凹面,于圆周处为凸面;第二透镜L2的像侧面S4于光轴处为凹面,于圆周处为凸面;
第三透镜L3,具有负曲折力,第三透镜L3的物侧面S5于光轴处和于圆周处均为凹面;第三透镜L3的像侧面S6于光轴处和于圆周处均为凹面;
第四透镜L4,具有负曲折力,第四透镜L4的物侧面S7于光轴处为凹面,于圆周处为凸面;第四透镜L4的像侧面S8于光轴处为凸面,于圆周处为凹面;
第五透镜L5,具有负曲折力,第五透镜L5的物侧面S9于光轴处为凹面,于圆周处为凸面;第五透镜L5的像侧面S10于光轴处和于圆周处均为凹面;
第六透镜L6,具有负曲折力,第六透镜L6的物侧面S11于光轴处和于圆周处均为凸面;第六透镜L6的像侧面S12于光轴处和于圆周处均为凹面。
第三实施例的其他结构与第一实施例相同,参照即可。
表3a示出了本实施例的光学系统的特性的表格,其中的数据采用波长为 587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表3a
Figure PCTCN2020084514-appb-000010
其中,f为光学系统的有效焦距,FNO为光学系统的光圈数,FOV为光学 系统对角线方向的最大视场角,TTL为第一透镜的物侧面至光学系统的成像面于光轴上的距离。
表3b给出了可用于第三实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表3b
Figure PCTCN2020084514-appb-000011
图3b示出了第三实施例的光学系统的纵向球差曲线、像散曲线和畸变曲 线。像散曲线和畸变曲线的光线参考波长为555nm。根据图3b可知,第三实施例所给出的光学系统能够实现良好的成像品质。
第四实施例
请参考图4a和图4b,本实施例的光学系统,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凹面;第一透镜L1的像侧面S2于光轴处为凹面,于圆周处为凸面;
第二透镜L2,具有负曲折力,第二透镜L2的物侧面S3于光轴处和于圆周处均为凸面;第二透镜L2的像侧面S4于光轴处和于圆周处均为凹面;
第三透镜L3,具有负曲折力,第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凹面;第三透镜L3的像侧面S6于光轴处和于圆周处均为凹面;
第四透镜L4,具有负曲折力,第四透镜L4的物侧面S7于光轴处和于圆周处均为凸面;第四透镜L4的像侧面S8于光轴处为凹面,于圆周处为凸面;
第五透镜L5,具有负曲折力,第五透镜L5的物侧面S9于光轴处和于圆周处均为凹面;第五透镜L5的像侧面S10于光轴处为凹面,于圆周处为凸面;
第六透镜L6,具有负曲折力,第六透镜L6的物侧面S11于光轴处和于圆周处均为凸面;第六透镜L6的像侧面S12于光轴处和于圆周处均为凹面。
第四实施例的其他结构与第一实施例相同,参照即可。
表4a示出了本实施例的光学系统的特性的表格,其中的数据采用波长为587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表4a
Figure PCTCN2020084514-appb-000012
Figure PCTCN2020084514-appb-000013
其中,f为光学系统的有效焦距,FNO为光学系统的光圈数,FOV为光学系统对角线方向的最大视场角,TTL为第一透镜的物侧面至光学系统的成像面于光轴上的距离。
表4b给出了可用于第四实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表4b
Figure PCTCN2020084514-appb-000014
Figure PCTCN2020084514-appb-000015
图4b示出了第四实施例的光学系统的纵向球差曲线、像散曲线和畸变曲线。像散曲线和畸变曲线的光线参考波长为555nm。根据图4b可知,第四实施例所给出的光学系统能够实现良好的成像品质。
第五实施例
请参考图5a和图5b,本实施例的光学系统,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凹面;第一透镜L1的像侧面S2于光轴处和于圆周处均为凸面;
第二透镜L2,具有负曲折力,第二透镜L2的物侧面S3于光轴处和于圆 周处均为凸面;第二透镜L2的像侧面S4于光轴处为凹面,于圆周处为凸面;
第三透镜L3,具有负曲折力,第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凹面;第三透镜L3的像侧面S6于光轴处和于圆周处均为凹面;
第四透镜L4,具有负曲折力,第四透镜L4的物侧面S7于光轴处和于圆周处均为凸面;第四透镜L4的像侧面S8于光轴处和于圆周处均为凹面;
第五透镜L5,具有负曲折力,第五透镜L5的物侧面S9于光轴处和于圆周处均为凸面;第五透镜L5的像侧面S10于光轴处为凹面,于圆周处为凸面;
第六透镜L6,具有负曲折力,第六透镜L6的物侧面S11于光轴处为凹面,于圆周处为凸面;第六透镜L6的像侧面S12于光轴处为凸面,于圆周处为凹面。
第五实施例的其他结构与第一实施例相同,参照即可。
表5a示出了本实施例的光学系统的特性的表格,其中的数据采用波长为587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表5a
Figure PCTCN2020084514-appb-000016
Figure PCTCN2020084514-appb-000017
其中,f为光学系统的有效焦距,FNO为光学系统的光圈数,FOV为光学系统对角线方向的最大视场角,TTL为第一透镜的物侧面至光学系统的成像面于光轴上的距离。
表5b给出了可用于第五实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表5b
Figure PCTCN2020084514-appb-000018
Figure PCTCN2020084514-appb-000019
图5b示出了第五实施例的光学系统的纵向球差曲线、像散曲线和畸变曲线。像散曲线和畸变曲线的光线参考波长为555nm。根据图5b可知,第五实施例所给出的光学系统能够实现良好的成像品质。
第六实施例
请参考图6a和图6b,本实施例的光学系统,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凹面;第一透镜L1的像侧面S2于光轴处和于圆周处均为凸面;
第二透镜L2,具有负曲折力,第二透镜L2的物侧面S3于光轴处为凹面,于圆周处为凸面;第二透镜L2的像侧面S4于光轴处和于圆周处均为凹面;
第三透镜L3,具有负曲折力,第三透镜L3的物侧面S5于光轴处和于圆周处均为凹面;第三透镜L3的像侧面S6于光轴处和于圆周处均为凹面;
第四透镜L4,具有负曲折力,第四透镜L4的物侧面S7于光轴处和于圆周处均为凸面;第四透镜L4的像侧面S8于光轴处和于圆周处均为凹面;
第五透镜L5,具有负曲折力,第五透镜L5的物侧面S9于光轴处为凹面,于圆周处为凸面;第五透镜L5的像侧面S10于光轴处和于圆周处均为凸面;
第六透镜L6,具有负曲折力,第六透镜L6的物侧面S11于光轴处为凹面,于圆周处为凸面;第六透镜L6的像侧面S12于光轴处和于圆周处均为凹面。
第六实施例的其他结构与第一实施例相同,参照即可。
表6a示出了本实施例的光学系统的特性的表格,其中的数据采用波长为587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表6a
Figure PCTCN2020084514-appb-000020
其中,f为光学系统的有效焦距,FNO为光学系统的光圈数,FOV为光学系统对角线方向的最大视场角,TTL为第一透镜的物侧面至光学系统的成像面于光轴上的距离。
表6b给出了可用于第六实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表6b
Figure PCTCN2020084514-appb-000021
Figure PCTCN2020084514-appb-000022
图6b示出了第六实施例的光学系统的纵向球差曲线、像散曲线和畸变曲线。像散曲线和畸变曲线的光线参考波长为555nm。根据图6b可知,第六实施例所给出的光学系统能够实现良好的成像品质。
第七实施例
请参考图7a和图7b,本实施例的光学系统,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜L1的物侧面S1于光轴处为凸面, 于圆周处为凹面;第一透镜L1的像侧面S2于光轴处和于圆周处均为凸面;
第二透镜L2,具有负曲折力,第二透镜L2的物侧面S3于光轴处和于圆周处均为凸面;第二透镜L2的像侧面S4于光轴处和于圆周处均为凹面;
第三透镜L3,具有负曲折力,第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凹面;第三透镜L3的像侧面S6于光轴处和于圆周处均为凹面;
第四透镜L4,具有负曲折力,第四透镜L4的物侧面S7于光轴处和于圆周处均为凹面;第四透镜L4的像侧面S8于光轴处为凹面,于圆周处为凸面;
第五透镜L5,具有负曲折力,第五透镜L5的物侧面S9于光轴处和于圆周处均为凹面;第五透镜L5的像侧面S10于光轴处为凹面,于圆周处为凸面;
第六透镜L6,具有负曲折力,第六透镜L6的物侧面S11于光轴处和于圆周处均为凸面;第六透镜L6的像侧面S12于光轴处和于圆周处均为凹面。
第七实施例的其他结构与第一实施例相同,参照即可。
表7a示出了本实施例的光学系统的特性的表格,其中的数据采用波长为587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表7a
Figure PCTCN2020084514-appb-000023
Figure PCTCN2020084514-appb-000024
其中,f为光学系统的有效焦距,FNO为光学系统的光圈数,FOV为光学系统对角线方向的最大视场角,TTL为第一透镜的物侧面至光学系统的成像面于光轴上的距离。
表7b给出了可用于第七实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表7b
Figure PCTCN2020084514-appb-000025
Figure PCTCN2020084514-appb-000026
图7b示出了第七实施例的光学系统的纵向球差曲线、像散曲线和畸变曲线。像散曲线和畸变曲线的光线参考波长为555nm。根据图7b可知,第七实施例所给出的光学系统能够实现良好的成像品质。
表8示出了第一实施例至第七实施例的光学系统的TTL/Imgh、TTL/f、f1/f2345、FNO、map2/map1、Imgh/tan(HFOV)、TTL/(ct23+ct45)、(r4+r1)/(r4-r1)的值。其中,Imgh/tan(HFOV)的单位为毫米(mm)。
表8
TTL/Imgh TTL/f f1/f2345 FNO
第一实施例 1.99 0.92 -1.24 2.20
第二实施例 2.02 0.93 -1.23 2.17
第三实施例 2.02 0.93 -1.31 2.17
第四实施例 2.02 0.93 -1.19 2.17
第五实施例 2.02 0.93 -1.16 2.17
第六实施例 2.02 0.93 -1.24 2.25
第七实施例 2.02 0.93 -1.23 2.17
map2/map1 Imgh/tan(HFOV) TTL/(ct23+ct45) (r4+r1)/(r4-r1)
第一实施例 0.89 7.57 4.09 3.12
第二实施例 0.84 7.56 4.53 2.12
第三实施例 0.81 7.55 3.69 2.30
第四实施例 0.88 7.55 4.06 2.44
第五实施例 0.92 7.56 4.08 2.30
第六实施例 0.83 7.56 3.30 2.17
第七实施例 0.89 7.56 4.05 2.56
由表8可知,第一实施例至第七实施例中的光学系统均满足以下条件式: TTL/Imgh<2.4、TTL/f<1.1、-2<f1/f2345<-0.5、FNO<2.6、0.6<map2/map1、Imgh/tan(HFOV)>6mm、1.5<TTL/(ct23+ct45)<6、(r4+r1)/(r4-r1)>1。
以上所揭露的仅为本申请一种较佳实施例而已,当然不能以此来限定本申请之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本申请权利要求所作的等同变化,仍属于申请所涵盖的范围。

Claims (11)

  1. 一种光学系统,其特征在于,从物侧至像侧依次包括:
    第一透镜,具有正曲折力,所述第一透镜的物侧面于光轴处为凸面;
    第二透镜,具有负曲折力,所述第二透镜的像侧面于光轴处为凹面;
    第三透镜,具有曲折力;
    第四透镜,具有曲折力;
    第五透镜,具有曲折力;
    第六透镜,具有曲折力;
    所述光学系统满足条件式:
    -2<f1/f2345<-0.5;
    其中,f1为所述第一透镜的有效焦距,f2345为所述第二透镜、所述第三透镜、所述第四透镜和所述第五透镜的组合焦距。
  2. 如权利要求1所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜中任一透镜的物侧面和像侧面均为非球面。
  3. 如权利要求1所述的光学系统,其特征在于,所述光学系统满足条件式:
    TTL/Imgh<2.4;
    其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,ImgH为所述光学系统成像面上有效像素区域对角线长度的一半。
  4. 如权利要求1所述的光学系统,其特征在于,所述光学系统满足条件式:
    TTL/f<1.1;
    其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,f为所述光学系统的有效焦距。
  5. 如权利要求1所述的光学系统,其特征在于,所述光学系统满足条件式:
    FNO<2.6;
    其中,FNO为所述光学系统的光圈数。
  6. 如权利要求1所述的光学系统,其特征在于,所述光学系统满足条件式:
    map2/map1>0.6;
    其中,map2为当所述光学系统的光圈数最大时,光线在所述第六透镜像侧面的通光孔径;map1为中心视场光线在所述第六透镜像侧面的通光孔径。
  7. 如权利要求1所述的光学系统,其特征在于,所述光学系统满足条件式:
    Imgh/tan(HFOV)>6mm;
    其中,ImgH为所述光学系统成像面上有效像素区域对角线长度的一半,HFOV为所述光学系统的半视场角。
  8. 如权利要求1所述的光学系统,其特征在于,所述光学系统满足条件式:
    1.5<TTL/(ct23+ct45)<6;
    其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,ct23为所述第二透镜的像侧面与所述第三透镜的物侧面于光轴上的距离,ct45为所述第四透镜的像侧面与所述第五透镜的物侧面于光轴上的距离。
  9. 如权利要求1所述的光学系统,其特征在于,所述光学系统满足条件式:
    (r4+r1)/(r4-r1)>1;
    其中,r1为所述第一透镜物侧面于光轴处的曲率半径,r4为所述第二透镜像侧面于光轴处的曲率半径。
  10. 一种镜头模组,其特征在于,包括镜筒、感光元件和如权利要求1至9任一项所述的光学系统,所述光学系统的所述第一透镜至所述第六透镜安装在所述镜筒内,所述感光元件设置在所述光学系统的像侧。
  11. 一种电子设备,其特征在于,包括壳体和如权利要求10所述的镜头模组,所述镜头模组设于所述壳体内。
PCT/CN2020/084514 2020-04-13 2020-04-13 光学系统、镜头模组和电子设备 WO2021207883A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084514 WO2021207883A1 (zh) 2020-04-13 2020-04-13 光学系统、镜头模组和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084514 WO2021207883A1 (zh) 2020-04-13 2020-04-13 光学系统、镜头模组和电子设备

Publications (1)

Publication Number Publication Date
WO2021207883A1 true WO2021207883A1 (zh) 2021-10-21

Family

ID=78084689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084514 WO2021207883A1 (zh) 2020-04-13 2020-04-13 光学系统、镜头模组和电子设备

Country Status (1)

Country Link
WO (1) WO2021207883A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8896935B2 (en) * 2013-01-31 2014-11-25 Newmax Technology Co., Ltd. Six-piece optical lens system
CN104570284A (zh) * 2015-01-07 2015-04-29 浙江舜宇光学有限公司 摄像镜头
CN105445905A (zh) * 2014-09-19 2016-03-30 富士胶片株式会社 摄像透镜以及摄像装置
US20160124192A1 (en) * 2014-11-04 2016-05-05 Hoya Corporation Imaging optical system
CN107797248A (zh) * 2017-11-18 2018-03-13 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108431663A (zh) * 2016-11-29 2018-08-21 华为技术有限公司 用于拍摄图像的标准到远摄镜头系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8896935B2 (en) * 2013-01-31 2014-11-25 Newmax Technology Co., Ltd. Six-piece optical lens system
CN105445905A (zh) * 2014-09-19 2016-03-30 富士胶片株式会社 摄像透镜以及摄像装置
US20160124192A1 (en) * 2014-11-04 2016-05-05 Hoya Corporation Imaging optical system
CN104570284A (zh) * 2015-01-07 2015-04-29 浙江舜宇光学有限公司 摄像镜头
CN108431663A (zh) * 2016-11-29 2018-08-21 华为技术有限公司 用于拍摄图像的标准到远摄镜头系统
CN107797248A (zh) * 2017-11-18 2018-03-13 瑞声科技(新加坡)有限公司 摄像光学镜头

Similar Documents

Publication Publication Date Title
US20200333566A1 (en) Optical imaging system
TWI421557B (zh) 攝像透鏡系統
US11029501B2 (en) Camera lens assembly
CN111443461A (zh) 光学系统、镜头模组和电子设备
WO2021189431A1 (zh) 光学系统、镜头模组及电子设备
CN111338063A (zh) 光学系统、镜头模组和电子设备
WO2022061904A1 (zh) 光学系统、摄像头模组及终端设备
US20220003964A1 (en) Optical system, lens module, and terminal device
WO2022033326A1 (zh) 光学系统、镜头模组和电子设备
WO2021196030A1 (zh) 光学系统、镜头模组和电子设备
CN111239988A (zh) 光学系统、镜头模组和电子设备
CN211786329U (zh) 光学系统、镜头模组和电子设备
US20210405330A1 (en) Optical system, lens module, and electronic device
WO2021035758A1 (zh) 光学系统、镜头模组和电子设备
US20210396960A1 (en) Optical system, lens module, and electronic device
US11112579B2 (en) Optical lens assembly
US20220308314A1 (en) Optical imaging system
CN213091989U (zh) 光学系统、摄像头模组和电子设备
WO2022032426A1 (zh) 光学系统、摄像模组和电子设备
WO2022041054A1 (zh) 光学系统、摄像模组和电子设备
CN211786337U (zh) 光学系统、镜头模组及终端设备
WO2021207883A1 (zh) 光学系统、镜头模组和电子设备
CN211826689U (zh) 光学系统、镜头模组和电子设备
WO2021196222A1 (zh) 光学系统、镜头模组和电子设备
CN112034591A (zh) 光学系统、摄像头模组和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931141

Country of ref document: EP

Kind code of ref document: A1