WO2021207809A1 - Compósito polimérico,uso do dito compósito na preparação de artigos, processo de preparação do dito compósito e artigos compreendendo o referido compósito - Google Patents

Compósito polimérico,uso do dito compósito na preparação de artigos, processo de preparação do dito compósito e artigos compreendendo o referido compósito Download PDF

Info

Publication number
WO2021207809A1
WO2021207809A1 PCT/BR2021/050095 BR2021050095W WO2021207809A1 WO 2021207809 A1 WO2021207809 A1 WO 2021207809A1 BR 2021050095 W BR2021050095 W BR 2021050095W WO 2021207809 A1 WO2021207809 A1 WO 2021207809A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite
sand
resin
mass
polymeric
Prior art date
Application number
PCT/BR2021/050095
Other languages
English (en)
French (fr)
Inventor
Geiza ESPERANDIO DE OLIVEIRA
Original Assignee
Sileto Pesquisa e Desenvolvimento Ltda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sileto Pesquisa e Desenvolvimento Ltda filed Critical Sileto Pesquisa e Desenvolvimento Ltda
Priority to MX2022012785A priority Critical patent/MX2022012785A/es
Priority to EP21788731.4A priority patent/EP4137317A1/en
Priority to AU2021256474A priority patent/AU2021256474B2/en
Priority to CA3175471A priority patent/CA3175471A1/en
Publication of WO2021207809A1 publication Critical patent/WO2021207809A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/242Moulding mineral aggregates bonded with resin, e.g. resin concrete
    • B29C67/243Moulding mineral aggregates bonded with resin, e.g. resin concrete for making articles of definite length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • B29C70/021Combinations of fibrous reinforcement and non-fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/14Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen
    • C08F236/16Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen containing halogen
    • C08F236/18Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen containing halogen containing chlorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K11/00Use of ingredients of unknown constitution, e.g. undefined reaction products
    • C08K11/005Waste materials, e.g. treated or untreated sewage sludge
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0838Copolymers of ethene with aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic
    • C08L2207/24Recycled plastic recycling of old tyres and caoutchouc and addition of caoutchouc particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention belongs to the Civil Construction, Transport, Logistics and Infrastructure sectors and refers to a polymer composite comprising at least one filler, at least one additive and at least one resin selected from dicyclopentadiene polyester resin (DCPD) and resin Thermoset PET.
  • DCPD dicyclopentadiene polyester resin
  • Thermoset PET resin Thermoset PET
  • the present invention relates to a process for preparing said composite in addition to using said composite to prepare some articles including, but not limited to, sleepers, crosspieces, purlins, interlocking floors, precast building panels, artificial stone for countertops and floors, slab flooring used in bridges, cladding and cobogó.
  • Sleeper is the element of the railway superstructure whose function is to receive and transmit to the ballast the efforts produced by the actions of the vehicles, serving as a support for the rails, allowing their fixation and keeping the distance between them invariable.
  • the reinforced concrete sleeper does not have the unanimous preference of the railway sector, due to its excessive rigidity, lower energy absorption and impact resistance compared to other sleepers. Metal sleepers are lighter and easier to handle, but this lightness makes the track less stable, in addition to being noisier in operation.
  • One of the solutions for this demand is the plastic or polymer sleeper.
  • reinforced concrete although it is a great material, due to its versatility and cost, it has disadvantages such as the development of internal stresses that combined with its low strength mechanical, makes it prone to cracks that allow the entry of aggressive agents, suffering great corrosion. For these and other reasons, conventional reinforced concrete has been deserving attention from researchers with regard to improving its characteristics.
  • Concrete-polymer composites are defined as a mixture of agglomerates, using as the only binder a polymer, copolymer, terpolymer or polymer mixtures, without the use of ceramic binder, such as cement.
  • Document BR 11 2017 020280-8 describes a composition for rail pads for railways that is characterized by comprising a random copolymer of ethylene/a-olefin/specific unconjugated polyene (a), clay (b) and a coupling agent of silane containing sulfur atom (c).
  • the molded object obtained starting from the composition through cross-linking, especially through foam mold cross-linking, has rubber elasticity suitable for rail pads for railways.
  • Document CN 101220184 already describes a rubber backing plate comprising a non-conjugated diene. This invention is said to belong to the field of accessory processing in the railway, subway or light rail industries, and particularly relates to a rubber plate and a manufacturing process thereof. This plate is designed to be placed between the rail and the sleeper.
  • CN 103221457 describes a modified polymer comprising sulfur and dicyclopentadiene in addition to other compounds. This polymer is suitable for use in a concrete composition.
  • Document EA 011818 describes, among other categories, a sleeper comprising a structural composite material formed from a core material of stable geometric dimensions wrapped in a coating with a stable geometric dimension that is adhered to the core material, the coating being a laminated structure formed from at least one tape of substantially parallel reinforcing cables adhered to at least one layer of mesh material selected from the group consisting of paper with hardened stiffness and woven with the paper or fabric impregnated with a hardened resin in which the resin hardening is in mixture with the solid dispersion filler.
  • Document BR 0516420 discloses a composite structural material suitable, for example, as a substitute for wooden planks, or posts. It comprises a dimensionally stable core material surrounded by a dimensionally stable lamellar coating that is adherent to the core material.
  • the lamellar covering is comprised of at least one strip of substantially parallel reinforcing yarns bonded to at least one layer of a dimensionally stable mesh material selected from the group consisting of stiffened paper and stiffened cloth.
  • the strip of reinforcing yarns is placed between two layers of stiffened paper or cloth.
  • the core material can be, for example, a foamed synthetic resin with or without filler.
  • Document BR 9711376 deals with compound produced from recycled materials, including PET soda bottles and ill-fitting plastics or gutter waste. These materials generally include a significant amount of high density polyethylene (“HDPE”) mixed with a variety of other plastics, such as polyvinyl chloride (“PVC”), polyethylene terephthalate (“PET”) (from soda bottles or otherwise , polypropylene (“PP”), polyethylene (“PE”) and other smaller components.
  • HDPE high density polyethylene
  • PVC polyvinyl chloride
  • PET polyethylene terephthalate
  • PP polypropylene
  • PE polyethylene
  • the composite building material is composed of an extruded blend of high density polyethylene and a thermoplastic coated fiber material such as fiberglass.
  • EP 3263767 relates to mold bodies which are made of thermoplastic material or which contain a basic body in its longitudinal movement.
  • Polymers, in particular polyolefins, used as thermoplastic material are envisaged, in particular one or more materials from the polyethylene group, in particular LDPE and/or HDPE polyethylene, polypropylene, polyvinyl chloride, polyethylene ether, polycarbonate, polyamide, acrylonitrile-butadine-styrene , polymethylmicroacrylate, polystyrene.
  • Document PI 1003132-4 refers to an ecological mass composed of plastic materials, tar, stone and sand, and its obtaining process, whose mass is applied in civil construction and/or in the manufacture of sleepers.
  • the plastic materials in question come from packaging recycling processes, mainly focused on recycling PET bottles, and are mixed with pitch, being a thermoplastic material, with a working temperature in the order of 200 Q C to 300 Q C.
  • the document PI 0501724-6 refers to the use of waste tires, through the arrangement of glued tire strips on sheets, overlaid by a ribbed, corrosion-resistant steel plate, where a support plate fitted with an elastic clip fits to lock the rail, this whole set being held by metal rivets that create a unit and keep the gauge as provided.
  • the document PI 0502483-8 refers to sleepers for prestressed tires, and in the manufacture, pieces of tires will be used, which they will be joined together by one or more steel rods.
  • the pieces of tires joined by compression of the steel tie(s) form the sleeper body, which resists the efforts resulting from the passage of the train, and because it is flexible, it allows the train's traffic without vibrations and noise.
  • thermoset polyester resins and additives with the purpose of replacing concrete sleepers by sleepers based on thermoset polymer.
  • the present invention achieves these and other objectives through a polymeric composite comprising:
  • At least one filler being selected from the group consisting of fly ash, silt, powdered calcium carbonate, stone powder, foundry sand, fine sand, silica and a combination thereof;
  • -at least one resin being selected from dicyclopentadiene, PET monomer and combination thereof;
  • phase compatibilizing additives also called coupling agents, such as vinyltrimethoxysilane, methacryltrimethoxysilane, methacryloxypropyltrimethoxysilane, calcium diacrylate, zinc diacrylate and combination thereof, or polymeric structure flexibilizing agents being selected from the butylacrylate, butylmethylacrylate, methylmethacrylate, triethyleneglycolmethacrylate, ethylhexylmethacrylate and combinations thereof. [0033]. - Furthermore, the present invention achieves these and other objectives through the optional addition, depending on the need, of the following phases in the composite:
  • - flexible additives of the polymeric structure being selected from among butylacrylate, butylmethylacrylate, methylmethacrylate, triethyleneglycolmethacrylate, ethylhexylmethacrylate used in isolation and/or combinations thereof.
  • the present invention achieves these and other objectives by means of a process for preparing the above polymeric composite by means of molding.
  • the present invention achieves these and other objectives through the use of a polymeric composite as defined above for the preparation of an article being selected from sleepers, crosspieces, purlins, interlocking floors, precast civil construction panels, artificial stone for benches and flooring, slab pavement used in bridges, cladding and cobogó.
  • the present invention relates to a polymer composite comprising fine aggregates, at least one resin being selected from dicyclopentadiene (DCPD), PET monomers for thermosetting resin and the use of at least one additive preferably being a phase compatibilizing additive, also called coupling agents, such as vinyltrimethoxysilane, methacryltrimethoxysilane, methacryloxypropyltrimethoxysilane, calcium diacrylate, zinc diacrylate, or flexible agents of the polymeric structure being selected from butylacrylate, butylmethylacrylate, methylmethacrylate, triethyleneglycolmethacrylate, ethylhexylmethacrylate and/or combinations thereof.
  • DCPD dicyclopentadiene
  • PET monomers for thermosetting resin preferably being a phase compatibilizing additive, also called coupling agents, such as vinyltrimethoxysilane, methacryltrimethoxysilane, methacryloxypropyltrimethoxysilane, calcium diacrylate, zinc diacryl
  • the composite comprises resin, preferably medium sand and at least one filler. being selected from the group consisting of fly ash, silt, calcium carbonate powder, stone powder, foundry sand, fine sand, silica and a combination of these whose mixture is perfect to meet load and distribution requirements for ballast. It is noteworthy that this composite when used in the preparation of sleepers:
  • polymeric composite of the present invention is a polymeric concrete obtained from the replacement of part or all of the binder of conventional concrete by polymer.
  • the composite object of the present invention comprises resin, preferably medium sand and at least one filler, and may also comprise optional components, such as:
  • phase compatibilizing additives also called coupling agents, such as vinyltrimethoxysilane, methacryltrimethoxysilane, methacryloxypropyltrimethoxysilane, calcium diacrylate, zinc diacrylate and combination thereof, or polymer structure flexibilizing additives being selected from butylacrylate , butylmethylacrylate, methylmethacrylate, triethyleneglycolmethacrylate, ethylhexylmethacrylate and combinations thereof.
  • phase compatibilizing additives also called coupling agents, such as vinyltrimethoxysilane, methacryltrimethoxysilane, methacryloxypropyltrimethoxysilane, calcium diacrylate, zinc diacrylate and combination thereof, or polymer structure flexibilizing additives being selected from butylacrylate , butylmethylacrylate, methylmethacrylate, triethyleneglycolmethacrylate, ethylhexylmethacrylate and combinations thereof.
  • the resin present in said composite is selected among dicyclopentadiene (DCPD), PET monomers and combinations between them. [0054].
  • DCPD dicyclopentadiene
  • DCPD Dicyclopentadiene
  • DCPD is added in an amount ranging from 3% to 40% by mass, preferably from 5% to 35% by mass and more preferably from 7 to 30% by mass, based on the total mass of the composition of the composite.
  • PET Polyethylene terephthalate
  • PET is a thermoplastic polymer, developed in 1941, formed by the reaction between terephthalic acid and ethylene glycol. It is mainly used in the form of fibers for weaving and packaging for beverages. It is a polyester because it has the ester functional group in its main chair, and it has thermoplastic properties, that is, it can be reprocessed several times by the same or another transformation process.
  • Polyethylene terephthalate is industrially produced in two stages: pre-polymerization and polycondensation, in which the first stage corresponds to manufacture of the bis (2-hydroxyethylene terephthalate) oligomer, BHET, using two routes, and polycondensation is responsible for the production of PET.
  • the first route is direct esterification, where the reaction between terephthalic acid and ethylene glycol will occur, characterized by being heterogeneous, autocatalytic, that is, it is not necessary to use catalysts, with a working temperature of around 240-260 °C .
  • terephthalic acid is replaced by dimethylene terephthalate ester, with the use of catalysts and working temperature ranging between 170-210 °C.
  • catalysts and working temperature ranging between 170-210 °C.
  • water and methanol are released.
  • PET resin is added in the preparation of the composite in the form of PET monomers for the purpose of crosslinking the material to provide mechanical strength.
  • Prior art describes composites comprising PET in the form of filaments.
  • the filaments have a charge function and not as a matrix, as noted in the object of the present invention.
  • both PET in the form of filaments and sleepers made directly with this polymer are a thermoplastic version of the polymer, that is, sensitive to temperature variation, resulting in warping and deformation.
  • the PET resin used in the present invention is a thermoset crosslinked resin, which will not be influenced by temperature, maintaining the shape of the final article for long periods. Therefore, it is a completely different use of PET in composites for various purposes.
  • PET monomers are added in an amount ranging from 5% to 30% by mass, preferably from 8% to 25% by mass and more preferably from 10% to 20% by mass, based in the total mass of the composite composition.
  • the composite of the present invention comprises sand.
  • the sand composition is formed predominantly of silica particles, but may contain other minerals such as: feldspar, mica, zircon, magnetite, ilmenite, monazite and cassiterite.
  • Commercial sand also has moisture, considering that it is a sand of medium granulometry (0.2mm to 0.6mm) washed, for the removal of most organic impurities.
  • sand is added in an amount ranging from 40% to 95%, by mass, preferably from 45% to 90%, by mass and more preferably from 50% to 80%, by mass, based on mass. total composition of the composite.
  • the composite of the present invention comprises at least one filler being selected from the group consisting of fly ash, silt, calcium carbonate powder, stone powder, foundry sand, fine sand, silica and combinations between these, which function as load filling potential voids between the sand grains.
  • the material that constitutes the fly ash solidifies in suspension in the exhaust gases of the burners, being collected by electrostatic precipitators or removed by mechanical filtration. Solidification in suspension in a gaseous flow leads to particles, preferably spherical, in many cases hollow or with a large volume of pores, with dimensions ranging from 0.5 pm to 100 pm.
  • the ash Due to its origin in mineral impurities contained in coal, the ash is mainly constituted by silicon dioxide (S1O2), aluminum oxide (AI2O3) and iron oxide (Fe2C>3).
  • Ashes have pozzolanic activity, reacting at normal temperature and in the presence of water with 0 calcium hydroxide and alkalis to form calcium silicate hydrates, compounds with the ability of Portland cement to stick, that is, these compounds maintain cohesion between the aggregates and the cement matrix.
  • the pozzolanic activity is not relevant, considering that the matrix is not a Portland cement, but a polymeric resin, whose curing reactions do not involve the formation of hydrated calcium silicate.
  • the Fly ash Due to its composition and its pozzolanic activity, the Fly ash is classified by ASTM C618 into two categories: (1) Class F fly ash; and (2) class C fly ash.
  • Class F fly ash Due to its composition and its pozzolanic activity, the Fly ash is classified by ASTM C618 into two categories: (1) Class F fly ash; and (2) class C fly ash.
  • the main difference between these two classes is the content of calcium, silica, alumina and iron existing in its composition, which in turn determines the physical and chemical properties of the material and, consequently, the its properties as a material for technological uses.
  • ash is added in an amount ranging from 2% to 30% by mass, preferably from 4% to 25% by mass and more preferably from 5% to 20% by mass, based on mass. total composition of the composite.
  • the composite object of the present invention may also contain:
  • reaction promoter system that mixes with the resin in an amount ranging from 0.1% to 7.0% by mass, based on the total mass of the composite.
  • 0.5 to 3.0% of cobalt naphthenate or cobalt octoate is used, which can be used alone or combined with dimethylaniline (DMA) in an amount ranging from 0.001% to 0.100%;
  • an initiator in an amount ranging from 0.1% to 5.0% by mass, based on the total mass of the composite.
  • methyl ethyl ketone peroxide compound of medium reactivity, desensitized with dimethylphthalate, is used;
  • a compatibilizing additive also called coupling agent, used in an amount ranging from 0 to 1.0% by mass of the compound, preferably vinyltrimethoxysilane, but which can be replaced by methacryltrimethoxysilane, methacryloxypropyltrimethoxysilane, calcium diacrylate, zinc diacrylate and combination of them;
  • a flexible additive of the polymeric structure used in an amount ranging from 0 to 1.0% by mass of the compound, being selected from butylacrylate, butylmethylacrylate, methylmethacrylate, triethyleneglycolmethacrylate, ethylhexylmethacrylate and combinations thereof; [0076].
  • ground rubber coming from tires in an amount that varies from 0% to 40% by mass based on the total mass of the composite. Preferably, from 0% to 25% of ground rubber is used;
  • - glass or metallic fibers which can be short and evenly distributed in the matrix, or long and aligned in a single direction, in an amount ranging from 0% to 10%, by mass, based on the total mass of the composite. Preferably, from 0% to 2.5% of glass or metallic fibers are used;
  • the polymeric composite of the present invention is used in the preparation of various articles such as railway sleepers, crosspieces, purlins, interlocking floors, precast building panels, artificial stone for benches and floors, slab flooring used in bridges , cladding boards and cobogó.
  • the sleeper being the preferred embodiment among the articles of the present invention, presents several characteristics, among which: [0082]. - total service to the requested loads, which preferably vary between 20 ton/axle up to 40 ton/axle;
  • the polymeric composite of the present invention is preferably prepared from the process comprising the following steps:
  • Molding in mold of the article to be produced preferably previously greased with release agent, which may be paraffins, mineral oil, polymeric solution of linear polymers (polyethylene, polypropylene, polyvinyl alcohol, polyvinyl chloride, polytetrafluoroethylene) or combinations thereof.
  • release agent which may be paraffins, mineral oil, polymeric solution of linear polymers (polyethylene, polypropylene, polyvinyl alcohol, polyvinyl chloride, polytetrafluoroethylene) or combinations thereof.
  • Pre-cure oven at ambient pressure at a temperature of around 60 Q C for an average of 120 minutes and post curing for at least 7 days at ambient temperature and pressure.
  • the sleeper of the present invention is preferably prepared from the process which comprises the following steps:
  • the present invention has numerous technical and economic advantages when compared to the state of the art, some of which are listed below:
  • the polymeric composite of the present invention has an infinite potential for applications (metric gauge sleepers, wide gauge sleepers, crossheads, etc.) due to its high mechanical strength, excellent dielectric properties, low porosity and water absorption; chemical and corrosion resistance, plus a low weight;
  • fly ash as filler, which is a liability of the steel, thermoelectric and agrarian industries
  • the pre-accelerated resin may already contain a reaction promoter, preferably 1% cobalt naphthenate;
  • the filler content refers to the total amount of aggregate; [00116]. - molding for 10 min - pressure 1.8MPa.
  • DSC differential scanning calorimetry
  • TGA thermogravimetric analysis
  • the differential scanning calorimetry test measures the difference in energy supplied to a substance and the reference material, as a function of temperature, while both are subjected to a controlled program of temperature variation. How Material Phase Transitions Occur under heat flow, or releasing (in exothermic events) or absorbing (in endothermic events), phenomena such as: fusion, solidification, glass transition, curing and oxidation.
  • the DSC curves of a preferred embodiment were obtained using a Netzsch model DSC 214 Polyma equipment, under a nitrogen flow of 50ml_/min, in a sealed aluminum pan, according to the following heating/cooling program: a. Heating to a temperature of 23 Q C to 300 Q C at a rate of 20 Q C/min. B.
  • Thermogravimetric analysis is defined as an analytical technique in which the mass variation of the sample is measured as a function of the temperature variation.
  • the thermogravimetric analysis of this same preferred embodiment was performed in a TA Instruments model TA Q500 thermogravimetric analyzer, with a heating rate of 20 Q C/min in an alumina pot, in a temperature range of 30 to 850 Q C. temperature from 30 Q C to 550 Q C, an inert nitrogen atmosphere with a flow rate of 50 mL/min was used. In the temperature range of 550 Q C to 850 Q C the atmosphere was changed to an oxygen oxidative atmosphere with a flow rate of 50 mL/min.
  • Morphology and estimation of elementary chemical composition [00128].
  • the analysis of the morphology and estimation of the elemental chemical composition of the product of the same preferred embodiment was performed using a scanning electron microscope (SEM) model Inspect S50 FEI with EDS, with the sample of the preferred embodiment having received gold coating, in an amount of about 10 to 20 nm, and using secondary electrons emitted for the analysis of morphology and X-rays emitted for the analysis of the estimation of the elementary chemical composition by the EDS.
  • SEM scanning electron microscope
  • Portland cement presents values of about 10 to 45 MPa of axial compression strength and about 2 to 7 MPa of diametrical compression tensile strength, depending on the water/cement ratio used. Therefore, the preferred embodiment of the present invention is more resistant to axial compression than the traditional Portland cement embodiment.
  • the present invention also has a tensile strength by diametrical compression similar to that achieved by the traditional Portland cement implementation.
  • the abrasion wear determination was tested in a certified laboratory of Falc ⁇ o Bauer (Quality Control Technology Center) according to ABNT NBR 9781 -1/2013 (ASTM C936/C936M - 20) Standards, on samples of preferred embodiment obtained with the resin dicyclopentadiene (DCPD). The results showed an abrasion wear value of 19.5mm, which according to ABNT NBR 9781 (ASTM C936/C936M - 20) classifies the material as high resistance, as it is below 20.0mm abrasion wear .
  • the pullout of the inserts was performed by applying an axial load of 37.8 kN to each insert, separately, with the load being maintained for a period of 3 minutes, the inserts not being pulled out or damaged, as well as no damage being observed, cracks or cracks, at any point of the sleeper, obtained with a preferred embodiment obtained with the dicyclopentadiene resin (DCPD) of the present invention.
  • DCPD dicyclopentadiene resin
  • the repeated loading test on the support also called fatigue test, was performed according to ABNT NBR 11709:2015 and AREMA:2019, using loads of variants in the range of 14.32 kN to 157.53kN, at a frequency of 7Hz totaling 3 million charge and discharge cycles, no damage, cracks or cracks being observed at any point of the sleeper, obtained with a preferred embodiment obtained with the dicyclopentadiene resin (DCPD) of the present invention.
  • DCPD dicyclopentadiene resin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A presente invenção refere-se a um compósito polimérico que compreende areia preferencialmente média, pelo menos uma carga, pelo menos uma resina selecionada dentre resina poliéster de diciclopentadieno (DCPD) e resina PET e pelo menos um aditivo compatibilizante de fases e/ou agente flexibilizante da estrutura polimérica. Ainda, a presente invenção refere-se a processo de preparação do referido compósito além de uso do referido compósito para preparar alguns artigos incluindo dormentes. Este compósito apresenta diversas vantagens quando comparado com os materiais utilizados atualmente na preparação de dormentes pois é mais versátil que o aço, mais disponível e tão eficaz quanto a madeira, mais durável que o concreto pois compreende uma composição otimizada que une propriedades físico-químicas ideais para exercer a função a que se destina.

Description

Relatório Descritivo de Patente de Invenção para
COMPÓSITO POLIMÉRICO,
USO DO DITO COMPÓSITO NA PREPARAÇÃO DE ARTIGOS, PROCESSO DE PREPARAÇÃO DO DITO COMPÓSITO E ARTIGOS COMPREENDENDO
O REFERIDO COMPÓSITO
CAMPO DA INVENÇÃO
[001]. A presente invenção pertence aos setores de Construção Civil, Transporte, Logística e Infraestrutura e refere-se a um compósito polimérico que compreende pelo menos uma carga, pelo menos um aditivo e pelo menos uma resina selecionada dentre resina poliéster de diciclopentadieno (DCPD) e resina PET termofixa.
[002]. Ainda, a presente invenção refere-se a processo de preparação do referido compósito além de uso do referido compósito para preparar alguns artigos incluindo, mas não se limitando a, dormentes, cruzetas, terças, pisos intertravados, painéis de construção civil pré-moldados, pedra artificial para bancadas e pisos, pavimento em placas usados em pontes, placas de revestimento e cobogó.
FUNDAMENTOS DA INVENÇÃO
[003]. Após longos anos sem incentivos ou investimentos, os ativos ferroviários sofreram com depreciações e falta de manutenção. O cenário atual, contando com as renovações antecipadas e o aumento da demanda de escoamento de carga, principalmente para os portos, requer criatividade no planejamento das ações de recuperação e modernização das linhas.
[004]. Dormente é o elemento da superestrutura ferroviária que tem por função receber e transmitir ao lastro os esforços produzidos pelas ações dos veículos, servindo de suporte dos trilhos, permitindo a sua fixação e mantendo invariável a distância entre eles. Para cumprir essa finalidade é necessário que: • As suas dimensões, no comprimento e na largura, forneçam uma superfície de apoio suficiente para que a taxa de trabalho no lastro não ultrapasse certo limite; • A sua espessura lhe dê a rigidez necessária, permitindo alguma elasticidade;
• Tenha suficiente resistência aos esforços;
• Tenha durabilidade;
• Permita, com relativa facilidade, o nivelamento do lastro, na sua fase;
• Se oponha eficazmente aos deslocamentos longitudinais e transversais da via;
• Permita uma boa fixação do trilho, isto é, uma fixação firme, sem ser excessivamente rígida.
[005]. Com o aumento do consumo dos dormentes e consequente escassez de madeira, surgiram medidas de tratamento com produtos de preservação a fim de aumentar a vida útil do dormente de madeira, impedindo, desta forma, o alojamento de microrganismos como fungos e proliferação de insetos. Tais produtos se mostram altamente contaminantes do solo. Outra solução encontrada para a crescente escassez de madeira foi a plantação de bosques de eucalipto, por ser uma árvore de crescimento rápido e por sua madeira ter alta densidade, necessitando de pouco ou nenhum tratamento preservativo. No entanto, a vida útil do eucalipto como dormente é extremamente baixa, precisando ser frequentemente trocado. Neste contexto de escassez do recurso natural, e visando a substituição da madeira tanto por razões económicas quanto ambientais, tem-se adotado e pesquisado dormentes de outros materiais, como concreto, aço e polímeros.
[006]. Além do preço mais elevado, o dormente de concreto armado não tem a preferência unânime do setor ferroviário, por sua excessiva rigidez, menor absorção de energia e resistência ao impacto em relação a outros dormentes. Os dormentes metálicos são mais leves e de fácil manuseio, porém essa leveza deixa a via menos estável, além de serem mais barulhentos na operação. Uma das soluções para esta demanda é o dormente de plástico ou de polímero. [007]. Com relação ao concreto armado, embora seja um ótimo material, devido à sua versatilidade e custo, apresenta desvantagens como desenvolvimento de tensões internas que combinadas com sua baixa resistência mecânica, torna-o propenso a fissurações que possibilitam a entrada de agentes agressivos, sofrendo grande corrosão. Por estes e outros motivos, o concreto armado convencional vem merecendo atenção dos pesquisadores no que diz respeito a melhorar suas características.
[008]. Concreto modificado com polímero foi inicialmente utilizado como reparo para concreto de cimento Portland. No entanto, nos últimos anos houve uma crescente ampliação das suas aplicações em países industrialmente desenvolvidos.
[009]. Define-se compósitos concreto-polímero como uma mistura de aglomerados, utilizando-se como único aglomerante um polímero, copolímero, terpolímero ou misturas de polímeros, sem emprego de aglomerante cerâmico, como o cimento.
[0010]. No Brasil, compósitos poliméricos utilizados para preparação de dormentes ainda são pouco utilizados devido a seu custo ser mais elevado e ao pouco conhecimento das propriedades. Atualmente, conhecem-se soluções envolvendo uso de polietileno e polipropileno como matriz polimérica, ambas termoplásticas, mais sensíveis às variações de temperaturas, além de inflamáveis.
[0011]. A literatura dispõe de poucos estudos sobre a utilização de resinas poliéster do tipo ortoftálica e isoftálica, como concreto-polímero, porém na fabricação de dormentes, os estudos já realizados, até o presente momento, não apresentam a comprovação de resultados promissores.
[0012]. Destacamos abaixo alguns ensinamentos do estado da técnica que se referem a presente matéria:
[0013]. O documento BR 11 2017 020280-8 descreve composição para coxins de trilhos para estradas de ferro que é caracterizada por compreender um copolímero aleatório de etileno/a-olefina/polieno não conjugado específico (a), argila (b) e um agente de acoplamento de silano que contém átomo de enxofre (c). O objeto moldado obtido partindo da composição através da reticulação, especialmente através da reticulação de molde espumoso, possui elasticidade de borracha adequada para coxins de trilho para estradas de ferro. [0014]. Já o documento CN 101220184 descreve uma placa de apoio de borracha que compreende um dieno não-conjugado. É dito que esta invenção pertence ao campo de processamento de acessórios nas indústrias ferroviárias, de metrô ou ferroviário leve, e particularmente se relaciona com uma placa de borracha e um processo de fabricação do mesmo. Esta placa é indicada para ser colocada entre o trilho e o dormente.
[0015]. O documento CN 103221457 descreve um polímero modificado que compreende enxofre e diciclopentadieno além de outros compostos. Este polímero é indicado para ser usado em uma composição de concreto.
[0016]. Já o documento EA 011818 descreve, entre outras categorias, um dormente que compreende um material compósito estrutural formado a partir de um material central de dimensões geométricas estáveis envolto em um revestimento com uma dimensão geométrica estável que é aderido ao material central, sendo o revestimento uma estrutura laminada formada a partir de pelo menos uma fita de cabos reforçadores substancialmente paralelos aderidos a pelo menos uma camada de material em rede selecionado do grupo composto por papel com rigidez endurecida e tecido com o papel ou tecido impregnados com uma resina endurecida em que o resina endurecimento está em mistura com o enchimento de dispersão sólida.
[0017]. O documento BR 0516420 revela um material estrutural compósito adequado, por exemplo, como substituto para pranchas de madeira, ou postes. Ele compreende um material de núcleo dimensionalmente estável rodeado por uma cobertura lamelar dimensionalmente estável que é aderente ao material de núcleo. A cobertura lamelar é compreendida de pelo menos uma faixa de fios reforçadores substancialmente paralelos aglutinados a pelo menos uma camada de um material de rede dimensionalmente estável selecionado do grupo consistindo em papel enrijecido e pano enrijecido. Preferivelmente a faixa de fios reforçadores é colocada entre duas camadas de papel ou pano enrijecidos, O material de núcleo pode ser, por exemplo, uma resina sintética espumante com ou sem preenchedor.
[0018]. O documento BR 9711376 trata de composto produzido a partir de materiais reciclados, dentre eles garrafas de refrigerante PET e plásticos mal ajustados ou resíduos de calhas. Esses materiais geralmente incluem uma quantidade significativa de polietileno de alta densidade ("HDPE") misturado com uma variedade de outros plásticos, como cloreto de polivinila ("PVC"), tereftalato de polietileno ("PET") (de garrafas de refrigerante ou outro, polipropileno ("PP"), polietileno ("PE") e outros componentes menores. O material de construção compósito é composto por uma mistura extrudada de polietileno de alta densidade e um material de fibra revestida termoplástica, como fibra de vidro.
[0019]. O documento EP 3263767 refere-se a corpos de molde que são feitos de material termoplástico ou que contêm corpo básico em seu movimento longitudinal. São previstos polímeros, em particular poliolefinas, utilizados como material termoplástico, em particular um ou mais materiais do grupo polietileno, em particular LDPE e / ou HDPE polietileno, polipropileno, cloreto de polivinil, éter polietileno, policarbonato, poliamida, acrilonitrila-butadina- estireno, polimetilmicroacrilato, poliestireno.
[0020]. O documento PI 1003132-4 refere-se à uma massa ecológica composta de materiais plásticos, piche, pedra e areia, e seu processo de obtenção, cuja massa é aplicada na construção civil e ou na fabricação de dormentes. Os materiais plásticos em questão são oriundos de processos de reciclagem de embalagens, principalmente focados na reciclagem de garrafas PET, e são misturados ao piche, tratando-se de um material termoplástico, com temperatura de trabalho na ordem 200QC a 300QC.
[0021]. O documento PI 0501724-6 refere-se ao aproveitamento de pneus inservíveis, através da disposição em lâminas de tiras de pneus coladas, sobreposta por uma chapa de aço resistente a corrosão, nervurada, onde encaixa-se uma placa de apoio dotada de clipe elástico para travar o trilho, sendo todo este conjunto preso por rebites metálicos que cria uma unidade e mantém a bitola na medida prevista.
[0022]. O documento PI 0502483-8 refere-se a dormentes de pneus protendidos sendo que na fabricação serão utilizados pedaços de pneus, que serão unidos entre si por um ou mais tirantes de aço. Os pedaços de pneus unidos por compressão do(s) tirante(s) de aço forma o corpo do dormente, que resiste aos esforços resultantes da passagem do trem, e por ser flexível permite o tráfego do trem sem vibrações e barulho.
[0023]. Portanto, não existe no estado da técnica solução equivalente à apresentada aqui na presente invenção que alie diferenciais técnicos, vantagens económicas, segurança e confiabilidade.
OBJETIVOS DA INVENÇÃO
[0024]. Assim, é um objetivo da presente invenção desenvolver materiais compósitos para utilização em infraestrutura, principalmente na fabricação de dormentes poliméricos, bem como outros artefatos que atualmente sejam feitos de matriz cimentícia, tais como pisos intertravados, painéis de construção civil pré-moldados, pedra artificial para bancadas e pisos, pavimento em placas usados em pontes, placas de revestimento e cobogó.
[0025]. É um objetivo da presente invenção proporcionar dormentes à base de resinas de poliéster termofixas e aditivos com a finalidade de substituir os dormentes de concreto por dormentes à base de polímero termorrígido.
[0026]. É outro dos objetivos da presente invenção proporcionar dormentes poliméricos de alta resistência mecânica, química e a intempéries e que substituam com vantagens, os dormentes hoje existentes.
[0027]. É outro dos objetivos da presente invenção proporcionar dormentes ferroviários com propriedades mecânicas e físico-químicas que atendem aos requisitos das normas nacionais e internacionais específicas para dormentes, bem como todos os dimensionais requeridos pelas ferrovias (bitola larga, bitola métrica, bitola mista).
[0028]. É outro dos objetivos da presente invenção proporcionar um compósito polimérico a ser utilizado principalmente na preparação de dormentes de modo a oferecer vantagens técnicas e económicas quando comparados com dormentes de madeira, aço e concreto.
[0029]. Ainda, é outro dos objetivos da presente invenção proporcionar dormentes que, em relação aos dormentes a base de concreto, são mais leves, impermeáveis e não necessitam obrigatoriamente de armação de ferro em sua estrutura.
[0030]. Também, é outro dos objetivos da presente invenção proporcionar pisos intertravados de menor espessura (< 60mm) com resistência à compressão similar aos atuais pisos intertravados de espessura de alto desempenho (100 mm), os quais sofrem compressão e abrasão acentuadas. [0031]. Outro objetivo da presente invenção é proporcionar produtos atualmente de base cimentícia que sofram substanciais esforços de compressão ou de forte abrasão ou ainda que necessitem de acabamento específico (como coloração ou polimento), tais como painéis de construção civil pré-moldados, pedras artificiais para bancadas e pisos, pavimento em placas usados em pontes, placas de revestimento e cobogós.
SUMÁRIO DA INVENÇÃO
[0032]. A presente invenção atinge esses e outros objetivos por meio de um compósito polimérico que compreende:
- areia preferencialmente média;
- pelo menos uma carga sendo selecionada do grupo constituído de cinzas volantes, silte, carbonato de cálcio em pó, pó de pedra, areia de fundição, areia fina, sílica e combinação entre estes;
-pelo menos uma resina sendo selecionada dentre diciclopentadieno, monômero de PET e combinação das mesmas;
-pelo menos um aditivo sendo selecionado dentre aditivos compatibilizantes de fases, também chamados agentes de acoplamento, tais como o viniltrimetoxisilano, metacriltrimetoxisilano, metacriloxipropiltrimetoxisilano, diacrilato de cálcio, diacrilato de zinco e combinação dos mesmos, ou agentes flexibilizantes da estrutura polimérica sendo selecionado dentre o butilacrilato, butilmetilacrilato, metilmetacrilato, trietilenoglicolmetacrilato, etilhexilmetacrilato e combinações dos mesmos. [0033]. - Ainda, a presente invenção atinge esses e outros objetivos por meio de adição opcional, dependendo da necessidade, das seguintes fases no compósito:
- borracha moída, oriunda de pneus;
- fibras de vidro ou metálicas, podendo ser curtas e distribuídas uniformemente na matriz, ou longas e alinhadas em um única direção;
- telas e armações metálicas ou poliméricas em camadas ou estruturas.
- aditivos flexibilizantes da estrutura polimérica sendo selecionado dentre o butilacrilato, butilmetilacrilato, metilmetacrilato, trietilenoglicolmetacrilato, etilhexilmetacrilato usados de forma isolada e/ou combinações dos mesmos.
[0034]. Ainda, a presente invenção atinge esses e outros objetivos por meio de um processo de preparação do compósito polimérico acima por meio de moldagem.
[0035]. Ainda, a presente invenção atinge esses e outros objetivos por meio de uso de um compósito polimérico como definido acima para preparação de um artigo sendo selecionado dentre dormente, cruzetas, terças, pisos intertravados, painéis de construção civil pré-moldados, pedra artificial para bancadas e pisos, pavimento em placas usados em pontes, placas de revestimento e cobogó. DESCRIÇÃO DETALHADA DA INVENÇÃO
[0036]. A presente invenção se refere a um compósito polimérico que compreende agregados finos, pelo menos uma resina sendo selecionada dentre diciclopentadieno (DCPD), monômeros de PET para resina termofixa e o uso de pelo menos um aditivo sendo preferencialmente um aditivo compatibilizante de fases, também chamados agentes de acoplamento, tais como o viniltrimetoxisilano, metacriltrimetoxisilano, metacriloxipropiltrimetoxisilano, diacrilato de cálcio, diacrilato de zincos, ou agentes flexibilizantes da estrutura polimérica sendo selecionado dentre o butilacrilato, butilmetilacrilato, metilmetacrilato, trietilenoglicolmetacrilato, etilhexilmetacrilato e/ou combinações dos mesmo.
[0037]. Em uma concretização preferida da presente invenção o compósito compreende resina, areia preferencialmente média e pelo menos uma carga sendo selecionada do grupo constituído de cinzas volantes, silte, carbonato de cálcio em pó, pó de pedra, areia de fundição, areia fina, sílica e combinação entre estes cuja mistura é perfeita para o atendimento das solicitações de carga e distribuição para lastro. Destaca-se que este compósito quando utilizado na preparação de dormentes:
[0038]. - Não possui água em sua composição;
[0039]. - Não possui esqueleto armado de alta densidade
[0040]. - É impermeável;
[0041]. - É mais leve do que o concreto com ferragem;
[0042]. - É completamente compatível com os dormentes de concreto e parcialmente compatível com os dormentes de madeira, admitindo qualquer formato e tamanho.
[0043]. - É um material altamente homogéneo em sua composição gerando maior confiabilidade na prevenção de acidentes;
[0044]. - Possui alta resistência a esforços sendo alta resistência mecânica, tanto compressiva quanto trativa na flexão e na compressão diametral, bem como nos processos de fadiga;
[0045]. - Apresenta longa durabilidade o que o torna a melhor relação custo / benefício no tempo.
[0046]. Destaca-se ainda que o compósito polimérico da presente invenção é um concreto polimérico obtido a partir da substituição de parte ou todo o aglomerante do concreto convencional por polímero.
[0047]. O compósito objeto da presente invenção compreende resina, areia preferencialmente média e pelo menos uma carga, podendo ainda compreender componentes opcionais, tais como:
[0048]. - fibras de vidro ou metálicas, podendo ser curtas e distribuídas uniformemente na matriz, ou longas e alinhadas em um única direção;
[0049]. - borracha moída, oriunda de pneus;
[0050]. - telas e armações metálicas ou poliméricas em camadas ou estruturas. [0051]. pelo menos um aditivo sendo selecionado dentre aditivos compatibilizantes de fases, também chamados agentes de acoplamento, tais como o viniltrimetoxisilano, metacriltrimetoxisilano, metacriloxipropiltrimetoxisilano, diacrilato de cálcio, diacrilato de zinco e combinação dos mesmos, ou aditivos flexibilizantes da estrutura polimérica sendo selecionado dentre o butilacrilato, butilmetilacrilato, metilmetacrilato, trietilenoglicolmetacrilato, etilhexilmetacrilato e combinações dos mesmos. [0052]. Resina
[0053]. A resina presente no referido compósito é selecionada dentre diciclopentadieno (DCPD), monômeros de PET e combinação entre os mesmos. [0054]. DCPD
[0055]. Diciclopentadieno (DCPD) é um composto químico com fórmula C10H12. Em temperatura ambiente, é um líquido de cor amarela clara com um odor árido.
[0056]. O maior uso está nas resinas, particularmente, resinas de poliéster insaturadas. Também é usado em tintas e adesivos.
[0057]. Na presente invenção, adiciona-se DCPD em uma quantidade que varia de 3% a 40%, em massa, preferencialmente de 5% a 35%, em massa e mais preferencialmente de 7 a 30%, em massa, com base na massa total da composição do compósito.
[0058]. PET
[0059]. Polietileno tereftalato, ou PET, é um polímero termoplástico, desenvolvido em 1941 , formado pela reação entre 0 ácido tereftálico e 0 etileno glicol. Utiliza-se principalmente na forma de fibras para tecelagem e de embalagens para bebidas. É um poliéster por possuir 0 grupo funcional éster na sua cadeira principal, e possui propriedades termoplásticas, isto é, pode ser reprocessado diversas vezes pelo mesmo ou por outro processo de transformação.
[0060]. O Polietileno tereftalato é produzido industrialmente em duas etapas: pré-polimerização e a policondensação, em que a primeira etapa corresponde a fabricação do oligômero tereftalato de bis (2-hidroxietileno), BHET, a partir de duas rotas, e a policondensação é responsável pela produção do PET. A primeira rota é a esterificação direta, onde ocorrerá a reação entre o ácido tereftálico e o etilenoglicol, caracterizada por ser heterogénea, autocatalítica, ou seja, não é necessário o uso de catalisadores, com temperatura de trabalho em torno de 240-260 °C. Na segunda rota, ocorre a substituição do ácido tereftálico pelo éster tereftalato de dimetileno, com o uso de catalisadores e temperatura de trabalho variando entre 170-210 °C. Durante as reações de polimerização por condensação das rotas mencionadas, ocorrem a liberação de água e de metanol. Na presente invenção, a resina PET é adicionada no preparo do compósito na forma de monômeros de PET com a finalidade de reticulação do material para conferir resistência mecânica.
[0061]. No estado da técnica, há poucos relatos sobre uso de PET em concreto com a função de carga; a garrafa é triturada e os filamentos servem para preencher a composição ou ainda, os dormentes são feitos diretamente de plástico.
[0062]. O estado da técnica descreve compósitos que compreendem PET na forma de filamentos. Neste caso, os filamentos têm função de carga e não como matriz, como notado no objeto da presente invenção. Além disso, tanto o PET na forma de filamentos, quanto os dormentes feitos diretamente com esse polímero, trata-se de uma versão termoplástica do polímero, ou seja, sensível à variação de temperatura, resultando em empenos e deformações. Por outro lado, a resina PET, usada na presente invenção, trata-se de uma resina reticulada termorrígida, que não sofrerá influência da temperatura, mantendo a forma do artigo final por longos períodos. Portanto, é um uso completamente distinto do PET em compósitos para diversos fins.
[0063]. Na presente invenção, adiciona-se monômeros de PET em uma quantidade que varia de 5% a 30%, em massa, preferencialmente de 8% a 25%, em massa e mais preferencialmente de 10% a 20%, em massa, com base na massa total da composição do compósito.
[0064]. Ainda, o compósito da presente invenção compreende areia. Em uma concretização preferida a composição da areia é formada predominantemente de partículas de sílica, mas pode conter outros minerais como: feldspato, mica, zircão, magnetita, ilmenita, monazita e cassiterita. A areia comercial também possui umidade, considerando se tratar de uma areia de granulometria média (0,2mm a 0,6mm) lavada, para a retirada da maior parte das impurezas orgânicas.
[0065]. Na presente invenção, adiciona-se areia em uma quantidade que varia de 40% a 95%, em massa, preferencialmente de 45% a 90%, em massa e mais preferencialmente de 50% a 80%, em massa, com base na massa total da composição do compósito.
[0066]. Ainda, o compósito da presente invenção compreende pelo menos uma carga sendo selecionada dentre do grupo constituído de cinzas volantes, silte, carbonato de cálcio em pó, pó de pedra, areia de fundição, areia fina, sílica e combinação entre estes, que funcionam como carga preenchendo potenciais espaços vazios entre os grãos de areia. O material que constitui as cinzas volantes solidifica em suspensão nos gases de escape dos queimadores, sendo coletado por precipitadores eletrostáticos ou removido por filtração mecânica. A solidificação em suspensão num fluxo gasoso leva a partículas, preferencialmente, esféricas, em muitos casos ocas ou com grande volume de poros, com dimensões que variam dos 0,5 pm aos 100 pm.
[0067]. Dada a sua origem nas impurezas minerais contidas no carvão, as cinzas são maioritariamente constituídas por dióxido de silício (S1O2), óxido de alumínio (AI2O3) e óxido de ferro (Fe2C>3). As cinzas apresentam atividade pozolânica, reagindo à temperatura normal e em presença de água com 0 hidróxido de cálcio e com álcalis para formar hidratos de silicato de cálcio, compostos com capacidade de pega do cimento Portland, isto é, estes compostos mantém a coesão entre os agregados e a matriz cimentícia. Na presente invenção, a atividade pozolânica não é relevante, considerando que a matriz não se trata de cimento Portland, mas de resina polimérica, cujas reações de cura não envolvem formação de silicato de cálcio hidratado.
[0068]. Em função da sua composição e da sua atividade pozolânica, as cinzas volantes são classificadas pela norma ASTM C618 em duas categorias: (1 ) Cinzas volantes da classe F; e (2) cinzas volantes da classe C. A principal diferença entre essas duas classes é o teor em cálcio, sílica, alumina e ferro existente na sua composição, o qual por sua vez determina as propriedades físicas e químicas do material e em consequência as suas propriedades como material para utilizações tecnológicas.
[0069]. Na presente invenção, adiciona-se cinzas em uma quantidade que varia de 2% a 30%, em massa, preferencialmente de 4% a 25%, em massa e mais preferencialmente de 5% a 20%, em massa, com base na massa total da composição do compósito.
[0070]. Componentes opcionais
[0071]. O compósito objeto da presente invenção pode ainda conter:
[0072]. - um sistema promotor de reação que se mistura à resina em uma quantidade que varia de 0,1% a 7,0%, em massa, com base na massa total do compósito. Preferencialmente, utiliza-se 0,5 a 3,0% de naftenato de cobalto ou octoato de cobalto, que pode ser empregado sozinho ou associado a dimetilanilina (DMA) em uma quantidade variando de 0,001 % a 0,100%;
[0073]. - um iniciador em uma quantidade que varia de 0,1% a 5,0%, em massa, com base na massa total do compósito. Preferencialmente, utiliza-se de 0,1% a 1 ,0% de composto de peróxido de metil etil cetona, de média reatividade, dessensibilizado com dimetilftalato;
[0074]. - um aditivo compatibilizante, também chamado agente de acoplamento, usado em quantidade que varia de 0 a 1 ,0% em massa do composto, sendo preferencialmente o viniltrimetoxisilano, mas podendo ser substituído por metacriltrimetoxisilano, metacriloxipropiltrimetoxisilano, diacrilato de cálcio, diacrilato de zinco e combinação dos mesmos;
[0075]. - um aditivo flexibilizante da estrutura polimérica, usado em quantidade que varia de 0 a 1 ,0% em massa do composto, sendo selecionado dentre o butilacrilato, o butilmetilacrilato, metilmetacrilato, trietilenoglicolmetacrilato, etilhexilmetacrilato e combinações dos mesmos; [0076]. - borracha moída, oriunda de pneus em uma quantidade que varia de 0% a 40%, em massa, com base na massa total do compósito. Preferencialmente, utiliza-se de 0% a 25% de borracha moída;
[0077]. - fibras de vidro ou metálicas, podendo ser curtas e distribuídas uniformemente na matriz, ou longas e alinhadas em um única direção, em uma quantidade que varia de 0% a 10%, em massa, com base na massa total do compósito. Preferencialmente, utiliza-se de 0% a 2,5% de fibras de vidro ou metálicas;
[0078]. - estruturas metálicas, ou poliméricas, de arames ou telas em uma quantidade que varia de 0% a 25%, em massa, com base na massa total do compósito. Preferencialmente, utiliza-se de 0% a 15% de estruturas metálicas ou poliméricas;
[0079]. - acabamentos como tingimentos ou polimentos podem ser opção dependendo da aplicação do artigo produzido.
[0080]. Em uma concretização preferida, o compósito polimérico da presente invenção é utilizado na preparação de diversos artigos como dormentes ferroviários, cruzetas, terças, pisos intertravados, painéis de construção civil pré- moldados, pedra artificial para bancadas e pisos, pavimento em placas usados em pontes, placas de revestimento e cobogó.
[0081]. Neste caso, o dormente, sendo a concretização preferida dentre os artigos da presente invenção apresenta diversas características, dentre as quais: [0082]. - atendimento total às cargas solicitadas que preferencialmente variam entre 20 ton/eixo até 40 ton/eixo;
[0083]. - vida útil superior ao dormente de concreto;
[0084]. - preço da peça inferior à peça de aço.
[0085]. Processo de preparação do compósito polimérico da presente invenção
[0086]. O compósito polimérico da presente invenção preferencialmente é preparado a partir do processo que compreende as seguintes etapas:
A. Secagem da areia;
B. Pesagem de cada componente sendo pelo menos uma resina, areia e cargas;
C. Mistura de componentes secos sendo areia e pelo menos uma carga por cerca de 20 minutos, até ficar bem homogéneo, usando misturador mecânico convencional (tipo bentoneira, ou misturador industrial) ou ainda mistura manual de pendendo da quantidade de compósito a ser produzida, à pressão e temperatura ambiente;
D. Adição de pelo menos um aditivo, sendo pelo menos um agente de acoplamento ou um agente flexibilizante ou combinações destes em pelo menos uma resina para formar a mistura orgânica, também denominada xarope. Misturar por alguns segundos.
E. Adição do iniciador à mistura orgânica ou xarope e misturar por alguns segundos, até se obter aspecto homogéneo.
F. Adição da mistura orgânica ou xarope ao misturador contendo a mistura dos agregados secos e subsequente mistura por um tempo de 1 a 2 minutos, até apresentar aspecto homogéneo.
G. Moldagem em molde do artigo a ser produzido, preferencialmente previamente besuntado com desmoldante, podendo ser parafinas, óleo mineral, solução polimérica de polímeros lineares (polietileno, polipropileno, polialcoolvinílico, policloreto de vinila, politetrafluoretileno) alou combinações destes.
H. Pré-cura em estufa de pressão ambiente a uma temperatura de cerca de 60QC por em média 120 minutos e posterior cura por no mínimo 7 dias à pressão e à temperatura ambiente.
[0087]. Processo de preparação do dormente da presente invenção [0088]. O dormente da presente invenção preferencialmente é preparado a partir do processo que compreende as seguintes etapas:
A. Preparação do compósito conforme processo descrito acima;
B. Moldagem no molde de dormente na bitola adequada a ser produzido.
C. Pré-cura em estufa de pressão ambiente a uma temperatura de 60QC por 120 minutos e posterior cura por no mínimo 7 dias a pressão e temperatura ambiente. [0089]. Destaca-se que este novo compósito pode substituir, total ou parcialmente, dependendo das condições operacionais da via, os dormentes de madeira de lei, eucalipto e concreto pois:
[0090]. - a madeira de lei é atualmente controlada e com baixa disponibilidade para a fabricação de dormentes de madeira;
[0091]. - a madeira de eucalipto não apresenta durabilidade quando comparada aos demais dormentes;
[0092]. - o concreto apresenta uma rápida deterioração na estrutura armada, devido à corrosão;
[0093]. A presente invenção apresenta inúmeras vantagens técnicas e económicas quando comparada com o estado da arte, sendo algumas listadas abaixo:
[0094]. - o compósito polimérico da presente invenção apresenta um potencial infinito de aplicações (dormentes bitola métrica, bitola larga, cruzetas, etc.) devido à sua alta resistência mecânica, excelentes propriedades dielétricas, baixa porosidade e absorção de água; resistência química e à corrosão, além de um baixo peso;
[0095]. - este produto tem vantagens sobre os dormentes de madeira, já que é um produto que não sofre ataque de fungos e consequente proliferação de insetos além de não se deteriorar com o tempo.
[0096]. - é resistente ao apodrecimento, ataque de insetos e radiação solar;
[0097]. - eventual absorção de água não acarreta a perda da dureza ou de outra propriedade mecânica, pois se dá por eventual porosidade, sem reação química com a água;
[0098]. - em relação ao concreto armado, é mais leve, impermeável pois não necessita de armação de ferro, similar à do concreto armado, em sua estrutura; [0099]. - o compósito da presente invenção não compreende componentes tóxicos, após a cura.
[00100]. Já, com relação ao dormente da presente invenção:
[00101]. - comporta-se com desempenho satisfatório quando submetidos às cargas de material rodante ou de tração com até 32,5 t / eixo na bitola larga ou cargas menores nas bitolas métricas e Standard;
[00102]. - desempenho compatível com o desempenho apresentado por dormentes de madeira de puro cerne para o mesmo espaçamento que o adotado para a madeira;
[00103]. - não acusam sinais de esmagamento ou deformação na região das fixações, quando submetidos às condições de tráfego citadas neste documento; [00104]. - a seção transversal dos dormentes é íntegra, isenta de vazios ou bolhas;
[00105]. - possuem propriedades isolantes, não oferecendo risco de ocupação do circuito de via.
[00106]. - admite qualquer dimensão
[00107]. - a produção da peça é inerte e impermeável;
[00108]. - é altamente homogéneo gerando confiabilidade;
[00109]. - preferencialmente, é produzido com cinza volante como carga que é um passivo das indústrias siderúrgicas, termoelétricas e agrária;
[00110]. - não utiliza água em sua produção não gerando efluentes líquidos.
Exemplo de composição do compósito da presente invenção
[00111]. Segue abaixo, concretização preferida do compósito objeto da presente invenção:
Figure imgf000018_0001
Figure imgf000019_0001
[00112]. Sendo que
[00113]. - a resina pré-acelerada pode já conter um promotor de reação sendo preferencialmente 1% de naftenato de cobalto;
[00114]. - 1 % de iniciador permite um tempo de trabalho de aproximadamente 15 minutos. Caso esta quantidade seja reduzida, por exemplo, para 0,5%, o tempo de trabalho passa a ser de cerca de 29 minutos;
[00115]. - O teor de cargas (selecionadas do grupo constituído de cinzas volantes, silte, carbonato de cálcio em pó, pó de pedra, areia de fundição, areia fina, sílica e combinação entre estas) se refere a quantidade total de agregado; [00116]. - moldagem por 10 min - pressão 1 ,8MPa.
[00117]. - especificação dos agregados - não exceder 1 % de umidade [00118]. - massa específica da areia - 2,65 g/cm3 [00119]. - massa específica da cinza volante - 2,16 g/cm3 [00120]. Testes
[00121]. Propriedades Térmicas
[00122]. Uma concretização preferida, obtida com a resina diciclopentadieno (DCPD), foi testada em suas propriedades térmicas para determinar sua estabilidade térmica e de degradação, pelas técnicas de calorimetria diferencial de varredura (DSC) e análise termogravimétrica (TGA) no laboratório certificado do CCDM (Centro de Caraterização e Desenvolvimento de Materiais / DEMA /UFSCar).
[00123]. O ensaio de calorimetria diferencial de varredura se mede a diferença de energia fornecida a uma substância e o material de referência, em função da temperatura enquanto ambos são submetidos a um programa controlado de variação de temperatura. Como as transições de fases dos materiais ocorrem sob fluxo de calor, ou liberando (em eventos exotérmicos) ou absorvendo (em eventos endotérmicos), fenômenos como: fusão, solidificação, transição vítrea, cura e oxidação. As curvas de DSC de uma concretização preferida foram obtidas utilizando um equipamento da Netzsch modelo DSC 214 Polyma, sob fluxo de nitrogénio de 50ml_ / min, em panelinha de alumínio lacrada, segundo o seguinte programa de aquecimento / resfriamento: a. Aquecimento a uma temperatura de 23QC a 300QC em taxa de 20QC/min. b. Isoterma a uma temperatura de 300QC por um período de 5 minutos. c. Resfriamento da temperatura 300QC para a temperatura de 23QC em taxa de 20QC/min d. Isoterma a uma temperatura de 23QC por um período de 5 minutos e. Aquecimento de uma temperatura de 23QC para a temperatura 300QC em taxa de 20QC/min.
[00124]. Os resultados da amostra de concretização preferida, obtida com a resina diciclopentadieno (DCPD), desta invenção mostraram que após 14 dias de cura, há uma pequena cura residual com dois eventos da ordem de consumo de 10 e 20J/g a temperatura de 114QC e 230QC, estando a cura, praticamente encerrada neste período. Já no concreto de cimento Portland convencional a maior parte da cura ocorre nos primeiros 7 dias, considerando-se o processo praticamente completo após 28 dias.
[00125]. A análise termogravimétrica é definida como uma técnica analítica na qual a variação de massa da amostra é medida como função da variação de temperatura. A análise termogravimétrica dessa mesma concretização preferida foi realizada em um analisador termogravimétrico da TA Instruments modelo TA Q500, com uma taxa de aquecimento de 20QC/min em panelinha de alumina, numa faixa de temperatura de 30 a 850QC. Na faixa de temperatura de 30QC a 550QC, foi usada uma atmosfera inerte de nitrogénio com vazão de 50mL/min. Na faixa de temperatura de 550QC a 850QC a atmosfera foi alterada para uma atmosfera oxidativa de oxigénio com vazão de 50 mL/min.
[00126]. Os resultados dessa concretização preferida, obtida com a resina diciclopentadieno (DCPD), revelaram uma pequena eliminação 0,79% m/m de monômeros residuais e água proveniente da cura residual (até temperatura de 230QC). Também foi observado a perda de massa de 8,11% m/m relacionada à material orgânico degradado (polímeros de menor massa molar) até temperatura de 550QC, sendo as cinzas residuais (até temperatura de 850QC) 90,44% m/m. Este resultado demonstra uma grande estabilidade térmica do material obtido em uma concretização preferida.
[00127]. Morfologia e estimativa da composição química elementar [00128]. A análise da morfologia e estimativa da composição química elementar do produto da mesma concretização preferida foi realizada utilizando um microscópio eletrónico de varredura (MEV) modelo Inspect S50 FEI com EDS, com a amostra da concretização preferida tendo recebido recobrimento de ouro, em uma quantidade de cerca de 10 a 20 nm, e utilizando elétrons secundários emitidos para a análise da morfologia e raios-X emitidos para análise da estimativa da composição química elementar pelo EDS.
[00129]. Os resultados mostram um material com as fases agregadas uniformemente distribuídas, com baixa porosidade e excelente adesão entre os agregados e a matriz polimérica. Diferentemente do que acontece com o concreto Portland tradicional, que apresenta muitas fases internas, oriundas das reações de cura do mesmo e da inserção, durante seu preparo, e alta porosidade, aberta e fechada, formada pela liberação de gases durante o processo de cura. A análise de EDS mostrou que esta concretização preferida apresenta uma composição química elementar de 45,36% de carbono, 25,73% de oxigénio, 21 ,79% de silício, 5,35% de alumínio, 1 ,77% de potássio.
[00130]. Teste de Flamabilidade
[00131]. O teste de flamabilidade da mesma concretização preferida foi conduzido pelo laboratório certificado do CCDM, seguindo a norma IEC 60695- 11-20:2015 Fire Hazard Testing - Part 11-20: Test Flames. Os resultados mostraram que o objeto da presente invenção é resistente à chama, não apresentando chama visível na face oposta ao corpo de prova e não havendo formação de furo maior do que 3mm após o resfriamento.
[00132]. Propriedades Mecânicas [00133]. A determinação das resistências à compressão axial e à tração por compressão diametral foi realizada em laboratório certificado da Falcão Bauer (Centro Tecnológico de Controle de Qualidade) conforme as Normas ABNT NBR 7680-1/2015 (ASTM C39) e ABNT NBR 7222:2011 (ASTM C496 / C496M), em amostras de concretização preferida obtida com a resina diciclopentadieno (DCPD). Os resultados mostraram um valor de resistência à compressão axial de (70,5 ± 0,2) MPa e resistência à tração por compressão diametral (6,1 ± 0,1 ) MPa. Em uma concretização tradicional de cimento Portland apresenta valores de cerca de 10 a 45 MPa de resistência à compressão axial e cerca de 2 a 7 MPa de resistência à tração por compressão diametral, dependendo da razão água / cimento usada. Sendo, portanto, a concretização preferida da presente invenção mais resistente à compressão axial do que a concretização tradicional de cimento Portland. A presente invenção ainda possui resistência à tração por compressão diametral similar à alcançada pela concretização tradicional de cimento Portland.
[00134]. A determinação do desgaste por abrasão foi testada em laboratório certificado da Falcão Bauer (Centro Tecnológico de Controle de Qualidade) conforme as Normas ABNT NBR 9781 -1/2013 (ASTM C936 / C936M - 20), em amostras de concretização preferida obtida com a resina diciclopentadieno (DCPD). Os resultados mostraram um valor de desgaste por abrasão de 19,5mm, que segundo a norma ABNT NBR 9781 (ASTM C936 / C936M - 20) classifica o material como de alta resistência, pois encontra-se abaixo de 20,0mm de desgaste por abrasão.
[00135]. A compressão no apoio do trilho é obtida com aplicação de uma carga de 445 kN aplicada sobreo trilho apoiada numa chapa de 360mm x 200mm x 42 mm a uma taxa constante de 120kN/min. Segunda a norma AREMA: 2019 o deslocamento vertical elástico máximo permitido é de 6,3mm e o deslocamento vertical residual máximo, após 1 minuto de liberação da carga, é de 3,18mm.O dormente obtido com uma concretização preferida usando uma resina de diciclopentadieno (DCPD) da presente invenção, apresentou deslocamento vertical elástico de 1 ,13mm e deslocamento vertical residual de 0,38mm. [00136]. O arrancamento do insertos foi realizado aplicando-se uma carga axial de 37,8 kN em cada inserto, separadamente, sendo a carga mantida por um período de 3 minutos, não sendo os insertos arrancados ou danificados, bem como não sendo observados quaisquer danos, fissuras ou trincas, em nenhum ponto do dormente, obtido com uma concretização preferida obtida com a resina diciclopentadieno (DCPD) da presente invenção.
[00137]. O ensaios de momentos positivos e negativos nos apoios e no centro foram realizados segundo as normas ABNT NBR 11709:2015 e AREMA:2019 usando cargas de 143,21 kN para o momento positivo nos apoios, 108,93 kN para o momento negativo nos apoios, 27,76kN para o momento positivo no centro e 39,66 kN para o momento negativo no centro, não sendo observados quaisquer danos, fissuras ou trincas em nenhum ponto do dormente, obtido com uma concretização preferida obtida com a resina diciclopentadieno (DCPD) da presente invenção.
[00138]. O ensaio de carregamento repetido no apoio, também denominado de ensaio de fadiga, foi realizado segundo a norma ABNT NBR 11709:2015 e a norma AREMA:2019, usando cargas de variantes na faixa de 14,32 kN a 157,53kN, numa frequência de 7Hz totalizando 3 milhões de ciclos de carga e descarga, não sendo observados quaisquer danos, fissuras ou trincas em nenhum ponto do dormente, obtido com uma concretização preferida obtida com a resina diciclopentadieno (DCPD) da presente invenção.
[00139]. Uma sobrecarga de 250,62 kN foi aplicado ao apoio do dormente a uma taxa de 50 kN / min e deixada por um período de 5 minutos sendo descarregada na sequência, segundo as normas NBR 11709:2015 e AREMA:2019 não sendo observados quaisquer danos, fissuras ou trincas em nenhum ponto do dormente, obtido com uma concretização preferida obtida com a resina diciclopentadieno (DCPD) da presente invenção. Em seguida, o apoio do dormente foi carregado novamente na mesma taxa até a ruptura, que ocorreu com uma carga de 318,30 kN.
[00140]. Outra concretização preferida, obtida com a resina de monômero de PET, foi testada em suas propriedades mecânicas de resistência à compressão e desgaste por abrasão, além da capacidade de absorção de água em laboratório certificado da Falcão Bauer (Centro Tecnológico de Controle de Qualidade) conforme as Normas ABNT NBR 9781 -1/2013 (ASTM C936 / C936M - 20). Os resultados mostraram um valor de resistência à compressão axial de (64,9 ± 8,2) MPa, com desgaste por abrasão de 20,5 mm e absorção de água de (5,4 ± 0,3)%.
[00141 ]. T endo sido descrito alguns exemplos de concretizações preferidas da presente invenção, deve ser entendido que o escopo da presente invenção abrange outras variações possíveis do conceito inventivo descrito, sendo limitadas tão somente pelo teor das reivindicações apensas, aí incluídos os possíveis equivalentes.

Claims

REIVINDICAÇÕES
1. Compósito polimérico caracterizado por compreender:
- areia;
- pelo menos uma carga sendo selecionada do grupo constituído de cinzas volantes, silte, carbonato de cálcio em pó. pó de pedra, areia de fundição, areia fina, sílica e combinação entre estes; e
- pelo menos uma resina sendo selecionada dentre diciclopentadieno, monômero de PET sendo resina termofixa e combinação das mesmas.
- pelo menos um aditivo sendo selecionado dentre: aditivos compatibilizantes de fases incluindo viniltrimetoxisilano, metacriltrimetoxisilano, metacriloxipropiltrimetoxisilano, diacrilato de cálcio, diacrilato de zinco e combinação dos mesmos; ou
- agentes flexibilizantes da estrutura polimérica sendo selecionado dentre o butilacrilato, butilmetilacrilato, metilmetacrilato, trietilenoglicolmetacrilato, etilhexilmetacrilato e combinações dos mesmos.
2. Compósito de acordo com a reivindicação 1 , caracterizado por a resina ser diciclopentadieno presente em uma quantidade que varia de 5% a 30%, em massa, baseada na massa total do compósito.
3. Compósito de acordo com a reivindicação 1 , caracterizado por a resina ser monômero de PET presente em uma quantidade que varia de 5% a 30%, em massa, baseada na massa total do compósito.
4. Compósito de acordo com qualquer uma das reivindicações 1 a 3, caracterizado por compreender de 40% a 95% de areia sendo preferencialmente de granulometria média, em massa, baseada na massa total do compósito.
5. Compósito de acordo com qualquer uma das reivindicações 1 a 4, caracterizado por compreender de 2% a 30% de pelo menos uma carga, em massa, baseada na massa total do compósito.
6. Compósito de acordo com qualquer uma das reivindicações 1 a
5, caracterizado por compreender ainda borracha moída, oriunda de pneus.
7. Compósito de acordo com qualquer uma das reivindicações 1 a 5, caracterizado por compreender ainda fibras de vidro ou metálicas, podendo ser curtas e distribuídas uniformemente na matriz, ou longas e alinhadas em uma única direção.
8. Compósito de acordo com qualquer uma das reivindicações 1 a 5, caracterizado por compreender ainda telas e armações metálicas ou poliméricas em camadas ou estruturas.
9. Compósito de acordo com qualquer uma das reivindicações 1 a 8, caracterizado por a areia compreender partículas de sílica, podendo conter outros minerais como: feldspato, mica, zircão, magnetita, ilmenita, monazita e cassiterita.
10. Compósito de acordo com qualquer uma das reivindicações 1 a 9, caracterizado por as cinzas compreenderem dióxido de silício (sílica), óxido de alumínio (alumina) e óxido de ferro (hematita).
11. Processo de preparação do compósito polimérico conforme definido em qualquer uma das reivindicações 1 a 10 caracterizado por compreender as seguintes etapas: a. Secagem de areia; b. Pesagem dos componentes do compósito; c. Mistura dos componentes secos sendo areia e uma carga por um período de 20 minutos, até ficar bem homogéneo; d. Adição de pelo menos um aditivo líquido a uma resina e mistura por um período de 1 a 2 minutos, até apresentar aspecto homogéneo, para formação da mistura orgânica ou xarope; e. Adição de um iniciador à mistura orgânica ou xarope e mistura por 1 a 2 minutos; f. Adição da mistura orgânica aos componentes secos misturados; g. Moldagem no molde do artefato a ser produzido; h. Pré-cura em estufa de pressão ambiente a uma temperatura de 60QC por 120 minutos e posterior cura por no mínimo 7 dias a pressão e temperatura ambiente.
12. Uso de um compósito polimérico conforme definido em qualquer uma das reivindicações 1 a 10 caracterizado por ser para preparação de um artigo sendo selecionado dentre dormentes, cruzetas, terças, pisos intertravados, painéis de construção civil pré-moldados, pedra artificial para bancadas e pisos, pavimento em placas usados em pontes, placas de revestimento e / ou cobogós.
13. Uso de um compósito polimérico preparado pelo processo conforme definido na reivindicação 11 caracterizado por ser para preparação de um artigo sendo selecionado dentre dormente, cruzeta, terça, piso intertravado, painel de construção civil pré-moldado, pedra artificial para bancada e piso, pavimento em placa usado em pontes, placa de revestimento e / ou cobogó.
14. Artigo caracterizado por compreender compósito polimérico conforme definido em qualquer uma das reivindicações 1 a 10.
15. Artigo de acordo com a reivindicação 14 caracterizado por ser um dormente.
16. Artigo caracterizado por compreender compósito polimérico preparado por um processo conforme definido na reivindicação 11 .
17. Artigo de acordo com a reivindicação 16 caracterizado por ser um dormente.
PCT/BR2021/050095 2020-04-13 2021-03-04 Compósito polimérico,uso do dito compósito na preparação de artigos, processo de preparação do dito compósito e artigos compreendendo o referido compósito WO2021207809A1 (pt)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2022012785A MX2022012785A (es) 2020-04-13 2021-03-04 Compuesto polimerico, uso de dicho compuesto en la preparacion de articulos, proceso de preparacion de dicho compuesto y articulos que comprenden dicho compuesto.
EP21788731.4A EP4137317A1 (en) 2020-04-13 2021-03-04 Polymer composite, use of said composite to prepare articles, method for preparing said composite and articles including said composite
AU2021256474A AU2021256474B2 (en) 2020-04-13 2021-03-04 Polymer composite, use of said composite to prepare articles, method for preparing said composite and articles including said composite
CA3175471A CA3175471A1 (en) 2020-04-13 2021-03-04 Polymer composite, use of said composite in the preparation of articles, process to prepare said composite and articles comprising said composite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102020007268A BR102020007268A2 (pt) 2020-04-13 2020-04-13 Compósito polimérico, uso do dito compósito na preparação de artigos, processo de preparação do dito compósito e artigos compreendendo o referido compósito
BRBR102020007268-4 2020-04-13

Publications (1)

Publication Number Publication Date
WO2021207809A1 true WO2021207809A1 (pt) 2021-10-21

Family

ID=78006048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2021/050095 WO2021207809A1 (pt) 2020-04-13 2021-03-04 Compósito polimérico,uso do dito compósito na preparação de artigos, processo de preparação do dito compósito e artigos compreendendo o referido compósito

Country Status (6)

Country Link
US (1) US11739193B2 (pt)
EP (1) EP4137317A1 (pt)
BR (1) BR102020007268A2 (pt)
CA (1) CA3175471A1 (pt)
MX (1) MX2022012785A (pt)
WO (1) WO2021207809A1 (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024050616A1 (pt) * 2022-09-09 2024-03-14 Sileto Pesquisa E Desenvolvimento S.A. Compósito polimérico, produto com compósito polimérico, processo de preparação de compósito polimérico, processo de preparação de um produto

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684695A (en) * 1983-09-29 1987-08-04 Takeda Chemical Industries, Ltd. Flame-retardant, unsaturated polyester resin and composition therefor
EP0344693A2 (en) * 1988-06-01 1989-12-06 Hercules Incorporated Improving the physical properties of glass composite polydicyclopentadiene by heat treatment
EP0710743A1 (en) * 1994-11-02 1996-05-08 Illinois Tool Works Inc. Railroad track, railroad tie and pad for it
US5609295A (en) * 1995-01-05 1997-03-11 Green Track Inc. Composite railway tie and method of manufacture thereof
US5886078A (en) * 1996-08-13 1999-03-23 Tietek, Inc. Polymeric compositions and methods for making construction materials from them
BR9711376A (pt) 1996-08-30 1999-08-17 Univ Rutgers Material de constru-Æo compÄsito e dormente ferrovi rio de compÄsito de pl stico
US20030085293A1 (en) * 2001-11-06 2003-05-08 Thomas Nosker Engineered railroad ties
WO2005013669A2 (en) * 2003-08-08 2005-02-17 Recycle Technologies International, Llc Recycle polymeric composite crossties and methods of manufacture
CN101220184A (zh) 2008-01-25 2008-07-16 四川宏亿复合材料工程技术有限公司 一种新型橡胶垫板及其制作工艺
EA011818B1 (ru) 2004-12-29 2009-06-30 ХАНТЕР ПЕЙН ЭНТЕРПРАЙСИЗ, ЭлЭлСи Композитный конструкционный материал и способ его получения
CN103221457A (zh) 2010-11-17 2013-07-24 Gs加德士 改性硫磺聚合物及包含该改性硫磺聚合物的混凝土组合物
US8728376B2 (en) * 2011-01-25 2014-05-20 Tj Technology Holdings, Llc Restoring and recycling railroad ties
BR0207976B1 (pt) * 2001-03-05 2014-10-21 American Tietek Llc Processo para a formação de um membro moldado / extrudado e membro moldado / extrudado.
RU2544549C1 (ru) * 2014-01-29 2015-03-20 Открытое акционерное общество "Нефтяная компания "Роснефть" Композиция для приготовления полимерной матрицы, содержащей полидициклопентадиен для получения композиционного материала, композиционный материал на основе полидициклопентадиена и способ его получения
US20160251807A1 (en) * 2015-01-22 2016-09-01 Michael A. Hawkins Composite rail tie apparatus and method
CN106554592A (zh) * 2016-11-24 2017-04-05 郑州峰泰纳米材料有限公司 一种聚双环戊二烯/聚丙烯酸酯类复合材料制备方法
EP3263767A1 (de) 2016-06-29 2018-01-03 Reimund Dann Formkörper sowie verfahren zur herstellung eines solchen
WO2019089292A1 (en) * 2017-11-02 2019-05-09 Rutgers, The State University Of New Jersey Polymer-based railroad tie having enhanced ballast interaction

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0501724A (pt) 2005-05-23 2007-01-16 Eduardo Goncalves David dormente de pneu reciclado
BRPI0502483A (pt) 2005-05-27 2007-01-23 Francisco Anibal Olivei Coelho dormente de pneus protendido
BRPI1003132A2 (pt) 2010-08-30 2012-06-12 Joco Batista Cardoso massa ecolàgica composta de materiais plÁsticos, piche, pedra e areia e seu processo de obtenÇço
US10570572B2 (en) 2015-03-26 2020-02-25 Mitsui Chemicals, Inc. Railroad rail track pad composition and railroad rail track pad

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684695A (en) * 1983-09-29 1987-08-04 Takeda Chemical Industries, Ltd. Flame-retardant, unsaturated polyester resin and composition therefor
EP0344693A2 (en) * 1988-06-01 1989-12-06 Hercules Incorporated Improving the physical properties of glass composite polydicyclopentadiene by heat treatment
EP0710743A1 (en) * 1994-11-02 1996-05-08 Illinois Tool Works Inc. Railroad track, railroad tie and pad for it
US5609295A (en) * 1995-01-05 1997-03-11 Green Track Inc. Composite railway tie and method of manufacture thereof
US5886078A (en) * 1996-08-13 1999-03-23 Tietek, Inc. Polymeric compositions and methods for making construction materials from them
BR9711376A (pt) 1996-08-30 1999-08-17 Univ Rutgers Material de constru-Æo compÄsito e dormente ferrovi rio de compÄsito de pl stico
BR0207976B1 (pt) * 2001-03-05 2014-10-21 American Tietek Llc Processo para a formação de um membro moldado / extrudado e membro moldado / extrudado.
US20030085293A1 (en) * 2001-11-06 2003-05-08 Thomas Nosker Engineered railroad ties
WO2005013669A2 (en) * 2003-08-08 2005-02-17 Recycle Technologies International, Llc Recycle polymeric composite crossties and methods of manufacture
EA011818B1 (ru) 2004-12-29 2009-06-30 ХАНТЕР ПЕЙН ЭНТЕРПРАЙСИЗ, ЭлЭлСи Композитный конструкционный материал и способ его получения
CN101220184A (zh) 2008-01-25 2008-07-16 四川宏亿复合材料工程技术有限公司 一种新型橡胶垫板及其制作工艺
CN103221457A (zh) 2010-11-17 2013-07-24 Gs加德士 改性硫磺聚合物及包含该改性硫磺聚合物的混凝土组合物
US8728376B2 (en) * 2011-01-25 2014-05-20 Tj Technology Holdings, Llc Restoring and recycling railroad ties
RU2544549C1 (ru) * 2014-01-29 2015-03-20 Открытое акционерное общество "Нефтяная компания "Роснефть" Композиция для приготовления полимерной матрицы, содержащей полидициклопентадиен для получения композиционного материала, композиционный материал на основе полидициклопентадиена и способ его получения
US20160251807A1 (en) * 2015-01-22 2016-09-01 Michael A. Hawkins Composite rail tie apparatus and method
EP3263767A1 (de) 2016-06-29 2018-01-03 Reimund Dann Formkörper sowie verfahren zur herstellung eines solchen
CN106554592A (zh) * 2016-11-24 2017-04-05 郑州峰泰纳米材料有限公司 一种聚双环戊二烯/聚丙烯酸酯类复合材料制备方法
WO2019089292A1 (en) * 2017-11-02 2019-05-09 Rutgers, The State University Of New Jersey Polymer-based railroad tie having enhanced ballast interaction

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A.A.KRUGLIKOV , V.A.YAVNA , Y.M.ERMOLOV , A.G.KOCHUR , Z.B.KHAKIEV: "Strengthening of the railway ballast section shoulder with two-component polymeric binders", TRANSPORTATION GEOTECHNICS, vol. 11, 1 June 2017 (2017-06-01), pages 133 - 143, XP055864801, ISSN: 2214-3912, DOI: 10.1016/j.trgeo. 2017.05.00 4 *
HOZHABR MOZAFARI , SOROUSH KHATAMI , HABIBOLLAH MOLATEFI: "Out of plane crushing and local stiffness determination of proposed foam filled sandwich panel for Korean Tilting Train eXpress - Numerical study", MATERIALS & DESIGN, vol. 66, 1 February 2015 (2015-02-01), GB, pages 400 - 411, XP055864794, ISSN: 0261-3069, DOI: 10.1016/j.matdes.2014.07.037 *
USHAKOV A. E., SAFONOV A. A., SERGEICHEV I. V., FEDULOV B. N., KORNIENKO E. I., TIMOFEEV M. A., IZOTOV A. V., KLENIN YU. G., ROZIN: "Design and optimization of a vacuum infusion technological process for hopper car fabrication using polymeric composite materials", JOURNAL OF MACHINERY MANUFACTURE AND RELIABILITY, vol. 44, no. 3, 1 May 2015 (2015-05-01), Moscow, pages 276 - 282, XP055864812, ISSN: 1052-6188, DOI: 10.3103/S105261881503022X *
WOLFGANG KAYSSER,JÖRG ESSLINGER,VOLKER ABETZ,NORBERT HUBER,KARL ULRICH KAINER,THOMAS KLASSEN,FLORIAN PYCZAK,ANDREAS SCHREYER,PETER: "Research with Neutron and Synchrotron Radiation onAerospace and Automotive Materials and Components", ADVANCED ENGINEERING MATERIALS, vol. 13, no. 8, 1 August 2011 (2011-08-01), DE, pages 637 - 657, XP055864808, ISSN: 1438-1656, DOI: 10.1002/adem.201100150 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024050616A1 (pt) * 2022-09-09 2024-03-14 Sileto Pesquisa E Desenvolvimento S.A. Compósito polimérico, produto com compósito polimérico, processo de preparação de compósito polimérico, processo de preparação de um produto

Also Published As

Publication number Publication date
EP4137317A1 (en) 2023-02-22
US11739193B2 (en) 2023-08-29
BR102020007268A2 (pt) 2021-10-26
US20210317284A1 (en) 2021-10-14
MX2022012785A (es) 2023-03-01
CA3175471A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
Sukontasukkul et al. Properties of concrete pedestrian block mixed with crumb rubber
Jo et al. Mechanical properties of polymer concrete made with recycled PET and recycled concrete aggregates
Chaikaew et al. Properties of concrete pedestrian blocks containing crumb rubber from recycle waste tyres reinforced with steel fibres
KR101454155B1 (ko) 복합 부품 및 팽창성 코팅물용 열경화성 조성물
US6017588A (en) Method for reinforcing structures
KR102020594B1 (ko) 상온 재생 아스팔트 조성물 및 이를 이용한 아스팔트 콘크리트의 시공방법
Choudhary et al. Utilization of waste glass powder and glass composite fillers in asphalt pavements
Alsaif et al. Development of metakaolin-based geopolymer rubberized concrete: Fresh and hardened properties
WO2021207809A1 (pt) Compósito polimérico,uso do dito compósito na preparação de artigos, processo de preparação do dito compósito e artigos compreendendo o referido compósito
KR101703227B1 (ko) 내화학성 및 내산성이 강한 frp 패널조성물 및 이를 이용한 농수로, 하수암거 등의 구조물 보수보강 공법
Li et al. Strength formation mechanism and performance of steel slag self-compacting epoxy resin concrete
KR102256128B1 (ko) 차열성 방수제 조성물을 이용한 차열성 콘크리트 구조물 방수공법
KR101579247B1 (ko) 섬유 그리드 및 폴리머 레진을 이용한 복합 박층 포장공법
KR102289428B1 (ko) 미세먼지흡착, 방수, 제설 및 차열효과를 가지는 다기능 아스팔트 도로포장재 조성물 및 이를 이용한 아스팔트 도로포장공법
KR102243082B1 (ko) 차열성 방수제 조성물과 이를 이용한 차열성 구조물 방수공법
BR112014001140B1 (pt) processo de obtenção de substratos pétreos ou cerâmicos com um recobrimento polimérico híbrido, e, substrato pétreo ou cerâmico
Miah et al. Performance of eco-friendly concrete made from recycled waste tire fine aggregate as a replacement for river sand
BR102021004096A2 (pt) Compósito polimérico, uso do dito compósito na preparação de artigos, processo de preparação do dito compósito e artigos compreendendo o referido compósito
AU2021256474B2 (en) Polymer composite, use of said composite to prepare articles, method for preparing said composite and articles including said composite
Ha et al. An experimental study on sag-resistance ability and applicability of sprayed FRP system on vertical and overhead concrete surfaces
US20220048226A1 (en) A glossy finish sandwich composite and process for preparing the same
KR102252501B1 (ko) 차열성 방수제 조성물
Wang et al. Investigation of interfacial bonding properties of polyurethane concrete and cement concrete/steel reinforcement
KR102250270B1 (ko) 교량 및 콘크리트 도로의 수밀성 아스팔트 콘크리트 포장체 조성물
WO2024050616A1 (pt) Compósito polimérico, produto com compósito polimérico, processo de preparação de compósito polimérico, processo de preparação de um produto

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788731

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 3175471

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021788731

Country of ref document: EP

Effective date: 20221114

ENP Entry into the national phase

Ref document number: 2021256474

Country of ref document: AU

Date of ref document: 20210304

Kind code of ref document: A