WO2021206269A1 - Method for producing polythiol compound, polymerizable composition for optical material including same, and optical lens - Google Patents

Method for producing polythiol compound, polymerizable composition for optical material including same, and optical lens Download PDF

Info

Publication number
WO2021206269A1
WO2021206269A1 PCT/KR2020/019176 KR2020019176W WO2021206269A1 WO 2021206269 A1 WO2021206269 A1 WO 2021206269A1 KR 2020019176 W KR2020019176 W KR 2020019176W WO 2021206269 A1 WO2021206269 A1 WO 2021206269A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
thiol
optical material
formula
present
Prior art date
Application number
PCT/KR2020/019176
Other languages
French (fr)
Korean (ko)
Inventor
정대근
Original Assignee
주식회사 대원에프엔씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대원에프엔씨 filed Critical 주식회사 대원에프엔씨
Priority to CN202080005058.9A priority Critical patent/CN113784998A/en
Publication of WO2021206269A1 publication Critical patent/WO2021206269A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0272Preparatory processes using other sulfur sources
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/02Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols
    • C07C319/12Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols by reactions not involving the formation of mercapto groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/12Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms
    • C07C321/14Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3874Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing heterocyclic rings having at least one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a method for producing a polythiol compound, and to a polymerization composition for an optical material using the polythiol compound.
  • a lens manufactured using the polythiol compound is clear and transparent, has a uniform color, and is a high-purity poly
  • the present invention relates to a method and a composition for an optical material capable of producing a thiol compound inexpensively and having excellent optical properties with high heat resistance and high refractive index and ultra-high refractive index.
  • Lenses using plastic optical materials are lighter than optical materials made of inorganic materials such as glass, do not break easily, and can be dyed. is being used
  • An optical lens obtained by polymerization of a thiol compound and an isocyanate compound is widely used as an optical lens material having excellent optical properties such as transparency, Abbe's number, transmittance, heat resistance, and tensile properties.
  • the heat resistance of the 1.67 refractive index lens of the plastic optical material to which the conventionally known thiol-based compound is applied is as low as 100 ° C. it is necessary.
  • thiol-based compounds having various structures are known, and related preparation methods are also known in various ways. It is known that a thiol compound having a relatively high yield (87%) can be obtained when a compound containing a double unsaturated carbon bond is synthesized using a radical reaction and prepared by thiourea reaction. However, such a radical reaction still has problems such as low purity and low yield, and yellowing of by-products generated during the reaction.
  • the plastic optical material to which the conventionally known thiol-based compound is applied has a problem with low heat resistance of 100° C. or less, so there is a limitation in applying it to a high-temperature process. development is needed.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2014-0141723
  • Patent Document 2 Republic of Korea Patent Publication No. 10-2013-0050263
  • Patent Document 3 Republic of Korea Patent Publication No. 10-0078120
  • Patent Document 4 Republic of Korea Patent Publication No. 10-2017-0008679
  • Patent Document 5 International Patent Publication WO 2013/176506 A1
  • Patent Document 6 US Patent Publication No. US005608115A
  • An object of the present invention is to provide a method for preparing a composition containing a thiol compound having remarkably excellent heat resistance when applied to an optical material.
  • Another object of the present invention is to provide a method for preparing a composition containing a thiol compound having a high Abbe number when applied to an optical material.
  • Another object of the present invention is to provide a method for preparing a composition containing a thiol compound that meets the refractive index of a standard standard when applied to an optical material.
  • Another object of the present invention is to provide a method for preparing a composition containing a thiol compound having excellent yield and purity.
  • R 1 is an unsubstituted alcohol group having 2 to 3 carbon atoms.
  • R 2 is a halogen atom
  • the polythiol compound obtained by the above production method obtains a polythiol compound in which two positional isomers are mixed.
  • the present invention relates to a method for preparing a thiol-based composition for an optical material comprising the compound of Formula 1 as a starting material as epichlorohydrin.
  • the thiol-based composition for an optical material prepared by the method for preparing a composition for an optical material according to an embodiment of the present invention may further include a compound of Formula 2 below.
  • the thiol-based composition prepared by the method for preparing a thiol-based composition for an optical material according to an embodiment of the present invention may contain 4 to 7 parts by weight of the compound of Formula 2 based on 100 parts by weight of the compound of Formula 1 above.
  • the molar ratio of the hydrogen sulfide salt to the compound prepared in the first step may be 1:1 to 1.2.
  • the present invention also provides an optical material, and the optical material according to the present invention may be prepared by the method for producing a thiol-based compound for an optical material according to an embodiment of the present invention.
  • the optical material according to an embodiment of the present invention may be characterized in that the heat resistance temperature is 100 °C or more.
  • the optical lens prepared by using the composition containing the thiol-based compound prepared according to the present invention was clear and transparent and had excellent color.
  • the composition containing the thiol-based compound prepared in the present invention has excellent polymerizability with each polyisocyanate, so it is suitable for high-refractive ultra-high refractive (1.60, 1.67) lenses. It was possible to manufacture optical lenses with high purity and excellent thermal stability.
  • the optical material obtained according to the present invention has excellent impact resistance, heat resistance, moldability, dyeability, and light transmittance, and thus can be used in various fields.
  • composition containing the thiol-based compound for optical materials according to the present invention is prepared from epichlorohydrin as a starting material, and the compound of Formula 1 is include
  • composition containing the thiol-based compound for an optical material according to the present invention is characterized in that epichlorohydrin is used as a starting material, and the compound of formula 1 is prepared through reaction with mercapto alcohol, hydrogen sulfide, etc., which will be described later. can do.
  • epichlorohydrin is used as a starting material
  • the compound of formula 1 is prepared through reaction with mercapto alcohol, hydrogen sulfide, etc., which will be described later. can do.
  • the compound of Formula 1 is prepared in this way, there is an advantage that the compound of Formula 1 can be prepared in a remarkably high yield of 90% or more. It has characteristics that indicate
  • composition containing the thiol-based compound for an optical material according to an embodiment of the present invention further includes a compound of Formula 2 below.
  • the compound of Formula 2 is produced as a by-product as a structural isomer of Formula 1 in the process of preparing the compound of Formula 1, and finally, the composition containing the thiol-based compound for an optical material is a composition containing the compound of Formula 1 and the compound of Formula 2 simultaneously.
  • the composition containing the thiol-based compound for an optical material is a composition containing the compound of Formula 1 and the compound of Formula 2 simultaneously.
  • the thiol-based compound for an optical material in the composition containing the thiol-based compound for an optical material according to an embodiment of the present invention, 4 to 7 parts by weight of the compound of Formula 2 may be included relative to 100 parts by weight of the compound of Formula 1, preferably the compound of Formula 2 5 to 6 parts by weight may be included.
  • the thiol-based compound for an optical material according to an embodiment of the present invention can exhibit high heat resistance, and also exhibit refractive indices close to 1.60 and 1.67 meeting international standards, and exhibit a high Abbe's number. There is a characteristic.
  • the method for preparing a composition containing a thiol-based compound for an optical material specifically includes a first step of reacting epichlorohydrin with mercapto alcohol;
  • the method for preparing a thiol-based compound according to the present invention uses epichlorohydrin as a starting material, and by sequentially including the first to third steps, the yield of formula 1 and chemistry 2 is greater than 90%, preferably greater than or equal to 92%.
  • epichlorohydrin as a starting material, and by sequentially including the first to third steps, the yield of formula 1 and chemistry 2 is greater than 90%, preferably greater than or equal to 92%.
  • the first step is to open the epoxy group of epichlorohydrin to form a terminal hydroxyl group.
  • the molar ratio of mercapto alcohol: epichlorohydrin may be 1:1, and by satisfying the above-mentioned range, the ratio of mercapto alcohol or epichlorohydrin that is discarded without reaction is minimized and thiol-based compound is prepared in high yield.
  • the reaction temperature may be 20 °C or less, preferably 5 to 10 °C, there is a possibility that side reactions may occur when the temperature is too high, and a problem that the reaction rate is slowed when the temperature is low may occur.
  • the method for preparing Formula 1 includes a second step of reacting the product of the first step with a hydrogen sulfide salt to replace the chlorine at the end with a hydrogen sulfide group, and reacting with epichlorohydrin.
  • the chlorine at the terminal is derived from epichlorohydrin.
  • the second step includes a step 2-1 of reacting the product of the first step with a hydrogen sulfide salt to replace the chlorine at the end with a hydrogen sulfide group, and a step 2-2 of reacting with epichlorohydrin after substitution with a hydrogen sulfide group.
  • the hydrogen sulfide salt includes a -SH group and a cation and can be used without limitation if it is a compound that is soluble in water, and the cation may be lithium, sodium, potassium, calcium or magnesium, preferably lithium, sodium or potassium. may be, but the present invention is not limited thereto.
  • the second step includes the step of slowly adding the compound prepared in the first step to a solution in which the hydrogen sulfide salt is dissolved, and the molar ratio of the hydrogen sulfide salt to the compound prepared in the first step is 1:1 to 1.2.
  • Step 2-1 may be performed at a temperature of 40 to 60 ° C. for 3 to 10 hours, and when the temperature is too high, there is a risk of side reactions, and when the temperature is too low, a problem of lengthening the reaction time may occur. .
  • step 2-2 includes adding sodium hydroxide to the product of step 2-1, and then further adding epichlorohydrin, wherein the product of step 2-1: sodium hydroxide: epichlorohydrin
  • the molar ratio of dried may be 1: 0.5: 0.5.
  • step 2-2 the temperature of step 2-2 may be carried out at 5 to 10 °C, and then the reaction may proceed while stirring at a temperature of 35 to 50 °C.
  • the third step can be used without limitation in the case of a method of substituting a -OH group with a -SH group using a commonly known thiourea, and the present invention is not limited thereto.
  • the third step includes a step of stirring the product of the second step in a container by adding hydrochloric acid and thiourea and raising the temperature.
  • the molar ratio of the product of the second step: hydrochloric acid: thiourea may be 1: 5.5: 5.5 to 1: 6: 6, and in this range, the unsubstituted hydroxyl group is prevented from remaining and the thiol-based compound is produced in a high yield.
  • the reaction may be performed by raising the temperature to 90 to 110° C. In this case, the reaction may be performed for 4 to 8 hours, but the present invention is not limited thereto.
  • the method for producing a thiol-based compound according to an embodiment of the present invention may further include a washing step of washing the product generated after the third step, wherein the washing may use an aqueous hydrochloric acid solution, brine, etc., but the present invention does not It is not limited.
  • the present invention also provides an optical material, the optical material according to the present invention is an optical material according to an embodiment of the present invention, a thiol and an isocyanate compound for an optical material prepared by the manufacturing method according to an embodiment of the present invention are polymerized it has become
  • the manufactured optical material when an optical material is manufactured using the thiol-based compound of the present invention, the manufactured optical material exhibits a high Abbe's number, can exhibit a refractive index conforming to international standards, and has high heat resistance.
  • the optical material according to an embodiment of the present invention may have a heat resistance temperature of 100 °C or more, preferably 110 °C or more, and thus, there is an advantage that can be applied to an optical material having a relatively high temperature in use.
  • the isocyanate compound may be used without limitation if it is an isocyanate compound typically used in an optical material, and the present invention is not limited thereto.
  • the isocyanate compound is isophorone diisocyanate (IPDI), dicyclohexylmethane-4-4-diisocyanate (H 12 MDI), hexamethylene diisocyanate (HDI), 1,3- Bis (methyl isocyanate) cyclohexane (H 6 XDI) and m, o, P - may include one or two or more selected from xylene diisocyanate, but the present invention is not limited thereto.
  • IPDI is isophorone diisocyanate
  • H 12 MDI dicyclohexylmethane-4-4-diisocyanate
  • HDI hexamethylene diisocyanate
  • the amount of isocyanate added is controlled through the ratio of functional groups, and the molar ratio of -SH functional group: NCO functional group included in the isocyanate compound may be 1: 1 to 2.5, preferably 1.5 to 2, and by satisfying this range, the residual after curing It minimizes unreacted monomers and has the advantage of being able to manufacture an optical material that is strong and has excellent mechanical properties.
  • the heat resistance temperature of the optical material manufactured by satisfying the above-described functional group ratio is 100 ° C. or higher, preferably 110 ° C. or higher, which can significantly broaden the application range of the plastic-based optical material.
  • the optical material according to an embodiment of the present invention may include a UV absorber, a release agent, a dye, etc. as necessary in addition to the thiol-based compound and isocyanate compound of the present invention, but the present invention is not limited thereto.
  • the ultraviolet absorber can be used without limitation if it is an ultraviolet absorber typically used in optical materials, and the present invention is not limited thereto.
  • the ultraviolet absorber may be one or two or more selected from benzophenone-based, benzotriazo-based, salicylate-based, cyanoacrylate-based and oxanilite-based, etc., but the present invention is limited thereto. it's not going to be
  • the dye can also be used without limitation if it is a dye used in a conventional plastic optical material, and the present invention is not limited thereto.
  • the dye may be one or two or more selected from perinone-based dyes, heterocyclic dyes, perylene-based dyes, heterocyclic dyes, anthraquinone-based dyes, azo-based dyes and indigoid-based dyes. , the present invention is not limited thereto.
  • the optical material according to an embodiment of the present invention may include a polymerization initiator for polymerization of the isocyanate and the compound of Formula 1 above.
  • the polymerization initiator can be used without limitation if it is a polymerization initiator for thermal polymerization of isocyanate, and the present invention is not limited thereto.
  • the polymerization initiator may be an amine-based polymerization initiator or a tin-based polymerization initiator, preferably a tin-based polymerization initiator.
  • the tin-based polymerization initiator is specifically dibutyltin laurate, dibutyltin chloride, dibutyltin acetate, stannous oxylate, dibutyltin dilaurate, tetrafluorotin, tetrachlorotin and tetrabrorotin It may be one or two or more selected from the like, but the present invention is not limited thereto.
  • Tg glass transition temperature
  • Polymerization imbalance 100 lenses are manufactured and observed with the naked eye in the arc lamp. Lenses with different refractive indices around the lenses, which have an arc image, are judged to have polymerization imbalance, and if 5 or less, 0 is displayed, If there are 5 or more polymerization imbalances, it is indicated by ⁇ .
  • Cloudiness 100 lenses are produced and visually observed with the arc lamp. Lenses with variable or central cloudiness are judged to have cloudiness. If there is more than one, it is marked with ⁇
  • isocyanate 54.77 g of isocyanate was used. Among them, 21.64 g of dicyclohexylmethane-4,4'-diisocyanate (H12MDI), 17.75 g of isophorone diisocyanate (IPDI) and 15.37 g of hexamethylene diisocyanate (HDI) were mixed, followed by vacuum defoaming at 20 ° C. Put into a mixer capable of stirring, and to this, Zelec UNTM 0.08g, HOPET 1.2g, DBTC 0.08g.
  • H12MDI dicyclohexylmethane-4,4'-diisocyanate
  • IPDI isophorone diisocyanate
  • HDI hexamethylene diisocyanate
  • Meta-xylene diisocyanate (XDI) 49.78g was placed in a mixer capable of vacuum degassing and stirring at 20°C, and here Zelec UNTM 0.08g, HOPET 1.2g, DBTC 0.08g. Put HTAQ 30PPm, and PRD20PPm, and after stirring for 30 minutes under a nitrogen stream, 50 g of the thiol-based composition (monomer) prepared in Preparation Example of the present invention was added to obtain a polymerizable composition, and then degassed under reduced pressure at 0.1 torr or less for 1 hour and 20 minutes and injected into a glass mold fixed with an adhesive tape under nitrogen pressure.
  • the glass mold injected with the polymerizable composition into a circulating oven, heated to 20-35 °C 6 hours, 35-50 °C 7 hours, 50-90 °C 7 hours, 90-130 °C 4 hours, 130 °C After holding for 2 hours and cooling at 120-80°C for 1 hour, the solid material is removed from the mold to obtain an optical lens.
  • the optical lens thus obtained is processed to have a diameter of 72 mm and then annealed at a temperature of 120 to 130° C. for 2 hours to obtain a plastic optical lens.
  • Comparative Examples 1 to 4 are 2,3-bis(2-mercaptoethylthio)-propane-1- which is a known thiol-based compound (refer to Korean Patent Publication No. 10-2017-0008679 and Korean Patent Publication No. 10-2013-0050263).
  • Thiol (GST) is a known thiol-based compound (refer to Korean Patent Publication No. 10-2017-0008679 and Korean Patent Publication No. 10-2013-0050263).
  • DMDDU 4,8-dimercaptomethyl-1.11-dimercapto-3,6,9-trithioundecane
  • 2-(2-mercaptoethylthio)-3-(3-mercapto-2- [3-mercapto-2-(2-mercaptoethylthio)-propylthio]propylthio)-propane-1-thiol (MMPT) is shown in Table 2 by comparing the results of measurement of physical properties with Table 1 with reference to .
  • DMDDU 4,8-dimercaptomethyl-1.11-dimercapto-3,6,9-trithiaundecane.
  • PETMP pentaerythritol-tetrakis (3-mercaptopropionate)
  • IPDI isophorone diisocyanate
  • HOPBT 2-(2'-hydroxyl-5'-t-octiphenyl)-2H-benzotriazole

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A thiol-based composition for an optical material according to the present invention is characterized by including a compound of chemical formula 1 and a compound of chemical formula 2.

Description

폴리티올 화합물의 제조 방법과 이를 포함한 광학 재료용 중합성 조성물 및 광학 렌즈Method for producing polythiol compound, polymerizable composition for optical material including same, and optical lens
본 발명은 폴리티올 화합물의 제조 방법과, 상기 폴리티올 화합물을 사용하여 광학 재료용 중합 조성물에 관한 것으로, 특히 폴리티올 화합물을 이용해 제조한 렌즈는 맑고 투명하며, 색상이 균일하고, 순도가 높은 폴리티올 화합물을 저렴하게 생산 가능하며, 높은 내열성을 갖는 광학적 특성이 우수한 고굴절과 초고굴절 렌즈를 얻을 수 있는 방법과 광학 재료용 조성물에 관한 것이다.The present invention relates to a method for producing a polythiol compound, and to a polymerization composition for an optical material using the polythiol compound. In particular, a lens manufactured using the polythiol compound is clear and transparent, has a uniform color, and is a high-purity poly The present invention relates to a method and a composition for an optical material capable of producing a thiol compound inexpensively and having excellent optical properties with high heat resistance and high refractive index and ultra-high refractive index.
플라스틱 광학재료를 사용한 렌즈는 유리와 같은 무기 재료로 이루어지는 광학재료에 비해 경량이면서 쉽게 깨지지 않고, 염색이 가능하여, 최근에는 다양한 수지의 플라스틱 재료들이 안경, 카메라 렌즈, 스포츠 안경 등의 광학재료로 널리 이용 되고 있다.Lenses using plastic optical materials are lighter than optical materials made of inorganic materials such as glass, do not break easily, and can be dyed. is being used
현대에는 보다 가볍고, 높은 성능과 편리함을 추구하는 플라스틱 재료에 대한 수요가 증가함에 따라 높은 안정성, 투명성, 고굴절율, 저비용 등의 특성을 갖는 광학 재료 연구가 계속되고 있으며, 티올 화합물은 우수한 광학적 특성에 기인하여 광학 재료로 널리 이용되고 있다.In modern times, as the demand for lighter, higher performance and convenience plastic materials increases, research on optical materials with characteristics such as high stability, transparency, high refractive index, and low cost is continuing, and thiol compounds have excellent optical properties. For this reason, it is widely used as an optical material.
티올 화합물과 이소시아네이트 화합물을 중합 반응하여 얻은 광학 렌즈는 투명성, 아베수, 투과율, 내열성, 인장성 등이 우수한 광학 특성을 갖는 광학 렌즈 재료로 많이 사용되고 있다. 또한, 종래 알려진 티올계 화합물을 적용한 플라스틱 광학재료의 1.67 굴절률 렌즈 내열성이 100℃ 이하로 낮은 문제점이 있어, 고온 공정에 적용하는데 한계가 있으며, 이에 따라 높은 내열성을 나타낼 수 있는 티올계 화합물의 개발이 필요한 실정이다. An optical lens obtained by polymerization of a thiol compound and an isocyanate compound is widely used as an optical lens material having excellent optical properties such as transparency, Abbe's number, transmittance, heat resistance, and tensile properties. In addition, there is a problem that the heat resistance of the 1.67 refractive index lens of the plastic optical material to which the conventionally known thiol-based compound is applied is as low as 100 ° C. it is necessary.
이러한 티올계 화합물로는 다양한 구조의 티올계 화합물이 알려져 있고, 이와 관련된 제조방법도 다양하게 알려져 있다. 이중 불포화 탄소결합을 포함하는 화합물을 라디칼 반응을 이용하여 티올 화합물을 합성하고 이를 티오우레아 반응시켜 제조하는 경우, 비교적 높은 수율(87%)의 티올 화합물을 얻을 수 있다고 알려져 있다. 그러나, 아직까지는 이러한 라디칼 반응은 순도 및 수율이 낮으며, 반응 중 생성되는 부산물이 황변 반응을 유발하는 등의 문제점이 있다. As such a thiol-based compound, thiol-based compounds having various structures are known, and related preparation methods are also known in various ways. It is known that a thiol compound having a relatively high yield (87%) can be obtained when a compound containing a double unsaturated carbon bond is synthesized using a radical reaction and prepared by thiourea reaction. However, such a radical reaction still has problems such as low purity and low yield, and yellowing of by-products generated during the reaction.
또한, 앞서 언급한 바와 같이 종래 알려진 티올계 화합물을 적용한 플라스틱 광학재료는 내열성이 100℃ 이하로 낮은 문제점이 있어, 고온 공정에 적용하는데 한계가 있으며, 이에 따라 높은 내열성을 나타낼 수 있는 티올계 화합물의 개발이 필요한 실정이다. In addition, as mentioned above, the plastic optical material to which the conventionally known thiol-based compound is applied has a problem with low heat resistance of 100° C. or less, so there is a limitation in applying it to a high-temperature process. development is needed.
(특허문헌 1) 대한민국 공개특허공보 10-2014-0141723(Patent Document 1) Republic of Korea Patent Publication No. 10-2014-0141723
(특허문헌 2) 대한민국 공개특허공보 10-2013-0050263(Patent Document 2) Republic of Korea Patent Publication No. 10-2013-0050263
(특허문헌 3) 대한민국 등록특허공보 10-0078120(Patent Document 3) Republic of Korea Patent Publication No. 10-0078120
(특허문헌 4) 대한민국 공개특허공보 10-2017-0008679(Patent Document 4) Republic of Korea Patent Publication No. 10-2017-0008679
(특허문헌 5) 국제 공개특허공보 WO 2013/176506 A1(Patent Document 5) International Patent Publication WO 2013/176506 A1
(특허문헌 6) 미국 공개특허공보 US005608115A(Patent Document 6) US Patent Publication No. US005608115A
본 발명의 목적은 광학재료에 적용 시 내열성이 현저히 우수한 티올 화합물이 포함된 조성물의 제조방법을 제공하는 것이다. An object of the present invention is to provide a method for preparing a composition containing a thiol compound having remarkably excellent heat resistance when applied to an optical material.
본 발명의 다른 목적은 광학재료에 적용 시 아베수가 높은 티올 화합물이 포함된 조성물의 제조방법을 제공하는 것이다. Another object of the present invention is to provide a method for preparing a composition containing a thiol compound having a high Abbe number when applied to an optical material.
본 발명의 또 다른 목적은 광학재료에 적용 시 표준규격의 굴절률에 부합하는 티올 화합물이 포함된 조성물의 제조방법을 제공하는 것이다. Another object of the present invention is to provide a method for preparing a composition containing a thiol compound that meets the refractive index of a standard standard when applied to an optical material.
본 발명의 또 다른 목적은 수율 및 순도가 우수한 티올 화합물이 포함된 조성물의 제조방법을 제공하는 것이다. Another object of the present invention is to provide a method for preparing a composition containing a thiol compound having excellent yield and purity.
본 발명의 폴리티올 화합물의 제조 방법은, 하기 반응식1과 같이 2-메르캅토에탄올과 에피클로히드린을 반응시켜, 디올 화합물을 얻고, 얻어진 화합물에 황화수소염으로 치환하여 얻은 화합물에 에피클로하이드린을 반응시켜 폴리 알코올 화합물 얻는 공정과 얻어진 폴리 알코올 화합물을 티오요소와 염화수소 반응시켜 이소티우로늄염을 포함하는 반응과 암모니아수로 이소티우로늄염을 가수분해를 반응하여 분자량이 균일하고, 폴리올이 적게 함유된 하기 반응식1의 폴리티올 화합물 제조할 수 있다.In the method for producing a polythiol compound of the present invention, as shown in Scheme 1 below, 2-mercaptoethanol and epichlorohydrin are reacted to obtain a diol compound, and the compound obtained by substituting hydrogen sulfide for the obtained compound is added to epichlorohydrin. A process to obtain a polyalcohol compound by reacting the polyalcohol compound, a reaction containing an isothiuronium salt by reacting the obtained polyalcohol compound with thiourea and a hydrolysis reaction of the isothiuronium salt with ammonia water, so that the molecular weight is uniform and contains less polyol A polythiol compound of the following Scheme 1 can be prepared.
본 발명의 폴리티올 화합물의 제조방법은 반응식 1로 표시 할 수 있다The method for preparing the polythiol compound of the present invention can be represented by Scheme 1.
〔반응식 1〕 [Scheme 1]
Figure PCTKR2020019176-appb-I000001
Figure PCTKR2020019176-appb-I000001
상기 반응식 1에서 R1은 탄수수 2내지 3의 무치환 알코올기이다In Scheme 1, R 1 is an unsubstituted alcohol group having 2 to 3 carbon atoms.
상기 반응식 1에서 R2은 활로겐 원자이다In Scheme 1, R 2 is a halogen atom
상기 제조 방법으로 얻은 폴리티올 화합물은 2개의 위치 이성체가 혼합된 폴리티올 화합물을 얻는다.The polythiol compound obtained by the above production method obtains a polythiol compound in which two positional isomers are mixed.
본 발명은 에피클로로하이드린(Epichlorohydrin)로 출발물질로 하여 화학식 1의 화합물을 포함하는 광학재료용 티올계 조성물의 제조방법에 관한 것이다. The present invention relates to a method for preparing a thiol-based composition for an optical material comprising the compound of Formula 1 as a starting material as epichlorohydrin.
[화학식 1][Formula 1]
Figure PCTKR2020019176-appb-I000002
Figure PCTKR2020019176-appb-I000002
본 발명의 일 실시예에 의한 광학 재료용 조성물의 제조방법으로부터 제조된 상기 광학재료용 티올계 조성물은 하기 화학식 2의 화합물을 더 포함할 수 있다.The thiol-based composition for an optical material prepared by the method for preparing a composition for an optical material according to an embodiment of the present invention may further include a compound of Formula 2 below.
[화학식 2][Formula 2]
Figure PCTKR2020019176-appb-I000003
Figure PCTKR2020019176-appb-I000003
본 발명의 일 실시예에 의한 광학 재료용 티올계 조성물의 제조방법으로 제조된 티올계 조성물은 상기 화학식 1의 화합물 100 중량부 대비 화학식 2의 화합물이 4 내지 7 중량부가 포함될 수 있다. The thiol-based composition prepared by the method for preparing a thiol-based composition for an optical material according to an embodiment of the present invention may contain 4 to 7 parts by weight of the compound of Formula 2 based on 100 parts by weight of the compound of Formula 1 above.
본 발명의 일 실시예에 의한 광학 재료용 티올계 화합물이 포함된 조성물의 제조방법은 The method for preparing a composition containing a thiol-based compound for an optical material according to an embodiment of the present invention is
에피클로로하이드린과 머캅토알코올을 반응시키는 제 1단계;A first step of reacting epichlorohydrin with mercapto alcohol;
제 1단계의 생성물을 황화수소염과 반응시켜 말단의 염소를 황화수소기로 치환시키고, 에피클로로하이드린과 반응시키는 제 2단계; 및a second step of reacting the product of the first step with a hydrogen sulfide salt to replace the chlorine at the end with a hydrogen sulfide group, and reacting with epichlorohydrin; and
상기 제 2단계에서 생성된 화합물과 티오우레아(Thiourea)를 반응시키는 제 3단계;를 포함할 수 있다. and a third step of reacting the compound produced in the second step with thiourea.
본 발명의 일 실시예에 의한 광학 재료용 티올계 화합물이 포함된 조성물의 제조방법에서 상기 황화수소염 : 상기 제 1단계에서 제조된 화합물의 몰비는 1:1 내지 1.2일 수 있다.In the method for preparing a composition containing a thiol-based compound for an optical material according to an embodiment of the present invention, the molar ratio of the hydrogen sulfide salt to the compound prepared in the first step may be 1:1 to 1.2.
본 발명은 또한 광학재료를 제공하며, 본 발명에 의한 광학재료는 본 발명의 일 실시 예에 의한 광학재료용 티올계 화합물 제조방법으로 제조된 것일 수 있다. The present invention also provides an optical material, and the optical material according to the present invention may be prepared by the method for producing a thiol-based compound for an optical material according to an embodiment of the present invention.
본 발명의 일 실시예에 의한 광학재료는 내열온도가 100 ℃ 이상인 것을 특징으로 할 수 있다. The optical material according to an embodiment of the present invention may be characterized in that the heat resistance temperature is 100 ℃ or more.
본 발명에 의해서 제조한 티올계 화합물을 포함한 조성물을 이용하여 제조한 광학 렌즈는 맑고 투명하며, 색상이 우수하였다. 특히 본 발명에서 제조한 티올계 화합물이 포함된 조성물은 각각의 폴리 이소시아네이트와 중합성이 우수하여 고굴절 초고굴절(1.60, 1.67)렌즈에 적합하며, 백화 현상이나 가장 자리에 기포가 관찰되지 않고, 또한 순도가 높아 열안정성도 우수한 광학 렌즈를 제조 할 수 있었다. 또한 본 발명에 따라 얻어진 광학 재료는 내충격성, 내열성, 성형성, 염색성, 광투과율이 우수하여 다양한 분야에 이용될 수 있다. The optical lens prepared by using the composition containing the thiol-based compound prepared according to the present invention was clear and transparent and had excellent color. In particular, the composition containing the thiol-based compound prepared in the present invention has excellent polymerizability with each polyisocyanate, so it is suitable for high-refractive ultra-high refractive (1.60, 1.67) lenses. It was possible to manufacture optical lenses with high purity and excellent thermal stability. In addition, the optical material obtained according to the present invention has excellent impact resistance, heat resistance, moldability, dyeability, and light transmittance, and thus can be used in various fields.
도 1은 본 발명의 실시예에 의한 제조방법으로 제조된 화학식 1의 화합물의 IR 스펙트럼 결과를 도시한 것이다. 1 shows the IR spectrum results of the compound of Formula 1 prepared by the preparation method according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 의한 제조방법으로 제조된 화학식 1의 화합물의 mass 스펙트럼 결과를 도시한 것이다. 2 shows the mass spectrum results of the compound of Formula 1 prepared by the preparation method according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 의한 제조방법으로 제조된 화학식 1의 화합물의 1H-NMR결과를 도시한 것이다. 3 shows 1 H-NMR results of the compound of Formula 1 prepared by the preparation method according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 의한 제조방법으로 제조된 화학식 1의 화합물의 13C-NMR결과를 도시한 것이다. 4 shows 13 C-NMR results of the compound of Formula 1 prepared by the preparation method according to an embodiment of the present invention.
본 발명의 실시예들에 대한 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of embodiments of the present invention, and methods of achieving them, will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, and only these embodiments allow the disclosure of the present invention to be complete, and common knowledge in the art to which the present invention pertains It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout.
본 발명의 실시예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시 예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.본 발명에 의한 광학재료용 티올계 화합물이 포함된 조성물은 에피클로로하이드린(Epichlorohydrin)으로부터 출발물질로 제조되고, 화학식 1의 화합물을 포함한다. In describing the embodiments of the present invention, if it is determined that a detailed description of a well-known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, the terms to be described later are terms defined in consideration of functions in an embodiment of the present invention, which may vary according to intentions or customs of users and operators. Therefore, the definition should be made based on the content throughout this specification. The composition containing the thiol-based compound for optical materials according to the present invention is prepared from epichlorohydrin as a starting material, and the compound of Formula 1 is include
[화학식 1][Formula 1]
Figure PCTKR2020019176-appb-I000004
Figure PCTKR2020019176-appb-I000004
또한, 본 발명에 의한 광학재료용 티올계 화합물이 포함된 조성물은 에피클로로하이드린을 출발물질로 하는 것을 특징으로 하며, 후술하는 머캅토알코올, 황화수소염 등과의 반응을 통해 화학식 1의 화합물을 제조할 수 있다. 이러한 방법으로 화학식 1의 화합물을 제조하는 경우 90% 이상의 현저히 높은 수율로 화학식 1의 화합물을 제조할 수 있는 장점이 있으며, 나아가 제조된 티올 화합물을 적용하여 플라스틱 광학재료를 제조하는 경우 현저히 높은 내열성을 나타내는 특징이 있다. In addition, the composition containing the thiol-based compound for an optical material according to the present invention is characterized in that epichlorohydrin is used as a starting material, and the compound of formula 1 is prepared through reaction with mercapto alcohol, hydrogen sulfide, etc., which will be described later. can do. When the compound of Formula 1 is prepared in this way, there is an advantage that the compound of Formula 1 can be prepared in a remarkably high yield of 90% or more. It has characteristics that indicate
본 발명의 일 실시예에 의한 광학재료용 티올계 화합물이 포함된 조성물은 하기 화학식 2의 화합물을 더 포함한다. The composition containing the thiol-based compound for an optical material according to an embodiment of the present invention further includes a compound of Formula 2 below.
[화학식 2][Formula 2]
Figure PCTKR2020019176-appb-I000005
Figure PCTKR2020019176-appb-I000005
상기 화학식 2의 화합물은 화학식 1의 화합물 제조과정에서 화학식 1의 구조이성질체로서 부생성물로 생성되며, 최종적으로 광학재료용 티올계 화합물이 포함된 조성물은 상기 화학식 1의 화합물 및 화학식 2의 화합물을 동시에 포함함으로써 더욱 높은 내열성을 나타낼 수 있는 장점이 있다.The compound of Formula 2 is produced as a by-product as a structural isomer of Formula 1 in the process of preparing the compound of Formula 1, and finally, the composition containing the thiol-based compound for an optical material is a composition containing the compound of Formula 1 and the compound of Formula 2 simultaneously. There is an advantage that can exhibit higher heat resistance by including.
본 발명의 일 실시예에 의한 광학재료용 티올계 화합물이 포함된 조성물에서 상기 화학식 1의 화합물 100중량부 대비 화학식 2의 화합물이 4 내지 7 중량부 포함될 수 있고, 바람직하게는 화학식 2의 화합물이 5 내지 6 중량부 포함될수 있다. 이러한 범위를 만족함으로써, 본 발명의 일 실시예에 의한 광학재료용 티올계 화합물이 높은 내열성을 가질 뿐만 아니라, 국제 규격에 부합하는 1.60 및 1.67에 근접하는 굴절률을 나타낼 수 있으며, 높은 아베수를 나타내는 특징이 있다. In the composition containing the thiol-based compound for an optical material according to an embodiment of the present invention, 4 to 7 parts by weight of the compound of Formula 2 may be included relative to 100 parts by weight of the compound of Formula 1, preferably the compound of Formula 2 5 to 6 parts by weight may be included. By satisfying this range, the thiol-based compound for an optical material according to an embodiment of the present invention can exhibit high heat resistance, and also exhibit refractive indices close to 1.60 and 1.67 meeting international standards, and exhibit a high Abbe's number. There is a characteristic.
본 발명의 일 실시예에 의한 광학재료용 티올계 화합물이 포함된 조성물의 제조방법은 구체적으로 에피클로로하이드린과 머캅토알코올을 반응시키는 제 1단계;The method for preparing a composition containing a thiol-based compound for an optical material according to an embodiment of the present invention specifically includes a first step of reacting epichlorohydrin with mercapto alcohol;
제 1단계의 생성물을 황화수소염과 반응시켜 말단의 염소를 황화수소기로 치환시키고, 에피클로로하이드린과 반응시키는 제 2단계; 및a second step of reacting the product of the first step with a hydrogen sulfide salt to replace the chlorine at the end with a hydrogen sulfide group, and reacting with epichlorohydrin; and
상기 제 2단계에서 생성된 화합물과 티오우레아(Thiourea)를 반응시키는 제 3단계;를 포함한다. and a third step of reacting the compound produced in the second step with thiourea.
본 발명에 의한 티올계 화합물 제조방법은 에피클로로하이드린을 출발물질로 하며, 상기 제 1단계 내지 제 3단계를 순차로 포함함으로써 90% 이상, 좋게는 92% 이상의 수율로 화학식 1 및 화학시 2의 화합물이 포함된 티올계 조성물을 제조할 수 있는 장점이 있다.The method for preparing a thiol-based compound according to the present invention uses epichlorohydrin as a starting material, and by sequentially including the first to third steps, the yield of formula 1 and chemistry 2 is greater than 90%, preferably greater than or equal to 92%. There is an advantage of being able to prepare a thiol-based composition containing a compound of
본 발명의 일 실시예에 의한 티올계 화합물 제조방법에서 상기 제 1단계는 에피클로로하이드린의 에폭시기를 개방하여 말단 하이드록시기를 형성한다. 이때 머캅토알코올 : 에피클로로하이드린의 몰비는 1:1 일 수 있으며, 상술한 범위를 만족함으로서 반응하지 않고 버려지는 머캅토알코올 또는 에피클로로하이드린의 비율을 최소화하며 높은 수율로 티올계 화합물 제조가 가능한 장점이 있다. In the method for preparing a thiol-based compound according to an embodiment of the present invention, the first step is to open the epoxy group of epichlorohydrin to form a terminal hydroxyl group. At this time, the molar ratio of mercapto alcohol: epichlorohydrin may be 1:1, and by satisfying the above-mentioned range, the ratio of mercapto alcohol or epichlorohydrin that is discarded without reaction is minimized and thiol-based compound is prepared in high yield There are possible advantages.
이때 반응온도는 20 ℃ 이하, 좋게는 5 내지 10 ℃일 수 있으며, 온도가 지나치게 높은 경우 부반응이 발생할 우려가 있고, 온도가 낮은 경우 반응속도가 느려지는 문제가 발생할 수 있다. At this time, the reaction temperature may be 20 ℃ or less, preferably 5 to 10 ℃, there is a possibility that side reactions may occur when the temperature is too high, and a problem that the reaction rate is slowed when the temperature is low may occur.
본 발명의 일 실시예에 의한 화학식 1의 제조방법은 제 1단계의 생성물을 황화수소염과 반응시켜 말단의 염소를 황화수소기로 치환시키고, 에피클로로하이드린과 반응시키는 제 2단계를 포함 한다. 이때 말단의 염소는 에피클로로하이드린으로부터 유래된 것이다. 구체적으로, 상기 제 2단계는 제 1단계의 생성물을 황화수소염과 반응시켜 말단의 염소를 황화수소기로 치환하는 2-1단계 및 황화수소기로 치환 후 에피클로로하이드린과 반응시키는 2-2단계를 포함한다. The method for preparing Formula 1 according to an embodiment of the present invention includes a second step of reacting the product of the first step with a hydrogen sulfide salt to replace the chlorine at the end with a hydrogen sulfide group, and reacting with epichlorohydrin. In this case, the chlorine at the terminal is derived from epichlorohydrin. Specifically, the second step includes a step 2-1 of reacting the product of the first step with a hydrogen sulfide salt to replace the chlorine at the end with a hydrogen sulfide group, and a step 2-2 of reacting with epichlorohydrin after substitution with a hydrogen sulfide group. .
이때 황화수소염은 -SH기 및 양이온을 포함하며 물에 용해가 가능한 화합물인 경우 제한 없이 이용이 가능하며, 상기 양이온은 리튬, 나트륨, 칼륨, 칼슘 또는 마그네슘일 수 있고, 좋게는 리튬, 나트륨 또는 칼륨일 수 있으나, 본 발명이 이에 제한되는 것은 아니다.In this case, the hydrogen sulfide salt includes a -SH group and a cation and can be used without limitation if it is a compound that is soluble in water, and the cation may be lithium, sodium, potassium, calcium or magnesium, preferably lithium, sodium or potassium. may be, but the present invention is not limited thereto.
구체적으로 제 2단계는 황화수소염이 용해된 용액에 상기 제 1단계에서 제조된 화합물을 천천히 적가하는 단계를 포함하며, 상기 황화수소염 : 상기 제 1단계에서 제조된 화합물의 몰비는 1:1 내지 1.2일 수 있다. Specifically, the second step includes the step of slowly adding the compound prepared in the first step to a solution in which the hydrogen sulfide salt is dissolved, and the molar ratio of the hydrogen sulfide salt to the compound prepared in the first step is 1:1 to 1.2. can be
상기 제 2-1단계는 40 내지 60 ℃온도에서 3 내지 10시간 동안 수행될 수 있으며, 온도가 지나치게 높은 경우 부반응이 발생할 위험이 있고, 온도가 지나치게 낮은 경우 반응시간이 길어지는 문제가 발생할 수 있다. Step 2-1 may be performed at a temperature of 40 to 60 ° C. for 3 to 10 hours, and when the temperature is too high, there is a risk of side reactions, and when the temperature is too low, a problem of lengthening the reaction time may occur. .
또한 2-2단계는 상기 2-1단계의 생성물에 수산화나트륨을 첨가하고, 이후 에피클로로하이드린을 추가로 첨가하는 단계를 포함하며, 이때 제 2-1단계의 생성물 : 수산화나트륨 : 에피클로로하이드린의 몰비는 1 : 0.5 : 0.5 일 수 있다. 상술한 수산화나트륨 및 에피클로로하이드린의 첨가범위를 만족함으로써 부생성물의 생성을 차단하고 높은 수율로 티올계 화합물을 제조할 수 있는 장점이 있다. In addition, step 2-2 includes adding sodium hydroxide to the product of step 2-1, and then further adding epichlorohydrin, wherein the product of step 2-1: sodium hydroxide: epichlorohydrin The molar ratio of dried may be 1: 0.5: 0.5. By satisfying the above-described addition ranges of sodium hydroxide and epichlorohydrin, there is an advantage in that the production of by-products is blocked and the thiol-based compound can be prepared in a high yield.
상기 제 2-2단계의 온도는 수산화나트륨 및 에피클로로하이드린의 첨가의 경우 5 내지 10 ℃에서 수행될 수 있으며, 이후 35 내지 50 ℃ 온도에서 교반하면서 반응을 진행할 수 있다. In the case of the addition of sodium hydroxide and epichlorohydrin, the temperature of step 2-2 may be carried out at 5 to 10 °C, and then the reaction may proceed while stirring at a temperature of 35 to 50 °C.
상기 제 2단계에서 생성된 화합물과 티오우레아(Thiourea)를 반응시키는 제 3단계;를 포함하며, 상기 3단계를 거쳐 제 2단계의 생성물 말단에 포함된 -OH기를 -SH기로 치환할 수 있으며, 최종적으로 목적하는 화학식 1의 화합물 제조가 가능하다. a third step of reacting the compound produced in the second step with thiourea; and, through the three steps, the -OH group included at the end of the product of the second step can be substituted with a -SH group, Finally, the desired compound of Formula 1 can be prepared.
이때 상기 제 3단계는 통상적으로 알려진 티오우레아를 이용한 -OH기를 -SH기 치환하는 방법인 경우 제한없이 이용이 가능하며, 본 발명이 이에 제한되는 것은 아니다. In this case, the third step can be used without limitation in the case of a method of substituting a -OH group with a -SH group using a commonly known thiourea, and the present invention is not limited thereto.
구체적으로 상기 제 3단계는 용기에 제 2단계의 생성물을, 염산 및 티오우레아를 첨가하고 승온하여 교반하는 단계를 포함한다. 이때 제 2단계의 생성물 : 염산 : 티오우레아의 몰비는 1 : 5.5 : 5.5 내지 1 : 6 : 6일 수 있으며, 이러한 범위에서 미 치환된 하이드록시기가 잔류하는 것을 예방하고 높은 수율로 티올계 화합물을 제조할 수 있는 장점이 있다. 또한, 염산 및 티오우레아의 첨가가 완료된 후 90 내지 110 ℃로 승온하여 반응을 수행할 수 있으며 이때 반응은 4 내지 8시간 동안 수행될 수 있으나 본 발명이 이에 제한되는 것은 아니다. Specifically, the third step includes a step of stirring the product of the second step in a container by adding hydrochloric acid and thiourea and raising the temperature. In this case, the molar ratio of the product of the second step: hydrochloric acid: thiourea may be 1: 5.5: 5.5 to 1: 6: 6, and in this range, the unsubstituted hydroxyl group is prevented from remaining and the thiol-based compound is produced in a high yield. There are advantages to manufacturing. In addition, after the addition of hydrochloric acid and thiourea is completed, the reaction may be performed by raising the temperature to 90 to 110° C. In this case, the reaction may be performed for 4 to 8 hours, but the present invention is not limited thereto.
본 발명의 일 실시예에 의한 티올계 화합물 제조방법은 상기 제 3단계 후 생성된 생성물을 세척하는 세척단계를 더 포함할 수 있으며, 이때 세척은 염산 수용액, 소금물 등을 이용할 수 있으나 본 발명이 이에 제한되는 것은 아니다. The method for producing a thiol-based compound according to an embodiment of the present invention may further include a washing step of washing the product generated after the third step, wherein the washing may use an aqueous hydrochloric acid solution, brine, etc., but the present invention does not It is not limited.
본 발명은 또한 광학재료를 제공하며, 본 발명에 의한 광학재료는 본 발명의 일 실시예에 의한 광학재료는 본 발명의 일 실시예에 의한 제조방법으로 제조된 광학재료용 티올 및 이소시아네이트 화합물이 중합된 것이다. The present invention also provides an optical material, the optical material according to the present invention is an optical material according to an embodiment of the present invention, a thiol and an isocyanate compound for an optical material prepared by the manufacturing method according to an embodiment of the present invention are polymerized it has become
상술한 바와 같이 본 발명의 티올계 화합물을 이용하여 광학재료를 제조하는 경우 제조되는 광학재료가 높은 아베수를 나타내며, 국제규격에 부합하는 굴절률을 나타낼 수 있고, 내열성이 높은 장점이 있다. 구체적으로, 본 발명의 일 실시 예에 의한 광학재료는 내열온도가 100 ℃ 이상, 좋게는 110 ℃ 이상일 수 있으며, 이에 따라 사용 환경이 상대적으로 고온인 광학재료에도 적용이 가능한 장점이 있다. As described above, when an optical material is manufactured using the thiol-based compound of the present invention, the manufactured optical material exhibits a high Abbe's number, can exhibit a refractive index conforming to international standards, and has high heat resistance. Specifically, the optical material according to an embodiment of the present invention may have a heat resistance temperature of 100 ℃ or more, preferably 110 ℃ or more, and thus, there is an advantage that can be applied to an optical material having a relatively high temperature in use.
본 발명의 일 실시예에 의한 광학재료에서 상기 이소시아네이트 화합물은 통상적으로 광학재료에 이용되는 이소시아네이트 화합물인 경우 제한없이 이용이 가능하며, 본 발명이 이에 제한되는 것은 아니다. 구체적이고 비한정적인 일예로 상기 이소시아네이트 화합물은 이소포론디이소 시아네이트(IPDI), 디시클로헥실메탄-4-4-디이소시아네이트(H12MDI), 헥사메틸렌 디이소시아네이트(HDI), 1,3-비스(메틸이소시아네이트)사이크로헥산(H6XDI) 및 m,o,P-자일렌 디이소시아네이트에서 선택되는 하나 또는 둘 이상을 포함할 수 있으나, 본 발명이 이에 제한되는 것은 아니다. In the optical material according to an embodiment of the present invention, the isocyanate compound may be used without limitation if it is an isocyanate compound typically used in an optical material, and the present invention is not limited thereto. As a specific and non-limiting example, the isocyanate compound is isophorone diisocyanate (IPDI), dicyclohexylmethane-4-4-diisocyanate (H 12 MDI), hexamethylene diisocyanate (HDI), 1,3- Bis (methyl isocyanate) cyclohexane (H 6 XDI) and m, o, P - may include one or two or more selected from xylene diisocyanate, but the present invention is not limited thereto.
이때 이소시아네이트 첨가량은 관능기의 비율을 통해 조절하며, 이소시아네이트 화합물에 포함된 -SH 작용기 : NCO 작용기의 몰 비가 1: 1 내지 2.5, 좋게는 1.5 내지 2일 수 있으며, 이러한 범위를 만족함으로써 경화 후 잔류하는 미반응 단량체를 최소화 하며, 견고하고 기계적 물성이 우수한 광학재료의 제조가 가능한 장점이 있다. 또한, 상술한 관능기 비율을 만족함으로써 제조되는 광학재료의 내열온도가 100 ℃ 이상, 좋게는 110℃ 이상으로 높은 장점이 있으며, 이에 따라 플라스틱계 광학재료의 적용범위를 현저히 넓힐 수 있는 장점이 있다. At this time, the amount of isocyanate added is controlled through the ratio of functional groups, and the molar ratio of -SH functional group: NCO functional group included in the isocyanate compound may be 1: 1 to 2.5, preferably 1.5 to 2, and by satisfying this range, the residual after curing It minimizes unreacted monomers and has the advantage of being able to manufacture an optical material that is strong and has excellent mechanical properties. In addition, there is an advantage that the heat resistance temperature of the optical material manufactured by satisfying the above-described functional group ratio is 100 ° C. or higher, preferably 110 ° C. or higher, which can significantly broaden the application range of the plastic-based optical material.
본 발명의 일 실시예에 의한 광학재료는 본 발명의 티올계 화합물, 이소시아네이트 화합물 외에 필요에 따라 자외선 흡수제, 이형제, 염료 등을 포함할 수 있으며, 본 발명이 이에 제한되는 것은 아니다. The optical material according to an embodiment of the present invention may include a UV absorber, a release agent, a dye, etc. as necessary in addition to the thiol-based compound and isocyanate compound of the present invention, but the present invention is not limited thereto.
상기 자외선 흡수제는 통상적으로 광학재료에 이용되는 자외선 흡수제인 경우 제한없이 이용이 가능하며, 본 발명이 이에 제한되는 것은 아니다. 구체적이고 비한정적인 일예로 상기 자외선 흡수제는 벤조페논계, 벤조트라이아조계, 살리실레이트계, 시아노아크릴레이트계 및 옥사닐라이트계 등에서 선택되는 하나 또는 둘 이상일 수 있으나, 본 발명이 이에 제한되는 것은 아니다. The ultraviolet absorber can be used without limitation if it is an ultraviolet absorber typically used in optical materials, and the present invention is not limited thereto. As a specific and non-limiting example, the ultraviolet absorber may be one or two or more selected from benzophenone-based, benzotriazo-based, salicylate-based, cyanoacrylate-based and oxanilite-based, etc., but the present invention is limited thereto. it's not going to be
상기 염료 또한 통상적인 플라스틱 광학재료에 이용되는 염료인 경우 제한없이 이용이 가능하며, 본 발명이 이에 제한되는 것은 아니다. 구체적이고 비한정적인 일예로 상기 염료는 페리논계 염료, 복소환계 염료, 페릴렌계 염료, 복소환계 염료, 안트라퀴논계 염료, 아조계 염료 및 인디고이드계 염료 등에서 선택되는 하나 또는 둘 이상일 수 있으나, 본 발명이 이에 제한되는 것은 아니다. The dye can also be used without limitation if it is a dye used in a conventional plastic optical material, and the present invention is not limited thereto. As a specific and non-limiting example, the dye may be one or two or more selected from perinone-based dyes, heterocyclic dyes, perylene-based dyes, heterocyclic dyes, anthraquinone-based dyes, azo-based dyes and indigoid-based dyes. , the present invention is not limited thereto.
본 발명의 일 실시예에 의한 광학재료는 상기 이소시아네이트와 상기 화학식 1의 화합물 중합을 위한 중합 개시제를 포함할 수 있다. 중합개시제는 통상의 이소시아네이트를 열중합 하기위한 중합개시제인 경우 제한없이 이용이 가능하며, 본 발명이 이에 제한되는 것은 아니다. 구체적이고 비한정적인 일예로 상기 중합개시제는 아민계 또는 주석계 중합개시제를 이용할 수 있으며, 좋게는 주석계 중합개시제를 이용할 수 있다. 상기 주석계 중합개시제는 구체적으로 디부틸틴라우레 이트, 디부틸틴클로라이드, 디부틸틴아세테이트, 옥칠산제1주석, 디라우르산디부틸주석, 테트라플루우루주석, 테트라클로로주석 및 테트라브로로주석등에서 선택되는 하나 또는 둘 이상일 수 있으나, 본 발명이 이에 제한되는 것은 아니다. The optical material according to an embodiment of the present invention may include a polymerization initiator for polymerization of the isocyanate and the compound of Formula 1 above. The polymerization initiator can be used without limitation if it is a polymerization initiator for thermal polymerization of isocyanate, and the present invention is not limited thereto. As a specific and non-limiting example, the polymerization initiator may be an amine-based polymerization initiator or a tin-based polymerization initiator, preferably a tin-based polymerization initiator. The tin-based polymerization initiator is specifically dibutyltin laurate, dibutyltin chloride, dibutyltin acetate, stannous oxylate, dibutyltin dilaurate, tetrafluorotin, tetrachlorotin and tetrabrorotin It may be one or two or more selected from the like, but the present invention is not limited thereto.
*이하, 본 발명을 실시예 및 비교예에 의해 구체적으로 설명한다. 아래 실시예는 본 발명의 이해를 돕기 위한 것일 뿐이며, 본 발명의 범위가 아래 실시예에 의해 한정되는 것은 아니다.* Hereinafter, the present invention will be specifically described by way of Examples and Comparative Examples. The examples below are only for helping understanding of the present invention, and the scope of the present invention is not limited by the examples below.
시험 분석 방법test analysis method
(1) HPLC측정 : LC 20A(Shimazhu, Japan), 칼럼은 C18역상칼럼(Ace 5,250 × 4.6mm, ACE-121-2548) 용매 : CH3CN : H2O 사용하였다.(1) HPLC measurement: LC 20A (Shimazhu, Japan), C18 reversed-phase column (Ace 5,250 × 4.6 mm, ACE-121-2548) solvent: CH3CN:H2O was used.
(2) 1H,13C NMR : Fourier 300MHz를 사용하였다.(2) 1H, 13C NMR: Fourier 300 MHz was used.
(3) 원소 분석 : Thermo Fisher scientific사의 Thermo Flash 2000를 사용하였다.(3) Elemental analysis: Thermo Flash 2000 of Thermo Fisher scientific was used.
(4) LC-MS : 1290 infinityⅡ/Qtrap6500를 사용하여 분석하였다.(4) LC-MS: Analyzed using 1290 infinityII/Qtrap6500.
(5) IR 스페트럼 : 시마즈사의 FTIR-8300으로 분석하였다.(5) IR spectrum: analyzed by Shimadzu Corporation's FTIR-8300.
(6) 굴절률(nd) alc 아베수(vd) : 아타고(Atago, Japan)굴절계를 이용해서 20℃에서 측정하였다.(6) Refractive index (nd) alc Abbe's number (vd): Measured at 20°C using an Atago (Atago, Japan) refractometer.
(7) 내열성 : SCINCO사의 DSC N-650 열분석기를 사용하여 시험편의 유리전이 온도(Tg) 측정하여 내열성을 확인하였다. (7) Heat resistance: The glass transition temperature (Tg) of the test piece was measured using a DSC N-650 thermal analyzer manufactured by SCINCO to confirm the heat resistance.
(8) 중합 불균형 : 100매의 렌즈를 제작하여, 아크 렘프에서 육안으로 관찰하고, 렌즈의 주위에 굴절률이 달라 호상이 확인된 렌즈는 중합 불균형이 있다고 판단하고 5개 이하면 0 으로 표시하고, 중합 불균형이 5개 이상이면 ×로 표시하였다 (8) Polymerization imbalance: 100 lenses are manufactured and observed with the naked eye in the arc lamp. Lenses with different refractive indices around the lenses, which have an arc image, are judged to have polymerization imbalance, and if 5 or less, 0 is displayed, If there are 5 or more polymerization imbalances, it is indicated by ×.
(9) 백탁 : 100매의 렌즈를 제작하여, 아크 렘프에서 육안으로 관찰하고, 가변 또는 중앙에 탁함이 확인된 렌즈는 백탁이 있다고 판정하고 백탁이 5개 이하면 0으로 표시하고, 백탁이 5개 이상이면 ×로 표시 하였다 (9) Cloudiness: 100 lenses are produced and visually observed with the arc lamp. Lenses with variable or central cloudiness are judged to have cloudiness. If there is more than one, it is marked with ×
[티올계 화합물 제조예][Example of thiol-based compound preparation]
제조예 1 : 반응식의 반응 1 Preparation Example 1: Reaction 1 of Scheme
1-(2-하이드록시에틸티오)-3-클로로프로판-2올의 제조Preparation of 1-(2-hydroxyethylthio)-3-chloropropan-2ol
1L 둥근 바닥 플라스크에 2-메르캅토에탄올 (78.1g. 1몰)과 트리에틸아민(TEA) 2g을 넣고, 교반한다. 에피클로로하이드린 (92.5g. 1몰)를 10℃ 이하에서 천천히 적가 한다. 적가 후 40℃에서 1시간 동안 교반하여 무색 오일 형태의 1-(2-하이드록시에틸티오)-3-클로로프로판-2올 화합물170g을 얻었다. 반응 확인은 HPLC(액체크로마토그래피)로 확인 하였다. Put 2-mercaptoethanol (78.1 g. 1 mol) and 2 g of triethylamine (TEA) in a 1L round-bottom flask, and stir. Epichlorohydrin (92.5 g. 1 mol) is slowly added dropwise at 10°C or lower. After dropwise addition, the mixture was stirred at 40° C. for 1 hour to obtain 170 g of 1-(2-hydroxyethylthio)-3-chloropropan-2-ol compound in the form of a colorless oil. Reaction confirmation was confirmed by HPLC (liquid chromatography).
1,3-비스(3-메르캅토-1-(2-하이드록시에틸티오)-2-프로판올)-2-프로판올의 제조Preparation of 1,3-bis(3-mercapto-1-(2-hydroxyethylthio)-2-propanol)-2-propanol
2L 둥근 바닥 플라스크에 NaSH.xH2O (88g. 1.2몰)을 물 150mL에 넣고 교반하여 용해시킨다. 1-클로로-2-(메르캅토에탄올)-3-프로판올 (170g. 1몰) 실온에서 천천히 적가 한 후, 35-40℃로 4시간 동안 교반 하고, 실온으로 냉각 후 4시간 교반한다. 그 후 얼음물에서 수산화나트륨 (20g. 0.5몰)용액 100mL을 넣고 10분간 교반 후 에피클로로하이드린 (46.3g. 0.5몰)를 10℃도 이하에서 천천히 적가 후 40℃로 승온하여 1시간 교반 반응 후 분액 깔데기로 아래층 오일 형태의 폴리 알코올 화합물(2,3-비스(3-하이드록시-2-(2-에탄올)티오-1-프로필티오)-1-프로판올)200g을 얻었다. 반응 확인은 HPLC(액체크로마토그래피)로 확인 하였다. In a 2L round bottom flask, add NaSH.xH2O (88 g. 1.2 mol) to 150 mL of water and stir to dissolve. 1-Chloro-2-(mercaptoethanol)-3-propanol (170 g. 1 mol) was slowly added dropwise at room temperature, stirred at 35-40° C. for 4 hours, cooled to room temperature, and stirred for 4 hours. After that, add 100 mL of sodium hydroxide (20 g. 0.5 mol) solution in ice water, stir for 10 minutes, and then slowly add epichlorohydrin (46.3 g. 0.5 mol) dropwise at 10°C or lower, then raise the temperature to 40°C and stir for 1 hour. 200 g of a polyalcohol compound (2,3-bis(3-hydroxy-2-(2-ethanol)thio-1-propylthio)-1-propanol) in the form of an oil in the lower layer was obtained by using a separatory funnel. Reaction confirmation was confirmed by HPLC (liquid chromatography).
2,3-비스(3-메르캅토-2-(2-메르캅토에틸티오)-1-프로필티오)-1-프로판티올의 제조Preparation of 2,3-bis(3-mercapto-2-(2-mercaptoethylthio)-1-propylthio)-1-propanethiol
5L 둥근 바닥 플라스크에 염산 (303.8g 3.몰)에 티올우레아 (228.36g. 3몰)을 넣고 교반하면서, 오일 형태의 폴리 알코올 화합물(2,3-비스(3-하이드록시-2-(2-에탄올)티오-1-프로필티오)-1-프로판올 (200g, 0.51몰)을 첨가하고, 110℃ 승온 후 6시간 동안 환류 반응 하였다. 반응 후 실온으로 냉각 후 톨루엔 300mL를 넣고, 25% 암모니아 수(306.5g. 4.5몰)을 천천히 적가하고, 80℃에서 3시간 가수 분해 반응 후 실온으로 냉각 한다. 물층과 유기 용매층을 분리 한 후 유기 용매에 물100mL와 염산201.2g의 혼합액으로 2회 세정하고, 소금물로 한 번 더 세정한고, 톨루엔 유기 용매를 증류 투명한 오일 형태의 화합물(229g. 수율 95%) 얻었다.Thiolurea (228.36 g. 3 mol) was added to hydrochloric acid (303.8 g 3. mol) in a 5L round-bottom flask, and while stirring, an oily polyalcohol compound (2,3-bis (3-hydroxy-2- (2) -Ethanol)thio-1-propylthio)-1-propanol (200g, 0.51 mol) was added, and the temperature was raised to 110° C., followed by reflux reaction for 6 hours After the reaction, after cooling to room temperature, 300 mL of toluene was added, and 25% aqueous ammonia (306.5 g. 4.5 mol) is slowly added dropwise, hydrolyzed at 80° C. for 3 hours, then cooled to room temperature After separating the water layer and the organic solvent layer, wash twice with a mixture of 100 mL of water and 201.2 g of hydrochloric acid in an organic solvent. and washed once more with brine, and the organic solvent toluene was distilled to obtain a compound in the form of a transparent oil (229 g, yield 95%).
도 1에 도시되어 있는 바아 괕이 FTIR-8300(시마즈사 제품)을 이용해서 얻어진 IR스펙트럼을에 있어서 2537.9 cm-1 에 티올 화합물의 특유의 흡수 스펙트럼 관찰되었다.In the IR spectrum obtained using FTIR-8300 (manufactured by Shimadzu Corporation), the absorption spectrum unique to the thiol compound was observed at 2537.9 cm -1 .
도 2 내지 4의 매스 스펙트럼 및 NMR 분석 데이터이며, 구체적인 결과는 아래와 같다.2 to 4 are the mass spectrum and NMR analysis data, and the specific results are as follows.
매스 스펙트럼 : m/z = 472.95(M+)MAMass Spectrum: m/z = 472.95(M+)MA
1H NMR : 1.7-1.8(CH2SH, m. 5H), 2.67-2.70(CHCH 2S, m. 4H), 1 H NMR: 1.7-1.8 (CH 2 S H , m. 5H), 2.67-2.70 (CHC H 2 S, m. 4H),
2.71-2.74(CH 2SH, m. 4H), 2.75-2.77(CHCH 2SH, m. 6H), 2.71-2.74 (C H 2 SH, m . 4H), 2.75-2.77 (CHC H 2 SH, m. 6H),
2.80-2.98(CH2CH 2SH, 6H) 3.0-3.03(CHCH2S, m. 3H) 2.80-2.98 (CH 2 C H 2 SH , 6H) 3.0-3.03 (C H CH 2 S, m. 3H)
**
13C NMR : 24-25(SCH2 CH2SH, 2C), 28.6-28.7(CHCH2SH, 3C), 13 C NMR: 24-25 (SCH 2 C H 2 SH, 2C), 28.6-28.7 (CH C H 2 SH, 3C),
35.2-35.7(SCH2CH2SH, 2C) 36-37(CHCH2S, 3C),35.2-35.7 (S C H 2 CH 2 SH, 2C) 36-37 (CH C H 2 S, 3C);
48.8-49.7(CH2SCHCH2. 3C) 48.8-49.7 (CH 2 S C HCH 2 . 3C)
원소 분석 : Elemental Analysis:
이론치 : C: 33.01%, H: 5.97%, S: 61.02%Theoretical value: C: 33.01%, H: 5.97%, S: 61.02%
실험치 : C: 33.09%, H: 5.96%, S: 61.74%Experimental value: C: 33.09%, H: 5.96%, S: 61.74%
HPLC 용매 CH3CN : H2O 분석 결과 상(면적)은 94.6 : 5.4 비율로 나타났고, 이는 화학식 1의 화합물인 2,3-비스(3-메르캅토-2-(2-메르캅토에틸티오)-1-프로필티오)-1-프로판티올 (2,3-Bis(3-mercapto-2-(2-mercaptoethylthio)-1-propylthio)-1-propanthiol) 100 중량부 대비 화학식 2의 화합물인 1,3-Bis(3-메르캅토-2-(2-메르캅토에틸)티오-프로필티오)-2-프로판티올이 5.7 중량부 포함되어 있는 것이 확인되었다.As a result of HPLC solvent CH 3 CN: H 2 O analysis, the phase (area) was shown in a ratio of 94.6: 5.4, which was 2,3-bis(3-mercapto-2-(2-mercaptoethylthio)- 1-propylthio)-1-propanethiol (2,3-Bis(3-mercapto-2-(2-mercaptoethylthio)-1-propylthio)-1-propanthiol) based on 100 parts by weight of 1,3, the compound of Formula 2 -Bis(3-mercapto-2-(2-mercaptoethyl)thio-propylthio)-2-propanethiol was confirmed to be contained in 5.7 parts by weight.
대한민국 공개특허공보 제10-2013-0050263호에 개시된 방법의 경우 수율이87.5%로, 수율이 95%인 본 발명이 화학식 1의 화합물을 현저히 높은 수율로 제조할 수 있음을 확인할 수 있다. In the case of the method disclosed in Korean Patent Application Laid-Open No. 10-2013-0050263, it can be confirmed that the present invention, in which the yield is 87.5% and the yield is 95%, can prepare the compound of Formula 1 in a remarkably high yield.
제조예 1 : 반응식의 반응 2Preparation Example 1: Reaction 2 of Scheme
제조 예 1과 같은 제조방법으로 제조하되, 2단계에서 에피클로로하이드린 대신 1-클로로-2-(메르캅토에탄올)-3-프로판올을 사용하여 반응을 수행하였으며, 최종 생성물은 1과 동일한 것을 확인하였다. Prepared in the same manner as in Preparation Example 1, but in step 2, the reaction was performed using 1-chloro-2-(mercaptoethanol)-3-propanol instead of epichlorohydrin, and it was confirmed that the final product was the same as 1 did.
[광학렌즈의 제조][Manufacturing of optical lenses]
실시예 1Example 1
이소시아네이트 54.77g 사용하였다. 그 중에 디시클로헥실메탄-4,4‘-디이소시아네 이트(H12MDI) 21.64g, 이소포론디이소시아네이트(IPDI) 17.75g과 헥사메틸렌디이시아네이트(HDI) 15.37g을 혼합 후 20℃ 하에서 진공 탈포 교반이 가능한 혼합기에 넣고, 여기에 Zelec UNTM 0.08g, HOPET 1.2g, DBTC 0.08g. HTAQ 20PPm, 및 PRD10PPm을 넣고, 질소 기류하에서 30분간 교반 한 후 본 발명의 제조예에서 제조된(모노머) 41g과 PETMP 9g을 넣어 중합성 조성물을 얻은 후, 0.1torr 이하에서 1시간 20분간 감압 탈포하고, 질소 압력으로 점착 테이프로 고정된 유리몰드에 주입 한다.54.77 g of isocyanate was used. Among them, 21.64 g of dicyclohexylmethane-4,4'-diisocyanate (H12MDI), 17.75 g of isophorone diisocyanate (IPDI) and 15.37 g of hexamethylene diisocyanate (HDI) were mixed, followed by vacuum defoaming at 20 ° C. Put into a mixer capable of stirring, and to this, Zelec UNTM 0.08g, HOPET 1.2g, DBTC 0.08g. Put HTAQ 20PPm, and PRD10PPm, and after stirring for 30 minutes under a nitrogen stream, 41 g of (monomer) prepared in Preparation Example of the present invention and 9 g of PETMP were added to obtain a polymerizable composition, then degassed under reduced pressure at 0.1 torr or less for 1 hour and 20 minutes and injected into a glass mold fixed with an adhesive tape under nitrogen pressure.
실시예 2 Example 2
메타-자일렌 디이소시아네이트(XDI) 49.78g을 20℃하에서 진공 탈포 교반이 가능한 혼합기에 넣고, 여기에 Zelec UNTM 0.08g, HOPET 1.2g, DBTC 0.08g. HTAQ 30PPm, 및 PRD20PPm을 넣고, 질소 기류하에서 30분간 교반 한 후 본 발명의 제조예에서 제조된 티올계 조성물(모노머) 50g을 넣어 중합성 조성물을 얻은 후, 0.1torr 이하에서 1시간 20분간 감압 탈포하고, 질소압력으로 점착 테이프로 고정된 유리몰드에 주입한다.Meta-xylene diisocyanate (XDI) 49.78g was placed in a mixer capable of vacuum degassing and stirring at 20°C, and here Zelec UNTM 0.08g, HOPET 1.2g, DBTC 0.08g. Put HTAQ 30PPm, and PRD20PPm, and after stirring for 30 minutes under a nitrogen stream, 50 g of the thiol-based composition (monomer) prepared in Preparation Example of the present invention was added to obtain a polymerizable composition, and then degassed under reduced pressure at 0.1 torr or less for 1 hour and 20 minutes and injected into a glass mold fixed with an adhesive tape under nitrogen pressure.
중합성 조성물이 주입된 유리 몰드를 순환식 오븐에 넣고, 20∼35℃에 6시간 승온, 35∼50℃ 7시간 승온, 50∼90℃ 7시간 승온, 90∼130℃ 4시간 승온, 130℃ 2시간 유지, 120∼80℃ 1시간에 걸쳐 냉각시킨 후 몰드로 부터 고형물을 탈영하여 광학렌즈를 얻는다. Put the glass mold injected with the polymerizable composition into a circulating oven, heated to 20-35 6 hours, 35-50 ℃ 7 hours, 50-90 ℃ 7 hours, 90-130 ℃ 4 hours, 130 ℃ After holding for 2 hours and cooling at 120-80°C for 1 hour, the solid material is removed from the mold to obtain an optical lens.
이렇게 얻은 광학렌즈는 지름 72mm로 가공한 후 120∼130℃ 온도에 2시간 어닐닝 처리하여 플라스틱 광학렌즈를 얻는다.The optical lens thus obtained is processed to have a diameter of 72 mm and then annealed at a temperature of 120 to 130° C. for 2 hours to obtain a plastic optical lens.
실시예 3 및 4는 실시 예 1과 같은 방법으로 실시하였다Examples 3 and 4 were carried out in the same manner as in Example 1.
비교예 1∼4는 공지된 티올계 화합물(국내공개특허 10-2017-0008679, 국내공개특허 10-2013-0050263 참조)인 2,3-비스(2-메르캅토에틸티오)-프로판-1-티올(GST). 4,8-디메르캅토메틸-1.11-디메르캅토-3,6,9-트리티아운데칸(DMDDU), 2-(2-메르캅토에틸티오)-3-(3-메르캅토-2-〔3-메르캅토-2-(2-메르캅토에틸티오)-프로필티오〕프로필티오)-프로판-1-티올(MMPT)의 참조하여 표 1과, 물성 측정 결과를 대비하여 표 2로 나타내었다. Comparative Examples 1 to 4 are 2,3-bis(2-mercaptoethylthio)-propane-1- which is a known thiol-based compound (refer to Korean Patent Publication No. 10-2017-0008679 and Korean Patent Publication No. 10-2013-0050263). Thiol (GST). 4,8-dimercaptomethyl-1.11-dimercapto-3,6,9-trithioundecane (DMDDU), 2-(2-mercaptoethylthio)-3-(3-mercapto-2- [3-mercapto-2-(2-mercaptoethylthio)-propylthio]propylthio)-propane-1-thiol (MMPT) is shown in Table 2 by comparing the results of measurement of physical properties with Table 1 with reference to .
[표 1][Table 1]
Figure PCTKR2020019176-appb-I000006
Figure PCTKR2020019176-appb-I000006
렌즈의 물성확인Check the physical properties of the lens
실시 예 및 비교 예에서 제조된 렌즈의 굴절률, 아베수 및 내열 온도를 확인하고 그 결과를 표 2로 나타내었다. The refractive index, Abbe's number, and heat resistance temperature of the lenses prepared in Examples and Comparative Examples were checked, and the results are shown in Table 2.
[표 2][Table 2]
Figure PCTKR2020019176-appb-I000007
Figure PCTKR2020019176-appb-I000007
표 2를 참고하면, 제조 예에서 제조된 화합물을 포함하는 실시예의 경우 비교 예 대비 동등하거나 우수한 수준의 아베수를 나타내며, 현저히 우수한 내열온도를 나타내는 것을 확인할 수 있다. Referring to Table 2, it can be seen that, in the case of Examples including the compound prepared in Preparation Example, the Abbe's number is equivalent or superior to that of Comparative Example, and shows a remarkably excellent heat resistance temperature.
제조예 : 2,3-비스(3-메르캅토-2-(2-메르캅토에틸티오)-1-프로필티오)-1-프로판티올 및 1,3-Bis(3-메르캅토-2-(2-메르캅토에틸)티오-프로필티오)-2-프로판티올 이 포함된 조성물Preparation Example: 2,3-bis(3-mercapto-2-(2-mercaptoethylthio)-1-propylthio)-1-propanethiol and 1,3-Bis(3-mercapto-2-( Composition containing 2-mercaptoethyl)thio-propylthio)-2-propanethiol
GST : 2,3-비스(2-메르캅토에틸티오)-프로판-1-티올GST: 2,3-bis(2-mercaptoethylthio)-propane-1-thiol
DMDDU : 4,8-디메르캅토메틸-1.11-디메르캅토-3,6,9-트리티아운데칸.DMDDU: 4,8-dimercaptomethyl-1.11-dimercapto-3,6,9-trithiaundecane.
PETMP : 펜타에리트리톨-테트라키스(3-메르캅토프로피온네이트)PETMP: pentaerythritol-tetrakis (3-mercaptopropionate)
H6XDI : 1,3-비스(이소시아네이토메틸)사이클로헥산H 6 XDI: 1,3-bis (isocyanatomethyl) cyclohexane
H12MDI : 디시클로헥실메탄-4,4‘-디이소시아네이트H 12 MDI: dicyclohexylmethane-4,4'-diisocyanate
IPDI : 이소포론디이소시아네이트IPDI: isophorone diisocyanate
HDI : 헥사메틸렌디이소시아네이트HDI: hexamethylene diisocyanate
XDI : 메타-자일렌 디이소시아네이트XDI: Meta-xylene diisocyanate
Zelec UNTM : Stepan사의 산성 인산에스테르화합물Zelec UN TM : Acidic phosphate ester compound from Stepan
HOPBT : 2-(2'-히드록시 -5‘-t-옥티페닐)-2H-벤조트리아졸HOPBT: 2-(2'-hydroxyl-5'-t-octiphenyl)-2H-benzotriazole
HTAQ : 1-히드록시-4-(파라-폴루딘)엔트로퀴논HTAQ: 1-hydroxy-4-(para-poludine) entroquinone
PRD : 퍼리논 염료PRD: Perinone Dyes
DBTC : 디부틸틴디클로라이드DBTC: dibutyltin dichloride
GST :GST:
Figure PCTKR2020019176-appb-I000008
Figure PCTKR2020019176-appb-I000008
DMDDU :DMDDU:
Figure PCTKR2020019176-appb-I000009
Figure PCTKR2020019176-appb-I000009
MMPT :MMPT:
Figure PCTKR2020019176-appb-I000010
Figure PCTKR2020019176-appb-I000010

Claims (8)

  1. 하기 화학식 1의 화합물 및 화학식 2 화합물이 포함된 광학재료용 티올계 조성물. A thiol-based composition for an optical material comprising a compound of Formula 1 and a compound of Formula 2 below.
    [화학식 1][Formula 1]
    Figure PCTKR2020019176-appb-I000011
    Figure PCTKR2020019176-appb-I000011
    [화학식 2][Formula 2]
    Figure PCTKR2020019176-appb-I000012
    Figure PCTKR2020019176-appb-I000012
  2. 제1항에 있어서.The method of claim 1 .
    상기 광학재료용 티올계 조성물은 화학식 1의 화합물 100 중량부 대비 화학식 2의 화합물이 4 내지 7 중량부가 포함된 광학재료용 티올계 조성물.The thiol-based composition for an optical material is a thiol-based composition for an optical material containing 4 to 7 parts by weight of the compound of Formula 2 based on 100 parts by weight of the compound of Formula 1.
  3. 에피클로로하이드린(Epichlorohydrin)을 출발물질로 하여, 하기 화학식 1의 화합물이 포함된 광학재료용 티올계 조성물의 제조방법. A method for producing a thiol-based composition for an optical material containing a compound of the following formula 1 using epichlorohydrin as a starting material.
    [화학식 1][Formula 1]
    Figure PCTKR2020019176-appb-I000013
    Figure PCTKR2020019176-appb-I000013
  4. 제 3항에 있어서,4. The method of claim 3,
    상기 광학재료용 티올계 조성물은 하기 화학식 2의 화합물을 더 포함하는 광학재료용 티올계 조성물의 제조방법.The thiol-based composition for an optical material is a method for producing a thiol-based composition for an optical material further comprising a compound of formula (2).
    [화학식 2][Formula 2]
    Figure PCTKR2020019176-appb-I000014
    Figure PCTKR2020019176-appb-I000014
  5. 제 4항에 있어서,5. The method of claim 4,
    상기 광학재료용 티올에서 화학식 1의 화합물 100중량부 대비 화학식 2의 화합물이 4 내지 7 중량부 포함되어 있는 광학재료용 티올계 조성물의 제조방법.A method for producing a thiol-based composition for an optical material, wherein 4 to 7 parts by weight of the compound of Formula 2 is contained relative to 100 parts by weight of the compound of Formula 1 in the thiol for an optical material.
  6. 제 3항에 있어서,4. The method of claim 3,
    상기 광학재료용 티올계 조성물의 제조방법은 The method for preparing the thiol-based composition for an optical material is
    에피클로로하이드린과 머캅토알코올을 반응시키는 제 1단계;A first step of reacting epichlorohydrin with mercapto alcohol;
    제 1단계의 생성물을 황화수소염과 반응시켜 말단의 염소를 황화수소기로 치환시키고, 에피클로로하이드린과 반응시키는 제 2단계; 및a second step of reacting the product of the first step with a hydrogen sulfide salt to replace the chlorine at the end with a hydrogen sulfide group, and reacting with epichlorohydrin; and
    상기 제 2단계에서 생성된 화합물과 티오우레아(Thiourea)를 반응시키는 제 3단계;를 포함하는 광학재료용 티올계 조성물의 제조방법. A method for producing a thiol-based composition for an optical material comprising a; a third step of reacting the compound produced in the second step with thiourea.
  7. 제 6항에 있어서,7. The method of claim 6,
    상기 황화수소염 : 상기 제 1단계에서 제조된 화합물의 몰비는 1:1 내지 1.2인 광학재료용 티올계 조성물의 제조방법The molar ratio of the hydrogen sulfide salt: the compound prepared in the first step is 1:1 to 1.2. Method for producing a thiol-based composition for an optical material
  8. 제1항 또는 제2항에 기재된 티올계 조성물 및 이소시아네이트 화합물이 중합된 광학재료. An optical material in which the thiol-based composition according to claim 1 or 2 and an isocyanate compound are polymerized.
PCT/KR2020/019176 2020-04-09 2020-12-28 Method for producing polythiol compound, polymerizable composition for optical material including same, and optical lens WO2021206269A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080005058.9A CN113784998A (en) 2020-04-09 2020-12-28 Method for preparing polythiol compound, polymerizable composition for optical material using the same, and optical lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200043500A KR102122703B1 (en) 2020-04-09 2020-04-09 Manufacturing method of polythiol compound and optical material containing it
KR10-2020-0043500 2020-04-09

Publications (1)

Publication Number Publication Date
WO2021206269A1 true WO2021206269A1 (en) 2021-10-14

Family

ID=71136894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/019176 WO2021206269A1 (en) 2020-04-09 2020-12-28 Method for producing polythiol compound, polymerizable composition for optical material including same, and optical lens

Country Status (3)

Country Link
KR (1) KR102122703B1 (en)
CN (1) CN113784998A (en)
WO (1) WO2021206269A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122703B1 (en) * 2020-04-09 2020-06-26 주식회사 대원에프엔씨 Manufacturing method of polythiol compound and optical material containing it
KR102448166B1 (en) * 2020-09-22 2022-09-27 에스케이씨 주식회사 Polythiol composition and optical polymerizable composition including the same
WO2022114719A1 (en) * 2020-11-27 2022-06-02 에스케이씨 주식회사 Polythiol composition, optical composition, and optical product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090092225A (en) * 2008-02-26 2009-08-31 주식회사 신대특수재료 Super-high refractive index optical resin composition having a higher heat deflection temperature and an excellent thermal stability, optical lens using it and its preparation method
KR20110033960A (en) * 2006-04-20 2011-04-01 미쓰이 가가쿠 가부시키가이샤 Method for producing polythiol compound for optical material and polymerizable composition containing same
KR20130050263A (en) * 2011-11-07 2013-05-15 주식회사 케이오씨솔루션 Preparation method of polythiol compound and polymerizable composition for optical material comprising it
KR20130086570A (en) * 2012-01-25 2013-08-02 주식회사 케이오씨솔루션 Method of producing polythiol compound for optical material and optical material composition comprising the polythiol compound
CN105294974A (en) * 2015-11-30 2016-02-03 黄河三角洲京博化工研究院有限公司 Method for preparing polyurethane resin optical material with high impact toughness
KR102122703B1 (en) * 2020-04-09 2020-06-26 주식회사 대원에프엔씨 Manufacturing method of polythiol compound and optical material containing it

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608115A (en) 1994-01-26 1997-03-04 Mitsui Toatsu Chemicals, Inc. Polythiol useful for preparing sulfur-containing urethane-based resin and process for producing the same
KR101400358B1 (en) 2012-05-23 2014-05-27 주식회사 케이오씨솔루션 Method of producing polythiol compound for optical material and polymerizable composition for optical material comprising the polythiol compound
KR20160028486A (en) 2012-08-14 2016-03-11 미쓰이 가가쿠 가부시키가이샤 Production method for polythiol compound, polymerizable composition for optical material and use therefor
WO2017010791A1 (en) 2015-07-13 2017-01-19 케이에스랩(주) Optical composition for blocking electromagnetic waves and method for manufacturing optical lens therefrom

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110033960A (en) * 2006-04-20 2011-04-01 미쓰이 가가쿠 가부시키가이샤 Method for producing polythiol compound for optical material and polymerizable composition containing same
KR20090092225A (en) * 2008-02-26 2009-08-31 주식회사 신대특수재료 Super-high refractive index optical resin composition having a higher heat deflection temperature and an excellent thermal stability, optical lens using it and its preparation method
KR20130050263A (en) * 2011-11-07 2013-05-15 주식회사 케이오씨솔루션 Preparation method of polythiol compound and polymerizable composition for optical material comprising it
KR20130086570A (en) * 2012-01-25 2013-08-02 주식회사 케이오씨솔루션 Method of producing polythiol compound for optical material and optical material composition comprising the polythiol compound
CN105294974A (en) * 2015-11-30 2016-02-03 黄河三角洲京博化工研究院有限公司 Method for preparing polyurethane resin optical material with high impact toughness
KR102122703B1 (en) * 2020-04-09 2020-06-26 주식회사 대원에프엔씨 Manufacturing method of polythiol compound and optical material containing it

Also Published As

Publication number Publication date
CN113784998A (en) 2021-12-10
KR102122703B1 (en) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2021206269A1 (en) Method for producing polythiol compound, polymerizable composition for optical material including same, and optical lens
WO2019132491A1 (en) Isocyanate composition with improved stability and reactivity, and optical lens using same
WO2019235862A1 (en) Method for manufacturing diisocyanate and optical lens
WO2013112028A1 (en) Method for producing 3-mercaptopropionic acid, and carbonic acid ester composition having mercapto group using same, and method for producing thiourethane-based optical materials
JP6640274B2 (en) Isocyanate composition for optical lens and method for producing the same
WO2016204547A2 (en) Method for producing 3-mercaptopropionic acid, and methods using same for producing carbonic acid ester compound having mercapto group and thiourethane-based optical material
WO2010076942A1 (en) Light weight high refraction resin composition for optical lens using novel thiol compound and optical lens using the same
WO2013176506A1 (en) Novel method for preparing polythiol compound and polymeric composition for optical material comprising same
WO2012112014A2 (en) Novel polythiol compound, preparation method therefor, and resin composition for urethane optical material using same
WO2018043896A1 (en) Polythiol composition for optical material and method for preparing same
WO2013069965A1 (en) Method for manufacturing polythiol compound, and polymerization composite for optical material comprising same
WO2012112015A2 (en) Polythiol compound chain-extended through ring-opening, preparation method therefor, and resin composition for urethane optical material using same
WO2018043901A1 (en) Method for preparing polythiol compound for optical material
WO2021215606A1 (en) Diisocyanate composition and optical lens produced using same
WO2018194298A2 (en) Resin composition for epoxy acryl-based medium-refractive optical lens and preparation method therefor
WO2010128770A2 (en) Resin composition for urethane optical lens having excellent thermal resistance and reactivity
JPS62267316A (en) Resin for plastic lens having high refractive index
WO2018216901A1 (en) Resin composition for epoxy acrylic middle-refractive optical lens and preparation method therefor
WO2020197156A1 (en) Composition for episulfide-based high refractive optical material, and method for manufacturing optical material using same
WO2014077589A1 (en) Polymeric composition for highly refractive epoxy-acrylic optical material, and method for manufacturing highly refractive epoxy-acrylic optical material
WO2014027849A1 (en) Polymerizable composition for epoxy acrylic optical material, and method for preparing epoxy acrylic optical material
WO2021201459A1 (en) Resin composition for thiourethane-based optical material, and method for preparing resin for thiourethane-based optical material
JPS63130614A (en) Resin for high-refractive index plastic lens
WO2022059820A1 (en) Production method for isocyanate compound comprising non-chlorinated derivative, and composition of same
WO2018151501A1 (en) Polyol or polythiol compound, preparation method therefor, transparent polyurethane-based resin prepared therefrom, and optical body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930605

Country of ref document: EP

Kind code of ref document: A1