WO2021206096A1 - Solder particles, production method for solder particles, and substrate with solder particles - Google Patents

Solder particles, production method for solder particles, and substrate with solder particles Download PDF

Info

Publication number
WO2021206096A1
WO2021206096A1 PCT/JP2021/014656 JP2021014656W WO2021206096A1 WO 2021206096 A1 WO2021206096 A1 WO 2021206096A1 JP 2021014656 W JP2021014656 W JP 2021014656W WO 2021206096 A1 WO2021206096 A1 WO 2021206096A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder particles
solder
substrate
convex portion
alloy
Prior art date
Application number
PCT/JP2021/014656
Other languages
French (fr)
Japanese (ja)
Inventor
勝将 宮地
芳則 江尻
邦彦 赤井
純一 畠
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2022514090A priority Critical patent/JPWO2021206096A1/ja
Priority to CN202180026545.8A priority patent/CN115362044A/en
Publication of WO2021206096A1 publication Critical patent/WO2021206096A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold

Definitions

  • the present invention relates to solder particles, a method for producing solder particles, and a substrate with solder particles.
  • Patent Document 1 describes a conductive paste containing a thermosetting component and a plurality of solder particles that have been subjected to a specific surface treatment.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing solder particles capable of producing solder particles having both a small average particle size and a narrow particle size distribution. Another object of the present invention is to provide solder particles having both a small average particle size and a narrow particle size distribution by the above manufacturing method.
  • One aspect of the present invention includes a preparatory step of preparing a substrate having a plurality of convex portions, a solder layer forming step of forming a solder layer on the convex portions of at least a part of the substrate, and forming on the convex portions.
  • the present invention relates to a method for producing solder particles, which comprises a fusion step of fusing the said solder layers to form solder particles on the convex portion.
  • solder particles having a desired particle size can be obtained with a narrow particle size distribution by appropriately adjusting the shape of the convex portion and the thickness of the solder layer. That is, according to the above manufacturing method, it is possible to easily manufacture solder particles having both a small average particle size and a narrow particle size distribution, which was difficult to manufacture in the past.
  • the convex portion may be columnar or frustum-shaped.
  • the substrate may have a first surface comprising a plurality of convex portions and a bottom portion formed between the convex portions, and the projection of the bottom portion in the projected area of the first surface.
  • the area ratio may be 8% or more.
  • the manufacturing method according to one aspect may form the solder layer on the convex portion by at least one method selected from the group consisting of plating, vapor deposition, sputtering and spray coating in the solder layer forming step.
  • the manufacturing method according to one aspect may further include a reduction step of exposing the solder layer formed on the convex portion to a reducing atmosphere before the fusion step.
  • the solder layer formed on the convex portion may be fused in a reducing atmosphere.
  • the solder layer may contain at least one selected from the group consisting of tin, tin alloys, indium and indium alloys.
  • the solder layer comprises In—Bi alloy, In—Sn alloy, In—Sn—Ag alloy, Sn—Au alloy, Sn—Bi alloy, Sn—Bi-Ag alloy, Sn—Ag—Cu alloy and It may contain at least one selected from the group consisting of Sn—Cu alloys.
  • the average particle size is 100 nm or more and less than 1 ⁇ m, and C.I. V. For solder particles with a value of 20% or less.
  • solder particles according to one aspect are obtained when a quadrangle circumscribing the projected image of the solder particles is created by two pairs of parallel lines and the distances between the opposing sides are X and Y (however, Y ⁇ X).
  • X and Y may satisfy the following formula. 0.8 ⁇ Y / X ⁇ 1.0
  • the solder particles according to one embodiment may contain at least one selected from the group consisting of tin, tin alloys, indium and indium alloys.
  • solder particles include In—Bi alloy, In—Sn alloy, In—Sn—Ag alloy, Sn—Au alloy, Sn—Bi alloy, Sn—Bi-Ag alloy, Sn—Ag—Cu alloy and Sn.
  • -It may contain at least one selected from the group consisting of Cu alloys.
  • Yet another aspect of the present invention relates to a substrate with solder particles, comprising a substrate having a plurality of convex portions and a plurality of solder particles arranged on the convex portions of the substrate.
  • a substrate with solder particles can be easily manufactured by the fusion step in the above-mentioned manufacturing method.
  • Such a substrate with solder particles facilitates transportation, storage and management of the solder particles.
  • the average particle size of the solder particles may be 100 nm or more and less than 1 ⁇ m, and the C.I. V. The value may be 20% or less.
  • solder particles capable of producing solder particles having both a small average particle size and a narrow particle size distribution. Further, according to the present invention, solder particles having both a small average particle size and a narrow particle size distribution are provided.
  • FIG. 1A is a plan view schematically showing an example of a substrate
  • FIG. 1B is a cross-sectional view taken along the line Ib-Ib shown in FIG. 1A.
  • FIG. 2A is a cross-sectional view schematically showing an example of the convex portion
  • FIG. 2B is a cross-sectional view schematically showing another example of the convex portion.
  • 3A to 3E are diagrams schematically showing an example of the shape of the cross section perpendicular to the height direction of the convex portion.
  • FIG. 4 is a cross-sectional view schematically showing an example of a state in which a solder layer is formed on a convex portion of a substrate.
  • FIG. 5 is a cross-sectional view schematically showing an example of a state in which solder particles are formed on the convex portion of the substrate.
  • FIG. 6 is a cross-sectional view schematically showing another example of a state in which a solder layer is formed on a convex portion of a substrate.
  • FIG. 7 is a cross-sectional view schematically showing another example of a state in which solder particles are formed on the convex portion of the substrate.
  • FIG. 8 is a diagram showing distances X and Y (provided that Y ⁇ X) between opposite sides when a quadrangle circumscribing a projected image of solder particles is created by two pairs of parallel lines.
  • FIG. 9 is an SEM image of the substrate prepared in Example 13.
  • FIG. 9 is an SEM image of the substrate prepared in Example 13.
  • FIG. 10 is an SEM image of the state in which the solder layer is formed on the convex portion of the substrate in Example 13.
  • FIG. 11 is an SEM image of the state in which the solder particles are formed on the convex portion of the substrate in Example 13.
  • FIG. 12 is an SEM image of the solder particles obtained in Example 2.
  • FIG. 13 is an SEM image of the solder particles obtained in Comparative Example 2.
  • each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value of the numerical range of one step may be replaced with the upper limit value or the lower limit value of the numerical range of another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • the method for producing solder particles according to the present embodiment includes a preparatory step of preparing a substrate having a plurality of convex portions, a solder layer forming step of forming a solder layer on at least a part of the convex portions of the substrate, and a solder layer forming step on the convex portions. It includes a fusion step of fusing the solder layers formed in the above to form solder particles on the convex portion.
  • solder particles having a desired particle size can be obtained with a narrow particle size distribution by appropriately adjusting the shape of the convex portion and the thickness of the solder layer. That is, according to the above manufacturing method, solder particles having both a small average particle size and a narrow particle size distribution (for example, an average particle size of 100 nm to 30 ⁇ m and a CV value of 20%), which was difficult to manufacture in the past, are achieved. The following solder particles) can be easily manufactured.
  • solder particles that are difficult to manufacture by the conventional method.
  • extremely small solder particles having an average particle diameter of 100 nm or more and less than 1 ⁇ m can be obtained with a narrow particle size distribution (for example, a CV value of 20% or less).
  • FIG. 1A is a diagram schematically showing an example of a substrate
  • FIG. 1B is a cross-sectional view taken along the line Ib-Ib shown in FIG. 1A.
  • the substrate 10 shown in FIG. 1A has a plurality of convex portions 11.
  • the plurality of convex portions 11 may be regularly arranged in a predetermined pattern.
  • the solder particles formed on the convex portion 11 can be transferred to a resin material or the like so that the solder particles can be arranged regularly.
  • the substrate 10 may have a first surface 10a including a plurality of convex portions 11 and a bottom portion 12 formed between the convex portions 11.
  • the first surface 10a may be composed of a top portion 11a of the convex portion 11 and a bottom surface 12a composed of the bottom portion 12.
  • the solder particles on the convex portions 11 may come into contact with each other and fuse with each other to generate solder particles having a large particle size in the fusion step described later.
  • the ratio of the projected area of the bottom 12 to the projected area of the first surface 10a (that is, the area of the bottom surface 12a to the projected area of the first surface 10a).
  • the ratio is preferably 8% or more, more preferably 10% or more, and may be 15% or more.
  • the upper limit of the ratio is not particularly limited. From the viewpoint of further improving the production efficiency of the solder particles, for example, it may be 95% or less, preferably 90% or less, and further preferably 80% or less.
  • the convex portion 11 is formed in a columnar shape, but the shape of the convex portion 11 is not limited to this.
  • the convex portion 11 may have a columnar shape such as a columnar shape, an elliptical columnar shape, a triangular columnar shape, a square columnar shape, or a polygonal columnar shape, and may have a conical frustum shape, an elliptical frustum shape, a triangular frustum shape, or a square frustum shape. , It may be a frustum shape such as a polygonal frustum shape.
  • the top portion 11a of the convex portion 11 is described as a flat surface in FIGS. 1A and 1B, the top portion 11a does not necessarily have to be a flat surface.
  • the top 11a may have a recess or a protrusion. From the viewpoint of improving the retention of the solder particles formed on the top portion 11a, it is preferable that the top portion 11a has a recess in the center.
  • FIG. 2A is a cross-sectional view schematically showing an example of a convex portion
  • FIG. 2B is a cross-sectional view schematically showing an example of a convex portion.
  • the convex portion 11 shown in FIG. 2A is a prismatic convex portion
  • the convex portion 21 shown in FIG. 2B is a frustum-shaped convex portion.
  • the width D 11 and the width D 12 are not particularly limited, and may be, for example, 200 nm or more, preferably 400 nm or more, and more preferably 1.0 ⁇ m or more from the viewpoint of avoiding contact between solder particles on adjacent convex portions. Further, the width D 11 and the width D 12 may be, for example, 10 ⁇ m or less, preferably 4.0 ⁇ m or less, and more preferably 2.0 ⁇ m or less from the viewpoint of producing ultrafine particle size solder particles having a particle size of 800 nm or less.
  • the height H 1 of the convex portion 11 is not particularly limited, and may be, for example, 10% or more of the width D 11 , avoiding contact with the solder on the bottom portion 12, and making it easier to obtain more accurate solder particles. preferably at least 25% of the width D 11 from the viewpoint, more preferably at least 50% of the width D 11.
  • the height H 1 of the convex portion 11, for example, may be less 1000% of the width D 11, avoiding the breakage of the projections 11, 500% of the width D 11 from the viewpoint of enhancing the recovery rate of the solder particles The following is preferable, and 300% or less of the width D 11 is more preferable.
  • the convex portion 11 can be arranged at an arbitrary position on the substrate 10.
  • the distance L 1 between the adjacent convex portions 11 is not particularly limited, but from the viewpoint of suppressing the formation of large particle size particles due to the contact and fusion of the solder particles on the convex portions 11, for example, it is 3% or more of the width D 11. be in a, preferably 8% or more of the width D 11, more preferably at least 15% of the width D 11.
  • the distance L 1 between the convex portions 11 adjacent for example may be up to 1000% of the width D 11, from the viewpoint of further improving the manufacturing efficiency of the solder particles, preferably 500% or less of the width D 11, More preferably, it is 200% or less of the width D 11.
  • the width D 21 at the top 21 a of the convex portion 21 is smaller than the width D 22 at the contact surface with the bottom 22.
  • the width D 21 is not particularly limited, and may be, for example, 200 nm or more, preferably 400 nm or more, and more preferably 1.0 ⁇ m or more from the viewpoint of avoiding contact between solder particles on adjacent convex portions.
  • the width D 21 may be, for example, 10 ⁇ m or less, preferably 4.0 ⁇ m or less, and more preferably 2.0 ⁇ m or less from the viewpoint of producing ultrafine particle size solder particles having a particle size of 800 nm or less.
  • the width D 22 is not particularly limited, and may be, for example, 200 nm or more, preferably 400 nm or more, and more preferably 1.0 ⁇ m or more from the viewpoint of avoiding contact between solder particles on adjacent convex portions.
  • the width D 22 may be, for example, 10 ⁇ m or less, preferably 4.0 ⁇ m or less, and more preferably 2.0 ⁇ m or less, from the viewpoint of producing ultrafine particle size solder particles having a particle size of 800 nm or less.
  • the ratio of the width D 21 to the width D 22 is not particularly limited, and may be, for example, 1.1 or more. From the viewpoint of avoiding contact between solder particles on the adjacent convex portion, 1. 3 or more is preferable, and 1.5 or more is more preferable.
  • the ratio (D 22 / D 21 ) may be, for example, 3.0 or less, preferably 2.0 or less.
  • the difference between the width D 21 and the width D 22 (D 22- D 21 ) is not particularly limited and may be, for example, 2.0 ⁇ m or less, reducing the amount of solder supplied to the side surface and the bottom 22 of the convex portion 21. From the viewpoint that more accurate solder particles can be easily obtained, 1.0 ⁇ m or less is preferable, and 500 nm or less is more preferable.
  • the height H 2 of the convex portion 21 is not particularly limited, and may be, for example, 10% or more of the width D 22 , avoiding contact with the solder on the bottom portion 12, and making it easier to obtain more accurate solder particles. preferably at least 25% of the width D 22 from the viewpoint, more preferably at least 50% of the width D 22.
  • the height H 2 of the convex portion 21, for example, may be less 1000% of the width D 22, avoiding the breakage of the projections 11, 500% of the width D 22 from the viewpoint of enhancing the recovery rate of the solder particles The following is preferable, and 300% or less of the width D 22 is more preferable.
  • the distance L 2 between the adjacent convex portions 21 is not particularly limited, but from the viewpoint of suppressing the formation of large particle size particles due to the contact and fusion of the solder particles on the convex portions 21, for example, it is 3% or more of the width D 22. be in a, preferably 8% or more of the width D 22, more preferably at least 15% of the width D 22.
  • the distance L 2 between adjacent convex portions 21 is, for example may be up to 1000% of the width D 22, from the viewpoint of further improving the manufacturing efficiency of the solder particles, preferably 500% or less of the width D 22, More preferably, it is 200% or less of the width D 22.
  • the shape of the cross section perpendicular to the height direction of the convex portion 11 and the convex portion 21 is not particularly limited, and may be, for example, the shape shown in FIG. 3A to 3E are diagrams schematically showing an example of the shape of the cross section perpendicular to the height direction of the convex portion.
  • the material constituting the substrate 10 is not particularly limited, and a material having heat resistance that does not deteriorate at the melting temperature of the solder layer is preferable.
  • the material constituting the substrate 10 may be, for example, an inorganic material such as silicon, various ceramics, glass, or stainless steel, or an organic material such as various resins.
  • the method for producing the substrate 10 is not particularly limited, and the substrate 10 can be appropriately produced by a known method (for example, a photolithography method) capable of forming the convex portion 11.
  • solder layer forming step a solder layer is formed on at least a part of the convex portion of the substrate (solder layer forming step).
  • solder material for forming the solder layer a commercially available solder material can be used without particular limitation, and can be appropriately selected depending on the desired characteristics of the solder particles, the method for forming the solder layer, and the like.
  • a solder plate that can be used as a target for sputtering is selected.
  • the solder material may include, for example, tin or a tin alloy.
  • tin alloy for example, In—Sn alloy, In—Sn—Ag alloy, Sn—Au alloy, Sn—Bi alloy, Sn—Bi—Ag alloy, Sn—Ag—Cu alloy, Sn—Cu alloy and the like are used. be able to. Specific examples of these tin alloys include the following examples.
  • the solder material may include, for example, indium or an indium alloy.
  • the indium alloy for example, an In—Bi alloy, an In—Ag alloy, or the like can be used. Specific examples of these indium alloys include the following examples. -In-Bi (In66.3% by mass, Bi33.7% by mass, melting point 72 ° C.) -In-Bi (In33.0% by mass, Bi67.0% by mass, melting point 109 ° C) -In-Ag (In97.0% by mass, Ag3.0% by mass, melting point 145 ° C)
  • the tin alloy or indium alloy can be selected as the solder material according to the use of the solder particles (temperature at the time of use) and the like. For example, when it is desired to obtain solder particles used for fusion at a low temperature, an In—Sn alloy or a Sn—Bi alloy may be adopted. In this case, solder particles that can be fused at 150 ° C. or lower can be obtained. When a solder material having a high melting point such as a Sn—Ag—Cu alloy or a Sn—Cu alloy is used, solder particles capable of maintaining high reliability even after being left at a high temperature can be obtained.
  • the solder material may further contain one or more selected from Ag, Cu, Ni, Bi, Zn, Pd, Pb, Au, P and B.
  • Ag or Cu may be contained from the following viewpoints. That is, when the solder material contains Ag or Cu, the melting point of the obtained solder particles can be lowered to about 220 ° C., and the solder particles having excellent bonding strength with the electrode can be obtained, so that better conduction reliability can be obtained. The effect of obtaining sex is achieved.
  • the Cu content of the solder material is, for example, 0.05 to 10% by mass, and may be 0.1 to 5% by mass or 0.2 to 3% by mass.
  • the Cu content is 0.05% by mass or more, it becomes easy to obtain solder particles capable of achieving good solder connection reliability. Further, when the Cu content is 10% by mass or less, solder particles having a low melting point and excellent wettability can be easily obtained, and as a result, the connection reliability of the joint portion by the solder particles tends to be improved.
  • the Ag content of the solder material is, for example, 0.05 to 10% by mass, and may be 0.1 to 5% by mass or 0.2 to 3% by mass.
  • the Ag content is 0.05% by mass or more, it becomes easy to obtain solder particles capable of achieving good solder connection reliability. Further, when the Ag content is 10% by mass or less, solder particles having a low melting point and excellent wettability can be easily obtained, and as a result, the connection reliability of the joint portion by the solder particles tends to be improved.
  • solder layer forming step a solder layer is formed on each of the convex portions of the substrate.
  • the solder layer forming step may be a step of forming a solder layer on all the convex portions of the substrate prepared in the preparation step, and is a step of forming a solder layer on a part of the convex portions of the substrate prepared in the preparation step. May be good.
  • the method of forming the solder layer is not particularly limited.
  • the method for forming the solder layer include plating, vapor deposition, sputtering, and spray coating. Of these, sputtering is preferable from the viewpoint that the thickness of the solder layer can be strictly controlled and solder particles having a smaller particle size distribution can be easily obtained.
  • the amount of the solder layer formed is not particularly limited, and may be appropriately changed according to the desired size of the solder particles. By appropriately changing the amount of the solder layer formed on the convex portion, the size of the solder particles formed on the convex portion can be easily adjusted.
  • the solder layer may be formed only on the convex portion of the substrate, and the solder layer may be formed on a portion other than the convex portion of the substrate.
  • a solder layer may be formed on the convex portion and the bottom portion of the substrate.
  • FIG. 4 is a cross-sectional view schematically showing an example of a state in which the solder layer 50 is formed on the convex portion 11 of the substrate 10.
  • the solder layer is formed only on the convex portion 11 of the substrate 10.
  • the solder layer is formed using the above-mentioned solder materials and may contain at least one selected from the group consisting of tin, tin alloys, indium and indium alloys.
  • the solder layer includes In—Bi alloy, In—Sn alloy, In—Sn—Ag alloy, Sn—Au alloy, Sn—Bi alloy, Sn—Bi-Ag alloy, Sn—Ag—Cu alloy and Sn—Cu. It may include at least one selected from the group consisting of alloys.
  • FIG. 6 is a cross-sectional view schematically showing another example of a state in which the solder layer 50 is formed on the convex portion 11 of the substrate 10.
  • the solder layer 50 is formed on the convex portion 11 of the substrate 10, and the solder layer 51 is also formed on the bottom portion 12 of the substrate 10.
  • the amount of the solder layer 50 formed on the convex portion 11 is, for example, 20% with respect to the total volume of the solder layers formed on the substrate (total volumes of the solder layer 50 and the solder layer 51).
  • the above is preferable, 30% or more is more preferable, 50% or more is further preferable, and 60% or more is further preferable.
  • solder layers formed on the convex portions are fused to form solder particles on the convex portions (fusion step).
  • the solder layer formed on the convex portion is united by melting and spheroidized by surface tension to form solder particles.
  • Examples of the method of melting the solder layer include a method of heating the solder layer to a temperature equal to or higher than the melting point of the solder material constituting the solder layer. Due to the influence of the oxide film, the solder layer may not melt even if it is heated at a temperature equal to or higher than the melting point, it may not spread even if it melts, or it may not unify. Therefore, it is preferable to expose the solder layer to a reducing atmosphere to remove the oxide film on the surface of the solder layer, and then heat the solder layer to a temperature equal to or higher than the melting point of the solder material. Further, it is preferable that the solder layer is melted in a reducing atmosphere. By melting the solder layer in a reducing atmosphere, melting, wetting and spreading of the solder layer and coalescence can proceed more efficiently.
  • the method for creating a reducing atmosphere is not particularly limited as long as the above effects can be obtained, and for example, there is a method using hydrogen gas, hydrogen radical, formic acid gas, or the like.
  • a hydrogen reduction furnace, a hydrogen radical reduction furnace, a formic acid reduction furnace, or a conveyor furnace or a continuous furnace thereof the solder layer can be melted in a reduction atmosphere.
  • These devices may be equipped with a heating device, a chamber filled with an inert gas (nitrogen, argon, etc.), a mechanism for evacuating the inside of the chamber, etc., which makes it easier to control the reducing gas. Become. Further, if the inside of the chamber can be evacuated, voids can be removed by reducing the pressure after the solder layer is melted and coalesced, and solder particles having further excellent connection stability can be obtained.
  • Profiles such as reduction of the solder layer, melting conditions, temperature, and adjustment of the atmosphere in the furnace may be appropriately set in consideration of the melting point, particle size, recess size, substrate material, etc. of the solder layer.
  • a substrate having a solder layer formed on a convex portion is inserted into a furnace, evacuated, and then a reducing gas is introduced to fill the inside of the furnace with the reducing gas to form an oxide film on the surface of the solder layer.
  • the reducing gas is removed by evacuation, and then heated above the melting point of the solder layer to melt and coalesce the solder layer to form solder particles on the convex parts, and then nitrogen gas.
  • the temperature inside the furnace can be returned to room temperature to obtain solder particles.
  • a substrate having a solder layer formed on a convex portion is inserted into a furnace, evacuated, and then a reducing gas is introduced to fill the inside of the furnace with the reducing gas, and then a heater in the furnace is used.
  • the reducing gas is removed by vacuuming, and then the solder layer is heated to a temperature equal to or higher than the melting point of the solder layer to melt and coalesce the solder layer.
  • the temperature inside the furnace can be returned to room temperature after filling with nitrogen gas to obtain the solder particles.
  • a substrate having a solder layer formed on a convex portion is inserted into a furnace, and after vacuuming, a reducing gas is introduced to fill the inside of the furnace with the reducing gas, and a heater in the furnace is used.
  • the substrate is heated above the melting point of the solder layer to remove the surface oxide film of the solder layer by reduction, and at the same time, the solder layer is melted and united to form solder particles on the convex portions, which are reduced by vacuuming.
  • the solder particles can be obtained by filling with nitrogen gas and then returning the temperature in the furnace to room temperature. In this case, since it is sufficient to adjust the temperature rise and fall in the furnace once, there is an advantage that the processing can be performed in a short time.
  • the inside of the furnace may be made into a reducing atmosphere again, and a step of removing the surface oxide film that could not be completely removed may be further added. As a result, it is possible to reduce the residue such as the solder layer remaining without being fused and a part of the oxide film remaining without being fused.
  • a substrate having a solder layer formed on a convex portion can be placed on a conveyor and passed through a plurality of zones in succession to obtain solder particles.
  • a substrate having a solder layer formed on a convex portion is placed on a conveyor set at a constant speed, passed through a zone filled with an inert gas such as nitrogen or argon at a temperature lower than the melting point of the solder layer, and then passed.
  • the surface oxide film of the solder layer is removed by passing through a zone where a reducing gas such as formic acid gas having a temperature lower than the melting point of the solder layer is present, and then nitrogen, argon or the like having a temperature higher than the melting point of the solder layer is not used.
  • Solder particles can be obtained by passing through a zone filled with active gas to melt and coalesce the solder layer, and then through a cooling zone filled with an inert gas such as nitrogen or argon.
  • a substrate having a solder layer formed on a convex portion is placed on a conveyor set at a constant speed, passed through a zone filled with an inert gas such as nitrogen or argon at a temperature equal to or higher than the melting point of the solder layer, and then passed.
  • the surface oxide film of the solder layer is removed, melted and coalesced by passing through a zone where a reducing gas such as formic acid gas having a temperature equal to or higher than the melting point of the solder layer exists, and then inert such as nitrogen and argon.
  • Solder particles can be obtained by passing through a gas-filled cooling zone. Since the conveyor furnace can be processed at atmospheric pressure, a film-like material can be continuously processed by roll-to-roll.
  • a continuous roll product of a substrate in which a solder layer is formed on a convex portion is produced, a roll unwinder is installed on the inlet side of the conveyor furnace, and a roll winder is installed on the outlet side of the conveyor furnace to maintain a constant speed.
  • a roll unwinder is installed on the inlet side of the conveyor furnace
  • a roll winder is installed on the outlet side of the conveyor furnace to maintain a constant speed.
  • the formed solder particles may be transported and stored in a state of being formed on the convex portion of the substrate.
  • a substrate in which solder particles are formed on the convex portion can be suitably handled as a substrate with solder particles.
  • a substrate with solder particles includes a substrate having a plurality of convex portions and a plurality of solder particles arranged on the convex portions of the substrate.
  • the average particle size of the solder particles is 100 nm or more and less than 1 ⁇ m, and the C.I. V. The value may be 20% or less.
  • the formed solder particles may be recovered from the convex portion.
  • the resin material may be arranged so as to face the convex portion of the substrate, and the solder particles on the convex portion may be transferred to the resin material. At this time, if the convex portions are regularly arranged, the solder particles can be regularly arranged on the resin material.
  • FIG. 5 is a cross-sectional view schematically showing an example of a state in which solder particles are formed on the convex portion of the substrate.
  • the substrate 100 with solder particles shown in FIG. 5 is obtained by subjecting the substrate 10 on which the solder layer 50 shown in FIG. 4 is formed to a fusion step.
  • the solder particles 1 are formed on the convex portions 11 of the base 10 having a plurality of convex portions 11.
  • FIG. 7 is a cross-sectional view schematically showing another example of a state in which solder particles are formed on the convex portion of the substrate.
  • the base 110 with solder particles shown in FIG. 7 is obtained by subjecting the base 10 on which the solder layer 50 and the solder layer 51 shown in FIG. 6 are formed to a fusion step.
  • the solder particles 1 are formed on the convex portions 11 of the base 10 having a plurality of convex portions 11.
  • solder particles 2 derived from the solder layer 51 are formed on the bottom portion 12 between the convex portions 11.
  • solder particles 2 do not always show a small particle size distribution, in this embodiment, it is preferable to collect or transfer only the solder particles 1.
  • the solder particles 2 are fixed to the bottom portion 12 of the substrate 10 and exist at a position lower than the solder particles 1 on the convex portion 11. Therefore, for example, by arranging the resin material so as to face the convex portion 11 of the substrate 10 and transferring the solder particles 1 on the convex portion 11 to the resin material, only the solder particles 1 can be recovered. ..
  • solder particles having a uniform size regardless of the material and shape of the solder material.
  • indium-based solder can be precipitated by plating, but it is difficult to precipitate it in the form of particles, and it is soft and difficult to handle.
  • indium-based solder particles having a uniform particle size can be easily produced.
  • the formed solder particles can be handled in a state of being formed on the convex portion of the substrate, the solder particles can be transported and stored without being deformed.
  • the formed solder particles are simply formed on the convex portion of the substrate, they can be easily taken out, and the solder particles can be collected, surface-treated, etc. without being deformed.
  • solder material may have a large variation in size and particle size distribution, or may have a distorted shape, and if a solder layer can be formed on the convex portion by a method such as sputtering, plating, or spray coating, the present invention. It can be used as a raw material for the production method of the embodiment.
  • the shape of the convex portion of the substrate can be freely designed by a photolithography method, an imprint method, a machining method, an electron beam processing method, a radiation processing method, or the like. Since the size of the solder particles depends on the amount of the solder layer formed on the convex portion, the size of the solder particles can be freely designed by the design of the convex portion in the manufacturing method of the present embodiment.
  • solder particles have an average particle size of 100 nm or more and 30 ⁇ m or less, and have a C.I. V. The value is 20% or less, preferably the average particle size is 100 nm or more and less than 1 ⁇ m, C.I. V. The value is 20% or less.
  • solder particles have both a small average particle size and a narrow particle size distribution, and can be suitably used as conductive particles applied to an anisotropic conductive material having high conductivity reliability and insulation reliability.
  • the solder particles according to this embodiment are manufactured by the above-mentioned manufacturing method.
  • the average particle size of the solder particles is not particularly limited as long as it is within the above range, and may be, for example, 30 ⁇ m or less, 15 ⁇ m or less, 10 ⁇ m or less, 5 ⁇ m or less, 3 ⁇ m or less, or 2 ⁇ m or less, preferably less than 1 ⁇ m.
  • the average particle size of the solder particles may be, for example, 100 nm or more, 200 nm or more, 300 nm or more, 400 nm or 500 nm or more.
  • the average particle size of the solder particles can be measured using various methods according to the size. For example, a dynamic light scattering method, a laser diffraction method, a centrifugal sedimentation method, an electrical detection band method, a resonance type mass measurement method, or the like can be used. Further, a method of measuring the particle size from an image obtained by an optical microscope, an electron microscope, or the like can be used. Specific devices include a flow-type particle image analyzer, a microtrack, a Coulter counter, and the like.
  • C. of solder particles V The value is preferably 20% or less, more preferably 10% or less, still more preferably 7% or less, and particularly preferably 5% or less, from the viewpoint of achieving more excellent conductivity reliability and insulation reliability.
  • the lower limit of the value is not particularly limited.
  • C.I. V. The value may be 1% or more, and may be 2% or more.
  • a flat surface portion may be formed on a part of the surface of the solder particles, and at this time, the surface other than the flat surface portion is preferably spherical crown-shaped. That is, the solder particles may have a flat surface portion and a spherical crown-shaped curved surface portion.
  • the ratio (A / B) of the diameter A of the flat surface portion to the diameter B of the solder particles may be, for example, more than 0.01 and less than 1.0 (0.01 ⁇ A / B ⁇ 1.0), and may be 0.1. It may be ⁇ 0.9. Since the solder particles have a flat surface portion, the seating of the solder particles is improved and the handleability is improved.
  • solder particles when arranging solder particles on an object to be connected by solder particles such as electrodes, it is easy to arrange them in a predetermined position because there is a flat part, and it is soldered by vibration, wind, external force, static electricity, etc. It has the effect of suppressing the movement of particles from a predetermined position. Further, when the member on which the solder particles are arranged is tilted, there is an effect that the solder particles are hard to move due to gravity as compared with, for example, spherical solder particles having no flat portion.
  • solder particles are formed on the convex portion of the substrate.
  • the flat surface portion may be formed at the contact surface between the solder particles and the top portion of the convex portion.
  • solder particles When a quadrangle circumscribing the projected image of solder particles is created by two pairs of parallel lines, and the distance between the opposing sides is X and Y (where Y ⁇ X), the ratio of Y to X (Y / X) may be more than 0.8 and less than 1.0 (0.8 ⁇ Y / X ⁇ 1.0), and may be 0.9 or more and less than 1.0.
  • solder particles can be said to be particles closer to a true sphere. According to the manufacturing method of the present embodiment described above, such solder particles can be easily obtained.
  • solder particles are close to a true sphere, for example, when a plurality of opposing electrodes are electrically connected via the solder particles, the contact between the solder particles and the electrodes is less likely to be uneven, and a stable connection can be obtained. Tend. Further, when a conductive film or resin in which solder particles are dispersed in a resin material is produced, high dispersibility is obtained, and dispersion stability during production tends to be obtained.
  • solder particles are dispersed in a resin material
  • FIG. 8 is a diagram showing distances X and Y (where Y ⁇ X) between opposite sides when a quadrangle circumscribing a projected image of solder particles is created by two pairs of parallel lines.
  • a quadrangle circumscribing a projected image of solder particles is created by two pairs of parallel lines.
  • an arbitrary particle is observed with a scanning electron microscope to obtain a projected image.
  • Two pairs of parallel lines are drawn with respect to the obtained projected image, and the pair of parallel lines are arranged at the position where the distance between the parallel lines is the minimum, and the other pair of parallel lines are arranged at the position where the distance between the parallel lines is the maximum.
  • Find the Y / X of the particle This operation is performed on 300 solder particles, the average value is calculated, and the Y / X of the solder particles is obtained.
  • the solder particles may contain tin or a tin alloy.
  • tin alloy for example, In—Sn alloy, In—Sn—Ag alloy, Sn—Au alloy, Sn—Bi alloy, Sn—Bi—Ag alloy, Sn—Ag—Cu alloy, Sn—Cu alloy and the like are used. be able to. Specific examples of these tin alloys include the following examples.
  • the solder particles may contain indium or an indium alloy.
  • the indium alloy for example, an In—Bi alloy, an In—Ag alloy, or the like can be used. Specific examples of these indium alloys include the following examples. -In-Bi (In66.3% by mass, Bi33.7% by mass, melting point 72 ° C.) -In-Bi (In33.0% by mass, Bi67.0% by mass, melting point 109 ° C) -In-Ag (In97.0% by mass, Ag3.0% by mass, melting point 145 ° C)
  • the above tin alloy or indium alloy can be selected according to the application (temperature at the time of use) of the solder particles.
  • an In—Sn alloy or a Sn—Bi alloy may be used, and in this case, the solder particles can be fused at 150 ° C. or lower.
  • a material having a high melting point such as Sn—Ag—Cu alloy or Sn—Cu alloy is used, high reliability can be maintained even after being left at a high temperature.
  • the solder particles may contain one or more selected from Ag, Cu, Ni, Bi, Zn, Pd, Pb, Au, P and B.
  • Ag or Cu may be contained from the following viewpoints. That is, when the solder particles contain Ag or Cu, the melting point of the solder particles can be lowered to about 220 ° C., and the bonding strength with the electrode is further improved, so that better conduction reliability can be obtained. It will be easier.
  • the Cu content of the solder particles is, for example, 0.05 to 10% by mass, and may be 0.1 to 5% by mass or 0.2 to 3% by mass.
  • the Cu content is 0.05% by mass or more, it becomes easy to achieve better solder connection reliability.
  • the Cu content is 10% by mass or less, the melting point is low and the solder particles tend to have excellent wettability, and as a result, the connection reliability of the joint portion by the solder particles tends to be good.
  • the Ag content of the solder particles is, for example, 0.05 to 10% by mass, and may be 0.1 to 5% by mass or 0.2 to 3% by mass.
  • the Ag content is 0.05% by mass or more, it becomes easy to achieve better solder connection reliability.
  • the Ag content is 10% by mass or less, the melting point is low and the solder particles tend to have excellent wettability, and as a result, the connection reliability of the joint portion by the solder particles tends to be good.
  • solder particles is not particularly limited, and for example, it can be suitably used as conductive particles for an anisotropic conductive material.
  • applications such as ball grid array connection method (BGA connection), which is widely used for mounting semiconductor integrated circuits, are used to electrically connect electrodes, and parts such as MEMS are sealed, sealed, brazed, and high. It can also be suitably used for applications such as a spacer for controlling a sheath gap. That is, the solder particles can be used for general applications in which conventional solder is used.
  • BGA connection ball grid array connection method
  • Step a1 Preparation of a substrate A substrate (polyimide film, thickness 50 ⁇ m) having a plurality of convex portions having a top diameter of 0.15 ⁇ m ⁇ , a bottom diameter of 0.15 ⁇ m ⁇ , and a height of 0.13 ⁇ m was prepared. The plurality of protrusions were regularly arranged at intervals of 0.15 ⁇ m.
  • Step b1 Formation of Solder Layer
  • the substrate having a plurality of convex portions obtained in the step a1 was put into a sputtering apparatus (manufactured by Arios Co., Ltd.), and after evacuation, argon gas was added to make the inside of the apparatus an argon atmosphere of 1 Pa. .. Then, sputtering was carried out under the following conditions for the time shown in Table 1 to form a solder layer.
  • Target Sn-Bi solder plate (melting point 139 ° C) Input power ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 60W
  • Step c1 Formation of solder particles
  • the substrate having the solder layer obtained in step b1 is put into a formic acid radical reduction furnace (reflow equipment manufactured by Shinko Seiki Co., Ltd.), vacuumed, and then formic acid mixed nitrogen gas (formic acid content 4). %) was introduced into the furnace to fill the inside of the furnace. Then, the inside of the furnace was adjusted to 120 ° C., and the reduction treatment was carried out for 5 minutes. Then, after heating to 180 ° C., the gas in the furnace is removed by vacuuming, nitrogen is introduced into the furnace to return it to atmospheric pressure, and then the temperature inside the furnace is lowered to room temperature to form solder particles. bottom.
  • the substrate having the solder particles obtained in step c1 was fixed on the conductive tape fixed to the surface of the SEM observation pedestal. Then, platinum sputtering was carried out under the conditions of 20 mA and 60 seconds. The diameter of 200 core-shell type solder particles was measured by SEM, and the average particle diameter and C.I. V. The value was calculated. The results are shown in Table 1.
  • Example 2 to 12 Solder particles were prepared and evaluated in the same manner as in Example 1 with the top diameter, bottom diameter, height, interval, sputtering time and material shown in Table 1. The results are shown in Table 1. Further, FIG. 12 shows an SEM image of the solder particles obtained in Example 2.
  • Examples 13 to 17 Solder particles were produced in the same manner as in Example 1 with the top diameter, bottom diameter, height, spacing, sputtering time and material shown in Table 1, except that the following step c2 was performed instead of step c1. And evaluated. The results are shown in Table 1.
  • the SEM image of the substrate prepared in Example 13 is shown in FIG. 9, the SEM image of the solder layer formed on the substrate is shown in FIG. 10, and the SEM image of the solder particles formed is shown in FIG.
  • Step c2 Formation of solder particles
  • the substrate having the solder layer obtained in step b1 is put into a hydrogen radical reduction furnace (plasma reflow device manufactured by Shinko Seiki Co., Ltd.), vacuumed, and then hydrogen gas is introduced into the furnace.
  • the inside of the furnace was filled with hydrogen gas.
  • the inside of the furnace was adjusted to 130 ° C. and irradiated with hydrogen radicals for 5 minutes.
  • the hydrogen gas in the furnace is removed by vacuuming, and after heating to 165 ° C., nitrogen is introduced into the furnace to return it to atmospheric pressure, and then the temperature inside the furnace is lowered to room temperature to remove the solder particles. Formed.
  • solder particles were prepared and evaluated in the same manner as in Example 2 except that a smooth substrate (polyimide film, thickness 50 ⁇ m) having no convex portion was prepared. The results are shown in Table 1. An SEM image of the obtained solder particles is shown in FIG.
  • Solder particles 10 ... Base, 11,21 ... Convex, 12, 22 ... Bottom, 50 ... Solder layer, 100, 110 ... Base with solder particles.

Abstract

A production method for solder particles, the production method including a preparation step for preparing a substrate that has a plurality of protrusions, a solder layer formation step for forming a solder layer on at least a portion of the protrusions of the substrate, and a fusion step for fusing the solder layer that has been formed on the protrusions and thereby forming solder particles on the protrusions.

Description

はんだ粒子、はんだ粒子の製造方法及びはんだ粒子付き基体Solder particles, manufacturing method of solder particles, and substrate with solder particles
 本発明は、はんだ粒子、はんだ粒子の製造方法及びはんだ粒子付き基体に関する。 The present invention relates to solder particles, a method for producing solder particles, and a substrate with solder particles.
 従来から、異方性導電フィルム、異方性導電ペースト等の異方性導電材料に配合される導電性粒子として、はんだ粒子の使用が検討されている。例えば、特許文献1には、熱硬化性成分と、特定の表面処理を施された複数のはんだ粒子と、を含む導電ペーストが記載されている。 Conventionally, the use of solder particles has been studied as conductive particles to be blended in anisotropic conductive materials such as anisotropic conductive films and anisotropic conductive pastes. For example, Patent Document 1 describes a conductive paste containing a thermosetting component and a plurality of solder particles that have been subjected to a specific surface treatment.
特開2016-76494号公報Japanese Unexamined Patent Publication No. 2016-76494
 近年、回路部材の高精細化に伴って接続箇所の微小化が進み、異方性導電材料に要求される導通信頼性及び絶縁信頼性が高くなっている。導通信頼性及び絶縁信頼性を確保するためには、異方性導電材料に配合される導電性粒子の微小化、均質化が必要となるが、従来のはんだ粒子の製造方法では、小さい平均粒子径と狭い粒度分布とを両立したはんだ粒子の製造は困難であった。 In recent years, as the definition of circuit members has become higher, the connection points have become smaller, and the conduction reliability and insulation reliability required for anisotropic conductive materials have increased. In order to ensure conduction reliability and insulation reliability, it is necessary to miniaturize and homogenize the conductive particles blended in the anisotropic conductive material, but in the conventional method for producing solder particles, small average particles are required. It has been difficult to produce solder particles having both a diameter and a narrow particle size distribution.
 本発明は、上記課題に鑑みてなされたものであり、小さい平均粒子径と狭い粒度分布とを両立したはんだ粒子の製造が可能な、はんだ粒子の製造方法を提供することを目的とする。また、本発明は、上記製造方法によって、小さい平均粒子径と狭い粒度分布とを両立したはんだ粒子を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing solder particles capable of producing solder particles having both a small average particle size and a narrow particle size distribution. Another object of the present invention is to provide solder particles having both a small average particle size and a narrow particle size distribution by the above manufacturing method.
 本発明の一側面は、複数の凸部を有する基体を準備する準備工程と、上記基体の少なくとも一部の上記凸部上にはんだ層を形成するはんだ層形成工程と、上記凸部上に形成された上記はんだ層を融合させて、上記凸部上にはんだ粒子を形成する融合工程と、を含む、はんだ粒子の製造方法に関する。 One aspect of the present invention includes a preparatory step of preparing a substrate having a plurality of convex portions, a solder layer forming step of forming a solder layer on the convex portions of at least a part of the substrate, and forming on the convex portions. The present invention relates to a method for producing solder particles, which comprises a fusion step of fusing the said solder layers to form solder particles on the convex portion.
 上記製造方法によれば、凸部形状及びはんだ層の厚さを適宜調整することで、所望の粒径のはんだ粒子を狭い粒度分布で得ることができる。すなわち、上記製造方法によれば、従来は製造困難であった、小さい平均粒子径と狭い粒度分布とを両立したはんだ粒子を容易に製造することができる。 According to the above manufacturing method, solder particles having a desired particle size can be obtained with a narrow particle size distribution by appropriately adjusting the shape of the convex portion and the thickness of the solder layer. That is, according to the above manufacturing method, it is possible to easily manufacture solder particles having both a small average particle size and a narrow particle size distribution, which was difficult to manufacture in the past.
 一態様において、上記凸部は、柱状又は錐台状であってよい。 In one aspect, the convex portion may be columnar or frustum-shaped.
 一態様において、上記基体は、複数の凸部と当該凸部間に形成された底部とを備える第一の面を有していてよく、上記第一の面の投影面積に占める上記底部の投影面積の割合は8%以上であってよい。 In one aspect, the substrate may have a first surface comprising a plurality of convex portions and a bottom portion formed between the convex portions, and the projection of the bottom portion in the projected area of the first surface. The area ratio may be 8% or more.
 一態様に係る製造方法は、上記はんだ層形成工程において、めっき、蒸着、スパッタリング及び吹き付け塗装からなる群より選択される少なくとも一種の方法で、上記凸部上に上記はんだ層を形成してよい。 The manufacturing method according to one aspect may form the solder layer on the convex portion by at least one method selected from the group consisting of plating, vapor deposition, sputtering and spray coating in the solder layer forming step.
 一態様に係る製造方法は、上記融合工程の前に、上記凸部上に形成された上記はんだ層を還元雰囲気下に晒す還元工程を更に含んでいてよい。 The manufacturing method according to one aspect may further include a reduction step of exposing the solder layer formed on the convex portion to a reducing atmosphere before the fusion step.
 一態様に係る製造方法は、上記融合工程において、上記凸部上に形成された上記はんだ層を還元雰囲気下で融合させてよい。 In the manufacturing method according to one aspect, in the fusion step, the solder layer formed on the convex portion may be fused in a reducing atmosphere.
 一態様において、上記はんだ層は、スズ、スズ合金、インジウム及びインジウム合金からなる群より選択される少なくとも一種を含んでいてよい。 In one embodiment, the solder layer may contain at least one selected from the group consisting of tin, tin alloys, indium and indium alloys.
 一態様において、上記はんだ層は、In-Bi合金、In-Sn合金、In-Sn-Ag合金、Sn-Au合金、Sn-Bi合金、Sn-Bi-Ag合金、Sn-Ag-Cu合金及びSn-Cu合金からなる群より選択される少なくとも一種を含んでいてよい。 In one embodiment, the solder layer comprises In—Bi alloy, In—Sn alloy, In—Sn—Ag alloy, Sn—Au alloy, Sn—Bi alloy, Sn—Bi-Ag alloy, Sn—Ag—Cu alloy and It may contain at least one selected from the group consisting of Sn—Cu alloys.
 本発明の他の一側面は、平均粒子径が100nm以上1μm未満であり、C.V.値が20%以下である、はんだ粒子に関する。 Another aspect of the present invention is that the average particle size is 100 nm or more and less than 1 μm, and C.I. V. For solder particles with a value of 20% or less.
 一態様に係るはんだ粒子は、はんだ粒子の投影像に外接する四角形を二対の平行線により作成した場合において、対向する辺間の距離をX及びY(但しY<X)としたときに、X及びYが下記式を満たすものであってよい。
  0.8<Y/X<1.0
The solder particles according to one aspect are obtained when a quadrangle circumscribing the projected image of the solder particles is created by two pairs of parallel lines and the distances between the opposing sides are X and Y (however, Y <X). X and Y may satisfy the following formula.
0.8 <Y / X <1.0
 一態様に係るはんだ粒子は、スズ、スズ合金、インジウム及びインジウム合金からなる群より選択される少なくとも一種を含んでいてよい。 The solder particles according to one embodiment may contain at least one selected from the group consisting of tin, tin alloys, indium and indium alloys.
 一態様に係るはんだ粒子は、In-Bi合金、In-Sn合金、In-Sn-Ag合金、Sn-Au合金、Sn-Bi合金、Sn-Bi-Ag合金、Sn-Ag-Cu合金及びSn-Cu合金からなる群より選択される少なくとも一種を含んでいてよい。 The solder particles according to one embodiment include In—Bi alloy, In—Sn alloy, In—Sn—Ag alloy, Sn—Au alloy, Sn—Bi alloy, Sn—Bi-Ag alloy, Sn—Ag—Cu alloy and Sn. -It may contain at least one selected from the group consisting of Cu alloys.
 本発明の更に他の一側面は、複数の凸部を有する基体と、上記基体の上記凸部上に配置された複数のはんだ粒子と、を備える、はんだ粒子付き基体に関する。このようなはんだ粒子付き基体は、上述の製造方法における融合工程によって容易に製造できる。このようなはんだ粒子付き基体によれば、はんだ粒子の運搬、保管及び管理が容易となる。 Yet another aspect of the present invention relates to a substrate with solder particles, comprising a substrate having a plurality of convex portions and a plurality of solder particles arranged on the convex portions of the substrate. Such a substrate with solder particles can be easily manufactured by the fusion step in the above-mentioned manufacturing method. Such a substrate with solder particles facilitates transportation, storage and management of the solder particles.
 一態様において、上記はんだ粒子の平均粒子径は100nm以上1μm未満であってよく、上記はんだ粒子のC.V.値は20%以下であってよい。 In one embodiment, the average particle size of the solder particles may be 100 nm or more and less than 1 μm, and the C.I. V. The value may be 20% or less.
 本発明によれば、小さい平均粒子径と狭い粒度分布とを両立したはんだ粒子を製造可能な、はんだ粒子の製造方法が提供される。また、本発明によれば、小さい平均粒子径と狭い粒度分布とを両立したはんだ粒子が提供される。 According to the present invention, there is provided a method for producing solder particles capable of producing solder particles having both a small average particle size and a narrow particle size distribution. Further, according to the present invention, solder particles having both a small average particle size and a narrow particle size distribution are provided.
図1(a)は基体の一例を模式的に示す平面図であり、図1(b)は図1(a)に示すIb-Ib線における断面図である。FIG. 1A is a plan view schematically showing an example of a substrate, and FIG. 1B is a cross-sectional view taken along the line Ib-Ib shown in FIG. 1A. 図2(a)は凸部の一例を模式的に示す断面図であり、図2(b)は凸部の他の一例を模式的に示す断面図である。FIG. 2A is a cross-sectional view schematically showing an example of the convex portion, and FIG. 2B is a cross-sectional view schematically showing another example of the convex portion. 図3(a)~(e)は凸部の高さ方向に垂直な断面の形状の例を模式的に示す図である。3A to 3E are diagrams schematically showing an example of the shape of the cross section perpendicular to the height direction of the convex portion. 図4は、基体の凸部上にはんだ層が形成された状態の一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing an example of a state in which a solder layer is formed on a convex portion of a substrate. 図5は、基体の凸部上にはんだ粒子が形成された状態の一例を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing an example of a state in which solder particles are formed on the convex portion of the substrate. 図6は、基体の凸部上にはんだ層が形成された状態の他の一例を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing another example of a state in which a solder layer is formed on a convex portion of a substrate. 図7は、基体の凸部上にはんだ粒子が形成された状態の他の一例を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing another example of a state in which solder particles are formed on the convex portion of the substrate. 図8は、はんだ粒子の投影像に外接する四角形を二対の平行線により作成した場合における、対向する辺間の距離X及びY(但しY<X)を示す図である。FIG. 8 is a diagram showing distances X and Y (provided that Y <X) between opposite sides when a quadrangle circumscribing a projected image of solder particles is created by two pairs of parallel lines. 図9は、実施例13で用意した基体を撮像したSEM画像である。FIG. 9 is an SEM image of the substrate prepared in Example 13. 図10は、実施例13で基体の凸部上にはんだ層が形成された状態を撮像したSEM画像である。FIG. 10 is an SEM image of the state in which the solder layer is formed on the convex portion of the substrate in Example 13. 図11は、実施例13で基体の凸部上にはんだ粒子が形成された状態を撮像したSEM画像である。FIG. 11 is an SEM image of the state in which the solder particles are formed on the convex portion of the substrate in Example 13. 図12は、実施例2で得られたはんだ粒子を撮像したSEM画像である。FIG. 12 is an SEM image of the solder particles obtained in Example 2. 図13は、比較例2で得られたはんだ粒子を撮像したSEM画像である。FIG. 13 is an SEM image of the solder particles obtained in Comparative Example 2.
 以下、本発明の実施形態について説明する。本発明は以下の実施形態に限定されるものではない。なお、以下で例示する材料は、特に断らない限り、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments. Unless otherwise specified, the materials exemplified below may be used alone or in combination of two or more. The content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. The numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step may be replaced with the upper limit value or the lower limit value of the numerical range of another step. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
<はんだ粒子の製造方法>
 本実施形態に係るはんだ粒子の製造方法は、複数の凸部を有する基体を準備する準備工程と、基体の少なくとも一部の凸部上にはんだ層を形成するはんだ層形成工程と、凸部上に形成されたはんだ層を融合させて、凸部上にはんだ粒子を形成する融合工程と、を含む。
<Manufacturing method of solder particles>
The method for producing solder particles according to the present embodiment includes a preparatory step of preparing a substrate having a plurality of convex portions, a solder layer forming step of forming a solder layer on at least a part of the convex portions of the substrate, and a solder layer forming step on the convex portions. It includes a fusion step of fusing the solder layers formed in the above to form solder particles on the convex portion.
 上記製造方法によれば、凸部形状及びはんだ層の厚さを適宜調整することで、所望の粒径のはんだ粒子を狭い粒度分布で得ることができる。すなわち、上記製造方法によれば、従来は製造困難であった、小さい平均粒子径と狭い粒度分布とを両立したはんだ粒子(例えば、平均粒子径が100nm~30μm、C.V.値が20%以下のはんだ粒子)を容易に製造することができる。 According to the above manufacturing method, solder particles having a desired particle size can be obtained with a narrow particle size distribution by appropriately adjusting the shape of the convex portion and the thickness of the solder layer. That is, according to the above manufacturing method, solder particles having both a small average particle size and a narrow particle size distribution (for example, an average particle size of 100 nm to 30 μm and a CV value of 20%), which was difficult to manufacture in the past, are achieved. The following solder particles) can be easily manufactured.
 また、上記製造方法によれば、従来の方法では製造困難なはんだ粒子を得ることができる。例えば、上記製造方法によれば、平均粒子径100nm以上1μm未満の極めて小さいはんだ粒子を、狭い粒度分布(例えば、C.V.値20%以下)で得ることができる。 Further, according to the above manufacturing method, it is possible to obtain solder particles that are difficult to manufacture by the conventional method. For example, according to the above manufacturing method, extremely small solder particles having an average particle diameter of 100 nm or more and less than 1 μm can be obtained with a narrow particle size distribution (for example, a CV value of 20% or less).
 以下、図1~7を参照しながら、はんだ粒子の製造方法について説明する。 Hereinafter, a method for manufacturing solder particles will be described with reference to FIGS. 1 to 7.
 まず、はんだ層を形成するための基体を準備する(準備工程)。図1(a)は、基体の一例を模式的に示す図であり、図1(b)は図1(a)に示すIb-Ib線における断面図である。図1(a)に示す基体10は、複数の凸部11を有している。複数の凸部11は所定のパターンで規則的に配置されていてよい。この場合、凸部11上に形成されたはんだ粒子を樹脂材料等に転写することで、はんだ粒子を規則的に配置させることができる。 First, prepare the substrate for forming the solder layer (preparation process). FIG. 1A is a diagram schematically showing an example of a substrate, and FIG. 1B is a cross-sectional view taken along the line Ib-Ib shown in FIG. 1A. The substrate 10 shown in FIG. 1A has a plurality of convex portions 11. The plurality of convex portions 11 may be regularly arranged in a predetermined pattern. In this case, the solder particles formed on the convex portion 11 can be transferred to a resin material or the like so that the solder particles can be arranged regularly.
 基体10は、複数の凸部11と当該凸部11間に形成された底部12とを備える第一の面10aを有するものであってよい。第一の面10aは、凸部11の頂部11aと、底部12により構成される底部面12aと、から構成されていてよい。 The substrate 10 may have a first surface 10a including a plurality of convex portions 11 and a bottom portion 12 formed between the convex portions 11. The first surface 10a may be composed of a top portion 11a of the convex portion 11 and a bottom surface 12a composed of the bottom portion 12.
 凸部11同士が近接しすぎると、後述する融合工程において、凸部11上のはんだ粒子が互いに接触及び融合して大粒径のはんだ粒子が生じてしまう場合がある。この大粒径粒子の形成を抑制する観点からは、第一の面10aの投影面積に占める底部12の投影面積の割合(すなわち、第一の面10aの投影面積に占める底部面12aの面積の割合)は、8%以上であることが好ましく、10%以上であることがより好ましく、15%以上であってもよい。当該割合の上限は特に限定されない。はんだ粒子の製造効率をより向上させる観点からは、例えば95%以下であってよく、90%以下であることが好ましく、80%以下であることが更に好ましい。 If the convex portions 11 are too close to each other, the solder particles on the convex portions 11 may come into contact with each other and fuse with each other to generate solder particles having a large particle size in the fusion step described later. From the viewpoint of suppressing the formation of the large particle size particles, the ratio of the projected area of the bottom 12 to the projected area of the first surface 10a (that is, the area of the bottom surface 12a to the projected area of the first surface 10a). The ratio) is preferably 8% or more, more preferably 10% or more, and may be 15% or more. The upper limit of the ratio is not particularly limited. From the viewpoint of further improving the production efficiency of the solder particles, for example, it may be 95% or less, preferably 90% or less, and further preferably 80% or less.
 図1(a)及び図1(b)において凸部11は円柱状に形成されているが、凸部11の形状はこれに限定されない。凸部11は、例えば、円柱状、楕円柱状、三角柱状、四角柱状、多角柱状等の柱体状であってもよく、円錐台状、楕円錐台状、三角錐台状、四角錐台状、多角錐台状等の錐台状であってもよい。 In FIGS. 1A and 1B, the convex portion 11 is formed in a columnar shape, but the shape of the convex portion 11 is not limited to this. The convex portion 11 may have a columnar shape such as a columnar shape, an elliptical columnar shape, a triangular columnar shape, a square columnar shape, or a polygonal columnar shape, and may have a conical frustum shape, an elliptical frustum shape, a triangular frustum shape, or a square frustum shape. , It may be a frustum shape such as a polygonal frustum shape.
 図1(a)及び図1(b)において凸部11の頂部11aは平坦面として記載しているが、頂部11aは必ずしも平坦面である必要はない。例えば、頂部11aは、窪みを有していてよく、突起を有していてもよい。頂部11a上に形成されるはんだ粒子の保持性が向上する観点からは、頂部11aは中央に窪みを有することが好ましい。 Although the top portion 11a of the convex portion 11 is described as a flat surface in FIGS. 1A and 1B, the top portion 11a does not necessarily have to be a flat surface. For example, the top 11a may have a recess or a protrusion. From the viewpoint of improving the retention of the solder particles formed on the top portion 11a, it is preferable that the top portion 11a has a recess in the center.
 図2(a)は凸部の一例を模式的に示す断面図であり、図2(b)は凸部の一例を模式的に示す断面図である。図2(a)に示す凸部11は柱体状の凸部であり、図2(b)に示す凸部21は錐台状の凸部である。 FIG. 2A is a cross-sectional view schematically showing an example of a convex portion, and FIG. 2B is a cross-sectional view schematically showing an example of a convex portion. The convex portion 11 shown in FIG. 2A is a prismatic convex portion, and the convex portion 21 shown in FIG. 2B is a frustum-shaped convex portion.
 凸部11は、頂部11aにおける幅D11と、底部12との接面における幅D12とが略同一であってよい。幅D11及び幅D12は特に限定されず、例えば200nm以上であってよく、隣接凸部上のはんだ粒子間の接触を避ける観点からは400nm以上が好ましく、1.0μm以上がより好ましい。また、幅D11及び幅D12は、例えば10μm以下であってよく、粒径800nm以下の極微小粒径はんだ粒子作製の観点からは4.0μm以下が好ましく、2.0μm以下がより好ましい。 Convex portion 11, the width D 11 at the top 11a, and the width D 12 in contact surface between the bottom portion 12 may be substantially the same. The width D 11 and the width D 12 are not particularly limited, and may be, for example, 200 nm or more, preferably 400 nm or more, and more preferably 1.0 μm or more from the viewpoint of avoiding contact between solder particles on adjacent convex portions. Further, the width D 11 and the width D 12 may be, for example, 10 μm or less, preferably 4.0 μm or less, and more preferably 2.0 μm or less from the viewpoint of producing ultrafine particle size solder particles having a particle size of 800 nm or less.
 凸部11の高さHは特に限定されず、例えば、幅D11の10%以上であってよく、底部12上のはんだとの接触を避け、より精度の高いはんだ粒子が得られやすくなる観点からは幅D11の25%以上が好ましく、幅D11の50%以上がより好ましい。また、凸部11の高さHは、例えば幅D11の1000%以下であってよく、凸部11の破損を避け、はんだ粒子の回収率をより高める観点からは幅D11の500%以下が好ましく、幅D11の300%以下がより好ましい。 The height H 1 of the convex portion 11 is not particularly limited, and may be, for example, 10% or more of the width D 11 , avoiding contact with the solder on the bottom portion 12, and making it easier to obtain more accurate solder particles. preferably at least 25% of the width D 11 from the viewpoint, more preferably at least 50% of the width D 11. The height H 1 of the convex portion 11, for example, may be less 1000% of the width D 11, avoiding the breakage of the projections 11, 500% of the width D 11 from the viewpoint of enhancing the recovery rate of the solder particles The following is preferable, and 300% or less of the width D 11 is more preferable.
 凸部11は、基体10上の任意の位置に配置することができる。 The convex portion 11 can be arranged at an arbitrary position on the substrate 10.
 隣接する凸部11間の距離Lは特に限定されないが、凸部11上のはんだ粒子の接触及び融合による大粒径粒子の形成を抑制する観点からは、例えば幅D11の3%以上であってよく、好ましくは幅D11の8%以上、より好ましくは幅D11の15%以上である。また、隣接する凸部11間の距離Lは、例えば幅D11の1000%以下であってよく、はんだ粒子の製造効率をより向上させる観点からは、好ましくは幅D11の500%以下、より好ましくは幅D11の200%以下である。 The distance L 1 between the adjacent convex portions 11 is not particularly limited, but from the viewpoint of suppressing the formation of large particle size particles due to the contact and fusion of the solder particles on the convex portions 11, for example, it is 3% or more of the width D 11. be in a, preferably 8% or more of the width D 11, more preferably at least 15% of the width D 11. The distance L 1 between the convex portions 11 adjacent, for example may be up to 1000% of the width D 11, from the viewpoint of further improving the manufacturing efficiency of the solder particles, preferably 500% or less of the width D 11, More preferably, it is 200% or less of the width D 11.
 凸部21は、頂部21aにおける幅D21が、底部22との接面における幅D22より小さくなっている。幅D21は特に限定されず、例えば200nm以上であってよく、隣接凸部上のはんだ粒子間の接触を避ける観点からは400nm以上が好ましく、1.0μm以上がより好ましい。また、幅D21は、例えば10μm以下であってよく、粒径800nm以下の極微小粒径はんだ粒子作製の観点からは4.0μm以下が好ましく、2.0μm以下がより好ましい。幅D22は特に限定されず、例えば200nm以上であってよく、隣接凸部上のはんだ粒子間の接触を避ける観点からは400nm以上が好ましく、1.0μm以上がより好ましい。また、幅D22は、例えば10μm以下であってよく、粒径800nm以下の極微小粒径はんだ粒子作製の観点からは4.0μm以下が好ましく、2.0μm以下がより好ましい。 The width D 21 at the top 21 a of the convex portion 21 is smaller than the width D 22 at the contact surface with the bottom 22. The width D 21 is not particularly limited, and may be, for example, 200 nm or more, preferably 400 nm or more, and more preferably 1.0 μm or more from the viewpoint of avoiding contact between solder particles on adjacent convex portions. The width D 21 may be, for example, 10 μm or less, preferably 4.0 μm or less, and more preferably 2.0 μm or less from the viewpoint of producing ultrafine particle size solder particles having a particle size of 800 nm or less. The width D 22 is not particularly limited, and may be, for example, 200 nm or more, preferably 400 nm or more, and more preferably 1.0 μm or more from the viewpoint of avoiding contact between solder particles on adjacent convex portions. The width D 22 may be, for example, 10 μm or less, preferably 4.0 μm or less, and more preferably 2.0 μm or less, from the viewpoint of producing ultrafine particle size solder particles having a particle size of 800 nm or less.
 幅D21と幅D22との比(D22/21)は特に限定されず、例えば1.1以上であってよく、隣接凸部上のはんだ粒子間の接触を避ける観点からは1.3以上が好ましく、1.5以上がより好ましい。また、上記比(D22/21)は、例えば3.0以下であってよく、2.0以下が好ましい。 The ratio of the width D 21 to the width D 22 (D 22 / D 21 ) is not particularly limited, and may be, for example, 1.1 or more. From the viewpoint of avoiding contact between solder particles on the adjacent convex portion, 1. 3 or more is preferable, and 1.5 or more is more preferable. The ratio (D 22 / D 21 ) may be, for example, 3.0 or less, preferably 2.0 or less.
 幅D21と幅D22との差(D22-D21)は特に限定されず、例えば2.0μm以下であってよく、凸部21の側面及び底部22に供給されるはんだ量を低減し、より精度の高いはんだ粒子が得られやすくなる観点からは、1.0μm以下が好ましく、500nm以下がより好ましい。 The difference between the width D 21 and the width D 22 (D 22- D 21 ) is not particularly limited and may be, for example, 2.0 μm or less, reducing the amount of solder supplied to the side surface and the bottom 22 of the convex portion 21. From the viewpoint that more accurate solder particles can be easily obtained, 1.0 μm or less is preferable, and 500 nm or less is more preferable.
 凸部21の高さHは特に限定されず、例えば、幅D22の10%以上であってよく、底部12上のはんだとの接触を避け、より精度の高いはんだ粒子が得られやすくなる観点からは幅D22の25%以上が好ましく、幅D22の50%以上がより好ましい。また、凸部21の高さHは、例えば幅D22の1000%以下であってよく、凸部11の破損を避け、はんだ粒子の回収率をより高める観点からは幅D22の500%以下が好ましく、幅D22の300%以下がより好ましい。 The height H 2 of the convex portion 21 is not particularly limited, and may be, for example, 10% or more of the width D 22 , avoiding contact with the solder on the bottom portion 12, and making it easier to obtain more accurate solder particles. preferably at least 25% of the width D 22 from the viewpoint, more preferably at least 50% of the width D 22. The height H 2 of the convex portion 21, for example, may be less 1000% of the width D 22, avoiding the breakage of the projections 11, 500% of the width D 22 from the viewpoint of enhancing the recovery rate of the solder particles The following is preferable, and 300% or less of the width D 22 is more preferable.
 隣接する凸部21間の距離Lは特に限定されないが、凸部21上のはんだ粒子の接触及び融合による大粒径粒子の形成を抑制する観点からは、例えば幅D22の3%以上であってよく、好ましくは幅D22の8%以上、より好ましくは幅D22の15%以上である。また、隣接する凸部21間の距離Lは、例えば幅D22の1000%以下であってよく、はんだ粒子の製造効率をより向上させる観点からは、好ましくは幅D22の500%以下、より好ましくは幅D22の200%以下である。 The distance L 2 between the adjacent convex portions 21 is not particularly limited, but from the viewpoint of suppressing the formation of large particle size particles due to the contact and fusion of the solder particles on the convex portions 21, for example, it is 3% or more of the width D 22. be in a, preferably 8% or more of the width D 22, more preferably at least 15% of the width D 22. The distance L 2 between adjacent convex portions 21 is, for example may be up to 1000% of the width D 22, from the viewpoint of further improving the manufacturing efficiency of the solder particles, preferably 500% or less of the width D 22, More preferably, it is 200% or less of the width D 22.
 凸部11及び凸部21の高さ方向に垂直な断面の形状は特に限定されず、例えば、図3に示すような形状であってよい。図3(a)~(e)は凸部の高さ方向に垂直な断面の形状の例を模式的に示す図である。 The shape of the cross section perpendicular to the height direction of the convex portion 11 and the convex portion 21 is not particularly limited, and may be, for example, the shape shown in FIG. 3A to 3E are diagrams schematically showing an example of the shape of the cross section perpendicular to the height direction of the convex portion.
 基体10を構成する材料は特に限定されず、はんだ層の溶融温度で変質しない耐熱性を有する材料が好ましい。基体10を構成する材料は、例えば、シリコン、各種セラミック、ガラス、ステンレススチール等の無機材料であってもよく、各種樹脂等の有機材料であってもよい。 The material constituting the substrate 10 is not particularly limited, and a material having heat resistance that does not deteriorate at the melting temperature of the solder layer is preferable. The material constituting the substrate 10 may be, for example, an inorganic material such as silicon, various ceramics, glass, or stainless steel, or an organic material such as various resins.
 基体10の製造方法は特に限定されず、凸部11を形成可能な公知の方法(例えば、フォトリソグラフ法等)によって適宜製造することができる。 The method for producing the substrate 10 is not particularly limited, and the substrate 10 can be appropriately produced by a known method (for example, a photolithography method) capable of forming the convex portion 11.
 次いで、基体の少なくとも一部の凸部上にはんだ層を形成する(はんだ層形成工程)。はんだ層を形成するためのはんだ材料としては、市販のはんだ材料を特に制限なく用いることができ、所望のはんだ粒子の特性、はんだ層の形成方法等に応じて適宜選択できる。例えば、スパッタリングによりはんだ層を形成する場合、スパッタリングのターゲットとして使用可能なはんだ板が選択される。 Next, a solder layer is formed on at least a part of the convex portion of the substrate (solder layer forming step). As the solder material for forming the solder layer, a commercially available solder material can be used without particular limitation, and can be appropriately selected depending on the desired characteristics of the solder particles, the method for forming the solder layer, and the like. For example, when forming a solder layer by sputtering, a solder plate that can be used as a target for sputtering is selected.
 はんだ材料は、例えば、スズ又はスズ合金を含んでいてよい。スズ合金としては、例えば、In-Sn合金、In-Sn-Ag合金、Sn-Au合金、Sn-Bi合金、Sn-Bi-Ag合金、Sn-Ag-Cu合金、Sn-Cu合金等を用いることができる。これらのスズ合金の具体例としては、下記の例が挙げられる。
・In-Sn(In52質量%、Bi48質量% 融点118℃)
・In-Sn-Ag(In20質量%、Sn77.2質量%、Ag2.8質量% 融点175℃)
・Sn-Bi(Sn43質量%、Bi57質量% 融点138℃)
・Sn-Bi-Ag(Sn42質量%、Bi57質量%、Ag1質量% 融点139℃)・Sn-Ag-Cu(Sn96.5質量%、Ag3質量%、Cu0.5質量% 融点217℃)
・Sn-Cu(Sn99.3質量%、Cu0.7質量% 融点227℃)
・Sn-Au(Sn21.0質量%、Au79.0質量% 融点278℃)
The solder material may include, for example, tin or a tin alloy. As the tin alloy, for example, In—Sn alloy, In—Sn—Ag alloy, Sn—Au alloy, Sn—Bi alloy, Sn—Bi—Ag alloy, Sn—Ag—Cu alloy, Sn—Cu alloy and the like are used. be able to. Specific examples of these tin alloys include the following examples.
-In-Sn (In 52% by mass, Bi48% by mass, melting point 118 ° C)
-In-Sn-Ag (In 20% by mass, Sn77.2% by mass, Ag 2.8% by mass, melting point 175 ° C.)
-Sn-Bi (Sn43% by mass, Bi57% by mass, melting point 138 ° C.)
-Sn-Bi-Ag (Sn42% by mass, Bi57% by mass, Ag1% by mass, melting point 139 ° C.)-Sn-Ag-Cu (Sn96.5% by mass, Ag3% by mass, Cu0.5% by mass, melting point 217 ° C.)
-Sn-Cu (Sn99.3% by mass, Cu0.7% by mass, melting point 227 ° C)
-Sn-Au (Sn21.0% by mass, Au79.0% by mass, melting point 278 ° C.)
 はんだ材料は、例えば、インジウム又はインジウム合金を含んでいてもよい。インジウム合金としては、例えば、In-Bi合金、In-Ag合金等を用いることができる。これらのインジウム合金の具体例としては、下記の例が挙げられる。
・In-Bi(In66.3質量%、Bi33.7質量% 融点72℃)
・In-Bi(In33.0質量%、Bi67.0質量% 融点109℃)
・In-Ag(In97.0質量%、Ag3.0質量% 融点145℃)
The solder material may include, for example, indium or an indium alloy. As the indium alloy, for example, an In—Bi alloy, an In—Ag alloy, or the like can be used. Specific examples of these indium alloys include the following examples.
-In-Bi (In66.3% by mass, Bi33.7% by mass, melting point 72 ° C.)
-In-Bi (In33.0% by mass, Bi67.0% by mass, melting point 109 ° C)
-In-Ag (In97.0% by mass, Ag3.0% by mass, melting point 145 ° C)
 はんだ粒子の用途(使用時の温度)等に応じて、はんだ材料として上記スズ合金又はインジウム合金を選択することができる。例えば、低温での融着に用いるはんだ粒子を得たい場合、In-Sn合金、Sn-Bi合金を採用すればよく、この場合、150℃以下で融着可能なはんだ粒子が得られる。Sn-Ag-Cu合金、Sn-Cu合金等の融点の高いはんだ材料を採用した場合、高温放置後においても高い信頼性を維持可能なはんだ粒子を得ることができる。 The tin alloy or indium alloy can be selected as the solder material according to the use of the solder particles (temperature at the time of use) and the like. For example, when it is desired to obtain solder particles used for fusion at a low temperature, an In—Sn alloy or a Sn—Bi alloy may be adopted. In this case, solder particles that can be fused at 150 ° C. or lower can be obtained. When a solder material having a high melting point such as a Sn—Ag—Cu alloy or a Sn—Cu alloy is used, solder particles capable of maintaining high reliability even after being left at a high temperature can be obtained.
 はんだ材料は、Ag、Cu、Ni、Bi、Zn、Pd、Pb、Au、P及びBから選ばれる一種以上を更に含んでもよい。これらの元素のうち、以下の観点からAg又はCuを含んでもよい。すなわち、はんだ材料がAg又はCuを含むことで、得られるはんだ粒子の融点を220℃程度まで低下させることができる、電極との接合強度に優れたはんだ粒子が得られることによってより良好な導通信頼性を得られる、という効果が奏される。 The solder material may further contain one or more selected from Ag, Cu, Ni, Bi, Zn, Pd, Pb, Au, P and B. Among these elements, Ag or Cu may be contained from the following viewpoints. That is, when the solder material contains Ag or Cu, the melting point of the obtained solder particles can be lowered to about 220 ° C., and the solder particles having excellent bonding strength with the electrode can be obtained, so that better conduction reliability can be obtained. The effect of obtaining sex is achieved.
 はんだ材料のCu含有率は例えば0.05~10質量%であり、0.1~5質量%又は0.2~3質量%であってもよい。Cu含有率が0.05質量%以上であると、良好なはんだ接続信頼性を達成可能なはんだ粒子が得られやすくなる。また、Cu含有率が10質量%以下であると、融点が低く、濡れ性に優れたはんだ粒子が得られやすくなり、結果としてはんだ粒子による接合部の接続信頼性がより良好となりやすい。 The Cu content of the solder material is, for example, 0.05 to 10% by mass, and may be 0.1 to 5% by mass or 0.2 to 3% by mass. When the Cu content is 0.05% by mass or more, it becomes easy to obtain solder particles capable of achieving good solder connection reliability. Further, when the Cu content is 10% by mass or less, solder particles having a low melting point and excellent wettability can be easily obtained, and as a result, the connection reliability of the joint portion by the solder particles tends to be improved.
 はんだ材料のAg含有率は例えば0.05~10質量%であり、0.1~5質量%又は0.2~3質量%であってもよい。Ag含有率が0.05質量%以上であれば、良好なはんだ接続信頼性を達成可能なはんだ粒子が得られやすくなる。また、Ag含有率が10質量%以下であると、融点が低く、濡れ性に優れたはんだ粒子が得られやすくなり、結果としてはんだ粒子による接合部の接続信頼性がより良好となりやすい。 The Ag content of the solder material is, for example, 0.05 to 10% by mass, and may be 0.1 to 5% by mass or 0.2 to 3% by mass. When the Ag content is 0.05% by mass or more, it becomes easy to obtain solder particles capable of achieving good solder connection reliability. Further, when the Ag content is 10% by mass or less, solder particles having a low melting point and excellent wettability can be easily obtained, and as a result, the connection reliability of the joint portion by the solder particles tends to be improved.
 はんだ層形成工程では、基体の凸部のそれぞれにはんだ層を形成する。はんだ層形成工程では、準備工程で準備した基体の凸部全てにはんだ層を形成する工程であってよく、準備工程で準備した基体の凸部の一部にはんだ層を形成する工程であってもよい。 In the solder layer forming step, a solder layer is formed on each of the convex portions of the substrate. The solder layer forming step may be a step of forming a solder layer on all the convex portions of the substrate prepared in the preparation step, and is a step of forming a solder layer on a part of the convex portions of the substrate prepared in the preparation step. May be good.
 はんだ層形成工程において、はんだ層を形成する方法は特に限定されない。はんだ層の形成方法としては、例えば、めっき、蒸着、スパッタリング、吹き付け塗装等が挙げられる。これらのうち、はんだ層の厚みを厳密に制御でき、より粒度分布の小さいはんだ粒子が得られやすい観点からは、スパッタリングが好ましい。 In the solder layer forming step, the method of forming the solder layer is not particularly limited. Examples of the method for forming the solder layer include plating, vapor deposition, sputtering, and spray coating. Of these, sputtering is preferable from the viewpoint that the thickness of the solder layer can be strictly controlled and solder particles having a smaller particle size distribution can be easily obtained.
 はんだ層形成工程において、形成されるはんだ層の量は特に限定されず、所望のはんだ粒子のサイズに応じて適宜変更してよい。凸部上に形成するはんだ層の量を適宜変更することで、凸部上に形成されるはんだ粒子のサイズを容易に調整することができる。 In the solder layer forming step, the amount of the solder layer formed is not particularly limited, and may be appropriately changed according to the desired size of the solder particles. By appropriately changing the amount of the solder layer formed on the convex portion, the size of the solder particles formed on the convex portion can be easily adjusted.
 はんだ層形成工程では、基体の凸部上のみにはんだ層が形成されてよく、基体の凸部以外の箇所にもはんだ層が形成されてよい。例えば、はんだ層形成工程では、基体の凸部及び底部にはんだ層が形成されてよい。 In the solder layer forming step, the solder layer may be formed only on the convex portion of the substrate, and the solder layer may be formed on a portion other than the convex portion of the substrate. For example, in the solder layer forming step, a solder layer may be formed on the convex portion and the bottom portion of the substrate.
 図4は、基体10の凸部11上にはんだ層50が形成された状態の一例を模式的に示す断面図である。図4に示す態様では、基体10の凸部11上のみにはんだ層が形成されている。
 はんだ層は、前述のはんだ材料を用いて形成され、スズ、スズ合金、インジウム及びインジウム合金からなる群より選択される少なくとも一種を含んでよい。また、はんだ層は、In-Bi合金、In-Sn合金、In-Sn-Ag合金、Sn-Au合金、Sn-Bi合金、Sn-Bi-Ag合金、Sn-Ag-Cu合金及びSn-Cu合金からなる群より選択される少なくとも一種を含んでよい。
FIG. 4 is a cross-sectional view schematically showing an example of a state in which the solder layer 50 is formed on the convex portion 11 of the substrate 10. In the embodiment shown in FIG. 4, the solder layer is formed only on the convex portion 11 of the substrate 10.
The solder layer is formed using the above-mentioned solder materials and may contain at least one selected from the group consisting of tin, tin alloys, indium and indium alloys. The solder layer includes In—Bi alloy, In—Sn alloy, In—Sn—Ag alloy, Sn—Au alloy, Sn—Bi alloy, Sn—Bi-Ag alloy, Sn—Ag—Cu alloy and Sn—Cu. It may include at least one selected from the group consisting of alloys.
 図6は、基体10の凸部11上にはんだ層50が形成された状態の他の一例を模式的に示す断面図である。図6に示す態様では、基体10の凸部11上にはんだ層50が形成されるとともに、基体10の底部12上にもはんだ層51が形成されている。この態様において、凸部11上に形成されるはんだ層50の量は、例えば、基体上に形成されたはんだ層の総体積(はんだ層50及びはんだ層51の総体積)に対して、20%以上であることが好ましく、30%以上であることがより好ましく、50%以上であることが更に好ましく、60%以上であることが一層好ましい。 FIG. 6 is a cross-sectional view schematically showing another example of a state in which the solder layer 50 is formed on the convex portion 11 of the substrate 10. In the embodiment shown in FIG. 6, the solder layer 50 is formed on the convex portion 11 of the substrate 10, and the solder layer 51 is also formed on the bottom portion 12 of the substrate 10. In this embodiment, the amount of the solder layer 50 formed on the convex portion 11 is, for example, 20% with respect to the total volume of the solder layers formed on the substrate (total volumes of the solder layer 50 and the solder layer 51). The above is preferable, 30% or more is more preferable, 50% or more is further preferable, and 60% or more is further preferable.
 次いで、凸部上に形成されたはんだ層を融合させて、凸部上にはんだ粒子を形成する(融合工程)。融合工程において、凸部上に形成されたはんだ層は、溶融することで合一化し、表面張力によって球状化し、はんだ粒子を形成する。 Next, the solder layers formed on the convex portions are fused to form solder particles on the convex portions (fusion step). In the fusion process, the solder layer formed on the convex portion is united by melting and spheroidized by surface tension to form solder particles.
 はんだ層を溶融させる方法としては、はんだ層を、はんだ層を構成するはんだ材料の融点以上の温度に加熱する方法が挙げられる。はんだ層は、酸化被膜の影響で融点以上の温度で加熱しても溶融しない場合や、溶融しても濡れ拡がらない場合や、合一化しない場合がある。このため、はんだ層を還元雰囲気下に晒し、はんだ層の表面の酸化被膜を除去した後に、はんだ層をはんだ材料の融点以上の温度に加熱することが好ましい。また、はんだ層の溶融は、還元雰囲気下で行うことが好ましい。はんだ層の溶融を還元雰囲気下で行うことで、はんだ層の溶融、濡れ拡がり、合一化がより効率的に進行しやすくなる。 Examples of the method of melting the solder layer include a method of heating the solder layer to a temperature equal to or higher than the melting point of the solder material constituting the solder layer. Due to the influence of the oxide film, the solder layer may not melt even if it is heated at a temperature equal to or higher than the melting point, it may not spread even if it melts, or it may not unify. Therefore, it is preferable to expose the solder layer to a reducing atmosphere to remove the oxide film on the surface of the solder layer, and then heat the solder layer to a temperature equal to or higher than the melting point of the solder material. Further, it is preferable that the solder layer is melted in a reducing atmosphere. By melting the solder layer in a reducing atmosphere, melting, wetting and spreading of the solder layer and coalescence can proceed more efficiently.
 還元雰囲気にする方法は、上述の効果が得られる方法であれば特に限定されず、例えば水素ガス、水素ラジカル、ギ酸ガス等を用いる方法がある。例えば、水素還元炉、水素ラジカル還元炉、ギ酸還元炉、又はこれらのコンベアー炉若しくは連続炉を用いることで、還元雰囲気下にはんだ層を溶融させることができる。これらの装置は、炉内に、加熱装置、不活性ガス(窒素、アルゴン等)を充填するチャンバー、チャンバー内を真空にする機構等を備えていてよく、これにより還元ガスの制御がより容易となる。また、チャンバー内を真空にできると、はんだ層の溶融及び合一化の後に、減圧によってボイドの除去を行うことができ、接続安定性に一層優れるはんだ粒子を得ることができる。 The method for creating a reducing atmosphere is not particularly limited as long as the above effects can be obtained, and for example, there is a method using hydrogen gas, hydrogen radical, formic acid gas, or the like. For example, by using a hydrogen reduction furnace, a hydrogen radical reduction furnace, a formic acid reduction furnace, or a conveyor furnace or a continuous furnace thereof, the solder layer can be melted in a reduction atmosphere. These devices may be equipped with a heating device, a chamber filled with an inert gas (nitrogen, argon, etc.), a mechanism for evacuating the inside of the chamber, etc., which makes it easier to control the reducing gas. Become. Further, if the inside of the chamber can be evacuated, voids can be removed by reducing the pressure after the solder layer is melted and coalesced, and solder particles having further excellent connection stability can be obtained.
 はんだ層の還元、溶解条件、温度、炉内雰囲気調整などのプロファイルは、はんだ層の融点、粒度、凹部サイズ、基体の材質などを勘案して適宜設定されてよい。例えば、はんだ層が凸部上に形成された基体を、炉内に挿入し、真空引きを行った後に、還元ガスを導入して、炉内を還元ガスで満たし、はんだ層の表面酸化被膜を除去した後、真空引きにて還元ガスを除去し、その後、はんだ層の融点以上に加熱して、はんだ層を溶解及び合一化させて、凸部上にはんだ粒子を形成した後、窒素ガスを充填してから炉内温度を室温に戻し、はんだ粒子を得ることができる。また、例えば、はんだ層が凸部上に形成された基体を、炉内に挿入し、真空引きを行った後に、還元ガスを導入して、炉内を還元ガスで満たし、炉内加熱ヒーターによりはんだ層を加熱して、はんだ層の表面酸化被膜を除去した後、真空引きにて還元ガスを除去し、その後、はんだ層の融点以上に加熱して、はんだ層を溶解及び合一化させて、凸部上にはんだ粒子を形成した後、窒素ガスを充填してから炉内温度を室温に戻し、はんだ粒子を得ることができる。還元雰囲気下で、はんだ層を加熱することで、還元力が増し、はんだ層の表面酸化被膜の除去が容易になる利点がある。 Profiles such as reduction of the solder layer, melting conditions, temperature, and adjustment of the atmosphere in the furnace may be appropriately set in consideration of the melting point, particle size, recess size, substrate material, etc. of the solder layer. For example, a substrate having a solder layer formed on a convex portion is inserted into a furnace, evacuated, and then a reducing gas is introduced to fill the inside of the furnace with the reducing gas to form an oxide film on the surface of the solder layer. After removal, the reducing gas is removed by evacuation, and then heated above the melting point of the solder layer to melt and coalesce the solder layer to form solder particles on the convex parts, and then nitrogen gas. After filling, the temperature inside the furnace can be returned to room temperature to obtain solder particles. Further, for example, a substrate having a solder layer formed on a convex portion is inserted into a furnace, evacuated, and then a reducing gas is introduced to fill the inside of the furnace with the reducing gas, and then a heater in the furnace is used. After heating the solder layer to remove the surface oxide film of the solder layer, the reducing gas is removed by vacuuming, and then the solder layer is heated to a temperature equal to or higher than the melting point of the solder layer to melt and coalesce the solder layer. After forming the solder particles on the convex portion, the temperature inside the furnace can be returned to room temperature after filling with nitrogen gas to obtain the solder particles. By heating the solder layer in a reducing atmosphere, there is an advantage that the reducing power is increased and the surface oxide film of the solder layer can be easily removed.
 さらに、例えば、はんだ層が凸部上に形成された基体を、炉内に挿入し、真空引きを行った後に、還元ガスを導入して、炉内を還元ガスで満たし、炉内加熱ヒーターにより基体をはんだ層の融点以上に加熱して、はんだ層の表面酸化被膜を還元により除去すると同時にはんだ層を溶解及び合一化させて、凸部上にはんだ粒子を形成し、真空引きにて還元ガスを除去し、さらにはんだ粒子内のボイドを減らした後、窒素ガスを充填してから炉内温度を室温に戻し、はんだ粒子を得ることができる。この場合は、炉内温度の上昇、下降の調節がそれぞれ一回で良いため、短時間で処理出来る利点がある。 Further, for example, a substrate having a solder layer formed on a convex portion is inserted into a furnace, and after vacuuming, a reducing gas is introduced to fill the inside of the furnace with the reducing gas, and a heater in the furnace is used. The substrate is heated above the melting point of the solder layer to remove the surface oxide film of the solder layer by reduction, and at the same time, the solder layer is melted and united to form solder particles on the convex portions, which are reduced by vacuuming. After removing the gas and further reducing the voids in the solder particles, the solder particles can be obtained by filling with nitrogen gas and then returning the temperature in the furnace to room temperature. In this case, since it is sufficient to adjust the temperature rise and fall in the furnace once, there is an advantage that the processing can be performed in a short time.
 上述の凸部上にはんだ粒子を形成した後に、もう一度炉内を還元雰囲気にして、除去し切れなかった表面酸化被膜を除去する工程を更に加えてもよい。これにより、融合されずに残っていたはんだ層や、融合されずに残っていた酸化被膜の一部などの残渣を減らすことができる。 After forming the solder particles on the above-mentioned convex portion, the inside of the furnace may be made into a reducing atmosphere again, and a step of removing the surface oxide film that could not be completely removed may be further added. As a result, it is possible to reduce the residue such as the solder layer remaining without being fused and a part of the oxide film remaining without being fused.
 大気圧のコンベアー炉を用いる場合は、はんだ層が凸部上に形成された基体を搬送用コンベアーに載せ、複数のゾーンを連続して通過させてはんだ粒子を得ることができる。例えば、はんだ層が凸部上に形成された基体を、一定の速度に設定したコンベアーに載せ、はんだ層の融点より低い温度の窒素やアルゴンなどの不活性ガスが充満したゾーンを通過させ、続いてはんだ層の融点より低い温度の蟻酸ガスなどの還元ガスが存在するゾーンを通過させて、はんだ層の表面酸化被膜を除去し、続いてはんだ層の融点以上の温度の窒素やアルゴンなどの不活性ガスが充満したゾーンを通過させてはんだ層を溶融、合一化させ、続いて窒素やアルゴンなどの不活性ガスが充満した冷却ゾーンを通過させて、はんだ粒子を得ることができる。例えば、はんだ層が凸部上に形成された基体を、一定の速度に設定したコンベアーに載せ、はんだ層の融点以上の温度の窒素やアルゴンなどの不活性ガスが充満したゾーンを通過させ、続いてはんだ層の融点以上の温度の蟻酸ガスなどの還元ガスが存在するゾーンを通過させて、はんだ層の表面酸化被膜を除去し、溶融、合一化させ、続いて窒素やアルゴンなどの不活性ガスが充満した冷却ゾーンを通過させて、はんだ粒子を得ることができる。前記のコンベアー炉は、大気圧での処理が可能であることから、フィルム状の材料をロールトゥロールで連続的に処理することもできる。例えば、はんだ層が凸部上に形成された基体の連続ロール品を作製し、コンベアー炉の入り口側にロール巻きだし機、コンベアー炉の出口側にロール巻き取り機を設置して、一定の速度で基体を搬送し、コンベアー炉内の各ゾーンを通過させることで、凸部上に形成されたはんだ層を融合させることができる。 When using an atmospheric pressure conveyor furnace, a substrate having a solder layer formed on a convex portion can be placed on a conveyor and passed through a plurality of zones in succession to obtain solder particles. For example, a substrate having a solder layer formed on a convex portion is placed on a conveyor set at a constant speed, passed through a zone filled with an inert gas such as nitrogen or argon at a temperature lower than the melting point of the solder layer, and then passed. The surface oxide film of the solder layer is removed by passing through a zone where a reducing gas such as formic acid gas having a temperature lower than the melting point of the solder layer is present, and then nitrogen, argon or the like having a temperature higher than the melting point of the solder layer is not used. Solder particles can be obtained by passing through a zone filled with active gas to melt and coalesce the solder layer, and then through a cooling zone filled with an inert gas such as nitrogen or argon. For example, a substrate having a solder layer formed on a convex portion is placed on a conveyor set at a constant speed, passed through a zone filled with an inert gas such as nitrogen or argon at a temperature equal to or higher than the melting point of the solder layer, and then passed. The surface oxide film of the solder layer is removed, melted and coalesced by passing through a zone where a reducing gas such as formic acid gas having a temperature equal to or higher than the melting point of the solder layer exists, and then inert such as nitrogen and argon. Solder particles can be obtained by passing through a gas-filled cooling zone. Since the conveyor furnace can be processed at atmospheric pressure, a film-like material can be continuously processed by roll-to-roll. For example, a continuous roll product of a substrate in which a solder layer is formed on a convex portion is produced, a roll unwinder is installed on the inlet side of the conveyor furnace, and a roll winder is installed on the outlet side of the conveyor furnace to maintain a constant speed. By transporting the substrate and passing it through each zone in the conveyor furnace, the solder layer formed on the convex portion can be fused.
 形成されたはんだ粒子は、基体の凸部上に形成された状態で運搬・保管等してよい。凸部上にはんだ粒子が形成された状態の基体は、はんだ粒子付き基体として好適に取り扱うことができる。はんだ粒子付き基体は、複数の凸部を有する基体と、前記基体の前記凸部上に配置された複数のはんだ粒子とを備える。前記はんだ粒子の平均粒子径が100nm以上1μm未満であり、前記はんだ粒子のC.V.値が20%以下であってもよい。形成されたはんだ粒子は、凸部上から回収されてもよい。また、基体の凸部と対向するように樹脂材料を配置して、凸部上のはんだ粒子を樹脂材料に転写させてもよい。このとき、凸部が規則的に配置されていると、樹脂材料上にはんだ粒子を規則的に配置させることができる。 The formed solder particles may be transported and stored in a state of being formed on the convex portion of the substrate. A substrate in which solder particles are formed on the convex portion can be suitably handled as a substrate with solder particles. A substrate with solder particles includes a substrate having a plurality of convex portions and a plurality of solder particles arranged on the convex portions of the substrate. The average particle size of the solder particles is 100 nm or more and less than 1 μm, and the C.I. V. The value may be 20% or less. The formed solder particles may be recovered from the convex portion. Further, the resin material may be arranged so as to face the convex portion of the substrate, and the solder particles on the convex portion may be transferred to the resin material. At this time, if the convex portions are regularly arranged, the solder particles can be regularly arranged on the resin material.
 図5は、基体の凸部上にはんだ粒子が形成された状態の一例を模式的に示す断面図である。図5に示すはんだ粒子付き基体100は、図4に示すはんだ層50が形成された基体10を融合工程に供して得られる。はんだ粒子付き基体100において、複数の凸部11を有する基体10の当該凸部11上に、はんだ粒子1が形成されている。 FIG. 5 is a cross-sectional view schematically showing an example of a state in which solder particles are formed on the convex portion of the substrate. The substrate 100 with solder particles shown in FIG. 5 is obtained by subjecting the substrate 10 on which the solder layer 50 shown in FIG. 4 is formed to a fusion step. In the base 100 with solder particles, the solder particles 1 are formed on the convex portions 11 of the base 10 having a plurality of convex portions 11.
 図7は、基体の凸部上にはんだ粒子が形成された状態の他の一例を模式的に示す断面図である。図7に示すはんだ粒子付き基体110は、図6に示すはんだ層50及びはんだ層51が形成された基体10を融合工程に供して得られる。はんだ粒子付き基体110において、複数の凸部11を有する基体10の当該凸部11上に、はんだ粒子1が形成されている。また、はんだ粒子付き基体110において、凸部11間の底部12には、はんだ層51に由来するはんだ粒子2が形成されている。はんだ粒子2は必ずしも小さい粒度分布を示すとは限らないため、本態様では、はんだ粒子1のみを回収又は転写することが好ましい。はんだ粒子2は、基体10の底部12に固着されており、凸部11上のはんだ粒子1より低い位置に存在している。このため、例えば、基体10の凸部11と対向するように樹脂材料を配置して、凸部11上のはんだ粒子1を樹脂材料に転写させることで、はんだ粒子1のみを回収することができる。 FIG. 7 is a cross-sectional view schematically showing another example of a state in which solder particles are formed on the convex portion of the substrate. The base 110 with solder particles shown in FIG. 7 is obtained by subjecting the base 10 on which the solder layer 50 and the solder layer 51 shown in FIG. 6 are formed to a fusion step. In the base 110 with solder particles, the solder particles 1 are formed on the convex portions 11 of the base 10 having a plurality of convex portions 11. Further, in the base 110 with solder particles, solder particles 2 derived from the solder layer 51 are formed on the bottom portion 12 between the convex portions 11. Since the solder particles 2 do not always show a small particle size distribution, in this embodiment, it is preferable to collect or transfer only the solder particles 1. The solder particles 2 are fixed to the bottom portion 12 of the substrate 10 and exist at a position lower than the solder particles 1 on the convex portion 11. Therefore, for example, by arranging the resin material so as to face the convex portion 11 of the substrate 10 and transferring the solder particles 1 on the convex portion 11 to the resin material, only the solder particles 1 can be recovered. ..
 本実施形態の製造方法であれば、はんだ材料の材質及び形状によらず、均一なサイズのはんだ粒子を形成することができる。例えば、インジウム系はんだは、めっきによる析出が可能であるが、粒子状に析出させることは難しく、柔らかくて扱いが難しい。しかし、本実施形態の製造方法では、インジウム系はんだ板を原料として用いることで、均一な粒子径を有するインジウム系はんだ粒子を容易に製造することができる。また、形成されたはんだ粒子は、基体の凸部に形成された状態で取り扱うことができるため、はんだ粒子を変形させることなく運搬・保管等することができる。さらに、形成されたはんだ粒子は、単に基体の凸部に形成された状態であるため、取り出しが容易であり、はんだ粒子を変形させることなく回収・表面処理等を行うことができる。 With the manufacturing method of this embodiment, it is possible to form solder particles having a uniform size regardless of the material and shape of the solder material. For example, indium-based solder can be precipitated by plating, but it is difficult to precipitate it in the form of particles, and it is soft and difficult to handle. However, in the production method of the present embodiment, by using an indium-based solder plate as a raw material, indium-based solder particles having a uniform particle size can be easily produced. Further, since the formed solder particles can be handled in a state of being formed on the convex portion of the substrate, the solder particles can be transported and stored without being deformed. Further, since the formed solder particles are simply formed on the convex portion of the substrate, they can be easily taken out, and the solder particles can be collected, surface-treated, etc. without being deformed.
 また、はんだ材料は、サイズや粒度分布にばらつきが大きくても、形状がいびつであってもよく、スパッタリングやめっき及び吹き付け塗装等の手法によって凸部上にはんだ層を形成することができれば、本実施形態の製造方法の原料として用いることができる。 Further, the solder material may have a large variation in size and particle size distribution, or may have a distorted shape, and if a solder layer can be formed on the convex portion by a method such as sputtering, plating, or spray coating, the present invention. It can be used as a raw material for the production method of the embodiment.
 また、本実施形態の製造方法において、基体は、フォトリソグラフ法、インプリント法、機械加工法、電子線加工法、放射線加工法等によって凸部の形状を自在に設計できる。はんだ粒子のサイズは凸部に形成されるはんだ層の量に依存するため、本実施形態の製造方法では、凸部の設計によってもはんだ粒子のサイズを自在に設計できる。 Further, in the manufacturing method of the present embodiment, the shape of the convex portion of the substrate can be freely designed by a photolithography method, an imprint method, a machining method, an electron beam processing method, a radiation processing method, or the like. Since the size of the solder particles depends on the amount of the solder layer formed on the convex portion, the size of the solder particles can be freely designed by the design of the convex portion in the manufacturing method of the present embodiment.
(はんだ粒子)
 本実施形態に係るはんだ粒子は、平均粒子径が100nm以上30μm以下、C.V.値が20%以下であり、好ましくは、平均粒子径が100nm以上1μm未満、C.V.値が20%以下である。このようなはんだ粒子は、小さい平均粒子径と狭い粒度分布とが両立されており、導電信頼性及び絶縁信頼性の高い異方性導電材料に適用する導電性粒子として好適に用いることができる。本実施形態に係るはんだ粒子は、上述の製造方法によって製造される。
(Solder particles)
The solder particles according to this embodiment have an average particle size of 100 nm or more and 30 μm or less, and have a C.I. V. The value is 20% or less, preferably the average particle size is 100 nm or more and less than 1 μm, C.I. V. The value is 20% or less. Such solder particles have both a small average particle size and a narrow particle size distribution, and can be suitably used as conductive particles applied to an anisotropic conductive material having high conductivity reliability and insulation reliability. The solder particles according to this embodiment are manufactured by the above-mentioned manufacturing method.
 はんだ粒子の平均粒子径は、上記の範囲であれば特に限定されず、例えば30μm以下、15μm以下、10μm以下、5μm以下、3μm以下又は2μm以下であってよく、好ましくは1μm未満である。また、はんだ粒子の平均粒子径は、例えば100nm以上であってよく、200nm以上、300nm以上、400nm又は500nm以上であってよい。 The average particle size of the solder particles is not particularly limited as long as it is within the above range, and may be, for example, 30 μm or less, 15 μm or less, 10 μm or less, 5 μm or less, 3 μm or less, or 2 μm or less, preferably less than 1 μm. The average particle size of the solder particles may be, for example, 100 nm or more, 200 nm or more, 300 nm or more, 400 nm or 500 nm or more.
 はんだ粒子の平均粒子径は、サイズに合わせた各種方法を用いて測定することができる。例えば、動的光散乱法、レーザ回折法、遠心沈降法、電気的検知帯法、共振式質量測定法等の方法を利用できる。さらに、光学顕微鏡、電子顕微鏡等によって得られる画像から、粒子サイズを測定する方法を利用できる。具体的な装置としては、フロー式粒子像分析装置、マイクロトラック、コールターカウンター等が挙げられる。 The average particle size of the solder particles can be measured using various methods according to the size. For example, a dynamic light scattering method, a laser diffraction method, a centrifugal sedimentation method, an electrical detection band method, a resonance type mass measurement method, or the like can be used. Further, a method of measuring the particle size from an image obtained by an optical microscope, an electron microscope, or the like can be used. Specific devices include a flow-type particle image analyzer, a microtrack, a Coulter counter, and the like.
 はんだ粒子のC.V.値は、より優れた導電信頼性及び絶縁信頼性を実現できる観点から、好ましくは20%以下、より好ましくは10%以下、更に好ましくは7%以下、特に好ましくは5%以下である。また、はんだ粒子のC.V.値の下限は特に限定されない。例えば、はんだ粒子のC.V.値は1%以上であってよく、2%以上であってもよい。 C. of solder particles V. The value is preferably 20% or less, more preferably 10% or less, still more preferably 7% or less, and particularly preferably 5% or less, from the viewpoint of achieving more excellent conductivity reliability and insulation reliability. In addition, C.I. V. The lower limit of the value is not particularly limited. For example, C.I. V. The value may be 1% or more, and may be 2% or more.
 はんだ粒子のC.V.値は、前述の方法によって測定された粒子径の標準偏差を平均粒子径で割った値に100を掛けることで算出される。 C. of solder particles V. The value is calculated by multiplying the value obtained by dividing the standard deviation of the particle size measured by the above method by the average particle size by 100.
 はんだ粒子は、表面の一部に平面部が形成されていてよく、このとき当該平面部以外の表面は、球冠状であることが好ましい。すなわち、はんだ粒子は、平面部と、球冠状の曲面部と、を有するものであってよい。はんだ粒子の直径Bに対する平面部の直径Aの比(A/B)は、例えば0.01超1.0未満(0.01<A/B<1.0)であってよく、0.1~0.9であってもよい。はんだ粒子が平面部を有することで、はんだ粒子の座りが良くなり、取扱い性が向上する。具体的には、電極等のはんだ粒子によって接続するべき対象物上にはんだ粒子を配置する時に、平坦部があることで、所定の位置に配置しやすく、振動、風、外力、静電気などではんだ粒子が所定の位置から動いてしまうことを抑制する効果がある。また、はんだ粒子を配置した部材を傾け場合に、平坦部を有さない例えば球状のはんだ粒子と比較して、重力によってはんだ粒子が動きづらい効果がある。 A flat surface portion may be formed on a part of the surface of the solder particles, and at this time, the surface other than the flat surface portion is preferably spherical crown-shaped. That is, the solder particles may have a flat surface portion and a spherical crown-shaped curved surface portion. The ratio (A / B) of the diameter A of the flat surface portion to the diameter B of the solder particles may be, for example, more than 0.01 and less than 1.0 (0.01 <A / B <1.0), and may be 0.1. It may be ~ 0.9. Since the solder particles have a flat surface portion, the seating of the solder particles is improved and the handleability is improved. Specifically, when arranging solder particles on an object to be connected by solder particles such as electrodes, it is easy to arrange them in a predetermined position because there is a flat part, and it is soldered by vibration, wind, external force, static electricity, etc. It has the effect of suppressing the movement of particles from a predetermined position. Further, when the member on which the solder particles are arranged is tilted, there is an effect that the solder particles are hard to move due to gravity as compared with, for example, spherical solder particles having no flat portion.
 上述の製造方法では、基体の凸部上にはんだ粒子が形成される。このとき、はんだ粒子と凸部の頂部との接面において、上記平面部が形成される場合がある。 In the above-mentioned manufacturing method, solder particles are formed on the convex portion of the substrate. At this time, the flat surface portion may be formed at the contact surface between the solder particles and the top portion of the convex portion.
 はんだ粒子の投影像に外接する四角形を二対の平行線により作成した場合において、対向する辺間の距離をX及びY(但しY<X)としたときに、Xに対するYの比(Y/X)は、0.8超1.0未満(0.8<Y/X<1.0)であってよく、0.9以上1.0未満であってもよい。このようなはんだ粒子はより真球に近い粒子ということができる。上述の本実施形態の製造方法によれば、このようなはんだ粒子を容易に得ることができる。
はんだ粒子が真球に近いことで、例えば、対向する複数の電極間をはんだ粒子を介して電気的に接続させるときに、はんだ粒子と電極間接触にムラが生じ難く、安定した接続が得られる傾向がある。また、はんだ粒子を樹脂材料中に分散した導電性フィルムや樹脂を作製したとき、高い分散性が得られ、製造時の分散安定性が得られる傾向がある。さらに、はんだ粒子を樹脂材料に分散したフィルムやペーストを、電極間の接続に用いる場合、樹脂中ではんだ粒子が回転しても、はんだ粒子が球体形状であれば、投影像で見たとき、はんだ粒子同士の投影面積が近い。そのため、電極同士を接続する際にばらつきの少ない、安定した電気接続を得易い傾向がある。
When a quadrangle circumscribing the projected image of solder particles is created by two pairs of parallel lines, and the distance between the opposing sides is X and Y (where Y <X), the ratio of Y to X (Y / X) may be more than 0.8 and less than 1.0 (0.8 <Y / X <1.0), and may be 0.9 or more and less than 1.0. Such solder particles can be said to be particles closer to a true sphere. According to the manufacturing method of the present embodiment described above, such solder particles can be easily obtained.
Since the solder particles are close to a true sphere, for example, when a plurality of opposing electrodes are electrically connected via the solder particles, the contact between the solder particles and the electrodes is less likely to be uneven, and a stable connection can be obtained. Tend. Further, when a conductive film or resin in which solder particles are dispersed in a resin material is produced, high dispersibility is obtained, and dispersion stability during production tends to be obtained. Furthermore, when a film or paste in which solder particles are dispersed in a resin material is used for connection between electrodes, even if the solder particles rotate in the resin, if the solder particles have a spherical shape, when viewed in a projected image, The projected areas of the solder particles are close to each other. Therefore, when connecting the electrodes, it tends to be easy to obtain a stable electrical connection with little variation.
 図8は、はんだ粒子の投影像に外接する四角形を二対の平行線により作成した場合における、対向する辺間の距離X及びY(但しY<X)を示す図である。例えば、任意の粒子を走査型電子顕微鏡により観察して投影像を得る。得られた投影像に対し二対の平行線を描画し、一対の平行線は平行線の距離が最小となる位置に、もう一対の平行線は平行線の距離が最大となる位置に配し、その粒子のY/Xを求める。この作業を300個のはんだ粒子に対して行って平均値を算出し、はんだ粒子のY/Xとする。 FIG. 8 is a diagram showing distances X and Y (where Y <X) between opposite sides when a quadrangle circumscribing a projected image of solder particles is created by two pairs of parallel lines. For example, an arbitrary particle is observed with a scanning electron microscope to obtain a projected image. Two pairs of parallel lines are drawn with respect to the obtained projected image, and the pair of parallel lines are arranged at the position where the distance between the parallel lines is the minimum, and the other pair of parallel lines are arranged at the position where the distance between the parallel lines is the maximum. , Find the Y / X of the particle. This operation is performed on 300 solder particles, the average value is calculated, and the Y / X of the solder particles is obtained.
 はんだ粒子は、スズ又はスズ合金を含むものであってよい。スズ合金としては、例えば、In-Sn合金、In-Sn-Ag合金、Sn-Au合金、Sn-Bi合金、Sn-Bi-Ag合金、Sn-Ag-Cu合金、Sn-Cu合金等を用いることができる。これらのスズ合金の具体例としては、下記の例が挙げられる。
・In-Sn(In52質量%、Bi48質量% 融点118℃)
・In-Sn-Ag(In20質量%、Sn77.2質量%、Ag2.8質量% 融点175℃)
・Sn-Bi(Sn43質量%、Bi57質量% 融点138℃)
・Sn-Bi-Ag(Sn42質量%、Bi57質量%、Ag1質量% 融点139℃)・Sn-Ag-Cu(Sn96.5質量%、Ag3質量%、Cu0.5質量% 融点217℃)
・Sn-Cu(Sn99.3質量%、Cu0.7質量% 融点227℃)
・Sn-Au(Sn21.0質量%、Au79.0質量% 融点278℃)
The solder particles may contain tin or a tin alloy. As the tin alloy, for example, In—Sn alloy, In—Sn—Ag alloy, Sn—Au alloy, Sn—Bi alloy, Sn—Bi—Ag alloy, Sn—Ag—Cu alloy, Sn—Cu alloy and the like are used. be able to. Specific examples of these tin alloys include the following examples.
-In-Sn (In 52% by mass, Bi48% by mass, melting point 118 ° C)
-In-Sn-Ag (In 20% by mass, Sn77.2% by mass, Ag 2.8% by mass, melting point 175 ° C.)
-Sn-Bi (Sn43% by mass, Bi57% by mass, melting point 138 ° C.)
-Sn-Bi-Ag (Sn42% by mass, Bi57% by mass, Ag1% by mass, melting point 139 ° C.)-Sn-Ag-Cu (Sn96.5% by mass, Ag3% by mass, Cu0.5% by mass, melting point 217 ° C.)
-Sn-Cu (Sn99.3% by mass, Cu0.7% by mass, melting point 227 ° C)
-Sn-Au (Sn21.0% by mass, Au79.0% by mass, melting point 278 ° C.)
 はんだ粒子は、インジウム又はインジウム合金を含むものであってよい。インジウム合金としては、例えば、In-Bi合金、In-Ag合金等を用いることができる。これらのインジウム合金の具体例としては、下記の例が挙げられる。
・In-Bi(In66.3質量%、Bi33.7質量% 融点72℃)
・In-Bi(In33.0質量%、Bi67.0質量% 融点109℃)
・In-Ag(In97.0質量%、Ag3.0質量% 融点145℃)
The solder particles may contain indium or an indium alloy. As the indium alloy, for example, an In—Bi alloy, an In—Ag alloy, or the like can be used. Specific examples of these indium alloys include the following examples.
-In-Bi (In66.3% by mass, Bi33.7% by mass, melting point 72 ° C.)
-In-Bi (In33.0% by mass, Bi67.0% by mass, melting point 109 ° C)
-In-Ag (In97.0% by mass, Ag3.0% by mass, melting point 145 ° C)
 はんだ粒子の用途(使用時の温度)等に応じて、上記スズ合金又はインジウム合金を選択することができる。例えば、低温での融着にはんだ粒子を用いる場合、In-Sn合金、Sn-Bi合金を採用すればよく、この場合、150℃以下で融着させることができる。Sn-Ag-Cu合金、Sn-Cu合金等の融点の高い材料を採用した場合、高温放置後においても高い信頼性を維持することができる。 The above tin alloy or indium alloy can be selected according to the application (temperature at the time of use) of the solder particles. For example, when solder particles are used for fusion at a low temperature, an In—Sn alloy or a Sn—Bi alloy may be used, and in this case, the solder particles can be fused at 150 ° C. or lower. When a material having a high melting point such as Sn—Ag—Cu alloy or Sn—Cu alloy is used, high reliability can be maintained even after being left at a high temperature.
 はんだ粒子は、Ag、Cu、Ni、Bi、Zn、Pd、Pb、Au、P及びBから選ばれる一種以上を含んでもよい。これらの元素のうち、以下の観点からAg又はCuを含んでもよい。すなわち、はんだ粒子がAg又はCuを含むことで、はんだ粒子の融点を220℃程度まで低下させることができ、且つ、電極との接合強度がより向上するため、より良好な導通信頼性が得られやすくなる。 The solder particles may contain one or more selected from Ag, Cu, Ni, Bi, Zn, Pd, Pb, Au, P and B. Among these elements, Ag or Cu may be contained from the following viewpoints. That is, when the solder particles contain Ag or Cu, the melting point of the solder particles can be lowered to about 220 ° C., and the bonding strength with the electrode is further improved, so that better conduction reliability can be obtained. It will be easier.
 はんだ粒子のCu含有率は例えば0.05~10質量%であり、0.1~5質量%又は0.2~3質量%であってもよい。Cu含有率が0.05質量%以上であると、より良好なはんだ接続信頼性を達成しやすくなる。また、Cu含有率が10質量%以下であると、融点が低く、濡れ性に優れたはんだ粒子となりやすく、結果としてはんだ粒子による接合部の接続信頼性が良好となりやすい。 The Cu content of the solder particles is, for example, 0.05 to 10% by mass, and may be 0.1 to 5% by mass or 0.2 to 3% by mass. When the Cu content is 0.05% by mass or more, it becomes easy to achieve better solder connection reliability. Further, when the Cu content is 10% by mass or less, the melting point is low and the solder particles tend to have excellent wettability, and as a result, the connection reliability of the joint portion by the solder particles tends to be good.
 はんだ粒子のAg含有率は例えば0.05~10質量%であり、0.1~5質量%又は0.2~3質量%であってもよい。Ag含有率が0.05質量%以上であると、より良好なはんだ接続信頼性を達成しやすくなる。また、Ag含有率が10質量%以下であると、融点が低く、濡れ性に優れたはんだ粒子となりやすく、結果としてはんだ粒子による接合部の接続信頼性が良好となりやすい。 The Ag content of the solder particles is, for example, 0.05 to 10% by mass, and may be 0.1 to 5% by mass or 0.2 to 3% by mass. When the Ag content is 0.05% by mass or more, it becomes easy to achieve better solder connection reliability. Further, when the Ag content is 10% by mass or less, the melting point is low and the solder particles tend to have excellent wettability, and as a result, the connection reliability of the joint portion by the solder particles tends to be good.
 はんだ粒子の用途は特に限定されず、例えば、異方性導電材料用の導電性粒子として好適に用いることができる。また、半導体集積回路の実装に広く用いられているボールグリッドアレイ接続方法(BGA接続)等の電気的に電極同士を接続する用途や、MEMS等の部品の封止や封管、ロウ付け、高さや隙間制御のスペーサ等の用途にも好適に用いることができる。すなわち、従来はんだが用いられる一般的な用途に、上記はんだ粒子を用いることができる。 The use of the solder particles is not particularly limited, and for example, it can be suitably used as conductive particles for an anisotropic conductive material. In addition, applications such as ball grid array connection method (BGA connection), which is widely used for mounting semiconductor integrated circuits, are used to electrically connect electrodes, and parts such as MEMS are sealed, sealed, brazed, and high. It can also be suitably used for applications such as a spacer for controlling a sheath gap. That is, the solder particles can be used for general applications in which conventional solder is used.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
<実施例1>
(工程a1)基体の準備
 頂部径0.15μmφ、底部径0.15μmφ、高さ0.13μmの凸部を複数有する基体(ポリイミドフィルム、厚さ50μm)を準備した。複数の凸部は、0.15μmの間隔で規則的に配列させた。
<Example 1>
(Step a1) Preparation of a substrate A substrate (polyimide film, thickness 50 μm) having a plurality of convex portions having a top diameter of 0.15 μmφ, a bottom diameter of 0.15 μmφ, and a height of 0.13 μm was prepared. The plurality of protrusions were regularly arranged at intervals of 0.15 μm.
(工程b1)はんだ層の形成
 工程a1で得た凸部を複数有する基体をスパッタリング装置(アリオス株式会社製)に投入し、真空引き後アルゴンガスを投入し、装置内を1Paのアルゴン雰囲気にした。その後、下記条件でスパッタリングを、表1に示す時間だけ行いはんだ層を形成した。
  (装置条件)
    ターゲット・・・・・・・・Sn-Biはんだ板(融点139℃)
    投入電力・・・・・・・・・60W
(Step b1) Formation of Solder Layer The substrate having a plurality of convex portions obtained in the step a1 was put into a sputtering apparatus (manufactured by Arios Co., Ltd.), and after evacuation, argon gas was added to make the inside of the apparatus an argon atmosphere of 1 Pa. .. Then, sputtering was carried out under the following conditions for the time shown in Table 1 to form a solder layer.
(Device conditions)
Target: Sn-Bi solder plate (melting point 139 ° C)
Input power ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 60W
(工程c1)はんだ粒子の形成
 工程b1で得たはんだ層を有する基体を、ギ酸ラジカル還元炉(新港精機株式会社製リフロー装置)に投入し、真空引き後、ギ酸混合窒素ガス(ギ酸含有率4%)を炉内に導入して、炉内を満たした。その後、炉内を120℃に調整し、5分間還元処理を行った。その後、180℃まで加熱した後、真空引きにて炉内のガスを除去し、窒素を炉内に導入して大気圧に戻してから炉内の温度を室温まで下げることにより、はんだ粒子を形成した。
(Step c1) Formation of solder particles The substrate having the solder layer obtained in step b1 is put into a formic acid radical reduction furnace (reflow equipment manufactured by Shinko Seiki Co., Ltd.), vacuumed, and then formic acid mixed nitrogen gas (formic acid content 4). %) Was introduced into the furnace to fill the inside of the furnace. Then, the inside of the furnace was adjusted to 120 ° C., and the reduction treatment was carried out for 5 minutes. Then, after heating to 180 ° C., the gas in the furnace is removed by vacuuming, nitrogen is introduced into the furnace to return it to atmospheric pressure, and then the temperature inside the furnace is lowered to room temperature to form solder particles. bottom.
(はんだ粒子の評価)
 SEM観察用台座表面に固定した導電テープ上に、工程c1で得られたはんだ粒子を有する基体を固定した。その後、白金スパッタを20mA、60秒の条件で行った。SEMにてコアシェル型はんだ粒子の直径を200個測定し、平均粒子径及びC.V.値を算出した。結果を表1に示す。
(Evaluation of solder particles)
The substrate having the solder particles obtained in step c1 was fixed on the conductive tape fixed to the surface of the SEM observation pedestal. Then, platinum sputtering was carried out under the conditions of 20 mA and 60 seconds. The diameter of 200 core-shell type solder particles was measured by SEM, and the average particle diameter and C.I. V. The value was calculated. The results are shown in Table 1.
<実施例2~12>
 表1に示す頂部径、底部径、高さ、間隔、スパッタ時間及び材質で、実施例1と同様にして、はんだ粒子を作製し評価した。結果を表1に示す。また、実施例2で得られたはんだ粒子を撮像したSEM画像を図12に示す。
<Examples 2 to 12>
Solder particles were prepared and evaluated in the same manner as in Example 1 with the top diameter, bottom diameter, height, interval, sputtering time and material shown in Table 1. The results are shown in Table 1. Further, FIG. 12 shows an SEM image of the solder particles obtained in Example 2.
<実施例13~17>
 工程c1に代えて、以下の工程c2を行ったこと以外は、表1に示す頂部径、底部径、高さ、間隔、スパッタ時間及び材質で、実施例1と同様にして、はんだ粒子を作製し評価した。結果を表1に示す。実施例13で用意した基体のSEM画像を図9に、基体上にはんだ層を形成した様子のSEM画像を図10に、はんだ粒子が形成された様子のSEM画像を図11に示す。
<Examples 13 to 17>
Solder particles were produced in the same manner as in Example 1 with the top diameter, bottom diameter, height, spacing, sputtering time and material shown in Table 1, except that the following step c2 was performed instead of step c1. And evaluated. The results are shown in Table 1. The SEM image of the substrate prepared in Example 13 is shown in FIG. 9, the SEM image of the solder layer formed on the substrate is shown in FIG. 10, and the SEM image of the solder particles formed is shown in FIG.
(工程c2)はんだ粒子の形成
 工程b1で得たはんだ層を有する基体を、水素ラジカル還元炉(新港精機株式会社製プラズマリフロー装置)に投入し、真空引き後、水素ガスを炉内に導入して、炉内を水素ガスで満たした。その後、炉内を130℃に調整し、5分間水素ラジカルを照射した。その後、真空引きにて炉内の水素ガスを除去し、165℃まで加熱した後、窒素を炉内に導入して大気圧に戻してから炉内の温度を室温まで下げることにより、はんだ粒子を形成した。
(Step c2) Formation of solder particles The substrate having the solder layer obtained in step b1 is put into a hydrogen radical reduction furnace (plasma reflow device manufactured by Shinko Seiki Co., Ltd.), vacuumed, and then hydrogen gas is introduced into the furnace. The inside of the furnace was filled with hydrogen gas. Then, the inside of the furnace was adjusted to 130 ° C. and irradiated with hydrogen radicals for 5 minutes. After that, the hydrogen gas in the furnace is removed by vacuuming, and after heating to 165 ° C., nitrogen is introduced into the furnace to return it to atmospheric pressure, and then the temperature inside the furnace is lowered to room temperature to remove the solder particles. Formed.
<比較例1>
 Sn-Biはんだ微粒子(5N Plus社製、融点139℃、Type8、D50=3.0μm、C.V.値 42%)500gを100gずつ5つに分けて分取し、それぞれを蒸留水に浸漬し、超音波分散させた後、静置し、上澄みに浮遊するはんだ微粒子を回収した。この操作を繰り返して、合計1gのはんだ微粒子を回収した。得られたはんだ微粒子の平均粒子径及びC.V.値を表1に示す。
<Comparative example 1>
500 g of Sn-Bi solder fine particles (manufactured by 5N Plus, melting point 139 ° C., Type 8, D 50 = 3.0 μm, CV value 42%) were separated into 5 parts of 100 g each and each of them was added to distilled water. After immersion and ultrasonic dispersion, the mixture was allowed to stand and the solder fine particles floating in the supernatant were recovered. By repeating this operation, a total of 1 g of solder fine particles was collected. The average particle size of the obtained solder fine particles and C.I. V. The values are shown in Table 1.
<比較例2>
 凸部を有しない平滑な基体(ポリイミドフィルム、厚さ50μm)を準備した事以外は、実施例2と同様にして、はんだ粒子を作製し評価した。結果を表1に示す。得られたはんだ粒子を撮像したSEM画像を図13に示す。
<Comparative example 2>
Solder particles were prepared and evaluated in the same manner as in Example 2 except that a smooth substrate (polyimide film, thickness 50 μm) having no convex portion was prepared. The results are shown in Table 1. An SEM image of the obtained solder particles is shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1…はんだ粒子、10…基体、11,21…凸部、12,22…底部、50…はんだ層、100,110…はんだ粒子付き基体。 1 ... Solder particles, 10 ... Base, 11,21 ... Convex, 12, 22 ... Bottom, 50 ... Solder layer, 100, 110 ... Base with solder particles.

Claims (14)

  1.  複数の凸部を有する基体を準備する準備工程と、
     前記基体の少なくとも一部の前記凸部上にはんだ層を形成するはんだ層形成工程と、
     前記凸部上に形成された前記はんだ層を融合させて、前記凸部上にはんだ粒子を形成する融合工程と、
    を含む、はんだ粒子の製造方法。
    A preparatory step for preparing a substrate having a plurality of protrusions, and
    A solder layer forming step of forming a solder layer on at least a part of the convex portion of the substrate, and
    A fusion step of fusing the solder layer formed on the convex portion to form solder particles on the convex portion, and a fusion step.
    A method for manufacturing solder particles, including.
  2.  前記凸部が、柱状又は錐台状である、請求項1に記載のはんだ粒子の製造方法。 The method for producing solder particles according to claim 1, wherein the convex portion has a columnar shape or a frustum shape.
  3.  前記基体が、複数の凸部と当該凸部間に形成された底部とを備える第一の面を有し、
     前記第一の面の投影面積に占める前記底部の投影面積の割合が8%以上である、請求項1又は2に記載のはんだ粒子の製造方法。
    The substrate has a first surface comprising a plurality of protrusions and a bottom formed between the protrusions.
    The method for producing solder particles according to claim 1 or 2, wherein the ratio of the projected area of the bottom portion to the projected area of the first surface is 8% or more.
  4.  前記はんだ層形成工程において、めっき、蒸着、スパッタリング及び吹き付け塗装からなる群より選択される少なくとも一種の方法で、前記凸部上に前記はんだ層を形成する、請求項1~3のいずれか一項に記載のはんだ粒子の製造方法。 Any one of claims 1 to 3, wherein in the solder layer forming step, the solder layer is formed on the convex portion by at least one method selected from the group consisting of plating, vapor deposition, sputtering and spray coating. The method for producing solder particles according to.
  5.  前記融合工程の前に、前記凸部上に形成された前記はんだ層を還元雰囲気下に晒す還元工程を更に含む、請求項1~4のいずれか一項に記載のはんだ粒子の製造方法。 The method for producing solder particles according to any one of claims 1 to 4, further comprising a reduction step of exposing the solder layer formed on the convex portion to a reducing atmosphere before the fusion step.
  6.  前記融合工程において、前記凸部上に形成された前記はんだ層を還元雰囲気下で融合させる、請求項1~5のいずれか一項に記載のはんだ粒子の製造方法。 The method for producing solder particles according to any one of claims 1 to 5, wherein in the fusion step, the solder layer formed on the convex portion is fused in a reducing atmosphere.
  7.  前記はんだ層が、スズ、スズ合金、インジウム及びインジウム合金からなる群より選択される少なくとも一種を含む、請求項1~6のいずれか一項に記載のはんだ粒子の製造方法。 The method for producing solder particles according to any one of claims 1 to 6, wherein the solder layer contains at least one selected from the group consisting of tin, tin alloys, indium and indium alloys.
  8.  前記はんだ層が、In-Bi合金、In-Sn合金、In-Sn-Ag合金、Sn-Au合金、Sn-Bi合金、Sn-Bi-Ag合金、Sn-Ag-Cu合金及びSn-Cu合金からなる群より選択される少なくとも一種を含む、請求項7に記載のはんだ粒子の製造方法。 The solder layer is an In-Bi alloy, an In-Sn alloy, an In-Sn-Ag alloy, a Sn-Au alloy, a Sn-Bi alloy, a Sn-Bi-Ag alloy, a Sn-Ag-Cu alloy and a Sn-Cu alloy. The method for producing solder particles according to claim 7, which comprises at least one selected from the group consisting of.
  9.  平均粒子径が100nm以上1μm未満であり、C.V.値が20%以下である、はんだ粒子。 The average particle size is 100 nm or more and less than 1 μm, and C.I. V. Solder particles with a value of 20% or less.
  10.  はんだ粒子の投影像に外接する四角形を二対の平行線により作成した場合において、対向する辺間の距離をX及びY(但しY<X)としたときに、X及びYが下記式を満たす、請求項9に記載のはんだ粒子。
      0.8<Y/X<1.0
    When a quadrangle circumscribing the projected image of solder particles is created by two pairs of parallel lines, and the distance between the opposing sides is X and Y (where Y <X), X and Y satisfy the following equation. , The solder particles according to claim 9.
    0.8 <Y / X <1.0
  11.  スズ、スズ合金、インジウム及びインジウム合金からなる群より選択される少なくとも一種を含む、請求項9又は10に記載のはんだ粒子。 The solder particles according to claim 9 or 10, which include at least one selected from the group consisting of tin, tin alloys, indium and indium alloys.
  12.  In-Bi合金、In-Sn合金、In-Sn-Ag合金、Sn-Au合金、Sn-Bi合金、Sn-Bi-Ag合金、Sn-Ag-Cu合金及びSn-Cu合金からなる群より選択される少なくとも一種を含む、請求項9~11のいずれか一項に記載のはんだ粒子。 Select from the group consisting of In-Bi alloys, In-Sn alloys, In-Sn-Ag alloys, Sn-Au alloys, Sn-Bi alloys, Sn-Bi-Ag alloys, Sn-Ag-Cu alloys and Sn-Cu alloys. The solder particles according to any one of claims 9 to 11, which comprises at least one of the alloys.
  13.  複数の凸部を有する基体と、前記基体の前記凸部上に配置された複数のはんだ粒子と、を備える、はんだ粒子付き基体。 A substrate with solder particles, comprising a substrate having a plurality of convex portions and a plurality of solder particles arranged on the convex portions of the substrate.
  14.  前記はんだ粒子の平均粒子径が100nm以上1μm未満であり、前記はんだ粒子のC.V.値が20%以下である、請求項13に記載のはんだ粒子付き基体。 The average particle size of the solder particles is 100 nm or more and less than 1 μm, and the C.I. V. The substrate with solder particles according to claim 13, wherein the value is 20% or less.
PCT/JP2021/014656 2020-04-06 2021-04-06 Solder particles, production method for solder particles, and substrate with solder particles WO2021206096A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022514090A JPWO2021206096A1 (en) 2020-04-06 2021-04-06
CN202180026545.8A CN115362044A (en) 2020-04-06 2021-04-06 Solder particle, method for producing solder particle, and substrate with solder particle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-068390 2020-04-06
JP2020068390 2020-04-06

Publications (1)

Publication Number Publication Date
WO2021206096A1 true WO2021206096A1 (en) 2021-10-14

Family

ID=78023564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014656 WO2021206096A1 (en) 2020-04-06 2021-04-06 Solder particles, production method for solder particles, and substrate with solder particles

Country Status (4)

Country Link
JP (1) JPWO2021206096A1 (en)
CN (1) CN115362044A (en)
TW (1) TW202146679A (en)
WO (1) WO2021206096A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411602A (en) * 1994-02-17 1995-05-02 Microfab Technologies, Inc. Solder compositions and methods of making same
JP2001526001A (en) * 1997-05-23 2001-12-11 ミネソタ・マイニング・アンド・マニュファクチャリング・カンパニー Method for manufacturing solder bump array with pattern forming
US20020192936A1 (en) * 1999-02-24 2002-12-19 Micron Technology, Inc. Recessed tape and method for forming a BGA assembly
JP2004526309A (en) * 2001-02-08 2004-08-26 インターナショナル・ビジネス・マシーンズ・コーポレーション Method of forming electronic structure
JP2011088198A (en) * 2009-09-01 2011-05-06 Dowa Holdings Co Ltd Solder powder and method for producing the solder powder
WO2012066664A1 (en) * 2010-11-18 2012-05-24 Dowaホールディングス株式会社 Solder powder and process for producing solder powder
WO2020004510A1 (en) * 2018-06-26 2020-01-02 日立化成株式会社 Anisotropic conductive film, method for producing same, and method for producing connection structure
WO2020004511A1 (en) * 2018-06-26 2020-01-02 日立化成株式会社 Solder particles and method for producing solder particles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411602A (en) * 1994-02-17 1995-05-02 Microfab Technologies, Inc. Solder compositions and methods of making same
JP2001526001A (en) * 1997-05-23 2001-12-11 ミネソタ・マイニング・アンド・マニュファクチャリング・カンパニー Method for manufacturing solder bump array with pattern forming
US20020192936A1 (en) * 1999-02-24 2002-12-19 Micron Technology, Inc. Recessed tape and method for forming a BGA assembly
JP2004526309A (en) * 2001-02-08 2004-08-26 インターナショナル・ビジネス・マシーンズ・コーポレーション Method of forming electronic structure
JP2011088198A (en) * 2009-09-01 2011-05-06 Dowa Holdings Co Ltd Solder powder and method for producing the solder powder
WO2012066664A1 (en) * 2010-11-18 2012-05-24 Dowaホールディングス株式会社 Solder powder and process for producing solder powder
WO2020004510A1 (en) * 2018-06-26 2020-01-02 日立化成株式会社 Anisotropic conductive film, method for producing same, and method for producing connection structure
WO2020004511A1 (en) * 2018-06-26 2020-01-02 日立化成株式会社 Solder particles and method for producing solder particles

Also Published As

Publication number Publication date
TW202146679A (en) 2021-12-16
CN115362044A (en) 2022-11-18
JPWO2021206096A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP5893528B2 (en) Lead-free solder bump bonding structure
US5736074A (en) Manufacture of coated spheres
TWI648416B (en) Nuclear material and semiconductor package and method for forming bump electrode
JP5447745B1 (en) Cu ball
JP2023153934A (en) solder particles
JP7452418B2 (en) Anisotropic conductive film and method for producing the same, and method for producing a connected structure
KR101244396B1 (en) Silver-coated ball and method for manufacturing same
WO2021206096A1 (en) Solder particles, production method for solder particles, and substrate with solder particles
JP2023153935A (en) solder paste
JP7452419B2 (en) Solder particles and method for producing solder particles
US20220219232A1 (en) Laminating and shaping copper powder, laminated and shaped object, manufacturing method of laminated and shaped object, and laminating and shaping apparatus
TW201923102A (en) Core material, solder joint, and bump electrode forming method in which the Sb in a solder plating layer is homogeneous and the concentration ratio of Sb falls within a predetermined range
TWI835813B (en) solder pellets
JP7400465B2 (en) Core-shell solder particles, method for producing core-shell solder particles, anisotropic conductive film, and method for producing anisotropic conductive film
KR101410973B1 (en) Apparatus for mass production of metal nanoparticle and nanofluids using evaporation method
WO2022239124A1 (en) Solder particle classifying method, monodispersed solder particle, and solder particle classifying system
JP2021108347A (en) Manufacturing method of connection structure
US11876002B2 (en) Method for interconnecting components of an electronic system by sintering
WO2021131905A1 (en) Solder bump forming member, method for manufacturing solder bump forming member, and method for manufacturing electrode substrate provided with solder bump
JP2019005789A (en) Solder joint material, manufacturing method of the same, manufacturing method of electronic component with solder bump and joint body
JP2021108309A (en) Solder bump forming film and manufacturing method of electrode substrate with solder bump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21784971

Country of ref document: EP

Kind code of ref document: A1