WO2021206044A1 - Pattern-forming device and pattern-forming method - Google Patents

Pattern-forming device and pattern-forming method Download PDF

Info

Publication number
WO2021206044A1
WO2021206044A1 PCT/JP2021/014467 JP2021014467W WO2021206044A1 WO 2021206044 A1 WO2021206044 A1 WO 2021206044A1 JP 2021014467 W JP2021014467 W JP 2021014467W WO 2021206044 A1 WO2021206044 A1 WO 2021206044A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
pattern
mark
pattern forming
region
Prior art date
Application number
PCT/JP2021/014467
Other languages
French (fr)
Japanese (ja)
Inventor
加藤正紀
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to KR1020227034595A priority Critical patent/KR20220150942A/en
Priority to JP2022514057A priority patent/JP7435748B2/en
Priority to CN202180025936.8A priority patent/CN115380253A/en
Publication of WO2021206044A1 publication Critical patent/WO2021206044A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/24Curved surfaces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7019Calibration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7084Position of mark on substrate, i.e. position in (x, y, z) of mark, e.g. buried or resist covered mark, mark on rearside, at the substrate edge, in the circuit area, latent image mark, marks in plural levels

Definitions

  • the present invention relates to a pattern forming apparatus for transferring a pattern onto a substrate by a transfer unit for forming a pattern in a forming region extending in the width direction of the substrate, and a pattern forming method.
  • a plurality of head assemblies are arranged in a short direction (width direction) orthogonal to the long direction of the sheet substrate, and the sheet substrate is moved in the long direction.
  • a drawing device that draws (exposes) a pattern with a plurality of head assemblies while moving the pattern is disclosed in, for example, the following Japanese Patent Application Laid-Open No. 2006-0987626.
  • JP-A-2006-09876 As shown in FIGS. 3 and 7 to 9, for example, four camera units 52 are placed on the upstream side of the exposure position for alignment. The positions of the four camera units 52 are calibrated by the calibration scale 42 provided in the scanning transport unit 26 with the detection unit, which is arranged in the width direction of the substrate) 28 and before the exposure operation.
  • a long base material 28 is adsorbed and supported in a plane at an exposure position, and an endless belt 33 that can move in the long length direction along the surface of the flat base material 28 is provided. ..
  • the endless belt 33 is provided on a scanning transport unit 26 that is moved in a long direction by a linear moving mechanism 20 and a moving table 21. Further, the scanning transport unit 26 is provided with a nip roller pair 30, a nip drive roller pair 32, an output guide roller 40, and the like, and each of the four camera units 52 is provided with the base material 28 supported on the endless belt 33. The position can be calibrated. In the drawing apparatus of JP-A-2006-09876, each of the four camera units 52 is configured to be movable in the width direction of the base material 28 corresponding to each position of the mark M formed on the base material 28. , The calibration scale 42 is used to correctly set the moving position.
  • the calibration operation (so-called calibration) can be performed in a state where the scanning transport unit 26 is moved and the calibration scale 42 is positioned directly under the four camera units 52.
  • the endless belt 33, the nip roller pair 30, the nip drive roller pair 32, the output guide roller 40, etc. mounted on the scanning transport unit 26, etc.
  • the accompanying mechanism is required, the weight of the scanning transport unit 26 is increased, and the linear moving mechanism 20 or the like that controls the movement of the scanning transport unit 26 needs to be made stable with high rigidity, which leads to an increase in the size of the apparatus.
  • the calibration scale 42 is attached to the scanning transport unit 26 that moves one-dimensionally by the linear movement mechanism 20, the positioning of the scanning transport unit 26 is reproduced in accordance with the alignment accuracy (position detection accuracy of the mark M). It is also necessary to make the accuracy such as sex sufficiently small.
  • a first aspect of the present invention is a pattern forming apparatus that forms a pattern for an electronic device in a predetermined region on a substrate that is supported by a moving mechanism and moves in a first direction, and is supported by the moving mechanism.
  • a pattern forming mechanism that forms the pattern on the surface of the substrate within a pattern forming region in which the dimension of the second direction orthogonal to the first direction is set longer than the dimension of the first direction on the surface of the substrate.
  • the first substrate marks formed on the surface of the substrate at predetermined intervals along the first direction are set on the upstream side of the pattern forming region with respect to the moving direction of the substrate.
  • the first alignment system which is optically detected inside, and the first alignment system are formed on the surface of the substrate at predetermined intervals along the first direction at a predetermined distance from the first substrate mark in the second direction.
  • a second alignment system that optically detects the second substrate mark within the second detection region set on the upstream side of the pattern formation region with respect to the moving direction of the substrate, and the first alignment system.
  • the second alignment system are extended in the second direction by the low expansion material, and correspond to the portion corresponding to the first detection region and the second detection region in the second direction. From the index pattern, a reference index member in which an index pattern is formed in each of the portions, and an optical path provided in each of the first alignment system and the second alignment system and through which light from the substrate mark passes. It is provided with a synthetic optical member that synthesizes light so as to pass through.
  • a second aspect of the present invention is a pattern forming method in which a new pattern is superimposed on a base pattern for an electronic device formed in a predetermined region on a substrate moving in the first direction.
  • the first alignment system set on the upstream side of the pattern forming region by the pattern forming mechanism for forming the new pattern in the predetermined region of the substrate.
  • a first mark detection step of sequentially optically detecting a plurality of first substrate marks formed on the substrate at predetermined intervals along the first direction within one detection region, and upstream of the pattern formation region.
  • the first detection region is placed on the substrate.
  • a second mark detection step of sequentially optically detecting a plurality of second substrate marks formed at predetermined intervals along the direction, and the second alignment system along the first alignment system and the second alignment system.
  • the first reference index mark is simultaneously detected with the first substrate mark via a synthetic optical member arranged in the optical path of the first alignment system during the first mark detection step, and the two The other second reference index mark of the reference index mark is simultaneously detected with the second substrate mark via the synthetic optical member arranged in the optical path of the second alignment system during the second mark detection step.
  • the first adjustment for adjusting the position of the new pattern based on the positions of the first substrate mark and the second substrate mark measured in the first measurement step. Including the process.
  • FIG. 1 It is a perspective view which shows the schematic whole structure of the pattern drawing apparatus EX by 1st Embodiment. It is a figure which showed concretely the arrangement of the drawing units U1 to U6 and the arrangement of an alignment system ALGn in the pattern drawing apparatus EX of FIG. It is a perspective view which shows the detailed structure in the drawing unit U1 as a representative among the drawing units U1 to U6 in the pattern drawing apparatus EX of FIG. It is a perspective view which shows the arrangement relation of the rotary drum DR, the alignment system ALGn, and the reference bar member RB shown in FIG. FIG.
  • FIG. 4 is a view showing the arrangement relationship of the objective lens system OBL, the plane mirror Mb, the beam splitter BS1, and the reference bar member RB of the alignment system ALGn shown in FIG. 4 in a plane parallel to the XY plane of FIG. 2 is a perspective view showing an overall schematic configuration of the alignment systems ALGn (ALG1 to ALG4) shown in FIGS. 2 to 5. It is a figure which showed the arrangement relation of the drawing lines SL1 to SL6 and the detection area AD1 to AD4 shown in FIG. 4, and the arrangement of the encoder measurement system which measures the change of the rotation angle of a rotating drum DR.
  • FIG. 8 shows an example of the arrangement relationship and support structure of the drawing units U1 to U6, the scale disk SDa, the encoder heads EHa1, EHa2, EHa3, and the reference bar member RB
  • FIG. 8A is a view of the periphery of the scale disk SDa
  • FIG. 8B is a partial cross-sectional view of the end face when the structure of FIG. 8A is broken along the central plane CPo, as viewed from the + X direction side to the ⁇ X direction side.
  • FIG. 9 is a diagram showing a detailed configuration of the alignment system ALGn (ALG1 to ALG4), and FIG. 9A shows a configuration of an optical system in which the plane mirror Mb is omitted from the configuration shown in FIG.
  • FIG. 10A is a diagram showing an example of the arrangement of the reference marks RM1 to RM4 formed at four positions of the reference bar member RB
  • FIG. 10B exaggerates an example of the arrangement relationship between the imaging region DIS'and the reference mark RM1.
  • FIG. 10C is a diagram showing an exaggerated example of the arrangement relationship between the imaging region DIS'and the reference mark RM2.
  • FIG. 10A It is a block diagram which shows the schematic structure of a part of the control apparatus provided in the pattern drawing apparatus EX by this embodiment. It is a flowchart which shows an example of the series flow of the operation sequence of the pattern drawing apparatus EX by this embodiment. It is a figure which shows the structure of the alignment system ALGn by 1st Embodiment. It is a figure which exaggerated the installation error ⁇ Cn of the alignment system ALGn based on the reference mark RMn on the reference bar member RB shown in FIG. 10A.
  • FIG. 1 It is a figure which shows the arrangement example of the detection area ADn of the reference pattern FMa, FMb, FMc ..., and the alignment system ALGn formed on the outer peripheral surface DRs of the rotary drum DR developed in a plane. It is a figure showing an example of arrangement of each image pickup area DIS'(detection area ADn) of 6 drawing lines SLn, 4 alignment system ALGn, and reference pattern FMa. It is a figure which shows how the spot light SP which generates the drawing line SL1 relatively two-dimensionally scans the area containing the linear pattern Fxc1 of the reference pattern FMa on a rotating drum DR.
  • FIG. 5 is a diagram schematically exaggerating calibration information (arrangement error, etc.) determined or set by step 304 in the flowchart of FIG. 12. It is a figure which shows the structure by the modification 1 when the alignment system ALGn of the drawing apparatus shown in FIG. 7 is increased from 4 lines.
  • FIG. 5 is a diagram illustrating a modification 2 in the case where the arrangement relationship of the drawing lines SL1 to SL6 shown in FIGS. 7, 16 and 20 on the substrate P is modified to provide an overlap region at the joint portion. be.
  • FIG. 26 is a diagram showing the configuration of the reference bar member RB according to the fourth embodiment, FIG.
  • FIG. 26A shows the configuration of the reference bar member RB on the reference surface RBa
  • FIG. 26B is the reference in FIG. 26A.
  • the CC-CC arrow cross section of the bar member RB is shown
  • FIG. 26C shows an example of the configuration of the reference mark RMn formed on the reference surface RBa.
  • DMD digital mirror device
  • FIG. 26C shows an example of the configuration of the reference mark RMn formed on the reference surface RBa.
  • DMD digital mirror device
  • FIG. 27 shows the arrangement example in the XY plane of the projection area IAn by each drawing unit Un in the pattern drawing apparatus shown in FIG. 27, and the detection area ADn by each of the alignment system ALGn.
  • FIG. 29 is a diagram illustrating a modification 5 relating to the configuration of the alignment system ALGn
  • FIG. 29A shows an optical configuration modified based on the alignment system ALGn shown in FIG. 24, and
  • FIG. 29B is a beam splitter.
  • It is a graph which shows an example of the wavelength selection characteristic of BS1.
  • It is a figure which shows the structure by the modification 6 which uses the light from two solid-state light sources which have different wavelength characteristics as the illumination system ILU which supplies the illumination light to the alignment system ALGn of FIG. 29A.
  • It is a figure which shows the structure by the modification 7 which deformed the structure of the beam splitter BS1 of the alignment system ALGn, and the arrangement direction of a reference bar member RB.
  • FIG. 32 shows the difference in the deformed state depending on the support structure of the reference bar member RB
  • FIG. 32A shows the structure in which the vicinity of both ends of the reference bar member RB in the longitudinal direction is supported from below by the beam FJ1 which makes line contact with each other.
  • 32C shows a structure in which the vicinity of one end of the reference bar member RB in the longitudinal direction is supported from below by a beam FJ1 that makes line contact, and the other end is fastened (fixed) to the device frame FJ2.
  • FIG. 32C shows the reference.
  • a structure is shown in which both ends of the bar member RB in the longitudinal direction are fastened (fixed) to the device frame FJ2. It is a partial perspective view which shows the modification of the support structure of the reference bar member RB by the support members 103A and 103B described with FIG.
  • the substrate processing apparatus pattern forming apparatus
  • FIG. 1 is a perspective view showing a schematic configuration of a pattern forming apparatus (pattern drawing apparatus) EX that transfers a pattern to a substrate (irradiated body) P as a substrate processing apparatus according to the first embodiment.
  • a pattern forming apparatus pattern drawing apparatus
  • EX that transfers a pattern to a substrate (irradiated body) P as a substrate processing apparatus according to the first embodiment.
  • International Publication No. 2017/191777 International Publication No. 2018/061633.
  • the XYZ Cartesian coordinate system with the gravity direction as the Z direction is set, and the X direction, the Y direction, and the Z direction are set according to the arrows shown in the figure.
  • the pattern drawing device EX is used in a device manufacturing system that manufactures an electronic device by exposing a fine pattern for an electronic device to a photosensitive functional layer such as a photoresist coated on the substrate P.
  • a photosensitive functional layer such as a photoresist coated on the substrate P.
  • the substrate P is delivered from a supply roll (not shown) in which a flexible sheet-shaped substrate (sheet substrate) P is wound in a roll shape, and various processes are continuously performed on the delivered substrate P.
  • the substrate P has a so-called roll-to-roll (Roll To Roll) production method in which the substrate P after various treatments is wound up with a recovery roll (not shown). Therefore, at least on the substrate P during the manufacturing process, a large number of patterns corresponding to the unit device (one display panel, etc.) to be the final product are arranged in a state of being connected with a predetermined gap in the transport direction of the substrate P. Will be done.
  • the substrate P has a strip shape in which the elongated direction is the moving direction (transporting direction) of the substrate P and the short direction orthogonal to the elongated direction is the width direction of the substrate P.
  • the substrate P for example, a resin film, a foil made of a metal or alloy such as stainless steel, or the like is used.
  • the material of the resin film include polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, and vinyl acetate resin. Of these, those containing at least one or more may be used.
  • the thickness and rigidity (Young's modulus) of the substrate P are within a range in which the substrate P does not have creases or irreversible wrinkles due to buckling when passing through the transport path of the device manufacturing system or the pattern drawing device EX. It should be.
  • films such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), and polyimide having a thickness of about 25 ⁇ m to 200 ⁇ m are typical of suitable sheet substrates.
  • the substrate P is a single layer of ultrathin glass having a thickness of about 30 to 100 ⁇ m manufactured by a float method or the like, a laminate obtained by laminating the above resin film, metal foil, or the like on the ultrathin glass, or A piece of paper containing nanocellulose and having its surface smoothed may be used.
  • the photosensitive functional layer applied to the surface of the substrate P is applied as a solution on the substrate P and dried to form a layer (film).
  • a typical photosensitive functional layer is a photoresist (liquid or dry film), but as a material that does not require development treatment, the photosensitive functional layer is modified in terms of the liquid-repellent property of the portion irradiated with ultraviolet rays.
  • SAM silane coupling agents
  • photosensitive reducing agents photosensitive reducing agents in which the plating reducing group is exposed on the portion irradiated with ultraviolet rays
  • the like When a photosensitive silane coupling agent is used as the photosensitive functional layer, the pattern portion exposed to ultraviolet rays on the substrate P is modified from liquid-repellent to liquid-friendly.
  • a thin film transistor (TFT) or the like can be obtained by selectively coating a conductive ink (an ink containing conductive nanoparticles such as silver or copper) or a liquid containing a semiconductor material on the liquid-forming portion. It is possible to form a pattern layer that serves as an electrode, a semiconductor, an insulation, or a wiring for connection.
  • a conductive ink an ink containing conductive nanoparticles such as silver or copper
  • a liquid containing a semiconductor material on the liquid-forming portion. It is possible to form a pattern layer that serves as an electrode, a semiconductor, an insulation, or a wiring for connection.
  • a photosensitive reducing agent When a photosensitive reducing agent is used as the photosensitive functional layer, the plating reducing group is exposed on the pattern portion (or the unexposed pattern portion) exposed to ultraviolet rays on the substrate P. Therefore, a pattern layer made of palladium is formed (precipitated) by electroless plating in which the substrate P is immediately immersed in a plating solution containing palladium ions or the like for a certain period of time after exposure.
  • Such a plating process is an additive (addition type) process, but in addition, an etching process as a subtractive (subtraction type) process may be premised.
  • the substrate P sent to the pattern drawing apparatus EX uses PET or PEN as the base material, and a metallic thin film such as aluminum (Al) or copper (Cu) is vapor-deposited on the entire surface or selectively of the substrate P. It is assumed that a photoresist layer is laminated on top.
  • the pattern drawing device EX shown in FIG. 1 is a direct drawing type exposure device that does not use a mask, that is, a so-called spot scanning type exposure device, and the substrate P conveyed from the process device in the previous process is used as a process device in the subsequent process. It is conveyed in the elongated direction at a predetermined speed toward (including a single processing unit or a plurality of processing units).
  • the pattern drawing device EX has one of the signal line and power supply line wiring pattern constituting the electronic device, the electrode constituting the TFT, the semiconductor region, the through hole, and the like on the photosensitive functional layer of the substrate P.
  • An optical pattern corresponding to the pattern shape of the above is formed by high-speed scanning (main scanning) of spot light whose intensity is modulated according to drawing data in the Y direction and movement of the substrate P in the long direction (secondary scanning). ..
  • the pattern drawing device EX has a rotary drum DR that supports the substrate P for subscanning and conveys it in a long direction, and a pattern for each portion of the substrate P that is supported by the rotary drum DR in a cylindrical surface shape.
  • a plurality of (here, 6) drawing units Un (U1 to U6) for exposure are provided, and each of the plurality of drawing units Un (U1 to U6) is a pulsed beam LB (pulse beam) for exposure.
  • LB pulsed beam
  • the substrate P is continuously conveyed along the elongated direction, the exposed region (device forming region) on the substrate P on which the pattern is exposed by the pattern drawing device EX is in the elongated direction of the substrate P.
  • a plurality of can be set at a predetermined interval (margin) along the line.
  • the pattern forming mechanism is configured by each or all of the six drawing units U1 to U6.
  • the rotating drum DR has a central axis AXo extending in the Y direction and extending in a direction intersecting the direction in which gravity acts, and a cylindrical outer peripheral surface having a constant radius from the central axis AXo.
  • the rotary drum DR rotates around the central axis AXo while supporting (holding close contact) a part of the substrate P by bending it in a cylindrical surface shape in the elongated direction following its outer peripheral surface (circumferential surface).
  • the substrate P is conveyed in the long direction.
  • the rotating drum DR supports a region (part) on the substrate P on which the beam LB (spot light) from each of the plurality of drawing units Un (U1 to U6) is projected by its outer peripheral surface.
  • Rotational torque from a rotational drive source (for example, a motor, a reduction mechanism, etc.) (not shown) is applied to the shaft, and the rotary drum DR rotates at a constant rotational speed around the central axis AXo.
  • a rotational drive source for example, a motor, a reduction mechanism, etc.
  • the light source device (pulse light source device) LS generates and emits a pulsed beam (pulse beam, pulse light, laser) LB.
  • This beam LB has sensitivity to the photosensitive functional layer of the substrate P and has a peak wavelength (for example, any wavelength of 405 nm, 365 nm, 355 nm, 344 nm, 308 nm, 248 nm, etc.) in the wavelength band of 410 to 200 nm. It is ultraviolet light.
  • the light source device LS emits a pulsed beam LB at an FPL of any frequency (oscillation frequency, predetermined frequency) in the range of 100 MHz to 400 MHz, for example, under the control of a drawing control device (not shown).
  • the light source device LS is a laser light source device that generates ultraviolet light by a wavelength conversion element. Specifically, a semiconductor laser element that generates pulsed light in the infrared wavelength region, a fiber amplifier, and a wavelength conversion element (harmonic) that converts the amplified pulsed light in the infrared wavelength region into pulsed light in the ultraviolet wavelength region.
  • a fiber amplifier laser light source composed of a generating element) or the like.
  • the light source device LS is used as a fiber amplifier laser light source, and the pulse generation of the beam LB is turned on / off at high speed according to the state of the pixel bits (logical value "0" or "1") constituting the drawing data (spot light).
  • the (intensity-modulated) configuration is disclosed in International Publication No. 2015/166910 and International Publication No. 2017/057415. It is assumed that the beam LB emitted from the light source device LS has a thin parallel luminous flux having a beam diameter of about 1 mm or about half of the beam diameter.
  • the beam LB emitted from the light source device LS includes a selection optical element OSn (OS1 to OS6) as a plurality of switching elements, a plurality of reflection mirrors M1 to M12, and a plurality of epi-illumination mirrors (also referred to as selection mirrors) Imn (also referred to as a selection mirror). It is selectively (alternatively) supplied to each of the drawing units Un (U1 to U6) via the beam switching unit composed of the IM1 to IM6) and the absorber TR or the like.
  • the selection optical elements OSn (OS1 to OS6) have transparency with respect to the beam LB, and are driven by an ultrasonic signal to efficiently generate only one of the ⁇ 1st-order diffracted light of the incident beam LB.
  • the plurality of selection optical elements OSn and the plurality of epi-illumination mirrors Imn are provided corresponding to each of the plurality of drawing units Un.
  • the selection optical elements OS1 and the epi-illumination mirror IM1 are provided corresponding to the drawing unit U1
  • the selection optical elements OS2 to OS6 and the epi-illumination mirrors IM2 to IM6 correspond to the drawing units U2 to U6, respectively. It is provided.
  • the optical path of the beam LB from the light source device LS is bent in a zigzag shape in a plane parallel to the XY plane by the reflection mirrors M1 to M12, and is guided to the absorber TR.
  • the selection optical elements OSn OS1 to OS6
  • a relay system using a plurality of lenses is provided in the beam optical path from the reflection mirror M1 to the absorber TR.
  • the relay system is specifically arranged between the selection optical elements OS1 to OS6 arranged in series along the optical path of the beam LB from the light source device LS, as disclosed in International Publication No.
  • Each of the six selection optical elements OS1 to OS6 is optically coupled to each other (imaging relationship). Further, each relay system maintains the diameter of the beam LB as a thin parallel luminous flux of 1 mm to 0.5 mm at each position of the six selection optical elements OS1 to OS6, and the diameter is 0 at the intermediate position in each relay system. Converge so that the beam waist is 2 mm or less. Each of the epi-illumination mirrors IM1 to IM6 is arranged at the position of the beam waist in the optical path of each relay system.
  • the beam LB from the light source device LS travels in the ⁇ X direction, is reflected by the reflection mirror M1 in the ⁇ Y direction, and is incident on the reflection mirror M2.
  • the beam LB reflected in the + X direction by the reflection mirror M2 passes straight through the selection optical element OS5 and reaches the reflection mirror M3.
  • the beam LB reflected in the ⁇ Y direction by the reflection mirror M3 is reflected in the ⁇ X direction by the reflection mirror M4, passes straight through the selection optical element OS6, and reaches the reflection mirror M5.
  • the beam LB reflected in the ⁇ Y direction by the reflection mirror M5 is reflected in the + X direction by the reflection mirror M6, passes straight through the selection optical element OS3, and reaches the reflection mirror M7.
  • the beam LB reflected in the ⁇ Y direction by the reflection mirror M7 is reflected in the ⁇ X direction by the reflection mirror M8, and then passes straight through the selection optical element OS4 to reach the reflection mirror M9.
  • the beam LB reflected in the ⁇ Y direction by the reflection mirror M9 is reflected in the + X direction by the reflection mirror M10, and then passes straight through the selection optical element OS1 to reach the reflection mirror M11.
  • the beam LB reflected in the ⁇ Y direction by the reflection mirror M11 is reflected in the ⁇ X direction by the reflection mirror M12, and then passes straight through the selection optical element OS2 and is guided to the absorber TR.
  • This absorber TR is an optical trap that absorbs the beam LB in order to suppress leakage of the beam LB to the outside, and is provided with a temperature control (air cooling or water cooling) mechanism so as to reduce heat generation due to absorption of light energy. ing.
  • each selection optical element OSn When an ultrasonic signal (high frequency signal) is applied, each selection optical element OSn emits first-order diffracted light obtained by diffracting an incident beam LB (0th-order light) at a diffraction angle corresponding to a high-frequency frequency. It is generated as (Beam LBn). Therefore, the beam emitted as the primary diffracted light from the selection optical element OS1 becomes LB1, and similarly, the beam emitted as the primary diffracted light from each of the selection optical elements OS2 to OS6 becomes LB2 to LB6. As described above, each selection optical element OSn (OS1 to OS6) functions to deflect the optical path of the beam LB from the light source device LS.
  • only one of the selection optical elements OSn (OS1 to OS6) is turned on for a certain period of time (a state in which a high frequency signal is applied), which is not shown. It is controlled by the drawing control device.
  • the drawing control device When one selected optical element OSn for selection is in the ON state, about 10 to 20% of 0th-order light that travels straight without being diffracted by the optical element OSn for selection remains, but it is finally determined by the absorber TR. Be absorbed.
  • Each of the selection optical elements OSn is installed so as to deflect the beam LBn (LB1 to LB6), which is the deflected primary diffracted light, in the ⁇ Z direction with respect to the traveling direction of the incident beam LB.
  • the beam LBn (LB1 to LB6) deflected and emitted by each of the selection optical elements OSn is an epi-illumination mirror Imn (position of the beam waist) provided at a position (beam waist position) separated from each of the selection optical elements OSn by a predetermined distance. It is projected on IM1 to IM6).
  • Each epi-illumination mirror Imn reflects the incident beam LBn (LB1 to LB6) in the ⁇ Z direction to guide the beam LBn (LB1 to LB6) to the corresponding drawing units Un (U1 to U6).
  • each selection optical element OSn The configuration, function, operation, etc. of each selection optical element OSn are the same as each other, and each of the plurality of selection optical element OSn is incident by turning on / off the drive signal (high frequency signal) from the drawing control device.
  • a switching (beam selection) operation is performed to turn on / off the generation of diffracted light (beams LB1 to LB6) obtained by diffracting the beam LB.
  • the beam LB from the light source device LS can be guided to any one drawing unit Un, and the drawing unit Un on which the beam LBn is incident can be switched. ..
  • each of the selection optical elements OSn (OS1 to OS6) constituting the beam switching unit is turned on for a certain period of time. Determined by order.
  • any one of the drawing units U1 to U6 is synchronized by synchronizing the rotation speeds of the polygon mirrors PM provided in each of the six drawing units U1 to U6 and the phases of the rotation angles.
  • One reflective surface of the polygon mirror in the above can be time-division-switched so as to perform one spot scan on the substrate P.
  • the spot scanning order of the drawing unit Un may be any order.
  • three drawing units U1, U3, and U5 are arranged side by side in the Y direction on the upstream side of the substrate P in the transport direction (the direction in which the outer peripheral surface of the rotating drum DR moves in the circumferential direction), and the substrate P is arranged.
  • Three drawing units U2, U4, and U6 are arranged side by side in the Y direction on the downstream side in the transport direction.
  • the pattern drawing for one exposed area on the substrate P is started from the odd-numbered drawing units U1, U3, and U5 on the upstream side, and when the substrate P is sent for a certain length, the even-numbered drawing on the downstream side is drawn. Since the units U2, U4, and U6 also start pattern drawing, the spot scanning order of the drawing unit Un can be set to U1 ⁇ U3 ⁇ U5 ⁇ U2 ⁇ U4 ⁇ U6 ⁇ U1 ⁇ ... .. Therefore, the order in which each of the selection optical elements OSn (OS1 to OS6) is turned on for a certain period of time is also determined in the order of OS1 ⁇ OS3 ⁇ OS5 ⁇ OS2 ⁇ OS4 ⁇ OS6 ⁇ OS1 ⁇ ...
  • each of the drawing units U1 to U6 is provided with a polygon mirror PM for main scanning the incident beams LB1 to LB6.
  • each of the polygon mirror PMs of each drawing unit Un is synchronously controlled so as to maintain a constant rotation angle phase with each other while precisely rotating at the same rotation speed.
  • the timings of the main scans of the beams LB1 to LB6 projected from the drawing units U1 to U6 on the substrate P can be set so as not to overlap each other.
  • the light source device Efficient exposure processing can be performed by distributing the beam LB from the LS to each of the plurality of drawing units Un in a time-division manner.
  • the synchronization control between the phase matching of each rotation angle of the six polygon mirror PMs and the on / off switching timing of each of the selection optical elements OSn (OS1 to OS6) is also disclosed in International Publication No. 2015/166910. ing.
  • the pattern drawing apparatus EX is a so-called multi-head type direct drawing exposure method in which a plurality of drawing units Un (U1 to U6) having the same configuration are arranged.
  • Each of the drawing units Un draws a pattern for each partial region defined in the Y direction (main scanning direction) of the substrate P supported by the outer peripheral surface (circumferential surface) of the rotating drum DR.
  • Each drawing unit Un (U1 to U6) focuses (converges) the beam LBn on the substrate P while projecting the beam LBn from the beam switching unit onto the substrate P (on the irradiated surface of the substrate P).
  • each spot light of the beams LBn (LB1 to LB6) projected on the substrate P becomes spot light having a diameter of 2 to 4 ⁇ m.
  • each spot light of the beams LBn (LB1 to LB6) projected on the substrate P is scanned in the main scanning direction (Y direction).
  • the drawing line SLn is a scanning locus of the spot light of the beam LBn on the substrate P.
  • the odd-numbered drawing lines SL1, SL3, and SL5 are located on the irradiated surface of the substrate P on the upstream side (-X direction side) of the substrate P in the transport direction with respect to the central surface. Moreover, they are arranged in a row at a predetermined interval along the Y direction.
  • the even-numbered drawing lines SL2, SL4, and SL6 are located on the irradiated surface of the substrate P on the downstream side (+ X direction side) of the substrate P in the transport direction with respect to the central surface, and are predetermined along the Y direction. They are arranged in a row at intervals of. Therefore, the odd-numbered drawing units U1, U3, and U5 and the even-numbered drawing units U2, U4, and U6 are provided symmetrically with respect to the central plane when viewed in the XZ plane (when viewed from the Y direction). There is.
  • the odd-numbered drawing lines SL1, SL3, SL5 and the even-numbered drawing lines SL2, SL4, SL6 are separated from each other, but in the Y direction (width direction of the substrate P).
  • Main scanning direction the patterns drawn on the substrate P are set so as to be spliced together without being separated from each other.
  • the drawing lines SL1 to SL6 are set so as to be substantially parallel to the width direction of the substrate P, that is, the central axis AXo of the rotating drum DR.
  • joining the drawing lines SLn in the Y direction means that the positions of the ends of the drawing lines SLn in the Y direction are adjacent to each other or partially overlapped.
  • the length of each drawing line SLn is 1 to 5% in the Y direction including the drawing start point or the drawing end point. It is good to duplicate.
  • the plurality of drawing units Un share a scanning area (main scanning range section) in the Y direction so as to cover the width direction dimension of the exposure region (pattern formation region) on the substrate P in total. doing.
  • the main scanning range the length of the drawing line SLn
  • U6 the width of the exposed area in the Y direction.
  • the width of the exposed area in the Y direction is widened to about 180 to 360 mm.
  • the length (drawing range length) of each drawing line SLn (SL1 to SL6) is the same. That is, in principle, the scanning distances of the spot light SPs of the beams LBn scanned along each of the drawing lines SL1 to SL6 are the same.
  • Each drawing unit Un includes a telecentric f ⁇ lens system (scanning optical system for drawing) FT that injects a beam LBn that is reflected by each reflecting surface RP of the polygon mirror PM and deflected in the main scanning direction.
  • the beam LBn emitted from the f ⁇ lens system FT and projected onto the substrate P is set to travel toward the central axis AXo of the rotating drum DR when viewed in the XZ plane.
  • the main ray of the beam LBn traveling from each drawing unit Un (U1 to U6) toward the substrate P is directed to the tangent plane at the position of the drawing line SLn on the curved surface of the substrate P in the XZ plane.
  • the beams LBn (LB1 to LB6) projected on the substrate P are scanned in a telecentric state with respect to the main scanning direction and the sub-scanning direction (circumferential direction along the outer peripheral surface of the rotating drum DR) of the spot light SP. ..
  • FIG. 2 shows the arrangement of the rotary drum DR of the pattern drawing apparatus EX and the six drawing units U1 to U6 shown in FIG. 1, the alignment mark formed on the substrate P, the reference pattern formed on the surface of the rotary drum DR, and the like. It is a figure which concretely showed the arrangement of a plurality of alignment systems ALGn (n is an integer of 2 or more) which detects, and the setting of the Cartesian coordinate system XYZ in FIG. 2 is the same as FIG.
  • the basic arrangement of the rotating drum DR, the drawing units U1 to U6, and the alignment system ALGn shown in FIG. 2 is disclosed in, for example, International Publication No. 2016/152758 and International Publication No. 2017/199658.
  • Shafts Sft supported by an annular bearing so as to rotate around the central axis AXo are provided on both sides of the rotating drum DR that supports the substrate P in an angle range of about 180 degrees in the Y direction, and the shaft Sft is not provided. It is joined to the rotation shaft of the rotation drive source shown in the figure. Further, the plane including the central axis AXo and parallel to the YZ plane is defined as the central plane CPo. When viewed from the Y direction (width direction of the substrate P), the odd-numbered drawing units U1, U3, and U5 and the even-numbered drawing units U2, U4, and U6 are symmetrically arranged with the central surface CPo in between. As shown in FIG.
  • the drawing unit U1 in the plane parallel to the XZ plane of the Cartesian coordinate system XYZ, the drawing unit U1 (and U3, U5) is tilted counterclockwise by a certain angle ⁇ c from the central plane CPo, and the drawing unit U2 (and U3, U5) And U4, U6) are tilted clockwise from the central surface CPo by a certain angle ⁇ c. Since the configurations of the drawing units U1 to U6 are the same, the configuration of the drawing unit U1 is shown in FIG. 3 as a representative.
  • FIG. 5 is a perspective view showing a detailed configuration of a drawing unit U1 including an f ⁇ lens system FT that collects light as an SP and a polygon mirror PM that mainly scans a spot light SP in the Y direction to form a drawing line SL1. It is disclosed in No. 2019/082850.
  • the optical axis AXf1 passing through the f ⁇ lens system FT from the polygon mirror PM of the drawing unit U1 (and U2 to U6) is tilted in the Cartesian coordinate system XYZ as shown in FIG. ,
  • the Cartesian coordinate system XtYtZt tilted with respect to the Cartesian coordinate system XYZ is set.
  • the Yz direction is the same as the Y direction
  • the Zt direction is the traveling direction of the main ray (center ray) of the beam LB1 incident on the drawing unit U1 from the epi-illumination mirror IM1, or the position of the drawing line SL1.
  • the Xt direction is the direction of the optical axis AXf1 passing through the f ⁇ lens system FT.
  • the optical axis of each f ⁇ lens system FT of the even-numbered drawing units U2, U4, and U6 is the optical axis AXf2.
  • a mirror M30 In the drawing unit U1 (and U2 to U6), a mirror M30, a lens L6, a lens L7, a tiltable parallel flat plate HVP made of quartz, lenses L8, L9, a mirror M31, a polarizing beam splitter PBS, and an opening.
  • Aperture AP 1/4 wavelength plate QW, mirror M32, first cylindrical lens CYa, lens L10, mirror M33, lens L11, mirror M34, M35, M36, 8-sided polygon mirror PM, f ⁇ lens system FT, mirror M37,
  • the second cylindrical lens CYb is arranged in that order.
  • the mirror M30 reflects the beam LB1 at 90 degrees so that the traveling direction of the incident beam LB1 is in the ⁇ Xt direction.
  • the lenses L6, L7, L8, and L9 arranged along the optical path of the beam LB1 reflected by the mirror M30 are a few mm or more of the thin beam LB1 (diameter is about 1 mm to 0.5 mm) reflected by the mirror M30. It constitutes a beam expander system that expands to a parallel light flux with a diameter of (range of 5 to 10 mm).
  • the parallel flat plate HVP is provided in the optical path between the lenses L6 to L9 of the beam expander system, and is configured to be rotatable (tilted) around the rotation axis AXh parallel to the Zt axis.
  • the position of the spot light SP projected on the substrate P can be effectively changed to the sub-scanning direction (Xt direction, the sub-scanning direction which is the moving direction of the substrate P). It can be shifted in a distance range of several times to ten and several times the diameter ⁇ p.
  • the polarizing beam splitter PBS incident on the beam LB1 (parallel luminous flux) which is magnified through the lens L9 and reflected by the mirror M31 in the ⁇ Yt direction.
  • the polarization beam splitter PBS reflects the beam LB1 at the polarization separation surface with an intensity of 99% or more and directs the beam LB1 to the aperture stop AP in the subsequent stage.
  • the beam LB transmitted through the circular aperture of the aperture stop AP is converted from linearly polarized light to circularly polarized light when transmitted through the quarter wave plate QW.
  • the beam LB1 (parallel luminous flux) transmitted through the 1/4 wave plate QW is reflected by the mirror M32 in the ⁇ Zt direction, is incident on the first cylindrical lens CYa (the bus is parallel to the Yt axis), and is formed on the surface Pv in space.
  • the width in the Xt direction is extremely small, and the light is focused on a slit-shaped intensity distribution extending in the Yt direction with a length of several mm (same as the opening diameter of the aperture throttle AP).
  • the beam LB1 converged only in the one-dimensional direction by the surface Pv passes through the spherical lens L10 of the first group of the two-disc spherical lens system, is reflected by the mirror M33 in the + Xt direction, and then is reflected in the + Xt direction, and then the two-disc spherical lens system. It advances in the + Xt direction through the spherical lens L11 in the rear group.
  • the beam LB1 after being emitted from the spherical lens L11 is reflected in the + Zt direction by the mirror M34 and then reflected in the + Yt direction by the mirror M35.
  • the mirror M34 and the mirror M35 are arranged so that the main ray (center ray) of the beam LB1 traveling in the + Yt direction from the mirror M35 and the optical axis AXf1 of the f ⁇ lens system FT are orthogonal to each other in a plane parallel to the XtYt plane. There is.
  • the beam LB1 traveling in the + Yt direction from the mirror M35 is reflected by the mirror M36 arranged on the opposite side of the mirror M35 with the optical axis AXf1 of the f ⁇ lens system FT interposed therebetween, and is projected onto the reflection surface RPa of the polygon mirror PM.
  • the beam LB1 incident on the mirror M34 immediately after passing through the spherical lens L11 becomes a state of almost parallel light beam in the Zt direction and converges in the Yt direction. It becomes a state of light beam.
  • the spherical lens system is composed of two spherical lenses L10 and L11 for adjusting the distance between the principal points, but it may be composed of only one spherical lens.
  • the reflective surface of the mirror M36 is arranged at a narrowing angle of 22.5 ° with respect to the surface parallel to the Zt axis and parallel to the XtZt surface and including the optical axis AXf1.
  • the main ray (center ray) of the beam LB1 directed from the mirror M36 toward the reflecting surface RPa of the polygon mirror PM that is, the extension of the optical axis of the first cylindrical lens CYa and the spherical lens system (lenses L10 and L11), is formed on the mirror M36.
  • the optical axis from to the polygon mirror PM is set at an angle of 45 ° with respect to the optical axis AXf1 of the f ⁇ lens system FT in a plane parallel to the XtYt plane. Further, in FIG. 3, the beam LB1 reflected by the mirror M36 and directed toward the reflecting surface RPa of the polygon mirror PM is in a convergent light beam state so as to be focused on the reflecting surface RPa of the polygon mirror PM in the Zt direction, and is in a state of convergent light beam XtYt.
  • the intensity distribution extends in a slit shape in the main scanning direction, that is, in the tangential direction of the inscribed circle centered on the rotation center axis AXp of the polygon mirror PM. It is condensed so as to be.
  • the beam LB1 reflected by the reflecting surface RPa of the polygon mirror PM passes through the telecentric f ⁇ lens system FT, and then is reflected by the mirror M37 at a right angle in the ⁇ Zt direction to the second cylindrical lens CYb (the direction of the bus is Yt). It is incident on the substrate P and is focused as spot light SP on the substrate P.
  • the optical axis AXf1 of the f ⁇ lens system FT which is bent at a right angle in the ⁇ Zt direction by the mirror M37 and becomes perpendicular to the surface of the substrate P (the outer peripheral surface of the rotating drum DR), and toward the mirror M30.
  • the central ray of the beam LB1 incident in the ⁇ Zt direction is set to be coaxial with the line segment LE1 parallel to the Zt axis (the line segments LE2 to LE6 are used for each of the other drawing units U2 to U6). ing.
  • the drawing line SL1 is tilted by a small amount in the substrate P (a plane parallel to the XtYt plane)
  • each optical member from the mirror M30 to the second cylindrical lens CYb shown in FIG. 3 is integrally formed.
  • the entire supporting housing (unit support frame) can be slightly rotated around the line segment LE1.
  • the intensity of the reflected light generated when the spot light SP is projected on the surface of the irradiated object (the substrate P or the outer peripheral surface of the rotating drum DR) installed on the surface to be scanned is detected. Therefore, a photoelectric sensor DTR and a lens system GF are provided.
  • the reflected light (particularly normal reflected light) from the surface of the irradiated body is the second cylindrical lens CYb, the f ⁇ lens system FT, the reflecting surface RPa of the polygon mirror PM, the mirrors M36, M35, M34, the spherical lens L11, and the mirror M33.
  • the spot light SP projected on the surface of the irradiated body is circularly polarized light, and the reflected light also contains a large amount of circularly polarized light components. Therefore, the reflected light passes through the 1/4 wavelength plate QW and becomes the polarized beam splitter PBS. When heading, its polarization characteristics are converted to linear S-polarized light. Therefore, the reflected light from the surface of the irradiated body passes through the polarization separation surface of the polarization beam splitter PBS and is incident on the lens system GF.
  • the light receiving surface of the photoelectric sensor DTR is set to have an optically conjugate relationship with the spot light SP on the scanning surface so that the reflected light from the irradiated body is focused on the light receiving surface of the photoelectric sensor DTR by the lens system GF. Will be done.
  • the reflective surface of the polygon mirror PM on which the drawing beam LB1 is projected Sending for the origin sensor to output a pulsed origin signal indicating that each reflective surface of the polygon mirror PM is at the angular position immediately before the start of drawing to the reflective surface RPb immediately before the rotation direction of RPa. A light beam is projected.
  • the detailed internal configuration of the drawing unit U1 shown in FIG. 3 is the same for the other drawing units U2 to U6, but each of the even-numbered drawing units U2, U4, and U6 has the drawing unit U1 of FIG. Is installed in a direction rotated by 180 degrees around the line segment LE1.
  • the configuration of the pattern drawing device EX will be further described with reference to FIG. 2 again.
  • the extension lines of the line segments LE1, LE3, and LE5 that is, the extension lines of the optical axis AXf1 of the f ⁇ lens system FT
  • the line segments LE1, LE3, and LE5 are installed so as to be inclined counterclockwise by an angle ⁇ c with respect to the central surface CPo while facing the rotation central axis AXo of the rotating drum DR when viewed from the Y direction of 2.
  • the extension lines of the line segments LE2, LE4, and LE6 (that is, the extension lines of the optical axis AXf2 of the f ⁇ lens system FT) are viewed from the Y direction of FIG.
  • the line segments LE2, LE4, and LE6 are installed so as to be tilted clockwise by an angle + ⁇ c with respect to the central surface CPo while moving toward the rotation central axis AXo of the rotating drum DR.
  • the angle ⁇ ⁇ c is set to be as small as possible within a range in which the odd-numbered drawing units U1, U3, and U5 and the even-numbered drawing units U2, U4, and U6 do not spatially interfere with each other (do not collide).
  • a plurality of alignment systems ALGn are arranged in the Y direction at predetermined intervals, and each includes an objective lens system for detecting a mark or the like on the substrate P.
  • the detection region (observation field of view) set on the substrate P via the objective lens system is drawn by each of the drawing units U1 to U6 with respect to the moving direction of the substrate P (circumferential direction of the outer peripheral surface of the rotating drum DR). It is arranged on the upstream side of the positions of lines SL1 to SL6.
  • the extension lines of the respective optical axes AXs of the objective lens system passing through the center of the detection region (observation field of view) are directed toward the rotation center axis AXo of the rotating drum DR, and the surface of the substrate P is located at the position of the detection area (observation field of view). Alternatively, it is set to be perpendicular to the outer peripheral surface of the rotating drum DR.
  • a reference bar member RB as a reference index member forming a reference mark (reference index mark) is attached near the tip of the alignment system ALGn.
  • the reference mark of the reference bar member RB calibrates the mutual positional relationship of the detection areas (observation fields of view) by each of the objective lens systems, or the mutual positional relationship of the drawing lines SL1 to SL6 by each of the drawing units U1 to U6. It is also used when measuring the interval (baseline length) and positional relationship in the circumferential direction (moving direction of the substrate P) between the positions of the drawing lines SL1 to SL6 and each position of the plurality of detection areas.
  • each optical axis AXs of the alignment system ALGn has an angle ⁇ a larger than the angle ⁇ c of the drawing lines SL1, SL3, SL5 by the odd-numbered drawing units U1, U3, and U5, respectively.
  • Only the central surface CPo is set to tilt counterclockwise.
  • FIG. 4 is a perspective view showing the arrangement relationship between the rotating drum DR, the alignment system ALGn, and the reference bar member RB shown in FIG. 2, and the Cartesian coordinate system XYZ is the same as the Cartesian coordinate system XYZ of FIG. Set to the same.
  • the four alignment systems ALG1 to ALG4 are linearly arranged in the Y direction at predetermined intervals, and the optical axes AXs of the objective lens system OBL of the alignment system ALG1 are the objective lens system OBL and the substrate P (rotation).
  • each of the other alignment systems ALG2, ALG3, and ALG4 is provided with the same objective lens system OBL, plane mirror Mb, and cube-type beam splitter BS1 (synthetic optical member) for alignment.
  • the optical axes AXs of the systems ALG2, ALG3, and ALG4 are also set to pass through the center points of the detection regions (observation fields of view) AD2, AD3, and AD4 set on the substrate P, respectively.
  • the alignment system ALG1 is used as the first alignment system and the alignment system ALG4 is used as the second alignment system, but any one of the four alignment systems ALG1 to ALG4 is used as the first alignment system.
  • the alignment system may be used, and any one of the remaining three alignment systems may be used as the second alignment system.
  • the reference bar member RB is elongated in the Y direction from a material having a low coefficient of thermal expansion (Invar, ceramics, quartz, etc.) and is attached in the vicinity of each beam splitter BS1 of the four alignment systems ALG1 to ALG4.
  • a material having a low coefficient of thermal expansion Invar, ceramics, quartz, etc.
  • As the material of the reference bar member RB it is desirable to use ceramics that can also reduce the weight, and in particular, it is composed of three components of magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), and silicon dioxide (SiO 2). It is recommended to use aluminum-based ceramics.
  • a detection region AR1 is set at a position corresponding to the detection region AD1 on the substrate P of the alignment system ALG1 on the reference surface RBa facing the beam splitter BS1 of the reference bar member RB.
  • a reference mark (reference pattern) observable by the objective lens system OBL is formed in the detection region AR1 of the reference surface RBa via the beam splitter BS1 and the plane mirror Mb. Therefore, the alignment system ALGn in the present embodiment is the alignment mark (or the outer peripheral surface of the rotating drum DR) on the substrate P that appears in the detection region AD1 via the beam splitter BS1 arranged on the tip side of the objective lens system OBL.
  • the reference pattern formed above) and the reference mark on the reference surface RBa of the reference bar member RB set in the detection area AR1 can be observed simultaneously or selectively.
  • FIG. 5 shows the arrangement relationship of the objective lens system OBL of the alignment system ALGn, the plane mirror Mb, the cubic cube-shaped beam splitter BS1, and the reference bar member RB in a plane parallel to the XY plane of FIG. It is a figure.
  • the Cartesian coordinate system XYZ is set to be the same as the Cartesian coordinate system XYZ in FIG. 4 or FIG.
  • the optical axis AXs extended from the objective lens system OBL is bent obliquely downward (-Z direction) by the plane mirror Mb.
  • the reflective surface of the plane mirror Mb is tilted counterclockwise by an angle ⁇ k with respect to the plane perpendicular to the optical axis AXs extending from the objective lens system OBL.
  • the optical axis AXs passing through the objective lens system OBL is constant in the XZ plane because the alignment system ALGn is arranged in the space below the odd-numbered drawing units U1, U3, and U5 as shown in FIG. It is tilted with respect to the XY plane by the angle of.
  • the objective lens system is adjusted accordingly.
  • the optical axes AXs passing through the OBL are also tilted by an angle ⁇ c with respect to the XY plane. Therefore, when viewed in the XZ plane, the reflecting surface of the plane mirror Mb is tilted counterclockwise by an angle ⁇ ( ⁇ k + ⁇ c) with respect to the plane parallel to the YZ plane.
  • the optical axis AXs that are folded back by the plane mirror Mb and directed toward the beam splitter BS1 are tilted by an angle of 2 ⁇ k in the ⁇ Z direction with respect to the original optical axis AXs, with respect to a plane parallel to the XY plane of the Cartesian coordinate system XYZ. Therefore, it is tilted by an angle ⁇ ( ⁇ c + 2 ⁇ k).
  • the beam splitter BS1 has an optical splitting surface Bsp in which the slopes of two right-angled prisms (for example, made of quartz) are joined to each other, and the cross-sectional shape seen in the XZ surface is formed into a substantially square shape as a whole.
  • the surface PBa on the plane mirror Mb side of the beam splitter BS1 and the surface PBc on the reference bar member RB side are parallel to each other and are molded at 45 degrees with respect to the optical division surface Bsp. Further, the surface PBb on the side of the beam splitter BS1 facing the substrate P (rotating drum DR) is orthogonal to each of the surface PBa and the surface PBc, and is molded at 45 degrees with respect to the optical splitting surface Bsp.
  • the surface PBb of the beam splitter BS1 is set parallel to the surface (tangible plane) of the substrate P, and the surface PBc is set parallel to the reference surface RBa of the reference bar member RB.
  • the optical axis AXs that vertically passes through the surface PBa of the beam splitter BS1 is set so as to vertically pass through the surface PBc and be perpendicular to the reference surface RBa of the reference bar member RB. Further, the optical axis AXs that passes vertically through the plane PBa of the beam splitter BS1 and is reflected at 90 degrees by the optical splitting plane Bsp so as to pass vertically through the plane PBb and be perpendicular to the surface (tangent plane) of the substrate P. Set.
  • the optical path length from the tip surface of the objective lens system OBL to the surface of the substrate P is set to be equal to the optical path length from the tip surface of the objective lens system OBL to the reference surface RBa of the reference bar member RB, and the beam splitter BS1 is the objective. It is arranged so as not to block the optical path between the lens system OBL and the plane mirror Mb.
  • the working distance (working distance) from the tip of the objective lens system OBL to the surface of the substrate P or the reference surface RBa is set long because the plane mirror Mb and the beam splitter BS1 are interposed. ..
  • the working distance is set to 10 cm or more as an example.
  • the alignment system ALGn (ALG1 to ALG4) will be described with reference to the perspective view of FIG.
  • the Cartesian coordinate system XYZ of FIG. 6 is set to be the same as the Cartesian coordinate system XYZ of FIGS. 4 and 5.
  • the alignment system ALGn is provided with a lens system Gb, a beam splitter BS2, an imaging unit IMS, and an illumination system ILU that are arranged coaxially with the optical axis AXs of the objective lens system OBL.
  • the illumination light ILb from the illumination system ILU is reflected by the mirror Ma, enters from the lower surface (-Z direction) of the beam splitter BS2, is reflected by the optical division surface, passes through the lens system Gb, and passes through the lens system Gb to pass through the objective lens system OBL.
  • the illumination light ILb passes through the objective lens system OBL in the detection areas ADn (AD1 to AD4) on the substrate P side and the detection areas ARn (AR1 to AR4) on the reference surface RBa side of the reference bar member RB with a uniform illuminance distribution. Illuminate.
  • the wavelength range of the illumination light ILb is set to a long wavelength side outside the photosensitive wavelength range of the photosensitive functional layer (photoresist or the like) formed on the substrate P, and is set to, for example, 470 nm to 650 nm.
  • the image pickup unit IMS has a two-dimensional image pickup element such as a CCD or CMOS, and images an image of the mark MKn.
  • the detection region ARn on the reference surface RBa of the reference bar member RB is also illuminated by the illumination light ILb
  • the reflected light from the detection region ARn on the reference surface RBa is also the beam splitter BS1, the plane mirror Mb, and the objective lens.
  • the light is received by the imaging unit IMS through the system OBL, the lens system Gb, and the beam splitter BS2 in this order.
  • the alignment mark MK1 is formed on one end side of the width direction (Y direction) of the substrate P at regular intervals (for example, 5 to 20 mm) along the long direction of the substrate P, and the alignment mark MK4 is formed on the substrate P. It is formed on the other end side in the width direction (Y direction) of P at regular intervals (for example, 5 to 20 mm) along the long direction of the substrate P.
  • the alignment marks MK2 and MK3 are inside the width direction of the substrate P, and a blank portion between a plurality of exposed areas arranged at regular intervals in the long direction or a pattern for a device is formed in the exposed area. It is formed in a blank area that is not.
  • the image sensor of the image pickup unit IMS The image of the alignment marks MKn (MK1 to MK4) on the substrate P and the image of the reference marks RMn (RM1 to RM4) formed in the detection region ARn on the reference surface RBa are simultaneously formed in the image pickup surface of the above. Since there is an image timing, the arrangement and shape of the alignment mark MKn and the reference mark RNn are set so that the image of the alignment mark MKn and the image of the reference mark RNn do not overlap each other in the imaging surface. Details of the arrangement and shape of the alignment marks MKn (MK1 to MK4) and the reference marks RMn (RM1 to RM4) will be described later.
  • FIG. 7 shows the arrangement relationship between the drawing lines SL1 to SL6 by each of the drawing units U1 to U6 shown in FIG. 4 and the detection areas AD1 to AD4 of the alignment systems ALG1 to ALG4, and the change in the rotation angle of the rotating drum DR.
  • Scale disks SDa and SDb (same diameter) are fixed to each of the shafts Sft at both ends of the rotating drum DR in the Y direction so as to rotate together with the rotating drum DR coaxially with the central axis AXo.
  • the diameters of the scale disks SDa and SDb are preferably the same as the diameter of the rotating drum DR, but the relative difference in diameter may be within ⁇ 20%.
  • Diffraction grating-like scales Gm are formed on the cylindrical outer peripheral surfaces of the scale disks SDa and SDb at a constant pitch in the circumferential direction.
  • the scale Gm may be formed directly on the outer peripheral surfaces of the rotary drum DR on both end sides in the Y direction.
  • three optical encoder heads EHa1, EHa2, and EHa3 for measuring the amount of movement of the scale Gm in the circumferential direction are provided side by side in the circumferential direction of the outer peripheral surface of the scale disk SDa, and the scale disk SDb
  • Three optical encoder heads EHb1, EHb2, and EHb3 for measuring the amount of movement of the scale Gm in the circumferential direction are provided side by side in the circumferential direction of the outer peripheral surface of the scale disk SDb.
  • the reading position of the scale Gm by the pair of encoder heads EHa1 and EHb1 in the circumferential direction is set to be the same as the angular position in the circumferential direction of the detection areas AD1 to AD4 arranged in a row in the Y direction of each of the alignment systems ALG1 to ALG4. Will be done.
  • the reading position of the scale Gm by the pair of encoder heads EHa2 and EHb2 in the circumferential direction is set to be the same as the angular position in the circumferential direction of the odd-numbered drawing lines SL1, SL3, and SL5 arranged in a row in the Y direction.
  • the reading position of the scale Gm by the pair of encoder heads EHa3 and EHb3 in the circumferential direction is set to be the same as the angular position in the circumferential direction of the even-numbered drawing lines SL2, SL4, and SL6 arranged in a row in the Y direction.
  • An encoder measurement system having such an arrangement of encoder heads is disclosed in, for example, International Publication No. 2013/146184, but it is possible to minimize the measurement error.
  • the short length of the substrate P is smaller than the dimension of the outer peripheral surface of the rotating drum DR in the Y direction, and is smaller than the dimension of the distance between the detection regions AD1 and AD4 of the alignment systems ALG1 and ALG4 set on both ends in the Y direction in the Y direction. Set to be large.
  • Alignment marks MK1 formed at regular intervals (for example, 5 to 20 mm) in the X direction (sub-scanning direction) at the end in the ⁇ Y direction on the substrate P are positioned so as to appear in the detection region AD1 of the alignment system ALG1.
  • Alignment marks MK4 formed in the + Y direction on the substrate P at regular intervals (for example, 5 to 20 mm) in the X direction (sub-scanning direction) appear in the detection region AD4 of the alignment system ALG4. It is formed in such a position.
  • the spacing dimension of the detection regions AD1 and AD4 of the alignment systems ALG1 and ALG4 in the Y direction is set within the range of the maximum dimension WAY.
  • the linear region formed by each of the drawing lines SL1 to SL6 or the rectangular region surrounded by the entire drawing lines SL1 to SL6 correspond to the pattern forming region.
  • FIG. 8 shows an example of the arrangement relationship and support structure of the drawing units U1 to U6, the scale disk SDa, the encoder heads EHa1, EHa2, EHa3, and the reference bar member RB
  • FIG. 8A shows an example of the orthogonal coordinate system XYZ as in FIG. It is a view of the circumference of the scale disk SDa from the ⁇ Y direction side to the + Y direction side
  • FIG. 8B shows the end face when the structure of FIG. 8A is broken along the central plane CPo in FIG. It is a partial cross-sectional view seen from the direction side toward the ⁇ X direction side.
  • the odd-numbered drawing units U1, U3, and U5 and the even-numbered drawing units U2, U4, and U6 are attached to the support frame portion 100 so as to face each other with the central surface CPo in between.
  • the support frame portion 100 is formed in a rod shape extending in the Y direction in parallel with the central axis AXo of the rotary drum DR, and is fixed to the main body frame of the pattern drawing device EX.
  • the support frame portion 100 pivotally supports each of the drawing units U1 to U6 around the respective line segments LE1 to LE6 in a minute rotatable manner.
  • Such a structure is disclosed in International Publication No. 2016/152758.
  • an arc-shaped support plate portion 103A to which the three encoder heads EHa1, EHa2, EHa3 and the reference bar member RB are fixed, and A support plate portion 102A for fixing the support plate portion 103A to the end portion side of the support frame portion 100 on the ⁇ Y direction side is provided.
  • the encoder heads EHb1, EHb2, EHb3 and the reference bar member RB are similarly fixed to the end side (scale disk SDb side) of the support frame portion 100 on the + Y direction side in an arc shape.
  • a support plate portion 103B and a support plate portion 102B for fixing the support plate portion 103B to the end portion on the + Y direction side of the support frame portion 100 are provided. Further, in order to connect the two arc-shaped support plate portions 103A and 103B located parallel to each other in the Y direction, the connecting bar members 104a, 104b and 104c extending in the Y direction are provided at three locations along the arc. It is provided in each of.
  • the support frame portion 100, the support plate portions 102A, 102B, 103A, 103B, and the connecting bar members 104a, 104b, 104c are integrated by using a metal material or a ceramic material having a low coefficient of thermal expansion. It is assembled as a metrology frame (measurement frame) with high mechanical rigidity and extremely small structural deformation due to temperature changes.
  • the reference bar member RB is bridged to each of the two arc-shaped support plate portions 103A and 103B separated in the Y direction in the posture shown in FIGS. 4 to 6 above in the Cartesian coordinate system XYZ. Is fixed to.
  • the fine adjustment mechanism 106 provided in each of the support plate portions 103A and 103B finely adjusts the posture such as the two-dimensional position of the reference bar member RB in the XZ plane and the inclination in the XZ plane on the order of several microns or less. adjust.
  • the inclination of the reference surface RB of the reference bar member RB can be adjusted in the YZ plane and the reference surface RBa. It is also possible to adjust the parallelism with the central axis AXo of.
  • the fine adjustment mechanism 106 is mainly used during calibration and maintenance work of the device.
  • the alignment system ALGn shown in FIG. 9A has the same configuration as that shown in FIG. 6, but for the sake of simplicity, the optical path ahead of the objective lens system OBL is omitted by omitting the plane mirror Mb in FIG. It has been expanded.
  • the illumination system ILU of the alignment system ALGn includes the detection regions ADn (AD1 to AD4) on the substrate P (or the outer peripheral surface of the rotating drum DR) defined by the objective lens system OBL and the reference surface RBa of the reference bar member RB.
  • a plurality of interchangeable lenses are set in an optically conjugate relationship (imaging relationship) with each of the detection regions ARn (AR1 to AR4) of the above, and in order to set an illumination range suitable for each of the detection regions ADn and ARn.
  • the illumination field diaphragm FAn is provided. As shown in FIG. 9B, the illumination field diaphragm FAn is composed of, for example, three types of illumination field diaphragms FA1, FA2, and FA3.
  • a typical illumination field diaphragm FA1 has a similar shape to both the detection areas ADn and ARn so that the entire detection area ADn (AD1 to AD4) and the detection area ARn (AR1 to AR4) are simultaneously illuminated by the illumination light ILB. Has a rectangular opening.
  • the illumination light ILb transmitted through the opening of the illumination field diaphragm FA1 is reflected by the cube-type beam splitter BS2, and is split into amplitude by the beam splitter BS1 through the lens system Gb and the objective lens system OBL, and is used as a substrate.
  • the inside of the detection region ADn on P is illuminated with a uniform intensity distribution
  • the inside of the detection region ARn on the reference surface RBa of the reference bar member RB is illuminated with a uniform intensity distribution.
  • the reference marks RMn (RM1 to RM4) are constantly formed at predetermined positions in the detection region ARn on the reference surface RBa, the reflected light from the detection region ARn (normally reflected light from the reference mark RMn, (Including scattered light and diffracted light) passes through the beam splitter BS1 and then passes through the objective lens system OBL, the lens system Gb, and the beam splitter BS2 to become an imaging light beam Bma and is incident on the imaging unit IMS.
  • the image pickup unit IMS includes a lens system Gc and a two-dimensional image pickup element DIS, and the image pickup surface of the image pickup element DIS includes the surface of the substrate P (or the outer peripheral surface of the rotating drum DR) and the reference surface RBa of the reference bar member RB. It is set to an optically conjugate relationship (imaging relationship) with each of the above.
  • the image pickup region DIS'on the image pickup surface of the image pickup device DIS is substantially similar to the detection regions ADn and ARn, and has a circular shape defined by the objective lens system OBL and the lens system Gb. It is set to a rectangle included in the image side viewing range Imcc.
  • the reflected light from the detection region ARn forms a magnified image RNn'of the reference mark RNn at a specific position in the imaging region DIS'.
  • the reference mark RMn formed on the reference surface RBa of the reference bar member RB is an L-shaped linear pattern arranged at each of the four corners in the detection region ARn (imaging region DIS'). It is composed.
  • FIG. 9C the image pickup region DIS'on the image pickup surface of the image pickup device DIS is substantially similar to the detection regions ADn and ARn, and has a circular shape defined by the objective lens system OBL and the lens system Gb. It is set to a rectangle included in the image side viewing range Imcc.
  • the intersection of the line that divides the imaging region DIS'in the vertical direction and the line that divides the imaging region DIS'in the horizontal direction is defined as the center point CCn.
  • the center point CCn may be a specific imaging pixel located at the center of the imaging surface.
  • the alignment mark MKn appears in the detection area ADn while the inside of the detection area ADn on the substrate P is illuminated with a uniform intensity distribution by the illumination light ILb transmitted through the opening of the illumination field aperture FA1.
  • the reflected light including normal reflected light, scattered light, and diffracted light from the alignment mark MKn passes through the beam splitter BS1, it passes through the objective lens system OBL, the lens system Gb, and the beam splitter BS2 to form an imaging light beam Bma and is imaged. It is incident on the part IMS.
  • an enlarged image MKn'of the alignment mark MKn is formed in the image pickup region DIS'of the image pickup element DIS. .. Since the substrate P continues to move in one direction at a constant speed, the magnified image MKn'of the alignment mark MKn passes through the imaging region DIS'in the direction of the arrow Xp (X direction). Further, the position of the magnified image RNn'of the reference mark RNn and the position of the magnified image MKn'of the alignment mark MKn in the imaging region DIS'are set so as not to overlap each other. In FIG.
  • the shape of the alignment mark MKn (enlarged image MKn') is made into a cross-shaped line pattern in accordance with the shape of the alignment mark MKn in FIG. 7, and the shape is a video signal from the image pickup element DIS.
  • Any shape such as a rectangle (square), a triangle (wedge shape), and a circle may be used as long as the shape can be recognized by an image processing device that analyzes the image.
  • the illumination light toward RMn is shielded, and only the enlarged image MKn'of the alignment mark MKn on the substrate P appears in the image pickup region DIS'of the image pickup element DIS.
  • the illumination field diaphragm FAn of the illumination system ILU is switched to the illumination field diaphragm FA3 shown in FIG.
  • the alignment mark MKn is directed to a portion where the alignment mark MKn can pass in the central portion in the detection region ADn set on the substrate P. Since the illumination light is shielded and the reference mark RMn located at the four corners of the detection region ARn on the reference surface RBa is irradiated with the illumination light, the reference mark RNn is included in the image pickup region DIS'of the image pickup device DIS. Only the magnified image RNn'appears.
  • FIG. 10A is a diagram showing an example of arrangement of reference marks RM1 to RM4 (RM3 is omitted) formed at four locations in the Y direction on the reference surface RBa of the reference bar member RB.
  • the plane parallel to the reference plane RBa is the X'Y'plane of the Cartesian coordinate system X'Y'Z'
  • the axis parallel to the normal of the reference plane RBa is the Z'axis.
  • the Y'axis of the Cartesian coordinate system X'Y'Z' is parallel to the Y axis of the Cartesian coordinate system XYZ.
  • Reference marks RM1 to RM4 are formed at predetermined intervals in the Y'direction along a virtual straight line CRy extending in the Y'direction (Y direction) on the reference surface RBa of the reference bar member RB. .. That is, the center points CR1, CR2, CR3, and CR4 of the reference marks RM1 to RM4 are precisely positioned on the virtual straight line CRy.
  • the distance dimension between the center point CR1 of the reference mark RM1 and the center point CR2 of the reference mark RM2 in the Y'direction (Y direction) is LBS12
  • Both the distance dimension LBS23 in the Y'direction (Y direction) from CR2 and the distance dimension LBS34 in the Y'direction (Y direction) between the center point CR4 and the center point CR3 of the reference mark RM4 are equal to the distance dimension LBS12. It shall be set.
  • the interval dimension LBS12, the interval dimension LBS23, and the interval dimension LBS34 may be set to different values.
  • FIG. 10B exaggerates an example of the arrangement relationship between the image pickup region DIS'of the image pickup element DIS of the alignment system ALG1 and the reference mark RM1 on the reference bar member RB in the XY'plane.
  • FIG. 10C exaggerates an example of the arrangement relationship between the image pickup region DIS'of the image pickup element DIS of the alignment system ALG2 and the reference mark RM2 on the reference bar member RB in the XY'plane. ..
  • the center point (reference point) between the X'direction and the Y'direction of the two-dimensional imaging region DIS'is CC1 the reference is due to the relative mounting error between the reference bar member RB and the alignment system ALG1.
  • the installation error ⁇ C1 is + ⁇ XC1 ( ⁇ m) in the X'direction and + ⁇ YC1 ( ⁇ m) in the Y'direction with reference to the center point CR1 of the reference mark RM1 as a reference (origin).
  • the installation error ⁇ C2 is ⁇ XC2 ( ⁇ m) in the X'direction and ⁇ YC2 ( ⁇ m) in the Y'direction with reference to the center point CR2 of the reference mark RM2 as a reference (origin).
  • the center points CC1 and CC2 of the imaging region DIS' correspond to a specific imaging pixel located in the center of a large number of imaging pixels distributed in a two-dimensional matrix on the imaging surface. It does not have to be exactly the true center point of the imaging region DIS', for example, the position of a specific imaging pixel deviated from the true center point by several to a dozen in the X'direction or Y'direction.
  • the center points (reference points) CC1 and CC2 may be used.
  • the installation error ⁇ C3 between each of the center points CC3 and CC4 of the imaging region DIS'and the center points CR3 and CR4 of the reference marks RM3 and RM5 It is assumed that there is ⁇ C4.
  • Information on these installation errors ⁇ C1, ⁇ C2, ⁇ C3, and ⁇ C4 can be obtained during equipment assembly, adjustment (calibration) work performed at an appropriate timing during equipment operation, or equipment maintenance inspection (maintenance) work. , It is obtained by image analysis of the video signal from each of the image pickup devices DIS of the alignment systems ALG1 to ALG4, and can be updated as appropriate.
  • FIG. 11 is a block diagram showing a schematic configuration of a part of a control device provided in the pattern drawing device EX according to the present embodiment.
  • the same members and parts as those described in the above drawings are designated by the same reference numerals, but are engraved on the outer peripheral surfaces DRs of the rotating drum DR and the outer peripheral surfaces of the scale disk SDa (SDb).
  • the scale Gm is shown in a flat state for the sake of simplicity. Therefore, in FIG. 11, it is assumed that the outer peripheral surface DRs and the scale Gm of the rotating drum DR go straight together in the horizontal direction (X direction) as shown by the arrow arx. Further, reference patterns FMa, FMb, FMc ...
  • Each of the reference patterns FMa, FMb, FMc ... Appears in the detection region ADn (AD1 to AD4) of each of the alignment systems ALGn (ALG1 to ALG4) in the Y direction (central axis AXo of the rotating drum DR). The position and dimensions of the direction) are set and formed on the outer peripheral surfaces DRs of the rotating drum DR.
  • the configuration of the reference patterns FMa, FMb, FMc ... Formed on the rotating drum DR is disclosed in, for example, International Publication No. 2014/034161.
  • FIG. 11 shows only the odd-numbered drawing units U1, U3, and U5 axially supported by the support frame portion 100, and the encoder heads EHa1 (EHb1) and EHa2 (EHb2) shown in FIGS. 7 and 8 above.
  • EHa3 (EHb3) the orientation in the circumferential direction of the detection region ADn of the alignment system ALGn and the orientation in the circumferential direction of the drawing lines SL1, SL3, SL5 (exposure position) of the odd-numbered drawing units U1, U3, U5.
  • Only the encoder heads EHa1 (EHb1) and EHa2 (EHb2) to be arranged are shown.
  • the reference bar member RB is firmly coupled to the support frame portion 100 that supports the drawing units U1 to U6 via the support plate portions 102A, 102B, 103A, and 103B.
  • the measurement signals (for example, two-phase signals having a phase of 90 degrees) from each of the encoder heads EHa1 (EHb1) are input to the counter circuit unit 200A, and the counter circuit unit 200A has 1/32 to 1/32 of the lattice pitch of the scale Gm.
  • Digital counter values corresponding to the movement amount of the scale Gm that is, the movement amount of the outer peripheral surface DRs of the rotating drum DR or the substrate P
  • ESb1 measurement information
  • measurement signals for example, two-phase signals having a phase difference of 90 degrees
  • EHa2 EHb2
  • the counter circuit unit 200B has a grid pitch of the scale Gm (for example).
  • a digital counter value corresponding to the movement amount of the scale Gm that is, the movement amount of the outer peripheral surface DRs of the rotating drum DR or the movement amount of the substrate P
  • ESa2 ESb2
  • a zero point signal indicating the starting point (zero point position) is transmitted to each of the encoder heads EHa1 (EHb1), EHa2 (EHb2), and EHa3 (EHb3).
  • the origin pattern ZZo for generating from is formed.
  • the counter circuit unit 200A shown in FIG. 11 resets the digital count value to zero at the moment when the encoder head EHa1 (EHb1) detects the origin pattern ZZo, and the counter circuit unit 200B has the encoder head EHa2 (EHb2) resetting the digital count value to zero.
  • the digital count value is reset to zero the moment it is detected.
  • the origin pattern ZZo on the scale disk SDa side and the origin pattern ZZo on the scale disk SDb side do not necessarily have to be exactly the same direction with respect to the rotation direction (circumferential direction) of the rotating drum DR, and are substantially the same direction, for example.
  • the angle difference may be set within the range of ⁇ several degrees.
  • a scale disk SDa in which a scale scale Gm is engraved on the outer peripheral surface at a pitch of 20 ⁇ m, a stainless steel ring as SDb and an encoder head are used to rotate the scale scale Gm.
  • the amount of movement in the direction can be measured with a resolution of 0.1 ⁇ m or less. That is, the change of the least significant bit (LSB) of the digital counter in the counter circuit units 200A and 200B can correspond to the movement amount of the substrate P by about 0.1 ⁇ m.
  • LSB least significant bit
  • the scale scale Gm of the scale disks SDa and SDb is engraved is ⁇ gm and the radius of the outer peripheral surface of the rotating drum DR is ⁇ dr
  • the scale scale Gm is directly applied to the outer peripheral surface of the rotating drum DR. Unless it is engraved, it is difficult to make the radius ⁇ gm and the radius ⁇ dr exactly the same. Therefore, in the counter circuit units 200A and 200B, the unit movement amount corresponding to the LSB of the counter value that is first digitally counted based on the signals from the encoder heads EHa1, EHb1, EHa2, EHb2, ...
  • the counter circuit units 200A and 200B are inside the counter circuit units 200A and 200B based on the thickness Tp of the substrate P.
  • the movement amount and the movement position measured based on the unit movement amount ⁇ Lxb are simultaneously output.
  • the radius ⁇ dr of the outer peripheral surface of the rotating drum DR is 134.00 mm
  • the thickness Tp of the substrate P is 100 ⁇ m
  • (Error length) ⁇ Lf is about 628.3 ⁇ m.
  • the rotary drum DR On the outer peripheral surface of the rotary drum DR, the rotary drum The movement amount and movement position measured based on the unit movement amount ⁇ Lxa corresponding to the outer peripheral surface of the DR are used, and the pattern is exposed on the substrate P in the state after the substrate P is passed through the rotating drum DR. Or, at the stage of detecting the alignment marks MKn (MK1 to MK4), the movement amount and the movement position measured based on the unit movement amount ⁇ Lxb corresponding to the surface of the substrate P are used.
  • Each photoelectric signal (analog voltage) from the photoelectric sensor DTR provided in each of the odd-numbered drawing units U1, U3, and U5 is input to the ADC unit 202A including three analog / digital conversion circuits.
  • the ADC unit 202A measures the intensity of the photoelectric signal from the photoelectric sensor DTR of the drawing unit U1 (U3, U5) in the Y direction along the drawing line SL1 (SL3, SL5), and the unit scanning movement amount ⁇ Ysp of the spot light. Digital sampling is performed based on the clock signal LTC that generates a clock pulse every ( ⁇ m).
  • the unit scanning movement amount ⁇ Ysp is a fiber amplifier laser light source in which the light source device LS shown in FIG.
  • the unit scanning movement amount ⁇ Ysp is the same as the diameter of the spot light.
  • the ADC unit 202A sequentially transfers a large number of digital data digitally sampled for each unit scanning movement amount ⁇ Ysp during one scanning of the spot light along the drawing line SL1 (SL3, SL5) to the image processing unit 204A.
  • the image processing unit 204A sequentially and individually stores the digital waveform data of the photoelectric signals from the photoelectric sensor DTRs of the odd-numbered drawing units U1, U3, and U5 digitally sampled by the ADC unit 202A in the internal image memory. ..
  • the image memory sequentially updates the storage address of the digital data obtained during one scan of the spot light based on the change of the measurement information ESa2 (or ESb2) from the counter circuit unit 200B.
  • Two-dimensional light-dark image data is generated by the reflected light from FMc ... Etc. and the reflected light from fine pattern shapes having different reflectances formed on the substrate P.
  • an ADC unit 202B (not shown) that converts the photoelectric signal from the photoelectric sensor DTR into digital waveform data and an even-numbered drawing in the image memory.
  • An image processing unit 204B (not shown) for individually storing the digital waveform data of the photoelectric signal from each of the photoelectric sensor DTRs of the units U2, U4, and U6 is provided.
  • the digital sampling of the photoelectric signal from each photoelectric sensor DTR by the ADC unit 202B is performed based on the clock signal LTC in FIG.
  • the storage address is not the measurement information ESa2 (or ESb2) from the counter circuit unit 200B in FIG. 11, but the measurement signal from the encoder head EHa3 (or EHb3) in FIG. 8A (for example, two phases having a phase difference of 90 degrees). It is sequentially updated based on the change of the measurement information (referred to as ESa3 or ESb3) from the counter circuit unit 200C (not shown) that counts the signal).
  • the counter circuit unit 200C (not shown) also resets the digital count value to zero at the moment when the encoder head EHa3 (EHb3) detects the origin pattern ZZo.
  • the position (pixel position) in the image with respect to the main scanning direction (Y direction) of the two-dimensional image data stored in the image memory is a clock signal from the start of digital sampling.
  • the position (pixel position) in the image with respect to the sub-scanning direction (X direction), which is determined by the count value of the clock pulse of the LTC, is the measurement information ESa2, ESb2 (and ESa3, ESb3) from the counter circuit unit 200B (and 200C). Determined by.
  • the image processing unit 204A (and 204B) has the two-dimensional positions of the reference patterns FMa, FMb, FMc ...
  • Alignment system ALGn (ALG1 to ALG4) that detects reference patterns FMa, FMb, FMc ... of the rotating drum DR, reference marks RM1 to RM4 of the reference bar member RB, or alignment marks MKn (MK1 to MK4) on the substrate P.
  • the video signal Vsg from each image sensor DIS is sent to the image analysis unit 206.
  • the image analysis unit 206 is used to capture image data of the image pickup region DIS'that is imaged by each image sensor DIS and sent sequentially (for example, data for one screen that is refreshed every 1/30 second or 1/60 second).
  • the trigger position is the rotating drum DR such that when the imaging target is the reference pattern FMa, FMb, FMc ..., The reference pattern FMa, FMb, FMc ... Is located substantially in the center of the imaging area DIS'. It is set by storing the measurement information ESa1 (or ESb1) output by the counter circuit unit 200A at the rotation position in advance.
  • the intervals for example, 5 related to the sub-scanning direction of the alignment marks MK1 and MK4 are designed. Since ( ⁇ 20 mm) is fixed, the trigger position is set for each rotation position of the rotating drum DR in which the measurement information ESa1 (or ESb1) from the counter circuit unit 200A is increased by the count value corresponding to the interval value. NS.
  • the image analysis unit 206 measures the position of the alignment mark MKn by the alignment system ALGn, the image analysis unit 206 is centered in the imaging region DIS'as shown in FIG. 9C above based on the image data stored in the image memory. Alignment mark MKn with respect to point CCn Alignment with respect to the two-dimensional displacement of the center point of MKn'or the magnified image RNn of the reference bar member RB that appears simultaneously in the imaging region DIS' The amount of two-dimensional misalignment of the center point of the magnified image MKn'of the mark MKn is measured by image analysis processing. Further, when the image analysis unit 206 measures the positions of the reference patterns FMa, FMb, FMc ...
  • the image analysis unit 206 sets each of the center points CCn (CC1 to CC4) in each imaging region DIS'of the alignment system ALGn and the reference mark of the reference bar member RB.
  • Information on the installation error ⁇ Cn ( ⁇ C1 to ⁇ C4) with each of the center points CRn (CR1 to CR4) of the RMn is measured by image analysis processing of the image data stored in the image memory.
  • the measurement control unit (calculation processing unit) 210 of FIG. 11 is the relative position of the reference patterns FMa, FMb, FMc ... With respect to the drawing lines SLn (SL1 to SL6) measured by the image processing unit 204A (204B). Spots along each of the drawing lines SLn based on the position of the alignment mark MKn detected by the alignment system ALGn based on the relationship information and the information of various misalignment amounts measured by the image analysis unit 206.
  • the amount of adjustment of drawing timing by light (setting of delay time), the amount of adjustment of each inclination of drawing line SLn by each minute rotation of drawing unit Un, and the amount of adjustment of drawing line SLn itself by a small amount in the sub-scanning direction.
  • the amount of adjustment of the inclination of the parallel flat plate HVP is calculated at high speed.
  • the measurement control unit (calculation processing unit) 210 uses the position information (actual measurement information) of the alignment marks MKn (MK1 to MK4) of the substrate P detected by the alignment system ALGn (ALG1 to ALG4). ) Uses the correction position information corrected according to the installation error information ⁇ C1 to ⁇ C4 of the alignment system ALGn (ALG1 to ALG4) described with reference to FIG.
  • FIG. 12 is a flowchart illustrating an example of a series of operations of a calibration sequence, an alignment sequence, and an exposure sequence according to the first embodiment.
  • steps 300, 302, and 304 are various calibration sequences executed at the time when the device is started up or at an appropriate time during the operation of the device
  • step 306 is a transfer mechanism (various rollers) in the device. This is a paper-passing operation in which a substrate P having a photosensitive functional layer formed on a rotating drum DR is hung with a predetermined tension. Steps 308 to 314 of FIG.
  • Reference numeral 324 is a second exposure (2nd exposure) sequence in which the patterns of the second and subsequent layers are superimposed and exposed on the photosensitive functional layer of the substrate P on the pattern of the first layer, and an alignment sequence for the overlay.
  • FIG. 13 shows a state in which the substrate P is stretched on a flat surface.
  • the substrate P is passed through the rotating drum of the pattern drawing apparatus EX in the direction of the arrow arc from the tip Pa, and the rotating drum DR rotates to the terminal Pb. Be transported.
  • the first region F0 from the tip Pa of the substrate P is a margin portion until the substrate P is passed through the pattern drawing apparatus EX and can be conveyed at a predetermined tension and a predetermined speed.
  • next region F1 on the substrate P four alignment marks MK1 to MK4 are arranged in the width direction of the substrate P so that they can be detected in the detection regions AD1 to AD4 of the four alignment systems ALG1 to ALG4 shown in FIG. Is placed in.
  • a plurality of rows of the four alignment marks MK1 to MK4 arranged in the width direction are formed at regular intervals (for example, 5 mm to 10 mm) in the long direction.
  • next regions F2 to Fn-1 on the substrate P a large number of exposed region DPA and alignment marks MK1 to MK4 attached to the exposed region DPA are formed in the long direction with a fixed length margin portion interposed therebetween.
  • the last region Fn on the substrate P is a margin portion where the exposed region DPA is not formed because normal tension cannot be maintained even when the substrate P is hung around the rotating drum DR.
  • the alignment marks MK1 to MK4 shown in FIG. 13 are simultaneously exposed at the time of the 1st exposure process of exposing the pattern of the first layer to the exposed area DPA, and the etching process and the plating process performed after the exposure process. It is formed together with the pattern for the first layer by another film forming process. Therefore, a metal thin film (copper, aluminum, nickel) or an opaque insulating film as a pattern for the first layer is formed on the entire surface of the substrate P to be subjected to the 1st exposure treatment, and further, the metal thin film (copper, aluminum, nickel) or an opaque insulating film is formed on the entire surface. It is preferable to form a photosensitive functional layer on the surface of a metal thin film or an insulating film.
  • Step 300 the encoder measurement system is calibrated in step 300 in the state after the device is started and before the paper is passed.
  • [DR] added next to step 300 means that the rotary drum DR is rotationally driven at a predetermined rotation speed
  • [EH] is the encoder heads EHa1 to EHa3, EHb1 to EHb1 of the encoder measurement system. It means to use each of EHb3.
  • the outer peripheral surfaces (formation surface of the scale Gm) of the scale disks SDa and SDb at both ends of the rotary drum DR have a perfect circle error (at the rotation angle position) determined by the machining accuracy.
  • step 300 the perfect circle error, the eccentric error, and the pitch error are accurately grasped, and an error correction map at the time of encoder measurement is created.
  • Methods for obtaining these errors and preparation of a correction map are disclosed in, for example, International Publication No. 2016/013417 and JP-A-2017-090243.
  • the error correction map starts from the origin pattern ZZo shown in FIG. 11 and divides one round (360 degrees) of the scale disks SDa and SDb at a fixed angle (for example, 5 degrees) as an error correction amount for each rotation position. It will be remembered.
  • the angular position information (movement amount) of the scale Gm actually measured by each of the encoder heads EHa1 to EHa3 is the counter circuit unit (counter circuit unit 200A in FIG. 11) prepared for each head. 200B etc.). Therefore, each counter circuit unit (200A, 200B, etc.) outputs the value obtained by correcting the measured value by the created error correction map (error correction amount) as measurement information (ESa1, ESb1, ESa2, ESb2, etc. in FIG. 11). do.
  • the calibration of the encoder measurement system is completed, the calibration of the alignment system is executed in the next step 302.
  • [DR] and [EH] added next to step 302 are the rotational drive of the rotating drum DR and the measurement by the encoder measurement system (encoder heads EHa1 to EHa3, EHb1 to EHb3) as in step 300.
  • [RB] means to use the reference bar member RB shown in FIGS. 4 to 6 and 8 to 11
  • [ALGn] means to use the reference bar member RB shown in FIGS. 4 to 6 and 8 to 11. 6
  • each of the four alignment systems ALG1 to ALG4 measures each position of the corresponding reference marks RM1 to RM4 on the reference bar member RB shown in FIG. 10A by the image analysis unit 206 in FIG. As described with reference to FIGS. 10B and 10C, there is an installation error ⁇ C1 between the center point CC1 of the (detection area AD1) imaging area DIS'(detection area AD1) of the alignment system ALG1 and the center point CR1 of the reference mark RM1, and the alignment system ALG2.
  • the installation error ⁇ C3 with the center point CR3 and the installation error ⁇ C4 between the center point CC4 of the imaging region DIS'(detection region AD4) of the alignment system ALG4 and the center point CR4 of the reference mark RM4 are measured.
  • the rotating drum DR is rotated, the images of the reference patterns FMa, FMb, FMc ...
  • the illumination field diaphragm FAan provided in each of the illumination systems ILU of the alignment systems ALG1 to ALG4 shown in FIG. 9A may be switched to the illumination field diaphragm FA3 shown in FIG. 9B.
  • FIG. 14 is an exaggerated representation of the installation errors ⁇ C1 to ⁇ C4 based on the center points CR1 to CR4 of the reference marks RM1 to RM4 on the reference bar member RB shown in FIG. 10A.
  • the processing device is equipped with a positioning stage or the like equipped with a laser interferometer
  • step 302 by detecting the images of the reference patterns FMa, FMb, FMc ... Formed on the outer peripheral surfaces DRs of the rotating drum DR by the alignment system ALGn, the Y'direction on the reference bar member RB ( It is possible to confirm the parallelism between the straight line CRy extending in the Y direction) and the rotation center axis AXo of the rotation drum DR.
  • FIG. 15 shows the arrangement relationship between the reference patterns FMa, FMb, FMc ... Formed on the outer peripheral surfaces DRs of the rotating drum DR developed in a plane and the detection regions AD1 to AD4 of the alignment systems ALG1 to ALG4. It is a figure which shows an example.
  • Each of the reference patterns FMa to FMh extends in the circumferential direction orthogonal to the linear pattern Fyo and the linear pattern Fyo engraved linearly in the Y direction parallel to the central axis (center line) AXo of the rotation of the rotating drum DR. Therefore, it is composed of linear patterns Fx1, Fx2, Fx3, and Fx4 that are engraved corresponding to the positions of the detection regions AD1 to AD4 in the Y direction.
  • the spacing between the four linear patterns Fx1 to Fx4 in the Y direction is set to be the same as the spacing dimensions LBS12, LBS23, and LBS34 of the reference marks RM1 to RM4 shown in FIG. 10A.
  • the intersection portion of each of the linear patterns Fyo and the linear pattern Fx1 of the reference patterns FMa to FMh is formed. , Appears 8 times during one rotation of the rotating drum DR.
  • the timing at which each of the reference patterns FMa to FMh appears in the detection region ADn of the alignment system ALGn is the circumferential position of the origin pattern ZZo of the scale Gm of the scale disk SDa and SDb and the circumferential position of each of the reference patterns FMa to FMh. Since the relationship with is fixed in advance (known), it can be specified from the rotation angle position of the rotation drum DR measured by the encoder measurement system.
  • the alignment system is based on the measurement information ESa1 (ESb1) from the counter circuit unit 200A in FIG. 11 for inputting the measurement signal from the encoder head EHa1 (EHb1) arranged corresponding to the circumferential position of the alignment system ALGn.
  • the illumination field diaphragm FAan provided in each illumination system ILU of the alignment system ALGn shown in FIG. 9A is switched to the illumination field diaphragm FA1 shown in FIG. 9B.
  • the calculated tilt error ⁇ rb is indirectly regarded as a tilt error (parallelism error) in the circumferential direction between the center line AXo of rotation of the rotating drum DR and the straight line CRy on the reference bar member RB.
  • the tilt error ⁇ rb can be measured for each position of the reference patterns FMa to FMh at eight locations on the outer peripheral surface DRs (every 45 ° rotation of the rotating drum DR), the tilt error ⁇ rb for eight times is averaged. Is also good.
  • the measured tilt error ⁇ rb is set to be within the permissible range during normal operation of the equipment, but when the equipment is restarted after a long suspension of operation or when it is restarted after receiving a large vibration due to an earthquake or the like. , The tilt error ⁇ rb may exceed the permissible range. Therefore, when the inclination error ⁇ rb is measured as described above and exceeds the permissible range, the inclination of the reference bar member RB can be adjusted by the fine adjustment mechanism 106 shown in FIG. However, when the inclination of the reference bar member RB is adjusted by the fine adjustment mechanism 106, the alignment system calibration sequence of step 302 is executed again, and the mounting error of the alignment system ALGn from each design position causes the alignment error. Certain installation error information ⁇ C1 to ⁇ C4 are measured again.
  • the relative positional relationship of each of the sub-scanning directions (X'direction in FIG. 10) of the center points CC1 to CC4 of the imaging region DIS' is determined with reference to the reference patterns FMa to FMh.
  • the linear pattern Fyo and the linear pattern Fx1 to the linear pattern Fyo and the linear pattern Fx1 to each of the image pickup elements DIS of the alignment system ALGn are sampled at the same time, and the value of the measurement information ESa1 (ESb1) output from the counter circuit unit 200A at that time is stored.
  • a baseline management sequence for acquiring information about the distance relationship (circumferential direction) or the distance relationship related to the main scanning direction (Y direction) is executed.
  • [DR] and [EH] added next to step 304 in FIG. 12 are the rotational drive of the rotating drum DR and the encoder measurement system (encoder heads EHa1 to EHa3, EHb1 to EHb3), as in steps 300 and 302. ) Is used, and [DTR] means that the photoelectric sensor DTR provided in each of the drawing units Un shown in FIGS. 3 and 11 above is used.
  • each polygon mirror (rotating multifaceted mirror) PM of the drawing unit Un is rotated at the rotating drum DR (peripheral speed of the outer peripheral surfaces DRs of the rotating drum DR). ) Is rotated at a predetermined rotation speed.
  • each spot light of the beam LBn projected from each of the drawing units Un sequentially scans each of the reference patterns FMa, FMb, FMc ... Formed on the outer peripheral surface DRs. ..
  • a reference pattern FMa FMb, FMc ... May be used
  • the photoelectric sensor DTR provided in each of the drawing units Un determines the amount of reflected light.
  • a photoelectric signal corresponding to the change is output, and the ADC unit 202A (202B) and the image processing unit 204A (204B) generate two-dimensional light / dark image data (luminance information) including the reference pattern FMa.
  • the reference pattern FMa FMb, FMc.
  • the reflected light monitor system is composed of the photoelectric sensor DTR, the ADC unit 202A (202B), and the image processing unit 204A (204B), and in addition to the bright and dark image data of the reference pattern FMa (FMb, FMc ). It is also possible to acquire light and dark image data corresponding to the patterns and alignment marks formed on the substrate P.
  • FIG. 16 shows an example of the arrangement relationship of the imaging region DIS'(detection region ADn) of each of the six drawing lines SLn and the four alignment system ALGn and the reference pattern FMa based on the configuration of FIG. , It is the figure which developed and represented a part of the outer peripheral surface DRs of a rotary drum DR in a plane.
  • the main scanning direction of the spot light forming each of the odd-numbered drawing lines SL1, SL3, and SL5 is set to the ⁇ Y direction
  • the main scanning direction of the spot light forming each of the even-numbered drawing lines SL2, SL4, and SL6 is set.
  • the direction shall be set in the + Y direction.
  • the midpoints CE1 to CE6 in the main scanning directions (Y direction) of the drawing lines SL1 to SL6 are minute in each of the drawing units U1 to U6. It is arranged so that the extension of the line segments LE1 to LE6, which becomes the rotation center line when rotating, passes through.
  • Is determined by averaging the position information in the sub-scanning direction (circumferential direction), or of the alignment systems ALGn (n 1 to 4), two alignment systems ALG1 and ALG4 installed on both sides in the Y direction.
  • the reference pattern FMa (same for FMb, FMc ...)
  • the reference pattern Fyo On the outer peripheral surface DRs of the rotating drum DR shown in FIG. 15 is circumferential so as to intersect the linear pattern Fyo in addition to the linear patterns Fx1 to Fx4.
  • a large number of linear patterns extending in the direction and arranged at each of the plurality of positions in the Y direction are formed as shown in FIG.
  • the streak pattern Fx1 detected in the imaging region DIS'(center point CC1) as the detection region AD1 of the alignment system ALG1 is arranged near the end of scanning within the scanning range of the drawing line SL1.
  • the drawing unit U1 has a linear pattern Fxe1 that can be detected by the reflected light monitor system (photoelectric sensor DTR).
  • the streak pattern Fx2 detected in the imaging region DIS'(center point CC2) as the detection region AD2 of the alignment system ALG2 is arranged near the end of scanning within the scanning range of the drawing line SL2, and the reflected light of the drawing unit U2.
  • the streak pattern Fxe2 which can be detected by the monitor system (photoelectric sensor DTR), and the reflected light monitor system (photoelectric sensor DTR) of the drawing unit U3, which is arranged near the end of scanning within the scanning range of the drawing line SL3, can also be detected. It has a streak pattern Fxe3.
  • the streak pattern Fx3 detected in the imaging region DIS'(center point CC3) as the detection region AD3 of the alignment system ALG3 is arranged near the end of scanning within the scanning range of the drawing line SL4, and the drawing unit U4
  • the streak pattern Fxe4 which can be detected by the reflected light monitor system (photoelectric sensor DTR) of the above, and the reflected light monitor system (photoelectric sensor DTR) of the drawing unit U5, which is arranged near the end of scanning within the scanning range of the drawing line SL5. It has a detectable streak pattern Fxe5.
  • the streak pattern Fx4 detected in the imaging region DIS'(center point CC4) as the detection region AD4 of the alignment system ALG4 is arranged near the end of scanning within the scanning range of the drawing line SL6, and is arranged in the drawing unit U6. It has a streak pattern Fxe6 that can be detected even by a reflected light monitor system (photoelectric sensor DTR).
  • the reference pattern FMa is a linear pattern Fxs1 arranged at a position corresponding to the vicinity of the scanning start in the scanning range of the drawing line SL1, and a linear pattern arranged at a position corresponding to the vicinity of the midpoint CE1 of the drawing line SL1.
  • Fxc1 the linear pattern Fxs2 arranged at the position corresponding to the vicinity of the scanning start in the scanning range of the drawing line SL2
  • the linear pattern Fxx2 arranged at the position corresponding to the vicinity of the midpoint CE2 of the drawing line SL2
  • the drawing line SL3 is a linear pattern Fxs1 arranged at a position corresponding to the vicinity of the scanning start in the scanning range of the drawing line SL1
  • Fxc1 the linear pattern Fxs2 arranged at the position corresponding to the vicinity of the scanning start in the scanning range of the drawing line SL2
  • the linear pattern Fxx2 arranged at the position corresponding to the vicinity of the midpoint CE2 of the drawing line SL2
  • the linear pattern Fxc3 arranged at a position corresponding to the vicinity of the midpoint CE3 of the drawing line SL3, and the drawing line SL4.
  • the linear pattern Fxc4 arranged at the position corresponding to the vicinity of the midpoint CE4 of the drawing line SL4, and the drawing line SL5.
  • the interval YJ34, the interval YJ45 between the linear pattern Fxc4 and the linear pattern Fxc5 in the Y direction, and the interval YJ56 between the linear pattern Fxc5 and the linear pattern Fxc6 in the Y direction are the midpoints of the drawing lines SL1 to SL6.
  • the interval is set to be slightly due to the mounting error of the drawing units U1 to U6 at the time of assembling the device, the mounting error of the optical member in each drawing unit Un, the change in the environmental temperature, etc. With the error of.
  • the reference pattern FMa (other reference patterns FMb, FMc ... May be used) on the rotating drum DR is determined to cross each of the drawing lines SL1 to SL6 in the circumferential direction. While rotating the rotating drum DR at a speed, drawing is performed based on the measurement information ESa2 (ESb2) regarding the moving position of the outer peripheral surface DRs of the rotating drum DR measured by the counter circuit unit 200B corresponding to the encoder head EHa2 (EHb2).
  • the reflected light monitor system (photoelectric sensor DTR) of each of the units U1 to U6 is used to acquire the light / dark image data of the corresponding portion of the reference pattern FMa.
  • the odd-numbered drawing units U1, U3, and U5 are respectively.
  • the sampling of the light / dark image data by the reflected light monitor system is started, and the sampling is finished when the measurement information ESa2 (ESb2) reaches the circumferential position CX2.
  • the sampling of light and dark image data by the reflected light monitor system is disclosed in, for example, International Publication No. 2015/152217 and International Publication No. 2018/066285.
  • the circumferential positions CX1 and CX2 represent the moving positions of the reference pattern FMa measured by the counter circuit unit 200B with a resolution of, for example, 0.1 ⁇ m, and the drawing lines SL1 and SL3 having odd-numbered reference patterns FMa. It is set in a range that can sufficiently cross SL5. Further, the peripheral positions CX1 and CX2 are the movement amounts (below the unit movement amount ⁇ Lxa) after the digital counter in the counter circuit unit 200B is zero-reset by the origin pattern ZZo in the encoder system using the encoder head EHa2 or EHb2. It is also the circumference measured by).
  • CX1 and CX2 in the circumferential direction are set in a range of several mm or less.
  • the circumferential direction is the range of the circumferential positions CX3 to CX4 such that the reference pattern FMa sufficiently crosses the even-numbered drawing lines SL2, SL4, and SL6.
  • the light and dark image data is sampled by the reflected light monitor systems of the even-numbered drawing units U2, U4, and U6.
  • the digital counter in the counter circuit unit (referred to as 200C) similar to the counter circuit unit 200B is used. It is specified by the movement amount (circumferential length measured under the unit movement amount ⁇ Lxa) after being zero-reset by the origin pattern ZZo.
  • the range of acquisition of bright and dark image data by the reflected light monitor system is the length (for example, 52 mm) x distance (several mm determined by CX2-CX1 or CX4-CX3) of each of the drawing lines SL1 to SL6 in the Y direction. It is desirable that it is the entire defined two-dimensional area. However, since the amount of data (image storage memory capacity) becomes enormous, it may be limited to a partial area in the Y direction of each of the drawing lines SL1 to SL6 (for example, several mm in the Y direction).
  • a region of several mm including the streak pattern Fxs1 arranged near the start position of the main scan by the spot light and the streak pattern Fxe1 arranged near the end position of the main scan by the spot light Bright and dark image data may be acquired only for each of the region of several mm including the region and the region of several mm including the linear pattern Fxc1 arranged near the intermediate position of the main scan by the spot light.
  • FIG. 17 shows, as an example, how the spot light SP that generates the drawing line SL1 relatively two-dimensionally scans the region including the linear pattern Fxc1 in the reference pattern FMa on the outer peripheral surface DRs of the rotating drum DR. ..
  • the oscillation frequency FPL of the beam LB from the light source device LS shown in FIG. 1 is 400 MHz (period 2.5 nS), and the effective diameter of the spot light SP by one pulse.
  • ⁇ p for example, a diameter that becomes 1 / e 2 of the peak intensity in an approximate Gaussian distribution
  • the spot light SP pulsed every 2.5 nS is in the main scanning direction (Y direction).
  • the rotation speed of the polygon mirror PM is set so as to move by the unit scanning movement amount ⁇ Ysp (1.25 ⁇ m, which is 1/2 of the diameter ⁇ p). Further, the main scanning of the spot light SP along the drawing line SL1 is performed every time the outer peripheral surface of the rotating drum DR moves in the sub-scanning direction (circumferential direction) by a unit feed amount ⁇ Xsp, and the unit feed amount ⁇ Xsp is determined by the unit feed amount ⁇ Xsp.
  • the rotation speed of the rotating drum DR is set so as to be 1.25 ⁇ m, which is 1/2 of the effective diameter ⁇ p of the spot light SP.
  • the sequence of spot light SPs that emit pulses at the same position in the main scanning direction with respect to the sub-scanning direction is defined as the sub-scanning line SL1'.
  • the image processing unit 204A shown in FIG. 11 determines the four edge positions Yac1 to Yac4 by comparing the level of the signal waveform Wfy with an appropriate threshold value Vsz.
  • the position of the spot light SP along the drawing line SL1 is one of the origin signals output from the origin sensor in the drawing unit U1 each time each reflecting surface of the polygon mirror PM becomes an angular position immediately before the start of drawing.
  • the time point at which the pulse is generated is set as the origin position (zero point position), and is specified by the count value of the clock pulse of the clock signal LTC (the address value of the waveform memory that stores the signal waveform Wfy).
  • the signal waveform Wfx is preferably the sum of the signal waveforms Wfx obtained at each of the plurality of sub-scanning lines SL1'between positions Yac2 and Yac3 in the main scanning direction.
  • the image processing unit 204A determines two edge positions Xac1 and Xac2 in the sub-scanning direction of the linear pattern Fyo by comparing the level of the signal waveform Wfx with an appropriate threshold value Vsz, and further determines the average of the positions Xac1 and Xac2.
  • the positions Xac1, Xac2, and PQa1x are specified by the measurement information ESa2 and ESb2 (for example, resolution 0.1 ⁇ m) measured by the counter circuit unit 200B (FIG. 11) of the encoder system.
  • the coordinate positions (PQa1x, PQa1y) of the center point (intersection) PQa1 (corresponding to the center point Cfm in FIG. 15) of the portion where the straight line pattern Fyo and the streak pattern Fxc1 intersect are determined.
  • the ADC unit 202A and the image processing unit 204A determine the coordinate position of the intersection PQs1 between the linear pattern Fxs1 and the linear pattern Fyo located on the left end side (scanning start side) on the drawing line SL1 shown in FIG.
  • the coordinate position of the intersection point PQe1 between the linear pattern Fxe1 located on the right end side (scanning end side) on the drawing line SL1 and the straight line pattern Fyo is determined.
  • the linear patterns Fxc2 to Fxx6 are obtained by the main scanning of the spot light SP and the rotation (sub-scanning) of the rotating drum DR along each of the drawing lines SL2 to SL6.
  • the coordinate positions of the intersections PQa2 to PQa6 of each of the above and the linear pattern Fyo1 are determined.
  • the coordinate positions of the intersection points PQe2 to PQe6 of each of the linear patterns Fxe2 to Fxe6 located on the side and the linear pattern Fyo are determined.
  • the arrangement states (for example, intervals YJ12, YJ23, YJ34, YJ45, YJ56, etc.) of the linear patterns Fyo, the linear patterns Fxx1 to Fxc6, Fxs1 to Fxs6, and Fxe1 to Fxe6 on the rotating drum DR are shown in FIG. Since it is known as described above, a two-dimensional position error of each of the midpoints CE1 to CE6 of the drawing lines SL1 to SL6 can be obtained based on the measured coordinate positions of the intersections PQa1 to PQa6.
  • the reference at the time of pattern drawing is set as the drawing line SL1, and the placement error of the midpoints CE2 to CE6 of the other drawing lines SL1 to SL6 is set with respect to the midpoint CE1. It shall be asked whether it is.
  • the drawing line SL1 to be used as a reference may be any one of the other drawing lines SL2 to SL6.
  • FIG. 18 shows a state in which the relative arrangement error with the adjacent drawing line SL2 is determined using the drawing line SL1 in which the spot light SP is scanned between the scanning start position Yss1 and the scanning end position Yse1 as a reference at the time of drawing. It is a figure explaining. For each of the other drawing lines SL3 to SL6, there are cases where the relative arrangement error is determined with reference to the drawing line SL1, the relative arrangement error of the drawing line SL3 with respect to the drawing line SL2, and the drawing line SL3.
  • the relative position error amount (vector amount) of each of the drawing lines SL1 to SL6 can be specified.
  • the design distance between the drawing line SL1 (midpoint CE1) and the drawing line SL2 (midpoint CE2) in the sub-scanning direction (circumferential direction) is set to the specified distance ⁇ LM, and the intersection PQa1 of the midpoint CE1 of the drawing line SL1 is set.
  • the position PQa1x (FIG. 17) in the sub-scanning direction (circumferential direction) is the position CXs measured by the encoder system, and the point measured by the encoder system is the position CXe that advances in the sub-scanning direction by a specified distance ⁇ LM from the position CXs. And.
  • FIG. 18 shows a state in which the linear pattern Fyo of the reference pattern FMa is positioned at the position CXe in the sub-scanning direction, and the drawing line SL2 (midpoint CE2) is precise on the linear pattern Fyo due to the relative positional error. It has a position error of ⁇ xx2 on the negative side in the sub-scanning direction with respect to the linear pattern Fyo (position CXe) without overlapping with.
  • the design distance between the midpoint CE1 of the drawing line SL1 and the midpoint CE2 of the drawing line SL2 in the main scanning direction (Y direction) is the same as the linear pattern Fxc1 of the reference pattern FMa if there is no relative positional error.
  • the distance between the line pattern Fxc2 and the Y direction coincides with YJ12, and the midpoint CE2 of the drawing line SL2 overlaps the line pattern Fxc2 in the Y direction with reference to the drawing line SL1 (midpoint CE1).
  • a positional error ⁇ yy2 relative to the Y direction may occur between the midpoint CE2 of the drawing line SL2 and the streak pattern Fxc2.
  • the position error ⁇ yy2 measures the Y-direction positions of the linear patterns Fxx2, Fxs2, and Fxe2 starting from the scanning start position Yss2 between the scanning start position Yss2 and the scanning end position Yse2 of the drawing line SL2. Is required by.
  • the relative two-dimensional position error ( ⁇ xx2, ⁇ yy2) of the midpoint CE2 of the drawing line SL2 with reference to the midpoint CE1 of the drawing line SL1 is determined. Therefore, the position error of the midpoint CE2 of the drawing line SL2 is set to ⁇ FS2 ( ⁇ xx2, ⁇ yy2), and the position error of each of the midpoints CE3 to 6 of the drawing lines SL3 to 6 based on the midpoint CE1 of the drawing line SL1.
  • ⁇ FS3 ⁇ xx3, ⁇ yy3
  • ⁇ FS4 ⁇ xx4, ⁇ yy4
  • ⁇ FS5 ⁇ xx5, ⁇ yy5
  • ⁇ FS6 ⁇ xx6, ⁇ yy6
  • Each of these position errors ⁇ FS2 to ⁇ FS6 can be set to a dozen ⁇ m or less by adjustment at the time of assembling the apparatus.
  • the timing of pattern drawing by each of the drawing units U2 to U6 and the position of the drawing lines SL1 to SL6 in the sub-scanning direction are finely adjusted based on their position errors ⁇ FS2 to ⁇ FS6.
  • the splicing error between the patterns drawn by each of the drawing lines SL1 to SL6 is less than a fraction of the minimum drawable line width, for example, when the minimum line width is 5 ⁇ m, the splicing error amount is 1 ⁇ m. It can be less than ( ⁇ 0.5 ⁇ m at 3 ⁇ ).
  • the drawing lines SL1 and SL2 are not tilted with respect to the Y axis (tilt error is zero), but the presence / absence of tilt and the amount of tilt error are determined by the drawing line SL1. Is obtained by measuring the positional error in the sub-scanning direction (circumferential direction) between the intersection position of the linear pattern Fyo and the linear pattern Fxs1 and the intersection position of the linear pattern Fyo and the linear pattern Fxe1. For the other drawing lines SL2 to SL6, the presence / absence and amount of tilt error can be determined by the same measurement.
  • the inclination error of each drawing line SL1 to SL6 is a rotation in which each of the drawing units U1 to U6 shown in FIG. 3 is slightly rotated around the line segments LE1 to LE6 in FIG. 3 passing through each of the midpoints CE1 to CE6. It is corrected by the drive mechanism.
  • each of the drawing lines SL2 to SL6 is set to be parallel to the Y-axis within an allowable error range.
  • FIG. 19 is a diagram schematically exaggerating the calibration information (arrangement error, etc.) determined or set by the above step 304.
  • FIG. 19 shows the installation errors ⁇ C1 to ⁇ C4 (vector) of the center points CC1 to CC4 of each imaging region DIS'of the alignment systems ALG1 to ALG4 determined with reference to the reference marks RM1 to RM4 of the reference bar member RB. It is shown. Further, in FIG. 19, when the drawing line SL1 (the drawing line in which drawing is first performed with respect to the transport direction of the substrate P) among the six drawing lines SL1 to SL6 is used as a reference, the alignment system ALGn described with reference to FIG.
  • the interval is called the reference length (baseline length) ⁇ BSL.
  • the reference length ⁇ BSL is determined by changes in the device environment (temperature and atmospheric pressure), thermal deformation of mechanical parts due to the influence of heat sources (actuators that drive the rotating motor of polygon mirror PM, optical members, etc.) in the drawing units U1 to U6, etc. May fluctuate on the order of microns.
  • the coordinate positions (or placement errors) of the center points CC1 to CC4 of the alignment systems ALG1 to ALG4 on the outer peripheral surface of the rotating drum DR are determined by the reference pattern Fxa (or the arrangement error) on the rotating drum DR. It is obtained based on the intersection of each of the linear patterns Fxe1, Fxe3, Fxe4, and Fxe6 of Fxb to Fxh) and the linear pattern Fyo. Further, the coordinate positions of the midpoints CE1 to CE6 of the drawing lines SL1 to SL6 on the outer peripheral surface of the rotating drum DR are based on the midpoint CE1 of the drawing line SL1 as described in FIG.
  • the center points CC1 to CC4 of each of the alignment systems ALG1 to ALG4 and the midpoints CE1 to CE6 of each of the drawing lines SL1 to SL6 Relative positional relationships are identified. Further, the two-dimensional relative positional relationship between the reference pattern Fxa (or Fxb to Fxh) on the rotating drum DR and the reference marks RM1 to RM4 on the reference bar member RB is also an image with each of the alignment systems ALG1 to ALG4. It is obtained with high accuracy based on the image analysis result by the analysis unit 206 and the like.
  • the reference length ⁇ BSL is the average position in the sub-scanning direction of the odd-numbered drawing lines SL1 (midpoint CE1), SL3 (midpoint CE3), and SL5 (midpoint CE5), and the even-numbered drawing lines. It may be the distance between the intermediate position CXs'and the position CXA with the average position in the sub-scanning direction of the drawing lines SL2 (midpoint CE2), SL4 (midpoint CE4), and SL6 (midpoint CE6).
  • step 306 the paper passing operation of the substrate P is performed.
  • a long substrate P (with a photosensitive layer formed on the surface) wound on a supply roll mounted on a roll-to-roll processing device is passed along a transport path in the processing device.
  • the tip of the substrate P is wound around the recovery roll, and the substrate P is set up so that it can be conveyed with a predetermined tension without meandering.
  • step 308 of the operation sequence shown in FIG. 12 it is determined whether the passed substrate P is for the first (1st) exposure or the second (2nd) exposure, and in the case of the substrate P for the 1st exposure.
  • the process proceeds to step 310, and in the case of the substrate P for 2nd exposure, the process proceeds to step 316.
  • the 1st exposure is the first exposure on the photosensitive layer of the substrate P on which no pattern is formed in the exposed region DPA as shown in FIG. 13 and no alignment marks MK1 to MK4 are formed. It means exposing the pattern for the layer.
  • a new pattern to be superimposed on the background pattern is exposed on the photosensitive layer of the substrate P on which some background pattern is formed in the exposed area DPA and the alignment marks MK1 to MK4 are formed. Means to do.
  • the pattern drawn on the substrate P by each of the drawing lines SL1 to SL6 based on various calibration information stored in the measurement control unit 210 is the reference mark RM1 on the reference bar member RB. It can be set up so that it is arranged with reference to ⁇ RM4. Note that [210] added next to step 310 in FIG. 12 means to use various calibration information stored in the measurement control unit 210.
  • Step 312 When the setup for the 1st exposure is completed in step 310 of FIG. 12, the rotary drum DR is rotationally driven so that the substrate P moves in the sub-scanning direction at a set speed. Similar to steps 300 to 304, [EH] added next to step 312 in FIG. 12 uses the measurement position information by the encoder measurement system (here, mainly the encoder heads EHa2, EHa3, EHb2, EHb3). Means. Further, [LS] added next to step 312 is a beam whose intensity is modulated according to the drawing data corresponding to the pattern for 1st exposure from the light source device LS shown in FIG. 1, respectively, in the drawing units U1 to U6.
  • the encoder measurement system here, mainly the encoder heads EHa2, EHa3, EHb2, EHb3
  • Means Means.
  • [LS] added next to step 312 is a beam whose intensity is modulated according to the drawing data corresponding to the pattern for 1st exposure from the light source device
  • the photosensitive layer on the substrate P is sequentially exposed to the pattern for the first layer of the electronic device on each of the plurality of exposed region DPAs in the arrangement as shown in FIG. , Alignment marks MK1 to MK4 are exposed.
  • the two-dimensional positional relationship of the patterns drawn on each of the drawing lines SL1 to SL6 is based on the reference bar member RB (reference marks RM1 to RM4) as a result of the above calibration.
  • This also applies to each of the alignment marks MK1 to MK4 drawn on the substrate P by the 1st exposure, and the absolute position and relative positional relationship of each of the alignment marks MK1 to MK4 on the substrate P are used as a reference. It precisely follows the arrangement of the reference marks RM1 to RM4 of the bar member RB.
  • Step 314 If an error or error occurs during the operation of the 1st exposure of the substrate P to the photosensitive layer, the main control unit (main computer) of the drawing device sequentially outputs log information that can identify the error or the occurrence status or state of the error. collect. After the exposure of the substrate P from the supply roll is completed, the main control unit analyzes the collected log information, and if it is determined that the initial calibration state needs to be readjusted, the substrate of the next supply roll is used. Before passing the paper, one of steps 300 and 302 of the calibration operation is executed again. Even if it is determined that readjustment is not necessary as a result of the analysis of the log information, it is preferable to perform the calibration operation in step 304 for the exposure of the substrate of the next supply roll. This is because even if the exposure of the next supply roll to the substrate is the 1st exposure, the type of electronic device manufactured on the substrate may change, or the exposure of the next supply roll to the substrate may be the 2nd exposure. ..
  • a process such as a wet treatment or a heat treatment
  • step 316 if necessary, it is possible to suppress deterioration of splicing exposure accuracy, superimposition accuracy, etc. by each of the drawing units U1 to U6 based on steady prediction values regarding expansion / contraction error and deformation error of the substrate P.
  • Information for correcting the drawing timing is also set up. However, correction of drawing timing during the actual drawing operation of the 2nd exposure, correction of each minute rotation of the drawing units U1 to U6, correction of each minute shift of the drawing lines SL1 to SL6 by the parallel flat plate HVP in FIG. 3, or drawing.
  • the correction of the magnification and the like are determined based on the position measurement results of the alignment marks MK1 to MK4 on the substrate P.
  • [EH] means to use the measurement position information by the encoder measurement system (encoder heads EHa1 to EHa3, EHb1 to EHb3).
  • the alignment system ALGn has a reference center point CCn in the imaging region DIS'. Therefore, normally, as shown in FIG. 9C, the alignment measurement is completed by measuring the two-dimensional displacement amount between the enlarged image MKn'of the alignment mark MKn and the center point CCn.
  • the alignment mark MKn when the alignment mark MKn appears in each imaging region DIS'of the alignment system ALGn, it is set at a substantially fixed position in the imaging region DIS'.
  • the two-dimensional misalignment error of the center point of the magnified image MKn' is measured. As shown in FIG.
  • four alignment marks MK1 to MK4 are formed on each of the margins of the front end portion and the rear end portion of the exposed region DPA on the substrate P in the transport direction by the patterning of the 1st exposure.
  • a position corresponding to the arrangement of each imaging region DIS'in each of the detection regions AD1 to AD4 (see FIG. 7) of the four alignment systems ALG1 to ALG4, that is, the reference bar. It is formed at a position corresponding to each arrangement of the reference marks RM1 to RM4 of the member RB.
  • the relative positional deviation between the four reference marks RM1 to RM4 and the four alignment marks MK1 to MK4 imaged at the same timing is obtained, and the relative positional deviation is obtained.
  • the positional deviations of the alignment marks MK1 and MK4 on both sides of the exposed area DPA are sequentially estimated, and the drawing lines SL1 to SL6 are adjusted accordingly.
  • the drawing position of each pattern is sequentially fine-tuned during the 2nd exposure in step 320.
  • the drawing timing is corrected by the spot light SP, the shift correction of the drawing line SLn is performed by the parallel flat plate HVP, the minute rotation correction of the drawing unit Un, and the drawing magnification correction are performed.
  • [EH] added next to step 320 in FIG. 12 means to use the measurement position information by the encoder measurement system (encoder heads EHa1 to EHa3, EHb1 to EHb3), and further added next to step 320.
  • [LS] supplies a beam whose intensity is modulated according to the drawing data corresponding to the pattern for 2nd exposure from the light source device LS shown in FIG. 1 to each of the drawing units U1 to U6 in a time-divided manner. Means that.
  • steps 318 and 320 of FIG. 12 represent the 2nd exposure to one exposed area DPA on the substrate P, and whether or not the 2nd exposure to a plurality of exposed area DPA to be exposed on the substrate P is completed is completed. , It is determined in the next step 322. When it is determined in step 322 that the 2nd exposure is continuously performed on the next exposed area DPA, steps 318 and 320 are repeatedly executed.
  • Step 324 When the 2nd exposure to all the exposed area DPA is completed, in step 324, various log information (error information, error information, etc.) during the exposure operation is collected, and a recovery roll or the like around which the 2nd exposed substrate P is wound. Is removed from the drawing device and the substrate P is transported to the next process.
  • the calibration operations of steps 302 and 304 above are executed again.
  • the operation from step 304 or step 306 is executed after step 324. You can also do it.
  • the calibration operation from step 300 may be executed.
  • a part of the alignment mark MKn on the substrate P is damaged due to the influence of a process or the like, or foreign matter (dust) having the same size as the line width dimension of the mark is attached in the vicinity.
  • the alignment system ALGn may not recognize the image well, and a detection error may occur.
  • the operation of the 2nd exposure transportation of the substrate P in the forward direction by the rotating drum DR
  • the retry operation is performed. You can also.
  • the substrate P is returned in the reverse direction by a certain distance, and then the alignment measurement and the 2nd exposure are performed again while transporting in the forward direction.
  • An example of such a retry operation is disclosed in, for example, International Publication No. 2018/030357.
  • the absolute positions of the drawing lines SL1 to SL6 by each of the drawing units U1 to U6 And the relative positional relationship is calibrated with reference to the reference marks RM1 to RM4 of the reference bar member RB that are precisely positioned with respect to the central axis AXo (and the outer peripheral surface DRs) of the rotating drum DR as a transport system. Therefore, it is possible to reduce that the shape (rectangle) of the entire exposed region DPA drawn on the sheet-shaped substrate P is deformed into a parallel quadrilateral shape, a saddle shape, or an arch shape.
  • the 2nd exposure sequence is not affected by the drift of the relative positional relationship of the detection regions AD1 to AD4 of the alignment systems ALG1 to ALG4. Even during exposure, each position of the alignment marks MK1 to MK4 on the substrate P can be detected with reference to the reference marks RM1 to RM4 of the reference bar member RB.
  • the 2nd exposure is continuously performed for a long time and the alignment system ALGn may drift due to temperature change, atmospheric pressure change, etc.
  • the first of the plurality of exposed region DPAs lined up on the substrate P From the exposed region DPA to the last exposed region DPA, the position detection accuracy of the substrate P and the superposition accuracy of the 2nd exposure can be maintained constant.
  • FIG. 20 shows a modified example of the arrangement of the alignment system ALGn of the drawing apparatus shown in FIG. 7, and shows the state when the alignment system ALGn is increased from 4 to 7, with the XY plane of the orthogonal coordinate system XYZ. It is a figure seen in a parallel plane.
  • members and structures having the same functions as those in FIG. 7 are designated by the same reference numerals.
  • each of the detection regions AD1 to AD7 of the seven alignment systems ALG1 to ALG7 are arranged at predetermined intervals in the Y direction.
  • the reference mark (reference index mark) RMn formed on the reference surface RBa of the reference bar member (reference index member) RB is also the distance between the design detection regions AD1 to AD7 in the Y direction.
  • the reference marks RM1 to RM7 are formed at each of the seven positions corresponding to.
  • the detection area AD1 located on the negative side of the seven detection areas AD1 to AD7 in the Y direction is within the maximum dimension WAY and is located near the end of scanning of the drawing line SL1
  • the detection area AD7 located on the positive side in the Y direction is within the maximum dimension WAY and is near the end of scanning of the drawing line SL6.
  • the detection area AD2 is arranged at the joint exposure portion formed by the scanning start point of the drawing line SL1 and the scanning start point of the drawing line SL2, and the detection area AD3 is arranged as the scanning end point of the drawing line SL2.
  • the detection area AD4 is arranged in the joint exposure portion formed by the scanning end point of the drawing line SL3 and the scanning start point of the drawing line SL3, and the detection area AD5 is arranged in the joint exposure portion formed by the scanning start point of the drawing line SL3 and the scanning start point of the drawing line SL4.
  • the detection area AD6 is arranged in the joint exposure portion formed by the scanning end point of the drawing line SL4 and the scanning end point of the drawing line SL5, and the detection area AD6 is located in the joint exposure portion formed by the scanning start point of the drawing line SL5 and the scanning start point of the drawing line SL6. Be placed.
  • the alignment marks MKn formed on the substrate P seven alignment marks MK1 to MK7 are arranged corresponding to the respective arrangements of the detection regions AD1 to AD7 in the width direction (Y direction) of the substrate P.
  • a large number of alignment marks MK1 and MK7 formed on both sides of the substrate P in the width direction are formed in a row at regular intervals (for example, 10 mm) along the long direction (sub-scanning direction) of the substrate P.
  • Seven alignment marks MK1 to MK7 arranged in a row in the Y direction can be formed in the margin between the exposed region DPA and the exposed region DPA on the substrate P in the long direction, and immediately before the 2nd exposure.
  • the alignment marks MK2 to MK6 are used for some of the alignment systems ALG2 to ALG6 during the alignment measurement in step 318 of FIG. It is also possible to omit (skip) the detection of.
  • FIG. 21 shows deformation of the arrangement relationship of the drawing lines SL1 to SL6 by the drawing units U1 to U6 shown in FIGS. 7, 16 and 20 on the substrate P (or the outer peripheral surfaces DRs of the rotating drum DR).
  • the drawing units U1 to U6 are arranged so that the joint portions of the patterns drawn on the substrate P by each of the drawing lines SL1 to SL6 overlap (overlap) by a certain dimension in the Y direction. ing. Since each of the drawing units U1 to U6 has the same configuration, the length (drawing length) ⁇ MLs at which the pattern can be drawn by each of the drawing lines SL1 to SL6 is the same.
  • each of the range of a constant length ⁇ OLs from the scanning start point of the spot light SP or a constant length ⁇ OLs from the scanning end point of the spot light SP is covered by the overlapping regions OL12, OL23, OL34, OL45, OL56 (OL45 and OL56 are not shown).
  • the overlap region OL12 is a range in which the length ⁇ OLs on the scanning start point side of the spot light SP along the drawing line SL1 and the length ⁇ OLs on the scanning start point side of the spotlight SP along the drawing line SL2 overlap. be.
  • the length ⁇ OLs on the scanning end point side of the spot light SP along the drawing line SL2 and the length ⁇ OLs on the scanning end point side of the spot light SP along the drawing line SL3 overlap.
  • the overlap region OL34 includes the length ⁇ OLs on the scanning start point side of the spot light SP along the drawing line SL3 and the length ⁇ OLs on the scanning start point side of the spot light SP along the drawing line SL4. Is the overlapping range.
  • the other overlap region OL45 includes the length ⁇ OLs on the scanning end point side of the spot light SP along the drawing line SL4 and the scanning end point of the spot light SP along the drawing line SL5.
  • the overlap region OL56 is a range in which the length ⁇ OLs on the side overlaps, and the overlap region OL56 is the scanning of the length ⁇ OLs on the scanning start point side of the spot light SP along the drawing line SL5 and the spot light SP along the drawing line SL6. This is the range where the length ⁇ OLs on the start point side overlaps.
  • the length ⁇ OLs of the overlap region can be about 0.5 to 2% of the drawing length ⁇ MLs of the drawing line. As an example, when the drawing length ⁇ MLs is 50.0 mm, the length ⁇ OLs is about 0.25 mm to 1.00 mm.
  • the patterns drawn in the overlap areas OL12, OL23, OL34, OL45, and OL56 are exposed so as to have the same shape and precisely overlap at the same position on the substrate P, so that the pattern is doubled when drawn as it is. It will be the amount of exposure. Therefore, the drawing data is modified so that the pattern included in each overlapping region has a checkered flag shape (checkerboard pattern), for example, as shown in FIG. 22.
  • FIG. 22 shows a state of the same pattern (pixel array on two-dimensional drawing data) that is overexposed in the overlap region OL12 between the scanning start point side of the drawing line SL1 and the scanning start point side of the drawing line SL2. show.
  • the dimensions of the pixel PIX on the 1-bit substrate P of the drawing data are set according to the effective diameter of the spot light SP scanned along the drawing lines SL1 and SL2.
  • the drawing data is defined by a set of the smallest square pixel PIX that can be drawn, and whether the spot light SP (pulse shape) is irradiated or not irradiated to the pixel PIX is determined by the 1-bit logical value ". It is represented by "0" or "1". As shown in FIG.
  • the pixel PIX is the pixel PIXa (white square) having a logical value “0” (non-irradiation) and the logical value “1”. It is decomposed into a checkered pattern by the pixels PIXb (diagonal squares) of (irradiation). Further, the pattern in the overlap area OL12 drawn by the drawing line SL1 and the pattern in the overlap area OL12 drawn by the drawing line SL2 are complementary to the pixels PIXa and the pixels PIXb arranged in a checkered pattern. It is set in a (complementary) relationship.
  • the drawing data of the pattern existing in the overlap region OL12 (OL23, OL34, OL45, OL56) is decomposed into a complementary relationship with the logical value for each pixel PIX, so that the overlap on the substrate P is performed.
  • the pattern exposed to the region is less likely to have a conspicuous stepped shape or a conspicuous thickening of the line width due to the influence of a slight splicing error.
  • FIG. 23 is a diagram showing an optical configuration of the alignment system ALGn according to the second embodiment, and the Cartesian coordinate system XYZ is set in the same manner as in FIG. 2 in the first embodiment. Further, in FIG. 23, the same members and configurations as those in the first embodiment are designated by the same reference numerals.
  • the reference bar member RB is not provided on the object surface side (board P side) of the objective lens system OBL.
  • An intermediate image plane was formed in the optical path of the alignment system ALGn, and the intermediate image plane was arranged at a position corresponding to the intermediate image plane.
  • the alignment system ALGn shown in FIG. 23 includes a plane mirror Mb arranged from the substrate P side, a first imaging optical system GLo, a cube-shaped first beam splitter BS1 (synthetic optical member), and a second imaging optical system Gd. It is composed of a second beam splitter BS2. Illumination light ILb (light in the non-photosensitive wavelength range) from the illumination system ILU (see FIGS. 6 and 9) (not shown) is reflected by the second beam splitter BS2 and travels coaxially with the optical axis AXs. 2 It is incident on the imaging optical system Gd and is divided into a component transmitted through the first beam splitter BS1 and a component reflected.
  • Illumination light ILb light in the non-photosensitive wavelength range
  • the illumination light ILb transmitted through the first beam splitter BS1 enters the first imaging optical system GLo through the intermediate image plane Pss, is reflected by the plane mirror Mb, and is reflected on the surface of the substrate P (or the outer periphery of the rotating drum DR).
  • the detection region ADn on the surface DRs) is illuminated with a uniform illuminance.
  • the reflected light from the alignment mark MKn appears in the detection region ADn
  • the reflected light from the alignment mark MKn appears.
  • the first imaging optical system GLo forms an image MKn'(or an image of the reference patterns FMa to FMh) of the alignment mark MKn on the intermediate image plane Pss.
  • the first imaging optical system GLo has a low magnification (for example, a magnification of 1 to 2 times or a reduction of 0.75 times) so that the working distance (working distance) on the substrate P side can be relatively large. Is set to.
  • the reflected light from the alignment marks MKn (or reference patterns FMa to FMh) imaged on the intermediate image plane Pss passes through the first beam splitter BS1 and is incident on the second imaging optical system Gd.
  • the reflected light from the alignment mark MKn (or reference patterns FMa to FMh) that has passed through the second imaging optical system Gd passes through the second beam splitter BS2 to become an imaging luminous flux Bma, and the imaging is omitted. It reaches the imaging surface of the element DIS.
  • the second imaging optical system Gd has a conjugate relationship (imaging relationship) between the intermediate image plane Pss and the image pickup surface of the image sensor DIS, and an enlarged image of the intermediate image formed on the intermediate image plane Pss is captured by the image sensor DIS. Reimage on the image pickup surface of.
  • the illumination light ILb reflected by the first beam splitter BS1 through the second imaging optical system Gd illuminates the reference mark RMn formed on the reference surface RBa of the reference bar member RB with a uniform illuminance distribution.
  • the reference surface RBa of the reference bar member RB is arranged so as to coincide with the surface Pss' optically corresponding to the intermediate image surface Pss with the first beam splitter BS1 interposed therebetween. Therefore, the reference surface RBa (plane Pss') has a conjugate relationship (imaging relationship) with the image pickup surface of the image pickup device DIS via the second imaging optical system Gd.
  • the reflected light from the reference mark RMn illuminated by the illumination light ILb reaches the imaging surface of the imaging element DIS as an imaging luminous flux Bma via the first beam splitter BS1 and the second imaging optical system Gd. Then, the enlarged image of the reference mark RMn and the enlarged image of the alignment mark MKn (or the reference patterns FMa to FMh) can be simultaneously imaged on the imaging surface. Also in the case of the alignment system ALGn in FIG. 23, as described in FIG.
  • the reference bar member RB crosses the space below the first beam splitter BS1 of each of the plurality of alignment system ALGn in the Y direction. It will be extended as. Further, as shown in FIG. 4 of the first embodiment, the reference bar member RB in the present embodiment does not have to be arranged near the outer peripheral surfaces DRs (board P) of the rotating drum DR. , The external dimensions of the reference bar member RB in the XZ plane can be increased to increase the rigidity, and the support mechanism portion for fixing the reference bar member RB (support frame portion 100 and support plate portion in FIG. 8). 102A, 102B, 103A, 103B, corresponding to the connecting bar members 104a, 104b, 104c) can be enlarged to increase the rigidity.
  • FIG. 24 is a diagram showing an optical configuration of the alignment system ALGn according to the third embodiment, and the orthogonal coordinate system XYZ is set in the same manner as in FIGS. 2 and 23 above. Further, in FIG. 24, the same members and configurations as those in the first embodiment and the second embodiment are designated by the same reference numerals.
  • an optical microscope having a working distance (working distance) of 10 cm or more is used as the alignment system ALGn.
  • Such a microscope is sold as a machine vision lens by Moritex Corporation, for example, and it can also be used.
  • the entire alignment system ALGn is fixed to the support bracket 400 made of metal or ceramics having a low coefficient of thermal expansion.
  • the support bracket 400 is formed in a plate shape parallel to the XZ plane, and is fixed to a structural portion (metrology frame) connected to the support frame portion 100 in FIG.
  • the alignment system ALGn includes a plane mirror Mb arranged to face the substrate P (the outer peripheral surface of the rotating drum DR), a holding hardware 401 for fixing the plane mirror Mb to the support bracket 400, and an objective lens system OBL of the alignment system ALGn.
  • a plate-type (parallel plate-like) beam made of a transmissive optical glass material such as quartz, which is arranged at an angle ⁇ e ( ⁇ e> 0) with respect to a plane perpendicular to the optical axis AXs in the optical path between the plane mirror Mb.
  • Splitter BS1 synthetic optical member
  • holding hardware 402 fixing the beam splitter BS1 to the support bracket 400 optical fiber bundle 404 that guides the illumination light ILb from the illumination system ILU so as to epiilluminate the detection region ADn of the alignment system ALGn.
  • the illumination light ILb from the tip end (ejection end) 404a of the optical fiber bundle 404 is reflected toward the objective lens system OBL, and is reflected by the substrate P or the like and incident through the objective lens system OBL. It is composed of a beam splitter BS2, a lens system Gb, and an image pickup element DIS.
  • the intensity of the illumination light ILb emitted from the objective lens system OBL depends on the angle ⁇ e and is the surface (optical splitting surface) of the plate-type beam splitter BS1. , Photosynthetic surface) Reflected by Bsp and heads toward the reference bar member RB.
  • the reference surface RBa of the reference bar member RB is optically set at a position corresponding to the surface of the substrate P, and the detection region ARn set on the reference surface RBa is illuminated with a uniform illuminance distribution by a part of the illumination light ILb. NS.
  • the reflected luminous flux Bmr generated at the reference mark RMn arranged in the detection region ARn reaches the beam splitter BS1 along the optical axis AXs', is reflected by the surface Bsp, and becomes the imaging luminous flux Bma, which becomes the objective lens system OBL.
  • the image pickup surface (imaging area DIS') of the image pickup device DIS has a conjugate relationship (imaging relationship) with the surface of the substrate P, and also has a conjugate relationship (imaging relationship) with the reference surface RBa of the reference bar member RB. Relationship) is set.
  • the plate-type beam splitter BS1 is a non-polarizing type, and a glass material other than quartz may be used.
  • both the detection region ADn set on the substrate P and the detection region ARn set on the reference bar member RB are simultaneously illuminated by the illumination light ILb. Illuminated by epi-illumination. Therefore, in the image pickup region DIS'of the image pickup element DIS, an image of the alignment mark MKn of the substrate P appearing in the detection region ADn, or an image of the reference patterns FMa to FMh on the rotating drum DR, and the image of the reference patterns FMa to FMh in the detection region ARn.
  • the image of the reference mark RMn is combined and imaged at the same time.
  • the video signal Vsg corresponding to each image of the alignment marks MKn or the reference patterns FMa to FMh and the reference mark RMn imaged by the image sensor DIS is sent to the image analysis unit 206 shown in FIG.
  • the ejection end 404a of the optical fiber bundle 404 is set to be located at a position corresponding to the pupil surface Epp of the microscope optical system by the objective lens system OBL and the lens system Gb, and has a substantially circular outer shape.
  • the emission end 404a formed becomes a secondary light source image in the pupil surface Epp, and telecentric epi-illumination (Koehler illumination) is performed.
  • a reference is used to select whether or not to simultaneously image the reference mark RMn of the reference bar member RB.
  • a liquid crystal shutter 410 on a flat surface is arranged immediately before the reference surface RBa of the bar member RB.
  • the liquid crystal shutter 410 is individually provided for each of the detection regions ARn (that is, each of the alignment system ALGn) set on the reference bar member RB, and is driven by the measurement control unit 210 shown in FIG.
  • the light transmittance is changed in response to the signals CCs.
  • Each of the liquid crystal shutters 410 is fixed to a plate-shaped support frame extending in parallel with the reference bar member RB so as to be at a constant distance from the reference surface RBa of the reference bar member RB.
  • the transmittance of the liquid crystal shutter 410 becomes almost 0% when the voltage of the drive signal CCs is 0V, the transmittance increases as the voltage increases, and the transmittance becomes 95% or more at the nominal maximum voltage. Has various characteristics. Further, the surface of the liquid crystal shutter 410 is coated with an antireflection film so as to have a low reflectance. Therefore, at the stage of calibrating the alignment system ALGn based on the video signal Vsg from the image sensor DIS (step 302 in FIG. 12), the transmittance of the liquid crystal shutter 410 is maximized and on the reference bar member RB. The image of the reference mark RMn of the above can be detected. Further, when detecting only the alignment mark MKn on the substrate P or only the reference patterns FMa to FMh on the rotating drum DR, the transmittance of the liquid crystal shutter 410 is set to the minimum (0%).
  • the contrast of the image of the reference mark RNn in the image pickup region DIS' is compared with the contrast.
  • the contrast of the image of the alignment mark MKn may be significantly reduced. In such a case, the contrast difference can be improved by adjusting the transmittance of the liquid crystal shutter 410.
  • the plate-type beam splitter BS1 is tilted by an angle ⁇ e with respect to the plane perpendicular to the optical axis AXs of the objective lens system OBL, and the illumination light ILb emitted from the objective lens system OBL is aligned. It was configured to face the reference bar member RB arranged in the space below the ALGn. However, when the reference bar member RB extends in the space above the alignment system ALGn, the inclination of the beam splitter BS1 with respect to the plane perpendicular to the optical axis AXs may be set in the opposite direction ( ⁇ e).
  • the thickness of the plate-type beam splitter BS1 should be as thin as possible within a range that reduces the occurrence of various optical aberrations (ass, etc.) and has rigidity that does not cause deformation or distortion that deteriorates surface accuracy. good.
  • the light splitting surface (photosynthetic surface) Bsp has an appropriate reflectance depending on the angle ⁇ e. Can be made.
  • the angle ⁇ e is determined by the angle 2 ⁇ e (arrangement of the reference bar member RB in the XZ plane) formed by the optical axis AXs and the optical axis AXs', but when the angle ⁇ e becomes, for example, 45 ° or more, the reference bar member Since the intensity of the illumination light ILb toward the RB increases and the intensity of the illumination light ILb toward the substrate P decreases extremely, the angle ⁇ e is in the range of 0 ° ⁇ e ⁇ 45 °, more preferably 5 °. It is preferable to set the range to ⁇ e ⁇ 30 °. Further, the thickness of the plate-type beam splitter BS1 may be 1 mm or less, for example 0.1 mm, and a structure capable of adjusting the angle ⁇ e may be provided.
  • FIG. 25 is an optical layout diagram showing a modification of the beam splitter BS1 (synthetic optical member) in the third embodiment shown in FIG. 24, and the optical axis AXs, the plane mirror Mb, and the like of the objective lens system OBL are shown. It is provided in the same manner as the arrangement in the XYZ coordinate system of FIG. 24.
  • the beam splitter BS1 is formed in a cube shape, and the prism block PSMa made of quartz located on the objective lens system OBL side and the prism block PSMb made of quartz located on the plane mirror Mb side are attached.
  • the overall shape of the cross section along the plane parallel to the XZ plane is formed to be trapezoidal (pentagonal).
  • the bonding surface Bsp of the prism block PSMa and the prism block PSMb functions as an optical dividing surface, and is configured to be tilted in the XZ plane by an angle ⁇ e with respect to the plane perpendicular to the optical axis AXs.
  • the illumination light ILb emitted from the objective lens system OBL is incident from the surface BS1a of the prism block PSMa, and the illumination light ILb transmitted through the bonded surface (divided surface) Bsp is emitted from the surface BS1b of the prism block PSMb to be a flat mirror. Reach Mb.
  • the surface BS1a of the prism block PSMa and the surface BS1b of the prism block PSMb are parallel to each other and set perpendicular to the optical axis AXs. Further, the illumination light ILb reflected by the dividing surface Bsp is emitted from the surface BS1c of the prism block PSMA along the optical axis AXs' that is set perpendicular to the reference surface RBa of the reference bar member RB.
  • the surface BS1c of the prism block PSMa is formed so as to be perpendicular to the optical axis AXs'.
  • the angle formed by the optical axis AXs and the optical axis AXs' is 2 ⁇ e because it is a double angle of the angle ⁇ e of the dividing surface Bsp. 2 ⁇ e). Also in this modification, a dielectric film is formed on the bonded surface (divided surface) Bsp so that the reflectance of the illumination light ILb on the bonded surface (divided surface) Bsp is about 10 to 30%. ..
  • the alignment mark MKn of the substrate P illuminated by the illumination light ILb or the reflected light (imaging light beam Bma) from the reference patterns FMa to FMh of the rotating drum DR is the light of the beam splitter BS1. Since it is incident on the objective lens system OBL through the planes BS1b and BS1a perpendicular to the axes AXs, it is possible to reduce the occurrence of various optical aberrations at the time of imaging of the alignment mark MKn and the reference patterns FMa to FMh.
  • the reflected light (imaging light beam Bmr) from the reference mark RMn of the reference bar member RB illuminated by the illumination light ILb is incident from the plane BS1c perpendicular to the optical axis AXs'of the beam splitter BS1 and is incident on the optical axis AXs. Since it is incident on the objective lens system OBL through the plane BS1a perpendicular to the image, the occurrence of various optical aberrations at the time of imaging of the reference mark RMn can be reduced.
  • FIG. 26 is a diagram showing the configuration of the reference bar member RB according to the fourth embodiment
  • FIG. 26A shows the configuration of the reference bar member RB on the reference surface RBa
  • FIG. 26B is the reference in FIG. 26A.
  • the CC-CC arrow cross section of the bar member RB is shown
  • FIG. 26C shows an example of the configuration of the reference mark RMn formed on the reference surface RBa.
  • the reference mark RMn on the reference bar member RB is self-luminous with adjustable illuminance. Therefore, as shown in FIG. 26B, an optical fiber bundle 450 for guiding the illumination light ILh for self-luminous light is connected inside a metal or ceramic square lumber serving as a base material RBo of the reference bar member RB.
  • NS optical fiber bundle 450 for guiding the illumination light ILh for self-luminous light
  • Reference marks RM1 to RM7 (center point CRn) are arranged therewith.
  • a thin quartz plate RBg is provided extending in the Y direction on the surface of the base material RBo of the reference bar member RB on the beam splitter BS1 side, and a low reflectance chromium layer (light-shielding layer) is provided on the surface of the quartz plate RBg. ) Is deposited to form a reference surface RBa.
  • the base material RBo on the back surface side of the quartz plate RBg is formed with an opening RBz having a columnar hole with a diameter so as to include each of the transmission windows WDn, and an optical fiber bundle 450 is injected into the opening RBz.
  • a lens member 452 is provided which injects the illumination light ILe projected from the end and uniformly illuminates the entire individual transmission window WDn from the back surface side (quartz plate RBg side). Further, the injection end side of the optical fiber bundle 450 and the lens member 452 are fixed in the opening RBz via a heat insulating resin member 454 formed in a circular tubular shape.
  • the lens member 452 is formed at the ejection end of the optical fiber bundle 450, and the transmission window WDn is illuminated from the back side by Koehler illumination using a circular set of a large number of point light sources as a secondary light source.
  • the optical axis AXi of the lens member 452 shown in FIG. 26B is coaxial with the optical axis AXs of the objective lens system OBL described in each of FIGS. 5, 23, and 24 above via the beam splitter BS1 within a tolerance. Is set to be.
  • the illumination light ILh from the optical fiber bundle 450 is irradiated into the transmission window WDn via the lens member 452 provided in the base material RBo of the reference bar member RB.
  • the enlarged image RNn'of the reference mark RNn observed by DIS appears as a black pattern on a bright background (white).
  • the illumination light ILh can be supplied from the light source unit in the illumination system ILU (see FIG. 6) that supplies the illumination light ILb for the alignment system ALGn, but another illumination system ILU'is provided to provide the illumination light.
  • the illuminance of ILh may be made variable.
  • the illuminance of the illumination light ILh is adjusted regardless of the illuminance of the illumination light ILb for the alignment system ALGn, or only when the alignment system ALGn is calibrated (step 302 in FIG. 12). Is irradiated with the illumination light ILh, and the illumination light ILh can be turned off during the period in which the alignment system ALGn sequentially detects the alignment mark MKn on the substrate P.
  • the wavelength characteristics of the illumination light ILb for the alignment system ALGn and the illumination light ILh for the reference mark RMn (transmission window WDn) of the reference bar member RB may be different.
  • the illumination light ILb for the alignment system ALGn is non-photosensitive to the photosensitive layer on the substrate P and has a broad wavelength band (for example, 450 nm or more) so as to be suitable for detecting the alignment mark MKn on the substrate P.
  • the illumination light ILh for the reference mark RMn (transmission window WDn) of the reference bar member RB is the light having 700 nm), and the image is obtained by reducing the chromatic aberration generated in the imaging optical system such as the objective lens system OBL of the alignment system ALGn. It is possible to make monochromatic light (non-photosensitive) that can enhance the contrast.
  • a transparent transparent window WDn is provided in the reference surface RBa formed by the light-shielding layer, and a reference mark RMn by the light-shielding layer is formed in the transparent window WDn.
  • the transparent reference mark RMn may be formed in the reference surface RBa by the light-shielding layer without providing the transparent window WDn.
  • the enlarged image RNn'of the reference mark RMn observed by the image sensor DIS of the alignment system ALGn appears as a bright pattern (white) on a dark background (black).
  • the alignment system ALGn detects the alignment mark MKn on the substrate P
  • the enlarged image RNn'of the reference mark RNn is high in the entire image of the surface of the substrate P appearing in the imaging region DIS'. It can be displayed in contrast.
  • the illuminance of the illumination light ILb for the alignment system ALGn can be adjusted separately from the illuminance of the illumination light ILh for the reference mark RMn of the reference bar member RB, so that the reflection of the surface (alignment mark MKn) of the substrate P can be adjusted.
  • the rate is low, the illuminance of the illumination light ILb for the alignment system ALGn is increased, and when the reflectance of the surface (alignment mark MKn) of the substrate P is high, the illuminance of the illumination light ILb for the alignment system ALGn is decreased independently. It will be possible.
  • the reference bar member RB of FIG. 26 can be used as it is in combination with any of the alignment system ALGn shown in each of FIGS. 23, 24, and 25 above.
  • FIG. 27 shows a schematic configuration of a pattern drawing device using a digital mirror device (DMD) as a maskless exposure device.
  • the Z axis of the Cartesian coordinate system XYZ is set in the direction of gravity and is perpendicular to the Z axis.
  • the XY plane is set to a horizontal plane.
  • the substrate P as an object to be exposed is mounted on a moving stage (not shown) that translates in one dimension (X direction) or two dimensions (X direction and Y direction) along a plane parallel to the XY plane. Placed.
  • the substrate P is a single-wafer flat glass substrate, a plastic substrate, or a metal substrate, but a resin sheet such as PET (polyethylene terephthalate) film, PEN (polyethylene naphthalate) film, or polyimide film is used. There may be.
  • the drawing unit U1 includes a support frame 550 made of metal having a low thermal expansion coefficient that supports the entire main member, an illumination optical system (lens barrel) 551 that injects an illumination beam LB1 (monochromatic light in the ultraviolet wavelength range) for exposure.
  • a reflection mirror 552 that reflects the illumination beam LB1 having a uniform illumination distribution by the illumination optical system 551, a DMD unit 553 that is irradiated by the illumination beam LB1 from the reflection mirror 552, and a large number of micro mirrors of the DMD unit 553.
  • a projection optical system (lens barrel) that projects a reduced image of a dynamic pattern into the projection area IA1 on the substrate P by injecting a drawing beam that is modulated by sequentially changing each angle according to the pattern data. It is composed of 554 and.
  • the illumination beam LB1 is incident on the illumination optical system (lens cylinder) 551 from a laser light source via an optical fiber bundle, and is made into a uniform illuminance distribution by a fly-eye lens, a condenser lens, etc. in the illumination optical system 551, and the DMD unit 553. Illuminate the Koehler.
  • the reflective surface of the DMD unit 553 is tilted by a predetermined angle for joint exposure with the projection region IA2 by the drawing units U2 adjacent to each other in the Y direction.
  • the projection optical system (lens barrel) 554 is a bilateral telecentric connection composed of a plurality of lens elements in a straight cylinder shape so that the entire reflection surface of the DMD unit 535 is reduced and imaged in the projection region IA1 on the substrate P. It is configured as an image optical system.
  • a plurality of odd-numbered alignment systems ALG1, ALG3 ... are arranged on the -X direction side of the odd-numbered drawing units U1, U3, U5 ..., And the even-numbered drawing units U2, U4, U6 ...
  • a plurality of even-numbered alignment systems ALG2, ALG4 ... are arranged.
  • the odd-numbered alignment systems ALG1, ALG3 ... Are provided so that the respective detection regions AD1, AD3 ... Are located in a row at predetermined intervals in the Y direction
  • the even-numbered alignment systems ALG2, ALG4 ... ... are provided so that the respective detection areas AD2, AD4 ... Are located in a row at predetermined intervals in the Y direction.
  • the odd-numbered alignment systems ALG1, ALG3 ... And the even-numbered alignment systems ALG2, ALG4 ... Are arranged symmetrically with respect to the central plane CPo when viewed in the XZ plane.
  • the alignment system ALG1 is composed of an illumination system ILU, an image pickup element DIS, an objective lens system OBL, and a rectangular parallelepiped beam splitter BS1 as in FIGS. 6 and 9, and the optical axis AXs of the objective lens system OBL is a substrate. It is set perpendicular to the surface of P (parallel to the Z axis).
  • the first reference bar member RB to be split is arranged.
  • the first reference bar member RB is elongated so as to penetrate in the Y direction near the odd-numbered alignment systems ALG1, ALG3, ALG5 ...,
  • the reference mark RMn of the first reference bar member RB is formed.
  • the reference plane RBa to be made is set parallel to the YZ plane. Therefore, the optical axis AXs'between the beam splitter BS1 and the reference bar member RB is set to be parallel to the XY plane and parallel to the X axis.
  • the beam splitter BS1 is arranged in the optical path between the objective lens system OBL and the substrate P, and the even-numbered drawing unit U2 is located on the side thereof.
  • a second reference bar member RB fixed to the support frame 550 via a mounting bracket is arranged.
  • the arrangement of the detection regions ADn (n 1, 2, 3 7) By each of rigid in the XY plane is shown.
  • each of the rectangular projection regions IAn is arranged so as to be inclined by an angle ⁇ dm with respect to a line parallel to the Y axis.
  • each of the ends of the projection region IAn on the Y direction side has overlapping regions (joint portions) OL12, OL23, OL34, OL45, OL56 ... Arranged to be formed.
  • the odd-numbered reference mark RM1 is placed on the first reference bar member RB corresponding to the arrangement of the detection regions AD1, AD3 ... Of the odd-numbered alignment systems ALG1, ALG3 ... In the Y direction.
  • RM3 ... Are formed, and corresponding to the arrangement of the detection regions AD2, AD4 ... Of the even-numbered alignment systems ALG2, ALG4 ... In the Y direction, on the second reference bar member RB.
  • the even-numbered reference marks RM2, RM4, ... are formed.
  • a pattern-forming region is formed by a rectangular region including the entire).
  • the relative positional relationship due to the drift of the plurality of alignment systems ALGn is exposed during the exposure operation with reference to the reference bar member RB. Even so, it is possible to monitor sequentially.
  • the substrate P when the pattern is exposed on the substrate P, the substrate P is moved by the moving stage at a constant speed, for example, in the + X direction.
  • the alignment mark MKn on the substrate P is mainly detected by the odd-numbered alignment systems ALG1, ALG3 ... (Detection regions AD1, AD3 ...), And the odd-numbered and even-numbered based on the detection result.
  • the position of the pattern image projected in each projection area IAn of the drawing unit Un and the projection timing are dynamically fine-tuned.
  • the moving stage may be moved in the ⁇ X direction at a constant speed.
  • the alignment mark MKn on the substrate P is mainly detected by the even-numbered alignment systems ALG2, ALG4 ... (Detection areas AD2, AD4 ).
  • the position and projection timing of the pattern image projected in each projection area IAn of the even-numbered drawing unit Un are dynamically fine-tuned.
  • the DMD unit 553 shown in FIGS. 27 and 28 finely moves each of a large number of micro mirrors in a direction perpendicular to the reflecting surface to make a difference in the height of the reflecting surface between the adjacent micro mirrors. It may be a spatial light modulation element (SLM) that gives (give a phase difference).
  • the pattern drawing apparatus having a plurality of alignment systems is not limited to the maskless exposure apparatus, and may be an inkjet printer apparatus.
  • a nozzle unit also called a drawing unit
  • a pattern forming mechanism having an ejection surface in which a large number of fine pores for ejecting fine droplets of ink are regularly arranged is formed by a substrate P and an ejection surface.
  • liquid is selectively liquid on the substrate P from each of a large number of minute holes in the nozzle unit (drawing unit) based on pattern data. Drops are ejected.
  • a pattern-forming region is formed by the region including the region.
  • FIG. 29 is a diagram illustrating a modified example relating to the configuration of the alignment system ALGn, and FIG. 29A shows a modified example based on the alignment system ALGn shown in FIG. 24 above.
  • the illumination light ILb for the alignment system ALGn has a wide band wavelength distribution
  • the beam splitter BS1 synthetic optical member arranged between the objective lens system OBL and the substrate P is placed on the surface of a dielectric multilayer film. Is formed to form a dichroic mirror having wavelength selectivity.
  • FIG. 1 synthetic optical member
  • 29B is a graph showing an example of the wavelength selection characteristics of the beam splitter BS1, where the horizontal axis represents the wavelength ⁇ (nm) and the vertical axis represents the magnitudes of transmittance and reflectance.
  • aberration correction is performed so that the imaging optical system from the objective lens system OBL of the alignment system ALGn to the image sensor DIS can obtain good imaging characteristics within the wavelength range of the chromatic aberration correction range shown in FIG. 29B. It is assumed that it has been done.
  • the illumination system ILU that supplies the illumination light ILb for the alignment system ALGn includes a light source HLS such as a halogen lamp having light emission intensity over a wavelength band of about 400 nm to 700 nm, and a wavelength distribution and wavelength of light from the light source HLS.
  • a wavelength selection unit WLC in which a plurality of wavelength filters are interchangeably housed and a light source system Gk are provided, and the light source system Gk is provided as in FIG. 24.
  • Illumination light ILb is applied to the incident end 404b of the optical fiber bundle 404.
  • the emission end 404a of the optical fiber bundle 404 is set at the pupil position of the objective lens system OBL of the alignment system ALGn, and the illumination light ILb is the alignment mark MKn on the substrate P or the reference via the beam splitter BS1 (dichroic mirror).
  • the reference mark RMn of the bar member RB is illuminated.
  • the beam splitter BS1 (dichroic mirror) of FIG. 29A has a transmittance characteristic and a reflectance characteristic crossover at around 500 nm in a wavelength region longer than 420 nm, which is a resist photosensitive region, as shown in FIG. 29B. It has wavelength selection characteristics such as. That is, the reflectance is 5% or more for light having a wavelength component shorter than about 550 nm, and the transmittance is 5% or more for light having a wavelength component longer than about 480 nm. It has such characteristics.
  • the wavelength selection unit WLC typically selects the wavelength so that the illumination light ILb has an intensity distribution over the wavelength band of the chromatic aberration correction region.
  • the illumination light ILb that illuminates the reference mark RMn of the reference bar member RB is set to the light of the component on the short wavelength side in the chromatic aberration correction range, and illuminates the alignment mark MKn on the substrate P.
  • the wavelength of the illumination light ILb is selected so as to be set to the light of the component on the long wavelength side within the chromatic aberration correction range. Therefore, even when it becomes necessary to continuously irradiate the reference bar member RB with the illumination light ILb, the light component on the long wavelength side, which tends to raise the temperature of the reference bar member RB, is reduced, so that the reference bar member RB has a reduced light component. Thermal deformation of the member RB itself can be suppressed.
  • the beam splitter BS1 (dichroic mirror) has a wavelength selection characteristic
  • the illuminance of the illumination light ILb that illuminates the alignment mark MKn on the substrate P and the reference bar member RB The illuminance of the illumination light ILb that illuminates the reference mark RMn of the above can be adjusted individually (independently).
  • two solid light sources (LEDs and the like) LD1 and LD2 having different emission wavelength ranges, lens systems GS1 and GS2, a mirror Mc, a beam splitter BS3 for beam synthesis, and the like.
  • Illumination system ILU including a condensing lens system Gk that condenses the illumination light ILb at the incident end of the optical fiber bundle 404 shown in FIG. 29, and a control unit LCU that can individually adjust the emission intensity of the solid-state light sources LD1 and LD2. Is provided.
  • the beam ILb1 from the solid-state light source LD1 converted into a parallel light flux by the lens system GS1 includes, for example, an emission spectrum having a single or multiple center wavelengths between wavelengths of 420 nm and 500 nm, and is converted into a parallel light flux by the lens system GS2.
  • the beam ILb2 from the solid-state light source LD2 to be converted is set to include, for example, an emission spectrum having a plurality of center wavelengths between wavelengths of 500 nm and 630 nm.
  • the beam ILb1 from the lens system GS1 reflected by the mirror Mc and the beam ILb2 from the lens system GS2 form an illumination light ILb coaxially combined by the beam splitter BS3 and enter the condenser lens system Gk to form an optical fiber bundle. It is incident on the beam splitter BS2 in FIG. 29 via 404.
  • the alignment mark MKn on the substrate P can be adjusted by the image sensor DIS.
  • the contrast and brightness of each magnified image can be adjusted to an appropriate balance in the captured image.
  • the emission intensity of the solid light source LD2 (beam ILb2) is increased and the solid light source LD1 (beam ILb1) is increased.
  • the gain (amplification rate) of the video signal Vsg from the image pickup element DIS the lightness and darkness of the observed image can be balanced.
  • the image sensor DIS when the image sensor DIS is capable of capturing a color image, the alignment marks MKn (or the reference patterns FMa to FMh on the rotating drum DR) on the substrate P and the reference marks RMn on the reference bar member RB are formed. Since it can be identified and detected by color, it is possible to reduce erroneous detection when the image of the alignment mark MKn and the image of the reference mark RMn appear close to each other in the imaging region DIS'.
  • the solid-state light sources LD1 and LD2 are set to high-intensity white light emitting LEDs, and in each optical path of the beams ILb1 and ILb2 in front of the beam splitter BS3 for synthesis.
  • a wavelength selection filter (bandpass filter) may be provided in the.
  • the beam splitter BS3 is used as a polarizing beam splitter, and the beam ILb1 is linearly polarized so as to transmit 90% or more of the polarization separation surface of the beam splitter BS3, and the beam ILb2
  • a wavelength plate for linearly polarized light that is reflected by 90% or more on the polarization splitting surface of the beam splitter BS3 may be provided after each of the lens systems GS1 and GS2.
  • the beam splitter BS1 synthetic optical member of the alignment system ALGn shown in FIGS. 9, 23, 24, and 25 above also has an optical splitting surface (composite optical member).
  • it can be a polarization beam splitter in which a dielectric multilayer film having polarization selectivity is formed on Bsp (photosynthesis surface).
  • the illumination light ILb that is reflected by the beam splitter BS1 and illuminates the reference mark RMn of the reference bar member RB is light in the near infrared wavelength range from an LED or the like, and the alignment mark MKn on the substrate P is set from the beam splitter BS1.
  • the illumination light ILb to be illuminated may be light in a wide wavelength range (so-called randomly polarized white light) avoiding the photosensitive wavelength range (for example, an ultraviolet wavelength range of 360 nm or less) of the light sensitive layer on the substrate P. ..
  • FIG. 31 shows a modification relating to the configuration of the beam splitter BS1 of the alignment system ALGn arranged between the objective lens system OBL and the substrate P (outer peripheral surface DRs of the rotating drum DR) and the arrangement direction of the reference bar member RB. It is a figure which shows.
  • the beam splitter BS1 (synthetic optical member) of this modification has a configuration in which two prism blocks PSMa and PSMb are bonded together and an optical splitting surface Bsp is formed at the contact interface thereof, as in the configuration of FIG. 25 above. ..
  • a part of the illumination light ILb that is incident on the prism block PSMA from the objective lens system OBL along the optical axis AXs and is reflected by the light dividing surface Bsp is a total reflection surface (mirror surface) of the surface BS1c of the prism block PSMa.
  • the surface BS1c is bent in the direction of the optical axis AXs passing through the objective lens system OBL.
  • the optical axis AXs'extending from the optical division surface Bsp is bent at the surface BS1c (total reflection surface) and set so as to be orthogonal to the optical axis AXs.
  • the Cartesian coordinate system XYZ in FIG. 31 is set to be the same as in FIGS. 23 and 24, and the optical axis AXs between the objective lens system OBL and the plane mirror Mb is tilted with respect to the XY plane.
  • the beam splitter BS1 is formed in a pentagonal shape as a whole when viewed in the XZ plane, and the plane BS1a on the prism block PSMa side facing the objective lens system OBL and the plane BS1b on the prism block PSMb side facing the plane mirror Mb are It is set parallel to each other and perpendicular to the optical axis AXs.
  • the optical division surface Bsp between the surface BS1a and the surface BS1b which is the junction surface of the prism blocks PSMa and PSMb, is tilted by an angle ⁇ e with respect to the surface perpendicular to the optical axis AXs, as in FIG. 25 above. Is set. Therefore, at the position of the optical division surface Bsp, the angle formed by the optical axis AXs and the optical axis AXs'is an angle 2 ⁇ e in the XZ surface.
  • the optical axis AXs'bent at the surface BS1c (mirror surface) of the prism block PSMa and extends in the + Z direction side intersects the optical axis AXs at a right angle, and then passes through the upper surface BS1d of the prism block PSMa and passes through the reference bar. It reaches the reference surface RBa (center point of the reference mark RMn) of the member RB.
  • the plane BS1d forms a right angle with each of the planes BS1a and BS1b, is set parallel to the optical axis AXs, and is further set parallel to the reference plane RBa of the reference bar member RB.
  • the inclination of the surface BS1c (mirror surface) in the XZ surface is set so that the angle formed by the optical axes AXs' folded back at the position of the surface BS1c (mirror surface) is an angle (90 ° -2 ⁇ e).
  • the angle ⁇ e can be theoretically set in the range of 0 ° ⁇ e ⁇ 45 °, but the thickness and numerical aperture of the illumination light ILb, the thickness of the imaging light beam, and the numerical aperture of the objective lens system OBL, respectively. It is set in the range of 5 ° ⁇ ⁇ e ⁇ 35 ° due to the limitation of the arrangement relationship of the members. This also applies to the arrangement of the beam splitter BS1 in FIGS. 24 and 25.
  • the angle ⁇ e of the optical splitting surface Bsp when the angle ⁇ e of the optical splitting surface Bsp is set to 22.5 °, the intersection of the optical axis AXs and the optical axis AXs' and the optical axis AXs in the optical splitting surface Bsp pass through.
  • the beam splitter BS1 has an orthogonal relationship between the optical axis AXs passing through the objective lens system OBL and the optical axis AXs' from the surface BS1c toward the reference bar member RB. Even if the whole is tilted in the XZ plane and attached to the support bracket 400 (see FIG. 24), the optical axis AXs from the plane BS1b of the beam splitter BS1 toward the plane mirror Mb and the reference bar from the plane BS1d of the beam splitter BS1.
  • optical axes AXs' toward the member RB are only slightly parallel-shifted in the lateral direction in the XZ plane, and the optical axes AXs and AXs' are not tilted. That is, the configuration is such that the occurrence of telesen error is suppressed.
  • a dielectric multilayer film for wavelength selection or polarization separation may be formed on the optical division surface Bsp which is the junction surface between the prism block PSMa and the prism block PSMb.
  • the reference bar member RB uses a base material (RBo) as a material having a low coefficient of thermal expansion (Invar alloy made of Fe-36Ni, Kovar alloy made of Fe29Ni-17Co, HfW).
  • RBo base material
  • Invar alloy made of Fe-36Ni, Kovar alloy made of Fe29Ni-17Co, HfW a material having a low coefficient of thermal expansion
  • 2 O 8 (or ZrW 2 O 8 ) and Mg WO 4 mixed sintering material, quartz, kovarite ceramics, glass ceramics, etc.) the dimensional change in the longitudinal direction due to the temperature change of the environment and heat conduction Can be ignored.
  • the reference bar member RB extends in a rod shape along the arrangement direction (Y direction) of the plurality of alignment systems ALGn.
  • the dimension of the reference bar member RB in the longitudinal direction (Y direction) and the dimension of the cross-sectional shape it can be ignored as compared with the position detection accuracy of the alignment mark MKn by the alignment system ALGn due to its own weight. It may be deformed to the extent that it does not (cause bending or bending).
  • the deformation state and the amount of deflection of the reference bar member RB due to its own weight can be uniquely identified by the strength of materials calculation based on the support structure in the longitudinal direction of the reference bar member RB and physical conditions. ..
  • FIG. 32 shows the difference in the deformed state depending on the support structure of the reference bar member RB
  • FIG. 32A shows the structure in which the vicinity of both ends of the reference bar member RB in the longitudinal direction is supported from below by the beam FJ1 which makes line contact with each other.
  • 32C shows a structure in which the vicinity of one end of the reference bar member RB in the longitudinal direction is supported from below by a beam FJ1 that makes line contact, and the other end is fastened (fixed) to the device frame FJ2.
  • FIG. 32C shows the reference.
  • a structure is shown in which both ends of the bar member RB in the longitudinal direction are fastened (fixed) to the device frame FJ2.
  • the bending states SV1, SV2, and SV3 change depending on the respective support structures.
  • the amount of deformation due to the bending states SV1, SV2, and SV3 can be easily calculated by strength of materials calculation, and the error in the relative positional relationship of the reference mark RMn formed on the reference surface RBa of the reference bar member RB is precise in advance. Desired.
  • the error in the relative positional relationship is the center point CCn (center point of the imaging region DIS') of the detection region ADn by each of the plurality of alignment systems ALGn at the time of the alignment system calibration in step 302 described in FIG. It is introduced as a correction value when determining the relative positional relationship of. As a result, each of the plurality of alignment systems ALGn is calibrated with high accuracy even if the reference bar member RB is bent.
  • the support structure of the reference bar member RB in addition to the configuration shown in FIG. 32, only the vicinity of the center of the reference bar member RB in the longitudinal direction is fastened to a part of the device frame FJ2 by screwing, and both ends are in the longitudinal direction. It may be a structure that supports its own weight so as not to be restrained by. Even in that case, the bending state of the reference bar member RB can be specified by the strength of materials calculation.
  • the cross-sectional shape parallel to the XZ plane of the reference bar member RB is a rectangle (rectangle), but the cross-sectional shape is a polygon such as a triangle or a pentagon, or a circle (surrounding). A part can be cut into a flat surface) or an L-shaped angle can be formed. Further, in order to reduce the weight of the reference bar member RB, a hollow structure or a lightening structure may be used as long as the required rigidity can be obtained. Further, as described with reference to FIG. 8, when the reference bar member RB is held by the support members 103A and 103B (103B is not shown) on both ends in the Y direction, the reference bar member RB is an L-shaped angle member. It may be attached to.
  • FIG. 33 shows a modified example of the support structure of the reference bar member RB by the support members 103A and 103B described in FIG. 8 in the range from the vicinity of the center of the reference bar member RB to the support member 103B on the + Y direction side. It is a perspective view, and the Cartesian coordinate system XYZ is set in the same manner as in FIG. Further, the configuration of the reference bar member RB itself is the same as that of FIG. 10 or 26 above, and here, seven reference marks RM1 to RM7 corresponding to each of the seven alignment systems ALG1 to ALG7 are on the reference surface RBa. Is formed in.
  • the support members 103A and 103B are formed of a metal material having a low coefficient of thermal expansion, and the angle members 108 having an L-shaped cross section are bridged to the support members 103A and 103B so as to be parallel to the Y axis. It is fixed.
  • the reference bar member RB having a rectangular cross-sectional shape is locked on the angle member 108 by a fixing portion 109 provided near the center. Both ends of the reference bar member RB in the Y direction are locked so as not to generate a binding force in the Y direction.
  • the coefficient of thermal expansion is extremely small as the base material of the reference bar member RB, but the amount of deflection due to its own weight. It is possible to use a material that has a large coefficient or has a low rigidity and is easy to shear. With the support structure as shown in FIG. 33, even with such a material, even if the cross-sectional area in the XZ plane is small, the reference bar having a dimension of several tens of centimeters or more (for example, 30 cm or more) in the Y direction. It can be a member RB.
  • the angle member 108 may have a cross-sectional shape other than the L-shape on a plane parallel to the XZ plane, and may be a simple rectangle (rectangle, trapezoid, parallelogram, etc.), a triangle, or a semicircle. Further, a precise temperature sensor (for example, a measurement resolution of 0.2 ° C. or less) may be provided at each of a plurality of locations in the longitudinal direction of the angle member 108 to monitor changes in the temperature distribution of the reference bar member RB.
  • a precise temperature sensor for example, a measurement resolution of 0.2 ° C. or less
  • ALG7 is provided, when the expansion and contraction of the substrate P itself and the distortion deformation in the plane are extremely small, or when the short length LPy is small, the number of drawing units Un for maskless exposure and inkjet printing is also 1 to 1.
  • the alignment marks MKn on the substrate P may be formed only on both ends of the substrate P in the Y direction.
  • the reference mark (reference index mark) RMn on the reference bar member RB is also the detection region ADn (ARn) of the two alignment system ALGn. It may be formed at two positions in the Y direction corresponding to each of the above.
  • the rectangular detection region ARn set to include the reference mark (reference index mark) RMn is aligned except in the case of the self-luminous method described with reference to FIG. 26 above. It is illuminated by a part of the illumination light ILb from the objective lens system OBL of the system ALGn, and the reflected light from the detection region ARn is captured by the image sensor DIS via the objective lens system OBL. Therefore, it is necessary to give a large difference between the reflectance of the reference mark RMn itself in the detection region ARn and the reflectance of the background portion (reference surface RBa itself) around the reference mark RNn to enhance the contrast of the image at the time of imaging. desirable.
  • the reflectance of the reference surface RBa itself When the reflectance of the reference surface RBa itself is high (for example, when it is 40% or more) due to the base material of the reference bar member RB, the reflectance of the reference mark RMn itself becomes a sufficiently low value (for example, 5% or less). On the contrary, when the reflectance of the reference surface RBa itself is low (for example, when it is 20% or less), the reflectance of the reference mark RMn itself becomes a sufficiently high value (for example, 60% or less). Is formed to be.
  • the illumination light ILb projected from each objective lens system OBL of the alignment system ALGn is randomly polarized, and the cube-type or plate-type beam splitter BS1 is unpolarized, thereby irradiating the substrate P with illumination light.
  • ILb can also be randomly polarized.
  • the cube-type or plate-type beam splitter BS1 is made into a polarized light type, and the illumination light ILb of linearly polarized light (P-polarized light) toward the substrate P and the illumination light ILb of linearly polarized light (S-polarized light) toward the reference bar member RB by polarization division are used.
  • a rotatable wavelength plate so that the intensity ratio of the P-polarized light component and the S-polarized light component of the illumination light ILb incident on the objective lens system OBL from the illumination system ILU or the ellipticity of circularly polarized light can be changed. Etc. may be provided to adjust the intensity of the illumination light.
  • an image detection method is used to obtain an image of the alignment mark MKn on the substrate P and the reference mark RMn on the reference bar member RB by using the image sensor DIS.
  • the detection method may be used.
  • the alignment mark MKn on the substrate P is made into a diffraction grating mark, and two parallel beams intersecting on the diffraction grating mark are irradiated.
  • an alignment system is used in which the diffracted light generated from the diffraction grating mark by the interference fringes created by the interference of the two parallel beams is measured by homodyne measurement or heterodyne measurement, and the positional deviation of the diffraction grating mark in the pitch direction is measured. You can also.
  • the substrate P As described above, it is formed on the substrate P according to the drawing data and the pattern data based on each position information of the alignment mark MKn on the substrate P detected by using a plurality of (two or more) alignment systems ALGn.
  • ALGn alignment systems
  • the alignment system ALGn detection area ADn on the substrate P
  • the installation position may fluctuate (drift) from the intended state.
  • a beam splitter (synthetic optical member) BS1 is arranged in the optical path of the objective lens system OBL for observing the inside of the detection region ADn, and a plurality of alignment system ALGn.
  • the reference mark RMn on the reference bar member (reference index member) RB extending along the direction in which (detection region ADn) is arranged can be appropriately observed by the alignment system ALGn via the beam splitter BS1.
  • the amount of change from the desired state of each installation position of the plurality of alignment systems ALGn (detection area ADn) and the relative positional relationship of each installation position can be determined during the drawing operation or during the detection operation of the alignment mark MKn. It can be measured at any timing.
  • the sequence for measuring each fluctuation amount of the detection region ADn (imaging region DIS'of the image sensor DIS) of the alignment system ALGn and the relative positional relationship based on the reference mark RMn on the reference bar member RB is described first. Is executed as described in step 302 in FIG. 12, and is measured as the installation error information ⁇ Cn shown in FIG. In this way, the sequence for measuring the installation error information ⁇ Cn for each reference bar member RB of the detection region ADn (imaging region DIS'of the image sensor DIS) of the plurality of alignment systems ALGn is set as the second measurement step.
  • the alignment system ALGn described in each of the above-described embodiments and modifications is based on the alignment mark MKn on the substrate P or the reference patterns FMa to FMh on the outer peripheral surface of the rotating drum DR as the substrate support mechanism.
  • the reference mark RMn on the bar member RB can be simultaneously detected by the image sensor DIS. Therefore, as described in step 318 in FIG. 12, the misalignment error of each of the alignment marks MKn arranged in the width direction on the substrate P is directly set with reference to each of the plurality of reference marks RMn. Can be measured.
  • the relative misalignment error between the reference mark RMn of the reference bar member RB and the alignment mark MKn (or the reference patterns FMa to FMh on the rotating drum DR) on the substrate P is caused by each of the plurality of alignment systems ALGn.
  • the sequence for directly measuring the above is defined as the first measurement step.
  • each of the plurality of alignment systems ALGn is set in the image pickup region DIS'of the image pickup device DIS as shown in FIG. It is also possible to measure the misalignment error of the alignment mark MKn (or the reference patterns FMa to FMh on the rotating drum DR) on the substrate P with respect to the center point CCn).
  • the image analysis unit 206 since the reference point is virtually determined in the image analysis unit 206 (see FIG. 11) that analyzes the video signal Vsg from the image sensor DIS, the image analysis unit 206 is exclusively for the alignment mark MKn on the substrate P. You only need to analyze the magnified image. Therefore, the load of the arithmetic processing for obtaining the misalignment error is reduced, and there is an advantage that one misalignment measurement of the alignment mark MKn is completed in a short time as compared with the first measurement step described above.
  • the misalignment error of each of the alignment marks MKn measured in the third measurement step includes the detection region ADn of the alignment system ALGn (that is, the imaging region DIS). ') Installation error ⁇ Cn with respect to the reference bar member RB is not included.
  • the misalignment error of the alignment mark MKn measured in the third measurement step is corrected by the installation error information ⁇ Cn obtained in the second measurement step, and the error is corrected.
  • a pattern drawing operation (step 320 in FIG. 12) is performed based on the information on the misalignment error obtained as a result of the correction.

Abstract

A pattern-forming device for forming a pattern in a predetermined region on a substrate moving in a first direction, the device comprising: a first alignment system that optically detects first substrate marks formed on the substrate and spaced at predetermined intervals in the first direction, in a first detection region set upstream of the predetermined region in the first direction; a second alignment system that optically detects, in a second detection region set upstream of the predetermined region in the first direction, second substrate marks which are formed on the substrate, are spaced at predetermined intervals in the first direction, and are separated from the first substrate marks by a predetermined distance in a second direction orthogonal to the first direction; a reference-indicating member extending in the second direction along the first and second alignment systems, and having reference-indicating marks formed at portions which correspond to the first and second detection regions, respectively, in the second direction; and optical combination members that are provided in the first and second alignment systems, respectively, and that perform combination of light beams so as to cause light beams from the reference-indicating marks to pass through an optical path through which light beams from the substrate marks pass.

Description

パターン形成装置、並びにパターン形成方法Pattern forming device and pattern forming method
 本発明は、基板の幅方向に延設される形成領域内でパターンを形成する転写ユニットによって、基板上にパターンを転写するパターン形成装置、並びにパターン形成方法に関する。 The present invention relates to a pattern forming apparatus for transferring a pattern onto a substrate by a transfer unit for forming a pattern in a forming region extending in the width direction of the substrate, and a pattern forming method.
 長尺のフレキシブルなシート基板上にパターンを転写する為に、シート基板の長尺方向と直交した短尺方向(幅方向)に複数のヘッドアッセンブリ(転写ユニット)を並べ、シート基板を長尺方向に移動させながら複数のヘッドアッセンブリでパターンを描画(露光)する描画装置が、例えば、下記特開2006-098726号公報に開示されている。 In order to transfer a pattern onto a long flexible sheet substrate, a plurality of head assemblies (transfer units) are arranged in a short direction (width direction) orthogonal to the long direction of the sheet substrate, and the sheet substrate is moved in the long direction. A drawing device that draws (exposes) a pattern with a plurality of head assemblies while moving the pattern is disclosed in, for example, the following Japanese Patent Application Laid-Open No. 2006-0987626.
 特開2006-098726号公報の描画装置では、図3、図7~9に示されているように、露光位置の上流側に、例えば4台のカメラ部52がアライメントの為に基材(シート基板)28の幅方向に配置され、露光動作の前に、検出用ユニット付の走査用搬送部26に設けられた校正スケール42によって、4台のカメラ部52の各位置を校正している。特開2006-098726号公報では、長尺の基材28を露光位置において平面状に吸着支持すると共に、平坦な基材28の表面に沿って長尺方向に移動可能な無端ベルト33が設けられる。その無端ベルト33は、リニア移動機構20と移動テーブル21によって長尺方向に移動される走査用搬送部26に設けられている。さらに走査用搬送部26には、ニップローラ対30、ニップ駆動ローラ対32、出力ガイドローラ40等が設けられ、基材28を無端ベルト33上で支持した状態で、4台のカメラ部52の各位置を校正できる構成となっている。特開2006-098726号公報の描画装置では、4台のカメラ部52の各々が基材28上に形成されたマークMの各位置に対応して基材28の幅方向に移動可能に構成され、校正スケール42はその移動位置を正しく設定する為に利用される。 In the drawing apparatus of JP-A-2006-09876, as shown in FIGS. 3 and 7 to 9, for example, four camera units 52 are placed on the upstream side of the exposure position for alignment. The positions of the four camera units 52 are calibrated by the calibration scale 42 provided in the scanning transport unit 26 with the detection unit, which is arranged in the width direction of the substrate) 28 and before the exposure operation. In Japanese Patent Application Laid-Open No. 2006-0987626, a long base material 28 is adsorbed and supported in a plane at an exposure position, and an endless belt 33 that can move in the long length direction along the surface of the flat base material 28 is provided. .. The endless belt 33 is provided on a scanning transport unit 26 that is moved in a long direction by a linear moving mechanism 20 and a moving table 21. Further, the scanning transport unit 26 is provided with a nip roller pair 30, a nip drive roller pair 32, an output guide roller 40, and the like, and each of the four camera units 52 is provided with the base material 28 supported on the endless belt 33. The position can be calibrated. In the drawing apparatus of JP-A-2006-09876, each of the four camera units 52 is configured to be movable in the width direction of the base material 28 corresponding to each position of the mark M formed on the base material 28. , The calibration scale 42 is used to correctly set the moving position.
 特開2006-098726号公報の装置構成では、走査用搬送部26を移動させて、4台のカメラ部52の直下に校正スケール42を位置決めした状態で校正動作(所謂、キャリブレーション)が可能であるが、露光対象である基材28の装置からの取り外しを不要とする為に、走査用搬送部26に搭載される無端ベルト33、ニップローラ対30、ニップ駆動ローラ対32、出力ガイドローラ40等の付随機構が必要となり、走査用搬送部26の重量が増大し、その移動をつかさどるリニア移動機構20等を高い剛性で安定したものにする必要があり、装置の大型化につながる。また、校正スケール42は、リニア移動機構20によって1次元移動する走査用搬送部26に取付けられている為、アライメント精度(マークMの位置検出精度)に見合って、走査用搬送部26の位置決め再現性等の精度も十分に小さくする必要がある。 In the apparatus configuration of JP-A-2006-09876, the calibration operation (so-called calibration) can be performed in a state where the scanning transport unit 26 is moved and the calibration scale 42 is positioned directly under the four camera units 52. However, in order to eliminate the need to remove the base material 28 to be exposed from the apparatus, the endless belt 33, the nip roller pair 30, the nip drive roller pair 32, the output guide roller 40, etc. mounted on the scanning transport unit 26, etc. The accompanying mechanism is required, the weight of the scanning transport unit 26 is increased, and the linear moving mechanism 20 or the like that controls the movement of the scanning transport unit 26 needs to be made stable with high rigidity, which leads to an increase in the size of the apparatus. Further, since the calibration scale 42 is attached to the scanning transport unit 26 that moves one-dimensionally by the linear movement mechanism 20, the positioning of the scanning transport unit 26 is reproduced in accordance with the alignment accuracy (position detection accuracy of the mark M). It is also necessary to make the accuracy such as sex sufficiently small.
 本発明の第1の態様は、移動機構に支持されて第1方向に移動する基板上の所定領域に電子デバイス用のパターンを形成するパターン形成装置であって、前記移動機構で支持される前記基板の表面上で、前記第1方向と直交した第2方向の寸法が前記第1方向の寸法よりも長く設定されたパターン形成領域内で、前記基板の表面に前記パターンを形成するパターン形成機構と、前記基板の表面に前記第1方向に沿って所定間隔で形成された第1の基板マークを、前記基板の移動の方向に関して前記パターン形成領域の上流側に設定された第1の検出領域内で光学的に検出する第1のアライメント系と、前記第2方向に関して前記第1の基板マークから所定距離だけ離して、前記基板の表面に前記第1方向に沿って所定間隔で形成された第2の基板マークを、前記基板の移動の方向に関して前記パターン形成領域の上流側に設定された第2の検出領域内で光学的に検出する第2のアライメント系と、前記第1のアライメント系と前記第2のアライメント系とに沿うように低膨張材料によって前記第2方向に延設され、前記第2方向に関して前記第1の検出領域に対応した部分と前記第2の検出領域に対応した部分との各々に指標パターンが形成された基準指標部材と、前記第1のアライメント系と前記第2のアライメント系の各々に設けられ、前記基板マークからの光が通る光路中に前記指標パターンからの光を通すように合成する合成光学部材と、を備える。 A first aspect of the present invention is a pattern forming apparatus that forms a pattern for an electronic device in a predetermined region on a substrate that is supported by a moving mechanism and moves in a first direction, and is supported by the moving mechanism. A pattern forming mechanism that forms the pattern on the surface of the substrate within a pattern forming region in which the dimension of the second direction orthogonal to the first direction is set longer than the dimension of the first direction on the surface of the substrate. And, the first substrate marks formed on the surface of the substrate at predetermined intervals along the first direction are set on the upstream side of the pattern forming region with respect to the moving direction of the substrate. The first alignment system, which is optically detected inside, and the first alignment system are formed on the surface of the substrate at predetermined intervals along the first direction at a predetermined distance from the first substrate mark in the second direction. A second alignment system that optically detects the second substrate mark within the second detection region set on the upstream side of the pattern formation region with respect to the moving direction of the substrate, and the first alignment system. And the second alignment system are extended in the second direction by the low expansion material, and correspond to the portion corresponding to the first detection region and the second detection region in the second direction. From the index pattern, a reference index member in which an index pattern is formed in each of the portions, and an optical path provided in each of the first alignment system and the second alignment system and through which light from the substrate mark passes. It is provided with a synthetic optical member that synthesizes light so as to pass through.
 本発明の第2の態様は、第1方向に移動する基板上の所定領域内に形成された電子デバイス用の下地パターンに対して、新たなパターンを重ね合わせて形成するパターン形成方法であって、前記基板の前記第1方向への移動に関して、前記基板の前記所定領域内に前記新たなパターンを形成する為のパターン形成機構によるパターン形成領域の上流側に設定される第1アライメント系の第1検出領域内で、前記基板上に前記第1方向に沿って所定間隔で形成された複数の第1基板マークを順次光学的に検出する第1のマーク検出工程と、前記パターン形成領域の上流側であって、且つ前記第1検出領域から前記第1方向と直交した第2方向に所定間隔だけ離して設定される第2アライメント系の第2検出領域内で、前記基板上に前記第1方向に沿って所定間隔で形成された複数の第2基板マークを順次光学的に検出する第2のマーク検出工程と、前記第1アライメント系と前記第2アライメント系とに沿うように前記第2方向に延設された基準指標部材上に、前記第1検出領域と前記第2検出領域との前記所定間隔の設計上の距離に対応した位置の各々に形成された2つの基準指標マークの一方の第1基準指標マークを、前記第1のマーク検出工程の際に、前記第1アライメント系の光路中に配置された合成光学部材を介して前記第1基板マークと同時検出し、前記2つの基準指標マークの他方の第2基準指標マークを、前記第2のマーク検出工程の際に、前記第2アライメント系の光路中に配置された合成光学部材を介して前記第2基板マークと同時検出することにより、前記基準指標マークを基準にした前記第1基板マークと前記第2基板マークとの各位置を計測する第1の計測工程と、前記パターン形成機構によって前記基板上の前記所定領域内に前記新たなパターンを形成する際、前記第1の計測工程で計測された前記第1基板マークと前記第2基板マークの各位置に基づいて前記新たなパターンの位置を調整する第1の調整工程と、を含む。 A second aspect of the present invention is a pattern forming method in which a new pattern is superimposed on a base pattern for an electronic device formed in a predetermined region on a substrate moving in the first direction. With respect to the movement of the substrate in the first direction, the first alignment system set on the upstream side of the pattern forming region by the pattern forming mechanism for forming the new pattern in the predetermined region of the substrate. A first mark detection step of sequentially optically detecting a plurality of first substrate marks formed on the substrate at predetermined intervals along the first direction within one detection region, and upstream of the pattern formation region. Within the second detection region of the second alignment system, which is on the side and is set at a predetermined interval in the second direction orthogonal to the first direction from the first detection region, the first detection region is placed on the substrate. A second mark detection step of sequentially optically detecting a plurality of second substrate marks formed at predetermined intervals along the direction, and the second alignment system along the first alignment system and the second alignment system. One of the two reference index marks formed at each of the positions corresponding to the design distance between the first detection region and the second detection region on the reference index member extending in the direction. The first reference index mark is simultaneously detected with the first substrate mark via a synthetic optical member arranged in the optical path of the first alignment system during the first mark detection step, and the two The other second reference index mark of the reference index mark is simultaneously detected with the second substrate mark via the synthetic optical member arranged in the optical path of the second alignment system during the second mark detection step. By doing so, a first measurement step of measuring each position of the first substrate mark and the second substrate mark with reference to the reference index mark, and within the predetermined region on the substrate by the pattern forming mechanism. When forming the new pattern, the first adjustment for adjusting the position of the new pattern based on the positions of the first substrate mark and the second substrate mark measured in the first measurement step. Including the process.
第1の実施の形態によるパターン描画装置EXの概略的な全体構成を示す斜視図である。It is a perspective view which shows the schematic whole structure of the pattern drawing apparatus EX by 1st Embodiment. 図1のパターン描画装置EXにおける描画ユニットU1~U6の配置とアライメント系ALGnの配置とを具体的に示した図である。It is a figure which showed concretely the arrangement of the drawing units U1 to U6 and the arrangement of an alignment system ALGn in the pattern drawing apparatus EX of FIG. 図1のパターン描画装置EXにおける描画ユニットU1~U6のうち、代表して描画ユニットU1内の詳細構成を示す斜視図である。It is a perspective view which shows the detailed structure in the drawing unit U1 as a representative among the drawing units U1 to U6 in the pattern drawing apparatus EX of FIG. 図2に示した回転ドラムDRとアライメント系ALGnと基準バー部材RBとの配置関係を示す斜視図である。It is a perspective view which shows the arrangement relation of the rotary drum DR, the alignment system ALGn, and the reference bar member RB shown in FIG. 図4に示したアライメント系ALGnの対物レンズ系OBL、平面ミラーMb、ビームスプリッタBS1、基準バー部材RBの配置関係を、図4のXY面と平行な面内で見た図である。FIG. 4 is a view showing the arrangement relationship of the objective lens system OBL, the plane mirror Mb, the beam splitter BS1, and the reference bar member RB of the alignment system ALGn shown in FIG. 4 in a plane parallel to the XY plane of FIG. 図2~図5に示したアライメント系ALGn(ALG1~ALG4)の全体的な概略構成を示す斜視図である。2 is a perspective view showing an overall schematic configuration of the alignment systems ALGn (ALG1 to ALG4) shown in FIGS. 2 to 5. 図4に示した描画ラインSL1~SL6と検出領域AD1~AD4との配置関係と、回転ドラムDRの回転角度の変化を計測するエンコーダ計測系の配置とを表した図である。It is a figure which showed the arrangement relation of the drawing lines SL1 to SL6 and the detection area AD1 to AD4 shown in FIG. 4, and the arrangement of the encoder measurement system which measures the change of the rotation angle of a rotating drum DR. 図8は、描画ユニットU1~U6、スケール円盤SDa、エンコーダヘッドEHa1、EHa2、EHa3、基準バー部材RBの配置関係と支持構造の一例を示し、図8Aはスケール円盤SDaの周囲を見た図であり、図8Bは中心面CPoに沿って図8Aの構造を破断したときの端面を+X方向側から-X方向側に向けて見た部分断面図である。FIG. 8 shows an example of the arrangement relationship and support structure of the drawing units U1 to U6, the scale disk SDa, the encoder heads EHa1, EHa2, EHa3, and the reference bar member RB, and FIG. 8A is a view of the periphery of the scale disk SDa. FIG. 8B is a partial cross-sectional view of the end face when the structure of FIG. 8A is broken along the central plane CPo, as viewed from the + X direction side to the −X direction side. 図9は、アライメント系ALGn(ALG1~ALG4)の詳細な構成を示す図であり、図9Aは、図6に示した構成の内の平面ミラーMbを省略して表した光学系の構成を示し、図9Bは照明系ILU内に設けられる照明視野絞りFAnの一例を示し、図9Cは、撮像素子DISで撮像される基準マークRMnの拡大像RMn’とアライメントマークMKnの拡大像MKn’との一例を示す図である。FIG. 9 is a diagram showing a detailed configuration of the alignment system ALGn (ALG1 to ALG4), and FIG. 9A shows a configuration of an optical system in which the plane mirror Mb is omitted from the configuration shown in FIG. 9B shows an example of the illumination field diaphragm FAn provided in the illumination system ILU, and FIG. 9C shows an enlarged image RNn'of the reference mark RNn and an enlarged image MKn'of the alignment mark MKn imaged by the image sensor DIS. It is a figure which shows an example. 図10Aは基準バー部材RBの4ヶ所に形成される基準マークRM1~RM4の配置の一例を示す図であり、図10Bは撮像領域DIS’と基準マークRM1との配置関係の一例を誇張して表した図であり、図10Cは撮像領域DIS’と基準マークRM2との配置関係の一例を誇張して表した図である。FIG. 10A is a diagram showing an example of the arrangement of the reference marks RM1 to RM4 formed at four positions of the reference bar member RB, and FIG. 10B exaggerates an example of the arrangement relationship between the imaging region DIS'and the reference mark RM1. FIG. 10C is a diagram showing an exaggerated example of the arrangement relationship between the imaging region DIS'and the reference mark RM2. 本実施の形態によるパターン描画装置EXに設けられる制御装置の一部分の概略的な構成を示すブロック図である。It is a block diagram which shows the schematic structure of a part of the control apparatus provided in the pattern drawing apparatus EX by this embodiment. 本実施の形態によるパターン描画装置EXの動作シーケンスの一連の流れの一例を示すフローチャート図である。It is a flowchart which shows an example of the series flow of the operation sequence of the pattern drawing apparatus EX by this embodiment. 第1の実施の形態によるアライメント系ALGnの構成を示す図である。It is a figure which shows the structure of the alignment system ALGn by 1st Embodiment. 図10Aに示した基準バー部材RB上の基準マークRMnを基準としたアライメント系ALGnの設置誤差ΔCnを誇張して表した図である。It is a figure which exaggerated the installation error ΔCn of the alignment system ALGn based on the reference mark RMn on the reference bar member RB shown in FIG. 10A. 平面状に展開された回転ドラムDRの外周面DRs上に形成される基準パターンFMa、FMb、FMc・・・、アライメント系ALGnの検出領域ADnの配置例を示す図である。It is a figure which shows the arrangement example of the detection area ADn of the reference pattern FMa, FMb, FMc ..., and the alignment system ALGn formed on the outer peripheral surface DRs of the rotary drum DR developed in a plane. 6つの描画ラインSLn、4つのアライメント系ALGnの各々の撮像領域DIS’(検出領域ADn)、及び基準パターンFMaのそれぞれの配置一例を表した図である。It is a figure showing an example of arrangement of each image pickup area DIS'(detection area ADn) of 6 drawing lines SLn, 4 alignment system ALGn, and reference pattern FMa. 描画ラインSL1を生成するスポット光SPが、回転ドラムDR上の基準パターンFMaの線条パターンFxc1を含む領域を相対的に2次元走査する様子を示す図である。It is a figure which shows how the spot light SP which generates the drawing line SL1 relatively two-dimensionally scans the area containing the linear pattern Fxc1 of the reference pattern FMa on a rotating drum DR. スポット光SPが走査される描画ラインSL1を描画時の基準として、隣の描画ラインSL2との相対的な配置誤差を決定する様子を説明する図である。It is a figure explaining how to determine the arrangement error relative to the adjacent drawing line SL2 with the drawing line SL1 in which the spot light SP is scanned as a reference at the time of drawing. 図12のフローチャート中のステップ304によって決定、又は設定されるキャリブレーション情報(配置誤差等)を模式的に誇張して表した図である。FIG. 5 is a diagram schematically exaggerating calibration information (arrangement error, etc.) determined or set by step 304 in the flowchart of FIG. 12. 図7に示した描画装置のアライメント系ALGnを4本から7本に増やした場合の変形例1による構成を示す図である。It is a figure which shows the structure by the modification 1 when the alignment system ALGn of the drawing apparatus shown in FIG. 7 is increased from 4 lines. 図7、図16、図20の各々に示した描画ラインSL1~SL6の基板P上での配置関係を変形して、継ぎ部にオーバーラップ領域を設けた場合の変形例2を説明する図である。FIG. 5 is a diagram illustrating a modification 2 in the case where the arrangement relationship of the drawing lines SL1 to SL6 shown in FIGS. 7, 16 and 20 on the substrate P is modified to provide an overlap region at the joint portion. be. 描画ラインSL1の走査開始点側と描画ラインSL2の走査開始点側とのオーバーラップ領域OL12内で重ね合せ露光される同一のパターン(2次元の描画データ上の画素配列)の状態の一例を示す図である。An example of the state of the same pattern (pixel array on the two-dimensional drawing data) to be overexposed in the overlap region OL12 between the scanning start point side of the drawing line SL1 and the scanning start point side of the drawing line SL2 is shown. It is a figure. 第2の実施の形態によるアライメント系ALGnの光学構成を示す図である。It is a figure which shows the optical composition of the alignment system ALGn by 2nd Embodiment. 第3の実施の形態によるアライメント系ALGnの光学構成を示す図である。It is a figure which shows the optical composition of the alignment system ALGn by 3rd Embodiment. 図24に示したアライメント系ALGnにけるビームスプリッタBS1(合成光学部材)の構成を変形した場合の変形例3による光学配置を示す図である。It is a figure which shows the optical arrangement by the modification 3 when the configuration of the beam splitter BS1 (compositing optical member) in the alignment system ALGn shown in FIG. 24 is modified. 図26は、第4の実施の形態による基準バー部材RBの構成を示す図であり、図26Aは、基準バー部材RBの参照面RBa上の構成を示し、図26Bは、図26A中の基準バー部材RBのCC-CC矢視断面を表わし、図26Cは参照面RBa上に形成される基準マークRMnの構成の一例を示す。FIG. 26 is a diagram showing the configuration of the reference bar member RB according to the fourth embodiment, FIG. 26A shows the configuration of the reference bar member RB on the reference surface RBa, and FIG. 26B is the reference in FIG. 26A. The CC-CC arrow cross section of the bar member RB is shown, and FIG. 26C shows an example of the configuration of the reference mark RMn formed on the reference surface RBa. 第5の実施の形態によるマスクレス露光装置として、デジタル・ミラー・デバイス(DMD)を用いたパターン描画装置の概略的な構成を示す図である。It is a figure which shows the schematic structure of the pattern drawing apparatus which used the digital mirror device (DMD) as the maskless exposure apparatus according to the 5th Embodiment. 図27に示したパターン描画装置における描画ユニットUnの各々による投影領域IAnと、アライメント系ALGnの各々による検出領域ADnとのXY面内での配置例を示す図である。It is a figure which shows the arrangement example in the XY plane of the projection area IAn by each drawing unit Un in the pattern drawing apparatus shown in FIG. 27, and the detection area ADn by each of the alignment system ALGn. 図29は、アライメント系ALGnの構成に関する変形例5を説明する図であり、図29Aは、図24に示したアライメント系ALGnをベースにして変形された光学構成を示し、図29Bは、ビームスプリッタBS1の波長選択特性の一例を示すグラフである。FIG. 29 is a diagram illustrating a modification 5 relating to the configuration of the alignment system ALGn, FIG. 29A shows an optical configuration modified based on the alignment system ALGn shown in FIG. 24, and FIG. 29B is a beam splitter. It is a graph which shows an example of the wavelength selection characteristic of BS1. 図29Aのアライメント系ALGnに照明光を供給する照明系ILUとして、異なる波長特性を持つ2つの固体光源からの光を利用する変形例6による構成を示す図である。It is a figure which shows the structure by the modification 6 which uses the light from two solid-state light sources which have different wavelength characteristics as the illumination system ILU which supplies the illumination light to the alignment system ALGn of FIG. 29A. アライメント系ALGnのビームスプリッタBS1の構成と、基準バー部材RBの配置方向とを変形させた変形例7による構成を示す図である。It is a figure which shows the structure by the modification 7 which deformed the structure of the beam splitter BS1 of the alignment system ALGn, and the arrangement direction of a reference bar member RB. 図32は、基準バー部材RBの支持構造による変形状態の違いを示し、図32Aは、基準バー部材RBの長手方向の両端付近を線接触する梁FJ1で下方から支持する構造を示し、図32Bは、基準バー部材RBの長手方向の一方の端部付近を線接触する梁FJ1で下方から支持し、他方の端部を装置フレームFJ2に締結(固着)する構造を示し、図32Cは、基準バー部材RBの長手方向の両端部を装置フレームFJ2に締結(固着)する構造を示す。FIG. 32 shows the difference in the deformed state depending on the support structure of the reference bar member RB, and FIG. 32A shows the structure in which the vicinity of both ends of the reference bar member RB in the longitudinal direction is supported from below by the beam FJ1 which makes line contact with each other. 32C shows a structure in which the vicinity of one end of the reference bar member RB in the longitudinal direction is supported from below by a beam FJ1 that makes line contact, and the other end is fastened (fixed) to the device frame FJ2. FIG. 32C shows the reference. A structure is shown in which both ends of the bar member RB in the longitudinal direction are fastened (fixed) to the device frame FJ2. 図8で説明した支持部材103A、103Bによる基準バー部材RBの支持構造の変形例を示す部分斜視図である。It is a partial perspective view which shows the modification of the support structure of the reference bar member RB by the support members 103A and 103B described with FIG.
 本発明の態様に係る基板処理装置(パターン形成装置)、および、基板処理方法(パターン形成方法)について、好適な実施の形態を掲げ、添付の図面を参照しながら以下、詳細に説明する。なお、本発明の態様は、これらの実施の形態に限定されるものではなく、多様な変更または改良を加えたものも含まれる。つまり、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれ、以下に記載した構成要素は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成要素の種々の省略、置換または変更を行うことができる。 The substrate processing apparatus (pattern forming apparatus) and the substrate processing method (pattern forming method) according to the aspect of the present invention will be described in detail below with reference to the attached drawings, with reference to suitable embodiments. It should be noted that the aspects of the present invention are not limited to these embodiments, but include those with various changes or improvements. That is, the components described below include those that can be easily assumed by those skilled in the art and those that are substantially the same, and the components described below can be appropriately combined. In addition, various omissions, substitutions or changes of components can be made without departing from the gist of the present invention.
 〔第1の実施の形態〕
 図1は、第1の実施の形態による基板処理装置として、基板(被照射体)Pにパターンを転写するパターン形成装置(パターン描画装置)EXの概略構成を示す斜視図であり、その構成は、国際公開第2017/191777号、国際公開第2018/061633号に開示されているものと同じである。なお、以下の説明においては、特に断わりのない限り、重力方向をZ方向とするXYZ直交座標系を設定し、図に示す矢印にしたがってX方向、Y方向、およびZ方向を設定する。
[First Embodiment]
FIG. 1 is a perspective view showing a schematic configuration of a pattern forming apparatus (pattern drawing apparatus) EX that transfers a pattern to a substrate (irradiated body) P as a substrate processing apparatus according to the first embodiment. , International Publication No. 2017/191777, International Publication No. 2018/061633. In the following description, unless otherwise specified, the XYZ Cartesian coordinate system with the gravity direction as the Z direction is set, and the X direction, the Y direction, and the Z direction are set according to the arrows shown in the figure.
 パターン描画装置EXは、基板P上に塗布されたフォトレジスト等の感光性機能層に電子デバイス用の微細パターンを露光して、電子デバイスを製造するデバイス製造システムで使われる。デバイス製造では、例えば、フレキシブル・ディスプレイ、フィルム状のタッチパネル、液晶表示パネル用のフィルム状のカラーフィルター、フレキシブル配線、または、フレキシブル・センサ等の電子デバイスを製造する為に、パターン描画装置以外にも複数種の製造装置が使われる。デバイス製造システムは、フレキシブル(可撓性)のシート状の基板(シート基板)Pをロール状に巻いた図示しない供給ロールから基板Pが送出され、送出された基板Pに対して各種処理を連続的に施した後、各種処理後の基板Pを図示しない回収ロールで巻き取る、いわゆるロール・ツー・ロール(Roll To Roll)方式の生産方式を有する。そのため、少なくとも製造処理中の基板P上には、最終製品となる単位デバイス(1つの表示パネル等)に対応したパターンが、基板Pの搬送方向に所定の隙間を空けて多数連なった状態で配列される。基板Pは、その長尺方向が基板Pの移動方向(搬送方向)となり、長尺方向と直交した短尺方向が基板Pの幅方向となる帯状である。 The pattern drawing device EX is used in a device manufacturing system that manufactures an electronic device by exposing a fine pattern for an electronic device to a photosensitive functional layer such as a photoresist coated on the substrate P. In device manufacturing, for example, in order to manufacture electronic devices such as flexible displays, film-like touch panels, film-like color filters for liquid crystal display panels, flexible wiring, or flexible sensors, in addition to pattern drawing devices, Multiple types of manufacturing equipment are used. In the device manufacturing system, the substrate P is delivered from a supply roll (not shown) in which a flexible sheet-shaped substrate (sheet substrate) P is wound in a roll shape, and various processes are continuously performed on the delivered substrate P. It has a so-called roll-to-roll (Roll To Roll) production method in which the substrate P after various treatments is wound up with a recovery roll (not shown). Therefore, at least on the substrate P during the manufacturing process, a large number of patterns corresponding to the unit device (one display panel, etc.) to be the final product are arranged in a state of being connected with a predetermined gap in the transport direction of the substrate P. Will be done. The substrate P has a strip shape in which the elongated direction is the moving direction (transporting direction) of the substrate P and the short direction orthogonal to the elongated direction is the width direction of the substrate P.
 基板Pは、例えば、樹脂フィルム、若しくは、ステンレス鋼等の金属または合金からなる箔(フォイル)等が用いられる。樹脂フィルムの材質としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、エチレンビニル共重合体樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、および酢酸ビニル樹脂のうち、少なくとも1つ以上を含んだものを用いてもよい。また、基板Pの厚みや剛性(ヤング率)は、デバイス製造システムやパターン描画装置EXの搬送路を通る際に、基板Pに座屈による折れ目や非可逆的なシワが生じないような範囲であればよい。基板Pの母材として、厚みが25μm~200μm程度のPET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)、ポリイミド等のフィルムは、好適なシート基板の典型である。また、基板Pは、フロート法等で製造された厚さ30~100μm程度の極薄ガラスの単層体、その極薄ガラスに上記の樹脂フィルム、金属箔等を貼り合わせた積層体、或いは、ナノセルロースを含有して表面を平滑処理した紙片であってもよい。 For the substrate P, for example, a resin film, a foil made of a metal or alloy such as stainless steel, or the like is used. Examples of the material of the resin film include polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, and vinyl acetate resin. Of these, those containing at least one or more may be used. Further, the thickness and rigidity (Young's modulus) of the substrate P are within a range in which the substrate P does not have creases or irreversible wrinkles due to buckling when passing through the transport path of the device manufacturing system or the pattern drawing device EX. It should be. As the base material of the substrate P, films such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), and polyimide having a thickness of about 25 μm to 200 μm are typical of suitable sheet substrates. The substrate P is a single layer of ultrathin glass having a thickness of about 30 to 100 μm manufactured by a float method or the like, a laminate obtained by laminating the above resin film, metal foil, or the like on the ultrathin glass, or A piece of paper containing nanocellulose and having its surface smoothed may be used.
 基板Pの表面に塗布される感光性機能層は、溶液として基板P上に塗布され、乾燥することによって層(膜)となる。感光性機能層の典型的なものはフォトレジスト(液状またはドライフィルム状)であるが、現像処理が不要な材料として、紫外線の照射を受けた部分の親撥液性が改質される感光性シランカップリング剤(SAM)、或いは紫外線の照射を受けた部分にメッキ還元基が露呈する感光性還元剤等がある。感光性機能層として感光性シランカップリング剤を用いる場合は、基板P上の紫外線で露光されたパターン部分が撥液性から親液性に改質される。そのため、親液性となった部分の上に導電性インク(銀や銅等の導電性ナノ粒子を含有するインク)または半導体材料を含有した液体等を選択塗布することで、薄膜トランジスタ(TFT)等を構成する電極、半導体、絶縁、或いは接続用の配線となるパターン層を形成することができる。 The photosensitive functional layer applied to the surface of the substrate P is applied as a solution on the substrate P and dried to form a layer (film). A typical photosensitive functional layer is a photoresist (liquid or dry film), but as a material that does not require development treatment, the photosensitive functional layer is modified in terms of the liquid-repellent property of the portion irradiated with ultraviolet rays. There are silane coupling agents (SAM), photosensitive reducing agents in which the plating reducing group is exposed on the portion irradiated with ultraviolet rays, and the like. When a photosensitive silane coupling agent is used as the photosensitive functional layer, the pattern portion exposed to ultraviolet rays on the substrate P is modified from liquid-repellent to liquid-friendly. Therefore, a thin film transistor (TFT) or the like can be obtained by selectively coating a conductive ink (an ink containing conductive nanoparticles such as silver or copper) or a liquid containing a semiconductor material on the liquid-forming portion. It is possible to form a pattern layer that serves as an electrode, a semiconductor, an insulation, or a wiring for connection.
 感光性機能層として、感光性還元剤を用いる場合は、基板P上の紫外線で露光されたパターン部分(或いは非露光とされたパターン部分)にメッキ還元基が露呈する。そのため、露光後、基板Pを直ちにパラジウムイオン等を含むメッキ液中に一定時間浸漬する無電解メッキによって、パラジウムによるパターン層が形成(析出)される。このようなメッキ処理はアディティブ(加算式)のプロセスであるが、その他、サブトラクティブ(減算式)のプロセスとしてのエッチング処理を前提にしてもよい。その場合、パターン描画装置EXへ送られる基板Pは、母材をPETやPENとし、その表面にアルミニウム(Al)や銅(Cu)等の金属性薄膜を全面または選択的に蒸着し、さらにその上にフォトレジスト層を積層したものとされる。 When a photosensitive reducing agent is used as the photosensitive functional layer, the plating reducing group is exposed on the pattern portion (or the unexposed pattern portion) exposed to ultraviolet rays on the substrate P. Therefore, a pattern layer made of palladium is formed (precipitated) by electroless plating in which the substrate P is immediately immersed in a plating solution containing palladium ions or the like for a certain period of time after exposure. Such a plating process is an additive (addition type) process, but in addition, an etching process as a subtractive (subtraction type) process may be premised. In that case, the substrate P sent to the pattern drawing apparatus EX uses PET or PEN as the base material, and a metallic thin film such as aluminum (Al) or copper (Cu) is vapor-deposited on the entire surface or selectively of the substrate P. It is assumed that a photoresist layer is laminated on top.
 図1に示したパターン描画装置EXは、マスクを用いない直描方式の露光装置、いわゆるスポット走査方式の露光装置であり、前工程のプロセス装置から搬送されてきた基板Pを後工程のプロセス装置(単一の処理部または複数の処理部を含む)に向けて所定の速度で長尺方向に搬送する。その搬送に同期して、パターン描画装置EXは、基板Pの感光性機能層に電子デバイスを構成する信号線や電源ラインの配線パターン、TFTを構成する電極、半導体領域、スルーホール等のいずれかのパターン形状に応じた光パターンを、描画データに応じて強度変調されるスポット光のY方向への高速走査(主走査)と基板Pの長尺方向への移動(副走査)とによって形成する。 The pattern drawing device EX shown in FIG. 1 is a direct drawing type exposure device that does not use a mask, that is, a so-called spot scanning type exposure device, and the substrate P conveyed from the process device in the previous process is used as a process device in the subsequent process. It is conveyed in the elongated direction at a predetermined speed toward (including a single processing unit or a plurality of processing units). In synchronization with the transfer, the pattern drawing device EX has one of the signal line and power supply line wiring pattern constituting the electronic device, the electrode constituting the TFT, the semiconductor region, the through hole, and the like on the photosensitive functional layer of the substrate P. An optical pattern corresponding to the pattern shape of the above is formed by high-speed scanning (main scanning) of spot light whose intensity is modulated according to drawing data in the Y direction and movement of the substrate P in the long direction (secondary scanning). ..
 図1において、パターン描画装置EXは、副走査のために基板Pを支持して長尺方向に搬送する回転ドラムDRと、回転ドラムDRで円筒面状に支持された基板Pの部分ごとにパターン露光を行う複数(ここでは6個)の描画ユニットUn(U1~U6)とを備え、複数の描画ユニットUn(U1~U6)の各々は、露光用のパルス状のビームLB(パルスビーム)のスポット光を、基板Pの被照射面(感光面)上でY方向にポリゴンミラーPM(走査部材)で1次元に走査(主走査)しつつ、スポット光の強度を描画データに応じて高速に変調(オン/オフ)する。これにより、基板Pの被照射面に電子デバイス、回路または配線等の所定のパターンに応じた光パターンが描画露光される。また、基板Pが長尺方向に沿って連続して搬送されるので、パターン描画装置EXによってパターンが露光される基板P上の被露光領域(デバイス形成領域)は、基板Pの長尺方向に沿って所定の間隔(余白)をあけて複数個を設定可能である。本実施の形態では、6つの描画ユニットU1~U6の各々、又は全体によって、パターン形成機構が構成される。 In FIG. 1, the pattern drawing device EX has a rotary drum DR that supports the substrate P for subscanning and conveys it in a long direction, and a pattern for each portion of the substrate P that is supported by the rotary drum DR in a cylindrical surface shape. A plurality of (here, 6) drawing units Un (U1 to U6) for exposure are provided, and each of the plurality of drawing units Un (U1 to U6) is a pulsed beam LB (pulse beam) for exposure. While scanning the spot light one-dimensionally (main scanning) with the polygon mirror PM (scanning member) in the Y direction on the irradiated surface (photosensitive surface) of the substrate P, the intensity of the spot light is increased at high speed according to the drawing data. Modulate (on / off). As a result, an optical pattern corresponding to a predetermined pattern such as an electronic device, a circuit, or a wiring is drawn and exposed on the irradiated surface of the substrate P. Further, since the substrate P is continuously conveyed along the elongated direction, the exposed region (device forming region) on the substrate P on which the pattern is exposed by the pattern drawing device EX is in the elongated direction of the substrate P. A plurality of can be set at a predetermined interval (margin) along the line. In the present embodiment, the pattern forming mechanism is configured by each or all of the six drawing units U1 to U6.
 図1のように、回転ドラムDRは、Y方向に延びるとともに重力が働く方向と交差した方向に延びた中心軸AXoと、中心軸AXoから一定半径の円筒状の外周面とを有する。回転ドラムDRは、その外周面(円周面)に倣って基板Pの一部を長尺方向に円筒面状に湾曲させて支持(密着保持)しつつ、中心軸AXoを中心に回転して基板Pを長尺方向に搬送する。回転ドラムDRは、複数の描画ユニットUn(U1~U6)の各々からのビームLB(スポット光)が投射される基板P上の領域(部分)をその外周面で支持する。なお、回転ドラムDRのY方向の両側には、回転ドラムDRを中心軸AXoの回りに回転させるようにベアリングで支持される不図示のシャフトが設けられる。そのシャフトには、図示しない回転駆動源(例えば、モータや減速機構等)からの回転トルクが与えられ、回転ドラムDRは中心軸AXo回りに一定の回転速度で回転する。 As shown in FIG. 1, the rotating drum DR has a central axis AXo extending in the Y direction and extending in a direction intersecting the direction in which gravity acts, and a cylindrical outer peripheral surface having a constant radius from the central axis AXo. The rotary drum DR rotates around the central axis AXo while supporting (holding close contact) a part of the substrate P by bending it in a cylindrical surface shape in the elongated direction following its outer peripheral surface (circumferential surface). The substrate P is conveyed in the long direction. The rotating drum DR supports a region (part) on the substrate P on which the beam LB (spot light) from each of the plurality of drawing units Un (U1 to U6) is projected by its outer peripheral surface. On both sides of the rotating drum DR in the Y direction, shafts (not shown) supported by bearings so as to rotate the rotating drum DR around the central axis AXo are provided. Rotational torque from a rotational drive source (for example, a motor, a reduction mechanism, etc.) (not shown) is applied to the shaft, and the rotary drum DR rotates at a constant rotational speed around the central axis AXo.
 光源装置(パルス光源装置)LSは、パルス状のビーム(パルスビーム、パルス光、レーザ)LBを発生して射出する。このビームLBは、基板Pの感光性機能層に対する感度を有し、410~200nmの波長帯域にピーク波長(例えば、405nm、365nm、355nm、344nm、308nm、248nm等のいずれかの波長)を有する紫外線光である。光源装置LSは、ここでは不図示の描画制御装置の制御に従って、例えば、100MHz~400MHzの範囲のいずれかの周波数(発振周波数、所定周波数)FPLでパルス状のビームLBを射出する。本実施の形態では、光源装置LSを波長変換素子によって紫外線光を発生するレーザ光源装置とする。具体的には、赤外波長域のパルス光を発生する半導体レーザ素子、ファイバー増幅器、および、増幅された赤外波長域のパルス光を紫外波長域のパルス光に変換する波長変換素子(高調波発生素子)等で構成されるファイバーアンプレーザ光源とする。このように光源装置LSを構成することで、1パルス光の発光時間が十数ピコ秒~数十ピコ秒以下の高輝度な紫外線のパルス光が得られる。光源装置LSをファイバーアンプレーザ光源とし、描画データを構成する画素ビットの状態(論理値で「0」か「1」)に応じてビームLBのパルス発生を高速にオン/オフする(スポット光を強度変調する)構成については、国際公開第2015/166910号、国際公開第2017/057415号に開示されている。なお、光源装置LSから射出されるビームLBは、そのビーム径が約1mm、若しくはその半分程度の細い平行光束になっているものとする。 The light source device (pulse light source device) LS generates and emits a pulsed beam (pulse beam, pulse light, laser) LB. This beam LB has sensitivity to the photosensitive functional layer of the substrate P and has a peak wavelength (for example, any wavelength of 405 nm, 365 nm, 355 nm, 344 nm, 308 nm, 248 nm, etc.) in the wavelength band of 410 to 200 nm. It is ultraviolet light. The light source device LS emits a pulsed beam LB at an FPL of any frequency (oscillation frequency, predetermined frequency) in the range of 100 MHz to 400 MHz, for example, under the control of a drawing control device (not shown). In the present embodiment, the light source device LS is a laser light source device that generates ultraviolet light by a wavelength conversion element. Specifically, a semiconductor laser element that generates pulsed light in the infrared wavelength region, a fiber amplifier, and a wavelength conversion element (harmonic) that converts the amplified pulsed light in the infrared wavelength region into pulsed light in the ultraviolet wavelength region. A fiber amplifier laser light source composed of a generating element) or the like. By configuring the light source device LS in this way, it is possible to obtain high-intensity pulsed light of ultraviolet rays having a light emission time of one pulse light of a dozen picoseconds to a few tens of picoseconds or less. The light source device LS is used as a fiber amplifier laser light source, and the pulse generation of the beam LB is turned on / off at high speed according to the state of the pixel bits (logical value "0" or "1") constituting the drawing data (spot light). The (intensity-modulated) configuration is disclosed in International Publication No. 2015/166910 and International Publication No. 2017/057415. It is assumed that the beam LB emitted from the light source device LS has a thin parallel luminous flux having a beam diameter of about 1 mm or about half of the beam diameter.
 光源装置LSから射出されるビームLBは、複数のスイッチング素子としての選択用光学素子OSn(OS1~OS6)と、複数の反射ミラーM1~M12と、複数の落射ミラー(選択ミラーとも呼ぶ)IMn(IM1~IM6)と、吸収体TR等で構成されるビーム切換部を介して、描画ユニットUn(U1~U6)の各々に選択的(択一的)に供給される。選択用光学素子OSn(OS1~OS6)は、ビームLBに対して透過性を有するものであり、超音波信号で駆動されて、入射したビームLBの±1次回折光の一方のみを効率的に発生するように、ブラック回折条件で配置される音響光学変調素子(AOM:Acousto-Optic Modulator)で構成される。複数の選択用光学素子OSnおよび複数の落射ミラーIMnは、複数の描画ユニットUnの各々に対応して設けられている。例えば、選択用光学素子OS1と落射ミラーIM1は、描画ユニットU1に対応して設けられ、同様に、選択用光学素子OS2~OS6および落射ミラーIM2~IM6は、それぞれ描画ユニットU2~U6に対応して設けられている。 The beam LB emitted from the light source device LS includes a selection optical element OSn (OS1 to OS6) as a plurality of switching elements, a plurality of reflection mirrors M1 to M12, and a plurality of epi-illumination mirrors (also referred to as selection mirrors) Imn (also referred to as a selection mirror). It is selectively (alternatively) supplied to each of the drawing units Un (U1 to U6) via the beam switching unit composed of the IM1 to IM6) and the absorber TR or the like. The selection optical elements OSn (OS1 to OS6) have transparency with respect to the beam LB, and are driven by an ultrasonic signal to efficiently generate only one of the ± 1st-order diffracted light of the incident beam LB. It is composed of an acousto-optic modulator (AOM) arranged under black diffraction conditions. The plurality of selection optical elements OSn and the plurality of epi-illumination mirrors Imn are provided corresponding to each of the plurality of drawing units Un. For example, the selection optical elements OS1 and the epi-illumination mirror IM1 are provided corresponding to the drawing unit U1, and similarly, the selection optical elements OS2 to OS6 and the epi-illumination mirrors IM2 to IM6 correspond to the drawing units U2 to U6, respectively. It is provided.
 光源装置LSからのビームLBは、反射ミラーM1~M12によってその光路がXY面と平行な面内でつづらおり状に曲げられて、吸収体TRまで導かれる。以下、選択用光学素子OSn(OS1~OS6)がいずれもオフ状態(超音波信号が印加されずに、1次回折光が発生していない状態)の場合で詳述する。なお、図1では図示を省略したが、反射ミラーM1から吸収体TRまでのビーム光路中には複数のレンズによるリレー系が設けられる。リレー系は、詳しくは、国際公開第2017/057415号に開示されているように、光源装置LSからビームLBの光路に沿って直列に並ぶ選択用光学素子OS1~OS6の各々の間に配置され、6つの選択用光学素子OS1~OS6の各々を光学的に互いに共役関係(結像関係)にする。さらに各リレー系は、6つの選択用光学素子OS1~OS6の各々の位置ではビームLBの直径を1mm~0.5mmの細い平行光束に維持しつつ、各リレー系内の中間位置では直径が0.2mm以下のビームウェストとなるように収斂する。落射ミラーIM1~IM6の各々は、各リレー系の光路中のビームウェストの位置に配置される。 The optical path of the beam LB from the light source device LS is bent in a zigzag shape in a plane parallel to the XY plane by the reflection mirrors M1 to M12, and is guided to the absorber TR. Hereinafter, the case where the selection optical elements OSn (OS1 to OS6) are all off (a state in which an ultrasonic signal is not applied and primary diffracted light is not generated) will be described in detail. Although not shown in FIG. 1, a relay system using a plurality of lenses is provided in the beam optical path from the reflection mirror M1 to the absorber TR. The relay system is specifically arranged between the selection optical elements OS1 to OS6 arranged in series along the optical path of the beam LB from the light source device LS, as disclosed in International Publication No. 2017/057415. , Each of the six selection optical elements OS1 to OS6 is optically coupled to each other (imaging relationship). Further, each relay system maintains the diameter of the beam LB as a thin parallel luminous flux of 1 mm to 0.5 mm at each position of the six selection optical elements OS1 to OS6, and the diameter is 0 at the intermediate position in each relay system. Converge so that the beam waist is 2 mm or less. Each of the epi-illumination mirrors IM1 to IM6 is arranged at the position of the beam waist in the optical path of each relay system.
 図1において、光源装置LSからのビームLBは-X方向に進んで反射ミラーM1で-Y方向に反射され、反射ミラーM2に入射する。反射ミラーM2で+X方向に反射されたビームLBは、選択用光学素子OS5をストレートに透過して反射ミラーM3に至る。反射ミラーM3で-Y方向に反射されたビームLBは、反射ミラーM4で-X方向に反射されて、選択用光学素子OS6をストレートに透過して反射ミラーM5に至る。反射ミラーM5で-Y方向に反射されたビームLBは、反射ミラーM6で+X方向に反射され、選択用光学素子OS3をストレートに透過して反射ミラーM7に至る。反射ミラーM7で-Y方向に反射されたビームLBは、反射ミラーM8で-X方向に反射された後、選択用光学素子OS4をストレートに透過して反射ミラーM9に至る。反射ミラーM9で-Y方向に反射されたビームLBは、反射ミラーM10で+X方向に反射された後、選択用光学素子OS1をストレートに透過して反射ミラーM11に至る。反射ミラーM11で-Y方向に反射されたビームLBは、反射ミラーM12で-X方向に反射された後、選択用光学素子OS2をストレートに透過して吸収体TRに導かれる。この吸収体TRは、ビームLBの外部への漏れを抑制するためにビームLBを吸収する光トラップであり、光エネルギーの吸収による発熱が低減されるように温調(空冷又は水冷)機構を備えている。 In FIG. 1, the beam LB from the light source device LS travels in the −X direction, is reflected by the reflection mirror M1 in the −Y direction, and is incident on the reflection mirror M2. The beam LB reflected in the + X direction by the reflection mirror M2 passes straight through the selection optical element OS5 and reaches the reflection mirror M3. The beam LB reflected in the −Y direction by the reflection mirror M3 is reflected in the −X direction by the reflection mirror M4, passes straight through the selection optical element OS6, and reaches the reflection mirror M5. The beam LB reflected in the −Y direction by the reflection mirror M5 is reflected in the + X direction by the reflection mirror M6, passes straight through the selection optical element OS3, and reaches the reflection mirror M7. The beam LB reflected in the −Y direction by the reflection mirror M7 is reflected in the −X direction by the reflection mirror M8, and then passes straight through the selection optical element OS4 to reach the reflection mirror M9. The beam LB reflected in the −Y direction by the reflection mirror M9 is reflected in the + X direction by the reflection mirror M10, and then passes straight through the selection optical element OS1 to reach the reflection mirror M11. The beam LB reflected in the −Y direction by the reflection mirror M11 is reflected in the −X direction by the reflection mirror M12, and then passes straight through the selection optical element OS2 and is guided to the absorber TR. This absorber TR is an optical trap that absorbs the beam LB in order to suppress leakage of the beam LB to the outside, and is provided with a temperature control (air cooling or water cooling) mechanism so as to reduce heat generation due to absorption of light energy. ing.
 各選択用光学素子OSnは、超音波信号(高周波信号)が印加されると、入射したビームLB(0次光)を、高周波の周波数に応じた回折角で回折させた1次回折光を射出ビーム(ビームLBn)として発生する。従って、選択用光学素子OS1から1次回折光として射出されるビームがLB1となり、同様に選択用光学素子OS2~OS6の各々から1次回折光として射出されるビームがLB2~LB6となる。このように、各選択用光学素子OSn(OS1~OS6)は、光源装置LSからのビームLBの光路を偏向する機能を奏する。また、本実施の形態では、選択用光学素子OSn(OS1~OS6)のうちの選択された1つだけが一定時間だけオン状態(高周波信号が印加された状態)となるように、不図示の描画制御装置によって制御される。選択された1つの選択用光学素子OSnがオン状態のとき、その選択用光学素子OSnで回折されずに直進する0次光が10~20%程度残存するが、それは最終的に吸収体TRによって吸収される。 When an ultrasonic signal (high frequency signal) is applied, each selection optical element OSn emits first-order diffracted light obtained by diffracting an incident beam LB (0th-order light) at a diffraction angle corresponding to a high-frequency frequency. It is generated as (Beam LBn). Therefore, the beam emitted as the primary diffracted light from the selection optical element OS1 becomes LB1, and similarly, the beam emitted as the primary diffracted light from each of the selection optical elements OS2 to OS6 becomes LB2 to LB6. As described above, each selection optical element OSn (OS1 to OS6) functions to deflect the optical path of the beam LB from the light source device LS. Further, in the present embodiment, only one of the selection optical elements OSn (OS1 to OS6) is turned on for a certain period of time (a state in which a high frequency signal is applied), which is not shown. It is controlled by the drawing control device. When one selected optical element OSn for selection is in the ON state, about 10 to 20% of 0th-order light that travels straight without being diffracted by the optical element OSn for selection remains, but it is finally determined by the absorber TR. Be absorbed.
 選択用光学素子OSnの各々は、偏向された1次回折光であるビームLBn(LB1~LB6)を、入射するビームLBの進行方向に対して-Z方向に偏向するように設置される。選択用光学素子OSnの各々で偏向されて射出するビームLBn(LB1~LB6)は、選択用光学素子OSnの各々から所定距離だけ離れた位置(ビームウェストの位置)に設けられた落射ミラーIMn(IM1~IM6)に投射される。各落射ミラーIMnは、入射したビームLBn(LB1~LB6)を-Z方向に反射することで、ビームLBn(LB1~LB6)をそれぞれ対応する描画ユニットUn(U1~U6)に導く。 Each of the selection optical elements OSn is installed so as to deflect the beam LBn (LB1 to LB6), which is the deflected primary diffracted light, in the −Z direction with respect to the traveling direction of the incident beam LB. The beam LBn (LB1 to LB6) deflected and emitted by each of the selection optical elements OSn is an epi-illumination mirror Imn (position of the beam waist) provided at a position (beam waist position) separated from each of the selection optical elements OSn by a predetermined distance. It is projected on IM1 to IM6). Each epi-illumination mirror Imn reflects the incident beam LBn (LB1 to LB6) in the −Z direction to guide the beam LBn (LB1 to LB6) to the corresponding drawing units Un (U1 to U6).
 各選択用光学素子OSnの構成、機能、作用等は互いに同一のものであり、複数の選択用光学素子OSnの各々は、描画制御装置からの駆動信号(高周波信号)のオン/オフによって、入射したビームLBを回折させた回折光(ビームLB1~LB6)の発生をオン/オフさせるスイッチング(ビーム選択)動作を行う。このような各選択用光学素子OSnのスイッチング動作により、光源装置LSからのビームLBをいずれか1つの描画ユニットUnに導くことができ、且つ、ビームLBnが入射する描画ユニットUnを切り換えることができる。このように、複数の選択用光学素子OSnをビームLBの光路に直列(シリアル)に配置して、対応する描画ユニットUnに時分割でビームLBnを供給する構成は、国際公開第2015/166910号に開示されている。 The configuration, function, operation, etc. of each selection optical element OSn are the same as each other, and each of the plurality of selection optical element OSn is incident by turning on / off the drive signal (high frequency signal) from the drawing control device. A switching (beam selection) operation is performed to turn on / off the generation of diffracted light (beams LB1 to LB6) obtained by diffracting the beam LB. By such a switching operation of each selection optical element OSn, the beam LB from the light source device LS can be guided to any one drawing unit Un, and the drawing unit Un on which the beam LBn is incident can be switched. .. In this way, a configuration in which a plurality of selection optical elements OSn are arranged in series (serially) in the optical path of the beam LB and the beam LBn is supplied to the corresponding drawing unit Un in a time-division manner is described in International Publication No. 2015/166910. It is disclosed in.
 ビーム切換部を構成する選択用光学素子OSn(OS1~OS6)の各々が一定時間だけオン状態となる順番は、描画ユニットUn(U1~U6)の各々に設定されるスポット光による走査開始タイミングの順番によって定められる。本実施の形態では、6つの描画ユニットU1~U6の各々に設けられるポリゴンミラーPMの回転速度の同期とともに、回転角度の位相も同期させることで、描画ユニットU1~U6のうちのいずれか1つにおけるポリゴンミラーの1つの反射面が、基板P上で1回のスポット走査を行うように、時分割に切り替えることができる。そのため、描画ユニットUnの各々のポリゴンミラーの回転角度の位相が所定の関係で同期した状態であれば、描画ユニットUnのスポット走査の順番はどの様なものであってもよい。図1の構成では、基板Pの搬送方向(回転ドラムDRの外周面が周方向に移動する方向)の上流側に3つの描画ユニットU1、U3、U5がY方向に並べて配置され、基板Pの搬送方向の下流側に3つの描画ユニットU2、U4、U6がY方向に並べて配置される。 The order in which each of the selection optical elements OSn (OS1 to OS6) constituting the beam switching unit is turned on for a certain period of time is the scanning start timing by the spot light set in each of the drawing units Un (U1 to U6). Determined by order. In the present embodiment, any one of the drawing units U1 to U6 is synchronized by synchronizing the rotation speeds of the polygon mirrors PM provided in each of the six drawing units U1 to U6 and the phases of the rotation angles. One reflective surface of the polygon mirror in the above can be time-division-switched so as to perform one spot scan on the substrate P. Therefore, as long as the phases of the rotation angles of the polygon mirrors of the drawing unit Un are synchronized in a predetermined relationship, the spot scanning order of the drawing unit Un may be any order. In the configuration of FIG. 1, three drawing units U1, U3, and U5 are arranged side by side in the Y direction on the upstream side of the substrate P in the transport direction (the direction in which the outer peripheral surface of the rotating drum DR moves in the circumferential direction), and the substrate P is arranged. Three drawing units U2, U4, and U6 are arranged side by side in the Y direction on the downstream side in the transport direction.
 この場合、基板P上の1つの被露光領域に対するパターン描画は、上流側の奇数番の描画ユニットU1、U3、U5から開始され、基板Pが一定長送られたら、下流側の偶数番の描画ユニットU2、U4、U6もパターン描画を開始することになるので、描画ユニットUnのスポット走査の順番を、U1→U3→U5→U2→U4→U6→U1→・・・に設定することができる。従って、選択用光学素子OSn(OS1~OS6)の各々が一定時間だけオン状態となる順番も、OS1→OS3→OS5→OS2→OS4→OS6→OS1→・・・の順に定められる。 In this case, the pattern drawing for one exposed area on the substrate P is started from the odd-numbered drawing units U1, U3, and U5 on the upstream side, and when the substrate P is sent for a certain length, the even-numbered drawing on the downstream side is drawn. Since the units U2, U4, and U6 also start pattern drawing, the spot scanning order of the drawing unit Un can be set to U1 → U3 → U5 → U2 → U4 → U6 → U1 → ... .. Therefore, the order in which each of the selection optical elements OSn (OS1 to OS6) is turned on for a certain period of time is also determined in the order of OS1 → OS3 → OS5 → OS2 → OS4 → OS6 → OS1 → ...
 図1に示すように、描画ユニットU1~U6の各々には、入射してきたビームLB1~LB6を主走査するためのポリゴンミラーPMが設けられる。本実施の形態では、各描画ユニットUnのポリゴンミラーPMの各々が、同一の回転速度で精密に回転しつつ、互いに一定の回転角度位相を保つように同期制御される。これによって、描画ユニットU1~U6の各々から基板Pに投射されるビームLB1~LB6の各々の主走査のタイミング(スポット光の主走査期間)を、互いに重複しないように設定することができる。したがって、ビーム切換部に設けられた選択用光学素子OSn(OS1~OS6)の各々のオン/オフ切り替えを、6つのポリゴンミラーPMの各々の回転角度位置に同期して制御することで、光源装置LSからのビームLBを複数の描画ユニットUnの各々に時分割で振り分けた効率的な露光処理ができる。6つのポリゴンミラーPMの各々の回転角度の位相合わせと、選択用光学素子OSn(OS1~OS6)の各々のオン/オフ切り替えタイミングとの同期制御についても、国際公開第2015/166910号に開示されている。 As shown in FIG. 1, each of the drawing units U1 to U6 is provided with a polygon mirror PM for main scanning the incident beams LB1 to LB6. In the present embodiment, each of the polygon mirror PMs of each drawing unit Un is synchronously controlled so as to maintain a constant rotation angle phase with each other while precisely rotating at the same rotation speed. Thereby, the timings of the main scans of the beams LB1 to LB6 projected from the drawing units U1 to U6 on the substrate P (the main scan period of the spot light) can be set so as not to overlap each other. Therefore, by controlling the on / off switching of each of the selection optical elements OSn (OS1 to OS6) provided in the beam switching unit in synchronization with the rotation angle position of each of the six polygon mirror PMs, the light source device Efficient exposure processing can be performed by distributing the beam LB from the LS to each of the plurality of drawing units Un in a time-division manner. The synchronization control between the phase matching of each rotation angle of the six polygon mirror PMs and the on / off switching timing of each of the selection optical elements OSn (OS1 to OS6) is also disclosed in International Publication No. 2015/166910. ing.
 図1のように、パターン描画装置EXは、同一構成の複数の描画ユニットUn(U1~U6)を配列した、いわゆるマルチヘッド型の直描露光方式である。描画ユニットUnの各々は、回転ドラムDRの外周面(円周面)で支持されている基板PのY方向(主走査方向)に区画された部分領域ごとにパターンを描画する。各描画ユニットUn(U1~U6)は、ビーム切換部からのビームLBnを基板P上(基板Pの被照射面上)に投射しつつ、基板P上でビームLBnを集光(収斂)する。これにより、基板P上に投射されるビームLBn(LB1~LB6)は直径が2~4μmのスポット光となる。さらに各描画ユニットUnのポリゴンミラーPMの回転によって、基板P上に投射されるビームLBn(LB1~LB6)の各々のスポット光が主走査方向(Y方向)に走査される。このスポット光の走査によって、基板P上に、1ライン分のパターンの描画のための直線的な描画ライン(走査ライン)SLn(なお、n=1、2、・・・、6)が規定される。描画ラインSLnは、ビームLBnのスポット光の基板P上における走査軌跡である。 As shown in FIG. 1, the pattern drawing apparatus EX is a so-called multi-head type direct drawing exposure method in which a plurality of drawing units Un (U1 to U6) having the same configuration are arranged. Each of the drawing units Un draws a pattern for each partial region defined in the Y direction (main scanning direction) of the substrate P supported by the outer peripheral surface (circumferential surface) of the rotating drum DR. Each drawing unit Un (U1 to U6) focuses (converges) the beam LBn on the substrate P while projecting the beam LBn from the beam switching unit onto the substrate P (on the irradiated surface of the substrate P). As a result, the beams LBn (LB1 to LB6) projected on the substrate P become spot light having a diameter of 2 to 4 μm. Further, by rotating the polygon mirror PM of each drawing unit Un, each spot light of the beams LBn (LB1 to LB6) projected on the substrate P is scanned in the main scanning direction (Y direction). By scanning the spot light, a linear drawing line (scanning line) SLn (n = 1, 2, ..., 6) for drawing a pattern for one line is defined on the substrate P. NS. The drawing line SLn is a scanning locus of the spot light of the beam LBn on the substrate P.
 複数の描画ユニットUn(U1~U6)の各描画ラインSLn(SL1~SL6)は、回転ドラムDRの中心軸AXoを含むYZ面と平行な中心面を挟んで、回転ドラムDRの周方向に2列に千鳥配列で配置され、奇数番の描画ラインSL1、SL3、SL5は、中心面に対して基板Pの搬送方向の上流側(-X方向側)の基板Pの被照射面上に位置し、且つ、Y方向に沿って所定の間隔だけ離して1列に配置されている。偶数番の描画ラインSL2、SL4、SL6は、中心面に対して基板Pの搬送方向の下流側(+X方向側)の基板Pの被照射面上に位置し、且つ、Y方向に沿って所定の間隔だけ離して1列に配置されている。そのため、奇数番の描画ユニットU1、U3、U5と、偶数番の描画ユニットU2、U4、U6とは、XZ平面内で見る(Y方向から見る)と、中心面に対して対称に設けられている。 Each drawing line SLn (SL1 to SL6) of the plurality of drawing units Un (U1 to U6) sandwiches a central surface parallel to the YZ surface including the central axis AXo of the rotating drum DR, and is 2 in the circumferential direction of the rotating drum DR. Arranged in a staggered arrangement in a row, the odd-numbered drawing lines SL1, SL3, and SL5 are located on the irradiated surface of the substrate P on the upstream side (-X direction side) of the substrate P in the transport direction with respect to the central surface. Moreover, they are arranged in a row at a predetermined interval along the Y direction. The even-numbered drawing lines SL2, SL4, and SL6 are located on the irradiated surface of the substrate P on the downstream side (+ X direction side) of the substrate P in the transport direction with respect to the central surface, and are predetermined along the Y direction. They are arranged in a row at intervals of. Therefore, the odd-numbered drawing units U1, U3, and U5 and the even-numbered drawing units U2, U4, and U6 are provided symmetrically with respect to the central plane when viewed in the XZ plane (when viewed from the Y direction). There is.
 X方向(基板Pの搬送方向)に関しては、奇数番の描画ラインSL1、SL3、SL5と偶数番の描画ラインSL2、SL4、SL6とが互いに離間しているが、Y方向(基板Pの幅方向、主走査方向)に関しては、基板P上に描画されたパターン同士が互いに分離することなく継ぎ合わされるように設定されている。描画ラインSL1~SL6は、基板Pの幅方向、つまり、回転ドラムDRの中心軸AXoとほぼ平行になるように設定されている。なお、描画ラインSLnをY方向に継ぎ合わせるとは、描画ラインSLnの端部同士のY方向の位置を隣接または一部重複させるような関係にすることを意味する。描画ラインSLnの端部同士をY方向に重複させる場合は、例えば、各描画ラインSLnの長さに対して、描画開始点、または描画終了点を含んでY方向に1~5%の範囲で重複させるとよい。 Regarding the X direction (conveying direction of the substrate P), the odd-numbered drawing lines SL1, SL3, SL5 and the even-numbered drawing lines SL2, SL4, SL6 are separated from each other, but in the Y direction (width direction of the substrate P). , Main scanning direction), the patterns drawn on the substrate P are set so as to be spliced together without being separated from each other. The drawing lines SL1 to SL6 are set so as to be substantially parallel to the width direction of the substrate P, that is, the central axis AXo of the rotating drum DR. Note that joining the drawing lines SLn in the Y direction means that the positions of the ends of the drawing lines SLn in the Y direction are adjacent to each other or partially overlapped. When the ends of the drawing lines SLn are overlapped in the Y direction, for example, the length of each drawing line SLn is 1 to 5% in the Y direction including the drawing start point or the drawing end point. It is good to duplicate.
 複数の描画ユニットUn(U1~U6)は、全部で基板P上の露光領域(パターン形成領域)の幅方向の寸法をカバーするように、Y方向の走査領域(主走査範囲の区画)を分担している。例えば、1つの描画ユニットUnによるY方向の主走査範囲(描画ラインSLnの長さ)を30~60mm程度とすると、6個の描画ユニットU1~U6をY方向に配置することによって、描画可能な露光領域のY方向の幅を180~360mm程度まで広げている。なお、各描画ラインSLn(SL1~SL6)の長さ(描画範囲の長さ)は、原則として同一とする。つまり、描画ラインSL1~SL6の各々に沿って走査されるビームLBnのスポット光SPの走査距離は、原則として同一とする。 The plurality of drawing units Un (U1 to U6) share a scanning area (main scanning range section) in the Y direction so as to cover the width direction dimension of the exposure region (pattern formation region) on the substrate P in total. doing. For example, assuming that the main scanning range (the length of the drawing line SLn) in the Y direction by one drawing unit Un is about 30 to 60 mm, drawing is possible by arranging the six drawing units U1 to U6 in the Y direction. The width of the exposed area in the Y direction is widened to about 180 to 360 mm. In principle, the length (drawing range length) of each drawing line SLn (SL1 to SL6) is the same. That is, in principle, the scanning distances of the spot light SPs of the beams LBn scanned along each of the drawing lines SL1 to SL6 are the same.
 各描画ユニットUn(U1~U6)は、ポリゴンミラーPMの各反射面RPで反射されて主走査方向に偏向されるビームLBnを入射するテレセントリックなfθレンズ系(描画用走査光学系)FTを備え、fθレンズ系FTから射出して基板Pに投射される各ビームLBnは、XZ平面内でみたとき、回転ドラムDRの中心軸AXoに向かって進むように設定される。これにより、各描画ユニットUn(U1~U6)から基板Pに向かって進むビームLBnの主光線は、XZ平面において、基板Pの湾曲した表面上の描画ラインSLnの位置での接平面に対して常に垂直となるように基板Pに向けて投射される。すなわち、スポット光SPの主走査方向、並びに副走査方向(回転ドラムDRの外周面に沿った周方向)に関して、基板Pに投射されるビームLBn(LB1~LB6)はテレセントリックな状態で走査される。 Each drawing unit Un (U1 to U6) includes a telecentric fθ lens system (scanning optical system for drawing) FT that injects a beam LBn that is reflected by each reflecting surface RP of the polygon mirror PM and deflected in the main scanning direction. , The beam LBn emitted from the fθ lens system FT and projected onto the substrate P is set to travel toward the central axis AXo of the rotating drum DR when viewed in the XZ plane. As a result, the main ray of the beam LBn traveling from each drawing unit Un (U1 to U6) toward the substrate P is directed to the tangent plane at the position of the drawing line SLn on the curved surface of the substrate P in the XZ plane. It is projected toward the substrate P so that it is always vertical. That is, the beams LBn (LB1 to LB6) projected on the substrate P are scanned in a telecentric state with respect to the main scanning direction and the sub-scanning direction (circumferential direction along the outer peripheral surface of the rotating drum DR) of the spot light SP. ..
 図2は、図1に示したパターン描画装置EXの回転ドラムDRと6つの描画ユニットU1~U6の配置と、基板Pに形成されたアライメントマークや回転ドラムDRの表面に形成された基準パターン等を検出する複数のアライメント系ALGn(nは2以上の整数)の配置とを具体的に示した図であり、図2中の直交座標系XYZの設定は図1と同じである。図2に示した回転ドラムDR、描画ユニットU1~U6、アライメント系ALGnの基本的な配置は、例えば、国際公開第2016/152758号、国際公開第2017/199658号に開示されている。 FIG. 2 shows the arrangement of the rotary drum DR of the pattern drawing apparatus EX and the six drawing units U1 to U6 shown in FIG. 1, the alignment mark formed on the substrate P, the reference pattern formed on the surface of the rotary drum DR, and the like. It is a figure which concretely showed the arrangement of a plurality of alignment systems ALGn (n is an integer of 2 or more) which detects, and the setting of the Cartesian coordinate system XYZ in FIG. 2 is the same as FIG. The basic arrangement of the rotating drum DR, the drawing units U1 to U6, and the alignment system ALGn shown in FIG. 2 is disclosed in, for example, International Publication No. 2016/152758 and International Publication No. 2017/199658.
 基板Pを約180度の角度範囲で支持する回転ドラムDRのY方向の両側には、中心軸AXoの回りを回転するように環状のベアリングで支持されるシャフトSftが設けられ、シャフトSftは不図示の回転駆動源の回転軸と接合されている。また、中心軸AXoを含んでYZ面と平行な面を中心面CPoとする。Y方向(基板Pの幅方向)から見たとき、奇数番の描画ユニットU1、U3、U5と偶数番の描画ユニットU2、U4、U6とは中心面CPoを挟んで対称的に配置される。図2のように、直交座標系XYZのXZ面と平行な面内では、描画ユニットU1(及びU3、U5)は中心面CPoから反時計回りに一定の角度θcだけ傾けられ、描画ユニットU2(及びU4、U6)は中心面CPoから時計回りに一定の角度θcだけ傾けられる。描画ユニットU1~U6の各々の構成は同一であるので、代表して描画ユニットU1の構成を図3に示す。 Shafts Sft supported by an annular bearing so as to rotate around the central axis AXo are provided on both sides of the rotating drum DR that supports the substrate P in an angle range of about 180 degrees in the Y direction, and the shaft Sft is not provided. It is joined to the rotation shaft of the rotation drive source shown in the figure. Further, the plane including the central axis AXo and parallel to the YZ plane is defined as the central plane CPo. When viewed from the Y direction (width direction of the substrate P), the odd-numbered drawing units U1, U3, and U5 and the even-numbered drawing units U2, U4, and U6 are symmetrically arranged with the central surface CPo in between. As shown in FIG. 2, in the plane parallel to the XZ plane of the Cartesian coordinate system XYZ, the drawing unit U1 (and U3, U5) is tilted counterclockwise by a certain angle θc from the central plane CPo, and the drawing unit U2 (and U3, U5) And U4, U6) are tilted clockwise from the central surface CPo by a certain angle θc. Since the configurations of the drawing units U1 to U6 are the same, the configuration of the drawing unit U1 is shown in FIG. 3 as a representative.
 図3は、図1に示した落射ミラーIM1から供給されるビームLB1(描画データに応じて強度変調された直径1mm~0.5mm程度の平行光束)を、最終的に基板P上にスポット光SPとして集光するfθレンズ系FTと、スポット光SPをY方向に主走査して描画ラインSL1を形成するポリゴンミラーPM等を含む描画ユニットU1の詳細構成を示す斜視図であり、例えば国際公開第2019/082850号に開示されている。描画ユニットU1(並びにU2~U6)のポリゴンミラーPMからfθレンズ系FTを通る光軸AXf1は、図2のように直交座標系XYZ内では傾くので、描画ユニットU1(並びにU2~U6)内では、直交座標系XYZに対して傾いた直交座標系XtYtZtを設定する。その直交座標系XtYtZtにおいて、Yz方向はY方向と同じであり、Zt方向は、落射ミラーIM1から描画ユニットU1に入射するビームLB1の主光線(中心光線)の進行方向、若しくは描画ラインSL1の位置で基板Pの法線方向とし、Xt方向はfθレンズ系FTを通る光軸AXf1の方向とする。なお、偶数番の描画ユニットU2、U4、U6の各々のfθレンズ系FTの光軸は光軸AXf2とする。 In FIG. 3, the beam LB1 (parallel light flux having a diameter of about 1 mm to 0.5 mm whose intensity is modulated according to the drawing data) supplied from the epi-illumination mirror IM1 shown in FIG. 1 is finally spotlighted on the substrate P. FIG. 5 is a perspective view showing a detailed configuration of a drawing unit U1 including an fθ lens system FT that collects light as an SP and a polygon mirror PM that mainly scans a spot light SP in the Y direction to form a drawing line SL1. It is disclosed in No. 2019/082850. The optical axis AXf1 passing through the fθ lens system FT from the polygon mirror PM of the drawing unit U1 (and U2 to U6) is tilted in the Cartesian coordinate system XYZ as shown in FIG. , The Cartesian coordinate system XtYtZt tilted with respect to the Cartesian coordinate system XYZ is set. In the Cartesian coordinate system XtYtZt, the Yz direction is the same as the Y direction, and the Zt direction is the traveling direction of the main ray (center ray) of the beam LB1 incident on the drawing unit U1 from the epi-illumination mirror IM1, or the position of the drawing line SL1. The Xt direction is the direction of the optical axis AXf1 passing through the fθ lens system FT. The optical axis of each fθ lens system FT of the even-numbered drawing units U2, U4, and U6 is the optical axis AXf2.
 図3において、描画ユニットU1(並びにU2~U6)内には、ミラーM30、レンズL6、レンズL7、石英製の傾斜可能な平行平板HVP、レンズL8、L9、ミラーM31、偏光ビームスプリッタPBS、開口絞りAP、1/4波長板QW、ミラーM32、第1シリンドリカルレンズCYa、レンズL10、ミラーM33、レンズL11、ミラーM34、M35、M36、8面のポリゴンミラーPM、fθレンズ系FT、ミラーM37、第2シリンドリカルレンズCYbが、その順に配置される。ミラーM30は、入射するビームLB1の進行方向が-Xt方向になるようにビームLB1を90度に反射させる。ミラーM30で反射されたビームLB1の光路に沿って配置されるレンズL6、L7、L8、L9は、ミラーM30で反射された細いビームLB1(直径が1mm~0.5mm程度)を、数mm以上(5~10mmの範囲)の直径の平行光束に拡大するビームエキスパンダー系を構成する。 In FIG. 3, in the drawing unit U1 (and U2 to U6), a mirror M30, a lens L6, a lens L7, a tiltable parallel flat plate HVP made of quartz, lenses L8, L9, a mirror M31, a polarizing beam splitter PBS, and an opening. Aperture AP, 1/4 wavelength plate QW, mirror M32, first cylindrical lens CYa, lens L10, mirror M33, lens L11, mirror M34, M35, M36, 8-sided polygon mirror PM, fθ lens system FT, mirror M37, The second cylindrical lens CYb is arranged in that order. The mirror M30 reflects the beam LB1 at 90 degrees so that the traveling direction of the incident beam LB1 is in the −Xt direction. The lenses L6, L7, L8, and L9 arranged along the optical path of the beam LB1 reflected by the mirror M30 are a few mm or more of the thin beam LB1 (diameter is about 1 mm to 0.5 mm) reflected by the mirror M30. It constitutes a beam expander system that expands to a parallel light flux with a diameter of (range of 5 to 10 mm).
 平行平板HVPは、ビームエキスパンダー系のレンズL6~L9の間の光路中に設けられ、Zt軸と平行な回転軸AXhの回りに回転(傾斜)可能に構成される。平行平板HVPの傾斜量を変えることにより、基板P上に投射されるスポット光SPの位置を副走査方向(Xt方向、基板Pの移動方向である副走査方向)に、スポット光SPの実効的な直径φpの数倍~十数倍の距離範囲でシフトさせることができる。偏光ビームスプリッタPBSは、レンズL9を通って拡大されてミラーM31で-Yt方向に反射されるビームLB1(平行光束)を入射する。ビームLB1を直線P偏光とすると、偏光ビームスプリッタPBSは、ビームLB1を偏光分離面で99%以上の強度で反射させて、後段の開口絞りAPに向かわせる。開口絞りAPの円形開口を透過したビームLBは、1/4波長板QWを透過する際に直線偏光から円偏光に変換される。 The parallel flat plate HVP is provided in the optical path between the lenses L6 to L9 of the beam expander system, and is configured to be rotatable (tilted) around the rotation axis AXh parallel to the Zt axis. By changing the amount of inclination of the parallel flat plate HVP, the position of the spot light SP projected on the substrate P can be effectively changed to the sub-scanning direction (Xt direction, the sub-scanning direction which is the moving direction of the substrate P). It can be shifted in a distance range of several times to ten and several times the diameter φp. The polarizing beam splitter PBS incident on the beam LB1 (parallel luminous flux) which is magnified through the lens L9 and reflected by the mirror M31 in the −Yt direction. Assuming that the beam LB1 is linearly P-polarized, the polarization beam splitter PBS reflects the beam LB1 at the polarization separation surface with an intensity of 99% or more and directs the beam LB1 to the aperture stop AP in the subsequent stage. The beam LB transmitted through the circular aperture of the aperture stop AP is converted from linearly polarized light to circularly polarized light when transmitted through the quarter wave plate QW.
 1/4波長板QWを透過したビームLB1(平行光束)は、ミラーM32によって-Zt方向に反射され、第1シリンドリカルレンズCYa(母線がYt軸と平行)に入射し、空間中の面PvにおいてXt方向の幅が極めて小さく、Yt方向に数mm(開口絞りAPの開口径と同じ)の長さで延びたスリット状の強度分布に集光される。面Pvで一次元方向のみ収斂されたビームLB1は、2枚組の球面レンズ系の初群の球面レンズL10を通って、ミラーM33で+Xt方向に反射された後、2枚組の球面レンズ系の後群の球面レンズL11を通って+Xt方向に進む。球面レンズL11から射出した後のビームLB1は、ミラーM34によって+Zt方向に反射された後、ミラーM35によって+Yt方向に反射される。ミラーM34とミラーM35は、ミラーM35から+Yt方向に進むビームLB1の主光線(中心光線)とfθレンズ系FTの光軸AXf1とがXtYt面と平行な面内で互いに直交するように配置されている。ミラーM35から+Yt方向に進むビームLB1は、fθレンズ系FTの光軸AXf1を挟んでミラーM35の反対側に配置されるミラーM36によって反射され、ポリゴンミラーPMの反射面RPaに投射される。 The beam LB1 (parallel luminous flux) transmitted through the 1/4 wave plate QW is reflected by the mirror M32 in the −Zt direction, is incident on the first cylindrical lens CYa (the bus is parallel to the Yt axis), and is formed on the surface Pv in space. The width in the Xt direction is extremely small, and the light is focused on a slit-shaped intensity distribution extending in the Yt direction with a length of several mm (same as the opening diameter of the aperture throttle AP). The beam LB1 converged only in the one-dimensional direction by the surface Pv passes through the spherical lens L10 of the first group of the two-disc spherical lens system, is reflected by the mirror M33 in the + Xt direction, and then is reflected in the + Xt direction, and then the two-disc spherical lens system. It advances in the + Xt direction through the spherical lens L11 in the rear group. The beam LB1 after being emitted from the spherical lens L11 is reflected in the + Zt direction by the mirror M34 and then reflected in the + Yt direction by the mirror M35. The mirror M34 and the mirror M35 are arranged so that the main ray (center ray) of the beam LB1 traveling in the + Yt direction from the mirror M35 and the optical axis AXf1 of the fθ lens system FT are orthogonal to each other in a plane parallel to the XtYt plane. There is. The beam LB1 traveling in the + Yt direction from the mirror M35 is reflected by the mirror M36 arranged on the opposite side of the mirror M35 with the optical axis AXf1 of the fθ lens system FT interposed therebetween, and is projected onto the reflection surface RPa of the polygon mirror PM.
 第1シリンドリカルレンズCYaと2枚組の球面レンズ系の作用によって、球面レンズL11を通った直後でミラーM34に入射するビームLB1は、Zt方向に関してはほぼ平行光束の状態となり、Yt方向に関しては収斂光束の状態となる。なお、図3では球面レンズ系を主点間距離の調整の為に球面レンズL10、L11の2枚で構成したが、1枚の球面レンズだけで構成しても良い。 Due to the action of the first cylindrical lens CYa and the two-disc spherical lens system, the beam LB1 incident on the mirror M34 immediately after passing through the spherical lens L11 becomes a state of almost parallel light beam in the Zt direction and converges in the Yt direction. It becomes a state of light beam. In FIG. 3, the spherical lens system is composed of two spherical lenses L10 and L11 for adjusting the distance between the principal points, but it may be composed of only one spherical lens.
 ミラーM36の反射面は、Zt軸と平行であると共にXtZt面と平行で光軸AXf1を含む面に対して22.5°の挟角で配置される。これにより、ミラーM36からポリゴンミラーPMの反射面RPaに向かうビームLB1の主光線(中心光線)、即ち第1シリンドリカルレンズCYaや球面レンズ系(レンズL10、L11)の光軸の延長で、ミラーM36からポリゴンミラーPMまでの光軸は、XtYt面と平行な面内で、fθレンズ系FTの光軸AXf1に対して45°の角度に設定される。また、図3において、ミラーM36で反射してポリゴンミラーPMの反射面RPaに向かうビームLB1は、Zt方向に関してはポリゴンミラーPMの反射面RPa上で集光するように収斂光束の状態となり、XtYt面と平行な面内ではほぼ平行光束の状態となり、反射面RPa上では主走査方向、即ちポリゴンミラーPMの回転中心軸AXpを中心とする内接円の接線方向にスリット状に延びた強度分布となるように集光される。 The reflective surface of the mirror M36 is arranged at a narrowing angle of 22.5 ° with respect to the surface parallel to the Zt axis and parallel to the XtZt surface and including the optical axis AXf1. As a result, the main ray (center ray) of the beam LB1 directed from the mirror M36 toward the reflecting surface RPa of the polygon mirror PM, that is, the extension of the optical axis of the first cylindrical lens CYa and the spherical lens system (lenses L10 and L11), is formed on the mirror M36. The optical axis from to the polygon mirror PM is set at an angle of 45 ° with respect to the optical axis AXf1 of the fθ lens system FT in a plane parallel to the XtYt plane. Further, in FIG. 3, the beam LB1 reflected by the mirror M36 and directed toward the reflecting surface RPa of the polygon mirror PM is in a convergent light beam state so as to be focused on the reflecting surface RPa of the polygon mirror PM in the Zt direction, and is in a state of convergent light beam XtYt. In the plane parallel to the plane, the light beam is almost parallel, and on the reflecting surface RPa, the intensity distribution extends in a slit shape in the main scanning direction, that is, in the tangential direction of the inscribed circle centered on the rotation center axis AXp of the polygon mirror PM. It is condensed so as to be.
 ポリゴンミラーPMの反射面RPaで反射されたビームLB1は、テレセントリックなfθレンズ系FTを通った後、ミラーM37で-Zt方向に直角に反射されて、第2シリンドリカルレンズCYb(母線の方向はYt方向)に入射し、基板P上にスポット光SPとして集光される。本実施の形態では、ミラーM37で-Zt方向に直角に折り曲げられて、基板Pの表面(回転ドラムDRの外周面)と垂直になるfθレンズ系FTの光軸AXf1と、ミラーM30に向けて-Zt方向に入射するビームLB1の中心光線とが、Zt軸と平行な線分LE1(他の描画ユニットU2~U6の各々については線分LE2~LE6とする)と同軸となるように設定されている。そのような設定によって、描画ラインSL1を基板P(XtYt面と平行な面)内で微少量傾ける際に、図3に示したミラーM30~第2シリンドリカルレンズCYbまでの各光学部材を一体的に支持する筐体(ユニット支持フレーム)の全体を、線分LE1を中心に微少回転させることが可能となる。このように、描画ユニットU1(他のユニットU2~U6も同様)の支持フレーム全体を線分LE1(LE2~LE6)の回りに微少回転可能とする機構については、例えば国際公開第2016/152758号に開示されている。 The beam LB1 reflected by the reflecting surface RPa of the polygon mirror PM passes through the telecentric fθ lens system FT, and then is reflected by the mirror M37 at a right angle in the −Zt direction to the second cylindrical lens CYb (the direction of the bus is Yt). It is incident on the substrate P and is focused as spot light SP on the substrate P. In the present embodiment, the optical axis AXf1 of the fθ lens system FT, which is bent at a right angle in the −Zt direction by the mirror M37 and becomes perpendicular to the surface of the substrate P (the outer peripheral surface of the rotating drum DR), and toward the mirror M30. The central ray of the beam LB1 incident in the −Zt direction is set to be coaxial with the line segment LE1 parallel to the Zt axis (the line segments LE2 to LE6 are used for each of the other drawing units U2 to U6). ing. With such a setting, when the drawing line SL1 is tilted by a small amount in the substrate P (a plane parallel to the XtYt plane), each optical member from the mirror M30 to the second cylindrical lens CYb shown in FIG. 3 is integrally formed. The entire supporting housing (unit support frame) can be slightly rotated around the line segment LE1. As described above, for a mechanism that enables the entire support frame of the drawing unit U1 (the same applies to the other units U2 to U6) to rotate slightly around the line segment LE1 (LE2 to LE6), for example, International Publication No. 2016/152758 It is disclosed in.
 また、本実施の形態では、被走査面に設置される被照射体(基板P、又は回転ドラムDRの外周面)の表面にスポット光SPを投射した際に発生する反射光の強度を検出する為に、光電センサDTRとレンズ系GFとが設けられる。被照射体の表面からの反射光(特に正規反射光)は、第2シリンドリカルレンズCYb、fθレンズ系FT、ポリゴンミラーPMの反射面RPa、ミラーM36、M35、M34、球面レンズL11、ミラーM33、球面レンズL10、第1シリンドリカルレンズCYa、ミラーM32、1/4波長板QW、開口絞りAPを介して、偏光ビームスプリッタPBSまで戻ってくる。被照射体の表面に投射されるスポット光SPは円偏光であり、その反射光も円偏光成分を多く含んでいる為、反射光が1/4波長板QWを透過して偏光ビームスプリッタPBSに向かうとき、その偏光特性は直線S偏光に変換される。その為、被照射体の表面からの反射光は偏光ビームスプリッタPBSの偏光分離面を透過してレンズ系GFに入射する。レンズ系GFによって被照射体からの反射光が光電センサDTRの受光面に集光されるように、光電センサDTRの受光面は被走査面上のスポット光SPと光学的に共役な関係に設定される。 Further, in the present embodiment, the intensity of the reflected light generated when the spot light SP is projected on the surface of the irradiated object (the substrate P or the outer peripheral surface of the rotating drum DR) installed on the surface to be scanned is detected. Therefore, a photoelectric sensor DTR and a lens system GF are provided. The reflected light (particularly normal reflected light) from the surface of the irradiated body is the second cylindrical lens CYb, the fθ lens system FT, the reflecting surface RPa of the polygon mirror PM, the mirrors M36, M35, M34, the spherical lens L11, and the mirror M33. It returns to the polarizing beam splitter PBS via the spherical lens L10, the first cylindrical lens CYa, the mirror M32, the 1/4 wavelength plate QW, and the aperture aperture AP. The spot light SP projected on the surface of the irradiated body is circularly polarized light, and the reflected light also contains a large amount of circularly polarized light components. Therefore, the reflected light passes through the 1/4 wavelength plate QW and becomes the polarized beam splitter PBS. When heading, its polarization characteristics are converted to linear S-polarized light. Therefore, the reflected light from the surface of the irradiated body passes through the polarization separation surface of the polarization beam splitter PBS and is incident on the lens system GF. The light receiving surface of the photoelectric sensor DTR is set to have an optically conjugate relationship with the spot light SP on the scanning surface so that the reflected light from the irradiated body is focused on the light receiving surface of the photoelectric sensor DTR by the lens system GF. Will be done.
 なお、図3では図示を省略したが、国際公開第2015/166910号、又は国際公開第2016/152758号に開示されているように、描画用のビームLB1が投射されるポリゴンミラーPMの反射面RPaの回転方向の1つ手前の反射面RPbには、ポリゴンミラーPMの各反射面が描画開始直前の角度位置になったことを表すパルス状の原点信号を出力する為の原点センサ用の送光ビームが投射される。また、図3に示した描画ユニットU1の内部の詳細構成は、他の描画ユニットU2~U6でも同一であるが、偶数番の描画ユニットU2、U4、U6の各々は、図3の描画ユニットU1の全体を、線分LE1を中心に180度回転させた向きに設置される。 Although not shown in FIG. 3, as disclosed in International Publication No. 2015/166910 or International Publication No. 2016/152758, the reflective surface of the polygon mirror PM on which the drawing beam LB1 is projected. Sending for the origin sensor to output a pulsed origin signal indicating that each reflective surface of the polygon mirror PM is at the angular position immediately before the start of drawing to the reflective surface RPb immediately before the rotation direction of RPa. A light beam is projected. Further, the detailed internal configuration of the drawing unit U1 shown in FIG. 3 is the same for the other drawing units U2 to U6, but each of the even-numbered drawing units U2, U4, and U6 has the drawing unit U1 of FIG. Is installed in a direction rotated by 180 degrees around the line segment LE1.
 ここで、再び図2を参照して、パターン描画装置EXの構成を更に説明する。図3に示した描画ユニットU1を含む奇数番の描画ユニットU3、U5は、線分LE1、LE3、LE5の各々の延長線(即ち、fθレンズ系FTの光軸AXf1の延長線)が、図2のY方向から見て回転ドラムDRの回転中心軸AXoに向かうと共に、線分LE1、LE3、LE5が中心面CPoに対して角度-θcだけ反時計方向に傾くように設置される。一方、偶数番の描画ユニットU2、U4、U6は、線分LE2、LE4、LE6の各々の延長線(即ち、fθレンズ系FTの光軸AXf2の延長線)が、図2のY方向から見て回転ドラムDRの回転中心軸AXoに向かうと共に、線分LE2、LE4、LE6が中心面CPoに対して角度+θcだけ時計方向に傾くように設置される。角度±θcは、奇数番の描画ユニットU1、U3、U5と偶数番の描画ユニットU2、U4、U6とが空間的に干渉しない(ぶつからない)範囲で、なるべく小さくなるように設定される。 Here, the configuration of the pattern drawing device EX will be further described with reference to FIG. 2 again. In the odd-numbered drawing units U3 and U5 including the drawing unit U1 shown in FIG. 3, the extension lines of the line segments LE1, LE3, and LE5 (that is, the extension lines of the optical axis AXf1 of the fθ lens system FT) are shown in FIG. The line segments LE1, LE3, and LE5 are installed so as to be inclined counterclockwise by an angle −θc with respect to the central surface CPo while facing the rotation central axis AXo of the rotating drum DR when viewed from the Y direction of 2. On the other hand, in the even-numbered drawing units U2, U4, and U6, the extension lines of the line segments LE2, LE4, and LE6 (that is, the extension lines of the optical axis AXf2 of the fθ lens system FT) are viewed from the Y direction of FIG. The line segments LE2, LE4, and LE6 are installed so as to be tilted clockwise by an angle + θc with respect to the central surface CPo while moving toward the rotation central axis AXo of the rotating drum DR. The angle ± θc is set to be as small as possible within a range in which the odd-numbered drawing units U1, U3, and U5 and the even-numbered drawing units U2, U4, and U6 do not spatially interfere with each other (do not collide).
 本実施の形態において、複数のアライメント系ALGnはY方向に所定間隔で並べられて、それぞれ基板P上のマーク等を検出する対物レンズ系を備える。それらの対物レンズ系を介して基板P上に設定される検出領域(観察視野)は、基板Pの移動方向(回転ドラムDRの外周面の周回方向)に関して、描画ユニットU1~U6の各々による描画ラインSL1~SL6の位置よりも上流側に配置される。その検出領域(観察視野)の中心を通る対物レンズ系の各々の光軸AXsの延長線は、回転ドラムDRの回転中心軸AXoに向かうと共に、検出領域(観察視野)の位置で基板Pの表面又は回転ドラムDRの外周面と垂直になるように設定される。アライメント系ALGnの先端付近には基準マーク(基準指標マーク)を形成した基準指標部材としての基準バー部材RBが付設されている。基準バー部材RBの基準マークは、対物レンズ系の各々による検出領域(観察視野)の相互の位置関係、又は描画ユニットU1~U6の各々による描画ラインSL1~SL6の相互の位置関係をキャリブレーションする際、或いは描画ラインSL1~SL6の位置と複数の検出領域の各位置との周方向(基板Pの移動方向)の間隔(ベースライン長)や位置関係を計測する際に使われる。アライメント系ALGnの各々の光軸AXsは、XZ面と平行な面内で見ると、奇数番の描画ユニットU1、U3、U5の各々による描画ラインSL1、SL3、SL5の角度θcよりも大きい角度θaだけ中心面CPoから反時計方向に傾くように設定される。 In the present embodiment, a plurality of alignment systems ALGn are arranged in the Y direction at predetermined intervals, and each includes an objective lens system for detecting a mark or the like on the substrate P. The detection region (observation field of view) set on the substrate P via the objective lens system is drawn by each of the drawing units U1 to U6 with respect to the moving direction of the substrate P (circumferential direction of the outer peripheral surface of the rotating drum DR). It is arranged on the upstream side of the positions of lines SL1 to SL6. The extension lines of the respective optical axes AXs of the objective lens system passing through the center of the detection region (observation field of view) are directed toward the rotation center axis AXo of the rotating drum DR, and the surface of the substrate P is located at the position of the detection area (observation field of view). Alternatively, it is set to be perpendicular to the outer peripheral surface of the rotating drum DR. A reference bar member RB as a reference index member forming a reference mark (reference index mark) is attached near the tip of the alignment system ALGn. The reference mark of the reference bar member RB calibrates the mutual positional relationship of the detection areas (observation fields of view) by each of the objective lens systems, or the mutual positional relationship of the drawing lines SL1 to SL6 by each of the drawing units U1 to U6. It is also used when measuring the interval (baseline length) and positional relationship in the circumferential direction (moving direction of the substrate P) between the positions of the drawing lines SL1 to SL6 and each position of the plurality of detection areas. When viewed in a plane parallel to the XZ plane, each optical axis AXs of the alignment system ALGn has an angle θa larger than the angle θc of the drawing lines SL1, SL3, SL5 by the odd-numbered drawing units U1, U3, and U5, respectively. Only the central surface CPo is set to tilt counterclockwise.
 図4は、図2に示した回転ドラムDRとアライメント系ALGnと基準バー部材RBとの配置関係を示す斜視図であり、直交座標系XYZは先の図1又は図2の直交座標系XYZと同じに設定される。本実施の形態では、4つのアライメント系ALG1~ALG4がY方向に所定の間隔で直線的に配置され、アライメント系ALG1の対物レンズ系OBLの光軸AXsは、対物レンズ系OBLと基板P(回転ドラムDRの外周面)との間に配置された平面ミラーMbとキューブ型のビームスプリッタBS1によって折り曲げられ、基板P上の検出領域(観察視野)AD1の中心点を通るように設定される。図4では符号を省略したが、他のアライメント系ALG2、ALG3、ALG4の各々にも、同様の対物レンズ系OBL、平面ミラーMb、キューブ型のビームスプリッタBS1(合成光学部材)が設けられ、アライメント系ALG2、ALG3、ALG4の各々の光軸AXsも、それぞれ基板P上に設定される検出領域(観察視野)AD2、AD3、AD4の中心点を通るように設定される。なお、本実施の形態では、アライメント系ALG1を第1のアライメント系とし、アライメント系ALG4を第2のアライメント系とするが、4つのアライメント系ALG1~ALG4のうちの任意の1つを第1のアライメント系とし、残りの3つのアライメント系のうちの任意の1つを第2のアライメント系としても良い。 FIG. 4 is a perspective view showing the arrangement relationship between the rotating drum DR, the alignment system ALGn, and the reference bar member RB shown in FIG. 2, and the Cartesian coordinate system XYZ is the same as the Cartesian coordinate system XYZ of FIG. Set to the same. In the present embodiment, the four alignment systems ALG1 to ALG4 are linearly arranged in the Y direction at predetermined intervals, and the optical axes AXs of the objective lens system OBL of the alignment system ALG1 are the objective lens system OBL and the substrate P (rotation). It is bent by a planar mirror Mb arranged between the outer peripheral surface of the drum DR and the cube-shaped beam splitter BS1 and is set to pass through the center point of the detection region (observation field) AD1 on the substrate P. Although the reference numerals are omitted in FIG. 4, each of the other alignment systems ALG2, ALG3, and ALG4 is provided with the same objective lens system OBL, plane mirror Mb, and cube-type beam splitter BS1 (synthetic optical member) for alignment. The optical axes AXs of the systems ALG2, ALG3, and ALG4 are also set to pass through the center points of the detection regions (observation fields of view) AD2, AD3, and AD4 set on the substrate P, respectively. In the present embodiment, the alignment system ALG1 is used as the first alignment system and the alignment system ALG4 is used as the second alignment system, but any one of the four alignment systems ALG1 to ALG4 is used as the first alignment system. The alignment system may be used, and any one of the remaining three alignment systems may be used as the second alignment system.
 基準バー部材RBは、低熱膨張係数の材料(インバー、セラミックス、石英等)でY方向に細長く成型され、4つのアライメント系ALG1~ALG4の各々のビームスプリッタBS1の近傍に付設される。基準バー部材RBの材料としては、軽量化も可能なセラミックスにすることが望ましく、特に、酸化マグネシウム(MgO)、酸化アルミニウム(Al23)、二酸化珪素(SiO2)の3成分で構成されるコージライト系セラミックスにすると良い。基準バー部材RBのビームスプリッタBS1と対向する参照面RBa上には、アライメント系ALG1の基板P上の検出領域AD1と対応した位置に検出領域AR1が設定される。参照面RBaの検出領域AR1内には、ビームスプリッタBS1と平面ミラーMbとを介して対物レンズ系OBLで観察可能な基準マーク(基準パターン)が形成されている。従って、本実施の形態におけるアライメント系ALGnは、対物レンズ系OBLの先端側に配置されたビームスプリッタBS1を介して、検出領域AD1内に現れる基板P上のアライメントマーク(又は回転ドラムDRの外周面上に形成された基準パターン)と、検出領域AR1内に設定される基準バー部材RBの参照面RBa上の基準マークとを、同時に、又は択一的に観察することが可能となる。 The reference bar member RB is elongated in the Y direction from a material having a low coefficient of thermal expansion (Invar, ceramics, quartz, etc.) and is attached in the vicinity of each beam splitter BS1 of the four alignment systems ALG1 to ALG4. As the material of the reference bar member RB, it is desirable to use ceramics that can also reduce the weight, and in particular, it is composed of three components of magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), and silicon dioxide (SiO 2). It is recommended to use aluminum-based ceramics. A detection region AR1 is set at a position corresponding to the detection region AD1 on the substrate P of the alignment system ALG1 on the reference surface RBa facing the beam splitter BS1 of the reference bar member RB. A reference mark (reference pattern) observable by the objective lens system OBL is formed in the detection region AR1 of the reference surface RBa via the beam splitter BS1 and the plane mirror Mb. Therefore, the alignment system ALGn in the present embodiment is the alignment mark (or the outer peripheral surface of the rotating drum DR) on the substrate P that appears in the detection region AD1 via the beam splitter BS1 arranged on the tip side of the objective lens system OBL. The reference pattern formed above) and the reference mark on the reference surface RBa of the reference bar member RB set in the detection area AR1 can be observed simultaneously or selectively.
 図5は、アライメント系ALGnの対物レンズ系OBL、平面ミラーMb、立方体状のキューブ型のビームスプリッタBS1、及び基準バー部材RBの配置関係を、図4のXY面と平行な面内で見た図である。なお、直交座標系XYZは図4、又は図2中の直交座標系XYZと同じに設定される。対物レンズ系OBLから延長される光軸AXsは、平面ミラーMbによって、斜め下方(-Z方向)に折り曲げられる。平面ミラーMbの反射面は、XZ面内で見ると、対物レンズ系OBLから延びる光軸AXsと垂直な面に対して角度θkだけ反時計回りに傾いている。本実施の形態の場合、アライメント系ALGnを図2のように奇数番の描画ユニットU1、U3、U5の下方空間に配置する関係から、対物レンズ系OBLを通る光軸AXsはXZ面内において一定の角度だけXY面に対して傾いたものとなる。図2で説明したように、奇数番の描画ユニットU1、U3、U5の各線分LE1、LE3、LE5は、中心面CPoに対して角度-θcだけ傾けてある為、それに合わせて、対物レンズ系OBLを通る光軸AXsも、XY面に対して角度-θcだけ傾けられている。従って、XZ面内で見たとき、平面ミラーMbの反射面は、YZ面と平行な面に対して角度-(θk+θc)だけ反時計回りに傾いたものとなる。 FIG. 5 shows the arrangement relationship of the objective lens system OBL of the alignment system ALGn, the plane mirror Mb, the cubic cube-shaped beam splitter BS1, and the reference bar member RB in a plane parallel to the XY plane of FIG. It is a figure. The Cartesian coordinate system XYZ is set to be the same as the Cartesian coordinate system XYZ in FIG. 4 or FIG. The optical axis AXs extended from the objective lens system OBL is bent obliquely downward (-Z direction) by the plane mirror Mb. When viewed in the XZ plane, the reflective surface of the plane mirror Mb is tilted counterclockwise by an angle θk with respect to the plane perpendicular to the optical axis AXs extending from the objective lens system OBL. In the case of the present embodiment, the optical axis AXs passing through the objective lens system OBL is constant in the XZ plane because the alignment system ALGn is arranged in the space below the odd-numbered drawing units U1, U3, and U5 as shown in FIG. It is tilted with respect to the XY plane by the angle of. As described with reference to FIG. 2, since the odd-numbered drawing units U1, U3, and U5 line segments LE1, LE3, and LE5 are tilted by an angle −θc with respect to the central surface CPo, the objective lens system is adjusted accordingly. The optical axes AXs passing through the OBL are also tilted by an angle −θc with respect to the XY plane. Therefore, when viewed in the XZ plane, the reflecting surface of the plane mirror Mb is tilted counterclockwise by an angle − (θk + θc) with respect to the plane parallel to the YZ plane.
 平面ミラーMbで折り返されてビームスプリッタBS1に向かう光軸AXsは、元の光軸AXsに対して-Z方向に角度2θkだけ傾いたものとなり、直交座標系XYZのXY面と平行な面に対しては、角度-(θc+2θk)だけ傾いたものとなる。ビームスプリッタBS1は2つの直角プリズム(例えば石英製)の斜面同士を接合した光分割面Bspを有し、XZ面内で見る断面形状は全体でほぼ正方形に成型されている。ビームスプリッタBS1の平面ミラーMb側の面PBaと基準バー部材RB側の面PBcとは互いに平行であると共に、それぞれ光分割面Bspに対して45度に成型されている。更に、ビームスプリッタBS1の基板P(回転ドラムDR)と対向する側の面PBbは、面PBaと面PBcの各々と直交し、光分割面Bspに対しても45度に成型されている。そして、ビームスプリッタBS1の面PBbは基板Pの表面(接平面)と平行に設定され、面PBcは基準バー部材RBの参照面RBaと平行に設定される。 The optical axis AXs that are folded back by the plane mirror Mb and directed toward the beam splitter BS1 are tilted by an angle of 2θk in the −Z direction with respect to the original optical axis AXs, with respect to a plane parallel to the XY plane of the Cartesian coordinate system XYZ. Therefore, it is tilted by an angle − (θc + 2θk). The beam splitter BS1 has an optical splitting surface Bsp in which the slopes of two right-angled prisms (for example, made of quartz) are joined to each other, and the cross-sectional shape seen in the XZ surface is formed into a substantially square shape as a whole. The surface PBa on the plane mirror Mb side of the beam splitter BS1 and the surface PBc on the reference bar member RB side are parallel to each other and are molded at 45 degrees with respect to the optical division surface Bsp. Further, the surface PBb on the side of the beam splitter BS1 facing the substrate P (rotating drum DR) is orthogonal to each of the surface PBa and the surface PBc, and is molded at 45 degrees with respect to the optical splitting surface Bsp. The surface PBb of the beam splitter BS1 is set parallel to the surface (tangible plane) of the substrate P, and the surface PBc is set parallel to the reference surface RBa of the reference bar member RB.
 また、ビームスプリッタBS1の面PBaを垂直に通る光軸AXsは、面PBcを垂直に通って基準バー部材RBの参照面RBaと垂直になるように設定される。さらに、ビームスプリッタBS1の面PBaを垂直に通って光分割面Bspで90度に反射された光軸AXsは、面PBbを垂直に通って基板Pの表面(接平面)と垂直になるように設定される。対物レンズ系OBLの先端面から基板Pの表面までの光路長と、対物レンズ系OBLの先端面から基準バー部材RBの参照面RBaまでの光路長とは等しく設定され、ビームスプリッタBS1は、対物レンズ系OBLから平面ミラーMbの間の光路を遮蔽しないように配置される。図5から明らかなように、対物レンズ系OBLの先端から基板Pの表面、又は参照面RBaまでの作動距離(ワーキングディスタンス)は、平面ミラーMbとビームスプリッタBS1を介在させるので、長く設定される。その作動距離は、一例として10cm以上に設定される。 Further, the optical axis AXs that vertically passes through the surface PBa of the beam splitter BS1 is set so as to vertically pass through the surface PBc and be perpendicular to the reference surface RBa of the reference bar member RB. Further, the optical axis AXs that passes vertically through the plane PBa of the beam splitter BS1 and is reflected at 90 degrees by the optical splitting plane Bsp so as to pass vertically through the plane PBb and be perpendicular to the surface (tangent plane) of the substrate P. Set. The optical path length from the tip surface of the objective lens system OBL to the surface of the substrate P is set to be equal to the optical path length from the tip surface of the objective lens system OBL to the reference surface RBa of the reference bar member RB, and the beam splitter BS1 is the objective. It is arranged so as not to block the optical path between the lens system OBL and the plane mirror Mb. As is clear from FIG. 5, the working distance (working distance) from the tip of the objective lens system OBL to the surface of the substrate P or the reference surface RBa is set long because the plane mirror Mb and the beam splitter BS1 are interposed. .. The working distance is set to 10 cm or more as an example.
 次に、アライメント系ALGn(ALG1~ALG4)の全体的な概略構成を、図6の斜視図を参照して説明する。図6の直交座標系XYZは、図4、図5の直交座標系XYZと同じに設定される。アライメント系ALGnには、対物レンズ系OBLの光軸AXsと同軸に配置されるレンズ系Gb、ビームスプリッタBS2、撮像部IMS、照明系ILUが設けられている。照明系ILUからの照明光ILbは、ミラーMaで反射されてビームスプリッタBS2の下方(-Z方向)の面から入射し、光分割面で反射されてレンズ系Gbを透過して対物レンズ系OBLに入射する。照明光ILbは、対物レンズ系OBLを通して、基板P側の検出領域ADn(AD1~AD4)、並びに基準バー部材RBの参照面RBa側の検出領域ARn(AR1~AR4)を一様な照度分布で照明する。照明光ILbの波長範囲は、基板P上に形成された感光性機能層(フォトレジスト等)の感光波長域から外れた長波長側に設定され、例えば470nm~650nmに設定される。 Next, the overall schematic configuration of the alignment system ALGn (ALG1 to ALG4) will be described with reference to the perspective view of FIG. The Cartesian coordinate system XYZ of FIG. 6 is set to be the same as the Cartesian coordinate system XYZ of FIGS. 4 and 5. The alignment system ALGn is provided with a lens system Gb, a beam splitter BS2, an imaging unit IMS, and an illumination system ILU that are arranged coaxially with the optical axis AXs of the objective lens system OBL. The illumination light ILb from the illumination system ILU is reflected by the mirror Ma, enters from the lower surface (-Z direction) of the beam splitter BS2, is reflected by the optical division surface, passes through the lens system Gb, and passes through the lens system Gb to pass through the objective lens system OBL. Incident in. The illumination light ILb passes through the objective lens system OBL in the detection areas ADn (AD1 to AD4) on the substrate P side and the detection areas ARn (AR1 to AR4) on the reference surface RBa side of the reference bar member RB with a uniform illuminance distribution. Illuminate. The wavelength range of the illumination light ILb is set to a long wavelength side outside the photosensitive wavelength range of the photosensitive functional layer (photoresist or the like) formed on the substrate P, and is set to, for example, 470 nm to 650 nm.
 基板Pの移動に伴って、検出領域ADn(AD1~AD4)内に基板P上のアライメントマーク(基板マーク)MKn(MK1~MK4)が現れると、マークMKnを含む検出領域ADn内からの反射光の2次元的な強度分布が変化する。検出領域ADnからの反射光は、ビームスプリッタBS1、平面ミラーMb、対物レンズ系OBL、レンズ系Gb、ビームスプリッタBS2を順に通って撮像部IMSで受光される。撮像部IMSは、CCD又はCMOS等の2次元撮像素子を有しており、マークMKnの像を撮像する。また、基準バー部材RBの参照面RBa上の検出領域ARnも照明光ILbによって照明されているので、参照面RBa上の検出領域ARnからの反射光も、ビームスプリッタBS1、平面ミラーMb、対物レンズ系OBL、レンズ系Gb、ビームスプリッタBS2を順に通って撮像部IMSで受光される。 When the alignment mark (board mark) MKn (MK1 to MK4) on the board P appears in the detection area ADn (AD1 to AD4) with the movement of the board P, the reflected light from the detection area ADn including the mark MKn appears. The two-dimensional intensity distribution of is changed. The reflected light from the detection region ADn passes through the beam splitter BS1, the planar mirror Mb, the objective lens system OBL, the lens system Gb, and the beam splitter BS2 in this order, and is received by the imaging unit IMS. The image pickup unit IMS has a two-dimensional image pickup element such as a CCD or CMOS, and images an image of the mark MKn. Further, since the detection region ARn on the reference surface RBa of the reference bar member RB is also illuminated by the illumination light ILb, the reflected light from the detection region ARn on the reference surface RBa is also the beam splitter BS1, the plane mirror Mb, and the objective lens. The light is received by the imaging unit IMS through the system OBL, the lens system Gb, and the beam splitter BS2 in this order.
 なお、アライメントマークMK1は基板Pの幅方向(Y方向)の一方の端側に、基板Pの長尺方向に沿って一定の間隔(例えば、5~20mm)で形成され、アライメントマークMK4は基板Pの幅方向(Y方向)の他方の端側に、基板Pの長尺方向に沿って一定の間隔(例えば、5~20mm)で形成される。アライメントマークMK2、MK3は、基板Pの幅方向の内側であって、長尺方向に一定間隔で並ぶ複数の被露光領域の間の余白部、或いは、被露光領域内でデバイス用のパターンが形成されない空白領域に形成される。 The alignment mark MK1 is formed on one end side of the width direction (Y direction) of the substrate P at regular intervals (for example, 5 to 20 mm) along the long direction of the substrate P, and the alignment mark MK4 is formed on the substrate P. It is formed on the other end side in the width direction (Y direction) of P at regular intervals (for example, 5 to 20 mm) along the long direction of the substrate P. The alignment marks MK2 and MK3 are inside the width direction of the substrate P, and a blank portion between a plurality of exposed areas arranged at regular intervals in the long direction or a pattern for a device is formed in the exposed area. It is formed in a blank area that is not.
 基板P上に設定される矩形状の検出領域ADnの大きさと、基準バー部材RBの参照面RBa上に設定される矩形状の検出領域ARnの大きさとを揃えた場合、撮像部IMSの撮像素子の撮像面内には、基板P上のアライメントマークMKn(MK1~MK4)の像と、参照面RBa上の検出領域ARn内に形成された基準マークRMn(RM1~RM4)の像とが同時に結像するタイミングが存在するので、撮像面内ではアライメントマークMKnの像と基準マークRMnの像とが互いに重ならないように、アライメントマークMKnと基準マークRMnの各々の配置や形状が設定されている。アライメントマークMKn(MK1~MK4)や基準マークRMn(RM1~RM4)の配置や形状の詳細は後述する。 When the size of the rectangular detection region ADn set on the substrate P and the size of the rectangular detection region ARn set on the reference surface RBa of the reference bar member RB are aligned, the image sensor of the image pickup unit IMS The image of the alignment marks MKn (MK1 to MK4) on the substrate P and the image of the reference marks RMn (RM1 to RM4) formed in the detection region ARn on the reference surface RBa are simultaneously formed in the image pickup surface of the above. Since there is an image timing, the arrangement and shape of the alignment mark MKn and the reference mark RNn are set so that the image of the alignment mark MKn and the image of the reference mark RNn do not overlap each other in the imaging surface. Details of the arrangement and shape of the alignment marks MKn (MK1 to MK4) and the reference marks RMn (RM1 to RM4) will be described later.
 図7は、図4に示した描画ユニットU1~U6の各々による描画ラインSL1~SL6とアライメント系ALG1~ALG4の各々の検出領域AD1~AD4との配置関係と、回転ドラムDRの回転角度の変化(基板Pの周方向の位置変化)を計測するエンコーダ計測系の配置とを、直交座標系XYZのXY面と平行な面内で見た図である。回転ドラムDRのY方向の両端のシャフトSftの各々には、中心軸AXoと同軸にスケール円盤SDa、SDb(同一直径)が回転ドラムDRと一緒に回転するように固定されている。スケール円盤SDa、SDbの直径は回転ドラムDRの直径と同じことが望ましいが、直径の相対差が±20%以内であれば良い。スケール円盤SDa、SDbの円筒面状の外周面には、周方向に一定のピッチで刻線された回折格子状の目盛Gmが形成されている。なお、目盛Gmは回転ドラムDRのY方向の両端側の各々の外周面に直接形成しても良い。 FIG. 7 shows the arrangement relationship between the drawing lines SL1 to SL6 by each of the drawing units U1 to U6 shown in FIG. 4 and the detection areas AD1 to AD4 of the alignment systems ALG1 to ALG4, and the change in the rotation angle of the rotating drum DR. It is a figure which looked at the arrangement of the encoder measurement system which measures (the position change in the circumferential direction of a substrate P) in the plane parallel to the XY plane of the Cartesian coordinate system XYZ. Scale disks SDa and SDb (same diameter) are fixed to each of the shafts Sft at both ends of the rotating drum DR in the Y direction so as to rotate together with the rotating drum DR coaxially with the central axis AXo. The diameters of the scale disks SDa and SDb are preferably the same as the diameter of the rotating drum DR, but the relative difference in diameter may be within ± 20%. Diffraction grating-like scales Gm are formed on the cylindrical outer peripheral surfaces of the scale disks SDa and SDb at a constant pitch in the circumferential direction. The scale Gm may be formed directly on the outer peripheral surfaces of the rotary drum DR on both end sides in the Y direction.
 スケール円盤SDaの周囲には、目盛Gmの周方向の移動量を計測する光学式の3つのエンコーダヘッドEHa1、EHa2、EHa3がスケール円盤SDaの外周面の周方向に並んで設けられ、スケール円盤SDbの周囲には、目盛Gmの周方向の移動量を計測する光学式の3つのエンコーダヘッドEHb1、EHb2、EHb3がスケール円盤SDbの外周面の周方向に並んで設けられる。一対のエンコーダヘッドEHa1、EHb1による目盛Gmの周方向の読取り位置は、アライメント系ALG1~ALG4の各々のY方向に一列に並ぶ検出領域AD1~AD4の周方向の角度位置と同じになるように設定される。同様に、一対のエンコーダヘッドEHa2、EHb2による目盛Gmの周方向の読取り位置は、Y方向に一列に並ぶ奇数番の描画ラインSL1、SL3、SL5の周方向の角度位置と同じになるように設定され、一対のエンコーダヘッドEHa3、EHb3による目盛Gmの周方向の読取り位置は、Y方向に一列に並ぶ偶数番の描画ラインSL2、SL4、SL6の周方向の角度位置と同じになるように設定される。このようなエンコーダヘッドの配置を持つエンコーダ計測システムは、例えば国際公開第2013/146184号に開示されているが、計測のアッベ誤差を最小にすることができる。 Around the scale disk SDa, three optical encoder heads EHa1, EHa2, and EHa3 for measuring the amount of movement of the scale Gm in the circumferential direction are provided side by side in the circumferential direction of the outer peripheral surface of the scale disk SDa, and the scale disk SDb Three optical encoder heads EHb1, EHb2, and EHb3 for measuring the amount of movement of the scale Gm in the circumferential direction are provided side by side in the circumferential direction of the outer peripheral surface of the scale disk SDb. The reading position of the scale Gm by the pair of encoder heads EHa1 and EHb1 in the circumferential direction is set to be the same as the angular position in the circumferential direction of the detection areas AD1 to AD4 arranged in a row in the Y direction of each of the alignment systems ALG1 to ALG4. Will be done. Similarly, the reading position of the scale Gm by the pair of encoder heads EHa2 and EHb2 in the circumferential direction is set to be the same as the angular position in the circumferential direction of the odd-numbered drawing lines SL1, SL3, and SL5 arranged in a row in the Y direction. The reading position of the scale Gm by the pair of encoder heads EHa3 and EHb3 in the circumferential direction is set to be the same as the angular position in the circumferential direction of the even-numbered drawing lines SL2, SL4, and SL6 arranged in a row in the Y direction. NS. An encoder measurement system having such an arrangement of encoder heads is disclosed in, for example, International Publication No. 2013/146184, but it is possible to minimize the measurement error.
 また、図7において、6つの描画ラインSL1~SL6によって継ぎ露光可能なY方向の最大寸法をWAy、基板Pの幅方向(Y方向)の寸法(短尺長)をLPyとすると、基板Pの短尺長LPyは、回転ドラムDRの外周面のY方向の寸法よりも小さく、且つY方向の両端側に設定されるアライメント系ALG1、ALG4の各々の検出領域AD1、AD4のY方向の間隔寸法よりも大きくなるように設定される。基板P上の-Y方向の端部にX方向(副走査方向)に一定間隔(例えば、5~20mm)で形成されるアライメントマークMK1は、アライメント系ALG1の検出領域AD1内に現れるような位置に形成され、基板P上の+Y方向の端部にX方向(副走査方向)に一定間隔(例えば、5~20mm)で形成されるアライメントマークMK4は、アライメント系ALG4の検出領域AD4内に現れるような位置に形成される。さらに、アライメント系ALG1、ALG4の各検出領域AD1、AD4のY方向の間隔寸法は、最大寸法WAyの範囲内に設定される。なお、本実施の形態では、描画ラインSL1~SL6の各々による線状の領域、又は描画ラインSL1~SL6の全体で囲まれる長方形の領域がパターン形成領域に相当する。 Further, in FIG. 7, assuming that the maximum dimension in the Y direction that can be continuously exposed by the six drawing lines SL1 to SL6 is Way and the dimension (short length) in the width direction (Y direction) of the substrate P is LPy, the short length of the substrate P The length LPy is smaller than the dimension of the outer peripheral surface of the rotating drum DR in the Y direction, and is smaller than the dimension of the distance between the detection regions AD1 and AD4 of the alignment systems ALG1 and ALG4 set on both ends in the Y direction in the Y direction. Set to be large. Alignment marks MK1 formed at regular intervals (for example, 5 to 20 mm) in the X direction (sub-scanning direction) at the end in the −Y direction on the substrate P are positioned so as to appear in the detection region AD1 of the alignment system ALG1. Alignment marks MK4 formed in the + Y direction on the substrate P at regular intervals (for example, 5 to 20 mm) in the X direction (sub-scanning direction) appear in the detection region AD4 of the alignment system ALG4. It is formed in such a position. Further, the spacing dimension of the detection regions AD1 and AD4 of the alignment systems ALG1 and ALG4 in the Y direction is set within the range of the maximum dimension WAY. In the present embodiment, the linear region formed by each of the drawing lines SL1 to SL6 or the rectangular region surrounded by the entire drawing lines SL1 to SL6 correspond to the pattern forming region.
 図8は、描画ユニットU1~U6、スケール円盤SDa、エンコーダヘッドEHa1、EHa2、EHa3、基準バー部材RBの配置関係と支持構造の一例を示し、図8Aは、図2と同様に直交座標系XYZの-Y方向側から+Y方向側に向けてスケール円盤SDaの周囲を見た図であり、図8Bは、図8A中の中心面CPoに沿って図8Aの構造を破断したときの端面を+X方向側から-X方向側に向けて見た部分断面図である。 FIG. 8 shows an example of the arrangement relationship and support structure of the drawing units U1 to U6, the scale disk SDa, the encoder heads EHa1, EHa2, EHa3, and the reference bar member RB, and FIG. 8A shows an example of the orthogonal coordinate system XYZ as in FIG. It is a view of the circumference of the scale disk SDa from the −Y direction side to the + Y direction side, and FIG. 8B shows the end face when the structure of FIG. 8A is broken along the central plane CPo in FIG. It is a partial cross-sectional view seen from the direction side toward the −X direction side.
 図8A、図8Bにおいて、奇数番の描画ユニットU1、U3、U5と偶数番の描画ユニットU2、U4、U6とは、中心面CPoを挟んで対向するように支持フレーム部100に取り付けられる。支持フレーム部100は回転ドラムDRの中心軸AXoと平行にY方向に延びた棒状に形成され、パターン描画装置EXの本体フレームに固定されている。支持フレーム部100は、描画ユニットU1~U6の各々をそれぞれの線分LE1~LE6の回りに微小回転可能に軸支する。このような構造は国際公開第2016/152758号に開示されている。 In FIGS. 8A and 8B, the odd-numbered drawing units U1, U3, and U5 and the even-numbered drawing units U2, U4, and U6 are attached to the support frame portion 100 so as to face each other with the central surface CPo in between. The support frame portion 100 is formed in a rod shape extending in the Y direction in parallel with the central axis AXo of the rotary drum DR, and is fixed to the main body frame of the pattern drawing device EX. The support frame portion 100 pivotally supports each of the drawing units U1 to U6 around the respective line segments LE1 to LE6 in a minute rotatable manner. Such a structure is disclosed in International Publication No. 2016/152758.
 支持フレーム部100の-Y方向側の端部側(スケール円盤SDa側)には、3つのエンコーダヘッドEHa1、EHa2、EHa3と基準バー部材RBとが固定される円弧状の支持板部103Aと、その支持板部103Aを支持フレーム部100の-Y方向側の端部側に固定する支持板部102Aとが設けられる。不図示ではあるが、支持フレーム部100の+Y方向側の端部側(スケール円盤SDb側)には、同様に、エンコーダヘッドEHb1、EHb2、EHb3と基準バー部材RBとが固定される円弧状の支持板部103Bと、その支持板部103Bを支持フレーム部100の+Y方向側の端部側に固定する支持板部102Bとが設けられる。さらに、Y方向に離れて平行に位置する2つの円弧状の支持板部103A、103Bを連結する為に、Y方向に延設された連結バー部材104a、104b、104cが円弧に沿った3ヶ所の各々に設けられる。以上の構成において、支持フレーム部100と、支持板部102A、102B、103A、103Bと、連結バー部材104a、104b、104cとは、低熱膨張係数の金属材料やセラミックス材料を用いて一体化するように組み立てられ、機械的な剛性が高く温度変化による構造変形が極めて小さいメトロロジー・フレーム(計測フレーム)として構成される。 On the end side (scale disk SDa side) of the support frame portion 100 on the −Y direction side, an arc-shaped support plate portion 103A to which the three encoder heads EHa1, EHa2, EHa3 and the reference bar member RB are fixed, and A support plate portion 102A for fixing the support plate portion 103A to the end portion side of the support frame portion 100 on the −Y direction side is provided. Although not shown, the encoder heads EHb1, EHb2, EHb3 and the reference bar member RB are similarly fixed to the end side (scale disk SDb side) of the support frame portion 100 on the + Y direction side in an arc shape. A support plate portion 103B and a support plate portion 102B for fixing the support plate portion 103B to the end portion on the + Y direction side of the support frame portion 100 are provided. Further, in order to connect the two arc-shaped support plate portions 103A and 103B located parallel to each other in the Y direction, the connecting bar members 104a, 104b and 104c extending in the Y direction are provided at three locations along the arc. It is provided in each of. In the above configuration, the support frame portion 100, the support plate portions 102A, 102B, 103A, 103B, and the connecting bar members 104a, 104b, 104c are integrated by using a metal material or a ceramic material having a low coefficient of thermal expansion. It is assembled as a metrology frame (measurement frame) with high mechanical rigidity and extremely small structural deformation due to temperature changes.
 基準バー部材RBは、直交座標系XYZ内で、先の図4~6に示したような姿勢で、Y方向に離れた2つの円弧状の支持板部103A、103Bの各々に橋渡しされるように固定される。支持板部103A、103Bの各々に設けられる微調整機構106は、基準バー部材RBのXZ面内での2次元的な位置やXZ面内での傾き等の姿勢を数ミクロン以下のオーダーで微調整する。支持板部103A側の微調整機構106と支持板部103B側の微調整機構106とを個別に調整することによって、基準バー部材RBの参照面RBaのYZ面内での傾き調整や参照面RBaの中心軸AXoとの平行度の調整等を行うこともできる。その微調整機構106は、主に装置のキャリブレーション時や保守作業時に使われる。 The reference bar member RB is bridged to each of the two arc-shaped support plate portions 103A and 103B separated in the Y direction in the posture shown in FIGS. 4 to 6 above in the Cartesian coordinate system XYZ. Is fixed to. The fine adjustment mechanism 106 provided in each of the support plate portions 103A and 103B finely adjusts the posture such as the two-dimensional position of the reference bar member RB in the XZ plane and the inclination in the XZ plane on the order of several microns or less. adjust. By individually adjusting the fine adjustment mechanism 106 on the support plate 103A side and the fine adjustment mechanism 106 on the support plate 103B side, the inclination of the reference surface RB of the reference bar member RB can be adjusted in the YZ plane and the reference surface RBa. It is also possible to adjust the parallelism with the central axis AXo of. The fine adjustment mechanism 106 is mainly used during calibration and maintenance work of the device.
 次に、図9を参照してアライメント系ALGn(ALG1~ALG4)の光学系の詳細について説明する。図9Aに示すアライメント系ALGnは、先の図6に示した構成と同じであるが、説明を簡単にする為、図6中の平面ミラーMbを省略して対物レンズ系OBLから先の光路を展開してある。アライメント系ALGnの照明系ILUには、対物レンズ系OBLによって規定される基板P(又は回転ドラムDRの外周面)上の検出領域ADn(AD1~AD4)と、基準バー部材RBの参照面RBa上の検出領域ARn(AR1~AR4)との各々と光学的に共役な関係(結像関係)に設定され、検出領域ADn、ARnの各々に適した照明範囲を設定する為に、交換可能な複数の照明視野絞りFAnが設けられている。その照明視野絞りFAnは、図9Bに示すように、例えば照明視野絞りFA1、FA2、FA3の3種類で構成される。典型的な照明視野絞りFA1は、検出領域ADn(AD1~AD4)と検出領域ARn(AR1~AR4)との全体を同時に照明光ILBで照明するように、検出領域ADn、ARnの双方と相似形の矩形の開口部を有する。 Next, the details of the optical system of the alignment system ALGn (ALG1 to ALG4) will be described with reference to FIG. The alignment system ALGn shown in FIG. 9A has the same configuration as that shown in FIG. 6, but for the sake of simplicity, the optical path ahead of the objective lens system OBL is omitted by omitting the plane mirror Mb in FIG. It has been expanded. The illumination system ILU of the alignment system ALGn includes the detection regions ADn (AD1 to AD4) on the substrate P (or the outer peripheral surface of the rotating drum DR) defined by the objective lens system OBL and the reference surface RBa of the reference bar member RB. A plurality of interchangeable lenses are set in an optically conjugate relationship (imaging relationship) with each of the detection regions ARn (AR1 to AR4) of the above, and in order to set an illumination range suitable for each of the detection regions ADn and ARn. The illumination field diaphragm FAn is provided. As shown in FIG. 9B, the illumination field diaphragm FAn is composed of, for example, three types of illumination field diaphragms FA1, FA2, and FA3. A typical illumination field diaphragm FA1 has a similar shape to both the detection areas ADn and ARn so that the entire detection area ADn (AD1 to AD4) and the detection area ARn (AR1 to AR4) are simultaneously illuminated by the illumination light ILB. Has a rectangular opening.
 図9Aにおいて、照明視野絞りFA1の開口部を透過した照明光ILbは、キューブ型のビームスプリッタBS2で反射されて、レンズ系Gb、対物レンズ系OBLを通ってビームスプリッタBS1で振幅分割され、基板P上の検出領域ADn内を一様の強度分布で照明すると共に、基準バー部材RBの参照面RBa上の検出領域ARn内を一様の強度分布で照明する。参照面RBa上の検出領域ARn内には、基準マークRMn(RM1~RM4)が定常的に所定位置に形成されているので、検出領域ARnからの反射光(基準マークRMnからの正反射光、散乱光、回折光を含む)はビームスプリッタBS1を透過した後、対物レンズ系OBL、レンズ系Gb、ビームスプリッタBS2を通って、結像光束Bmaとなって撮像部IMSに入射する。撮像部IMSは、レンズ系Gcと2次元の撮像素子DISとを備え、撮像素子DISの撮像面は、基板Pの表面(又は回転ドラムDRの外周面)と基準バー部材RBの参照面RBaとの各々と光学的に共役な関係(結像関係)に設定される。 In FIG. 9A, the illumination light ILb transmitted through the opening of the illumination field diaphragm FA1 is reflected by the cube-type beam splitter BS2, and is split into amplitude by the beam splitter BS1 through the lens system Gb and the objective lens system OBL, and is used as a substrate. The inside of the detection region ADn on P is illuminated with a uniform intensity distribution, and the inside of the detection region ARn on the reference surface RBa of the reference bar member RB is illuminated with a uniform intensity distribution. Since the reference marks RMn (RM1 to RM4) are constantly formed at predetermined positions in the detection region ARn on the reference surface RBa, the reflected light from the detection region ARn (normally reflected light from the reference mark RMn, (Including scattered light and diffracted light) passes through the beam splitter BS1 and then passes through the objective lens system OBL, the lens system Gb, and the beam splitter BS2 to become an imaging light beam Bma and is incident on the imaging unit IMS. The image pickup unit IMS includes a lens system Gc and a two-dimensional image pickup element DIS, and the image pickup surface of the image pickup element DIS includes the surface of the substrate P (or the outer peripheral surface of the rotating drum DR) and the reference surface RBa of the reference bar member RB. It is set to an optically conjugate relationship (imaging relationship) with each of the above.
 図9Cに示すように、撮像素子DISの撮像面での撮像領域DIS’は実質的に検出領域ADn、ARnと相似形であって、対物レンズ系OBLとレンズ系Gbとによって規定される円形の像側視野範囲Imc内に包含される矩形に設定される。検出領域ARnからの反射光によって、撮像領域DIS’内の特定の位置に基準マークRMnの拡大像RMn’が形成される。本実施の形態では、基準バー部材RBの参照面RBaに形成される基準マークRMnは、検出領域ARn(撮像領域DIS’)内の4隅の各々に配置されるL字状の線状パターンで構成される。なお、図9Cにおいて、撮像領域DIS’を縦方向に二分する線と横方向に二分する線との交点を中心点CCnとする。中心点CCnは撮像面の中心部に位置する特定の撮像画素としても良い。 As shown in FIG. 9C, the image pickup region DIS'on the image pickup surface of the image pickup device DIS is substantially similar to the detection regions ADn and ARn, and has a circular shape defined by the objective lens system OBL and the lens system Gb. It is set to a rectangle included in the image side viewing range Imcc. The reflected light from the detection region ARn forms a magnified image RNn'of the reference mark RNn at a specific position in the imaging region DIS'. In the present embodiment, the reference mark RMn formed on the reference surface RBa of the reference bar member RB is an L-shaped linear pattern arranged at each of the four corners in the detection region ARn (imaging region DIS'). It is composed. In FIG. 9C, the intersection of the line that divides the imaging region DIS'in the vertical direction and the line that divides the imaging region DIS'in the horizontal direction is defined as the center point CCn. The center point CCn may be a specific imaging pixel located at the center of the imaging surface.
 一方、照明視野絞りFA1の開口部を透過した照明光ILbによって、基板P上の検出領域ADn内が一様の強度分布で照明された状態で、検出領域ADn内にアライメントマークMKnが現れると、アライメントマークMKnからの正反射光、散乱光、回折光を含む反射光がビームスプリッタBS1を透過した後、対物レンズ系OBL、レンズ系Gb、ビームスプリッタBS2を通って結像光束Bmaとなって撮像部IMSに入射する。撮像部IMSの撮像素子DISの撮像面と基板Pの表面とが結像関係になっているので、撮像素子DISの撮像領域DIS’内には、アライメントマークMKnの拡大像MKn’が形成される。基板Pが一定の速度で一方向に移動し続けているので、アライメントマークMKnの拡大像MKn’は、撮像領域DIS’内を矢印Xpの方向(X方向)に通過していく。また、撮像領域DIS’内での基準マークRMnの拡大像RMn’の位置と、アライメントマークMKnの拡大像MKn’の位置とは、互いに重ならないように設定されている。図9Cでは、アライメントマークMKn(拡大像MKn’)の形状を、先の図7のアライメントマークMKnの形状に合わせて十字状の線パターンとしたが、その形状は、撮像素子DISからの映像信号を画像解析する画像処理装置によって認識可能な形状であれば、矩形(正方形)、三角形(楔形)、円形等のいずれであっても良い。 On the other hand, when the alignment mark MKn appears in the detection area ADn while the inside of the detection area ADn on the substrate P is illuminated with a uniform intensity distribution by the illumination light ILb transmitted through the opening of the illumination field aperture FA1. After the reflected light including normal reflected light, scattered light, and diffracted light from the alignment mark MKn passes through the beam splitter BS1, it passes through the objective lens system OBL, the lens system Gb, and the beam splitter BS2 to form an imaging light beam Bma and is imaged. It is incident on the part IMS. Since the image pickup surface of the image pickup element DIS of the image pickup unit IMS and the surface of the substrate P are in an imaging relationship, an enlarged image MKn'of the alignment mark MKn is formed in the image pickup region DIS'of the image pickup element DIS. .. Since the substrate P continues to move in one direction at a constant speed, the magnified image MKn'of the alignment mark MKn passes through the imaging region DIS'in the direction of the arrow Xp (X direction). Further, the position of the magnified image RNn'of the reference mark RNn and the position of the magnified image MKn'of the alignment mark MKn in the imaging region DIS'are set so as not to overlap each other. In FIG. 9C, the shape of the alignment mark MKn (enlarged image MKn') is made into a cross-shaped line pattern in accordance with the shape of the alignment mark MKn in FIG. 7, and the shape is a video signal from the image pickup element DIS. Any shape such as a rectangle (square), a triangle (wedge shape), and a circle may be used as long as the shape can be recognized by an image processing device that analyzes the image.
 また、照明系ILUの照明視野絞りFAnを、図9Bに示した照明視野絞りFA2に切り替えると、基準バー部材RBの参照面RBa上に設定される検出領域ARn中の4隅に位置する基準マークRMnに向かう照明光が遮蔽され、撮像素子DISの撮像領域DIS’内には基板P上のアライメントマークMKnの拡大像MKn’のみが現れる。さらに、照明系ILUの照明視野絞りFAnを、図9Bに示した照明視野絞りFA3に切り替えると、基板P上に設定される検出領域ADn内の中央部分でアライメントマークMKnが通過し得る部分に向かう照明光が遮蔽され、参照面RBa上の検出領域ARn中の4隅の部分に位置する基準マークRMnに照明光が照射されるので、撮像素子DISの撮像領域DIS’内には基準マークRMnの拡大像RMn’のみが現れる。 Further, when the illumination field diaphragm FAn of the illumination system ILU is switched to the illumination field diaphragm FA2 shown in FIG. 9B, the reference marks located at the four corners in the detection area ARn set on the reference surface RBa of the reference bar member RB. The illumination light toward RMn is shielded, and only the enlarged image MKn'of the alignment mark MKn on the substrate P appears in the image pickup region DIS'of the image pickup element DIS. Further, when the illumination field diaphragm FAn of the illumination system ILU is switched to the illumination field diaphragm FA3 shown in FIG. 9B, the alignment mark MKn is directed to a portion where the alignment mark MKn can pass in the central portion in the detection region ADn set on the substrate P. Since the illumination light is shielded and the reference mark RMn located at the four corners of the detection region ARn on the reference surface RBa is irradiated with the illumination light, the reference mark RNn is included in the image pickup region DIS'of the image pickup device DIS. Only the magnified image RNn'appears.
 図10Aは、基準バー部材RBの参照面RBa上のY方向の4ヶ所に形成される基準マークRM1~RM4(RM3は省略)の配置の一例を示す図である。図10Aでは、参照面RBaと平行な平面を直交座標系X’Y’Z’のX’Y’面とし、参照面RBaの法線と平行な軸線をZ’軸とする。ここでも、直交座標系X’Y’Z’のY’軸は直交座標系XYZのY軸と平行である。基準バー部材RBの参照面RBa上には、Y’方向(Y方向)に延びた仮想的な直線CRyに沿って、基準マークRM1~RM4がY’方向に所定の間隔寸法で形成されている。即ち、基準マークRM1~RM4の各々の中心点CR1、CR2、CR3、CR4は、仮想的な直線CRy上に精密に位置決めされている。本実施の形態では、基準マークRM1の中心点CR1と基準マークRM2の中心点CR2とのY’方向(Y方向)の間隔寸法をLBS12とすると、他の基準マークRM3の中心点CR3と中心点CR2とのY’方向(Y方向)の間隔寸法LBS23と、基準マークRM4の中心点CR4と中心点CR3とのY’方向(Y方向)の間隔寸法LBS34とのいずれもが間隔寸法LBS12と等しく設定されるものとする。しかしながら、間隔寸法LBS12、間隔寸法LBS23、及び間隔寸法LBS34は、それぞれ異なった値に設定しても構わない。 FIG. 10A is a diagram showing an example of arrangement of reference marks RM1 to RM4 (RM3 is omitted) formed at four locations in the Y direction on the reference surface RBa of the reference bar member RB. In FIG. 10A, the plane parallel to the reference plane RBa is the X'Y'plane of the Cartesian coordinate system X'Y'Z', and the axis parallel to the normal of the reference plane RBa is the Z'axis. Again, the Y'axis of the Cartesian coordinate system X'Y'Z'is parallel to the Y axis of the Cartesian coordinate system XYZ. Reference marks RM1 to RM4 are formed at predetermined intervals in the Y'direction along a virtual straight line CRy extending in the Y'direction (Y direction) on the reference surface RBa of the reference bar member RB. .. That is, the center points CR1, CR2, CR3, and CR4 of the reference marks RM1 to RM4 are precisely positioned on the virtual straight line CRy. In the present embodiment, assuming that the distance dimension between the center point CR1 of the reference mark RM1 and the center point CR2 of the reference mark RM2 in the Y'direction (Y direction) is LBS12, the center point CR3 and the center point of the other reference mark RM3 Both the distance dimension LBS23 in the Y'direction (Y direction) from CR2 and the distance dimension LBS34 in the Y'direction (Y direction) between the center point CR4 and the center point CR3 of the reference mark RM4 are equal to the distance dimension LBS12. It shall be set. However, the interval dimension LBS12, the interval dimension LBS23, and the interval dimension LBS34 may be set to different values.
 図10Bは、アライメント系ALG1の撮像素子DISの撮像領域DIS’と、基準バー部材RB上の基準マークRM1とのX’Y’面内での配置関係の一例を誇張して表したものであり、図10Cは、アライメント系ALG2の撮像素子DISの撮像領域DIS’と基準バー部材RB上の基準マークRM2とのX’Y’面内での配置関係の一例を誇張して表したものである。図10Bにおいて、2次元の撮像領域DIS’のX’方向とY’方向との中心点(基準点)をCC1とすると、基準バー部材RBとアライメント系ALG1との相対的な取付け誤差によって、基準マークRM1のX’、Y’方向の中心点CR1と撮像領域DIS’の中心点CC1とは、所定の設置誤差ΔC1だけずれたものとなっている。図10Bでは、その設置誤差ΔC1は、基準マークRM1の中心点CR1を基準(原点)にして、X’方向に+ΔXC1(μm)、Y’方向に+ΔYC1(μm)となっている。 FIG. 10B exaggerates an example of the arrangement relationship between the image pickup region DIS'of the image pickup element DIS of the alignment system ALG1 and the reference mark RM1 on the reference bar member RB in the XY'plane. FIG. 10C exaggerates an example of the arrangement relationship between the image pickup region DIS'of the image pickup element DIS of the alignment system ALG2 and the reference mark RM2 on the reference bar member RB in the XY'plane. .. In FIG. 10B, assuming that the center point (reference point) between the X'direction and the Y'direction of the two-dimensional imaging region DIS'is CC1, the reference is due to the relative mounting error between the reference bar member RB and the alignment system ALG1. The center point CR1 in the X'and Y'directions of the mark RM1 and the center point CC1 in the imaging region DIS'are deviated by a predetermined installation error ΔC1. In FIG. 10B, the installation error ΔC1 is + ΔXC1 (μm) in the X'direction and + ΔYC1 (μm) in the Y'direction with reference to the center point CR1 of the reference mark RM1 as a reference (origin).
 同様に、図10Cにおいて、2次元の撮像領域DIS’のX’方向とY’方向との中心点(基準点)をCC2とすると、基準バー部材RBとアライメント系ALG2との相対的な取付け誤差によって、基準マークRM2のX’、Y’方向の中心点CR2と撮像領域DIS’の中心点CC2とは、所定の設置誤差ΔC2だけずれたものとなっている。図10Cでは、その設置誤差ΔC2は、基準マークRM2の中心点CR2を基準(原点)にして、X’方向に-ΔXC2(μm)、Y’方向に-ΔYC2(μm)となっている。なお、撮像領域DIS’の中心点CC1、CC2とは、撮像面に2次元のマトリックス状に分布する多数の撮像画素のうちの中央に位置する特定の1つの撮像画素に対応したものとするが、厳密に撮像領域DIS’の真の中心点である必要は無く、例えばX’方向又はY’方向に真の中心点から数個分~十数個分だけずれた特定の撮像画素の位置を中心点(基準点)CC1、CC2としても良い。 Similarly, in FIG. 10C, assuming that the center point (reference point) between the X'direction and the Y'direction of the two-dimensional imaging region DIS'is CC2, the relative mounting error between the reference bar member RB and the alignment system ALG2. As a result, the center point CR2 in the X'and Y'directions of the reference mark RM2 and the center point CC2 in the imaging region DIS'are deviated by a predetermined installation error ΔC2. In FIG. 10C, the installation error ΔC2 is −ΔXC2 (μm) in the X'direction and −ΔYC2 (μm) in the Y'direction with reference to the center point CR2 of the reference mark RM2 as a reference (origin). The center points CC1 and CC2 of the imaging region DIS'correspond to a specific imaging pixel located in the center of a large number of imaging pixels distributed in a two-dimensional matrix on the imaging surface. It does not have to be exactly the true center point of the imaging region DIS', for example, the position of a specific imaging pixel deviated from the true center point by several to a dozen in the X'direction or Y'direction. The center points (reference points) CC1 and CC2 may be used.
 また、他のアライメント系ALG3、ALG4の各々についても、同様に、撮像領域DIS’の中心点CC3、CC4の各々と基準マークRM3、RM5の中心点CR3、CR4との間に、設置誤差ΔC3、ΔC4があるものとする。それらの設置誤差ΔC1、ΔC2、ΔC3、ΔC4に関する情報は、装置の組み立て時、装置稼働中の適当なタイミングで実施される調整(キャリブレーション)作業時、或いは装置の保守点検(メンテナンス)の作業時に、アライメント系ALG1~ALG4の各々の撮像素子DISからの映像信号の画像解析によって求められ、適宜更新することができる。 Similarly, for each of the other alignment systems ALG3 and ALG4, the installation error ΔC3 between each of the center points CC3 and CC4 of the imaging region DIS'and the center points CR3 and CR4 of the reference marks RM3 and RM5, It is assumed that there is ΔC4. Information on these installation errors ΔC1, ΔC2, ΔC3, and ΔC4 can be obtained during equipment assembly, adjustment (calibration) work performed at an appropriate timing during equipment operation, or equipment maintenance inspection (maintenance) work. , It is obtained by image analysis of the video signal from each of the image pickup devices DIS of the alignment systems ALG1 to ALG4, and can be updated as appropriate.
 図11は、本実施の形態によるパターン描画装置EXに設けられる制御装置の一部分の概略的な構成を示すブロック図である。図11において、先の各図で説明した部材や部品と同じものには同一の符号を付してあるが、回転ドラムDRの外周面DRsと、スケール円盤SDa(SDb)の外周面に刻設された目盛Gmとを、説明を簡単にする為に平面に展開した状態で表す。その為、図11では、回転ドラムDRの外周面DRsと目盛Gmとが、矢印arxのように水平方向(X方向)に一緒に直進するものとする。また、回転ドラムDRの外周面DRsには、周方向に沿って一定の間隔で基準パターンFMa、FMb、FMc・・・が形成されている。基準パターンFMa、FMb、FMc・・・の各々は、アライメント系ALGn(ALG1~ALG4)の各々による検出領域ADn(AD1~AD4)内に現れるように、Y方向(回転ドラムDRの中心軸AXoの方向)の位置や寸法が設定されて、回転ドラムDRの外周面DRsに形成されている。回転ドラムDRに形成する基準パターンFMa、FMb、FMc・・・の構成については、例えば国際公開第2014/034161号に開示されている。 FIG. 11 is a block diagram showing a schematic configuration of a part of a control device provided in the pattern drawing device EX according to the present embodiment. In FIG. 11, the same members and parts as those described in the above drawings are designated by the same reference numerals, but are engraved on the outer peripheral surfaces DRs of the rotating drum DR and the outer peripheral surfaces of the scale disk SDa (SDb). The scale Gm is shown in a flat state for the sake of simplicity. Therefore, in FIG. 11, it is assumed that the outer peripheral surface DRs and the scale Gm of the rotating drum DR go straight together in the horizontal direction (X direction) as shown by the arrow arx. Further, reference patterns FMa, FMb, FMc ... Are formed on the outer peripheral surface DRs of the rotating drum DR at regular intervals along the circumferential direction. Each of the reference patterns FMa, FMb, FMc ... Appears in the detection region ADn (AD1 to AD4) of each of the alignment systems ALGn (ALG1 to ALG4) in the Y direction (central axis AXo of the rotating drum DR). The position and dimensions of the direction) are set and formed on the outer peripheral surfaces DRs of the rotating drum DR. The configuration of the reference patterns FMa, FMb, FMc ... Formed on the rotating drum DR is disclosed in, for example, International Publication No. 2014/034161.
 なお、図11では、支持フレーム部100の軸支される奇数番の描画ユニットU1、U3、U5のみを示し、先の図7、図8で示したエンコーダヘッドEHa1(EHb1)、EHa2(EHb2)、EHa3(EHb3)のうち、アライメント系ALGnの検出領域ADnの周方向の方位と奇数番の描画ユニットU1、U3、U5の描画ラインSL1、SL3、SL5(露光位置)の周方向の方位とに配置されるエンコーダヘッドEHa1(EHb1)、EHa2(EHb2)のみを示す。また、基準バー部材RBは、図8に示したように、支持板部102A、102B、103A、103Bを介して、描画ユニットU1~U6を支持する支持フレーム部100と堅牢に結合されている。 Note that FIG. 11 shows only the odd-numbered drawing units U1, U3, and U5 axially supported by the support frame portion 100, and the encoder heads EHa1 (EHb1) and EHa2 (EHb2) shown in FIGS. 7 and 8 above. , EHa3 (EHb3), the orientation in the circumferential direction of the detection region ADn of the alignment system ALGn and the orientation in the circumferential direction of the drawing lines SL1, SL3, SL5 (exposure position) of the odd-numbered drawing units U1, U3, U5. Only the encoder heads EHa1 (EHb1) and EHa2 (EHb2) to be arranged are shown. Further, as shown in FIG. 8, the reference bar member RB is firmly coupled to the support frame portion 100 that supports the drawing units U1 to U6 via the support plate portions 102A, 102B, 103A, and 103B.
 そのエンコーダヘッドEHa1(EHb1)の各々からの計測信号(例えば、位相が90度の2相信号)はカウンタ回路部200Aに入力され、カウンタ回路部200Aは、目盛Gmの格子ピッチの1/32~1/128の分解能で目盛Gmの移動量(即ち、回転ドラムDRの外周面DRs又は基板Pの移動量)に対応したデジタル計数値を計測情報ESa1(ESb1)として逐次出力する。同様に、エンコーダヘッドEHa2(EHb2)の各々からの計測信号(例えば、位相差が90度の2相信号)はカウンタ回路部200Bに入力され、カウンタ回路部200Bは、目盛Gmの格子ピッチ(例えば、20.48μm)の1/32、1/64、或いは1/128の分解能で目盛Gmの移動量(即ち、回転ドラムDRの外周面DRs又は基板Pの移動量)に対応したデジタル計数値を計測情報ESa2(ESb2)として逐次出力する。また、スケール円盤SDa、SDbの各々の目盛Gmには、1回転ごとに起点(ゼロ点位置)を表すゼロ点信号を、エンコーダヘッドEHa1(EHb1)、EHa2(EHb2)、EHa3(EHb3)の各々から発生させる為の原点パターンZZoが形成されている。 The measurement signals (for example, two-phase signals having a phase of 90 degrees) from each of the encoder heads EHa1 (EHb1) are input to the counter circuit unit 200A, and the counter circuit unit 200A has 1/32 to 1/32 of the lattice pitch of the scale Gm. Digital counter values corresponding to the movement amount of the scale Gm (that is, the movement amount of the outer peripheral surface DRs of the rotating drum DR or the substrate P) with a resolution of 1/128 are sequentially output as measurement information ESa1 (ESb1). Similarly, measurement signals (for example, two-phase signals having a phase difference of 90 degrees) from each of the encoder heads EHa2 (EHb2) are input to the counter circuit unit 200B, and the counter circuit unit 200B has a grid pitch of the scale Gm (for example). A digital counter value corresponding to the movement amount of the scale Gm (that is, the movement amount of the outer peripheral surface DRs of the rotating drum DR or the movement amount of the substrate P) with a resolution of 1/32, 1/64, or 1/128 of (20.48 μm). It is sequentially output as measurement information ESa2 (ESb2). Further, on each scale Gm of the scale disks SDa and SDb, a zero point signal indicating the starting point (zero point position) is transmitted to each of the encoder heads EHa1 (EHb1), EHa2 (EHb2), and EHa3 (EHb3). The origin pattern ZZo for generating from is formed.
 図11に示したカウンタ回路部200Aは、エンコーダヘッドEHa1(EHb1)が原点パターンZZoを検出した瞬間にデジタル計数値をゼロリセットし、カウンタ回路部200Bは、エンコーダヘッドEHa2(EHb2)が原点パターンZZoを検出した瞬間にデジタル計数値をゼロリセットする。スケール円盤SDa側の原点パターンZZoと、スケール円盤SDb側の原点パターンZZoとは、回転ドラムDRの回転方向(周方向)に関して、必ずしも厳密に同一の方位である必要は無く、概ね同じ方位、例えば角度差で±数度の範囲内に設定されていれば良い。一例として、レニショー製の光学式ロータリーエンコーダシステムを用いると、外周面にピッチ20μmでスケール目盛Gmが刻設されたスケール円盤SDa、SDbとしてのステンレス製リングとエンコーダヘッドとにより、スケール目盛Gmの周方向の移動量を0.1μm以下の分解能で計測することができる。即ち、カウンタ回路部200A、200B内のデジタルカウンタの最下位ビット(LSB)の変化を、基板Pの0.1μm程度の移動量に対応させることができる。 The counter circuit unit 200A shown in FIG. 11 resets the digital count value to zero at the moment when the encoder head EHa1 (EHb1) detects the origin pattern ZZo, and the counter circuit unit 200B has the encoder head EHa2 (EHb2) resetting the digital count value to zero. The digital count value is reset to zero the moment it is detected. The origin pattern ZZo on the scale disk SDa side and the origin pattern ZZo on the scale disk SDb side do not necessarily have to be exactly the same direction with respect to the rotation direction (circumferential direction) of the rotating drum DR, and are substantially the same direction, for example. The angle difference may be set within the range of ± several degrees. As an example, when an optical rotary encoder system manufactured by Renishaw is used, a scale disk SDa in which a scale scale Gm is engraved on the outer peripheral surface at a pitch of 20 μm, a stainless steel ring as SDb and an encoder head are used to rotate the scale scale Gm. The amount of movement in the direction can be measured with a resolution of 0.1 μm or less. That is, the change of the least significant bit (LSB) of the digital counter in the counter circuit units 200A and 200B can correspond to the movement amount of the substrate P by about 0.1 μm.
 なお、スケール円盤SDa、SDbのスケール目盛Gmが刻設された外周面の半径をφgm、回転ドラムDRの外周面の半径をφdrとすると、回転ドラムDRの外周面に直接的にスケール目盛Gmを刻設しない限り、半径φgmと半径φdrを厳密に一致させることは難しい。そこで、カウンタ回路部200A、200B内には、エンコーダヘッドEHa1、EHb1、EHa2、EHb2、・・・の各々からの信号に基づいて最初にデジタル計数されるカウンタ値のLSBに対応した単位移動量(計測分解能)をΔLxとしたとき、回転ドラムDRの外周面の周方向の単位移動量ΔLxaを、ΔLxa=ΔLx・(φdr/φgm)の演算で換算する機能が設けられている。従って、図11に示したカウンタ回路部200A、200Bの各々から出力される計測情報ESa1、ESb1、ESa2、ESb2、・・・は、そのような換算によって、回転ドラムDRの外周面の周方向の移動量(又は移動位置)を直接的に表す値にすることができる。 Assuming that the radius of the outer peripheral surface on which the scale scale Gm of the scale disks SDa and SDb is engraved is φgm and the radius of the outer peripheral surface of the rotating drum DR is φdr, the scale scale Gm is directly applied to the outer peripheral surface of the rotating drum DR. Unless it is engraved, it is difficult to make the radius φgm and the radius φdr exactly the same. Therefore, in the counter circuit units 200A and 200B, the unit movement amount corresponding to the LSB of the counter value that is first digitally counted based on the signals from the encoder heads EHa1, EHb1, EHa2, EHb2, ... When ΔLx is used as the measurement resolution), a function is provided for converting the unit movement amount ΔLxa in the circumferential direction of the outer peripheral surface of the rotating drum DR by the calculation of ΔLxa = ΔLx · (φdr / φgm). Therefore, the measurement information ESa1, ESb1, ESa2, ESb2, ... Output from each of the counter circuit units 200A and 200B shown in FIG. 11 are obtained by such conversion in the circumferential direction of the outer peripheral surface of the rotating drum DR. It can be a value that directly represents the amount of movement (or the position of movement).
 また、基板Pの円筒面状に湾曲した表面の周方向の移動量や移動位置を精密に計測する必要もあるので、カウンタ回路部200A、200B内には、基板Pの厚みTpに基づいて、基板Pの表面の周方向の単位移動量ΔLxbを、ΔLxb=ΔLx・〔(φdr+Tp)/φgm〕の演算で換算する機能も設けられ、カウンタ回路部200A、200Bの各々は、計測情報ESa1、ESb1、ESa2、ESb2、・・・として、単位移動量ΔLxaの他に単位移動量ΔLxbに基づいて計測される移動量や移動位置を同時に出力する。一例として、回転ドラムDRの外周面の半径φdrを134.00mm、基板Pの厚みTpを100μmとし、回転ドラムDRを丁度1回転させた場合の回転ドラムDRの外周面の移動量(外周面の全周長距離)と、基板Pの表面の移動量とを比較してみる。 Further, since it is necessary to accurately measure the movement amount and the movement position in the circumferential direction of the surface of the substrate P curved in a cylindrical surface, the counter circuit units 200A and 200B are inside the counter circuit units 200A and 200B based on the thickness Tp of the substrate P. A function of converting the unit movement amount ΔLxb in the circumferential direction of the surface of the substrate P by the calculation of ΔLxb = ΔLx · [(φdr + Tp) / φgm] is also provided, and the counter circuit units 200A and 200B are respectively measured information ESa1 and ESb1. , ESa2, ESb2, ..., In addition to the unit movement amount ΔLxa, the movement amount and the movement position measured based on the unit movement amount ΔLxb are simultaneously output. As an example, the radius φdr of the outer peripheral surface of the rotating drum DR is 134.00 mm, the thickness Tp of the substrate P is 100 μm, and the amount of movement of the outer peripheral surface of the rotating drum DR (of the outer peripheral surface) when the rotating drum DR is rotated exactly once. Let's compare the total circumference (long distance) with the amount of movement of the surface of the substrate P.
 回転ドラムDRの外周面の移動量(全周長距離)は841.946mm〔=2π・φdr〕となり、基板Pの表面の移動量は848.229mm〔=2π・(φdr+Tp)〕となり、その差分(誤差長)ΔLfは約628.3μmとなる。その誤差長ΔLfは、回転ドラムDRの外周面の単位移動量ΔLxaに基づいて計測される移動量に対しては、+0.746%〔=ΔLf/(2π・φdr)〕と言った大きな誤差になる。従って、回転ドラムDRに基板Pが通紙される前の状態であって、回転ドラムDRの外周面上の基準パターンFMa、FMb、FMc・・・を検出するキャリブレーション等の段階では、回転ドラムDRの外周面に対応した単位移動量ΔLxaに基づいて計測される移動量や移動位置が用いられ、回転ドラムDRに基板Pが通紙された後の状態で、基板P上にパターンを露光したり、アライメントマークMKn(MK1~MK4)を検出したりする段階では、基板Pの表面に対応した単位移動量ΔLxbに基づいて計測される移動量や移動位置が用いられる。 The amount of movement of the outer peripheral surface of the rotating drum DR (total circumference long distance) is 841.946 mm [= 2π · φdr], and the amount of movement of the surface of the substrate P is 848.229 mm [= 2π · (φdr + Tp)], which is the difference. (Error length) ΔLf is about 628.3 μm. The error length ΔLf has a large error of + 0.746% [= ΔLf / (2π · φdr)] with respect to the movement amount measured based on the unit movement amount ΔLxa of the outer peripheral surface of the rotating drum DR. Become. Therefore, in the state before the substrate P is passed through the rotary drum DR, at the stage of calibration or the like for detecting the reference patterns FMa, FMb, FMc ... On the outer peripheral surface of the rotary drum DR, the rotary drum The movement amount and movement position measured based on the unit movement amount ΔLxa corresponding to the outer peripheral surface of the DR are used, and the pattern is exposed on the substrate P in the state after the substrate P is passed through the rotating drum DR. Or, at the stage of detecting the alignment marks MKn (MK1 to MK4), the movement amount and the movement position measured based on the unit movement amount ΔLxb corresponding to the surface of the substrate P are used.
 奇数番の描画ユニットU1、U3、U5の各々に設けられる光電センサDTRからの各光電信号(アナログ電圧)は、3つのアナログ/デジタル変換回路を含むADC部202Aに入力される。ADC部202Aは、描画ユニットU1(U3、U5)の光電センサDTRからの光電信号の強度を、描画ラインSL1(SL3、SL5)に沿ってY方向に走査されるスポット光の単位走査移動量ΔYsp(μm)毎にクロックパルスを発生するクロック信号LTCに基づいてデジタルサンプリングする。その単位走査移動量ΔYspは、図1に示した光源装置LSが周波数FPL(Hz)でパルス発振するファイバーアンプレーザ光源で、連続したパルス発振毎のスポット光が主走査方向(Y方向)に関してスポット光の直径の1/2以上で重なるようにスポット光の走査速度Vsp(μm/秒)を設定した場合、ΔYsp≧Vsp/FPLの関係になるように設定される。この関係において、ΔYsp=Vsp/FPLとした場合、単位走査移動量ΔYspはスポット光の直径の1/2程度となり、クロック信号LTCの周波数は光源装置LSの周波数FPLと同じになる。また、光源装置LSのパルス発振の為の周波数FPLの発光クロック信号を分周回路等で1/2の周波数にしてクロック信号LTCとして生成する場合は、ΔYsp=2・Vsp/FPLの関係となり、単位走査移動量ΔYspはスポット光の直径と同じになる。 Each photoelectric signal (analog voltage) from the photoelectric sensor DTR provided in each of the odd-numbered drawing units U1, U3, and U5 is input to the ADC unit 202A including three analog / digital conversion circuits. The ADC unit 202A measures the intensity of the photoelectric signal from the photoelectric sensor DTR of the drawing unit U1 (U3, U5) in the Y direction along the drawing line SL1 (SL3, SL5), and the unit scanning movement amount ΔYsp of the spot light. Digital sampling is performed based on the clock signal LTC that generates a clock pulse every (μm). The unit scanning movement amount ΔYsp is a fiber amplifier laser light source in which the light source device LS shown in FIG. 1 pulsates at a frequency FPL (Hz), and spot light for each continuous pulse oscillation spots in the main scanning direction (Y direction). When the scanning speed Vsp (μm / sec) of the spot light is set so as to overlap at 1/2 or more of the diameter of the light, the relationship of ΔYsp ≧ Vsp / FPL is set. In this relationship, when ΔYsp = Vsp / FPL, the unit scanning movement amount ΔYsp is about ½ of the diameter of the spot light, and the frequency of the clock signal LTC is the same as the frequency FPL of the light source device LS. Further, when the emission clock signal of the frequency FPL for pulse oscillation of the light source device LS is reduced to 1/2 frequency by a frequency divider circuit or the like and generated as a clock signal LTC, the relationship is ΔYsp = 2 · Vsp / FPL. The unit scanning movement amount ΔYsp is the same as the diameter of the spot light.
 ADC部202Aは、描画ラインSL1(SL3、SL5)に沿ったスポット光の1回の走査中に単位走査移動量ΔYsp毎にデジタルサンプリングされる多数のデジタルデータを画像処理部204Aに逐次転送する。画像処理部204Aは、ADC部202Aによってデジタルサンプリングされた奇数番の描画ユニットU1、U3、U5の各々の光電センサDTRからの光電信号のデジタル波形データを、内部の画像メモリに逐次個別に記憶する。その際、画像メモリは、スポット光の1回の走査中に得られるデジタルデータの記憶アドレスを、カウンタ回路部200Bからの計測情報ESa2(又はESb2)の変化に基づいて逐次更新する。 The ADC unit 202A sequentially transfers a large number of digital data digitally sampled for each unit scanning movement amount ΔYsp during one scanning of the spot light along the drawing line SL1 (SL3, SL5) to the image processing unit 204A. The image processing unit 204A sequentially and individually stores the digital waveform data of the photoelectric signals from the photoelectric sensor DTRs of the odd-numbered drawing units U1, U3, and U5 digitally sampled by the ADC unit 202A in the internal image memory. .. At that time, the image memory sequentially updates the storage address of the digital data obtained during one scan of the spot light based on the change of the measurement information ESa2 (or ESb2) from the counter circuit unit 200B.
 これによって、画像処理部204A内の画像メモリには、描画ラインSL1、SL3、SL5の各々に沿ったスポット光の走査範囲で、回転ドラムDRの外周面DRsに形成された基準パターンFMa、FMb、FMc・・・等からの反射光や、基板P上に形成された反射率の異なる微細なパターン形状等からの反射光による2次元的な明暗画像データ(輝度情報)が生成される。 As a result, in the image memory in the image processing unit 204A, the reference patterns FMa, FMb, formed on the outer peripheral surface DRs of the rotating drum DR within the scanning range of the spot light along each of the drawing lines SL1, SL3, and SL5. Two-dimensional light-dark image data (luminance information) is generated by the reflected light from FMc ... Etc. and the reflected light from fine pattern shapes having different reflectances formed on the substrate P.
 偶数番の描画ユニットU2、U4、U6の各々に対しても、同様に、光電センサDTRからの光電信号をデジタル波形データに変換する不図示のADC部202Bと、画像メモリ内に偶数番の描画ユニットU2、U4、U6の各々の光電センサDTRからの光電信号のデジタル波形データを個別に記憶する不図示の画像処理部204Bとが設けられる。ADC部202Bによる各光電センサDTRからの光電信号のデジタルサンプリングは、図11中のクロック信号LTCに基づいて行われるが、画像処理部204B内の画像メモリに一時的に記憶すべきデジタル波形データの記憶アドレスは、図11中のカウンタ回路部200Bからの計測情報ESa2(又はESb2)ではなく、図8A中のエンコーダヘッドEHa3(又はEHb3)からの計測信号(例えば、位相差が90度の2相信号)を計数する不図示のカウンタ回路部200Cからの計測情報(ESa3又はESb3とする)の変化に基づいて逐次更新される。なお、不図示のカウンタ回路部200Cも、エンコーダヘッドEHa3(EHb3)が原点パターンZZoを検出した瞬間にデジタル計数値をゼロリセットする。 Similarly, for each of the even-numbered drawing units U2, U4, and U6, an ADC unit 202B (not shown) that converts the photoelectric signal from the photoelectric sensor DTR into digital waveform data and an even-numbered drawing in the image memory. An image processing unit 204B (not shown) for individually storing the digital waveform data of the photoelectric signal from each of the photoelectric sensor DTRs of the units U2, U4, and U6 is provided. The digital sampling of the photoelectric signal from each photoelectric sensor DTR by the ADC unit 202B is performed based on the clock signal LTC in FIG. 11, but the digital waveform data to be temporarily stored in the image memory in the image processing unit 204B The storage address is not the measurement information ESa2 (or ESb2) from the counter circuit unit 200B in FIG. 11, but the measurement signal from the encoder head EHa3 (or EHb3) in FIG. 8A (for example, two phases having a phase difference of 90 degrees). It is sequentially updated based on the change of the measurement information (referred to as ESa3 or ESb3) from the counter circuit unit 200C (not shown) that counts the signal). The counter circuit unit 200C (not shown) also resets the digital count value to zero at the moment when the encoder head EHa3 (EHb3) detects the origin pattern ZZo.
 以上の画像処理部204A(及び204B)において、画像メモリ内に記憶される2次元の画像データの主走査方向(Y方向)に関する画像中の位置(画素位置)は、デジタルサンプリング開始からのクロック信号LTCのクロックパルスの計数値によって決定され、副走査方向(X方向)に関する画像中の位置(画素位置)は、カウンタ回路部200B(及び200C)からの計測情報ESa2、ESb2(及びESa3、ESb3)によって決定される。それにより、画像処理部204A(及び204B)は、画像メモリ内に記憶される2次元の画像データに基づいて、回転ドラムDRの基準パターンFMa、FMb、FMc・・・、の2次元的な位置、即ち、スポット光による描画ラインSLn(SL1~SL6)に対する基準パターンFMa、FMb、FMc・・・、の相対的な位置を画像解析処理によって計測する。 In the above image processing unit 204A (and 204B), the position (pixel position) in the image with respect to the main scanning direction (Y direction) of the two-dimensional image data stored in the image memory is a clock signal from the start of digital sampling. The position (pixel position) in the image with respect to the sub-scanning direction (X direction), which is determined by the count value of the clock pulse of the LTC, is the measurement information ESa2, ESb2 (and ESa3, ESb3) from the counter circuit unit 200B (and 200C). Determined by. As a result, the image processing unit 204A (and 204B) has the two-dimensional positions of the reference patterns FMa, FMb, FMc ... Of the rotating drum DR based on the two-dimensional image data stored in the image memory. That is, the relative positions of the reference patterns FMa, FMb, FMc ... With respect to the drawing lines SLn (SL1 to SL6) by the spot light are measured by the image analysis process.
 回転ドラムDRの基準パターンFMa、FMb、FMc・・・、基準バー部材RBの基準マークRM1~RM4、或いは基板P上のアライメントマークMKn(MK1~MK4)を検出するアライメント系ALGn(ALG1~ALG4)の各々の撮像素子DISからの映像信号Vsgは画像解析部206に送られる。画像解析部206は、各撮像素子DISで撮像されて逐次送られてくる撮像領域DIS’の画像データ(例えば、1/30秒毎、又は1/60秒毎にリフレッシュされる1画面分のデータ)を、カウンタ回路部200Aからの計測情報ESa1(又はESb1)が指定されたトリガ位置に対応した計測値になった瞬間に画像メモリに一時的に記憶する。トリガ位置は、撮像対象が基準パターンFMa、FMb、FMc・・・、の場合、撮像領域DIS’内のほぼ中央に基準パターンFMa、FMb、FMc・・・、が位置するような回転ドラムDRの回転位置のときにカウンタ回路部200Aが出力する計測情報ESa1(又はESb1)を予め記憶することで設定される。 Alignment system ALGn (ALG1 to ALG4) that detects reference patterns FMa, FMb, FMc ... of the rotating drum DR, reference marks RM1 to RM4 of the reference bar member RB, or alignment marks MKn (MK1 to MK4) on the substrate P. The video signal Vsg from each image sensor DIS is sent to the image analysis unit 206. The image analysis unit 206 is used to capture image data of the image pickup region DIS'that is imaged by each image sensor DIS and sent sequentially (for example, data for one screen that is refreshed every 1/30 second or 1/60 second). ) Is temporarily stored in the image memory at the moment when the measurement information ESa1 (or ESb1) from the counter circuit unit 200A reaches the measured value corresponding to the specified trigger position. The trigger position is the rotating drum DR such that when the imaging target is the reference pattern FMa, FMb, FMc ..., The reference pattern FMa, FMb, FMc ... Is located substantially in the center of the imaging area DIS'. It is set by storing the measurement information ESa1 (or ESb1) output by the counter circuit unit 200A at the rotation position in advance.
 また、図7に示したように、アライメント系ALG1、ALG4が基板P上のアライメントマークMK1、MK4を撮像対象とする場合、設計上でアライメントマークMK1、MK4の副走査方向に関する間隔(例えば、5~20mm)が決まっているので、トリガ位置は、カウンタ回路部200Aからの計測情報ESa1(又はESb1)が、その間隔値に対応した計数値分だけ増加した回転ドラムDRの回転位置毎に設定される。 Further, as shown in FIG. 7, when the alignment systems ALG1 and ALG4 target the alignment marks MK1 and MK4 on the substrate P for imaging, the intervals (for example, 5) related to the sub-scanning direction of the alignment marks MK1 and MK4 are designed. Since (~ 20 mm) is fixed, the trigger position is set for each rotation position of the rotating drum DR in which the measurement information ESa1 (or ESb1) from the counter circuit unit 200A is increased by the count value corresponding to the interval value. NS.
 画像解析部206は、アライメント系ALGnによってアライメントマークMKnの位置を計測する場合は、画像メモリに記憶された画像データに基づいて、先の図9Cに示したように、撮像領域DIS’内の中心点CCnに対するアライメントマークMKnの拡大像MKn’の中心点の2次元的な位置ずれ量、或いは、撮像領域DIS’内に同時に現れている基準バー部材RBの基準マークRMnの拡大像RMn’に対するアライメントマークMKnの拡大像MKn’の中心点の2次元的な位置ずれ量を画像解析処理によって計測する。また、画像解析部206は、アライメント系ALGnによって回転ドラムDRの基準パターンFMa、FMb、FMc・・・、の位置を計測する場合も、先の図9Cと同様に、撮像領域DIS’内の中心点CCnに対する基準パターンFMa、FMb、FMc・・・、の拡大像の中心点の2次元的な位置ずれ量、或いは、撮像領域DIS’内に同時に現れている基準バー部材RBの基準マークRMnの拡大像RMn’に対する基準パターンFMa、FMb、FMc・・・、の拡大像の中心点の2次元的な位置ずれ量を画像解析処理によって計測する。 When the image analysis unit 206 measures the position of the alignment mark MKn by the alignment system ALGn, the image analysis unit 206 is centered in the imaging region DIS'as shown in FIG. 9C above based on the image data stored in the image memory. Alignment mark MKn with respect to point CCn Alignment with respect to the two-dimensional displacement of the center point of MKn'or the magnified image RNn of the reference bar member RB that appears simultaneously in the imaging region DIS' The amount of two-dimensional misalignment of the center point of the magnified image MKn'of the mark MKn is measured by image analysis processing. Further, when the image analysis unit 206 measures the positions of the reference patterns FMa, FMb, FMc ... Of the rotating drum DR by the alignment system ALGn, the center in the imaging region DIS'as in FIG. 9C above. The two-dimensional displacement of the center point of the enlarged image of the reference patterns FMa, FMb, FMc ... With respect to the point CCn, or the reference mark RMn of the reference bar member RB that appears simultaneously in the imaging region DIS'. The amount of two-dimensional misalignment of the center point of the magnified image of the reference patterns FMa, FMb, FMc ... With respect to the magnified image RMn'is measured by image analysis processing.
 さらに画像解析部206は、先の図10B、図10Cで説明したように、アライメント系ALGnの各撮像領域DIS’内の中心点CCn(CC1~CC4)の各々と、基準バー部材RBの基準マークRMnの中心点CRn(CR1~CR4)の各々との設置誤差ΔCn(ΔC1~ΔC4)の情報を、画像メモリに記憶された画像データの画像解析処理によって計測する。 Further, as described in FIGS. 10B and 10C above, the image analysis unit 206 sets each of the center points CCn (CC1 to CC4) in each imaging region DIS'of the alignment system ALGn and the reference mark of the reference bar member RB. Information on the installation error ΔCn (ΔC1 to ΔC4) with each of the center points CRn (CR1 to CR4) of the RMn is measured by image analysis processing of the image data stored in the image memory.
 図11の計測制御部(演算処理部)210は、画像処理部204A(204B)で計測された描画ラインSLn(SL1~SL6)に対する基準パターンFMa、FMb、FMc・・・、の相対的な位置関係の情報と、画像解析部206で計測される各種の位置ずれ量の情報とに基づいて、アライメント系ALGnで検出されるアライメントマークMKnの位置に基づいて、描画ラインSLnの各々に沿ったスポット光による描画タイミングの調整量(遅延時間の設定)、描画ユニットUnの各々の微小回転による描画ラインSLnの各々の傾きの調整量、描画ラインSLn自体を副走査方向に微小量だけシフトさせる為の平行平板HVP(図3参照)の傾斜の調整量等を高速に演算する。それらの調整量の演算に当たって、計測制御部(演算処理部)210は、アライメント系ALGn(ALG1~ALG4)で検出される基板PのアライメントマークMKn(MK1~MK4)の位置情報(実測情報とする)を、図10で説明したアライメント系ALGn(ALG1~ALG4)の設置誤差情報ΔC1~ΔC4に応じて補正された補正位置情報を使う。 The measurement control unit (calculation processing unit) 210 of FIG. 11 is the relative position of the reference patterns FMa, FMb, FMc ... With respect to the drawing lines SLn (SL1 to SL6) measured by the image processing unit 204A (204B). Spots along each of the drawing lines SLn based on the position of the alignment mark MKn detected by the alignment system ALGn based on the relationship information and the information of various misalignment amounts measured by the image analysis unit 206. The amount of adjustment of drawing timing by light (setting of delay time), the amount of adjustment of each inclination of drawing line SLn by each minute rotation of drawing unit Un, and the amount of adjustment of drawing line SLn itself by a small amount in the sub-scanning direction. The amount of adjustment of the inclination of the parallel flat plate HVP (see FIG. 3) is calculated at high speed. In calculating the adjustment amount, the measurement control unit (calculation processing unit) 210 uses the position information (actual measurement information) of the alignment marks MKn (MK1 to MK4) of the substrate P detected by the alignment system ALGn (ALG1 to ALG4). ) Uses the correction position information corrected according to the installation error information ΔC1 to ΔC4 of the alignment system ALGn (ALG1 to ALG4) described with reference to FIG.
〔動作シーケンス〕
 図12は、第1の実施の形態における較正(キャリブレーション)シーケンス、アライメントシーケンス、露光シーケンスの一連の動作の一例を説明するフローチャート図である。図12において、ステップ300、302、304は、装置の立ち上げ時、又は装置稼働中の適当な時期に実行される各種のキャリブレーションシーケンスであり、ステップ306は装置内の搬送機構(各種ローラ)や回転ドラムDRに感光性機能層が形成された基板Pを所定のテンションで掛け回す通紙作業である。図12のステップ308~314は、通紙された基板Pの感光性機能層に第1層用のパターンを露光するファースト露光(1st露光)のシーケンスであり、ステップ316、318、320、322、324は、基板Pの感光性機能層に第2層以降のパターンを第1層のパターン上に重ね合わせ露光するセカンド露光(2nd露光)のシーケンスと、その重ね合わせの為のアライメントシーケンスである。
[Operation sequence]
FIG. 12 is a flowchart illustrating an example of a series of operations of a calibration sequence, an alignment sequence, and an exposure sequence according to the first embodiment. In FIG. 12, steps 300, 302, and 304 are various calibration sequences executed at the time when the device is started up or at an appropriate time during the operation of the device, and step 306 is a transfer mechanism (various rollers) in the device. This is a paper-passing operation in which a substrate P having a photosensitive functional layer formed on a rotating drum DR is hung with a predetermined tension. Steps 308 to 314 of FIG. 12 are first exposure (1st exposure) sequences for exposing the pattern for the first layer to the photosensitive functional layer of the passed substrate P, and steps 316, 318, 320, and 322, Reference numeral 324 is a second exposure (2nd exposure) sequence in which the patterns of the second and subsequent layers are superimposed and exposed on the photosensitive functional layer of the substrate P on the pattern of the first layer, and an alignment sequence for the overlay.
 また、本実施の形態では、図13に示すように、1ロールから供給される基板Pの長尺方向の全長に亘って複数の表示パネル用の被露光領域DPAが配列されるものとする。図13は、基板Pを平面上に引き伸ばした状態を示し、パターン描画装置EXの回転ドラムには、基板Pが先端Paから矢印arxの方向に通紙され、回転ドラムDRの回転により終端Pbまで搬送される。基板Pの先端Paからの最初の領域F0は、基板Pをパターン描画装置EXに通紙して所定テンション、所定速度で搬送できる状態になるまでの余白部である。基板P上の次の領域F1には、図7に示した4つのアライメント系ALG1~ALG4の各検出領域AD1~AD4で検出可能なように、4つのアライメントマークMK1~MK4が基板Pの幅方向に配置される。幅方向に並ぶ4つのアライメントマークMK1~MK4は、長尺方向に一定の間隔(例えば、5mm~10mm)で複数列が形成される。基板P上の次の領域F2から領域Fn-1には、被露光領域DPAとその周囲に付随したアライメントマークMK1~MK4とが一定長の余白部を挟んで長尺方向に多数形成される。基板P上の最後の領域Fnは、回転ドラムDRに基板Pが掛け回された状態でも正常なテンションを維持できないことから、被露光領域DPAが形成されない余白部となる。 Further, in the present embodiment, as shown in FIG. 13, it is assumed that the exposed region DPAs for a plurality of display panels are arranged over the entire length of the substrate P supplied from one roll in the long direction. FIG. 13 shows a state in which the substrate P is stretched on a flat surface. The substrate P is passed through the rotating drum of the pattern drawing apparatus EX in the direction of the arrow arc from the tip Pa, and the rotating drum DR rotates to the terminal Pb. Be transported. The first region F0 from the tip Pa of the substrate P is a margin portion until the substrate P is passed through the pattern drawing apparatus EX and can be conveyed at a predetermined tension and a predetermined speed. In the next region F1 on the substrate P, four alignment marks MK1 to MK4 are arranged in the width direction of the substrate P so that they can be detected in the detection regions AD1 to AD4 of the four alignment systems ALG1 to ALG4 shown in FIG. Is placed in. A plurality of rows of the four alignment marks MK1 to MK4 arranged in the width direction are formed at regular intervals (for example, 5 mm to 10 mm) in the long direction. In the next regions F2 to Fn-1 on the substrate P, a large number of exposed region DPA and alignment marks MK1 to MK4 attached to the exposed region DPA are formed in the long direction with a fixed length margin portion interposed therebetween. The last region Fn on the substrate P is a margin portion where the exposed region DPA is not formed because normal tension cannot be maintained even when the substrate P is hung around the rotating drum DR.
 なお、図13に示したアライメントマークMK1~MK4は、被露光領域DPAに第1層のパターンを露光する1st露光処理のときに同時に露光され、露光処理の後に実施されるエッチング処理やメッキ処理、他の成膜処理によって、第1層用のパターンと共に形成される。その為に、1st露光処理が施される基板Pの表面には、第1層用のパターンとなる金属薄膜(銅、アルミニウム、ニッケル)、或いは不透明な絶縁膜が全面に成膜され、更にその金属薄膜や絶縁膜の表面に感光性機能層を成膜しておくのが良い。 The alignment marks MK1 to MK4 shown in FIG. 13 are simultaneously exposed at the time of the 1st exposure process of exposing the pattern of the first layer to the exposed area DPA, and the etching process and the plating process performed after the exposure process. It is formed together with the pattern for the first layer by another film forming process. Therefore, a metal thin film (copper, aluminum, nickel) or an opaque insulating film as a pattern for the first layer is formed on the entire surface of the substrate P to be subjected to the 1st exposure treatment, and further, the metal thin film (copper, aluminum, nickel) or an opaque insulating film is formed on the entire surface. It is preferable to form a photosensitive functional layer on the surface of a metal thin film or an insulating film.
〔ステップ300〕
 再び、図12のフローチャート図の説明に戻り、装置起動後の通紙前の状態で、ステップ300にてエンコーダ計測系のキャリブレーションが実行される。図12において、ステップ300の横に付記した[DR]は、所定の回転速度で回転ドラムDRを回転駆動することを意味し、[EH]は、エンコーダ計測システムのエンコーダヘッドEHa1~EHa3、EHb1~EHb3の各々を利用することを意味する。先の図7、図11に示したように、回転ドラムDRの両端のスケール円盤SDa、SDbの外周面(目盛Gmの形成面)は、加工上の精度で決まる真円誤差(回転角度位置に応じて中心軸AXoからの半径が設計値から微少に変化する誤差)や、中心軸AXoに対する取付時の微少な偏心誤差等を含む。更に、スケール円盤SDa、SDbの外周面に刻設される目盛Gmの周方向のピッチにも、僅かではあるがムラ(ピッチ誤差)が生じ得る。
[Step 300]
Returning to the description of the flowchart of FIG. 12, the encoder measurement system is calibrated in step 300 in the state after the device is started and before the paper is passed. In FIG. 12, [DR] added next to step 300 means that the rotary drum DR is rotationally driven at a predetermined rotation speed, and [EH] is the encoder heads EHa1 to EHa3, EHb1 to EHb1 of the encoder measurement system. It means to use each of EHb3. As shown in FIGS. 7 and 11 above, the outer peripheral surfaces (formation surface of the scale Gm) of the scale disks SDa and SDb at both ends of the rotary drum DR have a perfect circle error (at the rotation angle position) determined by the machining accuracy. It includes an error in which the radius from the central axis AXo changes slightly from the design value) and a slight eccentricity error at the time of mounting with respect to the central axis AXo. Further, a slight unevenness (pitch error) may occur in the pitch in the circumferential direction of the scale Gm engraved on the outer peripheral surfaces of the scale disks SDa and SDb.
 ステップ300では、それらの真円誤差、偏心誤差、ピッチ誤差を精密に把握して、エンコーダ計測時の誤差補正マップを作成する。それらの誤差の求め方や補正マップの作成については、例えば、国際公開第2016/013417号、特開2017-090243号公報に開示されている。誤差補正マップは、図11に示した原点パターンZZoを起点として、スケール円盤SDa、SDbの1周分(360度)を一定角度(例えば、5度)で分割した回転位置毎の誤差補正量として記憶される。エンコーダヘッドEHa1~EHa3(EHb1~EHb3)の各々で実計測される目盛Gmの角度位置情報(移動量)は、それぞれのヘッド毎に用意されたカウンタ回路部(図11中のカウンタ回路部200A、200B等)で計測される。そこで、各カウンタ回路部(200A、200B等)は、作成した誤差補正マップ(誤差補正量)によって実測値を補正した値を計測情報(図11中のESa1、ESb1、ESa2、ESb2等)として出力する。エンコーダ計測系のキャリブレーションが完了すると、次のステップ302でアライメント系のキャリブレーションが実行される。 In step 300, the perfect circle error, the eccentric error, and the pitch error are accurately grasped, and an error correction map at the time of encoder measurement is created. Methods for obtaining these errors and preparation of a correction map are disclosed in, for example, International Publication No. 2016/013417 and JP-A-2017-090243. The error correction map starts from the origin pattern ZZo shown in FIG. 11 and divides one round (360 degrees) of the scale disks SDa and SDb at a fixed angle (for example, 5 degrees) as an error correction amount for each rotation position. It will be remembered. The angular position information (movement amount) of the scale Gm actually measured by each of the encoder heads EHa1 to EHa3 (EHb1 to EHb3) is the counter circuit unit (counter circuit unit 200A in FIG. 11) prepared for each head. 200B etc.). Therefore, each counter circuit unit (200A, 200B, etc.) outputs the value obtained by correcting the measured value by the created error correction map (error correction amount) as measurement information (ESa1, ESb1, ESa2, ESb2, etc. in FIG. 11). do. When the calibration of the encoder measurement system is completed, the calibration of the alignment system is executed in the next step 302.
〔ステップ302〕
 図12において、ステップ302の横に付記した[DR]、[EH]は、ステップ300と同様に、回転ドラムDRの回転駆動と、エンコーダ計測系(エンコーダヘッドEHa1~EHa3、EHb1~EHb3)による計測とを利用することを意味し、[RB]は、先の図4~図6、図8~図11に示した基準バー部材RBを利用することを意味し、[ALGn]は、先の図6、図9、図11に示した4つのアライメント系ALG1~ALG4を用いることを意味する。
[Step 302]
In FIG. 12, [DR] and [EH] added next to step 302 are the rotational drive of the rotating drum DR and the measurement by the encoder measurement system (encoder heads EHa1 to EHa3, EHb1 to EHb3) as in step 300. [RB] means to use the reference bar member RB shown in FIGS. 4 to 6 and 8 to 11, and [ALGn] means to use the reference bar member RB shown in FIGS. 4 to 6 and 8 to 11. 6, It means that the four alignment systems ALG1 to ALG4 shown in FIGS. 9 and 11 are used.
 ステップ302では、4つのアライメント系ALG1~ALG4の各々によって、図10Aに示した基準バー部材RB上の対応する基準マークRM1~RM4の各位置を、図11中の画像解析部206で計測し、図10B、図10Cで説明したように、アライメント系ALG1の(検出領域AD1)撮像領域DIS’(検出領域AD1)の中心点CC1と基準マークRM1の中心点CR1との設置誤差ΔC1、アライメント系ALG2の撮像領域DIS’(検出領域AD2)の中心点CC2と基準マークRM2の中心点CR2との設置誤差ΔC2、アライメント系ALG3の撮像領域DIS’(検出領域AD3)の中心点CC3と基準マークRM3の中心点CR3との設置誤差ΔC3、アライメント系ALG4の撮像領域DIS’(検出領域AD4)の中心点CC4と基準マークRM4の中心点CR4との設置誤差ΔC4を計測する。その際、回転ドラムDRを回転させた状態にすると、外周面DRs上の基準パターンFMa、FMb、FMc・・・の像も、アライメント系ALG1~ALG4の各々の撮像領域DIS’内に現れる為、図9Aに示したアライメント系ALG1~ALG4の各々の照明系ILUに設けられている照明視野絞りFAnを、図9Bに示した照明視野絞りFA3に切り替えても良い。 In step 302, each of the four alignment systems ALG1 to ALG4 measures each position of the corresponding reference marks RM1 to RM4 on the reference bar member RB shown in FIG. 10A by the image analysis unit 206 in FIG. As described with reference to FIGS. 10B and 10C, there is an installation error ΔC1 between the center point CC1 of the (detection area AD1) imaging area DIS'(detection area AD1) of the alignment system ALG1 and the center point CR1 of the reference mark RM1, and the alignment system ALG2. Installation error ΔC2 between the center point CC2 of the imaging region DIS'(detection region AD2) and the center point CR2 of the reference mark RM2, and the center point CC3 and the reference mark RM3 of the imaging region DIS'(detection region AD3) of the alignment system ALG3. The installation error ΔC3 with the center point CR3 and the installation error ΔC4 between the center point CC4 of the imaging region DIS'(detection region AD4) of the alignment system ALG4 and the center point CR4 of the reference mark RM4 are measured. At that time, when the rotating drum DR is rotated, the images of the reference patterns FMa, FMb, FMc ... On the outer peripheral surface DRs also appear in the respective imaging regions DIS'of the alignment systems ALG1 to ALG4. The illumination field diaphragm FAan provided in each of the illumination systems ILU of the alignment systems ALG1 to ALG4 shown in FIG. 9A may be switched to the illumination field diaphragm FA3 shown in FIG. 9B.
 以上のシーケンスにより、図14に模式的に示すように、4つのアライメント系ALG1~ALG4の各々の設置誤差ΔC1~ΔC4の情報が求まる。図14は、図10Aに示した基準バー部材RB上の基準マークRM1~RM4の各中心点CR1~CR4を基準とした設置誤差ΔC1~ΔC4を誇張して表したものである。基準バー部材RB上の各基準マークRMn(n=1~4)の各中心点CRn(n=1~4)の相互の配置精度(間隔誤差)は、基準マークRMnを形成する加工装置(パターニング装置)の位置決め精度に依存するが、レーザ干渉計付の位置決めステージ等を備えた加工装置であれば、設計上の位置に対する配置精度(配置誤差)を±0.2μm以下にすることができる。従って、画像解析部206で計測された設置誤差情報ΔCn(n=1~4)は、アライメント系ALGnの各々の設計上の位置からの取り付け誤差にも相当し、±数μm程度、大きい場合は十数μm程度になる。 From the above sequence, as schematically shown in FIG. 14, information on the installation errors ΔC1 to ΔC4 of each of the four alignment systems ALG1 to ALG4 can be obtained. FIG. 14 is an exaggerated representation of the installation errors ΔC1 to ΔC4 based on the center points CR1 to CR4 of the reference marks RM1 to RM4 on the reference bar member RB shown in FIG. 10A. The mutual placement accuracy (interval error) of each center point CRn (n = 1 to 4) of each reference mark RNn (n = 1 to 4) on the reference bar member RB is a processing device (patterning) for forming the reference mark RMn. Although it depends on the positioning accuracy of the device), if the processing device is equipped with a positioning stage or the like equipped with a laser interferometer, the placement accuracy (placement error) with respect to the design position can be set to ± 0.2 μm or less. Therefore, the installation error information ΔCn (n = 1 to 4) measured by the image analysis unit 206 corresponds to the installation error from each design position of the alignment system ALGn, and is about ± several μm, if it is large. It will be about a dozen μm.
 なお、ステップ302では、回転ドラムDRの外周面DRsに形成された基準パターンFMa、FMb、FMc・・・の像を、アライメント系ALGnで検出することにより、基準バー部材RB上のY’方向(Y方向)に延びた直線CRyと、回転ドラムDRの回転中心軸AXoとの平行度を確認することができる。図15は、平面状に展開された回転ドラムDRの外周面DRs上に形成される基準パターンFMa、FMb、FMc・・・とアライメント系ALG1~ALG4の各々の検出領域AD1~AD4との配置関係の一例を示す図である。図15において、基準パターンFMa、FMb、FMc・・・は、外周面DRs上の周方向に沿った45°度の位置毎の8ヶ所に設けられる。基準パターンFMa~FMhの各々は、回転ドラムDRの回転の中心軸(中心線)AXoと平行にY方向に直線的に刻設された直線パターンFyoと、直線パターンFyoと直交した周方向に延びて、検出領域AD1~AD4の各々のY方向の位置に対応して刻設された線条パターンFx1、Fx2、Fx3、Fx4とで構成される。4ヶ所の線条パターンFx1~Fx4のY方向の間隔は、図10Aで示した基準マークRM1~RM4の間隔寸法LBS12、LBS23、LBS34と同じに設定されている。 In step 302, by detecting the images of the reference patterns FMa, FMb, FMc ... Formed on the outer peripheral surfaces DRs of the rotating drum DR by the alignment system ALGn, the Y'direction on the reference bar member RB ( It is possible to confirm the parallelism between the straight line CRy extending in the Y direction) and the rotation center axis AXo of the rotation drum DR. FIG. 15 shows the arrangement relationship between the reference patterns FMa, FMb, FMc ... Formed on the outer peripheral surfaces DRs of the rotating drum DR developed in a plane and the detection regions AD1 to AD4 of the alignment systems ALG1 to ALG4. It is a figure which shows an example. In FIG. 15, reference patterns FMa, FMb, FMc ... Are provided at eight positions at 45 ° degrees along the circumferential direction on the outer peripheral surface DRs. Each of the reference patterns FMa to FMh extends in the circumferential direction orthogonal to the linear pattern Fyo and the linear pattern Fyo engraved linearly in the Y direction parallel to the central axis (center line) AXo of the rotation of the rotating drum DR. Therefore, it is composed of linear patterns Fx1, Fx2, Fx3, and Fx4 that are engraved corresponding to the positions of the detection regions AD1 to AD4 in the Y direction. The spacing between the four linear patterns Fx1 to Fx4 in the Y direction is set to be the same as the spacing dimensions LBS12, LBS23, and LBS34 of the reference marks RM1 to RM4 shown in FIG. 10A.
 回転ドラムDRの回転に伴って、例えば、アライメント系ALG1の検出領域AD1内(撮像領域DIS’内)には、基準パターンFMa~FMhの各々の直線パターンFyoと線条パターンFx1との交点部分が、回転ドラムDRの1回転中に8回現れる。基準パターンFMa~FMhの各々がアライメント系ALGnの検出領域ADn中に現れるタイミングは、スケール円盤SDa、SDbの目盛Gmの原点パターンZZoの周方向位置と、基準パターンFMa~FMhの各々の周方向位置との関係が予め固定されたもの(既知)であることから、エンコーダ計測系で計測される回転ドラムDRの回転角度位置から特定できる。そこで、アライメント系ALGnの周方向位置に対応して配置したエンコーダヘッドEHa1(EHb1)からの計測信号を入力する図11中のカウンタ回路部200Aからの計測情報ESa1(ESb1)に基づいて、アライメント系ALGnの各々の検出領域ADn内に基準パターンFMa~FMhの各々の直線パターンFyoが現れるタイミング(計測情報ESa1が特定の計測値になったタイミング)で、順次、基準バー部材RBの基準マークRMn(n=1~4)の像と、直線パターンFyoと線条パターンFxn(n=1~4)の交点部分の像とを、4つの撮像素子DISの各々で同時にサンプリングし、画像解析部206によって、その交点部分の中心点Cfmと基準マークRMn(n=1~4)の中心点CRnとの各々の位置ずれ量ΔCrf1、ΔCrf2、ΔCrf3、ΔCrf4を計測する。その際、図9Aに示したアライメント系ALGnの各々の照明系ILUに設けられている照明視野絞りFAnは、図9Bに示した照明視野絞りFA1に切り替えられる。 With the rotation of the rotating drum DR, for example, in the detection area AD1 of the alignment system ALG1 (in the imaging area DIS'), the intersection portion of each of the linear patterns Fyo and the linear pattern Fx1 of the reference patterns FMa to FMh is formed. , Appears 8 times during one rotation of the rotating drum DR. The timing at which each of the reference patterns FMa to FMh appears in the detection region ADn of the alignment system ALGn is the circumferential position of the origin pattern ZZo of the scale Gm of the scale disk SDa and SDb and the circumferential position of each of the reference patterns FMa to FMh. Since the relationship with is fixed in advance (known), it can be specified from the rotation angle position of the rotation drum DR measured by the encoder measurement system. Therefore, the alignment system is based on the measurement information ESa1 (ESb1) from the counter circuit unit 200A in FIG. 11 for inputting the measurement signal from the encoder head EHa1 (EHb1) arranged corresponding to the circumferential position of the alignment system ALGn. At the timing when each linear pattern Fyo of the reference patterns FMa to FMh appears in each detection region ADn of ALGn (the timing when the measurement information ESa1 becomes a specific measurement value), the reference mark RMn of the reference bar member RB ( The image of n = 1 to 4) and the image of the intersection of the linear pattern Fyo and the streak pattern Fxn (n = 1 to 4) are simultaneously sampled by each of the four image pickup elements DIS, and are simultaneously sampled by the image analysis unit 206. , The misalignment amounts ΔCrf1, ΔCrf2, ΔCrf3, and ΔCrf4 between the center point Cfm of the intersection and the center point CRn of the reference mark RNn (n = 1 to 4) are measured. At that time, the illumination field diaphragm FAan provided in each illumination system ILU of the alignment system ALGn shown in FIG. 9A is switched to the illumination field diaphragm FA1 shown in FIG. 9B.
 図11中の計測制御部(演算処理部)210は、画像解析部206からの位置ずれ量ΔCrfn(n=1~4)のうち、4つの検出領域ADnの各々の位置で計測された外周面DRsの周方向に関する位置ずれ量成分に基づいて、基準パターンFMa~FMhの各々の直線パターンFyoと基準バー部材RB上に設定される直線CRyとの相対的な傾き誤差Δθrbを演算する。演算された傾き誤差Δθrbは、間接的に回転ドラムDRの回転の中心線AXoと基準バー部材RB上の直線CRyとの周方向に関する傾き誤差(平行度誤差)とみなされる。なお、傾き誤差Δθrbは、外周面DRs上の8ヶ所の基準パターンFMa~FMhの位置毎(回転ドラムDRの45°回転毎)に計測可能であるので、8回分の傾き誤差Δθrbを平均化しても良い。 The measurement control unit (calculation processing unit) 210 in FIG. 11 has an outer peripheral surface measured at each position of the four detection regions ADn in the position deviation amount ΔCrfn (n = 1 to 4) from the image analysis unit 206. Based on the displacement amount component in the circumferential direction of the DRs, the relative inclination error Δθrb of each of the linear patterns Fyo of the reference patterns FMa to FMh and the linear CRy set on the reference bar member RB is calculated. The calculated tilt error Δθrb is indirectly regarded as a tilt error (parallelism error) in the circumferential direction between the center line AXo of rotation of the rotating drum DR and the straight line CRy on the reference bar member RB. Since the tilt error Δθrb can be measured for each position of the reference patterns FMa to FMh at eight locations on the outer peripheral surface DRs (every 45 ° rotation of the rotating drum DR), the tilt error Δθrb for eight times is averaged. Is also good.
 計測された傾き誤差Δθrbは、通常の装置運転時は許容範囲内に収まるように設定されているが、装置の長期運休後の稼働再開時、地震等による大きな振動を受けた後の再起動時には、傾き誤差Δθrbが許容範囲を超えている場合もある。そこで、上記のようにして傾き誤差Δθrbを計測して許容範囲を超えていた場合は、図8に示した微調整機構106によって、基準バー部材RBの傾きが調整できる。但し、微調整機構106による基準バー部材RBの傾き調整が行われた場合は、ステップ302のアライメント系キャリブレーションのシーケンスが再度実行され、アライメント系ALGnの各々の設計上の位置からの取り付け誤差である設置誤差情報ΔC1~ΔC4が再度計測される。 The measured tilt error Δθrb is set to be within the permissible range during normal operation of the equipment, but when the equipment is restarted after a long suspension of operation or when it is restarted after receiving a large vibration due to an earthquake or the like. , The tilt error Δθrb may exceed the permissible range. Therefore, when the inclination error Δθrb is measured as described above and exceeds the permissible range, the inclination of the reference bar member RB can be adjusted by the fine adjustment mechanism 106 shown in FIG. However, when the inclination of the reference bar member RB is adjusted by the fine adjustment mechanism 106, the alignment system calibration sequence of step 302 is executed again, and the mounting error of the alignment system ALGn from each design position causes the alignment error. Certain installation error information ΔC1 to ΔC4 are measured again.
 さらにステップ302では、4つのアライメント系ALGn(n=1~4)の各々が、回転ドラムDRの回転に伴って順次基準パターンFMa~FMhを検出可能であるので、図10に示したような各撮像領域DIS’の中心点CC1~CC4の各々の副走査方向(図10中のX’方向)の相対的な位置関係が、基準パターンFMa~FMhを基準にして決定される。この場合、例えば、基準パターンFMaの直線パターンFyoが4つのアライメント系ALGnの各々の撮像領域DIS’内に現れるタイミングで、アライメント系ALGnの各々の撮像素子DISで直線パターンFyoと線条パターンFx1~Fx4との交点部の画像を同時にサンプリングすると共に、その時にカウンタ回路部200Aから出力されている計測情報ESa1(ESb1)の値を記憶する。 Further, in step 302, since each of the four alignment systems ALGn (n = 1 to 4) can sequentially detect the reference patterns FMa to FMh as the rotating drum DR rotates, each of them as shown in FIG. The relative positional relationship of each of the sub-scanning directions (X'direction in FIG. 10) of the center points CC1 to CC4 of the imaging region DIS'is determined with reference to the reference patterns FMa to FMh. In this case, for example, at the timing when the linear pattern Fyo of the reference pattern FMa appears in the imaging region DIS'of each of the four alignment systems ALGn, the linear pattern Fyo and the linear pattern Fx1 to the linear pattern Fyo and the linear pattern Fx1 to each of the image pickup elements DIS of the alignment system ALGn. The image of the intersection with Fx4 is sampled at the same time, and the value of the measurement information ESa1 (ESb1) output from the counter circuit unit 200A at that time is stored.
 図11中の画像解析部206と計測制御部210によって、サンプリングされたアライメント系ALG1~ALG4の各画像データを解析することにより、基準パターンFMaの直線パターンFyoに対する各中心点CC1~CC4の副走査方向(図10中のX’方向)に関する位置ずれ量が求まる。これにより、カウンタ回路部200Aからの計測情報ESa1(ESb1)によって規定される回転ドラムDRの外周面の座標系内での周方向(副走査方向)に関する中心点CC1~CC4の各々の座標位置と、中心点CC1~CC4の各々の相対的な位置関係(配置誤差)とが決定される。 By analyzing the sampled image data of the alignment systems ALG1 to ALG4 by the image analysis unit 206 and the measurement control unit 210 in FIG. 11, sub-scanning of the center points CC1 to CC4 with respect to the linear pattern Fyo of the reference pattern FMa. The amount of misalignment with respect to the direction (X'direction in FIG. 10) can be obtained. As a result, the coordinate positions of the center points CC1 to CC4 with respect to the circumferential direction (sub-scanning direction) in the coordinate system of the outer peripheral surface of the rotating drum DR defined by the measurement information ESa1 (ESb1) from the counter circuit unit 200A. , The relative positional relationship (arrangement error) of each of the center points CC1 to CC4 is determined.
〔ステップ304〕
 次に、図12のステップ304において、描画ユニットUn(n=1~6)のキャリブレーションが実行される。ここでは、主に、描画ユニットUnの各々による描画ラインSLn(n=1~6)の各々の相対的な位置関係の誤差の計測と補正を行う描画位置調整シーケンスと、アライメント系ALGn(n=1~4)の各々の検出領域ADn(撮像領域DIS’)の中心点CCn(n=1~4)と、描画ラインSLnの各々との間の副走査方向(回転ドラムDRの外周面DRsの周方向)に関する距離関係、或いは主走査方向(Y方向)に関する距離関係に関する情報を取得するベースライン管理シーケンスと、が実行される。なお、図12のステップ304の横に付記した[DR]、[EH]は、ステップ300、302と同様に、回転ドラムDRの回転駆動と、エンコーダ計測系(エンコーダヘッドEHa1~EHa3、EHb1~EHb3)による計測とを利用することを意味し、[DTR]は、先の図3、図11に示した描画ユニットUnの各々に設けられた光電センサDTRを利用することを意味する。
[Step 304]
Next, in step 304 of FIG. 12, calibration of the drawing unit Un (n = 1 to 6) is executed. Here, mainly, a drawing position adjustment sequence for measuring and correcting an error in the relative positional relationship of each of the drawing lines SLn (n = 1 to 6) by each of the drawing units Un, and an alignment system ALGn (n = Sub-scanning direction (of the outer peripheral surface DRs of the rotating drum DR) between the center point CCn (n = 1 to 4) of each detection area ADn (imaging area DIS') of each of 1 to 4) and each of the drawing lines SLn. A baseline management sequence for acquiring information about the distance relationship (circumferential direction) or the distance relationship related to the main scanning direction (Y direction) is executed. Note that [DR] and [EH] added next to step 304 in FIG. 12 are the rotational drive of the rotating drum DR and the encoder measurement system (encoder heads EHa1 to EHa3, EHb1 to EHb3), as in steps 300 and 302. ) Is used, and [DTR] means that the photoelectric sensor DTR provided in each of the drawing units Un shown in FIGS. 3 and 11 above is used.
 描画位置調整シーケンスでは、回転ドラムDRを一定の速度で回転させつつ、描画ユニットUnの各々のポリゴンミラー(回転多面鏡)PMを回転ドラムDRの回転速度(回転ドラムDRの外周面DRsの周速度)に応じて決まる所定の回転速度で回転させる。回転ドラムDRの回転速度とポリゴンミラーPMの回転速度とが安定したら、ダミーの描画データに基づいて強度変調された描画用のビームLBn(n=1~6)を、描画ユニットUnの各々から回転ドラムDRの外周面DRs上に投射する。ダミーの描画データは、スポット光SPの走査軌跡である描画ラインSLn(n=1~6)の各々のY方向の長さに亘って、ビームLBn(n=1~6)の各々を常にOn状態に変調させるものである。 In the drawing position adjustment sequence, while rotating the rotating drum DR at a constant speed, each polygon mirror (rotating multifaceted mirror) PM of the drawing unit Un is rotated at the rotating drum DR (peripheral speed of the outer peripheral surfaces DRs of the rotating drum DR). ) Is rotated at a predetermined rotation speed. When the rotation speed of the rotating drum DR and the rotation speed of the polygon mirror PM are stable, the intensity-modulated drawing beam LBn (n = 1 to 6) based on the dummy drawing data is rotated from each of the drawing units Un. It is projected onto the outer peripheral surface DRs of the drum DR. The dummy drawing data always turns each of the beam LBn (n = 1 to 6) on over the length of each drawing line SLn (n = 1 to 6) which is the scanning locus of the spot light SP in the Y direction. It modulates the state.
 回転ドラムDRの回転に伴って、描画ユニットUnの各々から投射されるビームLBnの各スポット光は、外周面DRs上に形成された基準パターンFMa、FMb、FMc・・・の各々を順次走査する。各スポット光が、例えば基準パターンFMa(FMb、FMc・・・でも良い)を走査すると、先の図11で説明したように、描画ユニットUnの各々に設けられた光電センサDTRが反射光の光量変化に応じた光電信号を出力し、ADC部202A(202B)、画像処理部204A(204B)によって、基準パターンFMaを含む2次元的な明暗画像データ(輝度情報)が生成される。ここでは、描画ユニットUnの各々から投射されるビームLBnの各スポット光を計測プローブ光にして検出した2次元的な明暗画像データに基づいて、回転ドラムDR上の基準パターンFMa(FMb、FMc・・・でも良い)を基準にした描画ラインSLn(n=1~6)の各々の位置関係を計測する。なお、光電センサDTR、ADC部202A(202B)、及び画像処理部204A(204B)によって反射光モニター系が構成され、基準パターンFMa(FMb、FMc・・・でも良い)の明暗画像データの他に、基板P上に形成されたパターンやアライメントマークに対応した明暗画像データも取得可能である。 As the rotating drum DR rotates, each spot light of the beam LBn projected from each of the drawing units Un sequentially scans each of the reference patterns FMa, FMb, FMc ... Formed on the outer peripheral surface DRs. .. When each spot light scans, for example, a reference pattern FMa (FMb, FMc ... May be used), as described in FIG. 11 above, the photoelectric sensor DTR provided in each of the drawing units Un determines the amount of reflected light. A photoelectric signal corresponding to the change is output, and the ADC unit 202A (202B) and the image processing unit 204A (204B) generate two-dimensional light / dark image data (luminance information) including the reference pattern FMa. Here, the reference pattern FMa (FMb, FMc. The positional relationship of each of the drawing lines SLn (n = 1 to 6) with reference to (may be) is measured. The reflected light monitor system is composed of the photoelectric sensor DTR, the ADC unit 202A (202B), and the image processing unit 204A (204B), and in addition to the bright and dark image data of the reference pattern FMa (FMb, FMc ...). It is also possible to acquire light and dark image data corresponding to the patterns and alignment marks formed on the substrate P.
 図16は、先の図7の構成に基づいて、6つの描画ラインSLn、4つのアライメント系ALGnの各々の撮像領域DIS’(検出領域ADn)、及び基準パターンFMaのそれぞれの配置関係の一例を、回転ドラムDRの外周面DRsの一部を平面状に展開して表した図である。ここで、奇数番の描画ラインSL1、SL3、SL5の各々を成すスポット光の主走査方向は-Y方向に設定され、偶数番の描画ラインSL2、SL4、SL6の各々を成すスポット光の主走査方向は+Y方向に設定されるものとする。また、描画ラインSL1~SL6の各々の主走査方向(Y方向)の中点CE1~CE6は、先の図2、図3、図8Aに示したように、描画ユニットU1~U6の各々を微小回転させる際の回転中心線になる線分LE1~LE6の延長が通るように配置されている。 FIG. 16 shows an example of the arrangement relationship of the imaging region DIS'(detection region ADn) of each of the six drawing lines SLn and the four alignment system ALGn and the reference pattern FMa based on the configuration of FIG. , It is the figure which developed and represented a part of the outer peripheral surface DRs of a rotary drum DR in a plane. Here, the main scanning direction of the spot light forming each of the odd-numbered drawing lines SL1, SL3, and SL5 is set to the −Y direction, and the main scanning direction of the spot light forming each of the even-numbered drawing lines SL2, SL4, and SL6 is set. The direction shall be set in the + Y direction. Further, as shown in FIGS. 2, 3 and 8A above, the midpoints CE1 to CE6 in the main scanning directions (Y direction) of the drawing lines SL1 to SL6 are minute in each of the drawing units U1 to U6. It is arranged so that the extension of the line segments LE1 to LE6, which becomes the rotation center line when rotating, passes through.
 なお、図16中の周方向位置CXAは、エンコーダシステム(図11中のカウンタ回路部200A)で計測されたアライメント系ALGn(n=1~4)の各々の中心点CCn(n=1~4)の副走査方向(周方向)の位置情報の平均演算によって決まる位置、或いは、アライメント系ALGn(n=1~4)のうちで、Y方向の両側に設置される2つのアライメント系ALG1、ALG4の各中心点CC1、CC4の副走査方向(周方向)の位置情報の平均演算によって決まる位置を表わす。 The circumferential position CXA in FIG. 16 is the center point CCn (n = 1 to 4) of each of the alignment systems ALGn (n = 1 to 4) measured by the encoder system (counter circuit unit 200A in FIG. 11). ) Is determined by averaging the position information in the sub-scanning direction (circumferential direction), or of the alignment systems ALGn (n = 1 to 4), two alignment systems ALG1 and ALG4 installed on both sides in the Y direction. Represents a position determined by averaging the position information in the sub-scanning direction (circumferential direction) of each of the center points CC1 and CC4.
 また、図15に示した回転ドラムDRの外周面DRs上の基準パターンFMa(FMb、FMc・・・も同じ)は、線条パターンFx1~Fx4の他に、直線パターンFyoと交差するように周方向に延びて、Y方向の複数の位置の各々に配置された多数の線条パターンが、図16のように形成されている。 Further, the reference pattern FMa (same for FMb, FMc ...) On the outer peripheral surface DRs of the rotating drum DR shown in FIG. 15 is circumferential so as to intersect the linear pattern Fyo in addition to the linear patterns Fx1 to Fx4. A large number of linear patterns extending in the direction and arranged at each of the plurality of positions in the Y direction are formed as shown in FIG.
 図16に示すように、アライメント系ALG1の検出領域AD1としての撮像領域DIS’(中心点CC1)で検出される線条パターンFx1は、描画ラインSL1の走査範囲内の走査終了付近に配置されて、描画ユニットU1の反射光モニター系(光電センサDTR)でも検出可能な線条パターンFxe1を有する。アライメント系ALG2の検出領域AD2としての撮像領域DIS’(中心点CC2)で検出される線条パターンFx2は、描画ラインSL2の走査範囲内の走査終了付近に配置されて、描画ユニットU2の反射光モニター系(光電センサDTR)でも検出可能な線条パターンFxe2と、描画ラインSL3の走査範囲内の走査終了付近に配置されて、描画ユニットU3の反射光モニター系(光電センサDTR)でも検出可能な線条パターンFxe3とを有する。 As shown in FIG. 16, the streak pattern Fx1 detected in the imaging region DIS'(center point CC1) as the detection region AD1 of the alignment system ALG1 is arranged near the end of scanning within the scanning range of the drawing line SL1. The drawing unit U1 has a linear pattern Fxe1 that can be detected by the reflected light monitor system (photoelectric sensor DTR). The streak pattern Fx2 detected in the imaging region DIS'(center point CC2) as the detection region AD2 of the alignment system ALG2 is arranged near the end of scanning within the scanning range of the drawing line SL2, and the reflected light of the drawing unit U2. The streak pattern Fxe2, which can be detected by the monitor system (photoelectric sensor DTR), and the reflected light monitor system (photoelectric sensor DTR) of the drawing unit U3, which is arranged near the end of scanning within the scanning range of the drawing line SL3, can also be detected. It has a streak pattern Fxe3.
 同様に、アライメント系ALG3の検出領域AD3としての撮像領域DIS’(中心点CC3)で検出される線条パターンFx3は、描画ラインSL4の走査範囲内の走査終了付近に配置されて、描画ユニットU4の反射光モニター系(光電センサDTR)でも検出可能な線条パターンFxe4と、描画ラインSL5の走査範囲内の走査終了付近に配置されて、描画ユニットU5の反射光モニター系(光電センサDTR)でも検出可能な線条パターンFxe5とを有する。更に、アライメント系ALG4の検出領域AD4としての撮像領域DIS’(中心点CC4)で検出される線条パターンFx4は、描画ラインSL6の走査範囲内の走査終了付近に配置されて、描画ユニットU6の反射光モニター系(光電センサDTR)でも検出可能な線条パターンFxe6を有する。 Similarly, the streak pattern Fx3 detected in the imaging region DIS'(center point CC3) as the detection region AD3 of the alignment system ALG3 is arranged near the end of scanning within the scanning range of the drawing line SL4, and the drawing unit U4 The streak pattern Fxe4, which can be detected by the reflected light monitor system (photoelectric sensor DTR) of the above, and the reflected light monitor system (photoelectric sensor DTR) of the drawing unit U5, which is arranged near the end of scanning within the scanning range of the drawing line SL5. It has a detectable streak pattern Fxe5. Further, the streak pattern Fx4 detected in the imaging region DIS'(center point CC4) as the detection region AD4 of the alignment system ALG4 is arranged near the end of scanning within the scanning range of the drawing line SL6, and is arranged in the drawing unit U6. It has a streak pattern Fxe6 that can be detected even by a reflected light monitor system (photoelectric sensor DTR).
 さらに、基準パターンFMaは、描画ラインSL1の走査範囲内の走査開始付近に対応した位置に配置される線条パターンFxs1、描画ラインSL1の中点CE1付近に対応した位置に配置される線条パターンFxc1、描画ラインSL2の走査範囲内の走査開始付近に対応した位置に配置される線条パターンFxs2、描画ラインSL2の中点CE2付近に対応した位置に配置される線条パターンFxc2、描画ラインSL3の走査範囲内の走査開始付近に対応した位置に配置される線条パターンFxs3、描画ラインSL3の中点CE3付近に対応した位置に配置される線条パターンFxc3、描画ラインSL4の走査範囲内の走査開始付近に対応した位置に配置される線条パターンFxs4、描画ラインSL4の中点CE4付近に対応した位置に配置される線条パターンFxc4、描画ラインSL5の走査範囲内の走査開始付近に対応した位置に配置される線条パターンFxs5、描画ラインSL5の中点CE5付近に対応した位置に配置される線条パターンFxc5、並びに、描画ラインSL6の走査範囲内の走査開始付近に対応した位置に配置される線条パターンFxs6、描画ラインSL6の中点CE6付近に対応した位置に配置される線条パターンFxc6を有する。 Further, the reference pattern FMa is a linear pattern Fxs1 arranged at a position corresponding to the vicinity of the scanning start in the scanning range of the drawing line SL1, and a linear pattern arranged at a position corresponding to the vicinity of the midpoint CE1 of the drawing line SL1. Fxc1, the linear pattern Fxs2 arranged at the position corresponding to the vicinity of the scanning start in the scanning range of the drawing line SL2, the linear pattern Fxx2 arranged at the position corresponding to the vicinity of the midpoint CE2 of the drawing line SL2, and the drawing line SL3. Within the scanning range of the linear pattern Fxs3 arranged at a position corresponding to the vicinity of the scanning start in the scanning range, the linear pattern Fxc3 arranged at a position corresponding to the vicinity of the midpoint CE3 of the drawing line SL3, and the drawing line SL4. Corresponds to the vicinity of the start of scanning within the scanning range of the linear pattern Fxs4 arranged at the position corresponding to the vicinity of the scanning start, the linear pattern Fxc4 arranged at the position corresponding to the vicinity of the midpoint CE4 of the drawing line SL4, and the drawing line SL5. The linear pattern Fxs5 arranged at the designated position, the linear pattern Fxc5 arranged at the position corresponding to the vicinity of the midpoint CE5 of the drawing line SL5, and the position corresponding to the vicinity of the scanning start within the scanning range of the drawing line SL6. It has a linear pattern Fxs6 to be arranged and a linear pattern Fxc6 arranged at a position corresponding to the vicinity of the midpoint CE6 of the drawing line SL6.
 また、線条パターンFxc1と線条パターンFxc2とのY方向の間隔YJ12、線条パターンFxc2と線条パターンFxc3とのY方向の間隔YJ23、線条パターンFxc3と線条パターンFxc4とのY方向の間隔YJ34、線条パターンFxc4と線条パターンFxc5とのY方向の間隔YJ45、及び、線条パターンFxc5と線条パターンFxc6とのY方向の間隔YJ56は、描画ラインSL1~SL6の各々の中点CE1~CE6のそれぞれの間のY方向の設計上の間隔(例えば、52.00mm)になるように設定されている。本実施の形態では、描画ラインSL1~SL6の各々の走査長は等しい値(例えば52.00mm)に設定される為、中点CE1~CE6の各々のY方向に隣り合った同士の間隔も等しくなるように設定されが、その間隔は、装置組み立て時の描画ユニットU1~U6の取付け誤差、各描画ユニットUn内の光学部材の取付け誤差、或いは環境温度の変化等によって、ミクロンオーダーで見ると多少の誤差を伴っている。 Further, the distance between the streak pattern Fxc1 and the streak pattern Fxc2 in the Y direction YJ12, the distance between the streak pattern Fxc2 and the streak pattern Fxc3 in the Y direction YJ23, and the distance between the streak pattern Fxc3 and the streak pattern Fxc4 in the Y direction. The interval YJ34, the interval YJ45 between the linear pattern Fxc4 and the linear pattern Fxc5 in the Y direction, and the interval YJ56 between the linear pattern Fxc5 and the linear pattern Fxc6 in the Y direction are the midpoints of the drawing lines SL1 to SL6. It is set to be a design distance (for example, 52.00 mm) in the Y direction between CE1 to CE6. In the present embodiment, since the scanning lengths of the drawing lines SL1 to SL6 are set to the same value (for example, 52.00 mm), the distances between the midpoints CE1 to CE6 adjacent to each other in the Y direction are also equal. However, the interval is set to be slightly due to the mounting error of the drawing units U1 to U6 at the time of assembling the device, the mounting error of the optical member in each drawing unit Un, the change in the environmental temperature, etc. With the error of.
 そこで、ステップ304における描画位置調整シーケンスでは、回転ドラムDR上の基準パターンFMa(他の基準パターンFMb、FMc・・・でも良い)が、描画ラインSL1~SL6の各々を周方向に横切るように所定速度で回転ドラムDRを回転移動させつつ、エンコーダヘッドEHa2(EHb2)に対応したカウンタ回路部200Bで計測される回転ドラムDRの外周面DRsの移動位置に関する計測情報ESa2(ESb2)に基づいて、描画ユニットU1~U6の各々の反射光モニター系(光電センサDTR)を使って、基準パターンFMaの対応する部分の明暗画像データを取得する。具体的には、図11に示したカウンタ回路部200Bからの計測情報ESa2(ESb2)が、図16中の周方向位置CX1となった時点で、奇数番の描画ユニットU1、U3、U5の各々の反射光モニター系による明暗画像データのサンプリングを開始し、計測情報ESa2(ESb2)が周方向位置CX2となった時点で、そのサンプリングを終了する。なお、反射光モニター系による明暗画像データのサンプリングについては、例えば、国際公開第2015/152217号、国際公開第2018/066285号に開示されている。 Therefore, in the drawing position adjustment sequence in step 304, the reference pattern FMa (other reference patterns FMb, FMc ... May be used) on the rotating drum DR is determined to cross each of the drawing lines SL1 to SL6 in the circumferential direction. While rotating the rotating drum DR at a speed, drawing is performed based on the measurement information ESa2 (ESb2) regarding the moving position of the outer peripheral surface DRs of the rotating drum DR measured by the counter circuit unit 200B corresponding to the encoder head EHa2 (EHb2). The reflected light monitor system (photoelectric sensor DTR) of each of the units U1 to U6 is used to acquire the light / dark image data of the corresponding portion of the reference pattern FMa. Specifically, when the measurement information ESa2 (ESb2) from the counter circuit unit 200B shown in FIG. 11 reaches the circumferential position CX1 in FIG. 16, the odd-numbered drawing units U1, U3, and U5 are respectively. The sampling of the light / dark image data by the reflected light monitor system is started, and the sampling is finished when the measurement information ESa2 (ESb2) reaches the circumferential position CX2. The sampling of light and dark image data by the reflected light monitor system is disclosed in, for example, International Publication No. 2015/152217 and International Publication No. 2018/066285.
 図16において、周方向位置CX1、CX2は、カウンタ回路部200Bによって、例えば0.1μmの分解能で計測される基準パターンFMaの移動位置を表し、基準パターンFMaが奇数番の描画ラインSL1、SL3、SL5を十分に横切れるような範囲に設定されている。さらに、周方向位置CX1、CX2は、エンコーダヘッドEHa2又はEHb2を用いたエンコーダシステムにおいて、原点パターンZZoによってカウンタ回路部200B内のデジタルカウンタがゼロリセットされてからの移動量(単位移動量ΔLxaの下で計測される周長)でもある。原点パターンZZoと基準パターンFMa(又は他の基準パターンFMb、FMc・・・)との周方向に関する角度位置の関係、即ち外周面DRs上での周方向の間隔距離は、概ね判明しているので、周方向位置CX1、CX2は数mm以下の範囲で設定される。 In FIG. 16, the circumferential positions CX1 and CX2 represent the moving positions of the reference pattern FMa measured by the counter circuit unit 200B with a resolution of, for example, 0.1 μm, and the drawing lines SL1 and SL3 having odd-numbered reference patterns FMa. It is set in a range that can sufficiently cross SL5. Further, the peripheral positions CX1 and CX2 are the movement amounts (below the unit movement amount ΔLxa) after the digital counter in the counter circuit unit 200B is zero-reset by the origin pattern ZZo in the encoder system using the encoder head EHa2 or EHb2. It is also the circumference measured by). Since the relationship between the origin pattern ZZo and the reference pattern FMa (or other reference patterns FMb, FMc ...) in the circumferential direction, that is, the distance between the origin pattern ZZo and the reference pattern FMa (or other reference patterns FMb, FMc ...) in the circumferential direction on the outer peripheral surface DRs is generally known. , CX1 and CX2 in the circumferential direction are set in a range of several mm or less.
 偶数番の描画ユニットU2、U4、U6の各々についても同様であり、基準パターンFMaが偶数番の描画ラインSL2、SL4、SL6を十分に横切れるような周方向位置CX3~CX4の範囲を周方向に移動していく間に、偶数番の描画ユニットU2、U4、U6の各々の反射光モニター系による明暗画像データのサンプリングが行われる。但し、周方向位置CX3、CX4は、エンコーダヘッドEHa3又はEHb3(図7、図8参照)を用いたエンコーダシステムにおいて、カウンタ回路部200Bと同様のカウンタ回路部(200Cとする)内のデジタルカウンタが原点パターンZZoによってゼロリセットされてからの移動量(単位移動量ΔLxaの下で計測される周長)によって特定される。 The same applies to each of the even-numbered drawing units U2, U4, and U6, and the circumferential direction is the range of the circumferential positions CX3 to CX4 such that the reference pattern FMa sufficiently crosses the even-numbered drawing lines SL2, SL4, and SL6. While moving to, the light and dark image data is sampled by the reflected light monitor systems of the even-numbered drawing units U2, U4, and U6. However, at the circumferential positions CX3 and CX4, in the encoder system using the encoder head EHa3 or EHb3 (see FIGS. 7 and 8), the digital counter in the counter circuit unit (referred to as 200C) similar to the counter circuit unit 200B is used. It is specified by the movement amount (circumferential length measured under the unit movement amount ΔLxa) after being zero-reset by the origin pattern ZZo.
 また、反射光モニター系による明暗画像データの取得範囲は、描画ラインSL1~SL6の各々のY方向の長さ(例えば、52mm)×距離(CX2-CX1、又はCX4-CX3で定まる数mm)で規定される2次元の領域の全体であるのが望ましい。しかしながら、データ量(画像の記憶メモリ容量)が膨大になる為、描画ラインSL1~SL6の各々のY方向の部分的な領域(例えばY方向に数mm)に制限しても良い。例えば、描画ラインSL1に関しては、スポット光による主走査の開始位置付近に配置される線条パターンFxs1を含む数mmの領域、スポット光による主走査の終了位置付近に配置される線条パターンFxe1を含む数mmの領域、及び、スポット光による主走査の中間位置付近に配置される線条パターンFxc1を含む数mmの領域の各々についてのみ、明暗画像データを取得するようにしても良い。 The range of acquisition of bright and dark image data by the reflected light monitor system is the length (for example, 52 mm) x distance (several mm determined by CX2-CX1 or CX4-CX3) of each of the drawing lines SL1 to SL6 in the Y direction. It is desirable that it is the entire defined two-dimensional area. However, since the amount of data (image storage memory capacity) becomes enormous, it may be limited to a partial area in the Y direction of each of the drawing lines SL1 to SL6 (for example, several mm in the Y direction). For example, regarding the drawing line SL1, a region of several mm including the streak pattern Fxs1 arranged near the start position of the main scan by the spot light and the streak pattern Fxe1 arranged near the end position of the main scan by the spot light. Bright and dark image data may be acquired only for each of the region of several mm including the region and the region of several mm including the linear pattern Fxc1 arranged near the intermediate position of the main scan by the spot light.
 図17は、一例として、描画ラインSL1を生成するスポット光SPが、回転ドラムDRの外周面DRs上の基準パターンFMa中の線条パターンFxc1を含む領域を相対的に2次元走査する様子を示す。先の図1に示した光源装置LSからのビームLBの発振周波数FPL(図11で説明したクロック信号LTCと同じ)を400MHz(周期2.5nS)、1パルスによるスポット光SPの実効的な直径φp(例えば、近似的なガウス分布におけるピーク強度の1/e2の強度になる直径)を2.5μmとした場合、2.5nS毎にパルス照射されるスポット光SPが主走査方向(Y方向)に単位走査移動量ΔYsp(直径φpの1/2の1.25μm)だけ移動するように、ポリゴンミラーPMの回転速度が設定される。また、描画ラインSL1に沿ったスポット光SPの主走査は、回転ドラムDRの外周面が副走査方向(周方向)に単位送り量ΔXspだけ移動するたびに行われ、その単位送り量ΔXspが、スポット光SPの実効的な直径φpの1/2の1.25μmになるように、回転ドラムDRの回転速度が設定される。なお、図17において、副走査方向に関して主走査方向の同一位置でパルス発光されるスポット光SPの並びを副走査ラインSL1’とする。 FIG. 17 shows, as an example, how the spot light SP that generates the drawing line SL1 relatively two-dimensionally scans the region including the linear pattern Fxc1 in the reference pattern FMa on the outer peripheral surface DRs of the rotating drum DR. .. The oscillation frequency FPL of the beam LB from the light source device LS shown in FIG. 1 (same as the clock signal LTC described in FIG. 11) is 400 MHz (period 2.5 nS), and the effective diameter of the spot light SP by one pulse. When φp (for example, a diameter that becomes 1 / e 2 of the peak intensity in an approximate Gaussian distribution) is 2.5 μm, the spot light SP pulsed every 2.5 nS is in the main scanning direction (Y direction). ), The rotation speed of the polygon mirror PM is set so as to move by the unit scanning movement amount ΔYsp (1.25 μm, which is 1/2 of the diameter φp). Further, the main scanning of the spot light SP along the drawing line SL1 is performed every time the outer peripheral surface of the rotating drum DR moves in the sub-scanning direction (circumferential direction) by a unit feed amount ΔXsp, and the unit feed amount ΔXsp is determined by the unit feed amount ΔXsp. The rotation speed of the rotating drum DR is set so as to be 1.25 μm, which is 1/2 of the effective diameter φp of the spot light SP. In FIG. 17, the sequence of spot light SPs that emit pulses at the same position in the main scanning direction with respect to the sub-scanning direction is defined as the sub-scanning line SL1'.
 反射光モニター系(光電センサDTR)からの光電信号の強度レベルを、クロック信号LTCのクロックパルス毎にADC部202A(図11)によって、デジタルサンプリングすると、例えば、1本の描画ラインSL1に沿って図17の右側に示すような明暗画像データとしての信号波形Wfyが取得される。描画ラインSL1が線条パターンFxc1を横切るとき、線条パターンFxc1ではスポット光SPの照射による正反射光が周囲からの正反射光よりも低下する為、線条パターンFxc1の主走査方向(Y方向)のエッジ位置Yac1、Yac2、Yac3、Yac4の各々で信号波形Wfyのレベルが変化する。図11に示した画像処理部204Aによって、信号波形Wfyのレベルを適当な閾値Vszと比較することにより、4ヶ所のエッジ位置Yac1~Yac4が決定される。なお、描画ラインSL1に沿ったスポット光SPの位置は、描画ユニットU1内の原点センサから、ポリゴンミラーPMの各反射面が描画開始直前の角度位置になる度に出力される原点信号の1つのパルス発生時点を原点位置(ゼロ点位置)として、クロック信号LTCのクロックパルスの計数値(信号波形Wfyを記憶する波形メモリのアドレス値)で指定される。 When the intensity level of the photoelectric signal from the reflected light monitor system (photoelectric sensor DTR) is digitally sampled by the ADC unit 202A (FIG. 11) for each clock pulse of the clock signal LTC, for example, along one drawing line SL1. The signal waveform Wfy as the light / dark image data as shown on the right side of FIG. 17 is acquired. When the drawing line SL1 crosses the linear pattern Fxc1, the regular reflected light due to the irradiation of the spot light SP is lower than the regular reflected light from the surroundings in the linear pattern Fxc1, so that the main scanning direction (Y direction) of the linear pattern Fxc1 ), The level of the signal waveform Wfy changes at each of the edge positions Yac1, Yac2, Yac3, and Yac4. The image processing unit 204A shown in FIG. 11 determines the four edge positions Yac1 to Yac4 by comparing the level of the signal waveform Wfy with an appropriate threshold value Vsz. The position of the spot light SP along the drawing line SL1 is one of the origin signals output from the origin sensor in the drawing unit U1 each time each reflecting surface of the polygon mirror PM becomes an angular position immediately before the start of drawing. The time point at which the pulse is generated is set as the origin position (zero point position), and is specified by the count value of the clock pulse of the clock signal LTC (the address value of the waveform memory that stores the signal waveform Wfy).
 画像処理部204Aは、決定された4ヶ所の位置Yac1~Yac4の平均的な位置PQa1y(=〔Yac1+Yac2+Yac3+Yac4〕/4)を、線条パターンFxc1の主走査方向(Y方向)の中心位置として算出する。さらに画像処理部204Aは、図17の上方に示したように、信号波形Wfy中の位置Yac2と位置Yac3の間で副走査ラインSL1’に沿って得られる信号波形Wfxを特定する。信号波形Wfxは、位置Yac2~Yac3の間の複数の副走査ラインSL1’の各々で得られる信号波形Wfxを主走査方向に加算平均したものとするのが良い。画像処理部204Aは、信号波形Wfxのレベルを適当な閾値Vszと比較することにより、直線パターンFyoの副走査方向における2ヶ所のエッジ位置Xac1、Xac2を決定し、さらに位置Xac1、Xac2の平均的な位置PQa1x(=〔Xac1+Xac2〕/2)を、直線パターンFyoの副走査方向の中心位置として算出する。位置Xac1、Xac2、PQa1xは、エンコーダシステムのカウンタ回路部200B(図11)で計測される計測情報ESa2、ESb2(例えば、分解能0.1μm)によって特定される。 The image processing unit 204A calculates the average position PQa1y (= [Yac1 + Yac2 + Yac3 + Yac4] / 4) of the four determined positions Yac1 to Yac4 as the center position in the main scanning direction (Y direction) of the linear pattern Fxc1. .. Further, as shown in the upper part of FIG. 17, the image processing unit 204A identifies the signal waveform Wfx obtained along the sub-scanning line SL1'between the position Yac2 and the position Yac3 in the signal waveform Wfy. The signal waveform Wfx is preferably the sum of the signal waveforms Wfx obtained at each of the plurality of sub-scanning lines SL1'between positions Yac2 and Yac3 in the main scanning direction. The image processing unit 204A determines two edge positions Xac1 and Xac2 in the sub-scanning direction of the linear pattern Fyo by comparing the level of the signal waveform Wfx with an appropriate threshold value Vsz, and further determines the average of the positions Xac1 and Xac2. Position PQa1x (= [Xac1 + Xac2] / 2) is calculated as the center position in the sub-scanning direction of the linear pattern Fyo. The positions Xac1, Xac2, and PQa1x are specified by the measurement information ESa2 and ESb2 (for example, resolution 0.1 μm) measured by the counter circuit unit 200B (FIG. 11) of the encoder system.
 以上の演算処理により、直線パターンFyoと線条パターンFxc1とが交差する部分の中心点(交点)PQa1(図15中の中心点Cfmに相当)の座標位置(PQa1x、PQa1y)が決定される。同様に、ADC部202Aと画像処理部204Aとによって、図16に示した描画ラインSL1上で左端側(走査開始側)に位置する線条パターンFxs1と直線パターンFyoとの交点PQs1の座標位置と、描画ラインSL1上で右端側(走査終了側)に位置する線条パターンFxe1と直線パターンFyoとの交点PQe1の座標位置とが決定される。同様に、他の描画ユニットU2~U6の各々に関しても、描画ラインSL2~SL6の各々に沿ったスポット光SPの主走査と回転ドラムDRの回転(副走査)とによって、線条パターンFxc2~Fxc6の各々と直線パターンFyo1との各交点PQa2~PQa6の座標位置が決定される。さらに、描画ラインSL2~SL6の各々の走査開始側に位置する線条パターンFxs2~Fxs6の各々と直線パターンFyoとの交点PQs2~PQs6の各座標位置と、描画ラインSL2~SL6の各々の走査終了側に位置する線条パターンFxe2~Fxe6の各々と直線パターンFyoとの交点PQe2~PQe6の各座標位置とが決定される。 By the above arithmetic processing, the coordinate positions (PQa1x, PQa1y) of the center point (intersection) PQa1 (corresponding to the center point Cfm in FIG. 15) of the portion where the straight line pattern Fyo and the streak pattern Fxc1 intersect are determined. Similarly, the ADC unit 202A and the image processing unit 204A determine the coordinate position of the intersection PQs1 between the linear pattern Fxs1 and the linear pattern Fyo located on the left end side (scanning start side) on the drawing line SL1 shown in FIG. , The coordinate position of the intersection point PQe1 between the linear pattern Fxe1 located on the right end side (scanning end side) on the drawing line SL1 and the straight line pattern Fyo is determined. Similarly, for each of the other drawing units U2 to U6, the linear patterns Fxc2 to Fxx6 are obtained by the main scanning of the spot light SP and the rotation (sub-scanning) of the rotating drum DR along each of the drawing lines SL2 to SL6. The coordinate positions of the intersections PQa2 to PQa6 of each of the above and the linear pattern Fyo1 are determined. Further, each coordinate position of the line pattern Fxs2 to Fxs6 located on the scanning start side of each of the drawing lines SL2 to SL6 and the intersection point PQs2 to PQs6 of the linear pattern Fyo, and the scanning end of each of the drawing lines SL2 to SL6. The coordinate positions of the intersection points PQe2 to PQe6 of each of the linear patterns Fxe2 to Fxe6 located on the side and the linear pattern Fyo are determined.
 回転ドラムDR上の直線パターンFyo、線条パターンFxc1~Fxc6、Fxs1~Fxs6、Fxe1~Fxe6の各々の配置状態(例えば、間隔YJ12、YJ23、YJ34、YJ45、YJ56等)は、図16に示したように既知であるので、計測された交点PQa1~PQa6の各座標位置に基づいて、描画ラインSL1~SL6の各々の中点CE1~CE6の2次元的な位置誤差が求められる。ここで、本実施の形態では、パターン描画時の基準を描画ラインSL1とし、その中点CE1に対して、他の描画ラインSL1~SL6の各々の中点CE2~CE6がどの程度の配置誤差になっているかを求めるものとする。勿論、基準とすべき描画ラインSL1は、その他の描画ラインSL2~SL6のいずれか1つにしても良い。 The arrangement states (for example, intervals YJ12, YJ23, YJ34, YJ45, YJ56, etc.) of the linear patterns Fyo, the linear patterns Fxx1 to Fxc6, Fxs1 to Fxs6, and Fxe1 to Fxe6 on the rotating drum DR are shown in FIG. Since it is known as described above, a two-dimensional position error of each of the midpoints CE1 to CE6 of the drawing lines SL1 to SL6 can be obtained based on the measured coordinate positions of the intersections PQa1 to PQa6. Here, in the present embodiment, the reference at the time of pattern drawing is set as the drawing line SL1, and the placement error of the midpoints CE2 to CE6 of the other drawing lines SL1 to SL6 is set with respect to the midpoint CE1. It shall be asked whether it is. Of course, the drawing line SL1 to be used as a reference may be any one of the other drawing lines SL2 to SL6.
 図18は、走査開始位置Yss1から走査終了位置Yse1までの間でスポット光SPが走査される描画ラインSL1を描画時の基準として、隣の描画ラインSL2との相対的な配置誤差を決定する様子を説明する図である。他の描画ラインSL3~SL6の各々については、描画ラインSL1を基準にして相対的な配置誤差を決定する場合と、描画ラインSL2を基準にした描画ラインSL3の相対的な配置誤差、描画ラインSL3を基準にした描画ラインSL4の相対的な配置誤差、描画ラインSL4を基準にした描画ラインSL5の相対的な配置誤差、及び描画ラインSL5を基準にした描画ラインSL6の相対的な配置誤差を決定する場合とがある。いずれの決定方法でも、描画ラインSL1~SL6の各々の相対的な位置誤差量(ベクトル量)を特定することができる。 FIG. 18 shows a state in which the relative arrangement error with the adjacent drawing line SL2 is determined using the drawing line SL1 in which the spot light SP is scanned between the scanning start position Yss1 and the scanning end position Yse1 as a reference at the time of drawing. It is a figure explaining. For each of the other drawing lines SL3 to SL6, there are cases where the relative arrangement error is determined with reference to the drawing line SL1, the relative arrangement error of the drawing line SL3 with respect to the drawing line SL2, and the drawing line SL3. Determines the relative placement error of the drawing line SL4 based on the drawing line SL4, the relative placement error of the drawing line SL5 based on the drawing line SL4, and the relative placement error of the drawing line SL6 based on the drawing line SL5. There are cases where it is done. With either determination method, the relative position error amount (vector amount) of each of the drawing lines SL1 to SL6 can be specified.
 図18において、描画ラインSL1、SL2はいずれも回転誤差が無く、Y軸に対して傾き無く設定されているものとする。また、直線パターンFyoと線条パターンFxc1との交点PQa1と、描画ラインSL1の中点CE1とは実際には位置ずれしているが、図18では描画ラインSL1を基準とする為、交点PQa1と中点CE1とが一致した状態で表している。また、描画ラインSL1(中点CE1)と描画ラインSL2(中点CE2)との副走査方向(周方向)の設計上の間隔を規定距離ΔLMとし、描画ラインSL1の中点CE1の交点PQa1の副走査方向(周方向)の位置PQa1x(図17)は、エンコーダシステムで計測される位置CXsとし、その位置CXsから規定距離ΔLMだけ副走査方向に進んでエンコーダシステムで計測される点を位置CXeとする。 In FIG. 18, it is assumed that the drawing lines SL1 and SL2 have no rotation error and are set without inclination with respect to the Y axis. Further, the intersection PQa1 between the straight line pattern Fyo and the linear pattern Fxc1 and the midpoint CE1 of the drawing line SL1 are actually displaced from each other, but in FIG. 18, since the drawing line SL1 is used as a reference, the intersection PQa1 and It is represented in a state where it coincides with the midpoint CE1. Further, the design distance between the drawing line SL1 (midpoint CE1) and the drawing line SL2 (midpoint CE2) in the sub-scanning direction (circumferential direction) is set to the specified distance ΔLM, and the intersection PQa1 of the midpoint CE1 of the drawing line SL1 is set. The position PQa1x (FIG. 17) in the sub-scanning direction (circumferential direction) is the position CXs measured by the encoder system, and the point measured by the encoder system is the position CXe that advances in the sub-scanning direction by a specified distance ΔLM from the position CXs. And.
 図18では、副走査方向の位置CXeに基準パターンFMaの直線パターンFyoが位置した状態を表し、描画ラインSL2(中点CE2)は、相対的な位置誤差の為に、直線パターンFyo上に精密に重なることなく、直線パターンFyo(位置CXe)に対して副走査方向の負側にΔxx2だけ位置誤差を持っている。位置誤差Δxx2は、実測された描画ラインSL2の中点CE2の交点PQa2の副走査方向の座標位置(PQa2x)と、描画ラインSL1の中点CE1の交点PQa1の副走査方向の座標位置(PQa1x)との差分長と、規定距離ΔLMとに基づいて、Δxx2=(PQa2x-PQa1x)-ΔLMの演算によって求められる。 FIG. 18 shows a state in which the linear pattern Fyo of the reference pattern FMa is positioned at the position CXe in the sub-scanning direction, and the drawing line SL2 (midpoint CE2) is precise on the linear pattern Fyo due to the relative positional error. It has a position error of Δxx2 on the negative side in the sub-scanning direction with respect to the linear pattern Fyo (position CXe) without overlapping with. The position error Δxx2 is the coordinate position (PQa2x) in the sub-scanning direction of the intersection PQa2 of the midpoint CE2 of the drawn line SL2 and the coordinate position (PQa1x) in the sub-scanning direction of the intersection PQa1 of the midpoint CE1 of the drawing line SL1. It is obtained by the calculation of Δxx2 = (PQa2x-PQa1x) -ΔLM based on the difference length between the above and the specified distance ΔLM.
 描画ラインSL1の中点CE1と描画ラインSL2の中点CE2との主走査方向(Y方向)の設計上の間隔は、相対的な位置誤差が無ければ、基準パターンFMaの線条パターンFxc1と線条パターンFxc2とのY方向の間隔YJ12と一致し、描画ラインSL1(中点CE1)を基準とすると、描画ラインSL2の中点CE2はY方向に関して線条パターンFxc2と重なる。しかしながら、実際には、図18に示すように、描画ラインSL2の中点CE2と線条パターンFxc2とは、Y方向に相対的な位置誤差Δyy2が発生し得る。その位置誤差Δyy2は、描画ラインSL2の走査開始位置Yss2と走査終了位置Yse2との間で、走査開始位置Yss2を始点とした線条パターンFxc2、Fxs2、Fxe2の各々のY方向位置を計測することで求められる。 The design distance between the midpoint CE1 of the drawing line SL1 and the midpoint CE2 of the drawing line SL2 in the main scanning direction (Y direction) is the same as the linear pattern Fxc1 of the reference pattern FMa if there is no relative positional error. The distance between the line pattern Fxc2 and the Y direction coincides with YJ12, and the midpoint CE2 of the drawing line SL2 overlaps the line pattern Fxc2 in the Y direction with reference to the drawing line SL1 (midpoint CE1). However, in reality, as shown in FIG. 18, a positional error Δyy2 relative to the Y direction may occur between the midpoint CE2 of the drawing line SL2 and the streak pattern Fxc2. The position error Δyy2 measures the Y-direction positions of the linear patterns Fxx2, Fxs2, and Fxe2 starting from the scanning start position Yss2 between the scanning start position Yss2 and the scanning end position Yse2 of the drawing line SL2. Is required by.
 以上のようにして、描画ラインSL1の中点CE1を基準とした描画ラインSL2の中点CE2の相対的な2次元の位置誤差(Δxx2、Δyy2)が決定される。そこで、描画ラインSL2の中点CE2の位置誤差をΔFS2(Δxx2、Δyy2)とし、描画ラインSL1の中点CE1を基準とした描画ラインSL3~6の各々の中点CE3~6の各々の位置誤差を、ΔFS3(Δxx3、Δyy3)、ΔFS4(Δxx4、Δyy4)、ΔFS5(Δxx5、Δyy5)、ΔFS6(Δxx6、Δyy6)とする。なお、これらの位置誤差ΔFS2~ΔFS6の各々は、装置組立の際の調整により、十数μm以下に設定することができる。描画ラインSL1~SL6の各々によるパターン描画時には、それらの位置誤差ΔFS2~ΔFS6に基づいて、描画ユニットU2~U6の各々によるパターン描画のタイミングや描画ラインSL1~SL6の副走査方向の位置を微調整することによって、描画ラインSL1~SL6の各々によって描画されるパターン同士の継ぎ誤差を、描画可能な最小線幅の数分の1以下、例えば、最小線幅が5μmの場合は継ぎ誤差量を1μm(3σで±0.5μm)以下にすることができる。 As described above, the relative two-dimensional position error (Δxx2, Δyy2) of the midpoint CE2 of the drawing line SL2 with reference to the midpoint CE1 of the drawing line SL1 is determined. Therefore, the position error of the midpoint CE2 of the drawing line SL2 is set to ΔFS2 (Δxx2, Δyy2), and the position error of each of the midpoints CE3 to 6 of the drawing lines SL3 to 6 based on the midpoint CE1 of the drawing line SL1. Let be ΔFS3 (Δxx3, Δyy3), ΔFS4 (Δxx4, Δyy4), ΔFS5 (Δxx5, Δyy5), and ΔFS6 (Δxx6, Δyy6). Each of these position errors ΔFS2 to ΔFS6 can be set to a dozen μm or less by adjustment at the time of assembling the apparatus. When drawing a pattern by each of the drawing lines SL1 to SL6, the timing of pattern drawing by each of the drawing units U2 to U6 and the position of the drawing lines SL1 to SL6 in the sub-scanning direction are finely adjusted based on their position errors ΔFS2 to ΔFS6. By doing so, the splicing error between the patterns drawn by each of the drawing lines SL1 to SL6 is less than a fraction of the minimum drawable line width, for example, when the minimum line width is 5 μm, the splicing error amount is 1 μm. It can be less than (± 0.5 μm at 3σ).
 また、図18では、描画ラインSL1、SL2(並びにSL3~SL6)は、Y軸に対して傾いていないもの(傾斜誤差がゼロ)としたが、傾斜の有無や傾斜誤差量は、描画ラインSL1については、直線パターンFyoと線条パターンFxs1との交点位置と、直線パターンFyoと線条パターンFxe1との交点位置との副走査方向(周方向)の位置誤差を計測することで求められる。他の描画ラインSL2~SL6についても同様の計測により傾斜誤差の有無や量が求められる。各描画ラインSL1~SL6の傾斜誤差は、図3に示した描画ユニットU1~U6の各々を、中点CE1~CE6の各々を通る図3中の線分LE1~LE6を中心に微少回転させる回転駆動機構によって補正される。なお、初期状態では、描画ラインSL2~SL6の各々がY軸に対して許容誤差範囲内で平行になるように設定される。 Further, in FIG. 18, the drawing lines SL1 and SL2 (and SL3 to SL6) are not tilted with respect to the Y axis (tilt error is zero), but the presence / absence of tilt and the amount of tilt error are determined by the drawing line SL1. Is obtained by measuring the positional error in the sub-scanning direction (circumferential direction) between the intersection position of the linear pattern Fyo and the linear pattern Fxs1 and the intersection position of the linear pattern Fyo and the linear pattern Fxe1. For the other drawing lines SL2 to SL6, the presence / absence and amount of tilt error can be determined by the same measurement. The inclination error of each drawing line SL1 to SL6 is a rotation in which each of the drawing units U1 to U6 shown in FIG. 3 is slightly rotated around the line segments LE1 to LE6 in FIG. 3 passing through each of the midpoints CE1 to CE6. It is corrected by the drive mechanism. In the initial state, each of the drawing lines SL2 to SL6 is set to be parallel to the Y-axis within an allowable error range.
 図19は、以上のステップ304によって決定、又は設定されるキャリブレーション情報(配置誤差等)を模式的に誇張して表した図である。図19には、基準バー部材RBの基準マークRM1~RM4を基準にして決定されたアライメント系ALG1~ALG4の各々の撮像領域DIS’の中心点CC1~CC4の各設置誤差ΔC1~ΔC4(ベクトル)が示されている。さらに図19において、6つの描画ラインSL1~SL6のうちの描画ラインSL1(基板Pの搬送方向に関して最初に描画が行われる描画ライン)を基準としたとき、先の図16で説明したアライメント系ALGnの各々の中心点CCnに関する副走査方向(周方向)の位置CXAと、先の図18で説明した描画ラインSL1(中点CE1)に関する副走査方向(周方向)の位置CXsとの周方向の間隔は、基準長(ベースライン長)ΔBSLと呼ばれる。基準長ΔBSLは、装置環境(温度や気圧)の変化、描画ユニットU1~U6内の熱源(ポリゴンミラーPMの回転モータや光学部材等を駆動するアクチュエータ)の影響による機械部品の熱変形等により、ミクロンオーダーで変動することがある。 FIG. 19 is a diagram schematically exaggerating the calibration information (arrangement error, etc.) determined or set by the above step 304. FIG. 19 shows the installation errors ΔC1 to ΔC4 (vector) of the center points CC1 to CC4 of each imaging region DIS'of the alignment systems ALG1 to ALG4 determined with reference to the reference marks RM1 to RM4 of the reference bar member RB. It is shown. Further, in FIG. 19, when the drawing line SL1 (the drawing line in which drawing is first performed with respect to the transport direction of the substrate P) among the six drawing lines SL1 to SL6 is used as a reference, the alignment system ALGn described with reference to FIG. The position CXA in the sub-scanning direction (circumferential direction) with respect to each center point CCn and the position CXs in the sub-scanning direction (circumferential direction) with respect to the drawing line SL1 (midpoint CE1) described with reference to FIG. The interval is called the reference length (baseline length) ΔBSL. The reference length ΔBSL is determined by changes in the device environment (temperature and atmospheric pressure), thermal deformation of mechanical parts due to the influence of heat sources (actuators that drive the rotating motor of polygon mirror PM, optical members, etc.) in the drawing units U1 to U6, etc. May fluctuate on the order of microns.
 先に説明したように、アライメント系ALG1~ALG4の各々の中心点CC1~CC4の回転ドラムDRの外周面上での座標位置(或いは配置誤差)は、回転ドラムDR上の基準パターンFxa(或いは、Fxb~Fxh)の線条パターンFxe1、Fxe3、Fxe4、Fxe6の各々と直線パターンFyoとの交点部を基準にして求められている。さらに、描画ラインSL1~SL6の各々の中点CE1~CE6の回転ドラムDRの外周面上での座標位置は、先の図18で説明したように、描画ラインSL1の中点CE1を基準にして求めた描画ラインSL2~6の各々の中点CE2~6の各位置誤差ΔFS2(Δxx2、Δyy2)、ΔFS3(Δxx3、Δyy3)、ΔFS4(Δxx4、Δyy4)、ΔFS5(Δxx5、Δyy5)、ΔFS6(Δxx6、Δyy6)に基づいて特定される。 As described above, the coordinate positions (or placement errors) of the center points CC1 to CC4 of the alignment systems ALG1 to ALG4 on the outer peripheral surface of the rotating drum DR are determined by the reference pattern Fxa (or the arrangement error) on the rotating drum DR. It is obtained based on the intersection of each of the linear patterns Fxe1, Fxe3, Fxe4, and Fxe6 of Fxb to Fxh) and the linear pattern Fyo. Further, the coordinate positions of the midpoints CE1 to CE6 of the drawing lines SL1 to SL6 on the outer peripheral surface of the rotating drum DR are based on the midpoint CE1 of the drawing line SL1 as described in FIG. Positional errors ΔFS2 (Δxx2, Δyy2), ΔFS3 (Δxx3, Δyy3), ΔFS4 (Δxx4, Δyy4), ΔFS5 (Δxx5, Δyy5), ΔFS6 (Δxx6) of each midpoint CE2 to 6 of the obtained drawing lines SL2 to SL6. , Δyy6).
 以上のことから、基準パターンFxa(或いは、Fxb~Fxh)を基準にして、アライメント系ALG1~ALG4の各々の中心点CC1~CC4と、描画ラインSL1~SL6の各々の中点CE1~CE6との相対的な位置関係が特定される。さらに、回転ドラムDR上の基準パターンFxa(或いは、Fxb~Fxh)と、基準バー部材RB上の基準マークRM1~RM4との2次元的な相対位置関係も、アライメント系ALG1~ALG4の各々と画像解析部206等による画像解析結果に基づいて高精度に求められる。従って、ステップ300~304までのシーケンスを実行することによって、基準バー部材RB上の基準マークRM1~RM4を基準として、描画ラインSL1~SL6の各々の座標位置(特に中点CE1~CE6の座標位置)の各配置誤差(位置ずれ誤差)が間接的に特定される。 From the above, with reference to the reference pattern Fxa (or Fxb to Fxh), the center points CC1 to CC4 of each of the alignment systems ALG1 to ALG4 and the midpoints CE1 to CE6 of each of the drawing lines SL1 to SL6 Relative positional relationships are identified. Further, the two-dimensional relative positional relationship between the reference pattern Fxa (or Fxb to Fxh) on the rotating drum DR and the reference marks RM1 to RM4 on the reference bar member RB is also an image with each of the alignment systems ALG1 to ALG4. It is obtained with high accuracy based on the image analysis result by the analysis unit 206 and the like. Therefore, by executing the sequence from steps 300 to 304, the coordinate positions of the drawing lines SL1 to SL6 (particularly the coordinate positions of the midpoints CE1 to CE6) with reference to the reference marks RM1 to RM4 on the reference bar member RB. ), Each placement error (positional deviation error) is indirectly specified.
 このことは、パターン描画時に描画ラインSL1~SL6の各々によって描画されるパターン、特に1st露光用のパターンの基板P上の位置が、基準バー部材RB上の基準マークRM1~RM4の配列に精密に倣うように、描画ユニットU1~U6の各々の描画タイミングの補正や、描画ラインSL1~SL6の各々の副走査方向への微調整(図3に示した平行平板HVPの傾斜量の補正)ができることを意味する。図11に示した計測制御部210は、ステップ300~304の実行によって得られる各種のキャリブレーション情報(配置誤差ΔC1~ΔC4、位置誤差ΔFS2~ΔFS6、基準長ΔBSL、規定距離ΔLM等)を記憶する。なお、図19において、基準長ΔBSLは、奇数番の描画ラインSL1(中点CE1)、SL3(中点CE3)、SL5(中点CE5)の副走査方向の平均的な位置と、偶数番の描画ラインSL2(中点CE2)、SL4(中点CE4)、SL6(中点CE6)の副走査方向の平均的な位置との中間位置CXs’と位置CXAとの間の距離としても良い。 This means that the position of the pattern drawn by each of the drawing lines SL1 to SL6 at the time of pattern drawing, particularly the position of the pattern for 1st exposure on the substrate P, is precisely aligned with the arrangement of the reference marks RM1 to RM4 on the reference bar member RB. It is possible to correct the drawing timing of each of the drawing units U1 to U6 and fine-tune the drawing lines SL1 to SL6 in the sub-scanning direction (correction of the inclination amount of the parallel flat plate HVP shown in FIG. 3) so as to imitate. Means. The measurement control unit 210 shown in FIG. 11 stores various calibration information (arrangement errors ΔC1 to ΔC4, position errors ΔFS2 to ΔFS6, reference length ΔBSL, specified distance ΔLM, etc.) obtained by executing steps 300 to 304. .. In FIG. 19, the reference length ΔBSL is the average position in the sub-scanning direction of the odd-numbered drawing lines SL1 (midpoint CE1), SL3 (midpoint CE3), and SL5 (midpoint CE5), and the even-numbered drawing lines. It may be the distance between the intermediate position CXs'and the position CXA with the average position in the sub-scanning direction of the drawing lines SL2 (midpoint CE2), SL4 (midpoint CE4), and SL6 (midpoint CE6).
 〔ステップ306〕
 次に、図12に示した動作シーケンスのステップ306において、基板Pの通紙作業が行われる。通紙作業では、ロール・ツー・ロール方式の処理装置に装着される供給ロールに巻かれた長尺の基板P(表面に感光層が形成済み)を、処理装置内の搬送経路に沿って通した後に、基板Pの先端部を回収ロールに巻き付けた状態にし、その基板Pが所定のテンションで蛇行することなく搬送できる状態にセットアップされる。
[Step 306]
Next, in step 306 of the operation sequence shown in FIG. 12, the paper passing operation of the substrate P is performed. In the paper passing work, a long substrate P (with a photosensitive layer formed on the surface) wound on a supply roll mounted on a roll-to-roll processing device is passed along a transport path in the processing device. After that, the tip of the substrate P is wound around the recovery roll, and the substrate P is set up so that it can be conveyed with a predetermined tension without meandering.
 〔ステップ308〕
 次に、図12に示した動作シーケンスのステップ308において、通紙された基板Pが、ファースト(1st)露光用かセカンド(2nd)露光用かが判断され、1st露光用の基板Pの場合はステップ310に進み、2nd露光用の基板Pの場合はステップ316に進む。1st露光とは、先の図13で示したような被露光領域DPA内に何らのパターンも形成されておらず、且つアライメントマークMK1~MK4も形成されていない基板Pの感光層に、第1層用のパターンを露光することを意味する。2nd露光とは、被露光領域DPA内に何らかの下地パターンが形成されていて、且つアライメントマークMK1~MK4が形成されている基板Pの感光層に、下地パターン上に重ね合わせるべき新たなパターンを露光することを意味する。
[Step 308]
Next, in step 308 of the operation sequence shown in FIG. 12, it is determined whether the passed substrate P is for the first (1st) exposure or the second (2nd) exposure, and in the case of the substrate P for the 1st exposure. The process proceeds to step 310, and in the case of the substrate P for 2nd exposure, the process proceeds to step 316. The 1st exposure is the first exposure on the photosensitive layer of the substrate P on which no pattern is formed in the exposed region DPA as shown in FIG. 13 and no alignment marks MK1 to MK4 are formed. It means exposing the pattern for the layer. In the 2nd exposure, a new pattern to be superimposed on the background pattern is exposed on the photosensitive layer of the substrate P on which some background pattern is formed in the exposed area DPA and the alignment marks MK1 to MK4 are formed. Means to do.
 〔ステップ310〕
 ステップ308で1st露光と判断された場合、図12に示した動作シーケンスのステップ310において、描画ユニットUn(n=1~6)の各々が第1層用のパターン、並びにアライメントマークMK1~MK4を、描画ラインSL1~SL6に沿って描画するように、描画データのダウンロードや光源装置LSからのビームの強度調整等のセットアップが実行される。さらに、1st露光の際は、基板P上に基準となるアライメントマークMK1~MK4が形成されていない為、描画ラインSL1~SL6の位置が基準になってパターン描画が行われる。本実施の形態では、計測制御部210に記憶された各種のキャリブレーション情報に基づいて、描画ラインSL1~SL6の各々によって基板P上に描画されるパターンが、基準バー部材RB上の基準マークRM1~RM4を基準にして配置されるように、セットアップすることができる。なお、図12のステップ310の横に付記した[210]は計測制御部210に記憶された各種のキャリブレーション情報を利用することを意味する。
[Step 310]
When the 1st exposure is determined in step 308, in step 310 of the operation sequence shown in FIG. 12, each of the drawing units Un (n = 1 to 6) forms the pattern for the first layer and the alignment marks MK1 to MK4. , Setup such as downloading drawing data and adjusting the intensity of the beam from the light source device LS is executed so as to draw along the drawing lines SL1 to SL6. Further, at the time of the 1st exposure, since the reference alignment marks MK1 to MK4 are not formed on the substrate P, the pattern drawing is performed based on the positions of the drawing lines SL1 to SL6. In the present embodiment, the pattern drawn on the substrate P by each of the drawing lines SL1 to SL6 based on various calibration information stored in the measurement control unit 210 is the reference mark RM1 on the reference bar member RB. It can be set up so that it is arranged with reference to ~ RM4. Note that [210] added next to step 310 in FIG. 12 means to use various calibration information stored in the measurement control unit 210.
 〔ステップ312〕
 図12のステップ310で1st露光の為のセットアップが完了すると、基板Pが設定された速度で副走査方向に移動するように回転ドラムDRが回転駆動される。ステップ300~304と同様に、図12のステップ312の横に付記した[EH]は、エンコーダ計測系(ここでは、主にエンコーダヘッドEHa2、EHa3、EHb2、EHb3)による計測位置情報を利用することを意味する。更に、ステップ312の横に付記した[LS]は、図1に示した光源装置LSから1st露光用のパターンに対応した描画データに応じて強度変調されたビームを、描画ユニットU1~U6の各々に向けて時分割で供給することを意味する。ステップ312の1st露光によって、基板P上の感光層には、図13で示したような配置で、複数の被露光領域DPAの各々に電子デバイスの第1層用のパターンが順次露光されると共に、アライメントマークMK1~MK4が露光される。
[Step 312]
When the setup for the 1st exposure is completed in step 310 of FIG. 12, the rotary drum DR is rotationally driven so that the substrate P moves in the sub-scanning direction at a set speed. Similar to steps 300 to 304, [EH] added next to step 312 in FIG. 12 uses the measurement position information by the encoder measurement system (here, mainly the encoder heads EHa2, EHa3, EHb2, EHb3). Means. Further, [LS] added next to step 312 is a beam whose intensity is modulated according to the drawing data corresponding to the pattern for 1st exposure from the light source device LS shown in FIG. 1, respectively, in the drawing units U1 to U6. It means that it is supplied in a time-division manner toward. By the 1st exposure in step 312, the photosensitive layer on the substrate P is sequentially exposed to the pattern for the first layer of the electronic device on each of the plurality of exposed region DPAs in the arrangement as shown in FIG. , Alignment marks MK1 to MK4 are exposed.
 この1st露光の際、描画ラインSL1~SL6の各々で描画されるパターンの2次元的な位置関係は、先のキャリブレーションによって、結果的に基準バー部材RB(基準マークRM1~RM4)を基準として精密に設定できる。即ち、描画ラインSL1~SL6の各々で描画されるパターンの基板P上での描画位置を、絶対的な基準となる安定な基準バー部材RBの基準マークRM1~RM4の配置に精密に倣うように配置できる。このことは、1st露光で基板P上に描画されるアライメントマークMK1~MK4の各々についても同様であり、基板P上のアライメントマークMK1~MK4の各々の絶対的な位置や相対位置関係は、基準バー部材RBの基準マークRM1~RM4の配置に精密に倣ったものとなる。 At the time of this 1st exposure, the two-dimensional positional relationship of the patterns drawn on each of the drawing lines SL1 to SL6 is based on the reference bar member RB (reference marks RM1 to RM4) as a result of the above calibration. Can be set precisely. That is, the drawing position of the pattern drawn on each of the drawing lines SL1 to SL6 on the substrate P is precisely copied to the arrangement of the reference marks RM1 to RM4 of the stable reference bar member RB which is an absolute reference. Can be placed. This also applies to each of the alignment marks MK1 to MK4 drawn on the substrate P by the 1st exposure, and the absolute position and relative positional relationship of each of the alignment marks MK1 to MK4 on the substrate P are used as a reference. It precisely follows the arrangement of the reference marks RM1 to RM4 of the bar member RB.
 〔ステップ314〕
 基板Pの感光層への1st露光の動作中にエラー又は誤差が生じた場合、描画装置の主制御部(メインコンピュータ)は、そのエラーや誤差の発生状況や状態が特定可能なログ情報を逐次収集する。供給ロールからの基板Pに対する露光が終了したら、主制御部は収集したログ情報を解析して、当初のキャリブレーション状態を再調整する必要があると判断した場合は、次の供給ロールの基板を通紙する前に、再度、キャリブレーション動作のステップ300、302のいずれかを実行する。ログ情報の解析の結果、特に再調整が不要と判断された場合でも、次の供給ロールの基板に対する露光の為に、ステップ304のキャリブレーション動作を行うのが良い。それは、次の供給ロールの基板に対する露光が1st露光であっても、基板上に製造される電子デバイスの品種が変わったり、次の供給ロールの基板に対する露光が2nd露光であったりするからである。
[Step 314]
If an error or error occurs during the operation of the 1st exposure of the substrate P to the photosensitive layer, the main control unit (main computer) of the drawing device sequentially outputs log information that can identify the error or the occurrence status or state of the error. collect. After the exposure of the substrate P from the supply roll is completed, the main control unit analyzes the collected log information, and if it is determined that the initial calibration state needs to be readjusted, the substrate of the next supply roll is used. Before passing the paper, one of steps 300 and 302 of the calibration operation is executed again. Even if it is determined that readjustment is not necessary as a result of the analysis of the log information, it is preferable to perform the calibration operation in step 304 for the exposure of the substrate of the next supply roll. This is because even if the exposure of the next supply roll to the substrate is the 1st exposure, the type of electronic device manufactured on the substrate may change, or the exposure of the next supply roll to the substrate may be the 2nd exposure. ..
 〔ステップ316〕
 先のステップ308で、基板Pの感光層に露光すべきパターンが2nd露光用の場合は、図12に示した動作シーケンスのステップ316において、描画ユニットUn(n=1~6)の各々が第2層以降のパターンを、描画ラインSL1~SL6に沿って描画するように、描画データのダウンロードや光源装置LSからのビームの強度調整等のセットアップが実行される。ステップ316の横に付記した[210]は計測制御部210に記憶された各種のキャリブレーション情報を利用することを意味する。また、2nd露光用の基板Pは、湿式処理や加熱処理といったプロセスを受けているので、予測され得る定常的な伸縮誤差や変形誤差を伴っている場合がある。その為、ステップ316では、必要に応じて、基板Pの伸縮誤差や変形誤差に関する定常的な予測値に基づいて、描画ユニットU1~U6の各々による継ぎ露光精度や重ね合わせ精度等の低下を抑制するように描画タイミングを補正する為の情報もセットアップされる。但し、実際の2nd露光の描画動作中の描画タイミングの補正、描画ユニットU1~U6の各々の微小回転補正、図3中の平行平板HVPによる描画ラインSL1~SL6の各々の微小シフト補正、或いは描画倍率の補正等は、基板P上のアライメントマークMK1~MK4の位置計測結果に基づいて決定される。
[Step 316]
In step 308 above, when the pattern to be exposed to the photosensitive layer of the substrate P is for 2nd exposure, in step 316 of the operation sequence shown in FIG. 12, each of the drawing units Un (n = 1 to 6) is the first. Setup such as downloading drawing data and adjusting the intensity of the beam from the light source device LS is executed so that the patterns of the second and subsequent layers are drawn along the drawing lines SL1 to SL6. [210] added next to step 316 means to use various calibration information stored in the measurement control unit 210. Further, since the substrate P for 2nd exposure is subjected to a process such as a wet treatment or a heat treatment, it may be accompanied by a steady expansion / contraction error or deformation error that can be predicted. Therefore, in step 316, if necessary, it is possible to suppress deterioration of splicing exposure accuracy, superimposition accuracy, etc. by each of the drawing units U1 to U6 based on steady prediction values regarding expansion / contraction error and deformation error of the substrate P. Information for correcting the drawing timing is also set up. However, correction of drawing timing during the actual drawing operation of the 2nd exposure, correction of each minute rotation of the drawing units U1 to U6, correction of each minute shift of the drawing lines SL1 to SL6 by the parallel flat plate HVP in FIG. 3, or drawing. The correction of the magnification and the like are determined based on the position measurement results of the alignment marks MK1 to MK4 on the substrate P.
 〔ステップ318〕と〔ステップ320〕
 本実施の形態では、先の図4、図7に示したように、基板P上のアライメントマークMK1~MK4の各位置をアライメント系ALG1~ALG4で検出したら、直ちに、描画ラインSL1~SL6の各々によってパターン描画が行われる。特に、基板Pの幅方向(Y方向)の両端側に形成されるアライメントマークMK1、MK4は、副走査方向に一定間隔で複数設けられているので、アライメント系ALG1、ALG4によるマーク検出動作と、描画ユニットU1~U6によるパターン描画動作とは重畳している。図12のステップ318の横に付記した[ALGn]は、アライメント系ALGn(n=1~4)によって検出されるアライメントマークMKn(n=1~4)の各々の計測位置情報を利用することを意味し、[EH]は、エンコーダ計測系(エンコーダヘッドEHa1~EHa3、EHb1~EHb3)による計測位置情報を利用することを意味する。
[Step 318] and [Step 320]
In the present embodiment, as shown in FIGS. 4 and 7, when each position of the alignment marks MK1 to MK4 on the substrate P is detected by the alignment systems ALG1 to ALG4, each of the drawing lines SL1 to SL6 is immediately detected. Pattern drawing is performed by. In particular, since a plurality of alignment marks MK1 and MK4 formed on both ends in the width direction (Y direction) of the substrate P are provided at regular intervals in the sub-scanning direction, the mark detection operation by the alignment systems ALG1 and ALG4 and the mark detection operation can be performed. The pattern drawing operation by the drawing units U1 to U6 is superimposed. [ALGn] added next to step 318 in FIG. 12 utilizes the measurement position information of each of the alignment marks MKn (n = 1 to 4) detected by the alignment system ALGn (n = 1 to 4). Meaning, [EH] means to use the measurement position information by the encoder measurement system (encoder heads EHa1 to EHa3, EHb1 to EHb3).
 さらに、ステップ318の横に付記した[RB]は、アライメントマークMKnの位置計測の際に、基準バー部材RBの基準マークRMn(n=1~4)を利用することを意味するが、必ずしも利用する必要はない。アライメント系ALGnは、撮像領域DIS’内で基準となる中心点CCnを有している。その為、通常は、図9Cで示したように、アライメントマークMKnの拡大像MKn’と中心点CCnとの2次元的な位置ずれ量の計測によって、アライメント計測は完了する。しかしながら、長時間に亘る露光動作の間には、アライメント系ALGnの位置がドリフトしたり、内部の光学部材の特性が温度変化や大気圧変化によって変動したりすることで、キャリブレーション時に特定した中心点CCnの各々が相対的に位置変化することがある。その位置変化の量は、ミクロンオーダーであっても、そのままアライメントマークMKnの計測位置の誤差量となる為、継ぎ誤差や重ね合わせ誤差を悪化させる。 Further, [RB] added next to step 318 means that the reference mark RNn (n = 1 to 4) of the reference bar member RB is used when measuring the position of the alignment mark MKn, but it is not always used. do not have to. The alignment system ALGn has a reference center point CCn in the imaging region DIS'. Therefore, normally, as shown in FIG. 9C, the alignment measurement is completed by measuring the two-dimensional displacement amount between the enlarged image MKn'of the alignment mark MKn and the center point CCn. However, during the exposure operation over a long period of time, the position of the alignment system ALGn drifts, and the characteristics of the internal optical member fluctuate due to changes in temperature and atmospheric pressure, so that the center specified at the time of calibration Each of the points CCn may change position relatively. Even if the amount of the position change is on the order of microns, it becomes the amount of error of the measurement position of the alignment mark MKn as it is, so that the splicing error and the superposition error are deteriorated.
 そのような問題を避ける為、ステップ318のアライメント計測では、アライメントマークMKnがアライメント系ALGnの各々の撮像領域DIS’内に現れたときに、撮像領域DIS’内のほぼ決まった位置に設定される基準マークRMnの拡大像RMn’と、アライメントマークMKnの拡大像MKn’とを同時に画像サンプリングし、基準マークRMnの中心点CRn(n=1~4)を基準にして、アライメントマークMKnの各々の拡大像MKn’の中心点の2次元的な位置ずれ誤差が計測される。先の図13に示したように、基板P上の被露光領域DPAの搬送方向に関する先端部分又は後端部分の余白部の各々には、1st露光のパターニングによって、4つのアライメントマークMK1~MK4が基板Pの幅方向に延びた線上に沿って、4つのアライメント系ALG1~ALG4の各々の検出領域AD1~AD4(図7参照)の各撮像領域DIS’の配置に対応した位置、即ち、基準バー部材RBの基準マークRM1~RM4の各々の配置に対応した位置に形成されている。 In order to avoid such a problem, in the alignment measurement in step 318, when the alignment mark MKn appears in each imaging region DIS'of the alignment system ALGn, it is set at a substantially fixed position in the imaging region DIS'. An enlarged image RNn'of the reference mark RNn and an enlarged image MKn'of the alignment mark MKn are sampled at the same time, and each of the alignment mark MKn is based on the center point CRn (n = 1 to 4) of the reference mark RNn. The two-dimensional misalignment error of the center point of the magnified image MKn'is measured. As shown in FIG. 13, four alignment marks MK1 to MK4 are formed on each of the margins of the front end portion and the rear end portion of the exposed region DPA on the substrate P in the transport direction by the patterning of the 1st exposure. Along a line extending in the width direction of the substrate P, a position corresponding to the arrangement of each imaging region DIS'in each of the detection regions AD1 to AD4 (see FIG. 7) of the four alignment systems ALG1 to ALG4, that is, the reference bar. It is formed at a position corresponding to each arrangement of the reference marks RM1 to RM4 of the member RB.
 従って、各被露光領域DPAに対する2nd露光の直前(又は直後)に、同じタイミングで撮像される4つの基準マークRM1~RM4と4つのアライメントマークMK1~MK4との相対的な位置ずれを求めると共に、被露光領域DPAの両側のアライメントマークMK1、MK4の各位置ずれを求めることで、被露光領域DPAのY方向の伸縮誤差や変形誤差を逐次推定して、それに合わせるように描画ラインSL1~SL6の各々によるパターンの描画位置を、ステップ320の2nd露光中に逐次微調整する。その微調整では、スポット光SPによる描画タイミングの補正、平行平板HVPによる描画ラインSLnのシフト補正、描画ユニットUnの微小回転補正、描画倍率の補正が行われる。なお、図12のステップ320の横に付記した[EH]は、エンコーダ計測系(エンコーダヘッドEHa1~EHa3、EHb1~EHb3)による計測位置情報を利用することを意味し、更にステップ320の横に付記した[LS]は、図1に示した光源装置LSから2nd露光用のパターンに対応した描画データに応じて強度変調されたビームを、描画ユニットU1~U6の各々に向けて時分割で供給することを意味する。 Therefore, immediately before (or immediately after) the 2nd exposure to each exposed area DPA, the relative positional deviation between the four reference marks RM1 to RM4 and the four alignment marks MK1 to MK4 imaged at the same timing is obtained, and the relative positional deviation is obtained. By obtaining the positional deviations of the alignment marks MK1 and MK4 on both sides of the exposed area DPA, the expansion and contraction error and the deformation error in the Y direction of the exposed area DPA are sequentially estimated, and the drawing lines SL1 to SL6 are adjusted accordingly. The drawing position of each pattern is sequentially fine-tuned during the 2nd exposure in step 320. In the fine adjustment, the drawing timing is corrected by the spot light SP, the shift correction of the drawing line SLn is performed by the parallel flat plate HVP, the minute rotation correction of the drawing unit Un, and the drawing magnification correction are performed. In addition, [EH] added next to step 320 in FIG. 12 means to use the measurement position information by the encoder measurement system (encoder heads EHa1 to EHa3, EHb1 to EHb3), and further added next to step 320. [LS] supplies a beam whose intensity is modulated according to the drawing data corresponding to the pattern for 2nd exposure from the light source device LS shown in FIG. 1 to each of the drawing units U1 to U6 in a time-divided manner. Means that.
 なお、図12のステップ318、320は、基板P上の1つの被露光領域DPAに対する2nd露光を表わし、基板P上の露光すべき複数の被露光領域DPAに対する2nd露光が完了したか否かは、次のステップ322で判断される。ステップ322で、引き続き2nd露光を次の被露光領域DPAに対して行うと判断されたときは、ステップ318、320が繰り返し実行される。 In addition, steps 318 and 320 of FIG. 12 represent the 2nd exposure to one exposed area DPA on the substrate P, and whether or not the 2nd exposure to a plurality of exposed area DPA to be exposed on the substrate P is completed is completed. , It is determined in the next step 322. When it is determined in step 322 that the 2nd exposure is continuously performed on the next exposed area DPA, steps 318 and 320 are repeatedly executed.
 〔ステップ324〕
 全ての被露光領域DPAに対する2nd露光が完了したら、ステップ324において、露光動作中の各種のログ情報(エラー情報、誤差情報等)が収集され、2nd露光済みの基板Pを巻き回した回収ロール等が描画装置から取り外され、基板Pは次のプロセスに搬送される。基板Pが描画装置から取り外されると、再び、先のステップ302、304のキャリブレーション動作が実行される。但し、2nd露光した基板Pの長尺方向の長さが短く、2nd露光の動作継続時間が比較的に短時間である場合は、ステップ324の後にステップ304、或いはステップ306からの動作を実行することもできる。逆に、2nd露光の継続動作が長時間に及ぶ場合は、ステップ300からのキャリブレーション動作を実行しても良い。
[Step 324]
When the 2nd exposure to all the exposed area DPA is completed, in step 324, various log information (error information, error information, etc.) during the exposure operation is collected, and a recovery roll or the like around which the 2nd exposed substrate P is wound. Is removed from the drawing device and the substrate P is transported to the next process. When the substrate P is removed from the drawing apparatus, the calibration operations of steps 302 and 304 above are executed again. However, when the length of the 2nd exposed substrate P in the long direction is short and the operation duration of the 2nd exposure is relatively short, the operation from step 304 or step 306 is executed after step 324. You can also do it. On the contrary, when the continuous operation of the 2nd exposure lasts for a long time, the calibration operation from step 300 may be executed.
 なお、ステップ318のアライメント計測では、基板P上のアライメントマークMKnの一部がプロセス等の影響でダメージを受けていたり、近傍にマークの線幅寸法と同程度の異物(ゴミ)が付着していたりすることで、アライメント系ALGnで良好に画像認識されずに、検出エラーを起こすこともある。そのような検出エラーが基板Pの所定の搬送距離に亘って続く場合、2nd露光の動作(回転ドラムDRによる基板Pの順方向への搬送)を一時的に停止して、リトライ動作を行うこともできる。リトライ動作では、図11に示した画像解析部206によるアライメントマークMKnの拡大像MKn’の画像処理条件(パラメータ)や、図9に示した照明系ILUからの照明光ILbの強度の調整や波長帯域のシフト等を行った後、基板Pを一定距離だけ逆方向に戻してから、再度、順方向に搬送しながらアライメント計測と2nd露光とを行う。そのようなリトライ動作の一例は、例えば、国際公開第2018/030357号に開示されている。 In the alignment measurement in step 318, a part of the alignment mark MKn on the substrate P is damaged due to the influence of a process or the like, or foreign matter (dust) having the same size as the line width dimension of the mark is attached in the vicinity. As a result, the alignment system ALGn may not recognize the image well, and a detection error may occur. When such a detection error continues over a predetermined transport distance of the substrate P, the operation of the 2nd exposure (transportation of the substrate P in the forward direction by the rotating drum DR) is temporarily stopped, and the retry operation is performed. You can also. In the retry operation, the image processing conditions (parameters) of the magnified image MKn'of the alignment mark MKn by the image analysis unit 206 shown in FIG. 11 and the adjustment and wavelength of the intensity of the illumination light ILb from the illumination system ILU shown in FIG. 9 are adjusted. After shifting the band and the like, the substrate P is returned in the reverse direction by a certain distance, and then the alignment measurement and the 2nd exposure are performed again while transporting in the forward direction. An example of such a retry operation is disclosed in, for example, International Publication No. 2018/030357.
 以上のように、図12に示した本実施の形態による露光シーケンスのうち、特に1st露光シーケンス(ステップ310、312)では、描画ユニットU1~U6の各々による描画ラインSL1~SL6の絶対的な位置や相対的な位置関係が、搬送系としての回転ドラムDRの中心軸AXo(及び外周面DRs)に対して精密に位置設定された基準バー部材RBの基準マークRM1~RM4を基準にキャリブレーションされているので、シート状の基板P上に描画される被露光領域DPA全体の形状(長方形)が、平行四辺形状、鞍型状、或いは弓型状に変形することが低減される。 As described above, among the exposure sequences according to the present embodiment shown in FIG. 12, particularly in the 1st exposure sequence (steps 310 and 312), the absolute positions of the drawing lines SL1 to SL6 by each of the drawing units U1 to U6 And the relative positional relationship is calibrated with reference to the reference marks RM1 to RM4 of the reference bar member RB that are precisely positioned with respect to the central axis AXo (and the outer peripheral surface DRs) of the rotating drum DR as a transport system. Therefore, it is possible to reduce that the shape (rectangle) of the entire exposed region DPA drawn on the sheet-shaped substrate P is deformed into a parallel quadrilateral shape, a saddle shape, or an arch shape.
 さらに、本実施の形態による露光シーケンスの2nd露光シーケンス(ステップ316、318、320)では、アライメント系ALG1~ALG4の各検出領域AD1~AD4の相対的な位置関係のドリフトに影響されずに、2nd露光中であっても、基板P上のアライメントマークMK1~MK4の各位置を、基準バー部材RBの基準マークRM1~RM4を基準にして検出することが可能となる。その為、2nd露光が継続して長時間行われて、アライメント系ALGnに温度変化や気圧変化等によるドリフトが生じ得る状況になったとしても、基板P上に並ぶ複数の被露光領域DPAの最初の被露光領域DPAから最後の被露光領域DPAまで、基板Pの位置検出精度や2nd露光の重ね合わせ精度を一定に維持することができる。 Further, in the 2nd exposure sequence ( steps 316, 318, 320) of the exposure sequence according to the present embodiment, the 2nd exposure sequence is not affected by the drift of the relative positional relationship of the detection regions AD1 to AD4 of the alignment systems ALG1 to ALG4. Even during exposure, each position of the alignment marks MK1 to MK4 on the substrate P can be detected with reference to the reference marks RM1 to RM4 of the reference bar member RB. Therefore, even if the 2nd exposure is continuously performed for a long time and the alignment system ALGn may drift due to temperature change, atmospheric pressure change, etc., the first of the plurality of exposed region DPAs lined up on the substrate P From the exposed region DPA to the last exposed region DPA, the position detection accuracy of the substrate P and the superposition accuracy of the 2nd exposure can be maintained constant.
 〔変形例1〕
 図20は、先の図7に示した描画装置のアライメント系ALGnの配置の変形例を示し、アライメント系ALGnを4本から7本に増やした場合の様子を、直交座標系XYZのXY面と平行な面内で見た図である。図20において、図7と同じ機能の部材や構造については同じ符号を付してある。図20では、7つのアライメント系ALG1~ALG7の検出領域AD1~AD7の各々が、Y方向に所定の間隔で配置される。その為、本変形例では、基準バー部材(基準指標部材)RBの参照面RBa上に形成される基準マーク(基準指標マーク)RMnも、設計上の検出領域AD1~AD7のY方向の間隔距離に対応した7つの位置の各々に、基準マークRM1~RM7として形成されている。
[Modification 1]
FIG. 20 shows a modified example of the arrangement of the alignment system ALGn of the drawing apparatus shown in FIG. 7, and shows the state when the alignment system ALGn is increased from 4 to 7, with the XY plane of the orthogonal coordinate system XYZ. It is a figure seen in a parallel plane. In FIG. 20, members and structures having the same functions as those in FIG. 7 are designated by the same reference numerals. In FIG. 20, each of the detection regions AD1 to AD7 of the seven alignment systems ALG1 to ALG7 are arranged at predetermined intervals in the Y direction. Therefore, in this modification, the reference mark (reference index mark) RMn formed on the reference surface RBa of the reference bar member (reference index member) RB is also the distance between the design detection regions AD1 to AD7 in the Y direction. The reference marks RM1 to RM7 are formed at each of the seven positions corresponding to.
 図7と同様に、6つの描画ラインSL1~SL6によって継ぎ露光可能なY方向の最大寸法をWAyとしたとき、7つの検出領域AD1~AD7のうちのY方向の負側に位置する検出領域AD1は、最大寸法WAy内であって、描画ラインSL1の走査終了付近に位置し、Y方向の正側に位置する検出領域AD7は、最大寸法WAy内であって、描画ラインSL6の走査終了付近に位置する。また、Y方向の位置に関して、検出領域AD2は、描画ラインSL1の走査開始点と描画ラインSL2の走査開始点とによる継ぎ露光部分に配置され、検出領域AD3は、描画ラインSL2の走査終了点と描画ラインSL3の走査終了点とによる継ぎ露光部分に配置され、検出領域AD4は、描画ラインSL3の走査開始点と描画ラインSL4の走査開始点とによる継ぎ露光部分に配置され、検出領域AD5は、描画ラインSL4の走査終了点と描画ラインSL5の走査終了点とによる継ぎ露光部分に配置され、検出領域AD6は、描画ラインSL5の走査開始点と描画ラインSL6の走査開始点とによる継ぎ露光部分に配置される。 Similar to FIG. 7, when the maximum dimension in the Y direction that can be continuously exposed by the six drawing lines SL1 to SL6 is WAY, the detection area AD1 located on the negative side of the seven detection areas AD1 to AD7 in the Y direction. Is within the maximum dimension WAY and is located near the end of scanning of the drawing line SL1, and the detection area AD7 located on the positive side in the Y direction is within the maximum dimension WAY and is near the end of scanning of the drawing line SL6. To position. Further, regarding the position in the Y direction, the detection area AD2 is arranged at the joint exposure portion formed by the scanning start point of the drawing line SL1 and the scanning start point of the drawing line SL2, and the detection area AD3 is arranged as the scanning end point of the drawing line SL2. The detection area AD4 is arranged in the joint exposure portion formed by the scanning end point of the drawing line SL3 and the scanning start point of the drawing line SL3, and the detection area AD5 is arranged in the joint exposure portion formed by the scanning start point of the drawing line SL3 and the scanning start point of the drawing line SL4. The detection area AD6 is arranged in the joint exposure portion formed by the scanning end point of the drawing line SL4 and the scanning end point of the drawing line SL5, and the detection area AD6 is located in the joint exposure portion formed by the scanning start point of the drawing line SL5 and the scanning start point of the drawing line SL6. Be placed.
 基板P上に形成されるアライメントマークMKnも、基板Pの幅方向(Y方向)に関して、検出領域AD1~AD7の各々の配置に対応して、7つのアライメントマークMK1~MK7が配置される。勿論、基板Pの幅方向の両側の各々に形成されるアライメントマークMK1、MK7は、基板Pの長尺方向(副走査方向)に沿って一定の間隔(例えば、10mm)で列状に多数形成されている。基板P上の長尺方向に関する被露光領域DPAと被露光領域DPAの間の余白部には、Y方向に列状に配置される7つのアライメントマークMK1~MK7が形成でき、2nd露光の直前に被露光領域DPAの変形状態を詳細に推定することが可能となる。なお、湿式処理や加熱処理による変形が小さい基板Pに対する2nd露光の場合は、図12のステップ318のアライメント計測の際に、アライメント系ALG2~ALG6のうちのいくつかについては、アライメントマークMK2~MK6の検出を省略(スキップ)することもできる。 As for the alignment marks MKn formed on the substrate P, seven alignment marks MK1 to MK7 are arranged corresponding to the respective arrangements of the detection regions AD1 to AD7 in the width direction (Y direction) of the substrate P. Of course, a large number of alignment marks MK1 and MK7 formed on both sides of the substrate P in the width direction are formed in a row at regular intervals (for example, 10 mm) along the long direction (sub-scanning direction) of the substrate P. Has been done. Seven alignment marks MK1 to MK7 arranged in a row in the Y direction can be formed in the margin between the exposed region DPA and the exposed region DPA on the substrate P in the long direction, and immediately before the 2nd exposure. It is possible to estimate the deformation state of the exposed area DPA in detail. In the case of 2nd exposure to the substrate P, which is less deformed by wet treatment or heat treatment, the alignment marks MK2 to MK6 are used for some of the alignment systems ALG2 to ALG6 during the alignment measurement in step 318 of FIG. It is also possible to omit (skip) the detection of.
 〔変形例2〕
 図21は、先の図7、図16、図20で示した描画ユニットU1~U6の各々による描画ラインSL1~SL6の基板P(或いは回転ドラムDRの外周面DRs)上での配置関係の変形例を示す。本変形例では、描画ラインSL1~SL6の各々によって基板P上に描画されるパターンの継ぎ部分が、Y方向に一定の寸法だけ重畳(オーバーラップ)するように、描画ユニットU1~U6が配置されている。描画ユニットU1~U6の各々は同じ構成であるので、描画ラインSL1~SL6の各々によるパターン描画可能な長さ(描画長)ΔMLsは同じである。その描画長ΔMLsのうちで、スポット光SPの走査開始点から一定の長さΔOLs、又はスポット光SPの走査終了点までの一定の長さΔOLsの範囲の各々を、オーバーラップ領域OL12、OL23、OL34、OL45、OL56(OL45、OL56は不図示)とする。
[Modification 2]
FIG. 21 shows deformation of the arrangement relationship of the drawing lines SL1 to SL6 by the drawing units U1 to U6 shown in FIGS. 7, 16 and 20 on the substrate P (or the outer peripheral surfaces DRs of the rotating drum DR). An example is shown. In this modification, the drawing units U1 to U6 are arranged so that the joint portions of the patterns drawn on the substrate P by each of the drawing lines SL1 to SL6 overlap (overlap) by a certain dimension in the Y direction. ing. Since each of the drawing units U1 to U6 has the same configuration, the length (drawing length) ΔMLs at which the pattern can be drawn by each of the drawing lines SL1 to SL6 is the same. Within the drawing length ΔMLs, each of the range of a constant length ΔOLs from the scanning start point of the spot light SP or a constant length ΔOLs from the scanning end point of the spot light SP is covered by the overlapping regions OL12, OL23, OL34, OL45, OL56 (OL45 and OL56 are not shown).
 オーバーラップ領域OL12は、描画ラインSL1に沿ったスポット光SPの走査開始点側の長さΔOLsと、描画ラインSL2に沿ったスポット光SPの走査開始点側の長さΔOLsとが重なった範囲である。同様に、オーバーラップ領域OL23は、描画ラインSL2に沿ったスポット光SPの走査終了点側の長さΔOLsと、描画ラインSL3に沿ったスポット光SPの走査終了点側の長さΔOLsとが重なった範囲であり、オーバーラップ領域OL34は、描画ラインSL3に沿ったスポット光SPの走査開始点側の長さΔOLsと、描画ラインSL4に沿ったスポット光SPの走査開始点側の長さΔOLsとが重なった範囲である。図21では図示を省略したが、他のオーバーラップ領域OL45は、描画ラインSL4に沿ったスポット光SPの走査終了点側の長さΔOLsと、描画ラインSL5に沿ったスポット光SPの走査終了点側の長さΔOLsとが重なった範囲であり、オーバーラップ領域OL56は、描画ラインSL5に沿ったスポット光SPの走査開始点側の長さΔOLsと、描画ラインSL6に沿ったスポット光SPの走査開始点側の長さΔOLsとが重なった範囲である。 The overlap region OL12 is a range in which the length ΔOLs on the scanning start point side of the spot light SP along the drawing line SL1 and the length ΔOLs on the scanning start point side of the spotlight SP along the drawing line SL2 overlap. be. Similarly, in the overlap region OL23, the length ΔOLs on the scanning end point side of the spot light SP along the drawing line SL2 and the length ΔOLs on the scanning end point side of the spot light SP along the drawing line SL3 overlap. The overlap region OL34 includes the length ΔOLs on the scanning start point side of the spot light SP along the drawing line SL3 and the length ΔOLs on the scanning start point side of the spot light SP along the drawing line SL4. Is the overlapping range. Although not shown in FIG. 21, the other overlap region OL45 includes the length ΔOLs on the scanning end point side of the spot light SP along the drawing line SL4 and the scanning end point of the spot light SP along the drawing line SL5. The overlap region OL56 is a range in which the length ΔOLs on the side overlaps, and the overlap region OL56 is the scanning of the length ΔOLs on the scanning start point side of the spot light SP along the drawing line SL5 and the spot light SP along the drawing line SL6. This is the range where the length ΔOLs on the start point side overlaps.
 オーバーラップ領域の長さΔOLsは、描画ラインの描画長ΔMLsの0.5~2%程度にすることができる。一例として、描画長ΔMLsが50.0mmの場合、長さΔOLsは、0.25mm~1.00mm程度になる。また、オーバーラップ領域OL12、OL23、OL34、OL45、OL56内に描画されるパターンは、同じ形状で基板P上の同じ位置に精密に重なるように露光される為、そのまま描画した場合は2倍の露光量になってしまう。そこで、各オーバーラップ領域内に含まれるパターンが、例えば図22に示すように、チェッカーフラグ状(市松模様)になるように、描画データの修正が行われる。 The length ΔOLs of the overlap region can be about 0.5 to 2% of the drawing length ΔMLs of the drawing line. As an example, when the drawing length ΔMLs is 50.0 mm, the length ΔOLs is about 0.25 mm to 1.00 mm. Further, the patterns drawn in the overlap areas OL12, OL23, OL34, OL45, and OL56 are exposed so as to have the same shape and precisely overlap at the same position on the substrate P, so that the pattern is doubled when drawn as it is. It will be the amount of exposure. Therefore, the drawing data is modified so that the pattern included in each overlapping region has a checkered flag shape (checkerboard pattern), for example, as shown in FIG. 22.
 図22は、描画ラインSL1の走査開始点側と描画ラインSL2の走査開始点側とのオーバーラップ領域OL12内で重ね合せ露光される同一パターン(2次元の描画データ上の画素配列)の状態を示す。描画ラインSL1、SL2に沿って走査されるスポット光SPの実効的な直径に応じて、描画データの1ビットの基板P上での画素PIXの寸法が設定されている。描画データは、描画可能な最小の正方形の画素PIXの集合で規定され、その画素PIXに対してスポット光SP(パルス状)を照射するか非照射にするかを、1ビットの論理値の「0」か「1」で表している。図22に示すように、オーバーラップ領域OL12内に存在するパターンに対応した描画データは、画素PIXを論理値「0」(非照射)の画素PIXa(白抜きの正方形)と、論理値「1」(照射)の画素PIXb(斜線の正方形)とによる市松模様状に分解されている。さらに、描画ラインSL1によって描画されるオーバーラップ領域OL12内のパターンと、描画ラインSL2によって描画されるオーバーラップ領域OL12内のパターンは、市松模様状に配列される画素PIXaと画素PIXbとが相補的(コンプリメンタリー)な関係で設定されている。 FIG. 22 shows a state of the same pattern (pixel array on two-dimensional drawing data) that is overexposed in the overlap region OL12 between the scanning start point side of the drawing line SL1 and the scanning start point side of the drawing line SL2. show. The dimensions of the pixel PIX on the 1-bit substrate P of the drawing data are set according to the effective diameter of the spot light SP scanned along the drawing lines SL1 and SL2. The drawing data is defined by a set of the smallest square pixel PIX that can be drawn, and whether the spot light SP (pulse shape) is irradiated or not irradiated to the pixel PIX is determined by the 1-bit logical value ". It is represented by "0" or "1". As shown in FIG. 22, in the drawing data corresponding to the pattern existing in the overlap region OL12, the pixel PIX is the pixel PIXa (white square) having a logical value “0” (non-irradiation) and the logical value “1”. It is decomposed into a checkered pattern by the pixels PIXb (diagonal squares) of (irradiation). Further, the pattern in the overlap area OL12 drawn by the drawing line SL1 and the pattern in the overlap area OL12 drawn by the drawing line SL2 are complementary to the pixels PIXa and the pixels PIXb arranged in a checkered pattern. It is set in a (complementary) relationship.
 このように、オーバーラップ領域OL12(OL23、OL34、OL45、OL56)内に存在するパターンの描画データを、画素PIX毎に論理値を相補的な関係に分解することにより、基板P上のオーバーラップ領域に露光されるパターンは、僅かな継ぎ誤差による影響で、目立った段差状になったり、線幅の太りが目立ったりすることが緩和される。 In this way, the drawing data of the pattern existing in the overlap region OL12 (OL23, OL34, OL45, OL56) is decomposed into a complementary relationship with the logical value for each pixel PIX, so that the overlap on the substrate P is performed. The pattern exposed to the region is less likely to have a conspicuous stepped shape or a conspicuous thickening of the line width due to the influence of a slight splicing error.
 〔第2の実施の形態〕
 図23は、第2の実施の形態によるアライメント系ALGnの光学構成を示す図であり、直交座標系XYZは、先の第1の実施の形態における図2と同様に設定されている。また、図23において、第1の実施の形態における部材や構成と同じものには同じ符号を付してある。本実施の形態では、先の第1の実施の形態における図4~図6に示したように、基準バー部材RBを対物レンズ系OBLの物面側(基板P側)に設けるのではなく、アライメント系ALGnの光路中に中間像面を形成し、その中間像面に対応した位置に配置するようにした。
[Second Embodiment]
FIG. 23 is a diagram showing an optical configuration of the alignment system ALGn according to the second embodiment, and the Cartesian coordinate system XYZ is set in the same manner as in FIG. 2 in the first embodiment. Further, in FIG. 23, the same members and configurations as those in the first embodiment are designated by the same reference numerals. In the present embodiment, as shown in FIGS. 4 to 6 in the first embodiment, the reference bar member RB is not provided on the object surface side (board P side) of the objective lens system OBL. An intermediate image plane was formed in the optical path of the alignment system ALGn, and the intermediate image plane was arranged at a position corresponding to the intermediate image plane.
 図23に示すアライメント系ALGnは、基板P側から配置される平面ミラーMb、第1結像光学系GLo、キューブ型の第1ビームスプリッタBS1(合成光学部材)、第2結像光学系Gd、第2ビームスプリッタBS2で構成される。不図示の照明系ILU(図6、図9参照)からの照明光ILb(非感光性の波長域の光)は、第2ビームスプリッタBS2で反射されて光軸AXsと同軸に進んで、第2結像光学系Gdに入射し、第1ビームスプリッタBS1で透過する成分と反射される成分とに分割される。第1ビームスプリッタBS1を透過した照明光ILbは、中間像面Pssを通って第1結像光学系GLoに入射し、平面ミラーMbで反射されて、基板Pの表面(又は回転ドラムDRの外周面DRs)の検出領域ADnを均一な照度で照明する。 The alignment system ALGn shown in FIG. 23 includes a plane mirror Mb arranged from the substrate P side, a first imaging optical system GLo, a cube-shaped first beam splitter BS1 (synthetic optical member), and a second imaging optical system Gd. It is composed of a second beam splitter BS2. Illumination light ILb (light in the non-photosensitive wavelength range) from the illumination system ILU (see FIGS. 6 and 9) (not shown) is reflected by the second beam splitter BS2 and travels coaxially with the optical axis AXs. 2 It is incident on the imaging optical system Gd and is divided into a component transmitted through the first beam splitter BS1 and a component reflected. The illumination light ILb transmitted through the first beam splitter BS1 enters the first imaging optical system GLo through the intermediate image plane Pss, is reflected by the plane mirror Mb, and is reflected on the surface of the substrate P (or the outer periphery of the rotating drum DR). The detection region ADn on the surface DRs) is illuminated with a uniform illuminance.
 検出領域ADn内に、基板PのアライメントマークMKn(又は、回転ドラムDRの外周面DRs上の基準パターンFMa~FMh)が現れたとき、アライメントマークMKn(又は基準パターンFMa~FMh)からの反射光が第1結像光学系GLoに入射して、第1結像光学系GLoは、中間像面PssにアライメントマークMKnの像MKn’(又は基準パターンFMa~FMhの像)を形成する。第1結像光学系GLoは、基板P側の作動距離(ワーキングディスタンス)を比較的に大きく取れるように、低倍率(例えば、1~2倍の拡大率、或いは0.75倍の縮小率)に設定されている。中間像面Pssで結像したアライメントマークMKn(又は基準パターンFMa~FMh)からの反射光は、第1ビームスプリッタBS1を透過して第2結像光学系Gdに入射する。 When the alignment mark MKn of the substrate P (or the reference patterns FMa to FMh on the outer peripheral surface DRs of the rotating drum DR) appears in the detection region ADn, the reflected light from the alignment mark MKn (or the reference pattern FMa to FMh) appears. Is incident on the first imaging optical system GLo, and the first imaging optical system GLo forms an image MKn'(or an image of the reference patterns FMa to FMh) of the alignment mark MKn on the intermediate image plane Pss. The first imaging optical system GLo has a low magnification (for example, a magnification of 1 to 2 times or a reduction of 0.75 times) so that the working distance (working distance) on the substrate P side can be relatively large. Is set to. The reflected light from the alignment marks MKn (or reference patterns FMa to FMh) imaged on the intermediate image plane Pss passes through the first beam splitter BS1 and is incident on the second imaging optical system Gd.
 第2結像光学系Gdを通ったアライメントマークMKn(又は基準パターンFMa~FMh)からの反射光は、第2ビームスプリッタBS2を透過して、結像光束Bmaとなって、図示を省略した撮像素子DISの撮像面に至る。第2結像光学系Gdは、中間像面Pssと撮像素子DISの撮像面とを共役関係(結像関係)にすると共に、中間像面Pssに形成される中間像の拡大像を撮像素子DISの撮像面に再結像する。 The reflected light from the alignment mark MKn (or reference patterns FMa to FMh) that has passed through the second imaging optical system Gd passes through the second beam splitter BS2 to become an imaging luminous flux Bma, and the imaging is omitted. It reaches the imaging surface of the element DIS. The second imaging optical system Gd has a conjugate relationship (imaging relationship) between the intermediate image plane Pss and the image pickup surface of the image sensor DIS, and an enlarged image of the intermediate image formed on the intermediate image plane Pss is captured by the image sensor DIS. Reimage on the image pickup surface of.
 また、第2結像光学系Gdを通って第1ビームスプリッタBS1で反射された照明光ILbは、基準バー部材RBの参照面RBaに形成された基準マークRMnを均一な照度分布で照明する。基準バー部材RBの参照面RBaは、第1ビームスプリッタBS1を挟んで、中間像面Pssと光学的に対応した面Pss’と一致するように配置される。その為、参照面RBa(面Pss’)は、第2結像光学系Gdを介して撮像素子DISの撮像面と共役関係(結像関係)になっている。従って、照明光ILbで照明された基準マークRMnからの反射光が、第1ビームスプリッタBS1と第2結像光学系Gdとを介して結像光束Bmaとなって撮像素子DISの撮像面に達すると、基準マークRMnの拡大像とアライメントマークMKn(又は基準パターンFMa~FMh)の拡大像とを、撮像面上に同時に結像させることができる。図23のアライメント系ALGnの場合も、先の図9で説明したように、照明光ILbを射出する照明系ILU内の照明視野絞りFAnを交換することで、基準マークRMnの拡大像とアライメントマークMKn(又は基準パターンFMa~FMh)の拡大像との両方の同時撮像と、いずれか一方のみの選択的な撮像とを切り替えることができる。 Further, the illumination light ILb reflected by the first beam splitter BS1 through the second imaging optical system Gd illuminates the reference mark RMn formed on the reference surface RBa of the reference bar member RB with a uniform illuminance distribution. The reference surface RBa of the reference bar member RB is arranged so as to coincide with the surface Pss' optically corresponding to the intermediate image surface Pss with the first beam splitter BS1 interposed therebetween. Therefore, the reference surface RBa (plane Pss') has a conjugate relationship (imaging relationship) with the image pickup surface of the image pickup device DIS via the second imaging optical system Gd. Therefore, the reflected light from the reference mark RMn illuminated by the illumination light ILb reaches the imaging surface of the imaging element DIS as an imaging luminous flux Bma via the first beam splitter BS1 and the second imaging optical system Gd. Then, the enlarged image of the reference mark RMn and the enlarged image of the alignment mark MKn (or the reference patterns FMa to FMh) can be simultaneously imaged on the imaging surface. Also in the case of the alignment system ALGn in FIG. 23, as described in FIG. 9 above, by exchanging the illumination field diaphragm FAn in the illumination system ILU that emits the illumination light ILb, the enlarged image of the reference mark RMn and the alignment mark It is possible to switch between simultaneous imaging of both the magnified image of MKn (or reference patterns FMa to FMh) and selective imaging of only one of them.
 以上、本実施の形態でも、アライメント系ALGnはY方向に複数配列されるので、基準バー部材RBは、それらの複数のアライメント系ALGnの各々の第1ビームスプリッタBS1の下方空間をY方向に横切るように延設される。また、本実施の形態における基準バー部材RBは、先の第1の実施形態の図4に示したように、回転ドラムDRの外周面DRs(基板P)の近くに配置しなくても良い為、基準バー部材RBのXZ面内での外形寸法を大きくして剛性を高めることができると共に、基準バー部材RBを固定する為の支持機構部(図8中の支持フレーム部100、支持板部102A、102B、103A、103B、連結バー部材104a、104b、104cに相当)を大型化して、剛性を高めることができる。 As described above, also in the present embodiment, since a plurality of alignment system ALGn are arranged in the Y direction, the reference bar member RB crosses the space below the first beam splitter BS1 of each of the plurality of alignment system ALGn in the Y direction. It will be extended as. Further, as shown in FIG. 4 of the first embodiment, the reference bar member RB in the present embodiment does not have to be arranged near the outer peripheral surfaces DRs (board P) of the rotating drum DR. , The external dimensions of the reference bar member RB in the XZ plane can be increased to increase the rigidity, and the support mechanism portion for fixing the reference bar member RB (support frame portion 100 and support plate portion in FIG. 8). 102A, 102B, 103A, 103B, corresponding to the connecting bar members 104a, 104b, 104c) can be enlarged to increase the rigidity.
 〔第3の実施の形態〕
 図24は、第3の実施の形態によるアライメント系ALGnの光学構成を示す図であり、直交座標系XYZは、先の図2や図23と同様に設定されている。また、図24において、第1の実施形態や第2の実施形態における部材や構成と同じものには同じ符号を付してある。本実施の形態では、アライメント系ALGnとして、作動距離(ワーキングディスタンス)が10cm以上に設定された光学顕微鏡を用いる。このような顕微鏡は、例えば、株式会社モリテックスから、マシンビジョン用レンズとして販売されており、それを利用することもできる。
[Third Embodiment]
FIG. 24 is a diagram showing an optical configuration of the alignment system ALGn according to the third embodiment, and the orthogonal coordinate system XYZ is set in the same manner as in FIGS. 2 and 23 above. Further, in FIG. 24, the same members and configurations as those in the first embodiment and the second embodiment are designated by the same reference numerals. In the present embodiment, an optical microscope having a working distance (working distance) of 10 cm or more is used as the alignment system ALGn. Such a microscope is sold as a machine vision lens by Moritex Corporation, for example, and it can also be used.
 本実施の形態では、図24のように、アライメント系ALGnの全体は低熱膨張係数の金属又はセラミックスによる支持ブラケット400に固定されている。支持ブラケット400は、XZ面と平行な板状に形成され、図8中の支持フレーム部100と接続された構造部分(メトロロジーフレーム)に固定される。アライメント系ALGnは、基板P(回転ドラムDRの外周面)に対向して配置される平面ミラーMb、その平面ミラーMbを支持ブラケット400に固定する保持金物401、アライメント系ALGnの対物レンズ系OBLと平面ミラーMbとの間の光路中に、光軸AXsと垂直な面に対して角度θe(θe>0)だけ傾けて配置される石英等の透過光学硝材によるプレート型(平行平板状)のビームスプリッタBS1(合成光学部材)、そのビームスプリッタBS1を支持ブラケット400に固定する保持金物402、アライメント系ALGnの検出領域ADnを落射照明するように、照明系ILUからの照明光ILbを導く光ファイバー束404、その光ファイバー束404の先端部(射出端)404aからの照明光ILbを対物レンズ系OBLに向けて反射させると共に、基板P等で反射して対物レンズ系OBLを介して入射した結像光束Bmaを透過させるビームスプリッタBS2、レンズ系Gb、及び撮像素子DISとで構成される。 In the present embodiment, as shown in FIG. 24, the entire alignment system ALGn is fixed to the support bracket 400 made of metal or ceramics having a low coefficient of thermal expansion. The support bracket 400 is formed in a plate shape parallel to the XZ plane, and is fixed to a structural portion (metrology frame) connected to the support frame portion 100 in FIG. The alignment system ALGn includes a plane mirror Mb arranged to face the substrate P (the outer peripheral surface of the rotating drum DR), a holding hardware 401 for fixing the plane mirror Mb to the support bracket 400, and an objective lens system OBL of the alignment system ALGn. A plate-type (parallel plate-like) beam made of a transmissive optical glass material such as quartz, which is arranged at an angle θe (θe> 0) with respect to a plane perpendicular to the optical axis AXs in the optical path between the plane mirror Mb. Splitter BS1 (synthetic optical member), holding hardware 402 fixing the beam splitter BS1 to the support bracket 400, optical fiber bundle 404 that guides the illumination light ILb from the illumination system ILU so as to epiilluminate the detection region ADn of the alignment system ALGn. The illumination light ILb from the tip end (ejection end) 404a of the optical fiber bundle 404 is reflected toward the objective lens system OBL, and is reflected by the substrate P or the like and incident through the objective lens system OBL. It is composed of a beam splitter BS2, a lens system Gb, and an image pickup element DIS.
 本実施の形態では、対物レンズ系OBLから射出する照明光ILbの強度のうちの10~30%程度が、角度θeに依存して、プレート型のビームスプリッタBS1の表面(光分割面であって、光合成面)Bspで反射されて、基準バー部材RBに向かう。基準バー部材RBの参照面RBaは光学的に基板Pの表面と対応した位置に設定され、参照面RBa上に設定される検出領域ARnは照明光ILbの一部によって均一な照度分布で照明される。検出領域ARn内に配置される基準マークRMnで発生した反射光束Bmrは、光軸AXs’に沿ってビームスプリッタBS1に達し、表面Bspで反射されて、結像光束Bmaとなって対物レンズ系OBLに入射する。本実施の形態でも、撮像素子DISの撮像面(撮像領域DIS’)は、基板Pの表面と共役関係(結像関係)であると共に、基準バー部材RBの参照面RBaとも共役関係(結像関係)に設定されている。なお、図24の構成において、プレート型のビームスプリッタBS1は無偏光タイプとされ、石英以外の硝材でも良い。 In the present embodiment, about 10 to 30% of the intensity of the illumination light ILb emitted from the objective lens system OBL depends on the angle θe and is the surface (optical splitting surface) of the plate-type beam splitter BS1. , Photosynthetic surface) Reflected by Bsp and heads toward the reference bar member RB. The reference surface RBa of the reference bar member RB is optically set at a position corresponding to the surface of the substrate P, and the detection region ARn set on the reference surface RBa is illuminated with a uniform illuminance distribution by a part of the illumination light ILb. NS. The reflected luminous flux Bmr generated at the reference mark RMn arranged in the detection region ARn reaches the beam splitter BS1 along the optical axis AXs', is reflected by the surface Bsp, and becomes the imaging luminous flux Bma, which becomes the objective lens system OBL. Incident to. Also in this embodiment, the image pickup surface (imaging area DIS') of the image pickup device DIS has a conjugate relationship (imaging relationship) with the surface of the substrate P, and also has a conjugate relationship (imaging relationship) with the reference surface RBa of the reference bar member RB. Relationship) is set. In the configuration of FIG. 24, the plate-type beam splitter BS1 is a non-polarizing type, and a glass material other than quartz may be used.
 従って、光ファイバー束404の射出端404aから照明光ILbが投射されると、基板P上に設定される検出領域ADnと基準バー部材RB上に設定される検出領域ARnとの両方が同時に照明光ILbによって落射照明される。その為、撮像素子DISの撮像領域DIS’内には、検出領域ADn内に現れる基板PのアライメントマークMKnの像、或いは回転ドラムDR上の基準パターンFMa~FMhの像と、検出領域ARn内の基準マークRMnの像とが合成されて同時に結像する。撮像素子DISで撮像されるアライメントマークMKnまたは基準パターンFMa~FMh、及び基準マークRMnの各像に応じた映像信号Vsgは、図11に示した画像解析部206に送られる。 Therefore, when the illumination light ILb is projected from the emission end 404a of the optical fiber bundle 404, both the detection region ADn set on the substrate P and the detection region ARn set on the reference bar member RB are simultaneously illuminated by the illumination light ILb. Illuminated by epi-illumination. Therefore, in the image pickup region DIS'of the image pickup element DIS, an image of the alignment mark MKn of the substrate P appearing in the detection region ADn, or an image of the reference patterns FMa to FMh on the rotating drum DR, and the image of the reference patterns FMa to FMh in the detection region ARn. The image of the reference mark RMn is combined and imaged at the same time. The video signal Vsg corresponding to each image of the alignment marks MKn or the reference patterns FMa to FMh and the reference mark RMn imaged by the image sensor DIS is sent to the image analysis unit 206 shown in FIG.
 本実施の形態では、対物レンズ系OBLとレンズ系Gbとによる顕微鏡光学系の瞳面Eppと対応した位置に、光ファイバー束404の射出端404aが位置するように設定され、ほぼ円状の外形を成す射出端404aが瞳面Epp内で2次光源像となって、テレセントリックな落射照明(ケーラー照明)が行われる。しかしながら、本実施の形態では、先の図9で示したような照明視野絞りFA1~FA3が利用できないので、基準バー部材RBの基準マークRMnを同時に撮像するか否かを選択する為に、基準バー部材RBの参照面RBaの直前に、平面上の液晶シャッター410を配置する。液晶シャッター410は、基準バー部材RB上に設定される検出領域ARnの各々(即ち、アライメント系ALGnの各々)に対して個別に設けられ、先の図11に示した計測制御部210からの駆動信号CCsに応答して光の透過率を変える。液晶シャッター410の各々は、基準バー部材RBの参照面RBaから一定の間隔となるように基準バー部材RBと平行に延設された板状の支持枠に固定されている。 In the present embodiment, the ejection end 404a of the optical fiber bundle 404 is set to be located at a position corresponding to the pupil surface Epp of the microscope optical system by the objective lens system OBL and the lens system Gb, and has a substantially circular outer shape. The emission end 404a formed becomes a secondary light source image in the pupil surface Epp, and telecentric epi-illumination (Koehler illumination) is performed. However, in the present embodiment, since the illumination field diaphragms FA1 to FA3 as shown in FIG. 9 above cannot be used, a reference is used to select whether or not to simultaneously image the reference mark RMn of the reference bar member RB. A liquid crystal shutter 410 on a flat surface is arranged immediately before the reference surface RBa of the bar member RB. The liquid crystal shutter 410 is individually provided for each of the detection regions ARn (that is, each of the alignment system ALGn) set on the reference bar member RB, and is driven by the measurement control unit 210 shown in FIG. The light transmittance is changed in response to the signals CCs. Each of the liquid crystal shutters 410 is fixed to a plate-shaped support frame extending in parallel with the reference bar member RB so as to be at a constant distance from the reference surface RBa of the reference bar member RB.
 液晶シャッター410は、駆動信号CCsの電圧が0Vのときに透過率がほぼ0%となり、電圧が高くなるに従って透過率が上昇し、公称の最大電圧のときに透過率が95%以上になるような特性を有する。また、液晶シャッター410の表面は、低反射率となるように反射防止膜がコートされている。従って、撮像素子DISからの映像信号Vsgに基づいて、アライメント系ALGnをキャリブレーションする段階(図12中のステップ302)等のときは、液晶シャッター410の透過率を最大にし、基準バー部材RB上の基準マークRMnの像を検出できるようにする。また、基板P上のアライメントマークMKnのみ、又は回転ドラムDR上の基準パターンFMa~FMhのみを検出する場合は、液晶シャッター410の透過率が最小(0%)に設定される。 The transmittance of the liquid crystal shutter 410 becomes almost 0% when the voltage of the drive signal CCs is 0V, the transmittance increases as the voltage increases, and the transmittance becomes 95% or more at the nominal maximum voltage. Has various characteristics. Further, the surface of the liquid crystal shutter 410 is coated with an antireflection film so as to have a low reflectance. Therefore, at the stage of calibrating the alignment system ALGn based on the video signal Vsg from the image sensor DIS (step 302 in FIG. 12), the transmittance of the liquid crystal shutter 410 is maximized and on the reference bar member RB. The image of the reference mark RMn of the above can be detected. Further, when detecting only the alignment mark MKn on the substrate P or only the reference patterns FMa to FMh on the rotating drum DR, the transmittance of the liquid crystal shutter 410 is set to the minimum (0%).
 さらに、基準バー部材RB上の基準マークRMnの像と基板PのアライメントマークMKnの像とを同時に撮像素子DISで撮像する場合、撮像領域DIS’内での基準マークRMnの像のコントラストに比べて、アライメントマークMKnの像のコントラストが大きく低下することもある。そのような場合は、液晶シャッター410の透過率を調整することで、コントラストの格差を改善することもできる。 Further, when the image of the reference mark RNn on the reference bar member RB and the image of the alignment mark MKn of the substrate P are simultaneously imaged by the image pickup device DIS, the contrast of the image of the reference mark RNn in the image pickup region DIS'is compared with the contrast. , The contrast of the image of the alignment mark MKn may be significantly reduced. In such a case, the contrast difference can be improved by adjusting the transmittance of the liquid crystal shutter 410.
 以上、本実施の形態では、プレート型のビームスプリッタBS1を対物レンズ系OBLの光軸AXsと垂直な面に対して角度θeだけ傾けて、対物レンズ系OBLから射出される照明光ILbをアライメント系ALGnの下方空間に配置される基準バー部材RBに向かうように構成した。しかしながら、基準バー部材RBがアライメント系ALGnの上方空間に延設される場合は、光軸AXsと垂直な面に対するビームスプリッタBS1の傾きを逆向き(-θe)に設定すれば良い。また、プレート型のビームスプリッタBS1の厚みは、光学的な諸収差(アス等)の発生を少なくすると共に、面精度を悪化させる変形や歪みを生じない剛性を持つ範囲で、極力薄くするのが良い。 As described above, in the present embodiment, the plate-type beam splitter BS1 is tilted by an angle θe with respect to the plane perpendicular to the optical axis AXs of the objective lens system OBL, and the illumination light ILb emitted from the objective lens system OBL is aligned. It was configured to face the reference bar member RB arranged in the space below the ALGn. However, when the reference bar member RB extends in the space above the alignment system ALGn, the inclination of the beam splitter BS1 with respect to the plane perpendicular to the optical axis AXs may be set in the opposite direction (−θe). In addition, the thickness of the plate-type beam splitter BS1 should be as thin as possible within a range that reduces the occurrence of various optical aberrations (ass, etc.) and has rigidity that does not cause deformation or distortion that deteriorates surface accuracy. good.
 なお、プレート型のビームスプリッタBS1の表面に反射防止膜(ARコート)を形成しない無垢の状態にすることで、角度θeに依存して光分割面(光合成面)Bspに適度な反射率を持たせることができる。また、角度θeは、光軸AXsと光軸AXs’との成す角度2θe(XZ面内での基準バー部材RBの配置)によって決まるが、角度θeが、例えば45°以上になると、基準バー部材RBに向かう照明光ILbの強度が増大し、基板Pに向かう照明光ILbの強度が極端に低下することになるので、角度θeは0°<θe<45°の範囲、更に好ましくは、5°≦θe≦30°の範囲にするのが良い。また、プレート型のビームスプリッタBS1の厚みは1mm以下、例えば0.1mmであっても良く、角度θeを調整可能とする構造を設けても良い。 By making the surface of the plate-type beam splitter BS1 in a solid state without forming an antireflection film (AR coat), the light splitting surface (photosynthetic surface) Bsp has an appropriate reflectance depending on the angle θe. Can be made. Further, the angle θe is determined by the angle 2θe (arrangement of the reference bar member RB in the XZ plane) formed by the optical axis AXs and the optical axis AXs', but when the angle θe becomes, for example, 45 ° or more, the reference bar member Since the intensity of the illumination light ILb toward the RB increases and the intensity of the illumination light ILb toward the substrate P decreases extremely, the angle θe is in the range of 0 ° <θe <45 °, more preferably 5 °. It is preferable to set the range to ≤θe≤30 °. Further, the thickness of the plate-type beam splitter BS1 may be 1 mm or less, for example 0.1 mm, and a structure capable of adjusting the angle θe may be provided.
 〔変形例3〕
 図25は、図24に示した第3の実施の形態におけるビームスプリッタBS1(合成光学部材)の変形例を示す光学配置図であり、対物レンズ系OBLの光軸AXs、平面ミラーMb等は、図24のXYZ座標系内での配置と同じに設けられている。本変形例では、図25のように、ビームスプリッタBS1はキューブ型で構成され、対物レンズ系OBL側に位置する石英によるプリズムブロックPSMaと平面ミラーMb側に位置する石英によるプリズムブロックPSMbとの貼り合せによって、XZ面と平行な面に沿った断面の全体形状が台形(五角形)になるように構成される。プリズムブロックPSMaとプリズムブロックPSMbとの貼り合せ面Bspは、光分割面として機能し、光軸AXsと垂直な面に対して角度θeだけXZ面内で傾くように構成される。対物レンズ系OBLから射出する照明光ILbは、プリズムブロックPSMaの面BS1aから入射し、貼り合せ面(分割面)Bspを透過した照明光ILbは、プリズムブロックPSMbの面BS1bから射出して平面ミラーMbに達する。
[Modification 3]
FIG. 25 is an optical layout diagram showing a modification of the beam splitter BS1 (synthetic optical member) in the third embodiment shown in FIG. 24, and the optical axis AXs, the plane mirror Mb, and the like of the objective lens system OBL are shown. It is provided in the same manner as the arrangement in the XYZ coordinate system of FIG. 24. In this modification, as shown in FIG. 25, the beam splitter BS1 is formed in a cube shape, and the prism block PSMa made of quartz located on the objective lens system OBL side and the prism block PSMb made of quartz located on the plane mirror Mb side are attached. By combining, the overall shape of the cross section along the plane parallel to the XZ plane is formed to be trapezoidal (pentagonal). The bonding surface Bsp of the prism block PSMa and the prism block PSMb functions as an optical dividing surface, and is configured to be tilted in the XZ plane by an angle θe with respect to the plane perpendicular to the optical axis AXs. The illumination light ILb emitted from the objective lens system OBL is incident from the surface BS1a of the prism block PSMa, and the illumination light ILb transmitted through the bonded surface (divided surface) Bsp is emitted from the surface BS1b of the prism block PSMb to be a flat mirror. Reach Mb.
 プリズムブロックPSMaの面BS1aとプリズムブロックPSMbの面BS1bとは、互いに平行であると共に、光軸AXsと垂直に設定されている。また、分割面Bspで反射された照明光ILbは、プリズムブロックPSMaの面BS1cから、基準バー部材RBの参照面RBaと垂直に設定される光軸AXs’に沿って射出する。プリズムブロックPSMaの面BS1cは、光軸AXs’と垂直になるように形成されている。光軸AXsと光軸AXs’とが成す角度は、分割面Bspの角度θeの倍角となるので、2θeとなり、プリズムブロックPSMaの面BS1bと面BS1cとは、XZ面内で角度(180°-2θe)を成す。本変形例でも、貼り合せ面(分割面)Bspでの照明光ILbの反射率が10~30%程度になるように、貼り合せ面(分割面)Bspには誘電体膜が形成されている。 The surface BS1a of the prism block PSMa and the surface BS1b of the prism block PSMb are parallel to each other and set perpendicular to the optical axis AXs. Further, the illumination light ILb reflected by the dividing surface Bsp is emitted from the surface BS1c of the prism block PSMA along the optical axis AXs' that is set perpendicular to the reference surface RBa of the reference bar member RB. The surface BS1c of the prism block PSMa is formed so as to be perpendicular to the optical axis AXs'. The angle formed by the optical axis AXs and the optical axis AXs'is 2θe because it is a double angle of the angle θe of the dividing surface Bsp. 2θe). Also in this modification, a dielectric film is formed on the bonded surface (divided surface) Bsp so that the reflectance of the illumination light ILb on the bonded surface (divided surface) Bsp is about 10 to 30%. ..
 以上の本変形例によれば、照明光ILbで照明された基板PのアライメントマークMKn、又は回転ドラムDRの基準パターンFMa~FMhからの反射光(結像光束Bma)は、ビームスプリッタBS1の光軸AXsと垂直な面BS1b、BS1aを通って対物レンズ系OBLに入射するので、アライメントマークMKnや基準パターンFMa~FMhの結像時の光学的な諸収差の発生を小さくできる。同様に、照明光ILbで照明された基準バー部材RBの基準マークRMnからの反射光(結像光束Bmr)は、ビームスプリッタBS1の光軸AXs’と垂直な面BS1cから入射し、光軸AXsと垂直な面BS1aを通って対物レンズ系OBLに入射するので、基準マークRMnの結像時の光学的な諸収差の発生も小さくできる。 According to the above modified example, the alignment mark MKn of the substrate P illuminated by the illumination light ILb or the reflected light (imaging light beam Bma) from the reference patterns FMa to FMh of the rotating drum DR is the light of the beam splitter BS1. Since it is incident on the objective lens system OBL through the planes BS1b and BS1a perpendicular to the axes AXs, it is possible to reduce the occurrence of various optical aberrations at the time of imaging of the alignment mark MKn and the reference patterns FMa to FMh. Similarly, the reflected light (imaging light beam Bmr) from the reference mark RMn of the reference bar member RB illuminated by the illumination light ILb is incident from the plane BS1c perpendicular to the optical axis AXs'of the beam splitter BS1 and is incident on the optical axis AXs. Since it is incident on the objective lens system OBL through the plane BS1a perpendicular to the image, the occurrence of various optical aberrations at the time of imaging of the reference mark RMn can be reduced.
 〔第4の実施の形態〕
 図26は、第4の実施の形態による基準バー部材RBの構成を示す図であり、図26Aは、基準バー部材RBの参照面RBa上の構成を示し、図26Bは、図26A中の基準バー部材RBのCC-CC矢視断面を表わし、図26Cは参照面RBa上に形成される基準マークRMnの構成の一例を示す。本実施の形態では、基準バー部材RB上の基準マークRMnを、調整可能な照度で自発光させる構成とする。その為、図26Bに示すように、基準バー部材RBの母材RBoとなる金属製又はセラミックス製の角材の内部に、自発光用の照明光ILhを導光する為の光ファイバー束450が接続される。
[Fourth Embodiment]
FIG. 26 is a diagram showing the configuration of the reference bar member RB according to the fourth embodiment, FIG. 26A shows the configuration of the reference bar member RB on the reference surface RBa, and FIG. 26B is the reference in FIG. 26A. The CC-CC arrow cross section of the bar member RB is shown, and FIG. 26C shows an example of the configuration of the reference mark RMn formed on the reference surface RBa. In the present embodiment, the reference mark RMn on the reference bar member RB is self-luminous with adjustable illuminance. Therefore, as shown in FIG. 26B, an optical fiber bundle 450 for guiding the illumination light ILh for self-luminous light is connected inside a metal or ceramic square lumber serving as a base material RBo of the reference bar member RB. NS.
 先の図20に示したように、7つのアライメント系ALG1~ALG7が設けられる構成に応じて、図26Aでも、アライメント系ALG1~ALG7の各検出領域AD1~AD7に対応したY方向の位置の各々に、基準マークRM1~RM7(中心点CRn)が配置される。基準バー部材RBの母材RBoのビームスプリッタBS1側の面には、薄い石英板RBgがY方向に延設して設けられ、その石英板RBgの表面には低反射率のクロム層(遮光層)の蒸着による参照面RBaが形成されている。参照面RBa(遮光層)上の基準マークRMnの各位置には、図26Cに示すように、アライメント系ALGnの各検出領域ADnに対応した寸法で矩形状の透過窓WDn(n=1~7)が形成され、その内部に遮光層による基準マークRMnが配置される。 As shown in FIG. 20, depending on the configuration in which the seven alignment systems ALG1 to ALG7 are provided, also in FIG. 26A, each of the positions in the Y direction corresponding to the detection regions AD1 to AD7 of the alignment systems ALG1 to ALG7. Reference marks RM1 to RM7 (center point CRn) are arranged therewith. A thin quartz plate RBg is provided extending in the Y direction on the surface of the base material RBo of the reference bar member RB on the beam splitter BS1 side, and a low reflectance chromium layer (light-shielding layer) is provided on the surface of the quartz plate RBg. ) Is deposited to form a reference surface RBa. As shown in FIG. 26C, at each position of the reference mark RMn on the reference surface RBa (light-shielding layer), a rectangular transmission window WDn (n = 1 to 7) having dimensions corresponding to each detection region ADn of the alignment system ALGn. ) Is formed, and the reference mark RMn by the light-shielding layer is arranged inside the).
 石英板RBgの裏面側の母材RBoには、透過窓WDnの各々を含むような直径で円柱状に穴明けされた開口部RBzが形成され、開口部RBz内には、光ファイバー束450の射出端から投射される照明光ILeを入射して、個々の透過窓WDnの全体を裏面側(石英板RBg側)から均一に照明するレンズ部材452が設けられる。また、光ファイバー束450の射出端側とレンズ部材452とは、円管状に形成された断熱性の樹脂部材454を介して、開口部RBz内に固定される。レンズ部材452は、光ファイバー束450の射出端に形成され多数の点光源の円形状の集合を2次光源として、透過窓WDnを裏側からケーラー照明する。図26Bに示したレンズ部材452の光軸AXiは、ビームスプリッタBS1を介して、先の図5、図23、図24の各々で説明した対物レンズ系OBLの光軸AXsと許容誤差内で同軸になるように設定される。 The base material RBo on the back surface side of the quartz plate RBg is formed with an opening RBz having a columnar hole with a diameter so as to include each of the transmission windows WDn, and an optical fiber bundle 450 is injected into the opening RBz. A lens member 452 is provided which injects the illumination light ILe projected from the end and uniformly illuminates the entire individual transmission window WDn from the back surface side (quartz plate RBg side). Further, the injection end side of the optical fiber bundle 450 and the lens member 452 are fixed in the opening RBz via a heat insulating resin member 454 formed in a circular tubular shape. The lens member 452 is formed at the ejection end of the optical fiber bundle 450, and the transmission window WDn is illuminated from the back side by Koehler illumination using a circular set of a large number of point light sources as a secondary light source. The optical axis AXi of the lens member 452 shown in FIG. 26B is coaxial with the optical axis AXs of the objective lens system OBL described in each of FIGS. 5, 23, and 24 above via the beam splitter BS1 within a tolerance. Is set to be.
 本実施の形態では、基準バー部材RBの母材RBo内に設けたレンズ部材452を介して、光ファイバー束450からの照明光ILhを透過窓WDn内に照射する構成なので、アライメント系ALGnの撮像素子DISで観察される基準マークRMnの拡大像RMn’は、明るい背景(白)の中に黒いパターンとして現れる。また、照明光ILhは、アライメント系ALGn用の照明光ILbを供給する照明系ILU(図6参照)内の光源部から供給することもできるが、別の照明系ILU’を設けて、照明光ILhの照度を可変にするようにしても良い。別の照明系ILU’を用いる場合は、アライメント系ALGn用の照明光ILbの照度とは無関係に照明光ILhの照度を調整したり、アライメント系ALGnのキャリブレーション時(図12のステップ302)のみに照明光ILhを照射し、アライメント系ALGnが基板P上のアライメントマークMKnを順次検出する期間では照明光ILhを消灯したりすることもできる。 In the present embodiment, the illumination light ILh from the optical fiber bundle 450 is irradiated into the transmission window WDn via the lens member 452 provided in the base material RBo of the reference bar member RB. The enlarged image RNn'of the reference mark RNn observed by DIS appears as a black pattern on a bright background (white). Further, the illumination light ILh can be supplied from the light source unit in the illumination system ILU (see FIG. 6) that supplies the illumination light ILb for the alignment system ALGn, but another illumination system ILU'is provided to provide the illumination light. The illuminance of ILh may be made variable. When another illumination system ILU'is used, the illuminance of the illumination light ILh is adjusted regardless of the illuminance of the illumination light ILb for the alignment system ALGn, or only when the alignment system ALGn is calibrated (step 302 in FIG. 12). Is irradiated with the illumination light ILh, and the illumination light ILh can be turned off during the period in which the alignment system ALGn sequentially detects the alignment mark MKn on the substrate P.
 さらに、アライメント系ALGn用の照明光ILbと、基準バー部材RBの基準マークRMn(透過窓WDn)用の照明光ILhとの波長特性を異ならせても良い。例えば、アライメント系ALGn用の照明光ILbは、基板P上のアライメントマークMKnの検出に適するように、基板P上の感光層に対しては非感光性で、ブロードな波長帯域(例えば、450nm~700nm)を有する光にし、基準バー部材RBの基準マークRMn(透過窓WDn)用の照明光ILhは、アライメント系ALGnの対物レンズ系OBL等の結像光学系で発生する色収差を小さくして像コントラストを高められる単色の光(非感光性)にすることができる。 Further, the wavelength characteristics of the illumination light ILb for the alignment system ALGn and the illumination light ILh for the reference mark RMn (transmission window WDn) of the reference bar member RB may be different. For example, the illumination light ILb for the alignment system ALGn is non-photosensitive to the photosensitive layer on the substrate P and has a broad wavelength band (for example, 450 nm or more) so as to be suitable for detecting the alignment mark MKn on the substrate P. The illumination light ILh for the reference mark RMn (transmission window WDn) of the reference bar member RB is the light having 700 nm), and the image is obtained by reducing the chromatic aberration generated in the imaging optical system such as the objective lens system OBL of the alignment system ALGn. It is possible to make monochromatic light (non-photosensitive) that can enhance the contrast.
 また、本実施の形態では、図26Cに示したように、遮光層で形成される参照面RBa中に透過性の透過窓WDnを設け、その透過窓WDn内に遮光層による基準マークRMnを形成したが、透過窓WDnは設けずに、遮光層による参照面RBa中に透過性の基準マークRMnを形成しても良い。この場合、アライメント系ALGnの撮像素子DISで観察される基準マークRMnの拡大像RMn’は、暗い背景(黒)の中に明るいパターン(白)となって現れる。その為、アライメント系ALGnが基板P上のアライメントマークMKnを検出している間も、撮像領域DIS’内に現れる基板Pの表面の全体画像の中で、基準マークRMnの拡大像RMn’を高いコントラストで表示させることができる。 Further, in the present embodiment, as shown in FIG. 26C, a transparent transparent window WDn is provided in the reference surface RBa formed by the light-shielding layer, and a reference mark RMn by the light-shielding layer is formed in the transparent window WDn. However, the transparent reference mark RMn may be formed in the reference surface RBa by the light-shielding layer without providing the transparent window WDn. In this case, the enlarged image RNn'of the reference mark RMn observed by the image sensor DIS of the alignment system ALGn appears as a bright pattern (white) on a dark background (black). Therefore, even while the alignment system ALGn detects the alignment mark MKn on the substrate P, the enlarged image RNn'of the reference mark RNn is high in the entire image of the surface of the substrate P appearing in the imaging region DIS'. It can be displayed in contrast.
 さらに、アライメント系ALGn用の照明光ILbの照度を、基準バー部材RBの基準マークRMn用の照明光ILhの照度とは別に調整可能にすることにより、基板Pの表面(アライメントマークMKn)の反射率が低いときには、アライメント系ALGn用の照明光ILbの照度を高め、基板Pの表面(アライメントマークMKn)の反射率が高いときには、アライメント系ALGn用の照明光ILbの照度を低めることが独立に可能となる。その為、基板Pの表面の反射率(或いは吸収率)等に変動があっても、基板P上のアライメントマークMKnの画像解析時の計測精度の劣化が抑えられ、安定な位置計測が可能となる。なお、本実施の形態による図26の基準バー部材RBは、先の図23、図24、図25の各々に示したアライメント系ALGnのいずれと組み合わせても、そのまま使用できる。 Further, the illuminance of the illumination light ILb for the alignment system ALGn can be adjusted separately from the illuminance of the illumination light ILh for the reference mark RMn of the reference bar member RB, so that the reflection of the surface (alignment mark MKn) of the substrate P can be adjusted. When the rate is low, the illuminance of the illumination light ILb for the alignment system ALGn is increased, and when the reflectance of the surface (alignment mark MKn) of the substrate P is high, the illuminance of the illumination light ILb for the alignment system ALGn is decreased independently. It will be possible. Therefore, even if the reflectance (or absorption rate) of the surface of the substrate P fluctuates, the deterioration of the measurement accuracy of the alignment mark MKn on the substrate P during image analysis is suppressed, and stable position measurement is possible. Become. The reference bar member RB of FIG. 26 according to the present embodiment can be used as it is in combination with any of the alignment system ALGn shown in each of FIGS. 23, 24, and 25 above.
 〔第5の実施の形態〕
 図27は、マスクレス露光装置として、デジタル・ミラー・デバイス(DMD)を用いたパターン描画装置の概略的な構成を示し、直交座標系XYZのZ軸は重力方向に設定され、Z軸と垂直なXY面は水平面に設定される。図27において、被露光体としての基板Pは、XY面と平行な面に沿って1次元(X方向)又は2次元(X方向とY方向)に並進移動する不図示の移動ステージ上に載置される。本実施の形態では、基板Pを枚葉の平面状のガラス基板、プラスチック基板、又は金属基板とするが、PET(ポリエチレンテレフタレート)フィルム、PEN(ポリエチレンナフタレート)フィルム、ポリイミドフィルム等の樹脂シートであっても良い。
[Fifth Embodiment]
FIG. 27 shows a schematic configuration of a pattern drawing device using a digital mirror device (DMD) as a maskless exposure device. The Z axis of the Cartesian coordinate system XYZ is set in the direction of gravity and is perpendicular to the Z axis. The XY plane is set to a horizontal plane. In FIG. 27, the substrate P as an object to be exposed is mounted on a moving stage (not shown) that translates in one dimension (X direction) or two dimensions (X direction and Y direction) along a plane parallel to the XY plane. Placed. In the present embodiment, the substrate P is a single-wafer flat glass substrate, a plastic substrate, or a metal substrate, but a resin sheet such as PET (polyethylene terephthalate) film, PEN (polyethylene naphthalate) film, or polyimide film is used. There may be.
 本実施の形態でも、Y方向に一定の間隔で一列に配置される奇数番の描画ユニット(パターン形成機構)U1、U3、U5・・・と、奇数番の描画ユニットに対してX方向に所定の間隔で離間配置されると共に、Y方向に一定の間隔で配置される偶数番の描画ユニット(パターン形成機構)U2、U4、U6・・・とが設けられる。図27において、基板P上には、奇数番の描画ユニットU1、U3、U5・・・の各々による投影領域IA1、IA3、IA5・・・と、偶数番の描画ユニットU2、U4、U6・・・の各々による投影領域IA2、IA4、IA6・・・とが設定される。奇数番の描画ユニットU1、U3、U5・・・と偶数番の描画ユニットU2、U4、U6・・・とは、XZ面内で見ると、YZ面と平行な中心面CPoに関して左右対称に配置されると共に、Y方向には投影領域IAnのY方向の寸法程度だけシフトして配置される。奇数番と偶数番の描画ユニットUn(n=1、2、3・・・)の各々の構成はいずれも同じなので、ここでは代表して描画ユニットU1の構成について詳しく説明する。 Also in this embodiment, the odd-numbered drawing units (pattern forming mechanism) U1, U3, U5 ... Arranged in a row at regular intervals in the Y direction and the odd-numbered drawing units are predetermined in the X direction. The even-numbered drawing units (pattern forming mechanism) U2, U4, U6, etc., which are arranged at regular intervals in the Y direction, are provided. In FIG. 27, on the substrate P, the projection areas IA1, IA3, IA5 ... By the odd-numbered drawing units U1, U3, U5 ..., And the even-numbered drawing units U2, U4, U6 ... The projection areas IA2, IA4, IA6, ... The odd-numbered drawing units U1, U3, U5 ... And the even-numbered drawing units U2, U4, U6 ... Are arranged symmetrically with respect to the central plane CPo parallel to the YZ plane when viewed in the XZ plane. At the same time, the projection area IAn is shifted in the Y direction by about the dimension of the Y direction. Since the configurations of the odd-numbered and even-numbered drawing units Un (n = 1, 2, 3, ...) Are the same, the configuration of the drawing unit U1 will be described in detail here as a representative.
 描画ユニットU1は、主要部材の全体を支持する低熱膨張係数の金属による支持フレーム550と、露光用の照明ビームLB1(紫外波長域の単色光)を入射する照明光学系(鏡筒)551と、照明光学系551によって均一な照度分布にされた照明ビームLB1を反射させる反射ミラー552と、反射ミラー552からの照明ビームLB1で照射されるDMDユニット553と、DMDユニット553の多数のマイクロ・ミラーの各々の角度をパターンデータに応じて逐次変化させることで変調される描画ビームを入射して、基板P上の投影領域IA1内に動的なパターンの縮小像を投影する投影光学系(鏡筒)554とで構成される。 The drawing unit U1 includes a support frame 550 made of metal having a low thermal expansion coefficient that supports the entire main member, an illumination optical system (lens barrel) 551 that injects an illumination beam LB1 (monochromatic light in the ultraviolet wavelength range) for exposure. A reflection mirror 552 that reflects the illumination beam LB1 having a uniform illumination distribution by the illumination optical system 551, a DMD unit 553 that is irradiated by the illumination beam LB1 from the reflection mirror 552, and a large number of micro mirrors of the DMD unit 553. A projection optical system (lens barrel) that projects a reduced image of a dynamic pattern into the projection area IA1 on the substrate P by injecting a drawing beam that is modulated by sequentially changing each angle according to the pattern data. It is composed of 554 and.
 照明ビームLB1は、レーザ光源から光ファイバー束を介して照明光学系(鏡筒)551に入射され、照明光学系551内のフライアイレンズとコンデンサーレンズ等によって均一な照度分布にされて、DMDユニット553をケーラー照明する。DMDユニット553の反射面は、XY面内で見ると、Y方向に隣り合う描画ユニットU2による投影領域IA2との継ぎ露光の為に、所定の角度だけ傾いて配置される。投影光学系(鏡筒)554は、DMDユニット553の反射面の全体を基板P上の投影領域IA1内に縮小結像するように、複数のレンズ素子で直筒状に構成された両側テレセントリックな結像光学系として構成される。 The illumination beam LB1 is incident on the illumination optical system (lens cylinder) 551 from a laser light source via an optical fiber bundle, and is made into a uniform illuminance distribution by a fly-eye lens, a condenser lens, etc. in the illumination optical system 551, and the DMD unit 553. Illuminate the Koehler. When viewed in the XY plane, the reflective surface of the DMD unit 553 is tilted by a predetermined angle for joint exposure with the projection region IA2 by the drawing units U2 adjacent to each other in the Y direction. The projection optical system (lens barrel) 554 is a bilateral telecentric connection composed of a plurality of lens elements in a straight cylinder shape so that the entire reflection surface of the DMD unit 535 is reduced and imaged in the projection region IA1 on the substrate P. It is configured as an image optical system.
 一方、奇数番の描画ユニットU1、U3、U5・・・の-X方向側には、複数の奇数番のアライメント系ALG1、ALG3・・・が配置され、偶数番の描画ユニットU2、U4、U6・・・の+X方向側には、複数の偶数番のアライメント系ALG2、ALG4・・・が配置される。奇数番のアライメント系ALG1、ALG3・・・は、各々の検出領域AD1、AD3・・・がY方向に所定の間隔で列状に位置するように設けられ、偶数番のアライメント系ALG2、ALG4・・・は、各々の検出領域AD2、AD4・・・がY方向に所定の間隔で列状に位置するように設けられる。奇数番のアライメント系ALG1、ALG3・・・と、偶数番のアライメント系ALG2、ALG4・・・とは、XZ面内で見ると、中心面CPoに対して対称に配置される。 On the other hand, a plurality of odd-numbered alignment systems ALG1, ALG3 ... Are arranged on the -X direction side of the odd-numbered drawing units U1, U3, U5 ..., And the even-numbered drawing units U2, U4, U6 ... On the + X direction side of ..., a plurality of even-numbered alignment systems ALG2, ALG4 ... Are arranged. The odd-numbered alignment systems ALG1, ALG3 ... Are provided so that the respective detection regions AD1, AD3 ... Are located in a row at predetermined intervals in the Y direction, and the even-numbered alignment systems ALG2, ALG4 ... ... Are provided so that the respective detection areas AD2, AD4 ... Are located in a row at predetermined intervals in the Y direction. The odd-numbered alignment systems ALG1, ALG3 ... And the even-numbered alignment systems ALG2, ALG4 ... Are arranged symmetrically with respect to the central plane CPo when viewed in the XZ plane.
 アライメント系ALGn(n=1、2、3、4・・・)の構成は、いずれも同じなので、ここでは代表してアライメント系ALG1の構成について詳しく説明する。アライメント系ALG1は、先の図6や図9と同様に、照明系ILU、撮像素子DIS、対物レンズ系OBL、直方体状のビームスプリッタBS1とで構成され、対物レンズ系OBLの光軸AXsは基板Pの表面と垂直(Z軸と平行)に設定される。対物レンズ系OBLと基板Pとの間の光路中に配置されるビームスプリッタBS1の側方には、奇数番の描画ユニットU1、U3、U5・・・の支持フレーム550に取り付け金具を介して固定される第1の基準バー部材RBが配置される。第1の基準バー部材RBは、奇数番のアライメント系ALG1、ALG3、ALG5・・・の近くをY方向に貫通するように細長く延設され、第1の基準バー部材RBの基準マークRMnが形成される参照面RBaはYZ面と平行に設定される。その為、ビームスプリッタBS1と基準バー部材RBとの間の光軸AXs’はXY面と平行、且つX軸と平行に設定される。 Since the configurations of the alignment system ALGn (n = 1, 2, 3, 4, ...) Are the same, the configuration of the alignment system ALG1 will be described in detail here as a representative. The alignment system ALG1 is composed of an illumination system ILU, an image pickup element DIS, an objective lens system OBL, and a rectangular parallelepiped beam splitter BS1 as in FIGS. 6 and 9, and the optical axis AXs of the objective lens system OBL is a substrate. It is set perpendicular to the surface of P (parallel to the Z axis). On the side of the beam splitter BS1 arranged in the optical path between the objective lens system OBL and the substrate P, the odd-numbered drawing units U1, U3, U5 ... Are fixed to the support frames 550 via mounting brackets. The first reference bar member RB to be split is arranged. The first reference bar member RB is elongated so as to penetrate in the Y direction near the odd-numbered alignment systems ALG1, ALG3, ALG5 ..., And the reference mark RMn of the first reference bar member RB is formed. The reference plane RBa to be made is set parallel to the YZ plane. Therefore, the optical axis AXs'between the beam splitter BS1 and the reference bar member RB is set to be parallel to the XY plane and parallel to the X axis.
 偶数番のアライメント系ALG2、ALG4、ALG6・・・も同様に、対物レンズ系OBLと基板Pとの間の光路中にビームスプリッタBS1が配置され、その側方には、偶数番の描画ユニットU2、U4、U6・・・の支持フレーム550に取り付け金具を介して固定される第2の基準バー部材RBが配置される。 Similarly, in the even-numbered alignment systems ALG2, ALG4, ALG6 ..., The beam splitter BS1 is arranged in the optical path between the objective lens system OBL and the substrate P, and the even-numbered drawing unit U2 is located on the side thereof. , U4, U6 ... A second reference bar member RB fixed to the support frame 550 via a mounting bracket is arranged.
 図28は、描画ユニットUn(n=1、2、3・・・)の各々による投影領域IAn(n=1、2、3・・・)と、アライメント系ALGn(n=1、2、3・・・)の各々による検出領域ADn(n=1、2、3・・・)とのXY面内での配置を示す。DMDユニット553をXY面内で傾けて配置したことにより、矩形状の投影領域IAnの各々は、Y軸と平行な線に対して角度θdmだけ傾くように配置される。また、投影領域IAnのY方向側の端部の各々は、隣り合う奇数番と偶数番とで2重露光されるオーバーラップ領域(継ぎ部)OL12、OL23、OL34、OL45、OL56・・・が形成されるように配置される。また、奇数番のアライメント系ALG1、ALG3・・・の各々の検出領域AD1、AD3・・・のY方向の配置に対応して、第1の基準バー部材RB上には奇数番の基準マークRM1、RM3・・・が形成され、偶数番のアライメント系ALG2、ALG4・・・の各々の検出領域AD2、AD4・・・のY方向の配置に対応して、第2の基準バー部材RB上には偶数番の基準マークRM2、RM4・・・が形成されている。なお、本実施の形態では、Y方向を長辺とする長方形の投影領域IAn(n=1、2、3・・・)の各々、或いは複数の投影領域IAn(n=1、2、3・・・)の全体を含む長方形の領域によって、パターン形成領域が形成される。 FIG. 28 shows the projection region IAn (n = 1, 2, 3 ...) by each of the drawing units Un (n = 1, 2, 3 ...) And the alignment system ALGn (n = 1, 2, 3 ...). The arrangement of the detection regions ADn (n = 1, 2, 3 ...) By each of (...) in the XY plane is shown. By arranging the DMD unit 553 at an angle in the XY plane, each of the rectangular projection regions IAn is arranged so as to be inclined by an angle θdm with respect to a line parallel to the Y axis. Further, each of the ends of the projection region IAn on the Y direction side has overlapping regions (joint portions) OL12, OL23, OL34, OL45, OL56 ... Arranged to be formed. Further, the odd-numbered reference mark RM1 is placed on the first reference bar member RB corresponding to the arrangement of the detection regions AD1, AD3 ... Of the odd-numbered alignment systems ALG1, ALG3 ... In the Y direction. , RM3 ... Are formed, and corresponding to the arrangement of the detection regions AD2, AD4 ... Of the even-numbered alignment systems ALG2, ALG4 ... In the Y direction, on the second reference bar member RB. The even-numbered reference marks RM2, RM4, ... Are formed. In the present embodiment, each of the rectangular projection regions IAn (n = 1, 2, 3 ...) With the Y direction as the long side, or a plurality of projection regions IAn (n = 1, 2, 3, ...). A pattern-forming region is formed by a rectangular region including the entire).
 以上の構成により、本実施の形態でも、先の各実施の形態と同様に、基準バー部材RBを基準にして、複数のアライメント系ALGnのドリフトによる相対的な位置関係の変動を、露光動作中であっても逐次モニターすることが可能となる。なお、本実施の形態では、基板P上にパターン露光する際、基板Pは移動ステージによって、例えば、+X方向に一定の速度で移動される。その場合、基板P上のアライメントマークMKnは、主に奇数番のアライメント系ALG1、ALG3・・・(検出領域AD1、AD3・・・)によって検出され、その検出結果に基づいて、奇数番と偶数番の描画ユニットUnの各々の投影領域IAn内に投影されるパターン像の位置や投影タイミング(DMDユニット553に印加されるパターンデータの送り出しタイミング)が動的に微調整される。また、基板P上にパターン露光する際、移動ステージを-X方向に一定の速度で移動させても良い。その場合は、基板P上のアライメントマークMKnが、主に偶数番のアライメント系ALG2、ALG4・・・(検出領域AD2、AD4・・・)によって検出され、その検出結果に基づいて、奇数番と偶数番の描画ユニットUnの各々の投影領域IAn内に投影されるパターン像の位置や投影タイミングが動的に微調整される。 With the above configuration, also in the present embodiment, as in each of the previous embodiments, the relative positional relationship due to the drift of the plurality of alignment systems ALGn is exposed during the exposure operation with reference to the reference bar member RB. Even so, it is possible to monitor sequentially. In the present embodiment, when the pattern is exposed on the substrate P, the substrate P is moved by the moving stage at a constant speed, for example, in the + X direction. In that case, the alignment mark MKn on the substrate P is mainly detected by the odd-numbered alignment systems ALG1, ALG3 ... (Detection regions AD1, AD3 ...), And the odd-numbered and even-numbered based on the detection result. The position of the pattern image projected in each projection area IAn of the drawing unit Un and the projection timing (the timing of sending out the pattern data applied to the DMD unit 553) are dynamically fine-tuned. Further, when pattern exposure is performed on the substrate P, the moving stage may be moved in the −X direction at a constant speed. In that case, the alignment mark MKn on the substrate P is mainly detected by the even-numbered alignment systems ALG2, ALG4 ... (Detection areas AD2, AD4 ...) The position and projection timing of the pattern image projected in each projection area IAn of the even-numbered drawing unit Un are dynamically fine-tuned.
 〔変形例4〕
 図27、図28に示したDMDユニット553は、多数のマイクロ・ミラーの各々を反射面と垂直な方向に微動させて、隣り合ったマイクロ・ミラーとの間で反射面の高さに差を与える(位相差を与える)空間光変調素子(SLM)にしても良い。また、複数のアライメント系を有するパターン描画装置としては、マスクレス露光装置に限られず、インクジェット式のプリンタ装置であっても良い。インクジェット方式では、インクの微細な液滴を吐出する多数の微小孔が規則的に配列された吐出面を有するパターン形成機構としてのノズルユニット(描画ユニットとも呼ぶ)が、基板Pと吐出面とが一定の間隔になるように配置される。パターンの描画(印刷)時には、基板Pを一方向(副走査方向)に移動させながら、ノズルユニット(描画ユニット)の多数の微小孔の各々からパターンデータに基づいて基板P上に選択的に液滴が吐出される。
[Modification example 4]
The DMD unit 553 shown in FIGS. 27 and 28 finely moves each of a large number of micro mirrors in a direction perpendicular to the reflecting surface to make a difference in the height of the reflecting surface between the adjacent micro mirrors. It may be a spatial light modulation element (SLM) that gives (give a phase difference). Further, the pattern drawing apparatus having a plurality of alignment systems is not limited to the maskless exposure apparatus, and may be an inkjet printer apparatus. In the inkjet method, a nozzle unit (also called a drawing unit) as a pattern forming mechanism having an ejection surface in which a large number of fine pores for ejecting fine droplets of ink are regularly arranged is formed by a substrate P and an ejection surface. Arranged at regular intervals. When drawing (printing) a pattern, while moving the substrate P in one direction (secondary scanning direction), liquid is selectively liquid on the substrate P from each of a large number of minute holes in the nozzle unit (drawing unit) based on pattern data. Drops are ejected.
 インクジェット式のプリンタ装置でも、基板P上に既に形成されているパターン層に対して、精密に位置決めされた状態で新たなパターンを描画(重ね印刷)する必要が有り、基板Pの寸法が大きくなると、その変形(面内の伸縮や歪み)を精密に計測する為に、基板P上の複数の位置に形成されたアライメントマークMKnの各位置を検出する複数のアライメント系が必要になる。その為、先の各実施の形態や変形例で説明したような基準バー部材RBと、ビームスプリッタBS1を有するアライメント系ALGnとを設けることにより、長時間に亘って連続してパターン描画(重ね印刷)する間のアライメント系ALGnのドリフトによって生じ得る重ね合わせ誤差の発生を抑制することができる。なお、本変形例では、1つのノズルユニット(描画ユニット)による液滴の吐出面の領域、或いは複数のノズルユニットを有する場合は、その複数のノズルユニットの各々の液滴の吐出面の全体を含む領域によって、パターン形成領域が形成される。 Even in an inkjet printer device, it is necessary to draw (overprint) a new pattern in a precisely positioned state with respect to the pattern layer already formed on the substrate P, and when the size of the substrate P becomes large. In order to accurately measure the deformation (expansion and contraction in the plane and distortion), a plurality of alignment systems for detecting each position of the alignment marks MKn formed at a plurality of positions on the substrate P are required. Therefore, by providing the reference bar member RB as described in each of the above embodiments and modifications and the alignment system ALGn having the beam splitter BS1, pattern drawing (overprint printing) is continuously performed over a long period of time. ), It is possible to suppress the occurrence of a superposition error that may occur due to the drift of the alignment system ALGn. In this modification, the area of the droplet ejection surface by one nozzle unit (drawing unit), or when having a plurality of nozzle units, the entire droplet ejection surface of each of the plurality of nozzle units is covered. A pattern-forming region is formed by the region including the region.
 〔変形例5〕
 図29は、アライメント系ALGnの構成に関する変形例を説明する図であり、図29Aは、先の図24に示したアライメント系ALGnをベースにした変形例を示す。本変形例では、アライメント系ALGn用の照明光ILbを広帯域の波長分布にし、対物レンズ系OBLと基板Pとの間に配置されるビームスプリッタBS1(合成光学部材)を、表面に誘電体多層膜を形成して波長選択性を持たせたダイクロイックミラーとして構成する。図29Bは、ビームスプリッタBS1の波長選択特性の一例を示すグラフであり、横軸は波長λ(nm)を表わし、縦軸は透過率と反射率の大きさを表す。本変形例では、アライメント系ALGnの対物レンズ系OBLから撮像素子DISまでの結像光学系が、図29Bに示す色収差補正域の波長範囲内で、良好な結像特性が得られるように収差補正されているものとする。
[Modification 5]
FIG. 29 is a diagram illustrating a modified example relating to the configuration of the alignment system ALGn, and FIG. 29A shows a modified example based on the alignment system ALGn shown in FIG. 24 above. In this modification, the illumination light ILb for the alignment system ALGn has a wide band wavelength distribution, and the beam splitter BS1 (synthetic optical member) arranged between the objective lens system OBL and the substrate P is placed on the surface of a dielectric multilayer film. Is formed to form a dichroic mirror having wavelength selectivity. FIG. 29B is a graph showing an example of the wavelength selection characteristics of the beam splitter BS1, where the horizontal axis represents the wavelength λ (nm) and the vertical axis represents the magnitudes of transmittance and reflectance. In this modification, aberration correction is performed so that the imaging optical system from the objective lens system OBL of the alignment system ALGn to the image sensor DIS can obtain good imaging characteristics within the wavelength range of the chromatic aberration correction range shown in FIG. 29B. It is assumed that it has been done.
 また、アライメント系ALGn用の照明光ILbを供給する照明系ILUは、400nm~700nm程度の波長帯域に亘って発光強度を有するハロゲンランプ等の光源HLSと、光源HLSからの光の波長分布や波長強度を調整可能にする為に、複数の波長フィルターが交換可能に収納された波長選択部WLCと、集光レンズ系Gkとを備え、集光レンズ系Gkは、図24と同様に設けられた光ファイバー束404の入射端404bに照明光ILbを照射する。光ファイバー束404の射出端404aは、アライメント系ALGnの対物レンズ系OBLの瞳位置に設定され、照明光ILbは、ビームスプリッタBS1(ダイクロイックミラー)を介して、基板P上のアライメントマークMKn、或いは基準バー部材RBの基準マークRMnを照明する。 Further, the illumination system ILU that supplies the illumination light ILb for the alignment system ALGn includes a light source HLS such as a halogen lamp having light emission intensity over a wavelength band of about 400 nm to 700 nm, and a wavelength distribution and wavelength of light from the light source HLS. In order to make the intensity adjustable, a wavelength selection unit WLC in which a plurality of wavelength filters are interchangeably housed and a light source system Gk are provided, and the light source system Gk is provided as in FIG. 24. Illumination light ILb is applied to the incident end 404b of the optical fiber bundle 404. The emission end 404a of the optical fiber bundle 404 is set at the pupil position of the objective lens system OBL of the alignment system ALGn, and the illumination light ILb is the alignment mark MKn on the substrate P or the reference via the beam splitter BS1 (dichroic mirror). The reference mark RMn of the bar member RB is illuminated.
 図29AのビームスプリッタBS1(ダイクロイックミラー)は、一例として、図29Bに示すように、レジスト感光域となる波長420nmより長い波長域において、透過率特性と反射率特性とが約500nm付近でクロスオーバーするような波長選択特性を有する。即ち、波長が約550nmよりも短い波長成分の光に対しては、反射率が5%以上になり、波長が約480nmよりも長い波長成分の光に対しては、透過率が5%以上になるような特性を有する。従って、対物レンズ系OBLから射出してビームスプリッタBS1(ダイクロイックミラー)に照射される照明光ILbのうち、波長が約550nmよりも短い波長成分の光は、効率的に反射されて基準バー部材RBの基準マークRMnを照明する。また、照明光ILbのうち、波長が約480nmよりも長い波長成分の光は、効率的に透過されて基板P上のアライメントマークMKnを照明する。なお、波長選択部WLCは、典型的には、照明光ILbが色収差補正域の波長帯域に亘って強度分布を有するように波長選択する。 As an example, the beam splitter BS1 (dichroic mirror) of FIG. 29A has a transmittance characteristic and a reflectance characteristic crossover at around 500 nm in a wavelength region longer than 420 nm, which is a resist photosensitive region, as shown in FIG. 29B. It has wavelength selection characteristics such as. That is, the reflectance is 5% or more for light having a wavelength component shorter than about 550 nm, and the transmittance is 5% or more for light having a wavelength component longer than about 480 nm. It has such characteristics. Therefore, of the illumination light ILb emitted from the objective lens system OBL and applied to the beam splitter BS1 (dichroic mirror), the light having a wavelength component shorter than about 550 nm is efficiently reflected and the reference bar member RB. Illuminates the reference mark RMn. Further, among the illumination light ILb, light having a wavelength component having a wavelength longer than about 480 nm is efficiently transmitted and illuminates the alignment mark MKn on the substrate P. The wavelength selection unit WLC typically selects the wavelength so that the illumination light ILb has an intensity distribution over the wavelength band of the chromatic aberration correction region.
 このように、本変形例では、基準バー部材RBの基準マークRMnを照明する照明光ILbは、色収差補正域内の短波長側の成分の光に設定され、基板P上のアライメントマークMKnを照明する照明光ILbは、色収差補正域内の長波長側の成分の光に設定されるように、波長選択が行われる。従って、基準バー部材RBに連続して照明光ILbを照射し続ける必要性が生じた場合でも、基準バー部材RBの温度を上昇させ易い長波長側の光成分が低減しているので、基準バー部材RB自体の熱変形を抑制することができる。 As described above, in this modification, the illumination light ILb that illuminates the reference mark RMn of the reference bar member RB is set to the light of the component on the short wavelength side in the chromatic aberration correction range, and illuminates the alignment mark MKn on the substrate P. The wavelength of the illumination light ILb is selected so as to be set to the light of the component on the long wavelength side within the chromatic aberration correction range. Therefore, even when it becomes necessary to continuously irradiate the reference bar member RB with the illumination light ILb, the light component on the long wavelength side, which tends to raise the temperature of the reference bar member RB, is reduced, so that the reference bar member RB has a reduced light component. Thermal deformation of the member RB itself can be suppressed.
 〔変形例6〕
 さらに、上記の変形例5によれば、ビームスプリッタBS1(ダイクロイックミラー)が波長選択特性を有しているので、基板P上のアライメントマークMKnを照明する照明光ILbの照度と、基準バー部材RBの基準マークRMnを照明する照明光ILbの照度とを、個別に(独立に)調整することもできる。具体的には、図30に示すように、発光波長域が異なる2つの固体光源(LED等)LD1、LD2と、レンズ系GS1、GS2と、ミラーMcと、ビーム合成用のビームスプリッタBS3と、照明光ILbを図29に示した光ファイバー束404の入射端に集光する集光レンズ系Gkと、固体光源LD1、LD2の発光強度を個別に調整可能な制御部LCUと、を備える照明系ILUが設けられる。
[Modification 6]
Further, according to the above modification 5, since the beam splitter BS1 (dichroic mirror) has a wavelength selection characteristic, the illuminance of the illumination light ILb that illuminates the alignment mark MKn on the substrate P and the reference bar member RB The illuminance of the illumination light ILb that illuminates the reference mark RMn of the above can be adjusted individually (independently). Specifically, as shown in FIG. 30, two solid light sources (LEDs and the like) LD1 and LD2 having different emission wavelength ranges, lens systems GS1 and GS2, a mirror Mc, a beam splitter BS3 for beam synthesis, and the like. Illumination system ILU including a condensing lens system Gk that condenses the illumination light ILb at the incident end of the optical fiber bundle 404 shown in FIG. 29, and a control unit LCU that can individually adjust the emission intensity of the solid-state light sources LD1 and LD2. Is provided.
 レンズ系GS1によって平行光束に変換される固体光源LD1からのビームILb1は、例えば、波長420nm~500nmの間に、単一又は複数の中心波長を有する発光スペクトルを含み、レンズ系GS2によって平行光束に変換される固体光源LD2からのビームILb2は、例えば、波長500nm~630nmの間に複数の中心波長を有する発光スペクトルを含むように設定される。ミラーMcで反射されたレンズ系GS1からのビームILb1とレンズ系GS2からのビームILb2とは、ビームスプリッタBS3で同軸に合成された照明光ILbとなって集光レンズ系Gkに入射し、光ファイバー束404を介して、図29中のビームスプリッタBS2に入射する。 The beam ILb1 from the solid-state light source LD1 converted into a parallel light flux by the lens system GS1 includes, for example, an emission spectrum having a single or multiple center wavelengths between wavelengths of 420 nm and 500 nm, and is converted into a parallel light flux by the lens system GS2. The beam ILb2 from the solid-state light source LD2 to be converted is set to include, for example, an emission spectrum having a plurality of center wavelengths between wavelengths of 500 nm and 630 nm. The beam ILb1 from the lens system GS1 reflected by the mirror Mc and the beam ILb2 from the lens system GS2 form an illumination light ILb coaxially combined by the beam splitter BS3 and enter the condenser lens system Gk to form an optical fiber bundle. It is incident on the beam splitter BS2 in FIG. 29 via 404.
 図30のような照明系ILUによれば、制御部LCUで固体光源LD1、LD2の各々からのビームILb1、ILb2の強度を個別に調整できるので、撮像素子DISによって、基板P上のアライメントマークMKnの拡大像と、基準バー部材RBの基準マークRMnの拡大像とを同時に撮像する際、撮像画像内でそれぞれの拡大像のコントラストや輝度を適切なバランスに調整できる。特に、基板Pの表面の照明光ILb(ILb2)に対する反射率が総じて低く、アライメントマークMknの拡大像が暗い場合、固体光源LD2(ビームILb2)の発光強度を高め、固体光源LD1(ビームILb1)の発光強度を低めると共に、撮像素子DISからの映像信号Vsgのゲイン(増幅率)を高めることで、観察画像の明暗のバランスを取ることができる。また、撮像素子DISをカラー画像が撮像可能なものにすると、基板P上のアライメントマークMKn(又は回転ドラムDR上の基準パターンFMa~FMh)と、基準バー部材RB上の基準マークRMnとを、色で識別して検出することができるので、アライメントマークMKnの像と基準マークRMnの像とが撮像領域DIS’内で近接して現れたときの誤検出が低減できる。 According to the illumination system ILU as shown in FIG. 30, since the intensity of the beams ILb1 and ILb2 from each of the solid light sources LD1 and LD2 can be individually adjusted by the control unit LCU, the alignment mark MKn on the substrate P can be adjusted by the image sensor DIS. When the magnified image of the above and the magnified image of the reference mark RMn of the reference bar member RB are simultaneously imaged, the contrast and brightness of each magnified image can be adjusted to an appropriate balance in the captured image. In particular, when the reflectance of the surface of the substrate P with respect to the illumination light ILb (ILb2) is generally low and the magnified image of the alignment mark Mkn is dark, the emission intensity of the solid light source LD2 (beam ILb2) is increased and the solid light source LD1 (beam ILb1) is increased. By lowering the light emission intensity of the light source and increasing the gain (amplification rate) of the video signal Vsg from the image pickup element DIS, the lightness and darkness of the observed image can be balanced. Further, when the image sensor DIS is capable of capturing a color image, the alignment marks MKn (or the reference patterns FMa to FMh on the rotating drum DR) on the substrate P and the reference marks RMn on the reference bar member RB are formed. Since it can be identified and detected by color, it is possible to reduce erroneous detection when the image of the alignment mark MKn and the image of the reference mark RMn appear close to each other in the imaging region DIS'.
 なお、ビームILb1、ILb2の各々を所望の波長帯域に設定する為に、固体光源LD1、LD2を高輝度の白色発光LEDにし、合成用のビームスプリッタBS3の手前のビームILb1、ILb2の各光路中に波長選択フィルター(バンドパスフィルター)を設けても良い。さらに、合成用のビームスプリッタBS3での光量損失を低減する為、ビームスプリッタBS3を偏光ビームスプリッタとし、ビームILb1はビームスプリッタBS3の偏光分離面を90%以上透過するような直線偏光にし、ビームILb2はビームスプリッタBS3の偏光分離面で90%以上反射されるような直線偏光にする波長板を、レンズ系GS1、GS2の各々の後に設けても良い。 In order to set each of the beams ILb1 and ILb2 to a desired wavelength band, the solid-state light sources LD1 and LD2 are set to high-intensity white light emitting LEDs, and in each optical path of the beams ILb1 and ILb2 in front of the beam splitter BS3 for synthesis. A wavelength selection filter (bandpass filter) may be provided in the. Further, in order to reduce the light loss in the beam splitter BS3 for synthesis, the beam splitter BS3 is used as a polarizing beam splitter, and the beam ILb1 is linearly polarized so as to transmit 90% or more of the polarization separation surface of the beam splitter BS3, and the beam ILb2 A wavelength plate for linearly polarized light that is reflected by 90% or more on the polarization splitting surface of the beam splitter BS3 may be provided after each of the lens systems GS1 and GS2.
 このように、照明光ILbに偏光特性を付与できる場合は、先の図9、図23、図24、図25で示したアライメント系ALGnのビームスプリッタBS1(合成光学部材)も、光分割面(又は光合成面)Bspに偏光選択性を有する誘電体多層膜を形成した偏光ビームスプリッタにできる。また、ビームスプリッタBS1で反射されて、基準バー部材RBの基準マークRMnを照明する照明光ILbはLED等からの近赤外波長域の光とし、ビームスプリッタBS1から基板P上のアライメントマークMKnを照明する照明光ILbは、基板P上の光感応層の感光波長域(例えば、360nm以下の紫外波長域)を避けた広帯の波長域の光(いわゆる、ランダム偏光な白色光)としても良い。 In this way, when the illumination light ILb can be imparted with polarization characteristics, the beam splitter BS1 (synthetic optical member) of the alignment system ALGn shown in FIGS. 9, 23, 24, and 25 above also has an optical splitting surface (composite optical member). Alternatively, it can be a polarization beam splitter in which a dielectric multilayer film having polarization selectivity is formed on Bsp (photosynthesis surface). Further, the illumination light ILb that is reflected by the beam splitter BS1 and illuminates the reference mark RMn of the reference bar member RB is light in the near infrared wavelength range from an LED or the like, and the alignment mark MKn on the substrate P is set from the beam splitter BS1. The illumination light ILb to be illuminated may be light in a wide wavelength range (so-called randomly polarized white light) avoiding the photosensitive wavelength range (for example, an ultraviolet wavelength range of 360 nm or less) of the light sensitive layer on the substrate P. ..
 〔変形例7〕
 図31は、対物レンズ系OBLと基板P(回転ドラムDRの外周面DRs)との間に配置されるアライメント系ALGnのビームスプリッタBS1の構成と、基準バー部材RBの配置方向とに関する変形例を示す図である。本変形例のビームスプリッタBS1(合成光学部材)は、先の図25の構成と同様に、2つのプリズムブロックPSMa、PSMbを貼り合せ、その接触界面に光分割面Bspが形成される構成とする。但し、対物レンズ系OBLから光軸AXsに沿ってプリズムブロックPSMaに入射し、光分割面Bspで反射された一部の照明光ILbは、プリズムブロックPSMaの面BS1cを全反射面(ミラー面)とすることにより、面BS1cで対物レンズ系OBLを通る光軸AXsの方向に折り曲げられる。本変形例では、光分割面Bspから延びる光軸AXs’が面BS1c(全反射面)で折り曲げられて、光軸AXsと直交するように設定される。
[Modification 7]
FIG. 31 shows a modification relating to the configuration of the beam splitter BS1 of the alignment system ALGn arranged between the objective lens system OBL and the substrate P (outer peripheral surface DRs of the rotating drum DR) and the arrangement direction of the reference bar member RB. It is a figure which shows. The beam splitter BS1 (synthetic optical member) of this modification has a configuration in which two prism blocks PSMa and PSMb are bonded together and an optical splitting surface Bsp is formed at the contact interface thereof, as in the configuration of FIG. 25 above. .. However, a part of the illumination light ILb that is incident on the prism block PSMA from the objective lens system OBL along the optical axis AXs and is reflected by the light dividing surface Bsp is a total reflection surface (mirror surface) of the surface BS1c of the prism block PSMa. As a result, the surface BS1c is bent in the direction of the optical axis AXs passing through the objective lens system OBL. In this modification, the optical axis AXs'extending from the optical division surface Bsp is bent at the surface BS1c (total reflection surface) and set so as to be orthogonal to the optical axis AXs.
 図31における直交座標系XYZは、先の図23、図24と同じに設定され、対物レンズ系OBLと平面ミラーMbとの間の光軸AXsはXY面に対して傾いている。ビームスプリッタBS1は、XZ面内で見ると全体に五角形に形成され、対物レンズ系OBLと対向したプリズムブロックPSMa側の面BS1aと、平面ミラーMbと対向したプリズムブロックPSMb側の面BS1bとは、互いに平行であって、且つ光軸AXsと垂直に設定される。面BS1aと面BS1bとの間であって、プリズムブロックPSMa、PSMbの接合面である光分割面Bspは、先の図25と同様に、光軸AXsと垂直な面に対して角度θeだけ傾くように設定される。従って、光分割面Bspの位置で、光軸AXsと光軸AXs’とが成す角度はXZ面内において角度2θeとなる。 The Cartesian coordinate system XYZ in FIG. 31 is set to be the same as in FIGS. 23 and 24, and the optical axis AXs between the objective lens system OBL and the plane mirror Mb is tilted with respect to the XY plane. The beam splitter BS1 is formed in a pentagonal shape as a whole when viewed in the XZ plane, and the plane BS1a on the prism block PSMa side facing the objective lens system OBL and the plane BS1b on the prism block PSMb side facing the plane mirror Mb are It is set parallel to each other and perpendicular to the optical axis AXs. The optical division surface Bsp between the surface BS1a and the surface BS1b, which is the junction surface of the prism blocks PSMa and PSMb, is tilted by an angle θe with respect to the surface perpendicular to the optical axis AXs, as in FIG. 25 above. Is set. Therefore, at the position of the optical division surface Bsp, the angle formed by the optical axis AXs and the optical axis AXs'is an angle 2θe in the XZ surface.
 プリズムブロックPSMaの面BS1c(ミラー面)で折り曲げられて、+Z方向側に延びる光軸AXs’は、光軸AXsと直角に交わった後、プリズムブロックPSMaの上側の面BS1dを通って、基準バー部材RBの参照面RBa(基準マークRMnの中心点)に達する。面BS1dは、XZ面内で見ると、面BS1a、BS1bの各々と直角を成し、且つ光軸AXsと平行に設定され、さらに基準バー部材RBの参照面RBaとも平行に設定される。従って、XZ面内における面BS1c(ミラー面)の傾きは、面BS1c(ミラー面)の位置で折り返される光軸AXs’同士が成す角度が角度(90°-2θe)となるように設定されている。その角度θeは、理論的には0°<θe<45°の範囲で設定可能であるが、照明光ILbの太さや開口数、結像光束の太さ、対物レンズ系OBLの開口数、各部材の配置関係の制限から、5°≦θe≦35°の範囲に設定される。このことは、先の図24、図25におけるビームスプリッタBS1の配置でも同様である。なお、図31のビームスプリッタBS1の場合、光分割面Bspの角度θeを22.5°に設定すると、光軸AXsと光軸AXs’との交点、光分割面Bsp内の光軸AXsが通る点、及び、面BS1c(ミラー面)内の光軸AXs’が折り返される点の3点は、XZ面内において直角二等辺三角形の各頂点を成す。 The optical axis AXs'bent at the surface BS1c (mirror surface) of the prism block PSMa and extends in the + Z direction side intersects the optical axis AXs at a right angle, and then passes through the upper surface BS1d of the prism block PSMa and passes through the reference bar. It reaches the reference surface RBa (center point of the reference mark RMn) of the member RB. When viewed in the XZ plane, the plane BS1d forms a right angle with each of the planes BS1a and BS1b, is set parallel to the optical axis AXs, and is further set parallel to the reference plane RBa of the reference bar member RB. Therefore, the inclination of the surface BS1c (mirror surface) in the XZ surface is set so that the angle formed by the optical axes AXs' folded back at the position of the surface BS1c (mirror surface) is an angle (90 ° -2θe). There is. The angle θe can be theoretically set in the range of 0 ° <θe <45 °, but the thickness and numerical aperture of the illumination light ILb, the thickness of the imaging light beam, and the numerical aperture of the objective lens system OBL, respectively. It is set in the range of 5 ° ≤ θe ≤ 35 ° due to the limitation of the arrangement relationship of the members. This also applies to the arrangement of the beam splitter BS1 in FIGS. 24 and 25. In the case of the beam splitter BS1 of FIG. 31, when the angle θe of the optical splitting surface Bsp is set to 22.5 °, the intersection of the optical axis AXs and the optical axis AXs' and the optical axis AXs in the optical splitting surface Bsp pass through. The three points, the point and the point where the optical axis AXs' in the plane BS1c (mirror plane) is folded back, form each vertex of a right-angled isosceles triangle in the XZ plane.
 本変形例では、アライメント系ALGn(対物レンズ系OBL、ビームスプリッタBS1等)の下方空間に基準バー部材RBを配置することが難しい場合に適用できる。また、図31のビームスプリッタBS1のように、対物レンズ系OBLを通る光軸AXsと、面BS1cから基準バー部材RBに向かう光軸AXs’とを直交した関係にすることによって、ビームスプリッタBS1の全体がXZ面内で傾いて、支持ブラケット400(図24参照)に取り付けられたとしても、ビームスプリッタBS1の面BS1bから平面ミラーMbに向かう光軸AXsと、ビームスプリッタBS1の面BS1dから基準バー部材RBに向かう光軸AXs’とは、いずれもXZ面内で横方向に僅かに平行シフトするだけで、光軸AXs、AXs’が傾くことが無い。即ち、テレセン誤差の発生が抑制された構成になっている。また、本変形例でも、プリズムブロックPSMaとプリズムブロックPSMbとの接合面である光分割面Bspには、波長選択用、或いは偏光分離用の誘電体多層膜を形成しても良い。 This modification can be applied when it is difficult to arrange the reference bar member RB in the space below the alignment system ALGn (objective lens system OBL, beam splitter BS1, etc.). Further, as in the beam splitter BS1 of FIG. 31, the beam splitter BS1 has an orthogonal relationship between the optical axis AXs passing through the objective lens system OBL and the optical axis AXs' from the surface BS1c toward the reference bar member RB. Even if the whole is tilted in the XZ plane and attached to the support bracket 400 (see FIG. 24), the optical axis AXs from the plane BS1b of the beam splitter BS1 toward the plane mirror Mb and the reference bar from the plane BS1d of the beam splitter BS1. The optical axes AXs' toward the member RB are only slightly parallel-shifted in the lateral direction in the XZ plane, and the optical axes AXs and AXs' are not tilted. That is, the configuration is such that the occurrence of telesen error is suppressed. Further, in this modification as well, a dielectric multilayer film for wavelength selection or polarization separation may be formed on the optical division surface Bsp which is the junction surface between the prism block PSMa and the prism block PSMb.
 以上で説明した各実施の形態や各変形例において、基準バー部材RBは、その母材(RBo)を低熱膨張係数の材料(Fe-36Niからなるインバー合金、Fe29Ni-17Coからなるコバール合金、HfW28(又はZrW28)とMgWO4との混合焼結による材料、石英、コージライト系セラミックス、ガラスセラミックス等)にすることで、環境の温度変化や熱伝導による長手方向の寸法変化は無視できる。しかしながら、基準バー部材RBは、複数のアライメント系ALGnの配列方向(Y方向)に沿って棒状に延設される。その為、基準バー部材RBの長手方向(Y方向)の寸法と断面形状の寸法との関係によっては、自身の自重によって、アライメント系ALGnによるアライメントマークMKnの位置検出精度に比べて、無視し得ない程度に変形する(撓みや湾曲を発生する)ことがある。自重による基準バー部材RBの撓みは、基準バー部材RBの長手方向の支持構造と物理的な諸条件とに基づいた材料力学計算によって、その変形状態や撓み量を一義的に同定することができる。 In each of the embodiments and modifications described above, the reference bar member RB uses a base material (RBo) as a material having a low coefficient of thermal expansion (Invar alloy made of Fe-36Ni, Kovar alloy made of Fe29Ni-17Co, HfW). By using 2 O 8 (or ZrW 2 O 8 ) and Mg WO 4 mixed sintering material, quartz, kovarite ceramics, glass ceramics, etc.), the dimensional change in the longitudinal direction due to the temperature change of the environment and heat conduction Can be ignored. However, the reference bar member RB extends in a rod shape along the arrangement direction (Y direction) of the plurality of alignment systems ALGn. Therefore, depending on the relationship between the dimension of the reference bar member RB in the longitudinal direction (Y direction) and the dimension of the cross-sectional shape, it can be ignored as compared with the position detection accuracy of the alignment mark MKn by the alignment system ALGn due to its own weight. It may be deformed to the extent that it does not (cause bending or bending). The deformation state and the amount of deflection of the reference bar member RB due to its own weight can be uniquely identified by the strength of materials calculation based on the support structure in the longitudinal direction of the reference bar member RB and physical conditions. ..
 図32は、基準バー部材RBの支持構造による変形状態の違いを示し、図32Aは、基準バー部材RBの長手方向の両端付近を線接触する梁FJ1で下方から支持する構造を示し、図32Bは、基準バー部材RBの長手方向の一方の端部付近を線接触する梁FJ1で下方から支持し、他方の端部を装置フレームFJ2に締結(固着)する構造を示し、図32Cは、基準バー部材RBの長手方向の両端部を装置フレームFJ2に締結(固着)する構造を示す。図32A~図32Cの各々に示すように、基準バー部材RBの母材や寸法が同じでも、それぞれの支持構造によって、撓み状態SV1、SV2、SV3のように変化する。 FIG. 32 shows the difference in the deformed state depending on the support structure of the reference bar member RB, and FIG. 32A shows the structure in which the vicinity of both ends of the reference bar member RB in the longitudinal direction is supported from below by the beam FJ1 which makes line contact with each other. 32C shows a structure in which the vicinity of one end of the reference bar member RB in the longitudinal direction is supported from below by a beam FJ1 that makes line contact, and the other end is fastened (fixed) to the device frame FJ2. FIG. 32C shows the reference. A structure is shown in which both ends of the bar member RB in the longitudinal direction are fastened (fixed) to the device frame FJ2. As shown in FIGS. 32A to 32C, even if the base material and the dimensions of the reference bar member RB are the same, the bending states SV1, SV2, and SV3 change depending on the respective support structures.
 その撓み状態SV1、SV2、SV3による変形量は、材料力学計算によって容易に算出でき、基準バー部材RBの参照面RBaに形成された基準マークRMnの相対的な位置関係の誤差が事前に精密に求められる。その相対的な位置関係の誤差は、先の図12で説明したステップ302のアライメント系キャリブレーション時に、複数のアライメント系ALGnの各々による検出領域ADnの中心点CCn(撮像領域DIS’の中心点)の相対的な位置関係を決定する際の補正値として導入される。これにより、複数のアライメント系ALGnの各々は、基準バー部材RBが撓んでいたとしても、高精度にキャリブレーションされる。なお、基準バー部材RBの支持構造は、図32に示した構成以外に、基準バー部材RBの長手方向の中央付近のみを装置フレームFJ2の一部にネジ止めにより締結し、両端部は長手方向に拘束しないように自重を支持する構造としても良い。その場合でも、材料力学計算によって基準バー部材RBの撓み状態が特定できる。 The amount of deformation due to the bending states SV1, SV2, and SV3 can be easily calculated by strength of materials calculation, and the error in the relative positional relationship of the reference mark RMn formed on the reference surface RBa of the reference bar member RB is precise in advance. Desired. The error in the relative positional relationship is the center point CCn (center point of the imaging region DIS') of the detection region ADn by each of the plurality of alignment systems ALGn at the time of the alignment system calibration in step 302 described in FIG. It is introduced as a correction value when determining the relative positional relationship of. As a result, each of the plurality of alignment systems ALGn is calibrated with high accuracy even if the reference bar member RB is bent. As for the support structure of the reference bar member RB, in addition to the configuration shown in FIG. 32, only the vicinity of the center of the reference bar member RB in the longitudinal direction is fastened to a part of the device frame FJ2 by screwing, and both ends are in the longitudinal direction. It may be a structure that supports its own weight so as not to be restrained by. Even in that case, the bending state of the reference bar member RB can be specified by the strength of materials calculation.
 〔変形例8〕
 以上の各実施の形態や各変形例では、基準バー部材RBのXZ面と平行な断面形状を矩形(長方形)としたが、その断面形状は、三角形や五角形等の多角形、円形(周囲の一部を平面に切断)、或いはL字アングル状にすることができる。また、基準バー部材RBの軽量化の為に、必要な剛性が得られる範囲で、中空構造や肉抜き構造にしても良い。さらに、先の図8で説明したように、基準バー部材RBをY方向の両端側で支持部材103A、103B(103Bは不図示)によって保持する場合、基準バー部材RBをL字状のアングル部材に取り付けても良い。
[Modification 8]
In each of the above embodiments and modifications, the cross-sectional shape parallel to the XZ plane of the reference bar member RB is a rectangle (rectangle), but the cross-sectional shape is a polygon such as a triangle or a pentagon, or a circle (surrounding). A part can be cut into a flat surface) or an L-shaped angle can be formed. Further, in order to reduce the weight of the reference bar member RB, a hollow structure or a lightening structure may be used as long as the required rigidity can be obtained. Further, as described with reference to FIG. 8, when the reference bar member RB is held by the support members 103A and 103B (103B is not shown) on both ends in the Y direction, the reference bar member RB is an L-shaped angle member. It may be attached to.
 図33は、先の図8で説明した支持部材103A、103Bによる基準バー部材RBの支持構造の変形例を、基準バー部材RBの中央付近から+Y方向側の支持部材103Bまでの範囲で示す部分斜視図であり、直交座標系XYZは図8と同じに設定される。また、基準バー部材RB自体の構成は、先の図10又は図26と同じであり、ここでは7つのアライメント系ALG1~ALG7の各々に対応して7つの基準マークRM1~RM7が参照面RBa上に形成されている。支持部材103A、103Bの間には、低熱膨張係数の金属材料によって構成され、断面形状がL字状のアングル部材108がY軸と平行になるように橋渡しされた状態で支持部材103A、103Bに固定されている。断面形状が矩形の基準バー部材RBは、中央付近に設けられた固定部109によってアングル部材108上に係止される。基準バー部材RBのY方向の両端側は、Y方向に関する拘束力が発生しないように係止されている。 FIG. 33 shows a modified example of the support structure of the reference bar member RB by the support members 103A and 103B described in FIG. 8 in the range from the vicinity of the center of the reference bar member RB to the support member 103B on the + Y direction side. It is a perspective view, and the Cartesian coordinate system XYZ is set in the same manner as in FIG. Further, the configuration of the reference bar member RB itself is the same as that of FIG. 10 or 26 above, and here, seven reference marks RM1 to RM7 corresponding to each of the seven alignment systems ALG1 to ALG7 are on the reference surface RBa. Is formed in. The support members 103A and 103B are formed of a metal material having a low coefficient of thermal expansion, and the angle members 108 having an L-shaped cross section are bridged to the support members 103A and 103B so as to be parallel to the Y axis. It is fixed. The reference bar member RB having a rectangular cross-sectional shape is locked on the angle member 108 by a fixing portion 109 provided near the center. Both ends of the reference bar member RB in the Y direction are locked so as not to generate a binding force in the Y direction.
 このように、アングル部材108を介して基準バー部材RBを装置フレーム(支持部材103A、103B)に取り付けることにより、基準バー部材RBの母材として、熱膨張係数は極めて小さいが、自重による撓み量が大きくなったり、剛性が低くてせん断し易かったりする材料を利用することができる。図33のような支持構造にすれば、そのような材料であっても、XZ面内での断面積が小さくても、Y方向の寸法を数十cm以上(例えば30cm以上)にした基準バー部材RBにすることができる。なお、アングル部材108は、XZ面と平行な面での断面形状をL字状以外にしても良く、単なる矩形(長方形、台形、平行四辺形等)、三角形、半円状のいずれでも良い。また、アングル部材108の長手方向の複数ヶ所の各々に精密な温度センサー(例えば、計測分解能が0.2℃以下)を設けて、基準バー部材RBの温度分布の変化をモニターしても良い。 By attaching the reference bar member RB to the device frame ( support members 103A, 103B) via the angle member 108 in this way, the coefficient of thermal expansion is extremely small as the base material of the reference bar member RB, but the amount of deflection due to its own weight. It is possible to use a material that has a large coefficient or has a low rigidity and is easy to shear. With the support structure as shown in FIG. 33, even with such a material, even if the cross-sectional area in the XZ plane is small, the reference bar having a dimension of several tens of centimeters or more (for example, 30 cm or more) in the Y direction. It can be a member RB. The angle member 108 may have a cross-sectional shape other than the L-shape on a plane parallel to the XZ plane, and may be a simple rectangle (rectangle, trapezoid, parallelogram, etc.), a triangle, or a semicircle. Further, a precise temperature sensor (for example, a measurement resolution of 0.2 ° C. or less) may be provided at each of a plurality of locations in the longitudinal direction of the angle member 108 to monitor changes in the temperature distribution of the reference bar member RB.
 〔その他の変形例〕
 以上の各実施の形態や各変形例では、基板PのY方向の短尺長LPy(図7、図20参照)の範囲に亘って、4つのアライメント系ALG1~ALG4、或いは7つのアライメント系ALG1~ALG7を設けたが、基板P自体の伸縮や面内での歪み変形が極めて小さい場合、或いは、短尺長LPyが小さく、マスクレスによる露光やインクジェットによる印刷の為の描画ユニットUnの数も1~2程度で済むような場合、基板P上のアライメントマークMKnは、基板PのY方向の両端側の各々にだけ形成されることもある。そのような場合は、アライメント系ALGnもY方向に離れた2ヶ所に配置されるので、基準バー部材RB上の基準マーク(基準指標マーク)RMnも2つのアライメント系ALGnの検出領域ADn(ARn)の各々に対応したY方向の2ヶ所の位置に形成しておけば良い。
[Other variants]
In each of the above embodiments and modifications, the four alignment systems ALG1 to ALG4 or the seven alignment systems ALG1 to 7 over the range of the short length LPy (see FIGS. 7 and 20) of the substrate P in the Y direction. Although ALG7 is provided, when the expansion and contraction of the substrate P itself and the distortion deformation in the plane are extremely small, or when the short length LPy is small, the number of drawing units Un for maskless exposure and inkjet printing is also 1 to 1. When only about 2 is required, the alignment marks MKn on the substrate P may be formed only on both ends of the substrate P in the Y direction. In such a case, since the alignment system ALGn is also arranged at two locations separated in the Y direction, the reference mark (reference index mark) RMn on the reference bar member RB is also the detection region ADn (ARn) of the two alignment system ALGn. It may be formed at two positions in the Y direction corresponding to each of the above.
 基準バー部材RBの参照面RBa上で、基準マーク(基準指標マーク)RMnを含むように設定される矩形状の検出領域ARnは、先の図26で説明した自発光方式の場合を除き、アライメント系ALGnの対物レンズ系OBLからの照明光ILbの一部によって照明され、検出領域ARn内からの反射光が対物レンズ系OBLを介して撮像素子DISで撮像される構成となっている。その為、検出領域ARn内の基準マークRMn自体の反射率と、その周囲の背景となる部分(参照面RBa自体)の反射率とに大きな差を与え、撮像時の画像のコントラストを高めるのが望ましい。基準バー部材RBの母材によって、参照面RBa自体の反射率が高い場合(例えば、40%以上の場合)は、基準マークRMn自体の反射率が十分に低い値(例えば、5%以下)になるように形成され、逆に、参照面RBa自体の反射率が低い場合(例えば、20%以下の場合)は、基準マークRMn自体の反射率が十分に高い値(例えば、60%以下)になるように形成される。 On the reference surface RBa of the reference bar member RB, the rectangular detection region ARn set to include the reference mark (reference index mark) RMn is aligned except in the case of the self-luminous method described with reference to FIG. 26 above. It is illuminated by a part of the illumination light ILb from the objective lens system OBL of the system ALGn, and the reflected light from the detection region ARn is captured by the image sensor DIS via the objective lens system OBL. Therefore, it is necessary to give a large difference between the reflectance of the reference mark RMn itself in the detection region ARn and the reflectance of the background portion (reference surface RBa itself) around the reference mark RNn to enhance the contrast of the image at the time of imaging. desirable. When the reflectance of the reference surface RBa itself is high (for example, when it is 40% or more) due to the base material of the reference bar member RB, the reflectance of the reference mark RMn itself becomes a sufficiently low value (for example, 5% or less). On the contrary, when the reflectance of the reference surface RBa itself is low (for example, when it is 20% or less), the reflectance of the reference mark RMn itself becomes a sufficiently high value (for example, 60% or less). Is formed to be.
 また、アライメント系ALGnの各々の対物レンズ系OBLから投射される照明光ILbをランダム偏光にし、キューブ型又はプレート型のビームスプリッタBS1を無偏光タイプにすることで、基板Pに照射される照明光ILbもランダム偏光にすることができる。さらに、キューブ型又はプレート型のビームスプリッタBS1を偏光タイプにし、偏光分割により基板Pに向かう直線偏光(P偏光)の照明光ILbと基準バー部材RBに向かう直線偏光(S偏光)の照明光ILbとに分離する構成とし、照明系ILUから対物レンズ系OBLに入射する照明光ILbのP偏光成分とS偏光成分の強度比、又は円偏光の楕円率を可変できるように、回転可能な波長板等を設けて、照明光の強度を調整しても良い。 Further, the illumination light ILb projected from each objective lens system OBL of the alignment system ALGn is randomly polarized, and the cube-type or plate-type beam splitter BS1 is unpolarized, thereby irradiating the substrate P with illumination light. ILb can also be randomly polarized. Further, the cube-type or plate-type beam splitter BS1 is made into a polarized light type, and the illumination light ILb of linearly polarized light (P-polarized light) toward the substrate P and the illumination light ILb of linearly polarized light (S-polarized light) toward the reference bar member RB by polarization division are used. A rotatable wavelength plate so that the intensity ratio of the P-polarized light component and the S-polarized light component of the illumination light ILb incident on the objective lens system OBL from the illumination system ILU or the ellipticity of circularly polarized light can be changed. Etc. may be provided to adjust the intensity of the illumination light.
 各実施の形態や各変形例で説明したアライメント系ALGnは、撮像素子DISを用いて、基板PのアライメントマークMKnや基準バー部材RBの基準マークRMnの像を画像検出方式であったが、他の検出方式であっても良い。例えば、特許第3077149号公報に開示されているように、基板P上のアライメントマークMKnを回折格子マークにし、その回折格子マーク上で交差する2つの平行ビームを照射する。そして、その2つの平行ビームの干渉で作られる干渉縞によって回折格子マークから発生する回折光をホモダイン計測又はヘテロダイン計測して、回折格子マークのピッチ方向の位置ずれを計測するアライメント系を利用することもできる。 In the alignment system ALGn described in each embodiment and each modification, an image detection method is used to obtain an image of the alignment mark MKn on the substrate P and the reference mark RMn on the reference bar member RB by using the image sensor DIS. The detection method may be used. For example, as disclosed in Japanese Patent No. 3077149, the alignment mark MKn on the substrate P is made into a diffraction grating mark, and two parallel beams intersecting on the diffraction grating mark are irradiated. Then, an alignment system is used in which the diffracted light generated from the diffraction grating mark by the interference fringes created by the interference of the two parallel beams is measured by homodyne measurement or heterodyne measurement, and the positional deviation of the diffraction grating mark in the pitch direction is measured. You can also.
 以上のように、複数(2以上)のアライメント系ALGnを用いて検出される基板P上のアライメントマークMKnの各位置情報に基づいて、描画データやパターンデータに応じて基板P上に形成されるパターンの位置をミクロンオーダー、又はサブミクロンオーダーで微調整(補正)する必要があるパターニング装置(露光装置、描画装置、プリント装置)では、数時間以上、場合によって半日以上に亘って連続的にアライメントマークの検出動作とパターンの描画動作とが途切れることなく継続される。その為、その間に生じ得る環境の温度や湿度の変化、装置内の熱源(モータ類や光源等)からの影響等によって、アライメント系ALGn(基板P上での検出領域ADn)の装置内での設置位置が所期状態から変動(ドリフト)するおそれがある。 As described above, it is formed on the substrate P according to the drawing data and the pattern data based on each position information of the alignment mark MKn on the substrate P detected by using a plurality of (two or more) alignment systems ALGn. For patterning equipment (exposure equipment, drawing equipment, printing equipment) that requires fine adjustment (correction) of the pattern position on the order of microns or submicrons, it is continuously aligned for several hours or more, and in some cases for half a day or more. The mark detection operation and the pattern drawing operation are continued without interruption. Therefore, due to changes in the temperature and humidity of the environment that may occur during that time, the influence of heat sources (motors, light sources, etc.) in the device, etc., the alignment system ALGn (detection area ADn on the substrate P) in the device. The installation position may fluctuate (drift) from the intended state.
 先の各実施の形態や各変形例で説明したアライメント系ALGnでは、検出領域ADn内を観察する対物レンズ系OBLの光路中にビームスプリッタ(合成光学部材)BS1を配置し、複数のアライメント系ALGn(検出領域ADn)が配置される方向に沿って延設された基準バー部材(基準指標部材)RB上の基準マークRMnを、ビームスプリッタBS1を介してアライメント系ALGnで適宜に観察可能とした。それにより、複数のアライメント系ALGn(検出領域ADn)の各設置位置の所期状態からの変動量や各設置位置の相対的な位置関係を、描画動作中、或いはアライメントマークMKnの検出動作中の任意のタイミングで計測できる。 In the alignment system ALGn described in each of the above embodiments and each modification, a beam splitter (synthetic optical member) BS1 is arranged in the optical path of the objective lens system OBL for observing the inside of the detection region ADn, and a plurality of alignment system ALGn. The reference mark RMn on the reference bar member (reference index member) RB extending along the direction in which (detection region ADn) is arranged can be appropriately observed by the alignment system ALGn via the beam splitter BS1. As a result, the amount of change from the desired state of each installation position of the plurality of alignment systems ALGn (detection area ADn) and the relative positional relationship of each installation position can be determined during the drawing operation or during the detection operation of the alignment mark MKn. It can be measured at any timing.
 基準バー部材RB上の基準マークRMnを基準にした、アライメント系ALGnの検出領域ADn(撮像素子DISの撮像領域DIS’)の各々の変動量や、相対的な位置関係を計測するシーケンスは、先の図12中のステップ302で説明したように実行され、図14に示した設置誤差情報ΔCnとして計測される。このように、複数のアライメント系ALGnの検出領域ADn(撮像素子DISの撮像領域DIS’)の各々の基準バー部材RBに対する設置誤差情報ΔCnを計測するシーケンスを第2の計測工程とする。 The sequence for measuring each fluctuation amount of the detection region ADn (imaging region DIS'of the image sensor DIS) of the alignment system ALGn and the relative positional relationship based on the reference mark RMn on the reference bar member RB is described first. Is executed as described in step 302 in FIG. 12, and is measured as the installation error information ΔCn shown in FIG. In this way, the sequence for measuring the installation error information ΔCn for each reference bar member RB of the detection region ADn (imaging region DIS'of the image sensor DIS) of the plurality of alignment systems ALGn is set as the second measurement step.
 また、先の各実施の形態や各変形例で説明したアライメント系ALGnは、基板P上のアライメントマークMKn、或いは基板支持機構としての回転ドラムDRの外周面上の基準パターンFMa~FMhと、基準バー部材RB上の基準マークRMnとを同時に撮像素子DISによって検出できる。その為、先の図12中のステップ318で説明したように、複数の基準マークRMnの各々を基準にして、基板P上の幅方向に並んだアライメントマークMKnの各々の位置ずれ誤差を直接的に計測できる。このように、複数のアライメント系ALGnの各々によって、基準バー部材RBの基準マークRMnと基板P上のアライメントマークMKn(又は回転ドラムDR上の基準パターンFMa~FMh)との相対的な位置ずれ誤差を直接計測するシーケンスを第1の計測工程とする。 Further, the alignment system ALGn described in each of the above-described embodiments and modifications is based on the alignment mark MKn on the substrate P or the reference patterns FMa to FMh on the outer peripheral surface of the rotating drum DR as the substrate support mechanism. The reference mark RMn on the bar member RB can be simultaneously detected by the image sensor DIS. Therefore, as described in step 318 in FIG. 12, the misalignment error of each of the alignment marks MKn arranged in the width direction on the substrate P is directly set with reference to each of the plurality of reference marks RMn. Can be measured. As described above, the relative misalignment error between the reference mark RMn of the reference bar member RB and the alignment mark MKn (or the reference patterns FMa to FMh on the rotating drum DR) on the substrate P is caused by each of the plurality of alignment systems ALGn. The sequence for directly measuring the above is defined as the first measurement step.
 さらに、先の図12中のステップ318でも説明したが、複数のアライメント系ALGnの各々は、先の図10に示したように、撮像素子DISの撮像領域DIS’内に設定される基準点(中心点CCn)に対する基板P上のアライメントマークMKn(又は回転ドラムDR上の基準パターンFMa~FMh)の位置ずれ誤差を計測することもできる。この場合、基準点は、撮像素子DISからの映像信号Vsgを解析する画像解析部206(図11参照)内で仮想的に決められるので、画像解析部206は専ら基板P上のアライメントマークMKnの拡大像の解析だけを行えば良い。その為、位置ずれ誤差を求める為の演算処理の負荷が減り、先の第1の計測工程と比べると、アライメントマークMKnの1つの位置ずれ計測が短時間で完了すると言った利点がある。 Further, as described in step 318 in FIG. 12, each of the plurality of alignment systems ALGn is set in the image pickup region DIS'of the image pickup device DIS as shown in FIG. It is also possible to measure the misalignment error of the alignment mark MKn (or the reference patterns FMa to FMh on the rotating drum DR) on the substrate P with respect to the center point CCn). In this case, since the reference point is virtually determined in the image analysis unit 206 (see FIG. 11) that analyzes the video signal Vsg from the image sensor DIS, the image analysis unit 206 is exclusively for the alignment mark MKn on the substrate P. You only need to analyze the magnified image. Therefore, the load of the arithmetic processing for obtaining the misalignment error is reduced, and there is an advantage that one misalignment measurement of the alignment mark MKn is completed in a short time as compared with the first measurement step described above.
 このような計測のシーケンスを第3の計測工程とした場合、第3の計測工程で計測されるアライメントマークMKnの各々の位置ずれ誤差には、アライメント系ALGnの検出領域ADn(即ち、撮像領域DIS’)の基準バー部材RBに対する設置誤差ΔCnが含まれていない。従って、基準バー部材RBの基準マークRMnを基準にして、基板P上の被露光領域DPAの主走査方向や副走査方向(Y方向)の位置ずれ量や基板Pの面内での変形量(伸縮、歪み、傾き等)を求めるときは、第3の計測工程で計測されたアライメントマークMKnの位置ずれ誤差を、先の第2の計測工程で求められた設置誤差情報ΔCnで補正し、その補正の結果で得られる位置ずれ誤差の情報に基づいて、パターンの描画動作(図12中のステップ320)が行われる。 When such a measurement sequence is used as the third measurement step, the misalignment error of each of the alignment marks MKn measured in the third measurement step includes the detection region ADn of the alignment system ALGn (that is, the imaging region DIS). ') Installation error ΔCn with respect to the reference bar member RB is not included. Therefore, with reference to the reference mark RMn of the reference bar member RB, the amount of misalignment in the main scanning direction and the sub-scanning direction (Y direction) of the exposed region DPA on the substrate P and the amount of deformation of the substrate P in the plane ( When obtaining expansion / contraction, distortion, inclination, etc.), the misalignment error of the alignment mark MKn measured in the third measurement step is corrected by the installation error information ΔCn obtained in the second measurement step, and the error is corrected. A pattern drawing operation (step 320 in FIG. 12) is performed based on the information on the misalignment error obtained as a result of the correction.
ADn、ARn・・・検出領域
ALGn・・・アライメント系
BS1・・・ビームスプリッタ   Bsp・・・光分割面
EX・・・パターン形成装置    ILU・・・照明系
MKn・・・アライメントマーク  OBL・・・対物レンズ系
P・・・基板
RB・・・基準バー部材(基準指標部材)
RMn・・・基準マーク
Un・・・描画ユニット(パターン形成機構)
ADn, ARn ... Detection area ALGn ... Alignment system BS1 ... Beam splitter Bsp ... Optical splitting surface EX ... Pattern forming device ILU ... Lighting system MKn ... Alignment mark OBL ... Objective lens system P ・ ・ ・ Substrate RB ・ ・ ・ Reference bar member (reference index member)
RMn ... Reference mark Un ... Drawing unit (pattern formation mechanism)

Claims (16)

  1.  第1方向に移動する基板上の所定領域に電子デバイス用のパターンを形成するパターン形成装置であって、
     前記基板の表面上で、前記第1方向と直交した第2方向の寸法が前記第1方向の寸法よりも長く設定されたパターン形成領域を有し、該パターン形成領域内で前記基板の前記所定領域に前記パターンを形成するパターン形成機構と、
     前記基板上に前記第1方向に沿って所定間隔で形成された第1の基板マークを、前記第1方向に関して前記パターン形成領域の上流側に設定された第1の検出領域内で光学的に検出する第1アライメント系と、
     前記第2方向に関して前記第1の基板マークから所定距離だけ離して、前記基板上に前記第1方向に沿って所定間隔で形成された第2の基板マークを、前記第1方向に関して前記パターン形成領域の上流側に設定された第2の検出領域内で光学的に検出する第2アライメント系と、
     前記第1アライメント系と前記第2アライメント系とに沿うように前記第2方向に延設され、前記第2方向に関して前記第1の検出領域と前記第2の検出領域との各々に対応した部分に基準指標マークが形成された基準指標部材と、
     前記第1アライメント系と前記第2アライメント系の各々に設けられ、前記基板マークからの光が通る光路中に前記基準指標マークからの光が通るように合成する合成光学部材と、
     を備えた、パターン形成装置。
    A pattern forming apparatus that forms a pattern for an electronic device in a predetermined area on a substrate that moves in the first direction.
    On the surface of the substrate, there is a pattern forming region in which the dimension in the second direction orthogonal to the first direction is set longer than the dimension in the first direction, and the predetermined size of the substrate is set within the pattern forming region. A pattern forming mechanism that forms the pattern in the region,
    The first substrate marks formed on the substrate at predetermined intervals along the first direction are optically formed in the first detection region set on the upstream side of the pattern formation region with respect to the first direction. The first alignment system to detect and
    A second substrate mark formed on the substrate at a predetermined interval along the first direction is formed on the substrate by a predetermined distance from the first substrate mark in the second direction, and the pattern is formed in the first direction. A second alignment system that optically detects within the second detection region set on the upstream side of the region,
    A portion extending in the second direction along the first alignment system and the second alignment system and corresponding to each of the first detection region and the second detection region in the second direction. A reference index member with a reference index mark formed on it,
    A synthetic optical member provided in each of the first alignment system and the second alignment system and synthesized so that the light from the reference index mark passes through the optical path through which the light from the substrate mark passes.
    A pattern forming device equipped with.
  2.  請求項1に記載のパターン形成装置であって、
     前記基準指標部材に形成された前記基準指標マークは、前記第1の検出領域と前記第2の検出領域との前記第2方向に関する設計上の間隔に応じた距離だけ前記第2方向に離して形成されて、前記合成光学部材を介して前記第1アライメント系で検出される第1の基準指標マークと、前記合成光学部材を介して前記第2アライメント系で検出される第2の基準指標マークと、を含む、パターン形成装置。
    The pattern forming apparatus according to claim 1.
    The reference index mark formed on the reference index member is separated in the second direction by a distance corresponding to a design distance between the first detection region and the second detection region in the second direction. A first reference index mark formed and detected by the first alignment system via the composite optical member and a second reference index mark detected by the second alignment system via the composite optical member. And, including, pattern forming apparatus.
  3.  請求項2に記載のパターン形成装置であって、
     前記第1アライメント系と前記第2アライメント系の各々は、前記基板上に設定される前記検出領域に向けて照明光を投射すると共に、前記検出領域内に現れる前記基板マークからの光を入射する対物レンズ系を有し、
     前記合成光学部材は、前記基板と前記対物レンズ系の間の光路中に配置されて、前記照明光を前記基準指標部材の前記基準指標マークに向けて投射すると共に、前記基準指標マークからの光を前記対物レンズ系に導くビームスプリッタである、パターン形成装置。
    The pattern forming apparatus according to claim 2.
    Each of the first alignment system and the second alignment system projects illumination light toward the detection region set on the substrate and incidents light from the substrate mark appearing in the detection region. Has an objective lens system,
    The synthetic optical member is arranged in an optical path between the substrate and the objective lens system, projects the illumination light toward the reference index mark of the reference index member, and emits light from the reference index mark. A pattern forming apparatus, which is a beam splitter that leads the light beam to the objective lens system.
  4.  請求項3に記載のパターン形成装置であって、
     前記ビームスプリッタは、前記対物レンズ系の光軸と垂直な面に対して所定角度だけ傾けて配置される平行平板状の透過光学硝材であり、
     前記所定角度を5°~30°の範囲に設定した、パターン形成装置。
    The pattern forming apparatus according to claim 3.
    The beam splitter is a parallel plate-shaped transmissive optical glass material that is arranged at a predetermined angle with respect to a plane perpendicular to the optical axis of the objective lens system.
    A pattern forming apparatus in which the predetermined angle is set in the range of 5 ° to 30 °.
  5.  請求項3に記載のパターン形成装置であって、
     前記ビームスプリッタは、前記対物レンズ系から投射される前記照明光の第1の波長帯域の光は透過させ、該第1の波長帯域と異なる第2の波長帯域の光は反射させる波長選択性の多層膜が形成された光分割面を有する、パターン形成装置。
    The pattern forming apparatus according to claim 3.
    The beam splitter has a wavelength selectivity that transmits light in the first wavelength band of the illumination light projected from the objective lens system and reflects light in a second wavelength band different from the first wavelength band. A pattern forming apparatus having an optical dividing surface on which a multilayer film is formed.
  6.  請求項3に記載のパターン形成装置であって、
     前記ビームスプリッタは、前記対物レンズ系から投射される前記照明光の第1の直線偏光の光は透過させ、該第1の直線偏光と異なる第2の直線偏光の光は反射させる偏光選択性の多層膜が形成された光分割面を有する、パターン形成装置。
    The pattern forming apparatus according to claim 3.
    The beam splitter has a polarization selectivity that transmits the first linearly polarized light of the illumination light projected from the objective lens system and reflects the second linearly polarized light different from the first linearly polarized light. A pattern forming apparatus having an optical dividing surface on which a multilayer film is formed.
  7.  請求項1~6のいずれか1項に記載のパターン形成装置であって、
     前記基準指標部材は、前記第2方向に棒状に延びると共に、前記第2方向に対して垂直な断面が多角形に形成され、該多角形の一辺に対応して前記第2方向に延びる1つの面を参照面とし、該参照面上に前記第1の基準指標マークと前記第2の基準指標マークとが形成された基準バー部材である、パターン形成装置。
    The pattern forming apparatus according to any one of claims 1 to 6.
    The reference index member extends in a bar shape in the second direction, and has a polygonal cross section perpendicular to the second direction, and extends in the second direction corresponding to one side of the polygon. A pattern forming apparatus, which is a reference bar member having a surface as a reference surface and having the first reference index mark and the second reference index mark formed on the reference surface.
  8.  請求項7に記載のパターン形成装置であって、
     前記基準バー部材の母材は、インバー合金、コバール合金、HfW28(又はZrW28)とMgWO4との混合焼結による材料、石英、コージライト系セラミックス、ガラスセラミックスのいずれかによる低熱膨張係数の材料で構成される、パターン形成装置。
    The pattern forming apparatus according to claim 7.
    The base material of the reference bar member is an Invar alloy, a Kovar alloy, a material obtained by mixing and sintering HfW 2 O 8 (or ZrW 2 O 8 ) and MgWO 4, and any of quartz, cordylite ceramics, and glass ceramics. A pattern forming device composed of a material having a low coefficient of thermal expansion.
  9.  請求項1又は2に記載のパターン形成装置であって、
     前記基準指標部材には、前記基準指標マークを単独に照明する為の照明部が設けられ、該照明部によって基準指標マークから発生する光が前記合成光学部材を介して、前記第1アライメント系と前記第2アライメント系の各々に入射するように設定される、パターン形成装置。
    The pattern forming apparatus according to claim 1 or 2.
    The reference index member is provided with an illumination unit for independently illuminating the reference index mark, and the light generated from the reference index mark by the illumination unit passes through the synthetic optical member to the first alignment system. A pattern forming apparatus set to be incident on each of the second alignment systems.
  10.  請求項9に記載のパターン形成装置であって、
     前記第1アライメント系と前記第2アライメント系の各々は、前記基板上に設定される前記検出領域に向けて照明光を投射すると共に、前記検出領域内に現れる前記基板マークからの反射光を入射する対物レンズ系を有し、
     前記合成光学部材は、前記基板と前記対物レンズ系の間の光路中に配置されて、前記基板マークからの反射光を入射して前記対物レンズ系に導くと共に、前記基準指標マークからの光を前記対物レンズ系に導くビームスプリッタである、パターン形成装置。
    The pattern forming apparatus according to claim 9.
    Each of the first alignment system and the second alignment system projects illumination light toward the detection region set on the substrate and incidents reflected light from the substrate mark appearing in the detection region. Has an objective lens system
    The synthetic optical member is arranged in the optical path between the substrate and the objective lens system, and incidents the reflected light from the substrate mark to guide the objective lens system, and also emits the light from the reference index mark. A pattern forming apparatus that is a beam splitter that leads to the objective lens system.
  11.  請求項10に記載のパターン形成装置であって、
     前記基準指標部材は、前記第2方向に棒状に延びると共に、前記第2方向に対して垂直な断面が多角形に形成され、該多角形の一辺に対応して前記第2方向に延びる1つの面を参照面とし、該参照面上に前記第1の基準指標マークと前記第2の基準指標マークとが形成された基準バー部材である、パターン形成装置。
    The pattern forming apparatus according to claim 10.
    The reference index member extends in a bar shape in the second direction, and has a polygonal cross section perpendicular to the second direction, and extends in the second direction corresponding to one side of the polygon. A pattern forming apparatus, which is a reference bar member having a surface as a reference surface and having the first reference index mark and the second reference index mark formed on the reference surface.
  12.  請求項10に記載のパターン形成装置であって、
     前記ビームスプリッタは、前記対物レンズ系の光軸と垂直な面に対して所定角度だけ傾けて配置される平行平板状の透過光学素子であり、
     前記所定角度を5°~30°の範囲に設定した、パターン形成装置。
    The pattern forming apparatus according to claim 10.
    The beam splitter is a parallel plate-shaped transmissive optical element that is tilted by a predetermined angle with respect to a plane perpendicular to the optical axis of the objective lens system.
    A pattern forming apparatus in which the predetermined angle is set in the range of 5 ° to 30 °.
  13.  第1方向に移動する基板上の所定領域内に形成された電子デバイス用の下地パターンに対して、新たなパターンを重ね合わせて形成するパターン形成方法であって、
     前記基板の前記第1方向への移動に関して、前記基板の前記所定領域内に前記新たなパターンを形成する為のパターン形成機構によるパターン形成領域の上流側に設定される第1アライメント系の第1検出領域内で、前記基板上に前記第1方向に沿って所定間隔で形成された複数の第1基板マークを順次光学的に検出する第1のマーク検出工程と、
     前記パターン形成領域の上流側であって、且つ前記第1検出領域から前記第1方向と直交した第2方向に所定間隔だけ離して設定される第2アライメント系の第2検出領域内で、前記基板上に前記第1方向に沿って所定間隔で形成された複数の第2基板マークを順次光学的に検出する第2のマーク検出工程と、
     前記第1アライメント系と前記第2アライメント系とに沿うように前記第2方向に延設された基準指標部材上に、前記第1検出領域と前記第2検出領域との前記所定間隔の設計上の距離に対応した位置の各々に形成された2つの基準指標マークの一方の第1基準指標マークを、前記第1のマーク検出工程の際に、前記第1アライメント系の光路中に配置された合成光学部材を介して前記第1基板マークと同時検出し、前記2つの基準指標マークの他方の第2基準指標マークを、前記第2のマーク検出工程の際に、前記第2アライメント系の光路中に配置された合成光学部材を介して前記第2基板マークと同時検出することにより、前記基準指標マークを基準にした前記第1基板マークと前記第2基板マークとの各位置を計測する第1の計測工程と、
     前記パターン形成機構によって前記基板上の前記所定領域内に前記新たなパターンを形成する際、前記第1の計測工程で計測された前記第1基板マークと前記第2基板マークの各位置に基づいて前記新たなパターンの位置を調整する第1の調整工程と、
     を含む、パターン形成方法。
    A pattern forming method in which a new pattern is superposed on a base pattern for an electronic device formed in a predetermined region on a substrate moving in the first direction.
    Regarding the movement of the substrate in the first direction, the first of the first alignment system set on the upstream side of the pattern forming region by the pattern forming mechanism for forming the new pattern in the predetermined region of the substrate. A first mark detection step of sequentially optically detecting a plurality of first substrate marks formed on the substrate at predetermined intervals along the first direction in the detection region.
    Within the second detection region of the second alignment system, which is on the upstream side of the pattern formation region and is set at a predetermined interval in the second direction orthogonal to the first direction from the first detection region. A second mark detection step of sequentially optically detecting a plurality of second substrate marks formed on the substrate at predetermined intervals along the first direction.
    In designing the predetermined interval between the first detection region and the second detection region on the reference index member extending in the second direction along the first alignment system and the second alignment system. The first reference index mark of one of the two reference index marks formed at each of the positions corresponding to the distances of the above is arranged in the optical path of the first alignment system during the first mark detection step. The second reference index mark, which is the other of the two reference index marks, is detected simultaneously with the first substrate mark via the composite optical member, and the optical path of the second alignment system is detected during the second mark detection step. By simultaneously detecting the second substrate mark via the synthetic optical member arranged inside, each position of the first substrate mark and the second substrate mark with reference to the reference index mark is measured. 1 measurement process and
    When the new pattern is formed in the predetermined region on the substrate by the pattern forming mechanism, it is based on the positions of the first substrate mark and the second substrate mark measured in the first measurement step. The first adjustment step of adjusting the position of the new pattern and
    A pattern forming method including.
  14.  請求項13に記載のパターン形成方法であって、
     前記第1アライメント系は、前記第1検出領域内に現れる前記第1基板マークの像、又は前記第1基準指標マークの像を、前記合成光学部材を介して撮像する第1撮像素子を有し、
     前記第2アライメント系は、前記第2検出領域内に現れる前記第2基板マークの像、又は前記第2基準指標マークの像を、前記合成光学部材を介して撮像する第2撮像素子を有し、
     前記第1撮像素子の第1撮像領域内での前記第1基準指標マークの像の位置と前記第1撮像領域内の所定の基準点との相対的な位置誤差を計測すると共に、前記第2撮像素子の第2撮像領域内での前記第2基準指標マークの像の位置と前記第2撮像領域内の所定の基準点との相対的な位置誤差を計測することにより、前記基準指標部材を基準とした前記第1アライメント系と前記第2アライメント系の各々の設置誤差情報を取得する第2の計測工程を、更に含む、パターン形成方法。
    The pattern forming method according to claim 13.
    The first alignment system has a first image pickup element that captures an image of the first substrate mark appearing in the first detection region or an image of the first reference index mark via the composite optical member. ,
    The second alignment system has a second image pickup element that captures an image of the second substrate mark appearing in the second detection region or an image of the second reference index mark via the composite optical member. ,
    The relative position error between the position of the image of the first reference index mark in the first imaging region of the first image sensor and a predetermined reference point in the first imaging region is measured, and the second By measuring the relative position error between the position of the image of the second reference index mark in the second image pickup region of the image sensor and the predetermined reference point in the second image pickup region, the reference index member can be moved. A pattern forming method further comprising a second measurement step of acquiring installation error information of each of the first alignment system and the second alignment system as a reference.
  15.  請求項14に記載のパターン形成方法であって、
     前記第1撮像素子の前記第1撮像領域内に現れる前記第1基板マークの像の前記基準点に対する位置誤差を計測すると共に、前記第2撮像素子の前記第2撮像領域内に現れる前記第2基板マークの像の前記基準点に対する位置誤差を計測することにより、前記基板上の前記所定領域の位置ずれ情報を求める第3の計測工程を、更に含む、パターン形成方法。
    The pattern forming method according to claim 14.
    The position error of the image of the first substrate mark appearing in the first imaging region of the first image sensor with respect to the reference point is measured, and the second image sensor appears in the second imaging region of the second image sensor. A pattern forming method further comprising a third measurement step of obtaining position deviation information of the predetermined region on the substrate by measuring a position error of an image of a substrate mark with respect to the reference point.
  16.  請求項15に記載のパターン形成方法であって、
     前記第1の調整工程は、前記第3の計測工程で求められた前記基板上の前記所定領域の位置ずれ情報を、前記第2の計測工程で所得された前記設置誤差情報によって補正した後、該補正された位置ずれ情報を、前記第1の計測工程で計測された前記第1基板マークと前記第2基板マークの各位置の情報の代わりに用いて、前記新たなパターンの位置を調整する、パターン形成方法。
    The pattern forming method according to claim 15.
    In the first adjustment step, after correcting the misalignment information of the predetermined region on the substrate obtained in the third measurement step with the installation error information earned in the second measurement step, the first adjustment step is performed. The corrected misalignment information is used in place of the information on the positions of the first substrate mark and the second substrate mark measured in the first measurement step to adjust the position of the new pattern. , Pattern formation method.
PCT/JP2021/014467 2020-04-06 2021-04-05 Pattern-forming device and pattern-forming method WO2021206044A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227034595A KR20220150942A (en) 2020-04-06 2021-04-05 Pattern forming device and pattern forming method
JP2022514057A JP7435748B2 (en) 2020-04-06 2021-04-05 Pattern forming device and pattern forming method
CN202180025936.8A CN115380253A (en) 2020-04-06 2021-04-05 Pattern forming apparatus and pattern forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020068034 2020-04-06
JP2020-068034 2020-04-06

Publications (1)

Publication Number Publication Date
WO2021206044A1 true WO2021206044A1 (en) 2021-10-14

Family

ID=78023054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014467 WO2021206044A1 (en) 2020-04-06 2021-04-05 Pattern-forming device and pattern-forming method

Country Status (5)

Country Link
JP (1) JP7435748B2 (en)
KR (1) KR20220150942A (en)
CN (1) CN115380253A (en)
TW (2) TW202303300A (en)
WO (1) WO2021206044A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069585A (en) * 2002-08-08 2004-03-04 Fuji Photo Optical Co Ltd Method for measuring parallelism
JP2006098726A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Correction method of alignment unit, drawing apparatus capable of correcting alignment, and carrying device
WO2015152218A1 (en) * 2014-04-01 2015-10-08 株式会社ニコン Substrate-processing apparatus, device manufacturing method, and substrate processing method
US20160313653A1 (en) * 2013-12-05 2016-10-27 Asml Netherlands B.V. Method and Apparatus for Measuring a Structure on a Substrate, Models for Error Correction, Computer Program Products for Implementing such Methods and Apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107329379B (en) * 2016-04-29 2019-01-18 上海微电子装备(集团)股份有限公司 The double-deck alignment device and the double-deck alignment methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069585A (en) * 2002-08-08 2004-03-04 Fuji Photo Optical Co Ltd Method for measuring parallelism
JP2006098726A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Correction method of alignment unit, drawing apparatus capable of correcting alignment, and carrying device
US20160313653A1 (en) * 2013-12-05 2016-10-27 Asml Netherlands B.V. Method and Apparatus for Measuring a Structure on a Substrate, Models for Error Correction, Computer Program Products for Implementing such Methods and Apparatus
WO2015152218A1 (en) * 2014-04-01 2015-10-08 株式会社ニコン Substrate-processing apparatus, device manufacturing method, and substrate processing method

Also Published As

Publication number Publication date
CN115380253A (en) 2022-11-22
KR20220150942A (en) 2022-11-11
TW202303300A (en) 2023-01-16
TWI781572B (en) 2022-10-21
JPWO2021206044A1 (en) 2021-10-14
JP7435748B2 (en) 2024-02-21
TW202205031A (en) 2022-02-01

Similar Documents

Publication Publication Date Title
TWI464541B (en) Surface position measuriing apparatus, surface position measuring method, exposure apparatus and device fabrication method
TWI461858B (en) Surface position detection device, exposure device, surface position detection method and device production method
US8599358B2 (en) Maskless exposure apparatuses and frame data processing methods thereof
TW201805726A (en) Pattern drawing device, pattern drawing method, and method for manufacturing device
JP4486323B2 (en) Pixel position specifying method, image shift correcting method, and image forming apparatus
JP3654220B2 (en) Lens inspection device
JP2006349945A (en) Exposure apparatus
JP2010066256A (en) Plane position detection apparatus, exposure system, method for detecting plane position, and method for manufacturing device
JPH08168039A (en) Projection display system and projection position adjusting method
US8773538B2 (en) Calibration method and apparatus for optical imaging lens system with double optical paths
TWI736147B (en) Pattern drawing device
WO2021206044A1 (en) Pattern-forming device and pattern-forming method
US9041907B2 (en) Drawing device and drawing method
JP7384283B2 (en) pattern forming device
JP6702487B2 (en) Pattern forming equipment
JP2020098346A (en) Pattern drawing method
JP2005116779A (en) Exposure device and device manufacturing method
JP2015076491A (en) Detector, lithographic apparatus, and article manufacturing method
US6870597B2 (en) Apparatus and method for optically projecting pixel-based image information onto a light-sensitive material
WO2022054544A1 (en) Projection exposure device and production exposure method
JP6638355B2 (en) Pattern drawing equipment
JP2008076590A (en) Method and device for measuring drawing position
KR20240014514A (en) Exposure apparatus and device manufacturing method
JP2013172353A (en) Imaging device and mounting board manufacturing apparatus
JPH10208991A (en) Projection aligner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514057

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227034595

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21784530

Country of ref document: EP

Kind code of ref document: A1