WO2021205997A1 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
WO2021205997A1
WO2021205997A1 PCT/JP2021/014257 JP2021014257W WO2021205997A1 WO 2021205997 A1 WO2021205997 A1 WO 2021205997A1 JP 2021014257 W JP2021014257 W JP 2021014257W WO 2021205997 A1 WO2021205997 A1 WO 2021205997A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
current
phase
unit
rotation
Prior art date
Application number
PCT/JP2021/014257
Other languages
French (fr)
Japanese (ja)
Inventor
宏平 西田
牧野 孝則
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021205997A1 publication Critical patent/WO2021205997A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple

Definitions

  • This disclosure relates to a motor control device.
  • the range switching mechanism of an automatic transmission is driven by a motor.
  • the reference position is learned by executing the abutting control of rotating the range switching mechanism until it hits the limit position of the movable range.
  • the collective current of the motor is controlled to be constant based on the output of the current sensor. Further, the motor torque is kept constant by controlling the control current value when the first phase is energized to be half of the control current value when the two phases are energized.
  • the motor torque may fluctuate depending on the positional relationship between the rotor and the stator.
  • the motor control device of the present disclosure controls the drive of a motor having windings, and includes a drive circuit unit, a current detection unit, a rotation detection unit, and a control unit.
  • the drive circuit unit has a switching element provided corresponding to each phase of the winding.
  • the current detector detects the winding current.
  • the rotation detection unit detects the motor rotation position, which is the rotation position of the motor.
  • the control unit has a rotation speed calculation unit, a target current calculation unit, an energization command unit, and a switch control unit.
  • the rotation speed calculation unit calculates the motor rotation speed, which is the rotation speed of the motor.
  • the target current calculation unit calculates the current control target value.
  • the energization command unit commands the energization phase according to the detection value of the rotation detection unit.
  • the switch control unit controls the on / off operation of the switching element so that the current applied to the winding becomes the current control target value.
  • the current control target value is made variable according to the motor rotation position. As a result, torque fluctuations caused by the motor rotation position can be suppressed.
  • FIG. 1 is a perspective view showing a shift-by-wire system according to an embodiment.
  • FIG. 2 is a schematic configuration diagram showing a shift-by-wire system according to one embodiment.
  • FIG. 3 is a block diagram showing a shift range control device according to an embodiment.
  • FIG. 4 is an explanatory diagram for explaining the correspondence between the energized phase number and the energized phase according to the embodiment.
  • FIG. 5 is a time chart illustrating current control according to one embodiment.
  • FIG. 6 is a flowchart illustrating the current control process according to the embodiment.
  • FIG. 7 is a time chart illustrating the current control process according to the embodiment.
  • FIG. 8 is a time chart for explaining the current control process according to the reference example.
  • the shift-by-wire system 1 which is a motor drive system includes a motor 10, a shift range switching mechanism 20, a parking lock mechanism 30, a shift range control device 40 as a motor control device, and the like. ..
  • the motor 10 rotates by being supplied with electric power from a battery 90 mounted on a vehicle (not shown), and functions as a drive source for the shift range switching mechanism 20.
  • the motor 10 is, for example, a switched reluctance motor. As shown in FIG.
  • the motor 10 has a motor winding 11 wound around a salient pole of a stator (not shown).
  • the motor winding 11 has a U-phase winding 111, a V-phase winding 112, and a W-phase winding 113.
  • a rotor By controlling the energization of the motor winding 11, a rotor (not shown) is rotated.
  • the number of salient poles of the stator is 12, and the number of salient poles of the rotor is 8.
  • the encoder 13 which is a rotation angle sensor detects the rotation position of the rotor of the motor 10.
  • the encoder 13 is, for example, a magnetic rotary encoder, which is composed of a magnet that rotates integrally with the rotor, a Hall IC for magnetic detection, and the like.
  • the encoder 13 outputs an encoder signal, which is an A-phase and B-phase pulse signal, at predetermined angles in synchronization with the rotation of the rotor.
  • the speed reducer 14 is provided between the motor shaft of the motor 10 and the output shaft 15, and decelerates the rotation of the motor 10 to output to the output shaft 15. As a result, the rotation of the motor 10 is transmitted to the shift range switching mechanism 20.
  • the output shaft 15 is provided with an output shaft sensor 16 that detects the angle of the output shaft 15.
  • the output shaft sensor 16 is, for example, a potentiometer.
  • the shift range switching mechanism 20 has a detent plate 21, a detent spring 25, and the like, and applies the rotational driving force output from the speed reducer 14 to the manual valve 28 and the parking lock mechanism 30. Communicate to.
  • the detent plate 21 is fixed to the output shaft 15 and driven by the motor 10.
  • the detent plate 21 is provided with a pin 24 that projects parallel to the output shaft 15.
  • the pin 24 is connected to the manual valve 28.
  • the shift range switching mechanism 20 converts the rotational motion of the motor 10 into a linear motion and transmits it to the manual valve 28.
  • the manual valve 28 is provided on the valve body 29.
  • the detent spring 25 is a plate-shaped member that can be elastically deformed, and a detent roller 26 is provided at the tip thereof.
  • the detent spring 25 urges the detent roller 26 toward the center of rotation of the detent plate 21.
  • the detent spring 25 is elastically deformed, and the detent roller 26 moves between the valleys.
  • the parking lock mechanism 30 has a parking rod 31, a cone 32, a parking lock pole 33, a shaft portion 34, and a parking gear 35.
  • the parking rod 31 is formed in a substantially L shape, and one end 311 side is fixed to the detent plate 21.
  • a cone 32 is provided on the other end 312 side of the parking rod 31.
  • the conical body 32 is formed so that the diameter is reduced toward the other end 312 side.
  • the parking lock pole 33 comes into contact with the conical surface of the conical body 32 and is provided so as to be swingable around the shaft portion 34.
  • a convex portion 331 that can mesh with the parking gear 35 is provided.
  • the parking lock pole 33 is pushed up and the convex portion 331 and the parking gear 35 mesh with each other.
  • the cone 32 moves in the direction of the arrow NotP, the meshing between the convex portion 331 and the parking gear 35 is released.
  • the parking gear 35 is provided on an axle (not shown) so as to be able to mesh with the convex portion 331 of the parking lock pole 33.
  • the rotation of the axle is restricted.
  • the shift range is the NotP range, which is a range other than P
  • the parking gear 35 is not locked by the parking lock pole 33, and the rotation of the axle is not hindered by the parking lock mechanism 30.
  • the shift range is the P range
  • the parking gear 35 is locked by the parking lock pole 33, and the rotation of the axle is restricted.
  • the shift range control device 40 includes a drive circuit unit 41, a current detection unit 45, an ECU 50, and the like.
  • the drive circuit unit 41 has three switching elements 411, 412, and 413.
  • the drive circuit unit 41 is provided between the windings 111 to 113 of each phase and the ground.
  • the switching elements 411 to 413 are provided corresponding to the windings 111 to 113 of each phase, and switch the energization of the corresponding phase.
  • the switching elements 411 to 413 of this embodiment are MOSFETs, but may be IGBTs or the like.
  • connection portion 115 The windings 111 to 113 of the motor winding 11 are connected by the connection portion 115. Power is supplied to the connection portion 115 from the battery 90 via the power supply line 901.
  • the power supply line 901 is provided with a relay unit 91, and when the relay unit 91 is turned on, power is supplied to the connection unit 115.
  • the current detection unit 45 has current detection elements 451 to 453, and detects the currents of the windings 111 to 113 for each phase.
  • the current detection elements 451 to 453 of the present embodiment are shunt resistors, but a Hall element or the like other than the shunt resistor may be used.
  • the current detection element 451 is provided between the switching element 411 and the U-phase winding 111, and detects the U-phase current Iu.
  • the current detection element 452 is provided between the switching element 412 and the V-phase winding 112, and detects the V-phase current Iv.
  • the current detection element 453 is provided between the switching element 413 and the W-phase winding 113, and detects the W-phase current Iw.
  • the detected values of the current detecting elements 451 to 453 are output to the current limiting circuit 55.
  • the detection value of the current detection element 451 is referred to as a U-phase current detection value Iu_det
  • the detection value of the current detection element 452 is a V-phase current detection value Iv_det
  • the detection value of the current detection element 453 is a W-phase current detection value Iw_det.
  • the ECU 50 has a microcomputer 51 and a current limiting circuit 55.
  • the ECU 50 includes a CPU, ROM, RAM, I / O, and a bus line connecting these configurations, which are not shown inside.
  • Each process in the ECU 50 may be a software process by executing a program stored in advance in a physical memory device such as a ROM (that is, a readable non-temporary tangible recording medium) on the CPU, or a dedicated process. It may be hardware processing by an electronic circuit.
  • the ECU 50 controls the switching of the shift range by controlling the drive of the motor 10 based on the shift signal according to the driver required shift range, the signal from the brake switch, the vehicle speed, and the like. Further, the ECU 50 controls the drive of the shift hydraulic control solenoid 6 based on the vehicle speed, the accelerator opening degree, the driver required shift range, and the like.
  • the shift stage is controlled by controlling the shift hydraulic control solenoid 6.
  • the number of shift hydraulic control solenoids 6 is provided according to the number of shift stages and the like. In the present embodiment, one ECU 50 controls the drive of the motor 10 and the solenoid 6, but the motor ECU for controlling the motor 10 and the AT-ECU for solenoid control may be separated.
  • the drive control of the motor 10 will be mainly described.
  • the microcomputer 51 has a rotation speed calculation unit 52, a target current calculation unit 53, and an energization command unit 54 as functional blocks.
  • the rotation speed calculation unit 52 calculates the motor rotation speed based on the encoder signal from the encoder 13.
  • the target current calculation unit 53 calculates the current control target value X.
  • the energization command unit 54 commands the energization phase based on the encoder signal from the encoder 13. In the present embodiment, the energizing phase is commanded by an interrupt calculation according to the pulse edge detection of the encoder signal.
  • the energized phase number and the energized phase are associated with each other, and each time the pulse edge of the encoder signal is detected, the energized phase number is shifted by 1 and the energized phase is switched to rotate the motor 10.
  • 0 to 11 are defined as one cycle of the energized phase number, and the phase energized at each energized phase number is indicated by a circle.
  • the energized phase number is incremented by 1 for each encoder pulse edge, and when the energized phase number reaches 11, the energized phase number returns to 0, and so on.
  • the energizing phase number is decremented by 1 for each encoder pulse edge, and when the energizing phase number becomes 0, the current state returns to 11 and so on.
  • the energized phase number is 1, as in the case where the energized phase number is 2, 3, 6, 7, 10, 11, one phase is energized, and the energized phase number is 0, 1, 4, 5, 8,
  • the energizing phase is two phases as in the case of 9, two-phase energization is performed.
  • the current limiting circuit 55 is composed of hardware and controls the on / off operation of the switching elements 411 to 413 based on the current detection values Iu_det, Iv_dt, and Iw_det.
  • the on / off operation of the switching element 411 based on the U-phase current detection value Iu_det will be described with reference to FIG.
  • the switching element 411 When the U-phase current detection value Iu_det reaches the upper limit value X_hi, the switching element 411 is turned off, and when it decreases to the lower limit value X_lo, the switching element 411 is turned on.
  • the torque ripple is reduced by making the current control target value X variable in the low speed rotation region.
  • the current control process of this embodiment will be described with reference to the flowchart of FIG. This process is executed in the microcomputer 51 at a predetermined cycle during the current control.
  • the “step” in step S101 is omitted and simply referred to as the symbol “S”.
  • the microcomputer 51 calculates the motor rotation speed.
  • the microcomputer 51 determines whether or not it is in the low-speed rotation region.
  • the low speed determination value for example, 300 [rpm]
  • the process shifts to S104, and the current control target value X is set as the initial value Xa.
  • the process proceeds to S103.
  • the microcomputer 51 determines whether or not the energization pattern is one-phase energization. When it is determined that the energization pattern is not one-phase energization (S103: NO), that is, when the energization pattern is two-phase energization, the process shifts to S104, and the current control target value X is set as the initial value Xa. When it is determined that the energization pattern is one-phase energization (S103: YES), the process proceeds to S105.
  • the microcomputer 51 changes the current control target value X from the initial value Xa to Xa ⁇ k.
  • the coefficient k is set to an arbitrary value of 0 ⁇ k ⁇ 1 (for example, 0.75) by matching or the like so that the torque ripple in the low speed rotation region is suppressed.
  • the control width ⁇ may also be made variable by multiplying by the coefficient j.
  • the coefficients k and j may have the same value or may have different values.
  • the current control of this embodiment will be described with reference to the time chart of FIG. In FIG. 7, the energization pattern, U-phase current, V-phase current, W-phase current, and motor torque are shown from the top.
  • the current control target value X is set so that the current during one-phase energization, which tends to generate torque relatively easily, is smaller than that during two-phase energization due to the positional relationship between the rotor and the stator, and the current waveform is set. By fluctuating, the change in inductance is absorbed. Thereby, the torque ripple can be reduced. Further, the process of changing the current control target value X according to the motor rotation position is performed in the low-speed rotation region, and is not performed in other than the low-speed rotation region. As a result, an increase in the load on the microcomputer can be suppressed.
  • the shift range control device 40 controls the drive of the motor 10 having the three-phase windings 111 to 113, and includes the drive circuit unit 41, the current detection unit 45, and the encoder 13. , ECU 50.
  • the drive circuit unit 41 has switching elements 411 to 413 provided corresponding to each phase of the windings 111 to 113.
  • the current detection unit 45 detects the currents of the windings 111 to 113.
  • the encoder 13 detects the motor rotation position, which is the rotation position of the motor 10.
  • the ECU 50 has a rotation speed calculation unit 52, a target current calculation unit 53, an energization command unit 54, and a current limiting circuit 55.
  • the rotation speed calculation unit 52 calculates the motor rotation speed, which is the rotation speed of the motor 10.
  • the target current calculation unit 53 calculates the current control target value X.
  • the energization command unit 54 commands the energization phase according to the encoder count value, which is the detection value of the encoder 13.
  • the current limiting circuit 55 controls the on / off operation of the switching elements 411 to 413 so that the current applied to the windings 111 to 113 becomes the current control target value X.
  • the current control target value X is made variable according to the motor rotation position.
  • the torque ripple generated by the tooth positional relationship between the rotor and the stator can be reduced, and the drive torque of the motor 10 is stabilized. Can be done.
  • the computing load of the microcomputer 51 during high-speed rotation can be reduced.
  • the ECU 50 rotates the motor 10 by switching between one-phase energization that energizes one phase of windings 111 to 113 and two-phase energization that energizes two phases of windings 111 to 113 according to the motor rotation position. ..
  • the target current calculation unit 53 sets the current control target value X so that the current during one-phase energization is smaller than that during two-phase energization in the low-speed rotation region. This makes it possible to suppress torque fluctuations of the motor 10 depending on the energized state and the rotor position.
  • the target current calculation unit 53 converts the current control target value at the time of one-phase energization into the current control target value at the time of two-phase energization with a conversion coefficient k (however, 0 ⁇ k ⁇ 1). Is the value multiplied by. Thereby, the torque fluctuation between the one-phase energization and the two-phase energization can be appropriately suppressed.
  • the current limiting circuit 55 turns off the switching elements 411 to 413 when the current energized in the windings 111 to 113 reaches the upper limit value X_hi, which is a value larger than the current control target value X, and is smaller than the current control target value X.
  • the control width ⁇ which is the width between the upper limit value X_hi and the lower limit value X_lo, is different between the one-phase energization and the two-phase energization. Thereby, the current flowing through the windings 111 to 113 can be appropriately controlled.
  • the shift range control device 40 corresponds to the "motor control device”
  • the encoder 13 corresponds to the "rotation detection unit”
  • the ECU 50 corresponds to the "control unit”
  • the current limiting circuit 55 corresponds to the "switch control unit”.
  • the case where the motor rotation speed is equal to or less than the low speed determination value is set as the low speed rotation region, and the current control target value at the time of one-phase energization is set by multiplying by a predetermined coefficient k.
  • the current control target value in the low-speed rotation region, may be gradually reduced according to the rotation speed, or may be gradually reduced.
  • the current control target value is made variable between the one-phase energization and the two-phase energization.
  • the current control target value may be changed according to the motor rotation position so that the change in inductance due to the relationship between the rotor and the stator can be absorbed regardless of the number of energized phases.
  • the rotation speed calculation unit, the target current calculation unit, and the energization command unit are composed of a microcomputer, and the switch control unit is composed of a hard circuit. In other embodiments, it does not matter whether each process in the control unit is configured by software or hardware.
  • the rotational position of the motor is detected by the encoder.
  • the encoder not only the encoder but also any resolver or the like may be used.
  • a potentiometer is exemplified as an output shaft sensor.
  • the output shaft sensor may be any. Further, the output shaft sensor may be omitted.
  • the detent plate is provided with two recesses.
  • the number of recesses is not limited to two, and recesses may be provided for each range, for example.
  • the shift range switching mechanism, the parking lock mechanism, and the like may be different from those in the above embodiment.
  • a speed reducer is provided between the motor shaft and the output shaft.
  • the details of the speed reducer are not mentioned in the above embodiment, for example, cycloid gears, planetary gears, spur gears that transmit torque from a speed reduction mechanism substantially coaxial with the motor shaft to the drive shaft, and these. Any configuration may be used, such as a combination of the above.
  • the speed reducer between the motor shaft and the output shaft may be omitted, or a mechanism other than the speed reducer may be provided.
  • the motor control device is applied to the shift range switching system.
  • the motor control device may be applied to devices other than the shift range switching system.
  • it is suitably applied to a device that requires a constant torque output from a motor in a low speed rotation region.
  • the controls and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done.
  • the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured.
  • the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
  • the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the spirit of the present embodiment.

Abstract

A control unit (50) has a rotation speed computation unit (52), a target current computation unit (53), an energization command unit (54), and a switch control unit (55). The rotation speed computation unit (52) computes a motor rotation speed, which is a rotation speed of a motor (10). The target current computation unit (53) computes a current control target value. The energization command unit (54) issues a command for an energization phase in accordance with a detection value from a rotation detection unit (13). The switch control unit (55) controls an on-off operation of switching elements (411-413) such that the current applied to winding (111-113) achieves the current control target value. When the motor rotation speed is in a low-speed rotation region, the current control target value is varied in accordance with the motor rotation position.

Description

モータ制御装置Motor control device 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年4月6日に出願された特許出願番号2020-068381号に基づくものであり、ここにその記載内容を援用する。 This application is based on Patent Application No. 2020-068381 filed on April 6, 2020, and the contents of the description are incorporated herein by reference.
 本開示は、モータ制御装置に関する。 This disclosure relates to a motor control device.
 従来、自動変速機のレンジ切替機構をモータで駆動するものが知られている。例えば特許文献1では、レンジ切替機構の可動範囲の限界位置に突き当たるまで回転させる突き当て制御を実行して基準位置を学習する。 Conventionally, it is known that the range switching mechanism of an automatic transmission is driven by a motor. For example, in Patent Document 1, the reference position is learned by executing the abutting control of rotating the range switching mechanism until it hits the limit position of the movable range.
特開2014-100041号公報Japanese Unexamined Patent Publication No. 2014-100041
 特許文献1では、電流センサの出力に基づいてモータの集合部電流が一定となるように制御している。また、1相に通電するときの制御電流値を、2相に通電するときの制御電流値の1/2となるように制御することで、モータトルクが一定となるようにしている。ここで、低速回転時には、ロータとステータの位置関係により、モータトルクが変動する虞がある。本開示の目的は、モータトルクの変動を抑制可能なモータ制御装置を提供することにある。 In Patent Document 1, the collective current of the motor is controlled to be constant based on the output of the current sensor. Further, the motor torque is kept constant by controlling the control current value when the first phase is energized to be half of the control current value when the two phases are energized. Here, at low speed rotation, the motor torque may fluctuate depending on the positional relationship between the rotor and the stator. An object of the present disclosure is to provide a motor control device capable of suppressing fluctuations in motor torque.
 本開示のモータ制御装置は、巻線を有するモータの駆動を制御するものであって、駆動回路部と、電流検出部と、回転検出部と、制御部と、を備える。駆動回路部は、巻線の各相に対応して設けられるスイッチング素子を有する。電流検出部は、巻線の電流を検出する。回転検出部は、モータの回転位置であるモータ回転位置を検出する。 The motor control device of the present disclosure controls the drive of a motor having windings, and includes a drive circuit unit, a current detection unit, a rotation detection unit, and a control unit. The drive circuit unit has a switching element provided corresponding to each phase of the winding. The current detector detects the winding current. The rotation detection unit detects the motor rotation position, which is the rotation position of the motor.
 制御部は、回転速度演算部、目標電流演算部、通電指令部、および、スイッチ制御部を有する。回転速度演算部は、モータの回転速度であるモータ回転速度を演算する。目標電流演算部は、電流制御目標値を演算する。通電指令部は、回転検出部の検出値に応じた通電相を指令する。スイッチ制御部は、巻線に通電される電流が電流制御目標値となるように、スイッチング素子のオンオフ作動を制御する。モータ回転速度が低速回転領域である場合、モータ回転位置に応じて電流制御目標値を可変にする。これによりモータ回転位置によって生じるトルク変動を抑制することができる。 The control unit has a rotation speed calculation unit, a target current calculation unit, an energization command unit, and a switch control unit. The rotation speed calculation unit calculates the motor rotation speed, which is the rotation speed of the motor. The target current calculation unit calculates the current control target value. The energization command unit commands the energization phase according to the detection value of the rotation detection unit. The switch control unit controls the on / off operation of the switching element so that the current applied to the winding becomes the current control target value. When the motor rotation speed is in the low speed rotation range, the current control target value is made variable according to the motor rotation position. As a result, torque fluctuations caused by the motor rotation position can be suppressed.
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、一実施形態によるシフトバイワイヤシステムを示す斜視図であり、 図2は、一実施形態によるシフトバイワイヤシステムを示す概略構成図であり、 図3は、一実施形態によるシフトレンジ制御装置を示すブロック図であり、 図4は、一実施形態による通電相番号と通電相との対応関係を説明する説明図であり、 図5は、一実施形態による電流制御を説明するタイムチャートであり、 図6は、一実施形態による電流制御処理を説明するフローチャートであり、 図7は、一実施形態による電流制御処理を説明するタイムチャートであり、 図8は、参考例による電流制御処理を説明するタイムチャートである。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a perspective view showing a shift-by-wire system according to an embodiment. FIG. 2 is a schematic configuration diagram showing a shift-by-wire system according to one embodiment. FIG. 3 is a block diagram showing a shift range control device according to an embodiment. FIG. 4 is an explanatory diagram for explaining the correspondence between the energized phase number and the energized phase according to the embodiment. FIG. 5 is a time chart illustrating current control according to one embodiment. FIG. 6 is a flowchart illustrating the current control process according to the embodiment. FIG. 7 is a time chart illustrating the current control process according to the embodiment. FIG. 8 is a time chart for explaining the current control process according to the reference example.
   (一実施形態)
 以下、本開示によるモータ制御装置を図面に基づいて説明する。一実施形態を図1~図7に示す。図1および図2に示すように、モータ駆動システムであるシフトバイワイヤシステム1は、モータ10、シフトレンジ切替機構20、パーキングロック機構30、および、モータ制御装置としてのシフトレンジ制御装置40等を備える。モータ10は、図示しない車両に搭載されるバッテリ90から電力が供給されることで回転し、シフトレンジ切替機構20の駆動源として機能する。モータ10は、例えばスイッチトリラクタンスモータである。図3に示すように、モータ10は、図示しないステータの突極に巻回されるモータ巻線11を有する。モータ巻線11は、U相巻線111、V相巻線112およびW相巻線113を有する。モータ巻線11への通電を制御することで、図示しないロータを回転させる。例えば、ステータの突極数は12、ロータの突極数は8である。
(One Embodiment)
Hereinafter, the motor control device according to the present disclosure will be described with reference to the drawings. One embodiment is shown in FIGS. 1 to 7. As shown in FIGS. 1 and 2, the shift-by-wire system 1 which is a motor drive system includes a motor 10, a shift range switching mechanism 20, a parking lock mechanism 30, a shift range control device 40 as a motor control device, and the like. .. The motor 10 rotates by being supplied with electric power from a battery 90 mounted on a vehicle (not shown), and functions as a drive source for the shift range switching mechanism 20. The motor 10 is, for example, a switched reluctance motor. As shown in FIG. 3, the motor 10 has a motor winding 11 wound around a salient pole of a stator (not shown). The motor winding 11 has a U-phase winding 111, a V-phase winding 112, and a W-phase winding 113. By controlling the energization of the motor winding 11, a rotor (not shown) is rotated. For example, the number of salient poles of the stator is 12, and the number of salient poles of the rotor is 8.
 図2に示すように、回転角センサであるエンコーダ13は、モータ10のロータの回転位置を検出する。エンコーダ13は、例えば磁気式のロータリーエンコーダであって、ロータと一体に回転する磁石と、磁気検出用のホールIC等により構成される。エンコーダ13は、ロータの回転に同期して、所定角度ごとにA相およびB相のパルス信号であるエンコーダ信号を出力する。 As shown in FIG. 2, the encoder 13 which is a rotation angle sensor detects the rotation position of the rotor of the motor 10. The encoder 13 is, for example, a magnetic rotary encoder, which is composed of a magnet that rotates integrally with the rotor, a Hall IC for magnetic detection, and the like. The encoder 13 outputs an encoder signal, which is an A-phase and B-phase pulse signal, at predetermined angles in synchronization with the rotation of the rotor.
 減速機14は、モータ10のモータ軸と出力軸15との間に設けられ、モータ10の回転を減速して出力軸15に出力する。これにより、モータ10の回転がシフトレンジ切替機構20に伝達される。出力軸15には、出力軸15の角度を検出する出力軸センサ16が設けられる。出力軸センサ16は、例えばポテンショメータである。 The speed reducer 14 is provided between the motor shaft of the motor 10 and the output shaft 15, and decelerates the rotation of the motor 10 to output to the output shaft 15. As a result, the rotation of the motor 10 is transmitted to the shift range switching mechanism 20. The output shaft 15 is provided with an output shaft sensor 16 that detects the angle of the output shaft 15. The output shaft sensor 16 is, for example, a potentiometer.
 図1に示すように、シフトレンジ切替機構20は、ディテントプレート21、および、ディテントスプリング25等を有し、減速機14から出力された回転駆動力を、マニュアルバルブ28、および、パーキングロック機構30へ伝達する。 As shown in FIG. 1, the shift range switching mechanism 20 has a detent plate 21, a detent spring 25, and the like, and applies the rotational driving force output from the speed reducer 14 to the manual valve 28 and the parking lock mechanism 30. Communicate to.
 ディテントプレート21は、出力軸15に固定され、モータ10により駆動される。ディテントプレート21には、出力軸15と平行に突出するピン24が設けられる。ピン24は、マニュアルバルブ28と接続される。ディテントプレート21がモータ10によって駆動されることで、マニュアルバルブ28は軸方向に往復移動する。すなわち、シフトレンジ切替機構20は、モータ10の回転運動を直線運動に変換してマニュアルバルブ28に伝達する。マニュアルバルブ28は、バルブボディ29に設けられる。マニュアルバルブ28が軸方向に往復移動することで、図示しない油圧クラッチへの油圧供給路が切り替えられ、油圧クラッチの係合状態が切り替わることでシフトレンジが変更される。 The detent plate 21 is fixed to the output shaft 15 and driven by the motor 10. The detent plate 21 is provided with a pin 24 that projects parallel to the output shaft 15. The pin 24 is connected to the manual valve 28. When the detent plate 21 is driven by the motor 10, the manual valve 28 reciprocates in the axial direction. That is, the shift range switching mechanism 20 converts the rotational motion of the motor 10 into a linear motion and transmits it to the manual valve 28. The manual valve 28 is provided on the valve body 29. When the manual valve 28 reciprocates in the axial direction, the hydraulic supply path to the hydraulic clutch (not shown) is switched, and the shift range is changed by switching the engagement state of the hydraulic clutch.
 ディテントプレート21のディテントスプリング25側には、2つの谷部が設けられる。ディテントスプリング25は、弾性変形可能な板状部材であり、先端にディテントローラ26が設けられる。ディテントスプリング25は、ディテントローラ26をディテントプレート21の回動中心側に付勢する。ディテントプレート21に所定以上の回転力が加わると、ディテントスプリング25が弾性変形し、ディテントローラ26が谷部間を移動する。ディテントローラ26が谷部のいずれかに嵌まり込むことで、ディテントプレート21の揺動が規制され、マニュアルバルブ28の軸方向位置、および、パーキングロック機構30の状態が決定され、自動変速機5のシフトレンジが固定される。 Two valleys are provided on the detent spring 25 side of the detent plate 21. The detent spring 25 is a plate-shaped member that can be elastically deformed, and a detent roller 26 is provided at the tip thereof. The detent spring 25 urges the detent roller 26 toward the center of rotation of the detent plate 21. When a predetermined or greater rotational force is applied to the detent plate 21, the detent spring 25 is elastically deformed, and the detent roller 26 moves between the valleys. By fitting the detent roller 26 into any of the valleys, the swing of the detent plate 21 is regulated, the axial position of the manual valve 28 and the state of the parking lock mechanism 30 are determined, and the automatic transmission 5 The shift range of is fixed.
 パーキングロック機構30は、パーキングロッド31、円錐体32、パーキングロックポール33、軸部34、および、パーキングギア35を有する。パーキングロッド31は、略L字形状に形成され、一端311側がディテントプレート21に固定される。パーキングロッド31の他端312側には、円錐体32が設けられる。円錐体32は、他端312側にいくほど縮径するように形成される。ディテントローラ26がPレンジに対応する谷部に嵌まり込む方向にディテントプレート21が回転すると、円錐体32が矢印Pの方向に移動する。 The parking lock mechanism 30 has a parking rod 31, a cone 32, a parking lock pole 33, a shaft portion 34, and a parking gear 35. The parking rod 31 is formed in a substantially L shape, and one end 311 side is fixed to the detent plate 21. A cone 32 is provided on the other end 312 side of the parking rod 31. The conical body 32 is formed so that the diameter is reduced toward the other end 312 side. When the detent plate 21 rotates in the direction in which the detent roller 26 fits into the valley corresponding to the P range, the cone 32 moves in the direction of the arrow P.
 パーキングロックポール33は、円錐体32の円錐面と当接し、軸部34を中心に揺動可能に設けられる。パーキングロックポール33のパーキングギア35側には、パーキングギア35と噛み合い可能な凸部331が設けられる。ディテントプレート21の回転により、円錐体32が矢印P方向に移動すると、パーキングロックポール33が押し上げられ、凸部331とパーキングギア35とが噛み合う。一方、円錐体32が矢印NotP方向に移動すると、凸部331とパーキングギア35との噛み合いが解除される。 The parking lock pole 33 comes into contact with the conical surface of the conical body 32 and is provided so as to be swingable around the shaft portion 34. On the parking gear 35 side of the parking lock pole 33, a convex portion 331 that can mesh with the parking gear 35 is provided. When the cone 32 moves in the direction of the arrow P due to the rotation of the detent plate 21, the parking lock pole 33 is pushed up and the convex portion 331 and the parking gear 35 mesh with each other. On the other hand, when the cone 32 moves in the direction of the arrow NotP, the meshing between the convex portion 331 and the parking gear 35 is released.
 パーキングギア35は、図示しない車軸に設けられ、パーキングロックポール33の凸部331と噛み合い可能に設けられる。パーキングギア35と凸部331とが噛み合うと、車軸の回転が規制される。シフトレンジがP以外のレンジであるNotPレンジのとき、パーキングギア35はパーキングロックポール33によりロックされず、車軸の回転は、パーキングロック機構30により妨げられない。また、シフトレンジがPレンジのとき、パーキングギア35はパーキングロックポール33によってロックされ、車軸の回転が規制される。 The parking gear 35 is provided on an axle (not shown) so as to be able to mesh with the convex portion 331 of the parking lock pole 33. When the parking gear 35 and the convex portion 331 mesh with each other, the rotation of the axle is restricted. When the shift range is the NotP range, which is a range other than P, the parking gear 35 is not locked by the parking lock pole 33, and the rotation of the axle is not hindered by the parking lock mechanism 30. Further, when the shift range is the P range, the parking gear 35 is locked by the parking lock pole 33, and the rotation of the axle is restricted.
 図2および図3に示すように、シフトレンジ制御装置40は、駆動回路部41、電流検出部45、および、ECU50等を備える。図3に示すように、駆動回路部41は、3つのスイッチング素子411、412、413を有する。本実施形態では、駆動回路部41は、各相の巻線111~113とグランドとの間に設けられる。スイッチング素子411~413は、各相の巻線111~113と対応して設けられ、対応する相の通電を切り替える。本実施形態のスイッチング素子411~413は、MOSFETであるが、IGBT等であってもよい。 As shown in FIGS. 2 and 3, the shift range control device 40 includes a drive circuit unit 41, a current detection unit 45, an ECU 50, and the like. As shown in FIG. 3, the drive circuit unit 41 has three switching elements 411, 412, and 413. In the present embodiment, the drive circuit unit 41 is provided between the windings 111 to 113 of each phase and the ground. The switching elements 411 to 413 are provided corresponding to the windings 111 to 113 of each phase, and switch the energization of the corresponding phase. The switching elements 411 to 413 of this embodiment are MOSFETs, but may be IGBTs or the like.
 モータ巻線11の巻線111~113は、結線部115で結線される。結線部115には、電源ライン901を経由して、バッテリ90から電力が供給される。電源ライン901には、リレー部91が設けられ、リレー部91がオンされているとき、結線部115に電力が供給される。 The windings 111 to 113 of the motor winding 11 are connected by the connection portion 115. Power is supplied to the connection portion 115 from the battery 90 via the power supply line 901. The power supply line 901 is provided with a relay unit 91, and when the relay unit 91 is turned on, power is supplied to the connection unit 115.
 電流検出部45は、電流検出素子451~453を有し、巻線111~113の電流を相毎に検出する。本実施形態の電流検出素子451~453は、シャント抵抗であるが、ホール素子等、シャント抵抗以外のものを用いてもよい。電流検出素子451は、スイッチング素子411とU相巻線111との間に設けられ、U相電流Iuを検出する。電流検出素子452は、スイッチング素子412とV相巻線112との間に設けられ、V相電流Ivを検出する。電流検出素子453は、スイッチング素子413とW相巻線113との間に設けられ、W相電流Iwを検出する。電流検出素子451~453の検出値は、電流制限回路55に出力される。以下、電流検出素子451の検出値をU相電流検出値Iu_det、電流検出素子452の検出値をV相電流検出値Iv_det、電流検出素子453の検出値をW相電流検出値Iw_detとする。 The current detection unit 45 has current detection elements 451 to 453, and detects the currents of the windings 111 to 113 for each phase. The current detection elements 451 to 453 of the present embodiment are shunt resistors, but a Hall element or the like other than the shunt resistor may be used. The current detection element 451 is provided between the switching element 411 and the U-phase winding 111, and detects the U-phase current Iu. The current detection element 452 is provided between the switching element 412 and the V-phase winding 112, and detects the V-phase current Iv. The current detection element 453 is provided between the switching element 413 and the W-phase winding 113, and detects the W-phase current Iw. The detected values of the current detecting elements 451 to 453 are output to the current limiting circuit 55. Hereinafter, the detection value of the current detection element 451 is referred to as a U-phase current detection value Iu_det, the detection value of the current detection element 452 is a V-phase current detection value Iv_det, and the detection value of the current detection element 453 is a W-phase current detection value Iw_det.
 ECU50は、マイコン51、および、電流制限回路55を有する。ECU50は、内部にいずれも図示しないCPU、ROM、RAM、I/O、及び、これらの構成を接続するバスライン等を備えている。ECU50における各処理は、ROM等の実体的なメモリ装置(すなわち、読み出し可能非一時的有形記録媒体)に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。 The ECU 50 has a microcomputer 51 and a current limiting circuit 55. The ECU 50 includes a CPU, ROM, RAM, I / O, and a bus line connecting these configurations, which are not shown inside. Each process in the ECU 50 may be a software process by executing a program stored in advance in a physical memory device such as a ROM (that is, a readable non-temporary tangible recording medium) on the CPU, or a dedicated process. It may be hardware processing by an electronic circuit.
 図2に示すように、ECU50は、ドライバ要求シフトレンジに応じたシフト信号、ブレーキスイッチからの信号および車速等に基づいてモータ10の駆動を制御することで、シフトレンジの切り替えを制御する。また、ECU50は、車速、アクセル開度、および、ドライバ要求シフトレンジ等に基づき、変速用油圧制御ソレノイド6の駆動を制御する。変速用油圧制御ソレノイド6を制御することで、変速段が制御される。変速用油圧制御ソレノイド6は、変速段数等に応じた本数が設けられる。本実施形態では、1つのECU50がモータ10およびソレノイド6の駆動を制御するが、モータ10を制御するモータ制御用のモータECUと、ソレノイド制御用のAT-ECUとを分けてもよい。以下、モータ10の駆動制御を中心に説明する。 As shown in FIG. 2, the ECU 50 controls the switching of the shift range by controlling the drive of the motor 10 based on the shift signal according to the driver required shift range, the signal from the brake switch, the vehicle speed, and the like. Further, the ECU 50 controls the drive of the shift hydraulic control solenoid 6 based on the vehicle speed, the accelerator opening degree, the driver required shift range, and the like. The shift stage is controlled by controlling the shift hydraulic control solenoid 6. The number of shift hydraulic control solenoids 6 is provided according to the number of shift stages and the like. In the present embodiment, one ECU 50 controls the drive of the motor 10 and the solenoid 6, but the motor ECU for controlling the motor 10 and the AT-ECU for solenoid control may be separated. Hereinafter, the drive control of the motor 10 will be mainly described.
 マイコン51は、機能ブロックとして、回転速度演算部52、目標電流演算部53、および、通電指令部54を有する。回転速度演算部52は、エンコーダ13からのエンコーダ信号に基づき、モータ回転速度を演算する。目標電流演算部53は、電流制御目標値Xを演算する。通電指令部54は、エンコーダ13からのエンコーダ信号に基づき、通電相を指令する。本実施形態では、エンコーダ信号のパルスエッジ検出に応じた割込演算により、通電相を指令する。 The microcomputer 51 has a rotation speed calculation unit 52, a target current calculation unit 53, and an energization command unit 54 as functional blocks. The rotation speed calculation unit 52 calculates the motor rotation speed based on the encoder signal from the encoder 13. The target current calculation unit 53 calculates the current control target value X. The energization command unit 54 commands the energization phase based on the encoder signal from the encoder 13. In the present embodiment, the energizing phase is commanded by an interrupt calculation according to the pulse edge detection of the encoder signal.
 通電相の切り替えを図4に基づいて説明する。図4に示すように、通電相番号と通電相とが対応付けられており、エンコーダ信号のパルスエッジが検出されるごとに、通電相番号を1ずらし、通電相を切り替えることでモータ10を回転させる。図4の例では、通電相番号は、0~11が1サイクルとして定義されており、各通電相番号のときに通電する相を丸印で示している。本実施形態では、モータ10の正回転時、エンコーダパルスエッジ毎に通電相番号を1増やし、通電相番号が11になると、次は0に戻る、といった具合である。また、モータ10の逆回転時、エンコーダパルスエッジ毎に通電相番号を1減らし、通電相番号が0になると、次は11に戻る、といった具合である。以下、通電相番号が2、3、6、7、10、11のときのように、通電相が1相である場合を1相通電、通電相番号が0、1、4、5、8、9のときのように、通電相が2相である場合を2相通電とする。 Switching of the energizing phase will be described with reference to FIG. As shown in FIG. 4, the energized phase number and the energized phase are associated with each other, and each time the pulse edge of the encoder signal is detected, the energized phase number is shifted by 1 and the energized phase is switched to rotate the motor 10. Let me. In the example of FIG. 4, 0 to 11 are defined as one cycle of the energized phase number, and the phase energized at each energized phase number is indicated by a circle. In the present embodiment, when the motor 10 rotates in the forward direction, the energized phase number is incremented by 1 for each encoder pulse edge, and when the energized phase number reaches 11, the energized phase number returns to 0, and so on. Further, when the motor 10 rotates in the reverse direction, the energizing phase number is decremented by 1 for each encoder pulse edge, and when the energizing phase number becomes 0, the current state returns to 11 and so on. Hereinafter, when the energized phase number is 1, as in the case where the energized phase number is 2, 3, 6, 7, 10, 11, one phase is energized, and the energized phase number is 0, 1, 4, 5, 8, When the energizing phase is two phases as in the case of 9, two-phase energization is performed.
 電流制限回路55は、ハードウェアにて構成され、電流検出値Iu_det、Iv_dt、Iw_detに基づいてスイッチング素子411~413のオンオフ作動を制御する。U相電流検出値Iu_detに基づくスイッチング素子411のオンオフ作動を図5に基づいて説明する。 The current limiting circuit 55 is composed of hardware and controls the on / off operation of the switching elements 411 to 413 based on the current detection values Iu_det, Iv_dt, and Iw_det. The on / off operation of the switching element 411 based on the U-phase current detection value Iu_det will be described with reference to FIG.
 U相電流検出値Iu_detが上限値X_hiに到達するとスイッチング素子411をオフにし、下限値X_loまで低下するとスイッチング素子411をオンにする。上限値X_hiおよび下限値X_loは、電流制御目標値Xが中心となるように設定される。U相電流Iuの制御幅をαとすると、上限値X_hi=X+(1/2)×α、下限値X_lo=X-(1/2)×αである。これにより、U相電流Iuは、平均として電流制御目標値Xに制御される。V相およびW相については、U相と同様であるので、説明を省略する。また、電流制御手法は、例えばフィードバック制御によるデューティ変更等であってもよい。 When the U-phase current detection value Iu_det reaches the upper limit value X_hi, the switching element 411 is turned off, and when it decreases to the lower limit value X_lo, the switching element 411 is turned on. The upper limit value X_hi and the lower limit value X_lo are set so that the current control target value X is at the center. Assuming that the control width of the U-phase current Iu is α, the upper limit value X_hi = X + (1/2) × α and the lower limit value X_lo = X− (1/2) × α. As a result, the U-phase current Iu is controlled to the current control target value X on average. Since the V phase and the W phase are the same as the U phase, the description thereof will be omitted. Further, the current control method may be, for example, a duty change by feedback control or the like.
 ところで、ディテントローラ26がディテントプレート21の壁部に当接するまでモータ10を駆動することで、モータ10の駆動限界位置を学習する場合、耐久性等の面から、低速にて行うことが好ましい。ここで、図8に示す参考例のように、低速回転領域(例えば300[rpm]以下)にてモータ10を駆動する場合、矩形波となるように電流を制御しても、ロータとステータの位置関係によるインダクタンス変化に起因するトルクリップルが発生する虞がある。具体的には、2相通電時と比較し、1相通電時のトルクが相対的に大きくなる。 By the way, when learning the drive limit position of the motor 10 by driving the motor 10 until the detent roller 26 comes into contact with the wall portion of the detent plate 21, it is preferable to perform it at a low speed from the viewpoint of durability and the like. Here, as in the reference example shown in FIG. 8, when the motor 10 is driven in a low speed rotation region (for example, 300 [rpm] or less), even if the current is controlled so as to have a rectangular wave, the rotor and the stator Torque ripple may occur due to the change in inductance due to the positional relationship. Specifically, the torque during one-phase energization is relatively larger than that during two-phase energization.
 そこで本実施形態では、低速回転領域において、電流制御目標値Xを可変とすることで、トルクリップルを低減する。本実施形態の電流制御処理を図6のフローチャートに基づいて説明する。この処理は、マイコン51において、電流制御中に所定の周期で実行される。以下、ステップS101の「ステップ」を省略し、単に記号「S」と記す。 Therefore, in the present embodiment, the torque ripple is reduced by making the current control target value X variable in the low speed rotation region. The current control process of this embodiment will be described with reference to the flowchart of FIG. This process is executed in the microcomputer 51 at a predetermined cycle during the current control. Hereinafter, the “step” in step S101 is omitted and simply referred to as the symbol “S”.
 S101では、マイコン51は、モータ回転速度を演算する。S102では、マイコン51は、低速回転領域か否か判断する。ここでは、モータ回転速度が、低速判定値(例えば300[rpm])以下の場合、低速回転領域であると判定する。低速回転領域ではないと判断された場合(S102:NO)、S104へ移行し、電流制御目標値Xを初期値Xaとする。低速回転領域であると判断された場合(S102:YES)、S103へ移行する。 In S101, the microcomputer 51 calculates the motor rotation speed. In S102, the microcomputer 51 determines whether or not it is in the low-speed rotation region. Here, when the motor rotation speed is equal to or less than the low speed determination value (for example, 300 [rpm]), it is determined that the motor rotation speed is in the low speed rotation region. When it is determined that the rotation is not in the low-speed rotation region (S102: NO), the process shifts to S104, and the current control target value X is set as the initial value Xa. When it is determined that the rotation speed region is low (S102: YES), the process proceeds to S103.
 S103では、マイコン51は、通電パターンが1相通電か否か判断する。通電パターンが1相通電ではないと判断された場合(S103:NO)、すなわち通電パターンが2相通電の場合、S104へ移行し、電流制御目標値Xを初期値Xaとする。通電パターンが1相通電であると判断された場合(S103:YES)、S105へ移行する。 In S103, the microcomputer 51 determines whether or not the energization pattern is one-phase energization. When it is determined that the energization pattern is not one-phase energization (S103: NO), that is, when the energization pattern is two-phase energization, the process shifts to S104, and the current control target value X is set as the initial value Xa. When it is determined that the energization pattern is one-phase energization (S103: YES), the process proceeds to S105.
 S105では、マイコン51は、電流制御目標値Xを、初期値Xaから変更し、Xa×kとする。係数kは、低速回転領域でのトルクリップルが抑制されるように、適合等により、0<k<1の任意の値(例えば0.75)に設定される。また、低速回転領域において、制御幅αについても、係数jを乗じることで、可変としてもよい。係数k、jは、同じ値であってもよいし、異なる値であってもよい。 In S105, the microcomputer 51 changes the current control target value X from the initial value Xa to Xa × k. The coefficient k is set to an arbitrary value of 0 <k <1 (for example, 0.75) by matching or the like so that the torque ripple in the low speed rotation region is suppressed. Further, in the low speed rotation region, the control width α may also be made variable by multiplying by the coefficient j. The coefficients k and j may have the same value or may have different values.
 本実施形態の電流制御を図7のタイムチャートに基づいて説明する。図7では、上段から、通電パターン、U相電流、V相電流、W相電流、モータトルクとする。図8も同様である。本実施形態では、ロータとステータとの位置関係より、相対的にトルクが出やすい1相通電時の電流が2相通電時よりも小さくなるように電流制御目標値Xを設定し、電流波形を変動させることで、インダクタンス変化分を吸収する。これにより、トルクリップルを低減することができる。また、モータ回転位置による電流制御目標値Xの変更処理を低速回転領域にて行い、低速回転領域以外では行わない。これにより、マイコン負荷の増大を抑制することができる。 The current control of this embodiment will be described with reference to the time chart of FIG. In FIG. 7, the energization pattern, U-phase current, V-phase current, W-phase current, and motor torque are shown from the top. The same applies to FIG. In the present embodiment, the current control target value X is set so that the current during one-phase energization, which tends to generate torque relatively easily, is smaller than that during two-phase energization due to the positional relationship between the rotor and the stator, and the current waveform is set. By fluctuating, the change in inductance is absorbed. Thereby, the torque ripple can be reduced. Further, the process of changing the current control target value X according to the motor rotation position is performed in the low-speed rotation region, and is not performed in other than the low-speed rotation region. As a result, an increase in the load on the microcomputer can be suppressed.
 以上説明したように、シフトレンジ制御装置40は、3相の巻線111~113を有するモータ10の駆動を制御するものであって、駆動回路部41と、電流検出部45と、エンコーダ13と、ECU50と、を備える。駆動回路部41は、巻線111~113の各相に対応して設けられるスイッチング素子411~413を有する。電流検出部45は、巻線111~113の電流を検出する。エンコーダ13は、モータ10の回転位置であるモータ回転位置を検出する。 As described above, the shift range control device 40 controls the drive of the motor 10 having the three-phase windings 111 to 113, and includes the drive circuit unit 41, the current detection unit 45, and the encoder 13. , ECU 50. The drive circuit unit 41 has switching elements 411 to 413 provided corresponding to each phase of the windings 111 to 113. The current detection unit 45 detects the currents of the windings 111 to 113. The encoder 13 detects the motor rotation position, which is the rotation position of the motor 10.
 ECU50は、回転速度演算部52、目標電流演算部53、通電指令部54、および、電流制限回路55を有する。回転速度演算部52は、モータ10の回転速度であるモータ回転速度を演算する。目標電流演算部53は、電流制御目標値Xを演算する。通電指令部54は、エンコーダ13の検出値であるエンコーダカウント値に応じた通電相を指令する。電流制限回路55は、巻線111~113に通電される電流が電流制御目標値Xとなるようにスイッチング素子411~413のオンオフ作動を制御する。 The ECU 50 has a rotation speed calculation unit 52, a target current calculation unit 53, an energization command unit 54, and a current limiting circuit 55. The rotation speed calculation unit 52 calculates the motor rotation speed, which is the rotation speed of the motor 10. The target current calculation unit 53 calculates the current control target value X. The energization command unit 54 commands the energization phase according to the encoder count value, which is the detection value of the encoder 13. The current limiting circuit 55 controls the on / off operation of the switching elements 411 to 413 so that the current applied to the windings 111 to 113 becomes the current control target value X.
 モータ回転速度が低速回転領域である場合、モータ回転位置に応じて電流制御目標値Xを可変にする。本実施形態では、エンコーダカウント値に応じて電流制御目標値Xを可変にすることで、ロータとステータのティース位置関係によって生じるトルクリップルを低減することができ、モータ10の駆動トルクを安定させることができる。また、エンコーダカウント値に応じた電流制御目標値Xを可変とするのを低速回転領域に限定し、高速回転領域では電流制御目標値Xを可変させないことで、高速回転時におけるマイコン51の演算負荷を低減することができる。 When the motor rotation speed is in the low speed rotation range, the current control target value X is made variable according to the motor rotation position. In the present embodiment, by making the current control target value X variable according to the encoder count value, the torque ripple generated by the tooth positional relationship between the rotor and the stator can be reduced, and the drive torque of the motor 10 is stabilized. Can be done. Further, by limiting the variable current control target value X according to the encoder count value to the low-speed rotation region and not changing the current control target value X in the high-speed rotation region, the computing load of the microcomputer 51 during high-speed rotation Can be reduced.
 ECU50は、モータ回転位置に応じ、巻線111~113の1相に通電する1相通電と、巻線111~113の2相に通電する2相通電とを切り替えることで、モータ10を回転させる。目標電流演算部53は、低速回転領域において、1相通電時の電流が2相通電時より小さくなるように電流制御目標値Xを設定する。これにより、通電状態やロータ位置によるモータ10のトルク変動を抑制することができる。 The ECU 50 rotates the motor 10 by switching between one-phase energization that energizes one phase of windings 111 to 113 and two-phase energization that energizes two phases of windings 111 to 113 according to the motor rotation position. .. The target current calculation unit 53 sets the current control target value X so that the current during one-phase energization is smaller than that during two-phase energization in the low-speed rotation region. This makes it possible to suppress torque fluctuations of the motor 10 depending on the energized state and the rotor position.
 目標電流演算部53は、モータ回転速度が低速判定値以下の場合、1相通電時の電流制御目標値を、2相通電時の電流制御目標値に換算係数k(ただし0<k<1)を乗じた値とする。これにより、1相通電時と2相通電時とでのトルク変動を適切に抑制することができる。 When the motor rotation speed is equal to or less than the low speed determination value, the target current calculation unit 53 converts the current control target value at the time of one-phase energization into the current control target value at the time of two-phase energization with a conversion coefficient k (however, 0 <k <1). Is the value multiplied by. Thereby, the torque fluctuation between the one-phase energization and the two-phase energization can be appropriately suppressed.
 電流制限回路55は、巻線111~113に通電される電流が電流制御目標値Xより大きい値である上限値X_hiに到達するとスイッチング素子411~413をオフし、電流制御目標値Xより小さい値である下限値X_loまで低下するとスイッチング素子411~413をオンにする。低速回転領域において、上限値X_hiと下限値X_loとの幅である制御幅αは、1相通電時と2相通電時とで異なっている。これにより、巻線111~113に流れる電流を適切に制御することができる。 The current limiting circuit 55 turns off the switching elements 411 to 413 when the current energized in the windings 111 to 113 reaches the upper limit value X_hi, which is a value larger than the current control target value X, and is smaller than the current control target value X. When the value drops to the lower limit value X_lo, the switching elements 411 to 413 are turned on. In the low-speed rotation region, the control width α, which is the width between the upper limit value X_hi and the lower limit value X_lo, is different between the one-phase energization and the two-phase energization. Thereby, the current flowing through the windings 111 to 113 can be appropriately controlled.
 本実施形態では、シフトレンジ制御装置40が「モータ制御装置」、エンコーダ13が「回転検出部」、ECU50が「制御部」、電流制限回路55が「スイッチ制御部」に対応する。 In the present embodiment, the shift range control device 40 corresponds to the "motor control device", the encoder 13 corresponds to the "rotation detection unit", the ECU 50 corresponds to the "control unit", and the current limiting circuit 55 corresponds to the "switch control unit".
   (他の実施形態)
 上記実施形態では、モータ回転速度が低速判定値以下の場合を低速回転領域とし、所定の係数kを乗じることで、1相通電時の電流制御目標値を設定する。他の実施形態では、低速回転領域において、回転速度に応じて電流制御目標値を漸減させてもよいし、ステップ的に減少させるようにしてもよい。また、上記実施形態では、1相通電時と2相通電時とで電流制御目標値を可変にしている。他の実施形態では、通電相数によらず、ロータとステータとの関係によるインダクタンス変化分を吸収できるように、モータ回転位置に応じて電流制御目標値を可変にしてもよい。
(Other embodiments)
In the above embodiment, the case where the motor rotation speed is equal to or less than the low speed determination value is set as the low speed rotation region, and the current control target value at the time of one-phase energization is set by multiplying by a predetermined coefficient k. In another embodiment, in the low-speed rotation region, the current control target value may be gradually reduced according to the rotation speed, or may be gradually reduced. Further, in the above embodiment, the current control target value is made variable between the one-phase energization and the two-phase energization. In another embodiment, the current control target value may be changed according to the motor rotation position so that the change in inductance due to the relationship between the rotor and the stator can be absorbed regardless of the number of energized phases.
 上記実施形態では、回転速度演算部、目標電流演算部および通電指令部がマイコンにて構成され、スイッチ制御部がハード回路で構成される。他の実施形態では、制御部における各処理をソフトウェアで構成するか、ハードウェアで構成するかは問わない。 In the above embodiment, the rotation speed calculation unit, the target current calculation unit, and the energization command unit are composed of a microcomputer, and the switch control unit is composed of a hard circuit. In other embodiments, it does not matter whether each process in the control unit is configured by software or hardware.
 上記実施形態では、エンコーダによりモータの回転位置を検出する。他の実施形態では、エンコーダに限らず、レゾルバ等、どのようなものを用いてもよい。上記実施形態では、出力軸センサとしてポテンショメータを例示した。他の実施形態では、出力軸センサは、どのようなものであってもよい。また、出力軸センサを省略してもよい。 In the above embodiment, the rotational position of the motor is detected by the encoder. In other embodiments, not only the encoder but also any resolver or the like may be used. In the above embodiment, a potentiometer is exemplified as an output shaft sensor. In other embodiments, the output shaft sensor may be any. Further, the output shaft sensor may be omitted.
 上記実施形態では、ディテントプレートには2つの凹部が設けられる。他の実施形態では、凹部の数は2つに限らず、例えばレンジ毎に凹部が設けられていてもよい。また、シフトレンジ切替機構やパーキングロック機構等は、上記実施形態と異なっていてもよい。 In the above embodiment, the detent plate is provided with two recesses. In other embodiments, the number of recesses is not limited to two, and recesses may be provided for each range, for example. Further, the shift range switching mechanism, the parking lock mechanism, and the like may be different from those in the above embodiment.
 上記実施形態では、モータ軸と出力軸との間に減速機が設けられる。減速機の詳細について、上記実施形態では言及していないが、例えば、サイクロイド歯車、遊星歯車、モータ軸と略同軸の減速機構から駆動軸へトルクを伝達する平歯歯車を用いたものや、これらを組み合わせて用いたもの等、どのような構成であってもよい。また、他の実施形態では、モータ軸と出力軸との間の減速機を省略してもよいし、減速機以外の機構を設けてもよい。 In the above embodiment, a speed reducer is provided between the motor shaft and the output shaft. Although the details of the speed reducer are not mentioned in the above embodiment, for example, cycloid gears, planetary gears, spur gears that transmit torque from a speed reduction mechanism substantially coaxial with the motor shaft to the drive shaft, and these. Any configuration may be used, such as a combination of the above. Further, in another embodiment, the speed reducer between the motor shaft and the output shaft may be omitted, or a mechanism other than the speed reducer may be provided.
 上記実施形態では、モータ制御装置は、シフトレンジ切替システムに適用される。他の実施形態では、モータ制御装置をシフトレンジ切替システム以外の装置に適用してもよい。特に、低速回転領域にてモータから一定トルクの出力が要求される装置に好適に適用される。 In the above embodiment, the motor control device is applied to the shift range switching system. In other embodiments, the motor control device may be applied to devices other than the shift range switching system. In particular, it is suitably applied to a device that requires a constant torque output from a motor in a low speed rotation region.
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。以上、本開示は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。 The controls and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done. Alternatively, the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer. As described above, the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the spirit of the present embodiment.
 本開示は、実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。 This disclosure has been described in accordance with the embodiments. However, the present disclosure is not limited to such embodiments and structures. The present disclosure also includes various variations and variations within an equal range. Also, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are within the scope and ideology of the present disclosure.

Claims (4)

  1.  巻線(111~113)を有するモータ(10)の駆動を制御するモータ制御装置であって、
     前記巻線の各相に対応して設けられるスイッチング素子(411~413)を有する駆動回路部(41)と、
     前記巻線の電流を検出する電流検出部(45)と、
     前記モータの回転位置であるモータ回転位置を検出する回転検出部(13)と、
     前記モータの回転速度であるモータ回転速度を演算する回転速度演算部(52)、電流制御目標値を演算する目標電流演算部(53)、および、前記回転検出部の検出値に応じた通電相を指令する通電指令部(54)、および、前記巻線に通電される電流が前記電流制御目標値となるように前記スイッチング素子のオンオフ作動を制御するスイッチ制御部(55)を有する制御部(50)と、
     を備え、
     前記モータ回転速度が低速回転領域である場合、前記モータ回転位置に応じて前記電流制御目標値を可変にするモータ制御装置。
    A motor control device that controls the drive of a motor (10) having windings (111 to 113).
    A drive circuit unit (41) having a switching element (411 to 413) provided corresponding to each phase of the winding, and a drive circuit unit (41).
    A current detection unit (45) that detects the current of the winding, and
    A rotation detection unit (13) that detects the motor rotation position, which is the rotation position of the motor, and
    A rotation speed calculation unit (52) that calculates the motor rotation speed, which is the rotation speed of the motor, a target current calculation unit (53) that calculates the current control target value, and an energizing phase corresponding to the detection value of the rotation detection unit. A control unit (54) having an energization command unit (54) for commanding the above and a switch control unit (55) for controlling the on / off operation of the switching element so that the current energized in the winding becomes the current control target value. 50) and
    With
    A motor control device that changes the current control target value according to the motor rotation position when the motor rotation speed is in the low speed rotation region.
  2.  前記制御部は、前記モータ回転位置に応じ、前記巻線の1相に通電する1相通電と、前記巻線の2相に通電する2相通電とを切り替えることで、前記モータを回転させ、
     前記目標電流演算部は、低速回転領域において、前記1相通電時の電流が前記2相通電時より小さくなるように前記電流制御目標値を設定する請求項1に記載のモータ制御装置。
    The control unit rotates the motor by switching between one-phase energization that energizes one phase of the winding and two-phase energization that energizes the two phases of the winding according to the motor rotation position.
    The motor control device according to claim 1, wherein the target current calculation unit sets the current control target value so that the current during the one-phase energization is smaller than that during the two-phase energization in the low-speed rotation region.
  3.  前記目標電流演算部は、前記モータ回転速度が低速判定値以下の場合、前記1相通電時の前記電流制御目標値を、前記2相通電時の前記電流制御目標値に換算係数k(ただし0<k<1)を乗じた値とする請求項2に記載のモータ制御装置。 When the motor rotation speed is equal to or lower than the low speed determination value, the target current calculation unit converts the current control target value during the one-phase energization into the current control target value during the two-phase energization by a conversion coefficient k (however, 0). The motor control device according to claim 2, wherein the value is multiplied by <k <1).
  4.  前記スイッチ制御部は、前記巻線に通電される電流が前記電流制御目標値より大きい値である上限値に到達すると前記スイッチング素子をオフし、前記電流制御目標値より小さい値である下限値まで低下すると前記スイッチング素子をオンするものであって、
     前記上限値と前記下限値との幅である制御幅は、前記低速回転領域において、前記1相通電時と前記2相通電時とで異なっている請求項2または3に記載のモータ制御装置。
    When the current energized in the winding reaches the upper limit value which is larger than the current control target value, the switch control unit turns off the switching element and reaches the lower limit value which is smaller than the current control target value. When it decreases, the switching element is turned on.
    The motor control device according to claim 2 or 3, wherein the control width, which is the width between the upper limit value and the lower limit value, is different between the one-phase energization and the two-phase energization in the low-speed rotation region.
PCT/JP2021/014257 2020-04-06 2021-04-02 Motor control device WO2021205997A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-068381 2020-04-06
JP2020068381A JP7363648B2 (en) 2020-04-06 2020-04-06 motor control device

Publications (1)

Publication Number Publication Date
WO2021205997A1 true WO2021205997A1 (en) 2021-10-14

Family

ID=78022105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014257 WO2021205997A1 (en) 2020-04-06 2021-04-02 Motor control device

Country Status (2)

Country Link
JP (1) JP7363648B2 (en)
WO (1) WO2021205997A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11206171A (en) * 1998-01-13 1999-07-30 Matsushita Electric Ind Co Ltd Brushless dc motor and its drive controlling method
JP2001128479A (en) * 1999-10-25 2001-05-11 Yamaha Motor Co Ltd Drive control method and device of dc commutatorless motor
JP2002136199A (en) * 2000-10-30 2002-05-10 Meidensha Corp Pm motor control method
JP2002233184A (en) * 2001-02-02 2002-08-16 Denso Corp Drive for reluctance motor
JP2012090462A (en) * 2010-10-21 2012-05-10 Denso Corp Motor controller
WO2014128887A1 (en) * 2013-02-21 2014-08-28 三菱電機株式会社 Motor control device
JP2019110674A (en) * 2017-12-18 2019-07-04 株式会社デンソー Motor control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11206171A (en) * 1998-01-13 1999-07-30 Matsushita Electric Ind Co Ltd Brushless dc motor and its drive controlling method
JP2001128479A (en) * 1999-10-25 2001-05-11 Yamaha Motor Co Ltd Drive control method and device of dc commutatorless motor
JP2002136199A (en) * 2000-10-30 2002-05-10 Meidensha Corp Pm motor control method
JP2002233184A (en) * 2001-02-02 2002-08-16 Denso Corp Drive for reluctance motor
JP2012090462A (en) * 2010-10-21 2012-05-10 Denso Corp Motor controller
WO2014128887A1 (en) * 2013-02-21 2014-08-28 三菱電機株式会社 Motor control device
JP2019110674A (en) * 2017-12-18 2019-07-04 株式会社デンソー Motor control device

Also Published As

Publication number Publication date
JP2021166426A (en) 2021-10-14
JP7363648B2 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
US11226033B2 (en) Shift range control device
JP6601322B2 (en) Shift range switching device
WO2017179337A1 (en) Shift range control device
US10615724B2 (en) Shift range control apparatus
JP6569584B2 (en) Shift range control device
US10644622B2 (en) Shift range control apparatus
US11655894B2 (en) Shift range control device
US11606048B2 (en) Shift range control apparatus
US11084493B2 (en) Shift range control device
JP6992481B2 (en) Motor control device
WO2021205997A1 (en) Motor control device
WO2019176849A1 (en) Shift range control device
US11894792B2 (en) Motor control device
WO2020045146A1 (en) Shift range control device
US20220060138A1 (en) Motor control device
JP2019033620A (en) Motor control device
JP7067382B2 (en) Shift range controller
US20210356040A1 (en) Shift range control device
US20220190750A1 (en) Motor control device
JP2020114126A (en) Motor controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21785175

Country of ref document: EP

Kind code of ref document: A1