WO2021205513A1 - Autostereoscopic display device and displaying method for same - Google Patents

Autostereoscopic display device and displaying method for same Download PDF

Info

Publication number
WO2021205513A1
WO2021205513A1 PCT/JP2020/015544 JP2020015544W WO2021205513A1 WO 2021205513 A1 WO2021205513 A1 WO 2021205513A1 JP 2020015544 W JP2020015544 W JP 2020015544W WO 2021205513 A1 WO2021205513 A1 WO 2021205513A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
reflective screen
display device
distance
naked
Prior art date
Application number
PCT/JP2020/015544
Other languages
French (fr)
Japanese (ja)
Inventor
正典 横山
佐藤 隆
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/015544 priority Critical patent/WO2021205513A1/en
Publication of WO2021205513A1 publication Critical patent/WO2021205513A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens

Definitions

  • the present invention relates to a naked-eye stereoscopic display device and a display method thereof.
  • Non-Patent Documents 1 and 2 Proposed image display devices and methods that enable 360-degree stereoscopic images to be experienced without using 3D glasses or the like (for example, Non-Patent Documents 1 and 2).
  • Non-Patent Documents 1 and 2 project an image from a plurality of projection devices arranged on the circumference on a reflective screen combining a mirror, a Fresnel lens, and a diffuser, and the reflected light is condensed. It presents a 360-degree stereoscopic image at the desired position. The position where the reflected light is collected is called the iris surface, and the viewer views the stereoscopic image on the iris surface.
  • Motohiro Makiguchi et al. Interactive 360-Degree Glasses-Free Tabletop 3D Display” UIST '19, October 20-23, 2019, New La, LA, USA. Takamune Makiguchi, 1 other person, "360 degree table top type naked eye 3D image display technology", NTT Technology Journal 2018.10
  • the eye position may not match the iris surface. In that case, the viewer cannot view the stereoscopic image.
  • some of the multiple viewers may block the projected light. If the projected light is blocked, part of the image will disappear.
  • the conventional naked-eye stereoscopic display device has a problem that the stereoscopic image may not be viewed when the viewer moves.
  • the present invention has been made in view of this problem, and an object of the present invention is to provide a naked-eye stereoscopic display device capable of viewing a stereoscopic image even when a viewer moves, and a display method thereof.
  • the naked-eye stereoscopic display device is arranged on a tubular housing and an inner circumference below the upper end of the housing or below the upper end of the housing, and projects downward.
  • a plurality of projection devices and a reflective screen arranged inside the lower end of the housing are provided, and the distance from the center of the reflective screen to the lens center of the projection device is reflected from the reflective screen.
  • the display method according to one aspect of the present invention is the display method performed by the naked-eye stereoscopic display device, which is a tubular housing and the circumference of the upper end of the housing or below the upper end of the housing.
  • a plurality of projection devices arranged on the inner circumference of the lens and projecting downwards, and a reflective screen arranged inside the lower end of the housing, and the projection device from the center of the reflective screen When the distance to the center of the lens is a, the distance from the reflective screen to the position where the reflected light is collected is b, and the focal length of the reflective screen is f, 1 / a + 1 / b.
  • the stereoscopic image can be viewed even if the viewer moves.
  • FIG. 1 is a diagram schematically showing the appearance of the naked-eye stereoscopic display device according to the embodiment of the present invention.
  • 1 (a) is a plan view
  • FIG. 1 (b) is a cross-sectional view taken along the line AA shown in FIG. 1 (a).
  • the housing 10 of the naked-eye stereoscopic display device 100 has a tubular shape, and for example, a circular reflective screen 30 is arranged at the bottom of the tubular shape.
  • An eaves 10a having a predetermined length projects toward the inside of the cylinder at the upper end of the tubular housing 10.
  • the projection device 20 is arranged in a circle on the back side of the eaves 10a. For example, 60 projection devices 20 are arranged at intervals of 6 degrees at a central angle.
  • the projection device 20 may be arranged so as to form a circle on the eaves 10a at the upper end of the housing 10. Even in that case, the projection device 20 projects downward.
  • the center distance to the lens center of the projection device 20 60 of the reflective screen 30 is a, the light reflected from the reflective screen 30 a distance to a position for condensing b do. Then, when the focal length of the reflective screen 30 is f, the naked-eye stereoscopic display device 100 satisfies the condition of the following equation.
  • the focal length f differs depending on the specifications of the reflective screen 30.
  • the focal length f is a distance of about 70 cm.
  • the surface on which the light reflected from the reflective screen 30 is focused is shown by a thin alternate long and short dash line.
  • This surface is referred to as the iris surface 40 60.
  • 60 subscript represents that the iris surface formed by light projected from the projecting device 20 60. In the following, when the position of the projection device 20 or the like is not specified, the notation of the subscript is omitted.
  • the iris is a function existing inside the projection device 20, which corresponds to the aperture of the camera and adjusts the amount of light.
  • the reflective screen 30 has a lens layer and forms an iris surface 40 in which an iris is imaged in space.
  • Observer H observes a stereoscopic image on the iris surface 40.
  • the observer H observes the stereoscopic image by looking into the housing 10.
  • the iris surface 60 has a characteristic that the brightness of the projected image smoothly transitions as the viewpoint of the observer H moves.
  • the reflective screen 30 will be described in detail later.
  • FIG. 2 is a diagram showing the brightness distribution of the combined luminance synthesized on the two iris planes.
  • the horizontal axis of FIG. 2 is the viewpoint [degree] of the observer H, and the vertical axis is the relative brightness.
  • the dashed line is, for example, the brightness distribution of the iris surface 40 60 formed by the light projected from the projection device 20 60, and the alternate long and short dash line is the brightness distribution of the iris surface 40 59 formed by the light projected from the projection device 20 59, for example. Is.
  • the thick solid line is the combined brightness of the two iris surfaces 40 59 and 40 60.
  • Two iris surface 40 59, 40 60 composite luminance of is higher than the average value of the respective maximum luminance of the two iris surface 40 59, 40 60. With such a combined luminance, the observer H can perceive a smooth brightness change by moving the viewpoint within the iris planes 40 59 and 40 60.
  • the naked-eye stereoscopic display device 100 is arranged on the tubular housing 10 and the inner circumference on the circumference of the upper end of the housing 10 or below the upper end of the housing 10.
  • a plurality of projection devices 20 for projecting downwards and a reflective screen 30 arranged inside the lower end of the housing 10 are provided, and the distance from the center of the reflective screen 30 to the lens center of the projection device 20 is a.
  • the iris surface 40 is formed at a position higher than the upper end of the housing 10. Therefore, the observer H can reliably observe the stereoscopic image by taking a posture of looking into the housing 10. Further, since the projected light of the projection device 20 is not blocked by another observer, a part of the image is not obscured.
  • FIG. 3 is a diagram schematically showing an example of a cross-sectional structure of the reflective screen 30.
  • the reflective screen 30 has a layer structure of a holding plate 30a, a reflective layer 30b, a UV-polymerized Fresnel lens layer 30c, and an anisotropic diffusion layer 30d.
  • the holding plate 30a is a substrate that maintains the flatness of the reflective screen 30, and is composed of, for example, a plastic plate or the like.
  • a reflective layer 30b is formed on the front side of the holding plate 30a.
  • the reflective layer 30b is made of a metal having a high reflectance such as aluminum, silver, and nickel.
  • a UV-polymerized Fresnel lens layer 30c is formed on the front side of the reflective layer 30b.
  • the front side of the UV polymerized Fresnel lens layer 30c is a flat surface, the back side forms a Fresnel lens surface, and is composed of a resin such as epoxy acrylic rate.
  • An anisotropic diffusion layer 30d is formed on the front side of the UV-polymerized Fresnel lens layer 30c.
  • Anisotropic diffusion is a diffusion layer in which the diffusion angle of light diffused by the diffusion layer has different characteristics in two orthogonal directions having a specific relationship with the surface shape of the diffusion layer.
  • the distribution type of the brightness within the diffusion angle range is, for example, a Gaussian distribution.
  • FIG. 4 is a diagram showing an example of the brightness distribution of the reflective screen 30.
  • the horizontal axis of FIG. 4 is the viewpoint [degree], and the vertical axis is the brightness [cd / m 2 ].
  • the viewpoint [degree] is an angle with the front of the projection device 20 as 0 degree. It shows a characteristic that the brightness gradually decreases with respect to the movement of the viewpoint in the ⁇ direction centered on 0 degrees. In this example, the brightness is halved when the viewpoint changes by about 7 degrees.
  • FIG. 5 is a diagram schematically showing a mounting structure of the projection device 20.
  • the projection device 20 is fixed to the back side of the eaves 10a at the upper end of the housing 10 via, for example, the bracket 50.
  • screws are used to attach the bracket 50 to the housing 10 and to attach the projection device 20 to the bracket 50.
  • the bracket 50 has a shape in which the end portion fixed to the housing 10 is horizontal and the portion fixed to the projection device 20 is inclined downward. By adjusting the tilt angle, the projection angle of the projection device 20 can be arbitrarily adjusted.
  • the projection device 20 at the opposite portion can also be hidden.
  • the blindfold plate may be mounted in the vertical direction from the tip portion of the eaves 10a, or may be mounted at an angle according to the mounting angle of the projection device 20. As a result, the observer H can view the stereoscopic image without being aware of the existence of the projection device 20.
  • the naked-eye stereoscopic display device 100 needs to satisfy the condition shown in the above formula (1).
  • a method of manufacturing the naked-eye stereoscopic display device 100 that satisfies the conditions represented by the formula (1) will be described.
  • FIG. 6 is a diagram showing a configuration in which a step 70 on which the observer H rides is added to FIG. 1 (b).
  • the step 70 is provided as needed, and its height h is set to an arbitrary height.
  • the focal length f is a value determined by the specifications of the reflective screen 30, and is treated as a default value here.
  • the distance a from the center of the reflective screen 30 to the center of the lens of the projection device 20 is set so that the distance b from the reflective screen 30 to the position where the reflected light is collected is an appropriate distance.
  • the height of the housing 10 is approximately 0.81 m (1.15 ⁇ sin 45 degrees).
  • the height of the iris surface 40 60 from the floor is about 1.3 m (1.8 x sin 45 degrees).
  • the diameter of the housing 10 is slightly larger than 1.6 m (2 ⁇ 1.15 ⁇ cos 45 degrees).
  • the size of the housing 10 of the naked-eye stereoscopic display device 100 is set to, for example, a height of about 0.81 m and a horizontal distance from the center of the reflective screen 30 to the lens center of the projection device 20 of about 0.81 m. do. Then, an iris surface can be formed at a height of about 1.3 m from the floor.
  • the height of about 1.3 m is a height at which the eyes of the observer H can be positioned at that height if the adult observer H looks into the housing 10.
  • the naked-eye stereoscopic display device 100 includes a step 70 arranged at a position where the observer H can look into the housing 10. If the step 70 is used, even a short child can appreciate the stereoscopic image.
  • the step 70 is unnecessary. In any case, by providing the step 70, the degree of freedom in designing the naked-eye stereoscopic display device 100 can be improved.
  • the naked-eye stereoscopic display device 100 is arranged on the tubular housing 10 and the inner circumference on the circumference of the upper end of the housing 10 or below the upper end of the housing 10.
  • a plurality of projection devices 20 for projecting downwards and a reflective screen 30 arranged inside the lower end of the housing 10 are provided, and the distance from the center of the reflective screen 30 to the lens center of the projection device 20 is a.
  • the stereoscopic image can be viewed even if the viewer moves.
  • the naked-eye stereoscopic display device 100 limits the observation position of the observer H by the housing 10. This makes it easy to align the eye position of the observer H with the iris surface. Further, since the projection device 20 can be arranged in front of the observer H, the image is not obstructed by another observer. That is, the projection of a stereoscopic image can be performed stably.
  • the reflective screen 30 cannot be directly touched, the relatively expensive reflective screen 30 can be protected. Further, since the housing 10, the projection device 20, and the reflective screen 30 can be integrated, installation and movement can be facilitated.
  • the naked-eye stereoscopic display device 100 can provide new entertainment using a stereoscopic image.
  • the present invention is not limited to this example.
  • the reflective screen 30 may have the size of the inner diameter of the housing 10 or may be polygonal. Further, although an example in which 60 projection devices 20 are provided is shown, the present invention is not limited to this example. The number of projection devices 20 may be larger or smaller.

Abstract

The present invention comprises a cylindrical housing 10; a plurality of projection devices 20 disposed on the upper end circumference of the housing 10 or on the inner circumference below the upper end of the housing 10, for performing projection in the downward direction; and a reflection type screen 30 disposed on the inner side at the lower end of the housing 10. When a represents the distance from the center of the reflection type screen 30 to the lens center of each of the projection devices 20, b represents the distance from the reflection type screen 30 to the position at which reflected beams are condensed, and f represents the focal distance of the reflection type screen 30, the present invention satisfies the condition: 1/a + 1/b = 1/f.

Description

裸眼立体表示装置とその表示方法Naked eye stereoscopic display device and its display method
 本発明は、裸眼立体表示装置とその表示方法に関する。 The present invention relates to a naked-eye stereoscopic display device and a display method thereof.
 3Dメガネ等を使用せずに360度立体映像を体験可能な映像表示装置及び方法が提案されている(例えば非特許文献1、2)。 Proposed image display devices and methods that enable 360-degree stereoscopic images to be experienced without using 3D glasses or the like (for example, Non-Patent Documents 1 and 2).
 非特許文献1と2に開示された技術は、鏡とフレネルレンズと拡散板を組み合わせた反射スクリーンに、円周上に配置された複数の投影装置から画像を投影し、その反射光が集光する位置に360度立体画像を提示するものである。反射光が集光する位置をアイリス面と称し、観賞者はそのアイリス面で立体画像を観賞する。 The techniques disclosed in Non-Patent Documents 1 and 2 project an image from a plurality of projection devices arranged on the circumference on a reflective screen combining a mirror, a Fresnel lens, and a diffuser, and the reflected light is condensed. It presents a 360-degree stereoscopic image at the desired position. The position where the reflected light is collected is called the iris surface, and the viewer views the stereoscopic image on the iris surface.
 しかしながら、観賞者は反射スクリーンの周囲を自由に動くため、目の位置がアイリス面と合致しなくなる場合がある。その場合、観賞者は立体画像を観賞することができない。 However, since the viewer moves freely around the reflective screen, the eye position may not match the iris surface. In that case, the viewer cannot view the stereoscopic image.
 また、例えば投影装置が天井に配置された投影環境を想定した場合に、複数の観賞者の一部が投影光を遮ることがある。投影光が遮られると映像の一部が見えなくなってしまう。 Also, for example, assuming a projection environment in which the projection device is placed on the ceiling, some of the multiple viewers may block the projected light. If the projected light is blocked, part of the image will disappear.
 このように、従来の裸眼立体表示装置は、観賞者が移動すると立体画像を観賞できない場合があるという課題がある。 As described above, the conventional naked-eye stereoscopic display device has a problem that the stereoscopic image may not be viewed when the viewer moves.
 本発明は、この課題に鑑みてなされたものであり、観賞者が移動しても立体画像を観賞できる裸眼立体表示装置とその表示方法を提供することを目的とする。 The present invention has been made in view of this problem, and an object of the present invention is to provide a naked-eye stereoscopic display device capable of viewing a stereoscopic image even when a viewer moves, and a display method thereof.
 本発明の一態様に係る裸眼立体表示装置は、筒形の筐体と、前記筐体の上端の円周上又は前記筐体の上端下の内側の円周上に配置され、下方向を投影する複数の投影装置と、前記筐体の下端の内側に配置される反射型スクリーンとを備え、前記反射型スクリーンの中心から前記投影装置のレンズ中心までの距離をa、前記反射型スクリーンから反射された光が集光する位置までの距離をb、及び前記反射型スクリーンの焦点距離をfとした場合に、1/a+1/b=1/fの条件を満たすことを要旨とする。 The naked-eye stereoscopic display device according to one aspect of the present invention is arranged on a tubular housing and an inner circumference below the upper end of the housing or below the upper end of the housing, and projects downward. A plurality of projection devices and a reflective screen arranged inside the lower end of the housing are provided, and the distance from the center of the reflective screen to the lens center of the projection device is reflected from the reflective screen. The gist is that the condition of 1 / a + 1 / b = 1 / f is satisfied when the distance to the position where the collected light is collected is b and the focal length of the reflective screen is f.
 また、本発明の一態様に係る表示方法は、上記の裸眼立体表示装置が行う表示方法であって、筒形の筐体と、前記筐体の上端の円周上又は前記筐体の上端下の内側の円周上に配置され、下方向を投影する複数の投影装置と、前記筐体の下端の内側に配置される反射型スクリーンとを備え、前記反射型スクリーンの中心から前記投影装置のレンズ中心までの距離をa、前記反射型スクリーンから反射された光が集光する位置までの距離をb、及び前記反射型スクリーンの焦点距離をfとした場合に、1/a+1/b=1/fの条件を満たし、観察者は、前記筐体をのぞき込む姿勢で立体画像を観察することを要旨とする。 Further, the display method according to one aspect of the present invention is the display method performed by the naked-eye stereoscopic display device, which is a tubular housing and the circumference of the upper end of the housing or below the upper end of the housing. A plurality of projection devices arranged on the inner circumference of the lens and projecting downwards, and a reflective screen arranged inside the lower end of the housing, and the projection device from the center of the reflective screen When the distance to the center of the lens is a, the distance from the reflective screen to the position where the reflected light is collected is b, and the focal length of the reflective screen is f, 1 / a + 1 / b. The gist is that the condition of = 1 / f is satisfied, and the observer observes the stereoscopic image in a posture of looking into the housing.
 本発明によれば、観賞者が移動しても立体画像を観賞することができる。 According to the present invention, the stereoscopic image can be viewed even if the viewer moves.
本発明の実施形態に係る裸眼立体表示装置の外観を模式的に示す図であり、(a)は平面図、(b)は(a)に示すA-A線に沿う断面図である。It is a figure which shows typically the appearance of the naked eye stereoscopic display device which concerns on embodiment of this invention, (a) is a plan view, (b) is a cross-sectional view along line AA shown in (a). 図1に示す投影装置と、投影されるアイリス面の関係を模式的に示す図である。It is a figure which shows typically the relationship between the projection apparatus shown in FIG. 1 and the projected iris plane. 図1に示す反射型スクリーンの断面構造例を示す図である。It is a figure which shows the example of the cross-sectional structure of the reflective screen shown in FIG. 図3に示す反射型スクリーンの輝度分布の例を示す図である。It is a figure which shows the example of the luminance distribution of the reflective screen shown in FIG. 図1に示す投影装置の取付け部分の構造例を模式的に示す図である。It is a figure which shows typically the structural example of the attachment part of the projection apparatus shown in FIG. 踏み台を備える裸眼立体表示装置の構成例を模式的に示す図である。It is a figure which shows typically the configuration example of the naked eye stereoscopic display device provided with a stepping stone.
 以下、本発明の実施形態について図面を用いて説明する。複数の図面中同一のものには同じ参照符号を付し、説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same objects in a plurality of drawings, and the description is not repeated.
 図1は、本発明の実施形態に係る裸眼立体表示装置の外観を模式的に示す図である。図1(a)は平面図、図1(b)は図1(a)に示すA-A線に沿う断面図である。 FIG. 1 is a diagram schematically showing the appearance of the naked-eye stereoscopic display device according to the embodiment of the present invention. 1 (a) is a plan view, and FIG. 1 (b) is a cross-sectional view taken along the line AA shown in FIG. 1 (a).
 図1(a)に示すように、裸眼立体表示装置100の筐体10は筒型であり、筒の底には例えば円形の反射型スクリーン30が配置されている。筒形の筐体10の上端部分は、筒の内側に向けて所定の長さの庇10aが張り出している。その庇10aの裏側に投影装置20が円を成すように配置されている。投影装置20は、例えば、中心角6度の間隔で60台配置される。 As shown in FIG. 1A, the housing 10 of the naked-eye stereoscopic display device 100 has a tubular shape, and for example, a circular reflective screen 30 is arranged at the bottom of the tubular shape. An eaves 10a having a predetermined length projects toward the inside of the cylinder at the upper end of the tubular housing 10. The projection device 20 is arranged in a circle on the back side of the eaves 10a. For example, 60 projection devices 20 are arranged at intervals of 6 degrees at a central angle.
 なお、投影装置20は、筐体10の上端の庇10aの上に円を成すように配置してもよい。その場合でも投影装置20は下方を投影する。 The projection device 20 may be arranged so as to form a circle on the eaves 10a at the upper end of the housing 10. Even in that case, the projection device 20 projects downward.
 図1(b)に示すように、反射型スクリーン30の中心から投影装置2060のレンズ中心までの距離はa、反射型スクリーン30から反射された光が集光する位置までの距離をbとする。そして、反射型スクリーン30の焦点距離をfとした場合、裸眼立体表示装置100は次式の条件を満たす。 As shown in FIG. 1 (b), the center distance to the lens center of the projection device 20 60 of the reflective screen 30 is a, the light reflected from the reflective screen 30 a distance to a position for condensing b do. Then, when the focal length of the reflective screen 30 is f, the naked-eye stereoscopic display device 100 satisfies the condition of the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 焦点距離fは、反射型スクリーン30の仕様によって異なる。例えば、焦点距離fは70cm程度の距離である。 The focal length f differs depending on the specifications of the reflective screen 30. For example, the focal length f is a distance of about 70 cm.
 図1(b)において、反射型スクリーン30から反射された光が集光する面を、細い一点鎖線で示している。この面は、アイリス面4060と称される。添え字の60は、投影装置2060から投影された光で形成されるアイリス面であることを表している。なお、以降において、投影装置20等の位置を特定しない場合は添え字の表記を省略する。 In FIG. 1B, the surface on which the light reflected from the reflective screen 30 is focused is shown by a thin alternate long and short dash line. This surface is referred to as the iris surface 40 60. 60 subscript represents that the iris surface formed by light projected from the projecting device 20 60. In the following, when the position of the projection device 20 or the like is not specified, the notation of the subscript is omitted.
 アイリスとは、投影装置20の内部に存在する機能であり、カメラの絞りに相当し、光量を調整するものである。反射型スクリーン30は、レンズ層を持ち、アイリスを空間に結像したアイリス面40を形成する。 The iris is a function existing inside the projection device 20, which corresponds to the aperture of the camera and adjusts the amount of light. The reflective screen 30 has a lens layer and forms an iris surface 40 in which an iris is imaged in space.
 観察者Hは、このアイリス面40で立体画像を観察する。観察者Hは、筐体10をのぞき込むようにして立体画像を観察する。 Observer H observes a stereoscopic image on the iris surface 40. The observer H observes the stereoscopic image by looking into the housing 10.
 アイリス面60は、観察者Hの視点の移動に伴って投影映像の輝度が滑らかに遷移する特性を持つ。反射型スクリーン30について詳しくは後述する。 The iris surface 60 has a characteristic that the brightness of the projected image smoothly transitions as the viewpoint of the observer H moves. The reflective screen 30 will be described in detail later.
 図2は、2つのアイリス面で合成される合成輝度の輝度分布を示す図である。図2の横軸は観察者Hの視点[度]、縦軸は相対輝度である。そして、破線は例えば投影装置2060から投影された光で形成されるアイリス面4060の輝度分布、一点鎖線は例えば投影装置2059から投影された光で形成されるアイリス面4059の輝度分布である。太い実線は、2つのアイリス面4059,4060の合成輝度である。 FIG. 2 is a diagram showing the brightness distribution of the combined luminance synthesized on the two iris planes. The horizontal axis of FIG. 2 is the viewpoint [degree] of the observer H, and the vertical axis is the relative brightness. The dashed line is, for example, the brightness distribution of the iris surface 40 60 formed by the light projected from the projection device 20 60, and the alternate long and short dash line is the brightness distribution of the iris surface 40 59 formed by the light projected from the projection device 20 59, for example. Is. The thick solid line is the combined brightness of the two iris surfaces 40 59 and 40 60.
 2つのアイリス面4059,4060の合成輝度は、2つのアイリス面4059,4060のそれぞれの最大輝度の平均値よりも高くなっている。このような合成輝度にすることで、観察者Hは、アイリス面4059,4060内の視点の移動で滑らかな輝度変化を知覚することができる。 Two iris surface 40 59, 40 60 composite luminance of is higher than the average value of the respective maximum luminance of the two iris surface 40 59, 40 60. With such a combined luminance, the observer H can perceive a smooth brightness change by moving the viewpoint within the iris planes 40 59 and 40 60.
 以上説明したように本実施形態に係る裸眼立体表示装置100は、筒形の筐体10と、筐体10の上端の円周上又は筐体10の上端下の内側の円周上に配置され、下方向を投影する複数の投影装置20と、筐体10の下端の内側に配置される反射型スクリーン30とを備え、反射型スクリーン30の中心から投影装置20のレンズ中心までの距離をa、反射型スクリーン30から反射された光が集光する位置までの距離をb、及び反射型スクリーン30の焦点距離をfとした場合に、1/a+1/b=1/fの条件を満たす。これにより、運動視差を伴う多視点裸眼立体投影を、滑らかに行うことができる。また、アイリス面40は、筐体10の上端よりも高い位置に形成される。よって、観察者Hは、筐体10をのぞき込む姿勢を取ることで確実に立体画像を観察することができる。また、投影装置20の投影光は、他の観察者によって遮られることがないので、映像の一部が見えなくなることもない。 As described above, the naked-eye stereoscopic display device 100 according to the present embodiment is arranged on the tubular housing 10 and the inner circumference on the circumference of the upper end of the housing 10 or below the upper end of the housing 10. A plurality of projection devices 20 for projecting downwards and a reflective screen 30 arranged inside the lower end of the housing 10 are provided, and the distance from the center of the reflective screen 30 to the lens center of the projection device 20 is a. When the distance from the reflective screen 30 to the position where the reflected light is collected is b, and the focal length of the reflective screen 30 is f, the condition of 1 / a + 1 / b = 1 / f is set. Fulfill. As a result, multi-viewpoint autostereoscopic projection with motion parallax can be smoothly performed. Further, the iris surface 40 is formed at a position higher than the upper end of the housing 10. Therefore, the observer H can reliably observe the stereoscopic image by taking a posture of looking into the housing 10. Further, since the projected light of the projection device 20 is not blocked by another observer, a part of the image is not obscured.
 (反射型スクリーン)
 図3は、反射型スクリーン30の断面構造例を模式的に示す図である。反射型スクリーン30は、保持板30a、反射層30b、UV重合フレネルレンズ層30c、及び異方性拡散層30dの層構造である。
(Reflective screen)
FIG. 3 is a diagram schematically showing an example of a cross-sectional structure of the reflective screen 30. The reflective screen 30 has a layer structure of a holding plate 30a, a reflective layer 30b, a UV-polymerized Fresnel lens layer 30c, and an anisotropic diffusion layer 30d.
 保持板30aは、反射型スクリーン30の平坦性を維持する基板であり、例えばプラスチック板等で構成される。保持板30aの正面側には、反射層30bが形成される。 The holding plate 30a is a substrate that maintains the flatness of the reflective screen 30, and is composed of, for example, a plastic plate or the like. A reflective layer 30b is formed on the front side of the holding plate 30a.
 反射層30bは、例えばアルミニウム、銀、ニッケル等の高反射率の金属で構成される。反射層30bの正面側には、UV重合フレネルレンズ層30cが形成される。 The reflective layer 30b is made of a metal having a high reflectance such as aluminum, silver, and nickel. A UV-polymerized Fresnel lens layer 30c is formed on the front side of the reflective layer 30b.
 UV重合フレネルレンズ層30cの正面側は平面であり、背面側がフレネルレンズ面を形成し、エポキシアクリルレート等の樹脂で構成される。UV重合フレネルレンズ層30cの正面側には、異方性拡散層30dが形成される。 The front side of the UV polymerized Fresnel lens layer 30c is a flat surface, the back side forms a Fresnel lens surface, and is composed of a resin such as epoxy acrylic rate. An anisotropic diffusion layer 30d is formed on the front side of the UV-polymerized Fresnel lens layer 30c.
 異方性拡散とは、拡散層により拡散する光りの拡散角度が、拡散層の表面形状と特定の関係にある直交二方向で相異なる特性を有する拡散層のことである。異方性拡散層30dは、拡散角度範囲内での輝度の分布型が例えばガウス分布である。 Anisotropic diffusion is a diffusion layer in which the diffusion angle of light diffused by the diffusion layer has different characteristics in two orthogonal directions having a specific relationship with the surface shape of the diffusion layer. In the anisotropic diffusion layer 30d, the distribution type of the brightness within the diffusion angle range is, for example, a Gaussian distribution.
 図4は、反射型スクリーン30の輝度分布の例を示す図である。図4の横軸は視点[度]、縦軸は輝度[cd/m2]である。 FIG. 4 is a diagram showing an example of the brightness distribution of the reflective screen 30. The horizontal axis of FIG. 4 is the viewpoint [degree], and the vertical axis is the brightness [cd / m 2 ].
 視点[度]は、投影装置20の正面を0度とした角度である。0度を中心とした±方向の視点の移動に対して、なだらかに輝度が減少する特性を示す。この例では、視点が約7度変化すると輝度が半減する特性を示す。 The viewpoint [degree] is an angle with the front of the projection device 20 as 0 degree. It shows a characteristic that the brightness gradually decreases with respect to the movement of the viewpoint in the ± direction centered on 0 degrees. In this example, the brightness is halved when the viewpoint changes by about 7 degrees.
 図5に例示する反射型スクリーン30を用いることで、上記の合成輝度の特性を実現できる。 By using the reflective screen 30 illustrated in FIG. 5, the above-mentioned composite brightness characteristics can be realized.
 (投影装置の取付け構造)
 図5は、投影装置20の取付け構造を模式的に示す図である。図5に示すように、投影装置20は、例えば、ブラケット50を介して筐体10の上端の庇10aの裏側に固定される。筐体10へのブラケット50の取付け、及びブラケット50への投影装置20の取付けは例えばネジを用いる。
(Mounting structure of projection device)
FIG. 5 is a diagram schematically showing a mounting structure of the projection device 20. As shown in FIG. 5, the projection device 20 is fixed to the back side of the eaves 10a at the upper end of the housing 10 via, for example, the bracket 50. For example, screws are used to attach the bracket 50 to the housing 10 and to attach the projection device 20 to the bracket 50.
 ブラケット50は、筐体10に固定される端部は水平であり投影装置20が固定される部分は下方向に傾きを持つ形状である。傾きの角度を調整することで、投影装置20の投影角度を任意に調整できる。 The bracket 50 has a shape in which the end portion fixed to the housing 10 is horizontal and the portion fixed to the projection device 20 is inclined downward. By adjusting the tilt angle, the projection angle of the projection device 20 can be arbitrarily adjusted.
 この構成によれば、投影装置20を観察者Hの視界から消すことが可能である。観察者Hの手前にある投影装置20は、筐体10の上端の庇10aによって見ることができない。また、庇10aの先端部分に投影装置20を隠す目隠し板(図示せず)を配置することで、対向する部分の投影装置20も隠すことができる。 According to this configuration, it is possible to remove the projection device 20 from the field of view of the observer H. The projection device 20 in front of the observer H cannot be seen by the eaves 10a at the upper end of the housing 10. Further, by arranging a blind plate (not shown) that hides the projection device 20 at the tip portion of the eaves 10a, the projection device 20 at the opposite portion can also be hidden.
 目隠し板は、庇10aの先端部分から鉛直方向に取付けてもよいし、投影装置20の取付け角度に合わせて傾斜させて取付けてもよい。これにより、観察者Hは、投影装置20の存在を意識することなく立体画像を観賞することができる。 The blindfold plate may be mounted in the vertical direction from the tip portion of the eaves 10a, or may be mounted at an angle according to the mounting angle of the projection device 20. As a result, the observer H can view the stereoscopic image without being aware of the existence of the projection device 20.
 (裸眼立体表示装置の作製方法)
 本実施形態に係る裸眼立体表示装置100は、上記の式(1)に示す条件を満たす必要がある。ここでは、式(1)に示す条件を満たした裸眼立体表示装置100の作製方法について説明する。
(How to make a naked-eye stereoscopic display device)
The naked-eye stereoscopic display device 100 according to the present embodiment needs to satisfy the condition shown in the above formula (1). Here, a method of manufacturing the naked-eye stereoscopic display device 100 that satisfies the conditions represented by the formula (1) will be described.
 図6は、図1(b)に観察者Hが乗る踏み台70を追加した構成を示す図である。踏み台70は必要によって設けられ、その高さhは任意の高さに設定される。 FIG. 6 is a diagram showing a configuration in which a step 70 on which the observer H rides is added to FIG. 1 (b). The step 70 is provided as needed, and its height h is set to an arbitrary height.
 反射型スクリーン30の焦点距離fはf=70cmと仮定する。焦点距離fは、反射型スクリーン30の仕様によって決まる値であり、ここでは既定値として扱う。 It is assumed that the focal length f of the reflective screen 30 is f = 70 cm. The focal length f is a value determined by the specifications of the reflective screen 30, and is treated as a default value here.
 そして、反射型スクリーン30から反射された光が集光する位置までの距離bが適切な距離になるように、反射型スクリーン30の中心から投影装置20のレンズ中心までの距離aを設定する。 Then, the distance a from the center of the reflective screen 30 to the center of the lens of the projection device 20 is set so that the distance b from the reflective screen 30 to the position where the reflected light is collected is an appropriate distance.
 b=1.8m,f=0.7mとし、式(1)が成り立つ距離aを計算するとa≒1.15mである。よって、投影装置20の投影光の反射型スクリーン30への入射角を例えば45度と仮定した場合の筐体10の高さは、凡そ0.81m(1.15×sin45度)である。アイリス面4060の床からの高さは約1.3m(1.8×sin45度)である。また、筐体10の直径は、1.6m(2×1.15×cos45度)よりも少し大きくする。 When b = 1.8m and f = 0.7m and the distance a for which equation (1) holds is calculated, a≈1.15m. Therefore, assuming that the angle of incidence of the projected light of the projection device 20 on the reflective screen 30 is, for example, 45 degrees, the height of the housing 10 is approximately 0.81 m (1.15 × sin 45 degrees). The height of the iris surface 40 60 from the floor is about 1.3 m (1.8 x sin 45 degrees). Further, the diameter of the housing 10 is slightly larger than 1.6 m (2 × 1.15 × cos 45 degrees).
 このように、裸眼立体表示装置100の筐体10の大きさは、例えば、高さが凡そ0.81m、反射型スクリーン30の中心から投影装置20のレンズ中心までの水平距離は凡そ0.81mに設定する。そうすると、床から約1.3mの高さにアイリス面を形成することができる。 As described above, the size of the housing 10 of the naked-eye stereoscopic display device 100 is set to, for example, a height of about 0.81 m and a horizontal distance from the center of the reflective screen 30 to the lens center of the projection device 20 of about 0.81 m. do. Then, an iris surface can be formed at a height of about 1.3 m from the floor.
 約1.3mの高さは、成人の観察者Hが筐体10をのぞき込む姿勢をすれば、観察者Hの目をその高さに位置させることのできる高さである。 The height of about 1.3 m is a height at which the eyes of the observer H can be positioned at that height if the adult observer H looks into the housing 10.
 裸眼立体表示装置100は、筐体10を観察者Hがのぞき込める位置に配置される踏み台70を備える。踏み台70を用いれば、背の低い子供でも立体画像を観賞することができる。 The naked-eye stereoscopic display device 100 includes a step 70 arranged at a position where the observer H can look into the housing 10. If the step 70 is used, even a short child can appreciate the stereoscopic image.
 もちろん、子供向けに筐体10の大きさを設計すれば踏み台70は不要である。何れにしても踏み台70を備えることで裸眼立体表示装置100の設計の自由度を向上させることができる。 Of course, if the size of the housing 10 is designed for children, the step 70 is unnecessary. In any case, by providing the step 70, the degree of freedom in designing the naked-eye stereoscopic display device 100 can be improved.
 以上説明したように本実施形態に係る裸眼立体表示装置100は、筒形の筐体10と、筐体10の上端の円周上又は筐体10の上端下の内側の円周上に配置され、下方向を投影する複数の投影装置20と、筐体10の下端の内側に配置される反射型スクリーン30とを備え、反射型スクリーン30の中心から投影装置20のレンズ中心までの距離をa、反射型スクリーン30から反射された光が集光する位置までの距離をb、及び反射型スクリーン30の焦点距離をfとした場合に、1/a+1/b=1/fの条件を満たす。これにより、観賞者が移動しても立体画像を観賞することができる。 As described above, the naked-eye stereoscopic display device 100 according to the present embodiment is arranged on the tubular housing 10 and the inner circumference on the circumference of the upper end of the housing 10 or below the upper end of the housing 10. A plurality of projection devices 20 for projecting downwards and a reflective screen 30 arranged inside the lower end of the housing 10 are provided, and the distance from the center of the reflective screen 30 to the lens center of the projection device 20 is a. When the distance from the reflective screen 30 to the position where the reflected light is collected is b, and the focal length of the reflective screen 30 is f, the condition of 1 / a + 1 / b = 1 / f is set. Fulfill. As a result, the stereoscopic image can be viewed even if the viewer moves.
 裸眼立体表示装置100は、筐体10によって観察者Hの観察する位置に制限を与える。これにより、観察者Hの目の位置をアイリス面に一致させることが容易になる。また、投影装置20を、観察者Hの前に配置できるので他の観察者によって映像が遮られることがない。つまり、立体画像の投影を安定して行うことができる。 The naked-eye stereoscopic display device 100 limits the observation position of the observer H by the housing 10. This makes it easy to align the eye position of the observer H with the iris surface. Further, since the projection device 20 can be arranged in front of the observer H, the image is not obstructed by another observer. That is, the projection of a stereoscopic image can be performed stably.
 また、反射型スクリーン30に直接手を触れることができないので、比較的に高価な反射型スクリーン30を保護することができる。また、筐体10、投影装置20、及び反射型スクリーン30は一体化することができるので、設置及び移動を容易にすることができる。 Further, since the reflective screen 30 cannot be directly touched, the relatively expensive reflective screen 30 can be protected. Further, since the housing 10, the projection device 20, and the reflective screen 30 can be integrated, installation and movement can be facilitated.
 また、のぞき込むという行為が人の好奇心を刺激する。よって、裸眼立体表示装置100は、立体画像を用いた新たなエンターティメントの提供を可能にすることができる。 Also, the act of looking into stimulates people's curiosity. Therefore, the naked-eye stereoscopic display device 100 can provide new entertainment using a stereoscopic image.
 なお、上記の反射型スクリーン30は、説明を分かり易くする目的で、円形で且つ筐体10の直径よりも小さい例を示したが、本発明はこの例に限定されない。反射型スクリーン30は、筐体10の内径の大きさであってもよいし、多角形であってもよい。また、投影装置20は、60台備える例を示したがこの例に限られない。投影装置20の数は、更に多くてもよいし少なくても構わない。 Although the above-mentioned reflective screen 30 is circular and smaller than the diameter of the housing 10 for the purpose of making the explanation easy to understand, the present invention is not limited to this example. The reflective screen 30 may have the size of the inner diameter of the housing 10 or may be polygonal. Further, although an example in which 60 projection devices 20 are provided is shown, the present invention is not limited to this example. The number of projection devices 20 may be larger or smaller.
 このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 As described above, it goes without saying that the present invention includes various embodiments not described here. Therefore, the technical scope of the present invention is defined only by the matters specifying the invention relating to the reasonable claims from the above description.
10:筐体
10a:庇
20:投影装置
30:反射型スクリーン
30a:保持板
30b:反射層
30c:UV重合フレネルレンズ層
30d:異方性拡散層
40:アイリス面
50:ブラケット
70:踏み台
100:裸眼立体表示装置
10: Housing 10a: Eaves 20: Projection device 30: Reflective screen 30a: Holding plate 30b: Reflective layer 30c: UV polymerized Fresnel lens layer 30d: Anisotropic diffusion layer 40: Iris surface 50: Bracket 70: Step 100: Naked eye stereoscopic display device

Claims (3)

  1.  筒形の筐体と、
     前記筐体の上端の円周上又は前記筐体の上端下の内側の円周上に配置され、下方向を投影する複数の投影装置と、
     前記筐体の下端の内側に配置される反射型スクリーンと
     を備え、
     前記反射型スクリーンの中心から前記投影装置のレンズ中心までの距離をa、前記反射型スクリーンから反射された光が集光する位置までの距離をb、及び前記反射型スクリーンの焦点距離をfとした場合に、1/a+1/b=1/fの条件を満たす裸眼立体表示装置。
    With a tubular housing
    A plurality of projection devices arranged on the circumference of the upper end of the housing or on the inner circumference below the upper end of the housing and projecting downwards.
    With a reflective screen located inside the lower edge of the housing
    The distance from the center of the reflective screen to the center of the lens of the projection device is a, the distance from the reflective screen to the position where the reflected light is collected is b, and the focal length of the reflective screen is f. A naked-eye stereoscopic display device that satisfies the conditions of 1 / a + 1 / b = 1 / f when
  2.  前記筐体を観察者がのぞき込める位置に配置される踏み台を
     備える請求項1に記載の裸眼立体表示装置。
    The naked-eye stereoscopic display device according to claim 1, further comprising a stepping stone arranged at a position where the observer can look into the housing.
  3.  裸眼立体表示装置が行う表示方法であって、
     筒形の筐体と、
     前記筐体の上端の円周上又は前記筐体の上端下の内側の円周上に配置され、下方向を投影する複数の投影装置と、
     前記筐体の下端の内側に配置される反射型スクリーンと
     を備え、
     前記反射型スクリーンの中心から前記投影装置のレンズ中心までの距離をa、前記反射型スクリーンから反射された光が集光する位置までの距離をb、及び前記反射型スクリーンの焦点距離をfとした場合に、1/a+1/b=1/fの条件を満たし、
     観察者は、前記筐体をのぞき込む姿勢で立体画像を観察する表示方法。
    This is the display method used by the naked-eye stereoscopic display device.
    With a tubular housing
    A plurality of projection devices arranged on the circumference of the upper end of the housing or on the inner circumference below the upper end of the housing and projecting downwards.
    With a reflective screen located inside the lower edge of the housing
    The distance from the center of the reflective screen to the center of the lens of the projection device is a, the distance from the reflective screen to the position where the reflected light is collected is b, and the focal length of the reflective screen is f. If so, the condition of 1 / a + 1 / b = 1 / f is satisfied,
    A display method in which an observer observes a stereoscopic image in a posture of looking into the housing.
PCT/JP2020/015544 2020-04-06 2020-04-06 Autostereoscopic display device and displaying method for same WO2021205513A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015544 WO2021205513A1 (en) 2020-04-06 2020-04-06 Autostereoscopic display device and displaying method for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015544 WO2021205513A1 (en) 2020-04-06 2020-04-06 Autostereoscopic display device and displaying method for same

Publications (1)

Publication Number Publication Date
WO2021205513A1 true WO2021205513A1 (en) 2021-10-14

Family

ID=78023070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015544 WO2021205513A1 (en) 2020-04-06 2020-04-06 Autostereoscopic display device and displaying method for same

Country Status (1)

Country Link
WO (1) WO2021205513A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020067465A1 (en) * 2000-12-04 2002-06-06 Ming Li Method and processor for stereo cylindrical imaging
CN103616770A (en) * 2013-12-12 2014-03-05 北京理工大学 Panoramic three-dimensional display device based on plurality of projection machines and transmission-type scattering screen
JP2017083694A (en) * 2015-10-29 2017-05-18 セイコーエプソン株式会社 Display device
JP2017090620A (en) * 2015-11-09 2017-05-25 セイコーエプソン株式会社 Display device
JP2018195998A (en) * 2017-05-18 2018-12-06 日本電信電話株式会社 Stereoscopic image display apparatus
JP2019191331A (en) * 2018-04-24 2019-10-31 日本電信電話株式会社 Display system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020067465A1 (en) * 2000-12-04 2002-06-06 Ming Li Method and processor for stereo cylindrical imaging
CN103616770A (en) * 2013-12-12 2014-03-05 北京理工大学 Panoramic three-dimensional display device based on plurality of projection machines and transmission-type scattering screen
JP2017083694A (en) * 2015-10-29 2017-05-18 セイコーエプソン株式会社 Display device
JP2017090620A (en) * 2015-11-09 2017-05-25 セイコーエプソン株式会社 Display device
JP2018195998A (en) * 2017-05-18 2018-12-06 日本電信電話株式会社 Stereoscopic image display apparatus
JP2019191331A (en) * 2018-04-24 2019-10-31 日本電信電話株式会社 Display system

Similar Documents

Publication Publication Date Title
US20180259784A1 (en) Retroreflector display system for generating floating image effects
JP5741093B2 (en) Screen system and screen
US20130083291A1 (en) Autostereoscopic display system with one dimensional (1d) retroreflective screen
US8591035B2 (en) Display device
JP5992302B2 (en) Display device
JP5799535B2 (en) System for generating aerial 3D image and method for generating aerial 3D image
CN108139588A (en) Wide visual field head-mounted display
US20140022511A1 (en) Front-projection glasses-free, continuous 3d display
KR20060079545A (en) Three-dimensional display device
JP2003520982A (en) Projection screen with lenticular lens with different optical power
CN104714361B (en) A kind of multiple views 3D display device
US9967554B2 (en) Multi-viewer autostereoscopic tabletop display with dynamic parallax barrier and directional backlight
Ishizuka et al. P. 48: Flat Panel Autostereoscopic Display with Wide Viewing Zone Using Time‐Division Multiplexing Backlight
WO2021139204A1 (en) Three-dimensional display device and system
JP6315385B2 (en) Projection-type image display device
WO2021205513A1 (en) Autostereoscopic display device and displaying method for same
JP6775220B2 (en) Stereoscopic image display device
JP5888742B2 (en) 3D display device
JP2010277019A (en) Image display device
CN109725430B (en) Virtual focusing mixed imaging stereo display device
CN110286493B (en) Stereoscopic projection device based on double gratings
US20040179263A1 (en) Stereoscopic image display apparatus
JP2006276292A (en) Image display system
JP2001013607A (en) Image display device and image projector
JP2000275736A (en) Directional reflection screen and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP